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Background

 A certain type of information or the representation format in which 
information is stored
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What is a Modality?

 Tactile, auditory, visual and olfactory data 

 Audio, image, video, text

 Radar, infrared, accelerometer

 Different languages

 Data sets collected under different conditions

Fig. 1  Various Modalities.



Background

 Process and understand multi-source modal information by means of 
machine learning

 Five Challenges
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What is Multimodal Learning?

Representati
on

Translation Alignment Fusion Co-learning

Multimodal Fusion

Joining information from two or more modalities to perform a prediction



Background

 Purpose

 Extract unified and compact joint representations by using the 
complementarity and uniqueness among different modalities

 Apply the learned representations to prop up downstream applications

 Related work

 Traditional methods

 Bayesian based fusion

 Sparse representation based fusion

 Deep learning based methods

 Early fusion

 Late fusion

 Intermediate fusion
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Multimodal Fusion
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Multimodal Fusion
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Our Method
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 Challenges I
 Feature redundancies

 Irrelevant information

 Caused by a general task-irrelevant feature extractor

 Repetitive information

 Similar information in the modal.

 Motivation I
 Irrelevant information + Repetitive information (I+R)

Accumulation of redundancies   Serious semantic bias of fusion representations

 Existing methods cannot be directly used to simultaneously deal with I+R

Fig. 2  Illustration of the redundancies in multimodal fusion.
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Simultaneously deal with both  irrelevant and repetitive information
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 Challenges II
 Feature homogeneity

 Unified data structure

 Easy to achieve feature interaction

 Feature heterogeneity

 Diverse data structure

 Difficult to achieve feature interaction

 Motivation II
 Existing methods fall short in processing data with diverse structures

Fig. 3  Feature homogeneity and feature heterogeneity.
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Directly process homogeneous features and heterogeneous features
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 Countering Modal Redundancy and Heterogeneity (CMRH)
 Unified Feature Interaction Module (UFIM)

 Orthogonal attention component 

 Interactive feedback mechanism

 Self-Correcting Transformer Module (SCTM)

 Modified transformer 

 Fusion representation correction

 Contributions
 First work that comprehensively understands the modal redundancy problem

 A unified multimodal fusion strategy to counter modal redundancy and heterogeneity

 Experiments on four cross-domain datasets show the effectiveness of CMRH

Countering heterogeneity

Countering redundancy



Our Method
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 Unified Feature Interaction Module (UFIM)
 Orthogonal attention component

 Interactive feedback mechanism

Step 1. Obtain the fine-grained attention map

Step2. Obtain the fine-grained attention-based representations

Step 3. Fine-grained attention-based representations
are fed back to the original feature SCTM

Fig. 4  An illustration of our proposed UFIM.
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 Self-Correcting Transformer Module (SCTM)
 Modified transformer 

Step 1. Transfer features to a consistent dimension and obtain attention-based feature maps

Substep 1. Features are equally divided into blocks

Substep 2. Each block is concatenated with the 
position embedding of this block and 
the modal-identity embedding of the 
current modality.

Substep 3. Obtain the attention-based feature map

Fig. 5  Illustrated of the modified transformer.
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 Self-Correcting Transformer Module (SCTM)
 Modified transformer 

 Fusion representation correction

Step 2. Feed the obtained attention-based feature maps back to their original modal features

Step 3. Obtain the fusion representation
UFIM

Fig. 6  An illustration of our proposed SCTM.

Step 4. Calculate the element-wise weighted average feature 
map as the weights of fusion representation



Experiment
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 Task 1: Hand Gesture Recognition
 Dataset

 EgoGesture

 Implementation

 I3D for RGBs and depth maps

 Apply UFIMs to the last three inception modules

 Improve the fusion module with SCTM

 Analysis

 With UFIM:

 Perform other non-interactive methods and MMTM

 Properly feature interactions help improve the 

expressiveness of representations

 With SCTM

 Perform more effectively (compared with I3D late fusion)

 Correcting the redundancy makes the final representation

more can represent the fused modalities

 With UFIM and SCTM

 Outperform the top performer MMTM by 1.09%

 Mutually compatible

Fig. 6  An overview of the improved hand 
gesture recognition framework.



Experiment
16

 Task 2: House Price Prediction
 Dataset: NYC and BEIJING dataset

 Task 3: Action Recognition
 Dataset: NTU-RGBD

 Task 4: Traffic Accident Forecast
 Dataset: NYC and SIP dataset

 Discussion of the UFIM and SCTM
 Location of the interaction

 Optimal location for module insertion is the tail layer of the model

 Number of the interaction

 NOT More than one-third of the entire model layers

 Selection of weight parameters

 setting 𝛼 at about 0.2 and fine-tuning 

it according to the actual task.

Fig. 7  Comparison of varieties on NTU-RGBD dataset.



Conclusion

 We propose a unified multimodal fusion strategy, including two well-
designed modules, UFIM and SCTM, for addressing both modal 
heterogeneity and redundancy by exploiting the inter-modal 
complementarity.

 UFIM and SCTM can be flexibly applied to existing multimodal fusion 
networks at a relatively low cost.

 Extensive experiments on four different cross-domain datasets from the fields 
of hand gesture recognition, house price prediction, action recognition, and 
traffic accident forecast show the effectiveness of the proposed modules.
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Thanks for your listening!

For more details, please refer to our paper!

Reporter: Pengkun Wang

pengkun@mail.ustc.edu.cn


