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About the author
Article review

The main issues and contributions of this paper are as follows:
Contribution 1: Introduction of a general formulation for dimension
reduction and coefficient estimation in the multivariate linear model,
highlighting that many existing methods can be expressed within this
framework but have various limitations.

Contribution 2: Proposal of a more flexible and universally applicable
method, a novel penalized least squares estimate. The penalty used
is the Ky Fan norm of the coefficient matrix.
Contribution 3: Introduction of a generalized cross-validation crite-
rion for tuning parameter selection in the penalized least squares.
Contribution 4: Demonstration of the competitive performance of
the new method through simulations and an application in financial
econometrics.
Contribution 5: Discussion of an extension to non-parametric factor
models, further broadening the applicability of the method.
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Factor model

Multivariate Linear Regression Models
In general multivariate linear regression, we have n observations on
q responses y = (y1, . . . , yq) and p explanatory variables
x = (x1, . . . , xp).

Y = XB + E (1)
where:

Y is an n × q matrix.
X is an n × p matrix.
B is a p × q coefficient matrix.
E = (e1, . . . , en) is the regression noise, and the es are
independently sampled from N(0, Σ).

Throughout the paper, we center each input variable to remove the
intercept in equation (1) and scale each input variable so that the
observed standard deviation is 1.
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Factor model

Estimating Coefficient Matrix B
The standard approach to estimating the coefficient matrix B is through
ordinary least squares or maximum likelihood estimation methods (An-
derson, 2003). The resulting estimates are equivalent to regressing each
response on the explanatory variables separately.
Challenges:

Suboptimal Performance: Estimates may underperform by
neglecting related response information.
Poor Performance: Especially with highly correlated variables or
large p.

Addressing Challenges:
Dimension Reduction: Methods use techniques to reduce
dimensionality.
Linear Factor Regression: Attractive approach regressing Y against
a few transformed predictors (factors).
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Factor model

Factor Models

A compelling approach in multivariate linear regression is linear
factor regression, where the response Y is regressed against a few
linearly transformed predictors, often called factors.
This can be expressed as:

Y = FΩ + E (2)

where F = XΓ, Γ is a p × r matrix (r ≤ min(p, q)), and Ω is an
r × q matrix. The columns of F, Fj for j = 1, . . . , r, represent these
factors.
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Factor model

Estimation in Linear Factor Regression

Estimation in linear factor regression typically involves two steps:
Step 1: Factor Estimation

Factors (Γ) are estimated first.
Common methods include canonical correlation, reduced rank,
principal components, partial least squares, and joint continuum
regression.
These methods differ in how they determine the factors.

Step 2: Parameter Estimation
Parameter Ω is estimated using least squares for the linear factor
regression equation Y = FΩ + E.
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Factor model

Estimation of r

Selecting the Number of Factors (r):

Crucial for accuracy and model complexity.
Determined separately through hypothesis testing or
cross-validation.
Coefficient matrix estimated based on the selected factors.
Because of its discrete nature, this type of procedure can be
very unstable in the sense of Breiman (1996): small changes
in the data can result in very different estimates.
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The core problem of this paper
General pattern
Orthogonal Design
Tuning Method

Dimension Reduction in Multivariate Regression
Modeling the jth Response:

Denote by Yj, Bj, and Ej the jth columns of Y, B, and E.
Yj = XBj + Ej for Bj ∈ Rp, j = 1, . . . , q.

Dimension Reduction Idea:
Regression coefficients B1, B2, . . . , Bq are from a linear space B of
lower dimension than p.
Approach involves basis elements {η1, . . . , ηp} for Rp and a subset
A ⊆ {1, . . . , p} such that B ⊆ span{ηi : i ∈ A}
In variable selection,ηi = ei; and we want to estimate A. In the case
of linear factor regression, the ith factor is given by Fi = Xηi, and A
takes the form {1, 2, . . . , r}, where r is to be estimated.

Our Proposal:
Propose a procedure allowing simultaneous estimation of {ηi} and
A.
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Simultaneous Estimation of Factors and Selection
Simultaneous Estimation Approach:

Begin with factor selection, assuming {η1, . . . , ηp} are known up to
a permutation.
Write F = [Xη1, . . . , Xηp], Y = FΩ + E, where Ω is a p × q matrix
such that {η1, . . . , ηp}Ω = B.
Factor selection is reformulated as a variable selection problem for
Y = FΩ + E.

As pointed out by Turlach et al. (2005):

Minimize tr{(Y − FΩ)TW(Y − FΩ)} subject to
∑p

i=1 ∥ωi∥α ≤ t,
where W is a weight matrix, ωi is the i-th row of Ω, t > 0 is a
regularization parameter, and ∥ · ∥α is the lα-norm for some α > 1.
Weight matrix choices include Σ−1 and I; here, we assume W = I.
α most obvious choices include 2 and ∞; here, we assume α = 2.
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Factor Selection with Sparse Representation
Factor Selection Approach:

Factor selection is most powerful when responses can be predicted
by a small subset of common factors.
Ideally, {η1, . . . , ηp} should contain a set of basis for B to allow the
sparsest representation of B in the factor space.
In our method, we choose ηs to be the eigenvectors of BBT.

Factor Selection without Factor Estimation:

Choose {η1, . . . , ηp} to be the eigenvectors of BBT.
write U = [η1, . . . , ηp]. The singular value decomposition of B is
B = UDVT for some q × q orthonormal matrix V and a p × q matrix
D with Dij = 0 for i ̸= j and Dii = σi(B), where σi(·) is the i-th
largest singular value. Now Ω = DVT and ωi = σi(B)Vi, where Vi is
the i-th column of V, implying that ∥ωi∥2 = σi(B).
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Factor Selection with Sparse Representation

Expression (5), with α = 2, is given by:

min
[
tr{(Y − XB)(Y − XB)T}

]
subject to

min(p,q)∑
i=1

σi(B) ≤ t, (5)

where σi(B) represents the i-th largest singular value of B.

Σi=1
min(p,q)σi(B) is known as the Ky Fan (p or q) norm of B.

No knowledge of η is required in this expression, and we use the minimizer
of (5) as our final estimate of B. In Appendix A, we show that expression
(5) is equivalent to a conic program and can be computed efficiently.
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Connection with Other Methods
The proposed estimate, defined as the minimizer of expression (5), is
closely connected with several other popular methods. Specifically, expres-
sion (5), reduced rank regression, and ridge regression can all be viewed
as minimizing

tr{(Y − XB)(Y − XB)T} subject to {
min(p,q)∑

i=1
σi(B)α} 1

α ≤ t,

with different choices of α.

Ridge regression (α = 2): tr{(Y − XB)(Y − XB)T} + λtr(BTB).
Proposed estimate (α = 1): enjoys a similar shrinkage property.
Reduced rank regression (α = 0+).

Zirui Pan, Haole Tian Dimension Reduction and Coefficient Estimation in Multivariate Linear Regression



Introduction
Model Introduction

Factor estimation and selection
Simulation
AppendixA

The core problem of this paper
General pattern
Orthogonal Design
Tuning Method

To understand further the statistical properties of the method proposed, we
consider the special case of orthogonal design. The following lemma gives
an explicit expression for the minimizer of expression (5) in this situation.

Lemma
Lemma 1: Let ÛLS, D̂LS, and V̂LS be the singular value decomposition of
the least squares estimate B̂LS. Then, under the orthogonal design where
XTX = nI, the minimizer of expression (5) is

B̂ = ÛLSD̂(V̂LS)
′

where D̂ij = 0 if i ̸= j, D̂ii = max(D̂LS
ii − λ, 0), and λ > 0 is a constant

such that
∑

i D̂ii = min(t,
∑

i D̂LS
ii ).
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Proof of Lemma 1
Proof. Expression (5) can be written in a Lagrange form:

Qn(B) = 1
2tr{(Y − XB)T(Y − XB)} + nλ

min(p,q)∑
i=1

σi(B). (7)

Simple algebra yields

tr{(Y − XB)T(Y − XB)}
= tr{(Y − XB̂LS)T(Y − XB̂LS)} + ntr{(B̂LS − B)T(B̂LS − B)}.

Together with the fact that tr(BTB) =
∑

i σ
2
i (B), equation (7) equals

1
2

q∑
i=1

σ2
i (B) − tr(BTB̂LS) + λ

q∑
i=1

σi(B) + C,

C not depending on B.
Zirui Pan, Haole Tian Dimension Reduction and Coefficient Estimation in Multivariate Linear Regression
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Proof of Lemma 1 (Contd.)

Now an application of von Neumann’s trace inequality, which states that
for matrices A and B,

tr(AB) ≤
min(m,n)∑

i=1
σi(A)σi(B),

where σi(A) and σi(B) are the singular values of matrices A and B, yields

Qn(B) ≥ 1
2

q∑
i=1

σ2
i (B) −

q∑
i=1

σi(B)D̂LS
ii + λ

q∑
i=1

σi(B).

Note that σi(B) ≥ 0. The right-hand side is minimized at σi(B) =
max(D̂LS

ii − λ, 0). The proof is now completed by noting that B̂ achieves
the lower bound for Qn. ■

Zirui Pan, Haole Tian Dimension Reduction and Coefficient Estimation in Multivariate Linear Regression



Introduction
Model Introduction

Factor estimation and selection
Simulation
AppendixA

The core problem of this paper
General pattern
Orthogonal Design
Tuning Method

Specifically, the following lemma indicates that we can always find an
appropriate tuning parameter such that the non-zero singular values of B
are consistently estimated and the rest are set to 0 with probability 1.

Lemma
Lemma 2: Suppose that max(p, q) = o(n). Under the orthogonal design,
if λ → 0 in such a fashion that max(p, q) = n = o(λ2), then
|σi(B̂) − σi(B)| →p 0 if σi(B) > 0, and P{σi(B̂) = 0} → 1 if σi(B) = 0.
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Proof of Lemma 2
Proof : Note that

B̂LS = (XTX)−1XTY = B + XTE
n ,

where E follows N(0, Σ). Since XTX = nI and the rows of E are indepen-
dent observations from N(0, Σ), each entry of XTEΣ−1/2

√
n follows N(0, 1) and

is independent of each other.
Applying the result from Johnstone (2001), we have

σ1(XTEΣ−1/2)/
√

n ∼ (√p + √q)/
√

n.

Therefore,

σ1(XTE)
n ≤ σ1(XTEΣ−1/2

n )σ1(Σ1/2) ∼ σ
1/2
1 (Σ)

√p + √q
√

n

Zirui Pan, Haole Tian Dimension Reduction and Coefficient Estimation in Multivariate Linear Regression
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The core problem of this paper
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Proof of Lemma 2 (Contd.)

Now, an application of Theorem 3.3.16 of Horn and Johnson (1991) yields

|σi(B) − σi(B̂LS)| ≤ σ1(XTE)
n = Op

(√p + √q
√

n

)
.

Therefore, if λ → 0 at a slower rate than the right-hand side of the
equation (10), the proposed estimate can provide consistent estimates of
the non-zero singular values of B and simultaneously shrink the remaining
singular values to 0.
Lemma 2 also indicates that the singular values of the method proposed
are shrunk in a similar fashion to the lasso under orthogonal designs.
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Tuning Parameter Selection: GCV-type Statistic
Like any other regularization method, choosing an appropriate tuning pa-
rameter t in expression (5) is crucial. Before this ,We first characterize the
equivalence between expression (5) and its Lagrange form (7).

Lemma
Lemma 3: Denote B̂ as the minimizer of expression (5) and ÛD̂V̂T its
singular value decomposition. Write d̂i = D̂ii for i = 1, . . . , min(p, q). For
any t ≤

∑
i d̂i, the minimizer of equation (7) coincides with the minimizer

of expression (5), B̂, if

nλ = 1
card(d̂i > 0)

∑
d̂i>0

X̃T
i Ỹi − X̃T

i X̃id̂i. (11)

where card(·) stands for the cardinality of a set, Ỹi is the ith column of
Ỹ = YÛ, and X̃i is the ith column of X̃ = XV.
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Proof of Lemma 3

Proof. Note that
min(p,q)∑

i=1
σi(B̂) =

min(p,q)∑
i=1

D̂ii =
p∑

i=1
σi(B̂KB̂T) = tr(B̂KB̂T),

where
K =

∑
D̂ii>0

1
D̂ii

V̂iV̂T
i ,

and V̂i is the i-th column of V. Therefore, B̂ is also the minimizer of

1
2tr{(Y − XB)T(Y − XB)} + nλtr(BKBT). (12)
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The core problem of this paper
General pattern
Orthogonal Design
Tuning Method

Proof of Lemma 3 (Contd.)

From expression (12), d̂ is the minimizer of

1
2

min(p,q)∑
i=1

(Ỹi − X̃di)T(Ỹi − X̃di) + nλ

min(p,q)∑
i=1

di,

subject to the constraint that di ≥ 0. The first-order optimality condition
for this expression yields

nλ = X̃T
i Ỹi − X̃T

i X̃id̂i,

for any d̂i > 0. The proof is now completed by taking an average of the
above expression over all i such that d̂i > 0.
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The core problem of this paper
General pattern
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Tuning Method

Implementation Steps for Tuning Parameter

Since B̂ is the minimizer of expression (12), it can be expressed as

B̂ = (XTX + 2nλK)−1XTY.

GCV Score Definition(Golub et al., 1979) :
Now the Generalized Cross Validation (GCV) score is given by

GCV(t) = tr{(Y − XB)T(Y − B̂)}
qp − df(t) ,

where df(t) is the degrees of freedom defined as

df(t) = qtr{X(XTX + 2nλK)−1XT}.
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Implementation Steps for Tuning Parameter

Tuning Parameter Selection: The tuning parameter is chosen by mini-
mizing GCV(t). The implementation steps are:

1 For each candidate t-value:
1 Compute the minimizer of expression (5) (denote the solution

as B̂t).
2 Evaluate λ by using equation (11).
3 Compute the GCV score.

2 Denote t∗ as the minimizer of the GCV score obtained in step 1.
Return B̂t∗ as the estimate of B.
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Model introdcution
Experimental results
Application

Simulation Models

1 Model I: p = q = 8, A random 8 × 8 matrix with singular values
(3, 2, 1.5, 0, 0, 0, 0, 0) was first generated as the true coefficient
matrix,Predictor x is generated from a multivariate normal
distribution with correlation between xi and xj being 0.5|i−j|, y is
generated from N(xB, I),The sample size for this example is n = 20 .

2 Model II: Same as Model I, but singular values
σ1 = . . . = σ8 = 0.85.

3 Model III: Same set-up, singular values (5, 0, 0, 0, 0, 0, 0, 0).
4 Model IV: p = 20, q = 20, first 10 singular values 1, last 10

singular values 0, n = 50.
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Comparisons on the Simulated Data Sets

Table: Results for the following methods: FES, RR, PCR, LASSO, PLS,
RRR, OLS

Model FES RR PCR LASSO PLS RRR OLS
I 2.01 5.10 4.39 4.85 2.88 6.09 3.15

(0.09) (0.27) (0.23) (0.24) (0.26) (0.39) (0.31)
II 2.51 3.21 3.66 2.90 2.28 4.45 3.11

(0.09) (0.16) (0.26) (0.10) (0.06) (0.30) (0.32)
III 1.55 6.59 5.37 5.37 2.76 7.35 3.10

(0.15) (0.36) (0.16) (0.16) (0.51) (0.42) (0.26)
IV 2.75 4.68 3.34 3.76 2.97 6.50 4.82

(0.01) (0.04) (0.04) (0.04) (0.01) (0.10) (0.10)
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Comparison and Prediction Accuracy
To gain further insight into the comparison, we provide a pairwise
prediction accuracy comparison between method FES and the other
methods

Figure: Pairwise prediction accuracy comparison (Models I–IV)Zirui Pan, Haole Tian Dimension Reduction and Coefficient Estimation in Multivariate Linear Regression
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Real Example: Financial Econometrics

To demonstrate the utility of the proposed method, we consider a
real example in financial econometrics.

Vector Autoregressive Model:

yt = yt−1B + E (15)

Model (15) is a special case of the multivariate linear model. Accu-
rate estimation of B in model (15) leads to good forecasts, serving
as instruments for efficient portfolio allocation and identifying arbi-
trage opportunities. Identification of factors in model (15) is crucial
for constructing benchmark portfolios and diversifying investments.
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Application: Stock Prices
To illustrate our method, we select leading enterprises in different
industries in China and fit their stock prices.

Figure: Singular Value vs t
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Application: Stock Prices

Figure: Chart of Shanghai
Composite Index

Figure: Chart of Shenzhen
Component Index

Zirui Pan, Haole Tian Dimension Reduction and Coefficient Estimation in Multivariate Linear Regression



Introduction
Model Introduction

Factor estimation and selection
Simulation
AppendixA

Model introdcution
Experimental results
Application

Prediction Error Comparison

To compare the proposed method with others, we evaluated their
prediction errors on data from the second half of the year.

Table: Out-of-sample mean-squared error for various methods
Company FES OLS RR PCR Lasso PLS RRR
贵州茅台 48758.05 50110.59 124239.45 113472.23 112721.87 110825.09 12906.61
比亚迪 1885.64 16737.83 2354.53 2755.39 3110.51 3095.4 1420.48
中国平安 20.1 52.99 18.68 27.21 22.45 22.34 30.24
格力电器 4.21 7.9 4.67 4.4 4.39 4.46 24.15
海天味业 75.28 48.56 216.67 195.2 200.38 195.08 5150.7
恒瑞药业 5.39 9.31 4.82 5.35 5.79 5.87 85.58
科大讯飞 28.96 63.2 26.39 47.52 34.19 33.8 10.35
万科 A 12.44 75.29 12.2 13.23 13.64 13.47 13.22
伊利股份 46.54 34.37 59.95 52.03 50.5 50.66 549.53
云南白药 31.27 395.25 52.19 54.04 33.83 31.44 18.74
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Algorithm for solving expression (5)

Solution Approach
To solve expression (5), we leverage recent advancements in convex opti-
mization. We demonstrate that expression (5) is equivalent to a second-
order cone program (SOCP) and can be effectively solved using standard
solvers such as SDPT3 .
Notation:

Lm: m-dimensional second-order cone
({x ∈ Rm : x1 ≥

√
x2

2 + . . . + x2
m})

R+
m: Positive orthant in Rm

X ⪰ 0: Indicates that the symmetric matrix X is positive
semidefinite
svec(X): Vectorization operator for symmetric matrix X
svec(X) = (X11, X21

√
2, X22 . . . , Xn1

√
2 . . . , Xn,n−1

√
2, Xnn)
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Algorithm for solving expression (5)

Solution Approach
SDPT3 can solve problems of the form:

minimize
ns∑

j=1
tr(Cs

j Xs
j ) +

nq∑
i=1

(cq
i )Txq

i + (cl)Txl

subject to
ns∑

j=1
(As

j )T svec(Xs
j ) +

nq∑
i=1

(Aq
i )Txq

i + (Al)Txl = b

Xs
j ⪰ 0, ∀j

xq
i ∈ Lqi , ∀i

xl ∈ Rnl
+,

where Cs
j is a symmetric matrix, cq

i is a qi-dimensional vector, cl is an
nl-dimensional vector, and the dimensions of matrices A and vector b are
clear from the context.
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Similarly to equation (8), the objective function of expression (5) can be
rewritten as

tr{(B − B̂LS)TXTX(B − B̂LS)} = tr{CTC}

up to a constant free of B where C = Λ1/2Q(B − B̂LS) and QΛQT is the
eigenvalue decomposition of XTX.
By the definition of the second-order cone, expression (5) can be equiva-
lently written as

min
M,C,B

M such that
[
M, C11, . . . , C1q, C21, . . . , Cpq

]
∈ Lpq+1,

q∑
i=1

σi(B) ≤ t, C = Λ1/2Q(B − B̂LS).
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Algorithm for solving expression (5)

Then, utilizing Σσi(B) = Σσi(QB) ≤ t is equivalent to

min(p,q)∑
i=1

µi(A) ≤ t,

where µi(A) is the ith eigenvalue of A and

A =
[

0 (QB)T

QB 0

]
.

Together with formula (4.2.2) of Ben-Tal and Nemirovski (2001), page
147, this constraint is also equivalent to

qs + tr(Z) ≤ t,

Z −
[

0 (Λ−1/2C + QB̂LS)T

Λ−1/2C + QB̂LS 0

]
+ sI ⪰ 0,

Z ⪰ 0.
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Then, introducing variables to turn inequalities into equalities, expression
(5) becomes equivalent to

min
M,C,s,Z1,Z2

(M) subject to

q(s1 − s2) + tr(Z1) + s3 = t,

Z2−Z1+
(

0 (Λ−1/2C)T

(Λ−1/2C) 0

)
−(s1−s2)I =

(
0 −(QB̂LS)T

−(QB̂LS) 0

)
,

Z1, Z2 ⪰ 0,

(M, C11, . . . , C1q, C21, . . . , Cpq)T ∈ Lpq+1,

s ∈ R3
+.

This equivalent form is readily computable using SDPT3.
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