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Problem.2 Prove:

δ[g(x)] =
∑
i

δ(x − xi )

|g ′(xi )|
(1)

——————–
Properties of δ(x) :
Obviously, we see that, from the defination, Dirac’s delta function must be even
in x, δ(−x) = δ(x) If a > 0,

δ(ax) =
1

a
δ(x), a > 0. (2)

Equation (2) can be proved by making the substitution x = y/a:∫ ∞
−∞

f (x)δ(ax)dx =
1

a

∫ ∞
−∞

f (y/a)δ(y)dy =
1

a
f (0). (3)

Shift of origin: ∫ ∞
−∞

δ(x − x0)f (x)dx = f (x0), (4)

which can be proved by making the substitution y = x − x0 and
nothing that when y = 0, x = x0.
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If the argument of δ(x) is a function g(x) with simple zeros at points ai on
the real axis(and therefore g ′(ai ) 6= 0),

δ[g(x)] =
∑
i

δ(x − xi )

|g ′(xi )|
. (5)

To prove it, we write∫ ∞
−∞

f (x)δ(x)dx =
∑
i

∫ ai+ε

ai−ε
f (x)δ((x − ai )g

′(ai ))dx , (6)

where we have decomposed the original integral into a sum of integrals
over small in-tervals containing the zeros of g(x). In these intervals, we
replaced g(x) by the leading term in its Taylor series. Applying Eq.(2) and
Eq.(4) to each term of the sum, we confirm Eq.(5).
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Problem.3
Prove:
The Galilean transformation of the coordinates is:{

x ′ = x + v · t
t ′ = t

(7)

The Galilean transformation of the differential operator is:
∂
∂t ′ = ∂

∂t
∂t
∂t ′ + ∂

∂x
∂x
∂t ′

∂
∂x ′ = ∂

∂t
∂t
∂x ′ + ∂

∂x
∂x
∂x ′

(8)
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So apply Eq.(7) to Eq.(8), we have:
∂2φ
∂t′2

= ∂
∂t′ [

∂φ
∂t

∂t
∂t′ + ∂φ

∂x
∂x
∂t′ ]

∂2φ
∂x ′2

= ∂
∂x ′ [

∂φ
∂t

∂t
∂x ′ + ∂φ

∂x
∂x
∂x ′ ]

(9)

then, 
∂2φ
∂t′2

= ∂2φ
∂t2

+ 2 ∂2φ
∂t∂x v + ∂2φ

∂x2
v2

∂2φ
∂x ′2

= ∂2φ
∂x2

(10)

Finally, we got

∂2φ

∂t ′2
− c2

∂2φ

∂x ′2
=
∂2φ

∂t2
− c2

∂2φ

∂x2
+ 2

∂2φ

∂t∂x
v +

∂2φ

∂x2
v2 (11)

so, in most cases, the equation is not invariant under Galilean
transformation.
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Problem.4
Please refer to Prof. Xin Tao’s Lecture note, Page 103, it gives
details about the derivation of 3-D Electromagnetic Wave Equation.
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Problem.5

(∇× B)× B = ∇ · (BB− 1

2
B2I)− (∇ · B)B (12)

Prove:
LHS = (∇× B)× B = (B · ∇)B−∇B · B(By middle-outer rule)
RHS = ∇ · (BB)−∇ · (1

2
B2I)− (∇ · B)B

= B · ∇B + (∇ · B)B
:::::::::

− 1
2
∇B2 − (∇ · B)B

:::::::::

= B · ∇B− 1
2
∇(B · B)

= B · ∇B− 1
2
(∇B · B +∇B · B)

= B · ∇B−∇B · B
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Reference
Mathematics Methods for Physicists, Arfken
Lecture Notes on Electrodynamics, Xin Tao
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