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ABSTRACT
Graph Neural Networks (GNNs) can learn representative graph-
level features to achieve efficient graph classification. But GNNs
usually assume an environment where both class and structure
distribution are balanced. Although previous works have consid-
ered the graph classification problem under the scenario of class
imbalance or structure imbalance, they habitually ignored the ob-
vious fact that class imbalance and structural imbalance are often
intertwined in the real world. In this paper, we propose a care-
fully designed structure-driven learning framework called ImbGNN
to address the potential intertwined class imbalance and struc-
tural imbalance in graph classification. Specifically, we find that
feature-oriented augmentation (e.g., feature masking) and structure-
oriented augmentation (e.g., edge perturbation) will have differ-
ential impacts when applied to different graphs. Therefore, we
design optional augmentation based on the average degree distri-
bution to alleviate structural imbalance. Furthermore, based on
the imbalance of graph size distribution, we utilize a similarity-
friendly graph random walk to extract a core subgraph to improve
the accuracy of graph kernel similarity calculation, and then con-
struct a more reasonable kernel-based graph of graphs, thereby
alleviating the class imbalance and size imbalance. Extensive ex-
periments on multiple benchmark datasets demonstrate that our
proposed ImbGNN framework outperforms previous baselines on
imbalanced graph classification tasks. The code of ImbGNN is avail-
able in https://github.com/Xiaovy/ImbGNN.
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1 INTRODUCTION
Due to the Zipfian [46] distribution of samples in nature, imbal-
anced data is prevalent in various fields, including network data [7,
13, 21, 38, 42]. For example, online discussion topics on Reddit are
diverse, and the distribution of topics is naturally imbalanced due to
differences in popularity. However, most datasets involved in deep
graph classification tasks are artificially collected. To simplify the
task, they usually assume that the data is uniformly distributed, that
is, different classes have similar amounts of data. This assumption
does not align with reality [30]. Therefore, graph neural networks
trained on artificially collected graph datasets often fail to exhibit
robust performance when directly applied to real-world applica-
tions such as social network analysis.

In the past few decades, researchers have conducted a lot of
impactful work on class imbalance, especially for graph data [12,
18, 22, 23, 33]. Typically, GraphSMOTE [44] proposed a technique
inspired by SMOTE [3], generating new node representations by av-
eraging two sampled minority class nodes. Inspired by Mixup [41],
some mixed node synthesis work has also promoted the develop-
ment of the field, such as GraphMixup [35], GraphENS [20], and
GraphSANN [15]. However, most of the work in this field focuses on
node-level classification tasks, and it is difficult to robustly migrate
to graph-level classification due to the lack of consideration for
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Figure 1: Motivation of ImbGNN. The imbalance in graphs
can usually be divided into class imbalance and structural
imbalance. Existing methods typically only support a single
imbalance environment and cannot cope with intertwined
imbalances. ImbGNN, on the other hand, uses a structure-
driven learning framework to simultaneously deal with mul-
tiple imbalances.

overall structural information. Recently, some work has begun to
address the challenges at the graph level. For example, G2GNN [34]
solves the class imbalance problem by constructing abstract high-
level graphs, while SOLT-GNN [17] starts from the structural level
and migrates the knowledge of the structural-head graph to the
structural-tail graph to alleviate structural imbalance. However,
existing studies have focused only on a single relatively ideal imbal-
anced environment, which cannot simulate the data distribution in
the real world.

Challenges. Compared to the visual field, the graph imbalance
problem in the real world is usually intertwined. Focusing only
on graph class imbalance may ignore the differences in intra-class
topology, leading to distortion of structural information. Focusing
only on graph structural imbalance ignores the objective fact that
classes usually follow a long-tailed distribution, leading to model
bias towards specific classes. In addition, existing imbalanced graph
classification methods usually adopt a one-size-fits-all augmenta-
tion strategy, ignoring the compatibility between the sample topol-
ogy and the augmentation method, thus producing negative effects.
However, there is currently no work that simultaneously focuses
on these intertwined imbalances, as well as the rationality of aug-
mentation strategies in imbalanced graph learning. Therefore, two
unresolved challenges need to be addressed:
• How to mitigate the negative impact of rigid augmentation
strategies on imbalanced graph learning?

• How to deal with the complex intertwined imbalances in graph
classification problems simultaneously?
With these challenges in mind, we propose a carefully designed

structure-driven learning framework called ImbGNN, which can
simultaneously address the intertwined class imbalance and struc-
tural imbalance problems. Specifically, for the first challenge, we
find that feature-oriented augmentation and structure-oriented aug-
mentation have different effects on different types of graphs. There-
fore, we design a degree-oriented optional augmentation, which
dynamically adjusts the probability distribution of augmentation ac-
cording to the average degree of the graph. This not only enhances
sample diversity but also avoids the loss of original information,
thereby alleviating structural imbalance at the degree level. For the
second challenge, in addition to the flexible augmentation module,

we also improve the existing graph construction method and pro-
pose a size-oriented graph of graphs construction. It achieves more
accurate and reasonable connections through similarity-friendly
graph random walk, thereby alleviating structural imbalance at
the size level. For the constructed high-level graphs, we further
use GoG propagation to allow tail-class graphs to obtain sufficient
information from adjacent graphs as much as possible, thereby alle-
viating class imbalance. We conduct extensive experiments on five
benchmark datasets including social networks and prove the su-
perior performance of ImbGNN in imbalanced graph classification
tasks.

Our contributions in this paper are summarized as follows:
• New insight and framework: for the first time, we propose a
structure-driven learning framework called ImbGNN to simul-
taneously address the potential intertwined class imbalance
and structure imbalance in graph classification.

• New advisable augmentation: we propose a degree-oriented
optional augmentation to adapt to the graph degree imbalance
problem, which can increase graph diversity while minimizing
damage to original information.

• New graph construction: we propose a size-oriented graph of
graphs construction, which uses the similarity-friendly graph
random walk and GoG propagation to alleviate class imbalance
and graph size imbalance. This allows graphs to obtain rich
information, resulting in high-quality representations.

• Compelling empirical results: ImbGNN achieves the SOTA per-
formance across various graph benchmark datasets.

2 RELATEDWORK
Imbalanced Graph Classification: Imbalanced graph classifica-
tion is a challenging problem in the field of graph neural networks
(GNNs). Like imbalanced node classification [6, 35, 40, 44, 45], it
commonly arises in real-world scenarios (e.g., imbalanced social
network classification) where class distributions of labeled graphs
are skewed [16, 29, 31]. Several methods have been proposed to ad-
dress this issue, such as Graph-of-Graph Neural Networks (G2GNN),
which derive extra supervision globally from neighboring graphs
and locally from stochastic augmentations of graphs [34]. In addi-
tion to class imbalance, graph-level structural imbalance, such as
graph size imbalance, has also received attention. Typically, SOLT-
GNN first identifies co-occurrence patterns in the structures of
larger, or “head”, graphs, to generate transferable knowledge for
smaller, or “tail”, graphs [17]. Although progress has been made,
this task has not been studied in depth relative to imbalanced node
classification task. Existing studies have focused only on a single
relatively ideal imbalanced environment, which cannot simulate
the data distribution in the real world. When one imbalance meets
another imbalance, there is still a lack of a reliable solution to deal
with the intertwined imbalance problem. Fortunately, our proposed
ImbGNN systematically alleviates multiple graph-level imbalances
with one framework and is more suitable for imbalanced graph learn-
ing in open environments.

GraphDataAugmentation:GraphDataAugmentation (GraphDA)
has been widely used in many fields because it can effectively allevi-
ate overfitting and improve model generalization performance [8].
GraphDA is simple to design and can be implemented through
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graph processing to achieve various DA, such as masking node
and dropping edge. Recently, G-mixup proposed a mixed-based
GraphDA method, which improves the robustness of the model by
fusing two graphs and their labels [11]. In the computer vision do-
main, some studies have tried to randomly or sequentially combine
DA[27], such as AutoAugment [4], Fast AutoAugment [14], and Ran-
dAugment [5]. However, the augmentation methods in the graph
domain still lack flexibility and ignore the potential correlation
between DA and the distribution of graph classes and structures.
Therefore, it may cause the augmented graph to lose critical topo-
logical information in an imbalanced environment. Therefore, it
is necessary to design an imbalanced GraphDA that can improve
diversity while minimizing damage to original information.

Graph of Graphs: Graph of Graphs (GoG) is a graph-based model
that can learn from multiple graphs. It is a generalization of the
GNN model [19]. The key idea behind GoG is to represent each
graph as a node in a higher-level graph, which is called the meta-
graph. The edges in the meta-graph represent the relationships
between the graphs. Recently, [10] and [28] leverage GoG to solve
link prediction and graph classification. To break the limitation
of providing GOG in advance, [34] construct a kNN GoG based
on graph topological similarity and aggregate neighboring graph
information by propagation on the constructed GoG to solve imbal-
anced graph classification. However, this fair connection method
ignores the potential problem of structural imbalance and cannot
give more attention to the structural-tail graph. Similar to handling
class imbalance, structural-tail graphs need to integrate more infor-
mation from multiple graphs to improve the classification accuracy
of the model.

3 IMBGNN: A STRUCTURE-DRIVEN GNN
LEARNING FRAMEWORK

In this section, we introduce our proposed structure-driven Im-
bGNN framework. We illustrate the overall framework in Figure 2.
We analyze and alleviate the imbalance problems existing in graph
classification from three aspects: class imbalance, graph’s average
degree imbalance, and graph size imbalance. First, we design degree-
oriented optional augmentation to adapt to the graph degree imbal-
ance problem, which samples augmentation methods from different
distributions for degree-head and degree-tail graphs. Next, we pro-
posed to construct graphs of graphs (GoG) based on the graph size
imbalance and perform a similarity-friendly graph random walk
on large graphs for subgraph sampling to improve the accuracy
of graph similarity calculation. The information propagation of
GoG also enables tail classes to share some information, thereby
improving the model’s discrimination in tail classes. In addition,
we also design a size-based GoG connection method to alleviate the
size imbalance. Based on the above structure-driven framework,
ImbGNN can comprehensively cope with the scenario of imbalance
meets imbalance.

3.1 Preliminary
Problem Formulation:A graph can be expressed as𝐺 = {𝑉 , 𝐸, 𝑋 },
where 𝑉 is the node set, 𝐸 is the edge set, 𝑋 ∈ R |𝑉 |×𝑑 is the initial

feature matrix of the node, and 𝑑 is the dimension of the feature. In
addition, we denote the neighbor set of node 𝑢 in the graph as 𝑁𝑢 .

Given a graph set G = {𝐺1,𝐺2, ...,𝐺𝑁 }, where 𝐺𝑖 = {𝑉𝑖 , 𝐸𝑖 , 𝑋𝑖 },
and their corresponding label sets 𝑌 = {𝑦1, 𝑦2, ..., 𝑦𝑁 }, the goal of
graph-level representation learning is to learn a mapping function
F : 𝐺 → R𝑓 to map the graph to a low-dimensional vector ℎ𝐺𝑖

∈
R𝑓 . This low-dimensional vector is then fed to a classifier to obtain
the predicted label distribution, thereby obtaining the predicted
output of the sample.

Graph Neural Networks: Graph neural networks (GNNs) are a
type of deep learning model that operates on graphs. These models
typically rely on the key operation of neighborhood aggregation,
recursively passing and transforming messages from neighboring
nodes to form the representation of the target node. This process
can be represented as:

h𝑙𝑣 = AGGREGAT
(
h𝑙−1𝑣 ,

{
h𝑙−1𝑖 : 𝑖 ∈ 𝑁𝑣

}
;𝜃𝑙𝑔

)
, (1)

where ℎ𝑙𝑣 represents the feature representation of node 𝑣 in the
𝑙-th GNN layer. AGGREGAT(·;𝜃𝑙𝑔) represents the neighborhood
aggregation function of the 𝑙-th layer with 𝜃𝑙𝑔 as its parameter. Note
that ℎ0𝑣 is initialized by 𝑋𝑣 . We perform GNN propagation for 𝐿
times to obtain the output representation of nodes. The represen-
tation of the entire graph ℎ𝐺 is obtained by combining the output
representations of all nodes using a READOUT function.

ℎ𝐺 = 𝑅𝐸𝐴𝐷𝑂𝑈𝑇 ({ℎ𝑣 : 𝑣 ∈ 𝑉 }) (2)

where the READOUT function is usually permutation invariant,
such as summation, averaging, etc.

3.2 Degree-oriented Optional Augmentation
In order to improve the generalization performance of deep models,
researchers usually perform various data augmentations on training
data to obtainmore representative samples. For graph data, data aug-
mentation methods can usually be divided into structure-oriented
augmentation and feature-oriented augmentation. Considering that
structural information and feature information are equally impor-
tant to graph features, we choose the two most commonly used
augmentations: dropping edge and masking node.

Dropping edge: We perform some perturbations on the given
graph structure by randomly dropping edges while keeping node
order and features unchanged. Here, we randomly set part 1 to 0 in
the adjacency matrix, which can be defined as follows:

𝐴̃ = 𝐴 ∧𝐶 (3)

where𝐴 is the adjacencymatrix of the input graph,𝐶 is the dropping
matrix, and ∧ represents the AND operation. Dropping matrix
𝐶 is obtained by sampling, i.i.d., from a prior distribution, and
𝐶𝑖 𝑗 = 1 means keeping the original existing edges, 𝐶𝑖 𝑗 = 0 means
discarding the original existing edges. For example, assuming a
dropping ratio 𝜌 is given, we can define the dropping matrix 𝐶 as
𝐶𝑖 𝑗 ∼ Bernoulli(𝜌), that is, the elements in 𝐶 have a probability of
𝜌 to be set to 1 and a probability of 1 − 𝜌 to be set to 0.

Masking node:We do not directly delete nodes that may discon-
nect the original graph into several non-connected blocks. Instead,
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Figure 2: Overall of our proposed structure-driven ImbGNN framework. Degree-oriented optional augmentation is designed to
solve the potential bias of augmentation methods for graphs with different average degrees. The graphs obtain independent
graph representation through a GNN Encoder. During the preprocessing of graph similarity, we designed a method called
size-oriented GoG construction, which constructs GoG edges unfairly for different sizes. Finally, information is propagated in
the high-level graph, and the classification result is obtained through a classifier.

Figure 3: The trend of the function 𝑝𝑒 and 𝑝𝑛 as it varies with
the average degree of the graphs.

we set a part of the entries in the node feature matrix 𝑋 to 0, that
is, we do not change the topological structure information of the
graph, and only perform node mask in the feature dimension. It
can be defined as follows:

𝑋̃ = 𝑋 ⊙ 𝑀 (4)

among them, 𝑋 ∈ R |𝑉 |×𝑑 represents the original feature matrix of
the graph,𝑀 is a masking vector,𝑀𝑖 = 0 represents that the feature
of node 𝑖 is masked, i.e., 𝑋̃𝑖 = 0, otherwise 𝑀𝑖 = 1 means node 𝑖
does not change and maintains the status quo, i.e., 𝑋̃𝑖 = 𝑋𝑖 . Finally,
the masked feature matrix 𝑋̃ ∈ R𝑛×𝑑 is obtained.

Existing methods usually treat each sample equally when us-
ing graph augmentations. However, an indisputable fact is often
easily overlooked, i.e., samples are different in terms of structure
and features, and forcing certain augmentations is unfair and will
inevitably cause information loss. As mentioned in CUDA [1], we
hope to generate hard samples through data augmentation to im-
prove the generalization ability of the model, and we also hope
that data augmentation will lose as little of the original informa-
tion of the samples as possible. As shown in Figure 1, the graph’s
average degree follows a long-tailed distribution. We believe that
for those graphs with a large average degree (degree-head graph),
the structural information is sufficient, and dropping edges will
not have a drastic impact on the original information of the graph.

For degree-tail graphs, the number of edges is scarce. Adopting
a structure-oriented augmentation method like dropping edges is
likely to lose the original information of the sample, leading to ab-
normal topological information. This type of graph is more suitable
for a feature-oriented augmentationmethod likemasking nodes.We
also confirmed our guess through experiments. Based on the above
ideas, as shown in Figure 4(a), we design a degree-oriented optional
augmentation (DoOA). For each sample, we respectively sample
the augmentation probability coefficients 𝑞𝑛 and 𝑞𝑒 corresponding
to node masking and edge dropping and set two augmented thresh-
olds as 𝛼𝑛 and 𝛼𝑒 . Formally, we define these two degree-oriented
augmentations as:

O𝑒 (𝐺𝑖 ) =
{
𝐴𝑢𝑔𝑒 (𝐺𝑖 ), if 𝑞𝑒 (𝑖) ≤ 𝑝𝑒 (𝑑𝑒𝑔(𝐺𝑖 ))

𝐺𝑖 , otherwise

where 𝑝𝑒 (𝑑𝑒𝑔) = (𝛼𝑒 − (1 − 𝛼𝑒 )) ∗
ln

(
𝑑𝑒𝑔

𝐷0

)
ln

(
𝐷1
𝐷0

) + 1 − 𝛼𝑒
(5)

and

O𝑛 (𝐺𝑖 ) =
{
𝐴𝑢𝑔𝑛 (𝐺𝑖 ), if 𝑞𝑛 (𝑖) ≤ 𝑝𝑛 (𝑑𝑒𝑔(𝐺𝑖 ))

𝐺𝑖 , otherwise

where 𝑝𝑛 (𝑑𝑒𝑔) = ((1 − 𝛼𝑛) − 𝛼𝑛) ∗
ln

(
𝑑𝑒𝑔

𝐷0

)
ln

(
𝐷1
𝐷0

) + 𝛼𝑛
(6)

so the composite degree-oriented optional augmentation can be
defined as:

O(𝐺𝑖 ;𝑝𝑛, 𝑝𝑒 ) = O𝑒 ◦ O𝑛 (𝐺𝑖 ) (7)
where 𝛼𝑛 and 𝛼𝑒 are two hyperparameters, 𝐷0 = 𝑀𝐼𝑁 (𝐷 (𝐺𝑖 ))

and 𝐷1 = 𝑀𝐴𝑋 (𝐷 (𝐺𝑖 )). For any 𝑖 , 𝐷 (𝐺𝑖 ) =
|𝑉𝑖 |∑
𝑗=1

𝑑𝑒𝑔𝑟𝑒𝑒 (𝑣 𝑗 ) is the

average degree of all nodes in𝐺𝑖 . For any graph𝐺𝑖 , 𝑞𝑛 (𝑖) and 𝑞𝑒 (𝑖)
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are two values randomly sampled at [0, 1]. In addition, whether
to use a dropping depends on the relationship between 𝑞𝑒 (𝑖) and
the threshold 𝑝𝑒 (𝑑𝑒𝑔(𝐺𝑖 )), i.e., if 𝑞𝑒 (𝑖) ≤ 𝑝𝑒 (𝑑𝑒𝑔(𝐺𝑖 )), then 𝐺𝑖

will be augmented with a dropping edge, otherwise it will not
be used. As the average degree of graph increases, the threshold
𝑝𝑒 (𝑑𝑒𝑔) gradually increases, and the probability of using dropping
edges gradually increases. For the masking node, the trend of the
threshold 𝑝𝑛 (𝑑𝑒𝑔) is exactly the opposite. As the average degree
of the graph decreases, the threshold gradually increases, and the
probability of using the masking node gradually increases. The
distribution that the threshold 𝑝𝑒 (𝑑𝑒𝑔) and 𝑝𝑛 (𝑑𝑒𝑔) obeys is shown
in Figure 3. The final augmented graph is the result of two com-
posite operations O𝑛 and O𝑒 . Through degree-oriented optional
augmentation, we can adaptively apply appropriate augmentation
methods, drop-dominated or mask-dominated, to each input graph,
thereby alleviating the structural imbalance at the degree level.

3.3 Size-oriented GoG Construction
For the augmented graph, we further analyze and resolve imbal-
ances at other levels, such as class or graph size. When dealing
with traditional class imbalance problems, the most well-known
method SMOTE enriches the information of the minority class
through feature interpolation. As G2GNN [34] does, we draw on
feature propagation and aggregation mechanisms like SMOTE [3]
and Mixup [41] to construct graphs of graphs (GoG). Specifically,
we regard each independent input graph as a node, and the features
of the input graph after being processed by the GNN encoder as the
features of this node. We connect and reconstruct these nodes so
that feature information can propagate between different graphs,
thereby enabling minority classes to obtain information from other
samples to enrich their own features. The connection of GoG is
based on the similarity of graphs, and we connect graphs with
higher similarity. The calculation of similarity is done before train-
ing and is a one-time operation. Inspired by SOLTGNN [17], graph
size usually also exhibits a long-tailed distribution, and this feature
has certain problems when constructing GoG: (1) The difference
in graph size will lead to a decrease in accuracy when calculating
graph similarity. As shown in Figure 4(b), a large graph and a small
graph do not have high similarity under the calculation of the short-
est path kernel. However, there is a subgraph in the large graph
that has extremely high similarity with the small graph. Therefore,
we should mine more fine-grained local information. (2) Graphs
with a smaller size often lack structural information and have a
low upper limit on their own information, which can lead to biased
classification results. Therefore, we design a size-oriented graph of
graphs (SoGoG) construction method.

For a given graph set G, we construct an abstract high-level
graph G = (V,E), where 𝐺𝑖 ∈ G, corresponding to a node V𝑖
in G. We pass the augmented graph 𝐺𝑖 processed by the DoOA
module as input into the GNN Encoder 𝜙𝑔 (𝐺𝑖 ;𝜃𝑔) to obtain the
features of all nodes. Finally, the READOUT function aggregates
all node features into the feature 𝐻𝑖 of the graph𝐺𝑖 . So the initial
node feature corresponding to V𝑖 in the high-level graph is 𝐻𝑖 . If
𝐺𝑖 and 𝐺 𝑗 are similar enough, then V𝑖 and V𝑗 will be connected.
We believe that two graphs with sufficiently similar topological
information are highly likely to belong to the same class. Therefore,

through the information propagation of the high-level graph G, we
can make the feature information propagate as much as possible
within the same class, thereby alleviating the defect of insufficient
information in minor class samples.

Similarity-friendly Graph Random Walk: To achieve accu-
rate connections, we use the shortest path kernel to calculate the
similarity between graphs, resulting in 𝑠𝑖𝑚𝑖𝑝𝑟𝑒 (𝑖, 𝑗) = Ω(𝐺𝑖 ,𝐺 𝑗 ).
However, as mentioned earlier, we need to consider the impact of
graph size imbalance on similarity calculation. For this, we propose
a similarity-friendly graph random walk (GRW), which constructs
core subgraphs to achieve more accurate similarity calculation.
Specifically, for the imbalance ratio 𝜌𝑠 , we define the graph of
|𝐺𝑖 | ≥ 𝐾 as the size-head graph, and the graph of |𝐺𝑖 | < 𝐾 as
the size-tail graph, where |𝐺 | represents the number of nodes in
graph 𝐺 . We perform the GRW operator on all size-head graphs to
reduce the size of the size-head graphs, in the hope of achieving
more accurate similarity calculation between them and the size-tail
graphs, as shown in Figure 4(b). Since it is difficult for GRW to
accurately control the final subgraph size, we expect that the ob-
tained subgraph size is within the interval [0.9𝐾, 1.1𝐾]. We further
calculate the similarity 𝑠𝑖𝑚𝑖𝑝𝑜𝑠𝑡 (𝑖, 𝑗) = Ω(𝐺 ′

𝑖
,𝐺 ′

𝑗
), where

𝐺 ′
𝑖 =

{
𝐺𝑖 , if 𝐺𝑖 is size-tail graph

𝑅𝑊 (𝐺𝑖 ), if 𝐺𝑖 is size-head graph (8)

𝑅𝑊 (𝐺𝑖 ) is the subgraph obtained by performing a GRW on𝐺𝑖 . The
final similarity is 𝑠𝑖𝑚𝑖 (𝑖, 𝑗) = 𝑀𝑎𝑥 (𝑠𝑖𝑚𝑖𝑝𝑟𝑒 (𝑖, 𝑗), 𝑠𝑖𝑚𝑖𝑝𝑜𝑠𝑡 (𝑖, 𝑗)).

The traditional randomwalk operator is prone to passing through
nodes that have already been traversed and falling into local loops,
which slows the growth of the subgraph size and reduces the effi-
ciency of preprocessing graph similarity. Therefore, we draw on
CNARW [32], a fast randomwalk algorithmwith common neighbor
awareness, to alleviate the problem of slow convergence speed to
[0.9𝐾, 1.1𝐾] when performing random walks in large-scale graphs.
In traditional RW, for the current node 𝑢, the probability of any
node 𝑣 ∈ 𝑁 (𝑢) becoming its next hop node is 1

𝑑𝑒𝑔 (𝑢 ) , where 𝑁 (𝑢)
represents the neighbor set of node 𝑢, and 𝑑𝑒𝑔(𝑢) represents the
node degree of 𝑢. And CNARW is a kind of weighted walking. For
any node 𝑣 ∈ 𝑁 (𝑢), if node 𝑣 has a higher degree or fewer common
neighbors with node 𝑢, then the probability of 𝑣 being sampled as
the next hop node of 𝑢 is higher. This weighted approach can more
easily explore nodes that have not been visited before. Because if
a node has a higher degree, the number of unknown nodes that
can be reached by exploring from it is greater. And if 𝑣 and 𝑢 have
fewer common neighbors, the probability of walking back to the
previously explored node from 𝑣 will be lower. Therefore, CNARW
has a higher probability of sampling nodes that have not been vis-
ited before, and it reduces the probability of resampling nodes that
have been sampled in future random walk samplings. Formally, the
node sampling probability matrix 𝑃 is expressed as follows:

𝑃𝑢𝑣 =

{
𝑝𝑢𝑣/(1 − 𝑝𝑢𝑢 ) , if 𝑣 ∈ 𝑁 (𝑢)

0, otherwise (9)
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Figure 4: (a) The overall framework of degree-oriented optional augmentation (DoOA). (b) Sample subgraphs has the potential
to improve graph similarity calculations.

where the calculation of 𝑝𝑢𝑣 is:

𝑝𝑢𝑣 =


1

deg(𝑢 ) ×
(
1 − 𝐶𝑢𝑣

min{deg(𝑢 ),deg(𝑣) }

)
, if 𝑣 ∈ 𝑁 (𝑢)

1 −∑
𝑘∈𝑁 (𝑢 ) 𝑝𝑢𝑘 , if 𝑣 = 𝑢

0, otherwise

(10)

where 𝐶𝑢𝑣 represents the number of common neighbors of node 𝑢
and node 𝑣 .

Size-oriented Connection: Based on the calculated similarity
matrix 𝑠𝑖𝑚𝑖 , we can construct edges on the high-level graph G.
Previous construction methods usually adopt a fair edge connection
method, that is, connecting each graph 𝐺𝑖 to its 𝑘 graphs with the
highest similarity to construct a kNN graph. Considering the long-
tailed distribution of graph size, we believe that size-tail graphs
need to integrate more information from graphs of the same class
to improve their classification accuracy. Therefore, we propose an
unfair edge construction method based on graph size. The graph
𝐺𝑖 will connect edges with 𝑆𝑖 graphs with the highest similarity.
For size-tail graph, 𝑆𝑖 = 𝑘𝑡 and for size-head graph, 𝑆𝑖 = 𝑘ℎ , which
satisfies 𝑘𝑡 > 𝑘ℎ . We use this unfair size-oriented connection to
alleviate the problem of the model’s poor classification performance
for size-tail graphs under the condition of graph size imbalance.
The GoG constructed by the above method has an adjacency matrix
A, which is expressed as follows:

A𝑖 𝑗 =

{
1, if 𝑖 ∈ N𝑗 or 𝑗 ∈ N𝑖
0, otherwise

where N𝑖 = argMAX(𝑠𝑖𝑚𝑖, 𝑖, 𝑆𝑖 )
(11)

where argMAX(𝑠𝑖𝑚𝑖, 𝑖, 𝑆𝑖 ) represents the indices of the 𝑆𝑖 largest
values in the similarity vector corresponding to node V𝑖 in 𝑠𝑖𝑚𝑖 ∈
R |V |× |V | .

Graph of Graphs (GoG) Propagation: After constructing the
high-level graph, the propagation process of GoG can be expressed
as:

P𝑙+1 = D−1AP𝑙 , 𝑙 ∈ {1, 2, . . . , 𝐿} (12)

where D is the degree matrix, P0 = H is the feature vector 𝐻𝑖

of all individual graphs 𝐺𝑖 which are previously obtained from
GIN followed by the graph pooling matrix. Finally, the distribution
of predicted labels is obtained through the linear layer, as shown

Table 1: Statistics of datasets (# denotes the "number").

Dataset # Graphs # Avg-Node # Avg-Edge # Attr

PTC-MR [25] 344 14.29 14.69 18
NCI1 [26] 4110 29.87 32.30 37
PROTEINS [2] 1113 39.06 72.82 3
D&D [9] 1178 284.32 715.66 89
REDDIT-B [37] 2000 429.63 497.75 /

below:
B = MLP(P𝐿) (13)

Through the information propagation of GoG, the information
between samples of the same class has been fully interacted and
complemented. For tail classes, their intra-class information has
been supplemented, which narrows the information gap with head
classes and thus improves the class imbalance problem.

4 EXPERIMENT
In this section, we conduct extensive experiments of imbalanced
graph classification on various graph datasets with different levels
of imbalance to evaluate the effectiveness of ImbGNN, and further
carry out adequate ablation experiments to provide a better perspec-
tive to perceive the superiority of ImbGNN to solve the alleviate
imbalance problem.

4.1 Setup

Datasets:We utilize a total of five benchmark datasets in our study.
The Reddit-B [37] dataset represents social networks, while the
D&D [9] and PROTEINS [2] datasets are from the field of bioinfor-
matics. The NCI1 [26] and PTC-MR [25] datasets represent chemical
compounds. The statistics of these datasets are summarized in Ta-
ble 1.

Baselines: To assess the efficacy of our model, we compare it with
various rebalancing methods, including vanilla, up-sampling, and
re-weighting. The vanilla method does not involve any rebalancing
operation during the training process. Up-sampling, a traditional
approach to addressing imbalance issues, involves repeating sam-
ples from the minority class to achieve class balance. Re-weighting
is a cost-sensitive method that applies different weights to different
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Table 2: Imbalanced class graph classification results on five benchmark datasets. The numbers following each dataset name
represent the imbalance ratios between minority and majority class. Blod indicates the best performance while underline
indicates the second best.

Method Base model PROTEINS (30:270) D&D (30:270) NCI1 (100:900) PTC-MR (9:81) REDDIT-B (50:450)

F1-macro F1-micro F1-macro F1-micro F1-macro F1-micro F1-macro F1-micro F1-macro F1-micro

Vanilla
GIN [36] 25.33 28.50 9.99 11.88 18.24 18.94 17.74 20.30 33.19 36.02

InfoGraph [24] 35.91 36.81 21.41 27.68 33.09 34.03 25.85 26.71 57.67 67.10
GraphCL [39] 40.86 41.24 21.02 26.80 31.02 31.62 24.22 25.16 53.40 62.19

Up-sampling
GIN [36] 65.64 71.55 41.15 70.56 59.19 71.80 44.78 55.43 66.71 83.00

InfoGraph [24] 62.68 66.02 41.55 71.34 53.38 62.20 44.29 48.91 67.01 78.68
GraphCL [39] 64.21 65.76 38.96 64.23 49.92 58.29 45.12 53.50 62.01 75.84

Re-weighting
GIN [36] 54.54 55.77 28.49 40.79 36.84 39.19 36.96 43.09 45.17 51.92

InfoGraph [24] 65.73 69.60 41.92 72.43 53.05 62.45 44.09 49.17 65.79 77.35
GraphCL [39] 63.46 64.97 40.29 67.96 50.05 58.18 44.75 52.22 62.79 76.15

G2GNN [34] Remove edge 67.70 73.10 43.25 77.03 63.60 72.97 46.40 56.61 68.39 86.35
Mask node 67.39 73.30 43.93 79.03 64.48 74.91 46.61 56.70 67.52 85.43

ImbGNN / 67.90 73.95 46.39 83.42 65.52 74.54 47.86 60.73 69.01 86.77

classes when calculating loss. Following the approach in [43], we set
the weight of each class to be inversely proportional to the number
of training samples it contains, thereby assigning higher weights
to minority classes. For each rebalancing method, we run three
baseline methods: GIN [36], InfoGraph [24], and GraphCL [39].
Additionally, we also evaluate two versions of G2GNN [34] (i.e.,
remove-edge and mask-node) for effective comparison.

Evaluation Metrics: To more accurately evaluate the performance
of our model, we adopt two metrics commonly used in previous
imbalanced classification work: F1-Macro and F1-Micro. F1-Macro
computes the accuracy for each class and then averages these values
to yield the final result, treating different classes equally, akin to
balanced accuracy (bAcc.). F1-Micro, on the other hand, calculates
the accuracy across all samples, which may result in the majority
class dominating the process, similar to overall accuracy (Acc.).

Settings: For each dataset, we categorize graphs as either size-
tail graph/size-head graph or degree-tail graph/degree-head graph,
with the division following the traditional handling of long-tail
problems, using K as the dividing value. The choice of K can be
freely determined but typically follows the Pareto principle (i.e., the
20/80 rule), selecting the top 20% of large graphs as head graphs,
with the remainder as tail graphs. In unfair size-oriented connec-
tions, we choose values for 𝑘𝑡 from [2,3] and for 𝑘ℎ from [1,2].

4.2 Main Results
In this section, we compare the performance of ImbGNN with the
aforementioned baselines in the graph classification task. Mimick-
ing the division of long-tail datasets in imbalanced image classifica-
tion and the settings in G2GNN, we select one class from the dataset
as the minority class and reduce the samples of this class in the
training set until the imbalance ratio reaches 1:9, thereby creating
an extreme class imbalance scenario. The results are reported in
Table 2.

As can be observed from Table 2, ImbGNN achieves the best
results on almost all five datasets under both F1-macro and F1-
micro metrics, with only a slight underperformance on F1-micro
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Figure 5: Ablation study on data augmentation methods, we
compared the performance of our proposed DoOA with sim-
ply using dropping edge or masking node on graphs with
different degree properties.

for the NCI1 dataset compared to G2GNN. It can be seen that the
vanilla scheme performs worst as it does not take into account
class imbalance. For the up-sampling scheme, it requires repeated
sampling of the minority class, leading to additional computa-
tional costs and potential overfitting of the minority class. The
re-weighting scheme performs mediocrely, even worse than up-
sampling. G2GNN achieves decent results through global supervi-
sion information propagation and local self-consistency regular-
ization, but its single augmentation method of either removing
edges or masking node features has limitations. In biochemistry
datasets such as D&D and PTC-MR, masking node features as a
data augmentation method performs better, while in social datasets
like REDDIT-B, removing edges as an augmentation method per-
forms better. It cannot use a fixed augmentation method to deal
with all datasets. This problem will be more obvious when facing
unknown datasets. This is where our ImbGNN has made improve-
ments, enhancing the robustness of the model. Our ImbGNN adopts
an optional augmentation method based on the average degree of
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Figure 6: Ablation study on GoG connection methods, we
compared the performance of our proposed size-oriented
connection with vanilla connection on graphs with different
size properties.

Table 3: Impact of connection num 𝑘𝑡 and 𝑘ℎ on ImbGNN.

𝑘𝑡 𝑘ℎ PROTEINS D&D NCI1 PTC-MR REDDIT-B

2 1 73.95 81.56 73.17 60.73 86.77

3 2 72.49 83.42 72.46 58.46 85.49

3 1 72.84 82.37 74.54 57.91 86.20

graphs, improving the model’s generalization ability and better
adapting to all different datasets.

4.3 Ablation Study
We have validated the effectiveness of our method in two important
aspects of dealing with structural imbalance. Firstly, for degree-
oriented optional augmentation (DoOA), we compare it with the
results of using only edge dropping or node masking as augmenta-
tion methods. As shown in Figure 5, using DoOA for augmentation
significantly improves the results for both the degree-tail graph
and the degree-head graph. DoOA can effectively match a more
suitable data augmentation method for graphs with different struc-
tural properties. Secondly, as shown in Figure 6, for size-oriented
GoG construction, we compared it with the fair connection method
in G2GNN (i.e., each node in GoG is connected to its 𝑘 most similar
nodes). The effect of using size-oriented connection is significantly
better than vanilla connection. The improvement in the size-tail
graph is undoubtedly significant, which also validates the conceive
we proposed before. For the imbalance in size distribution, this un-
fair connection method can not only allow size-tail graphs to obtain
richer supervision information but also reduce the possibility of
size-head graphs, which already have abundant information, being
affected by noise information.

4.4 Parameter Sensitive
For the hyperparameters 𝛼𝑒 and 𝛼𝑛 used in DoOA, we set their
thresholds to be equal. We conduct experiments on the sensitivity
of the augmentation ratio 𝛼 = 𝛼𝑒 = 𝛼𝑛 , and the results are shown
in Figure 7. The experimental results show that when 𝛼 > 0.5, the
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Figure 7: Sensitivity experiments of 𝛼 in DoOA conducted on
the D&D dataset.

performance of the model is much better than when 𝛼 < 0.5. This
also confirms our previous point: for graphs with a smaller aver-
age degree, mask node feature, a feature-oriented augmentation
method, is more suitable, while for graphs with a larger average
degree, dropping edge, a structure-oriented augmentation method,
is more appropriate. If the opposite is true, the performance will
drop dramatically because for graphs with a smaller average degree,
structural information is scarce to begin with. When perturbing
edges, it is easy to lose key information or introduce serious noise,
thereby affecting the results. Furthermore, in the Size-oriented GoG
Construction, the number of connections 𝑘𝑡 and 𝑘ℎ are hyperpa-
rameters and we also conduct a performance comparison, as shown
in the Table 3. We found that the sensitivity of these two parameters
is not high, and the difference is not significant when the condition
𝑘𝑡 > 𝑘ℎ is met.

5 CONCLUSION
In this paper, we focus on the problem of imbalanced graph clas-
sification from two perspectives: class imbalance and structural
imbalance. The scenario widely exists in the real world, yet few
studies have delved into it. To address this, we propose a novel
model ImbGNN, which mitigates class imbalance while considering
two aspects of structure imbalance: the average degree and size of
graphs. We design a degree-oriented optional augmentation, an op-
tional augmentation method for graphs with significant differences
in average degree. Furthermore, while using GoG to address class
imbalance, we design a size-oriented GoG construction method for
graphs with size difference. This unfair connection method allows
smaller graphs to access more information. Experiments on multi-
ple benchmark datasets demonstrate the effectiveness of our model.
In future work, we plan to explore solutions when more structure
imbalances (such as topological structures) and class imbalances
intertwine.
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