

Countering Modal Redundancy and Heterogeneity: A Self-Correcting Multimodal Fusion

Pengkun Wang¹, Xu Wang¹, Binwu Wang¹, Yudong Zhang¹, Lei Bai^{2,*}, and Yang Wang^{1,*}

¹ University of Science and Technology of China (USTC), China ² Shanghai AI Laboratory, China

> Reporter: Pengkun Wang ICDM-2022

> > Data Intelligence Laboratory (USTC)

Outline

- **Background**
- Our Method
- **Experiment**
- Conclusion

3

What is a *Modality*?

- A certain type of information or the representation format in which information is stored
 - Tactile, auditory, visual and olfactory data
 - Audio, image, video, text
 - Radar, infrared, accelerometer
 - Different languages
 - ✓ Data sets collected under different conditions

Fig. 1 Various Modalities.

What is *Multimodal Learning*?

- Process and understand multi-source modal information by means of machine learning
- □ Five Challenges

Multimodal Fusion

Joining information from two or more modalities to perform a prediction

Background

5

Multimodal Fusion

- Purpose
 - Extract unified and compact joint representations by using the complementarity and uniqueness among different modalities
 - □ Apply the learned representations to prop up downstream applications

Related work

- Traditional methods
 - Bayesian based fusion
 - Sparse representation based fusion
- Deep learning based methods
 - Early fusion
 - Late fusion
 - Intermediate fusion

Background

Challenges I

- Feature redundancies
 - Irrelevant information
 - Caused by a general task-irrelevant feature extractor
 - Repetitive information
 - Similar information in the modal.

Motivation I

- □ Irrelevant information + Repetitive information (I+R)
 - → Accumulation of redundancies → Serious semantic bias of fusion representations
- Existing methods cannot be directly used to simultaneously deal with I+R

Fig. 2 Illustration of the redundancies in multimodal fusion.

8

Challenges I

- □ Feature redundancies
 - Irrelevant information
 - Caused by a general task-irrelevant feature extractor
 - Repetitive information
 - Similar information in the modal.

Motivation I

- □ Irrelevant information + Repetitive information (I+R)
 - \rightarrow Accumulation of redundancies \rightarrow Serious semantic bias of fusion representations
- **Existing methods cannot be directly used to simultaneously deal with I+R**

Simultaneously deal with both irrelevant and repetitive information

Fig. 2 Illustration of the redundancies in multimodal fusion.

9

Challenges II

- □ Feature homogeneity
 - Unified data structure
 - Easy to achieve feature interaction
- □ Feature heterogeneity
 - Diverse data structure
 - Difficult to achieve feature interaction

Motivation II

Existing methods fall short in processing data with diverse structures

Fig. 3 Feature homogeneity and feature heterogeneity.

10

□ Challenges II

- □ Feature homogeneity
 - Unified data structure
 - Easy to achieve feature interaction
- □ Feature heterogeneity
 - Diverse data structure
 - Difficult to achieve feature interaction

Motivation II

Existing methods fall short in processing data with diverse structures

Fig. 3 Feature homogeneity and feature heterogeneity.

Countering Modal Redundancy and Heterogeneity (CMRH)

- <u>U</u>nified <u>Feature</u> Interaction <u>M</u>odule (UFIM)
 - Orthogonal attention component
 - Interactive feedback mechanism
- □ <u>S</u>elf-<u>C</u>orrecting <u>T</u>ransformer <u>M</u>odule (SCTM)
 - Modified transformer
 - Fusion representation correction

Contributions

- □ First work that comprehensively understands the modal redundancy problem
- □ A unified multimodal fusion strategy to counter modal redundancy and heterogeneity
- □ Experiments on four cross-domain datasets show the effectiveness of CMRH

Countering heterogeneity

Countering redundancy

12

<u>Unified Feature Interaction Module (UFIM)</u> Orthogonal attention component

Step 1. Obtain the fine-grained attention map $\mathcal{M}_{X^iY^j} = Softmax(\frac{E_X^{i} \otimes E_Y^{j}}{\sqrt{C}}),$ $\begin{cases} E_X^{i\,\prime} = \mathcal{M}_{X^iY^j} \bigotimes E_X^i \\ E_Y^{j\,\prime} = \mathcal{M}_{Y^jY^j}^\top \bigotimes E_Y^j \end{cases}$ *Step2*. Obtain the fine-grained attention-based representations Modality Extractor E_x Interactive feedback mechanism Х Orthogonal attention Step 3. Fine-grained attention-based representati Transp are fed back to the original feature **SCTM** $\begin{cases} E_X^i = E_X^i + \alpha * E_Y^{j'} \\ \widehat{E_Y^j} = E_Y^j + \alpha * E_X^{i'} \end{cases}$ Modality Extractor E_Y V

UFIM Fig. 4 An illustration of our proposed UFIM.

13

<u>Self-Correcting Transformer Module (SCTM)</u> Modified transformer

Step 1. Transfer features to a consistent dimension and obtain attention-based feature maps

 $\begin{cases} \mathcal{M}'_X = \mathcal{T}(Func_{X'}(X'), Func_{Y'}(Y'), Func_{Y'}(Y')) \\ \\ \mathcal{M}'_Y = \mathcal{T}(Func_{Y'}(Y'), Func_{X'}(X'), Func_{X'}(X')) \end{cases}$

Substep 1. Features are equally divided into blocks

Substep 2. Each block is concatenated with the position embedding of this block and the modal-identity embedding of the current modality.

Substep 3. Obtain the attention-based feature map

Fig. 5 Illustrated of the modified transformer.

14

<u>Self-Correcting Transformer Module (SCTM)</u> Modified transformer

Step 2. Feed the obtained attention-based feature maps back to their original modal features

$$\widehat{X'} = \mathcal{M}'_X + X'$$
$$\widehat{Y'} = \mathcal{M}'_Y + Y'$$

UFIM

□ Fusion representation correction

Step 3. Obtain the fusion representation

$$\mathcal{P} = \mathcal{F}(\widehat{X'}, \widehat{Y'})$$

Step 4. Calculate the element-wise weighted average feature map as the weights of fusion representation

$$\widehat{\mathcal{P}} = \mathcal{P} \odot Norm(\frac{\mathcal{M}'_X + \mathcal{M}'_Y}{2}),$$

Fig. 6 An illustration of our proposed SCTM.

Experiment

15

Task 1: Hand Gesture Recognition

- Dataset
 - EgoGesture
- Implementation
 - I3D for RGBs and depth maps
 - Apply UFIMs to the last three inception modules
 - Improve the fusion module with SCTM
- Analysis
 - With UFIM:
 - Perform other non-interactive methods and MMTM
 - Properly feature interactions help improve the expressiveness of representations
 - With SCTM
 - Perform more effectively (compared with I3D late fusion)
 - Correcting the redundancy makes the final representation more can represent the fused modalities
 - With UFIM and SCTM
 - Outperform the top performer MMTM by 1.09%
 - Mutually compatible

Fig. 6 An overview of the improved hand gesture recognition framework.

TABLE I Performance on EgoGesture dataset.

Method	Modalities	Accuracy
VGG16+LSTM [25]	RGB+Depth	81.40%
C3D+LSTM+RSTTM [23]	RGB+Depth	92.20%
I3D [20]	Depth	89.47%
I3D [20]	RĜB	90.33%
I3D late fusion [20]	RGB+Depth	92.78%
MMTM [1]	RGB+Depth	93.51%
UFIM	RGB+Depth	93.92%
SCTM	RGB+Depth	94.15%
UFIM+SCTM	RGB+Depth	94.60%

Experiment

16

- Task 2: House Price Prediction
 - Dataset: NYC and BEIJING dataset

□ Task 3: Action Recognition

Dataset: NTU-RGBD

Task 4: Traffic Accident Forecast

Dataset: NYC and SIP dataset

PERFORMANCE ON NYC AND BEIJING DATASET.				TABLE IV Performance on NYC and SIP dataset			
Method	NYC Beijing		jing	Method	NYC (Acc@20)	SIP (Acc@6)	
D ST. C. E [27]	27.81	12.60	RMSE	MAPE 10.78	STDN [36]	37.48%	42.18%
ST-InceptionV4+C+F [28]	27.03	12.09	73.79	10.78	DFN [37]	40.26%	36.98%
ST-ResNet+C+F [29]	26.04	11.74	73.11	10.63	STSGCN [38]	26.46%	33.59%
FTD_DenseNet [26]	22.81	9.98	64.83	9.42	RiskSeq [4]	56.42%	71.27%
JGC_MMN [2]	21.43	9.16	60.19	9.04	MMTM+RiskSeq [1]	57.69%	73.05%
MMTM+JGC [1]	20.37	9.01	58.92	8.96	UFIM+RiskSeq	59.81%	75.33%
UFIM+JGC SCTM	19.07	8.46	53.29	8.75	SCTM	58.65%	73.60%
UFIM+SCTM	18.23	8.12	52.83	8.01	UFIM+SCTM	60.42%	76.08%

TADLE I

TABLE III Performance on NTU-RGBD dataset.

	Method	Skeleton Model	Modalities	Accuracy (CS)
	I3D [20]	-	RGB	85.63%
	HCN [31]	-	Pose	85.24%
	ST-GCN [32]	-	Pose	81.50%
	PoseMap [33]	-	RGB+Pose	91.71%
1 -	I3D+HCN late fusion [1]	HCN	RGB+Pose	91.56%
	SGM-Net [34]	ST-GCN	RGB+Pose	89.10%
	MSAF [35]	HCN	RGB+Pose	92.24%
	MMTM [1]	HCN	RGB+Pose	91.99%
	MMTM [1]	ST-GCN	RGB+Pose	88.79%
	UFIM	HCN	RGB+Pose	92.20%
	SCTM	HCN	RGB+Pose	92.37%
	UFIM+SCTM	HCN	RGB+Pose	92.69%
	UFIM	ST-GCN	RGB+Pose	89.14%
	SCTM	ST-GCN	RGB+Pose	89.50%
	UFIM+SCTM	ST-GCN	RGB+Pose	90.27%

Fig. 7 Comparison of varieties on NTU-RGBD dataset.

Discussion of the UFIM and SCTM

- Location of the interaction
 - Optimal location for module insertion is the tail layer of the model
- □ Number of the interaction
 - NOT More than one-third of the entire model layers
- □ Selection of weight parameters
 - setting *α* at about 0.2 and fine-tuning it according to the actual task.

Conclusion

- 17
- We propose a unified multimodal fusion strategy, including two welldesigned modules, UFIM and SCTM, for addressing both modal heterogeneity and redundancy by exploiting the inter-modal complementarity.
- UFIM and SCTM can be flexibly applied to existing multimodal fusion networks at a relatively low cost.
- Extensive experiments on four different cross-domain datasets from the fields of hand gesture recognition, house price prediction, action recognition, and traffic accident forecast show the effectiveness of the proposed modules.

Thanks for your listening!

For more details, please refer to our paper!

Reporter: Pengkun Wang pengkun@mail.ustc.edu.cn