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ABSTRACT
Spatiotemporal data forecasting is a fundamental task in the field
of graph data mining. Typical spatiotemporal data prediction meth-
ods usually capture spatial dependencies by directly aggregating
features of local neighboring vertices in a fixed graph. However,
this kind of aggregators can only capture localized correlations
between vertices, and while been stacked for larger receptive field,
they fall into the dilemma of over-smoothing. Additional, in tempo-
ral perspective, traditional methods focus on fixed graphs, while the
correlations among vertexes can be dynamic. And time series com-
ponents integrated strategies in traditional spatiotemporal learning
methods can hardly handle frequently and drastically changed se-
quences. To overcome those limitations of existing works, in this
paper, we propose a novel multi-graph based dynamic learning
framework. First, a novel Dynamic Neighbor Search (DNS) mecha-
nism is introduced to model global dynamic correlations between
vertices by constructing a feature graph (FG), where the adjacency
matrix is dynamically determined by DNS. Then we further allevi-
ate the over-smoothing issue with our newly designed Adaptive
Heterogeneous Representation (AHR) module. Both FG and origin
graph (OG) are fed into the AHRmodules and fused in our proposed
Multi-graph Fusion block. Additionally, we design a Differential
Vertex Representation (DVR) module which takes advantage of
differential information to model temporal trends. Extensive ex-
periments illustrate the superior forecasting performances of our
proposed multi-graph based dynamic learning framework on six
real-world spatiotemporal datasets from different cities and do-
mains, and this corroborates the solid effectiveness of our proposed
framework and its superior generalization ability.
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1 INTRODUCTION
Spatiotemporal forecasting, which is an important research branch
for analyzing the spatial correlations and temporal tendencies of
spatiotemporal data, has attracted more and more attentions. Ex-
tensive efforts [22–24, 26, 27, 35] have been devoted to applications
of complex systems such as urban traffic volume prediction, human
mobility recognition, and air pollution propagation analysis.

Essentially, the future status of a vertex in a graph is simulta-
neously correlated with the status of some other vertices as well
as the historical statuses of itself. Correspondingly, existing spa-
tiotemporal data forecasting methods are typically composed of
two components, which are applied to extract spatial and temporal
patterns respectively. Early works mostly focus on approximat-
ing the complex spatiotemporal patterns with Convolution Neural
Network (CNN) and Recurrent Neural Network (RNN) integrated
framework [3, 5, 30]. Nevertheless, all these methods, which can
only reconstruct spatial data into image-like manners, cannot ab-
stract the non-Euclidean correlations in spatial perspective. To
this end, researchers consider to model these Non-Euclidean struc-
tured characteristics with graph structure. [21] captures spatial
dependencies with bidirectional random walks on the graph, and
captures temporal dependencies with the encoder-decoder frame-
work and scheduled sampling; [42] extends traditional CNN to
graph-structured data to build an end-to-end traffic prediction net-
work. Next, with the development of GCNs, researchers attempt
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to extract the complex spatial correlations with GCN based meth-
ods. For instance, [39] propose a novel Spatiotemporal-GCN model
which combines graph convolution with standard 1D convolution
together, and the computation efficiency of this proposed model
is significantly better than the computation efficiencies of tradi-
tional RNNs; [44] devises a novel Temporal-GCN model, which
combines GCN with GRU to exploit the spatiotemporal correlations
of urban traffics. However, these above-mentioned graph model-
ing approaches are all based on predefined fixed graph structures
which ignore the dynamic spatiotemporal correlations among dif-
ferent vertices. To address the dynamic issue, some state-of-the-art
solutions start to take initial steps on extracting the dynamic spa-
tiotemporal correlations within graph-structured data. For instance,
[11] uses spatiotemporal attention mechanism to capture the dy-
namic spatiotemporal correlations during different time intervals,
and [48] proposes a novel Attention Temporal Graph Convolutional
Network (A3T-GCN) for the application of traffic flow forecasting,
and this proposed network can simultaneously capture both spatial
and dynamic temporal correlations. Most recent works, [31] and
[18], construct temporal graphs based on the similarities between
time series of vertices, and the constructed temporal graphs can
facilitate the caption of global correlations between vertices. Nev-
ertheless, all these dynamic-issue oriented methods use invariable
spatial processing in different time intervals, and can hardly handle
drastic and frequent changing temporal series. In summary, even
though the effectiveness of spatiotemporal data prediction on simul-
taneously learning spatial and temporal correlations with existing
methods has been prominently verified, there still exist some problems
with existing methods in both spatial and temporal perspectives.

Spatial challenges. Even though these GNN based spatiotempo-
ral methods can effectively extract neighboring correlations within
graphs, they still cannot exploit long-range correlations within
graphs, hence falling into the conflict between over-smoothing and
localized receptive field. Specifically, there do exist some long-range
correlations within graphs, and these information is essential for
accurately approximating spatiotemporal patterns. In some real ap-
plications, two neighboring vertices in graph may be not definitely
correlated, two remote vertices may be strongly correlated. For
example, a residential area and a commercial area are far apart, but
connected by a subway line. The flow of people in the two areas has
a great correlation, but they are usually far apart on a graph, that is,
they are multi-hop neighbors. Given the short-sighted nature of sin-
gle aggregator, existing GNNs can hardly capture such long-range
correlations between vertices, hence the localized receptive field of
spatiotemporal learning. To enlarge receptive field, existing GNNs
usually stack multilayer aggregators [16, 17, 19]. However, limited
by the existing GNN aggregation strategy, the embedded features
of all vertices may converge to a subspace unrelated to themselves
during message transmission process, and eventually lead to feature
failure [29]. This phenomenon is called over-smoothing where the
representations of neighboring vertices may become more similar
when the stack of multilayer aggregators grows [19, 28, 29].

Temporal challenges. First, the spatial correlations among
vertices in different time stamps can be dynamic. For instance, the
correlations between the monitored pollution concentrations of two
monitoring stations in a city are not only related to the geographical
deployments of these two stations, but also highly impacted by the

globally dynamic meteorology features of the city such as the speed
and direction of wind. However, existing methods apply constant
spatial networks on different time stamps. This may consequently
lead to static spatial correlations within different time stamps, i.e.,
temporal stationary. Even though some recent works [28, 31, 37]
have taken initial steps on efficiently capturing dynamic correla-
tions by dynamically rebuilding the adjacency matrices of graphs,
with no exception, all these methods may potentially lose the inher-
ent structures of graphs. Second, commonly used temporal series
prediction models, such as RNN [10, 12, 20] and CNN [38, 39], can
not handle drastic and frequent changes, thus performing poorly
on short-term prediction on those time stamps.

In summary, these issues are non-negligible obstacles in under-
standing complex and dynamic spatial correlations and temporal
tendencies in spatiotemporal data prediction. To address these chal-
lenges, in this paper, we propose a multi-graph fusion based graph
neural network for spatiotemporal dynamic learning. In particu-
lar, we first propose a multi-graph mechanism which respectively
employs feature graph to learn global dynamic correlations and
origin structure graph to learn local static correlations from spa-
tiotemporal data. To alleviate the problem of spatial over-smoothing
issue, we devise a dynamic learning component, Adaptive Heteroge-
neous Representation (AHR) to filter irrelevant embedded features
of neighboring vertices to reduce redundancy in spatial perspective.
For constructing feature graph to address the issues of localized
receptive field and temporal stationary in both spatial and tempo-
ral perspectives, we propose a novel method, Dynamic Neighbor
Search (DNS), to dynamically select partially most correlated neigh-
bors in each time interval for each vertex, hence capturing global
dynamic correlations. The feature graph constructed by DNS and
the origin structure graph are fed into AHR to generate embedded
features for vertices and the generated results of both graphs are
fused by our multi-graph fusion block. Also, we propose Differential
Vertex Representation (DVR), which utilizes differential informa-
tion to help to handle complex inputs with drastic and frequent
changes, and to aggregate the current embedded information of
each vertex with the difference between the current and last time
step’s embedded information of each vertex to generate a new het-
erogeneous representation for each vertex in temporal perspective.
The main contributions of this paper are as follows.

• To tackle the conflict between over-smoothing and localized
receptive field which is inherent for existing spatiotemporal
learning methods, we propose an AHR module which takes
advantage of attention and gated mechanisms for alleviating
over-smoothing issue and a DNSmethod to construct feature
graph for capturing global dynamic correlations.

• To dynamically learn global and local correlations within
graph-structured data, we propose a novel multi-graph based
spatiotemporal learning framework, where both constructed
feature graph and origin structure graph are fused. Addition-
ally, a novel DVR module is designed to handle drastic and
frequent changing temporal series by considering interval-
wise differential information.

• We conduct extensive experiments on cross-domain real-
world datasets, and the results demonstrate our technical
proposal is superior even when compared to state-of-the-art
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solutions. And the visualizations of dynamic vertex-wise cor-
relations derived with DNS and the evaluations of AHR’s im-
pacts on addressing spatial smoothness show that our model
can effectively capture global dynamic correlations among
vertices and alleviate the issue of over-smoothing, and this
verifies the interpretability of our proposed approach.

2 RELATEDWORKS
Great efforts have been devoted to addressing the spatiotemporal
prediction issue in different application domains [9, 34, 36, 42, 43].
Previous works usually mesh object area into regular grids, and
employ CNN based model to capture the spatial correlations of the
entire area. For instance, ConvLSTM [30] uses a CNN and LSTM
integrated model to capture both spatial and temporal correlations;
ST-ResNet [40] predicts urban human mobility with a deep ResNet.
However, all those grid-partition based methods may lose the inher-
ent Non-Euclidean structured characteristics of graph-structured
data during the phase of grid partition, and fail to effectively capture
the deep spatial correlations.

To this end, in recent years, researchers consider to model these
Non-Euclidean structured characteristics with graph structure. DCRNN
[21] captures spatial dependencies with bidirectional random walks
on the graph, and captures temporal dependencies with the encoder-
decoder framework and scheduled sampling; SLCNN [42] extends
traditional CNN to graph-structured data to build an end-to-end
traffic prediction network. Recently, with the development of GCNs,
researchers attempt to extract the complex spatial correlations with
GCN based methods. For instance, [39] propose a novel STGCN
model which combines graph convolution with standard 1D con-
volution together, and the computation efficiency of this proposed
model is significantly better than the computation efficiencies of tra-
ditional RNNs; [44] devises a novel T-GCN model, which combines
GCN with GRU to exploit the spatiotemporal correlations of urban
traffics. Nevertheless, these above-mentioned graph modeling ap-
proaches are all based on predefined fixed graph structures, and
the dynamic spatiotemporal correlations among different vertices
are ignored by those predefined fixed graphs.

To address the dynamic issue, some SOTA solutions start to
take initial steps on extracting the dynamic spatiotemporal corre-
lations within graph-structured data. For instance, ASTGCN [11]
uses spatiotemporal attention mechanism to capture the dynamic
spatiotemporal correlations during different time intervals, and
[48] proposes a novel Attention Temporal Graph Convolutional
Network (A3T-GCN) for the application of traffic flow forecasting,
and this proposed network can simultaneously capture both spa-
tial and dynamic temporal correlations. STFGNN [18], construct
temporal graphs based on the similarities between time series of
vertices, and the constructed temporal graphs can facilitate the
caption of global correlations between vertices. [2, 37] construct
adjacency correlations by learning embeddings for each vertices
and calculating similarities among embeddings. While those meth-
ods focus on the dynamic correlations, in our proposed method,
both dynamic correlations and origin spatial correlations are taken
into consideration.

Feature Graph

AHR AHR

𝓖𝒇(𝓐𝒇, 𝓥)

Multi-graph Fusion

DVR DVR DVR

Temporal Fusion

Output

𝓖(𝓐,𝓥)

𝓖𝒔(𝓐𝒔, 𝓥)

Structure Graph

DNS

P intervals

dt

dt-P+2

  dt-P+1

Figure 1: Solution overview.

3 PROBLEM DEFINITION
In this section, we formally define the problem of spatiotemporal
data forecasting.
Def 1. Basic graph structure A spatial graph G can be modeled
as G(A,V, E), where A, V and E indicate the adjacency matrix,
the sets of vertices and edges respectively, 𝑣𝑖 ∈ V(1 ≤ 𝑖 ≤ |V|)
corresponds to the 𝑖-th vertex in V . Since A contains the same
information as E, we may also denote a graph as G(A,V) or
G(V, E).
Def 2. Historical spatiotemporal feature The features matrix of
all vertices in graph G in time interval 𝑡 can be denoted as V𝑡 ∈
R |V |×𝐷 where 𝐷 is the dimensionality of the feature of each ver-
tex. The historical spatiotemporal features of graphG in historical 𝑃
time intervals can be formulated as

[
V (𝑡−𝑃+1) ,V (𝑡−𝑃+2) , · · · ,V𝑡

]
∈

R |V |×𝐷×𝑃 .
Def 3. Spatiotemporal data forecasting The main task of spa-
tiotemporal data forecasting is to learn a function 𝑓 to predict the
spatiotemporal data of G in the future 𝑄 time intervals based on
the data of G in historical 𝑃 time intervals, i.e.,[

V𝑡−𝑃+1, · · · ,V𝑡 ,𝜓

] 𝑓
−→

[�V𝑡+1, · · · ,�V𝑡+𝑄
]
. (1)

where𝜓 indicates the set of learnable parameters in 𝑓 .

4 METHOD
The main architecture of the proposed learning framework is il-
lustrated in Figure 1. For a give spatiotemporal data G(A,V) that
corresponds to 𝑃 intervals, the DNS module calculates 𝑃 dynamic
adjacency matrices A𝑓 = [A𝑡−𝑃+1

𝑓
, · · · ,A𝑡

𝑓
] for constructing a

feature graph G(A𝑓 ,V). Then the feature graph G(A𝑓 ,V) and
origin structure graph G(A,V) are fed into AHR modules for ex-
tracting spatial patterns. The Multi-graph Fusion module further
fuses the outputs of AHR modules for both graphs, and the fusion
results are taken as input by DVR module for spatiotemporal pre-
diction. The details of each individual component of our model are
described below.
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Figure 2: Calculation of learnable gating mechanism.

4.1 Dynamic neighbor search for feature graph

To dynamically and adaptively capture the global spatial correla-
tions among features of vertices, regarding a specific time interval 𝑡 ,
we denote the feature graph asG𝑡

𝑓
=

(
A𝑡

𝑓
,V𝑡

𝑓

)
, whereV𝑡

𝑓
indicates

the vertex set of G𝑡
𝑓
, and the adjacency matrix A𝑡

𝑓
is generated by

DNS component which adaptively and dynamically selects related
neighboring vertices to construct dynamic correlations among ver-
tices in spatial perspective based on the features V𝑡 of vertices
V𝑡

𝑓
.
Inspired by the feature selection approach [13], we embed the fea-

ture selection layer in our model. Based on the importance between
a specified vertex and other vertices, DNS dynamically determine
the neighbors of this vertex from the entire graph to avoid the
issue of localized receptive field in fixed graphs. We here design an
importance function, which calculates a value for each vertex to
represent the importance of this vertex with regard to all vertices,
to realize dynamic and adaptive neighbor selection of each vertex.

Given two vertice 𝑣𝑖 , 𝑣𝑐 ∈ V , and the features of them in time
interval 𝑡 denoted as 𝑣𝑡

𝑖
, 𝑣𝑡𝑐 , the importance value 𝑠𝑡

𝑖→𝑐
, which rep-

resents the importance of 𝑣𝑖 to 𝑣𝑐 , can be calculated by,

𝑠𝑡𝑖→𝑐 = Relu
(
𝜔𝑡
𝑐
𝑇
𝑣𝑡𝑖 + 𝛽𝑡𝑐

)
(2)

where 𝜔𝑡
𝑐 and 𝛽𝑡𝑐 are both learnable parameters which are corre-

sponding to vertex 𝑣𝑐 . Thus, for each vertex, we have an importance
vector representing the importance of other vertices to it. Given
the importance vectors for all vertices, for each vertex, we then
select vertices with bigger importance values during interval 𝑡 as
neighbors. To achieve this target, we set a threshold 𝜏 . In case that
𝑠𝑡
𝑖→𝑐

> 𝜏 , vertex 𝑣𝑖 is connected with 𝑣𝑐 as a neighbor in feature
graph G𝑡

𝑓
.

4.2 Adaptive heterogeneous representation for
spatial smoothness

To address the issue of spatial smoothness, we here propose a novel
AHR module, which contains two sub-components, a state-of-the-
art Attention based aggregating function to respectively extract
the correlations from feature and structure graphs, and a novel
learnable gating mechanism to reduce information redundancy by
adaptively flushing irrelevant information. Notice that our proposed
AHRmethod can be employed on both feature and structure graphs,
to simplify subsequent expressions, we unify the formal expressions
of these two graphs to G′(A ′,V ′).
Attention based aggregating function. By using a state-of-the-
art attention based aggregating function 𝜙 (A ′𝑡 ,V ′𝑡 , 𝜁 𝑡 ), which is
proposed in [32], we extract the spatial correlations among vertices
in time interval 𝑡 . Notice here 𝜁 𝑡 is the learnable parameter set.
Given a vertex 𝑣 ′

𝑗
∈ N(𝑣 ′

𝑖
)⋃ {

𝑣 ′
𝑖

}
where function N(·) calculates

the neighbors of a vertex, we calculate the significance of vertex 𝑣 ′
𝑗

to vertex 𝑣 ′
𝑖
, i.e.,

I
(
𝑣 ′𝑡𝑖 , 𝑣

′𝑡
𝑗

)
=

exp
(
LR

( (
𝛾𝑡
)𝑇 [

𝜃𝑡
𝑖
𝑣 ′𝑡𝑖 ∥ 𝜃𝑡𝑣 ′𝑡𝑗

] ))
∑

𝑣′
𝑘
∈N(𝑣′

𝑖
)⋃{𝑣′𝑖 } exp

(
LR

(
(𝛾𝑡 )𝑇

[
𝜃𝑡𝑣 ′𝑡

𝑖
∥ 𝜃𝑡𝑣 ′𝑡

𝑘

] ))
(3)

where ∥ means the operation of concatenation, and LR denotes the
LeakyRelu function with negative input slope of 0.2. After calculat-
ing the significance, we finally calculate the embedded features of
each vertex by

ℎ𝑡
𝑣′
𝑖
= Tanh

©­­«
∑︁

𝑣′
𝑗
∈N(𝑣′

𝑖
)⋃{𝑣′𝑖 } I

(
𝑣 ′𝑡𝑖 , 𝑣

′𝑡
𝑗

)
𝜃 ′𝑡𝑗𝑣

′𝑡
𝑗

ª®®¬ (4)

Notice that in the above two equations, 𝛾𝑡 and 𝜃𝑡 are learnable
parameters involved in 𝜁 𝑡 . Here ℎ𝑡

𝑣′
𝑖

∈ R𝐹 denotes the outputted
embedded features with dimensionality 𝐹 .
Learnable gating mechanism. To flush irrelevant information
and reduce redundancy, we propose a learnable gating mechanism
with two sub-components, memory and gating function to adap-
tively select and filter features of neighboring vertices. The detailed
calculation procedure of the learnable gating mechanism is illus-
trated in Figure 2. The memory sub-component is used to store the
initial state vectors of vertices which represent the states of vertices
before aggregation. Given a vertex 𝑣 ′

𝑖
and time interval 𝑡 , its state

vector𝑚𝑡
𝑖
can be initialized by 𝑣 ′𝑡𝑖 , and then concatenates with the

output of the aggregating function. The concatenation is then fed
into the gating function of 𝑣 ′

𝑖
, which contains a forgetting gate ℱ𝑡

𝑣′
𝑖

and an updating gate 𝒰𝑡
𝑣′
𝑖

, i.e.,


ℱ

𝑡
𝑣′
𝑖

= Sigmoid
(
𝜏𝑡
ℱ

[
𝑚𝑡
𝑖
∥ ℎ𝑡

𝑣′
𝑖

] )
𝒰

𝑡
𝑣′
𝑖

= Sigmoid
(
𝜏𝑡
𝒰

[
𝑚𝑡
𝑖
∥ ℎ𝑡

𝑣′
𝑖

] ) (5)
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We first employ the forgetting gate to filter the initial state vector
𝑚𝑡
𝑖
and flush its contained irrelevant information, i.e.,

𝑚′𝑡
𝑖 = 𝜛𝑇𝑚𝑚

𝑡
𝑖 ⊙ ℱ

𝑡
𝑣′
𝑖

(6)

where𝜛𝑇𝑚 ∈ R𝐹×𝐹𝑚 is a learnable parameter matrix and 𝐹𝑚 denotes
the dimensionality of𝑚𝑡

𝑖
, operation ⊙ corresponds to Hadamard

product, then we update the embedded feature of vertex 𝑣 ′
𝑖
with

this filtered state vector, i.e.,

ℎ′𝑡𝑣′
𝑖
= Tanh

(
𝜍𝑡

[
𝑚′𝑡

𝑖 ∥ ℎ𝑡
𝑣′
𝑖

] )
(7)

Notice that 𝜏𝑡
𝒰

and 𝜍𝑡 are both learnable parameters. Finally, we
use the updating gate𝒰𝑡

𝑣′
𝑖

to select the most correlated information
to update the embedded feature of vertex 𝑣 ′

𝑖
,

ℎ∗𝑡𝑣′
𝑖
=

(
1 −𝒰

𝑡
𝑣′
𝑖

)
⊙ ℎ𝑡

𝑣′
𝑖
+𝒰

𝑡
𝑣′
𝑖
⊙ ℎ′𝑡𝑣′

𝑖
(8)

Our AHR method can be used as the basic component of graph
convolution for addressing the over-smoothing issue.

4.3 Multi-graph fusion

After calculating the filtered embedded features of vertex 𝑣 ′
𝑖
, the fil-

tered embedded features ℎ∗𝑡
𝑣′
𝑖
of vertex 𝑣 ′

𝑖
can be separably denoted

as hf 𝑡
𝑣′
𝑖

and hs𝑡
𝑣′
𝑖

for feature and structure graphs. For multi-graph
fusion, we first concatenate these two filtered embedded features,
and then use a fully connected layer to aggregate the information
of both feature and structure graphs, i.e.,

𝑠𝑡
𝑣′
𝑖
= Tanh

(
𝜔𝑡
𝑣′
𝑖

[
hf 𝑡

𝑣′
𝑖
∥ hs𝑡

𝑣′
𝑖

]
+ 𝑏𝑡

𝑣′
𝑖

)
(9)

where 𝜔𝑡
𝑣′
𝑖

and 𝑏𝑡
𝑣′
𝑖

are both learnable parameters. So far, we then
obtain the multi-graph fused spatial correlations of all vertices.

4.4 Differential vertex representation based
temporal learning

Traditional spatiotemporal learningmethods usually employ similar
spatial learning methods on different time intervals, and this kind of
duplication of methods in different intervals may ignore some key
variations of spatiotemporal data in temporal perspective, hence the
poor ability to handle drastically and frequently changing temporal
series. To this end, we devise a novel DVR module to dynamically
enhance the distinctiveness and diversities of features of vertices
in temporal perspective. The details of DVR are demonstrated in
Figure 3. By utilizing attention mechanism to fuse the information
of 𝑃 historical time intervals, our model are able to capture the
global temporal trends of vertices.

4.4.1 Differential vertex representation.
Regarding a vertex 𝑣 ′

𝑖
, we first calculate the differential vector be-

tween 𝑠𝑡
𝑣′
𝑖

and 𝑠𝑡+1
𝑣′
𝑖

by

𝑑𝑡+1
𝑣′
𝑖

= FC
(
𝑠𝑡+1
𝑣′
𝑖

)
− FC

(
𝑠𝑡
𝑣′
𝑖

)
(10)

where FC denotes fully connected layers. Note that if interval 𝑡 is
the earliest interval in a sequence, we let 𝑑𝑡

𝑣′
𝑖

= FC
(
stv′i

)
. With these

differential vectors, we then update the representations of vertex
𝑣 ′
𝑖
during each time interval by

𝑠∗𝑡𝑣′
𝑖
= 𝜂𝑡

𝑣′
𝑖
⊙ 𝑠𝑡

𝑣′
𝑖
+
(
1 − 𝜂𝑡

𝑣′
𝑖

)
⊙ 𝑑𝑡

𝑣′
𝑖

(11)

where

𝜂𝑡
𝑣′
𝑖
= Sigmoid

(
𝜋𝑡
𝑣′
𝑖

[
𝑠∗𝑡𝑣′

𝑖
∥ 𝑑𝑡

𝑣′
𝑖

] )
(12)

Here 𝜋𝑡
𝑣′
𝑖

is a learnable parameter, and the output of activation
function Sigmoid is within the range of [0, 1].

Figure 3: Illustration of diversified vertex representation.

4.4.2 Temporal fusion of historical intervals.
In temporal perspective, we employ a simplified attention mecha-
nism to fuse the information of 𝑃 historical intervals into one single
graph. Given the historical embedded features

{
𝑠∗𝑡−𝑃+1

𝑣′
𝑖

, · · · , 𝑠∗𝑡
𝑣′
𝑖

}
of vertex 𝑣 ′

𝑖
, we first construct the dynamic correlations between

the predicted future values and all 𝑃 historical embedded features
by

𝜎𝑡
𝑣′
𝑖
= Softmax

(
𝜌𝑡
𝑣′
𝑖

)
=

exp
(
𝜌𝑡
𝑣′
𝑖

)
𝑡∑

𝑘=𝑡−𝑃+1
exp

(
𝜌𝑘
𝑣′
𝑖

) (13)

where

𝜌𝑡
𝑣′
𝑖
= Tanh

(
𝛿𝑡
𝑣′
𝑖
𝑠∗𝑡𝑣′

𝑖
+ 𝑎𝑡

𝑣′
𝑖

)
(14)

Note that 𝛿𝑡
𝑣′
𝑖

and 𝑎𝑡
𝑣′
𝑖

are both learnable parameters. The value of 𝜎𝑡
𝑣′
𝑖

denotes that the attention score of the embedded feature of vertex
𝑣 ′
𝑖
in time interval 𝑡 on the future value of 𝑣 ′

𝑖
. After calculating

the scores for all 𝑃 historical time intervals, we then predict the
status of vertex 𝑣 ′

𝑖
by calculating the aggregation of the embedded

features of vertex 𝑣 ′
𝑖
during 𝑃 historical intervals, i.e.,

𝑥𝑡
𝑣′
𝑖

=

𝑡∑︁
𝑘=𝑡−𝑃+1

𝜎𝑘
𝑣′
𝑖
𝑠∗𝑘𝑣′

𝑖
(15)

Note that the embedded features 𝑠∗𝑘
𝑣′
𝑖
has involved the spatial cor-

relations between 𝑣 ′
𝑖
and its neighbors.
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Table 1: Evaluations on PeMSD4, PeMSD8, AirBJ and TrafficSIP. The best results are in bold and _ denotes the second-best
results.

Model PEMSD4 PEMSD8 AirBJ TrafficSIP
MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)

ARIMA 33.73 48.8 24.18 31.09 44.32 22.73 44.44 66.84 104.06 1.5 1.93 74.17
LSTM 26.77 40.65 18.23 23.09 35.17 14.99 61.94 66.61 98.18 2.09 2.54 54.65
STGCN 21.16 34.89 13.83 17.5 27.09 11.29 48.7 70.56 172.7 1.98 2.9 50.5
STG2Seq 25.2 38.48 18.77 20.17 30.71 17.32 44.27 68.11 120.93 1.74 2.54 46.6
STSGCN 21.19 33.65 13.9 17.13 26.8 10.96 50.11 72.24 149.64 1.44 2.42 43.46
AGCRN 19.83 32.26 12.97 15.95 25.22 10.09 33.43 54.81 100.95 1.99 2.97 57.02
STFGNN 19.83 31.88 13.02 16.64 26.22 10.6 33.9 56.77 68.47 1.34 2.08 34.16

STG-NCDE 19.21 31.09 12.76 15.45 24.81 9.92 33.15 58.3 70.45 1.36 2.14 37.18
MGTF 19.12 31.67 12.35 15.32 24.62 10.07 33.28 56.56 69.61 0.91 1.74 19.72

4.5 Loss and training
To train our model, we select Mean Absolute Error (MAE) as the
training object of our proposed approach, and the loss function can
be defined as,

Loss
(�V𝑡+1, · · · , �V𝑡+𝑄

)
=

1
𝑄 ∗ |V |

𝑄∑︁
𝑗=1

|V|∑︁
𝑖=1

����𝑣 𝑗𝑖 − 𝑣
𝑗

𝑖

���� (16)

Where 𝑣 𝑗
𝑖
is the predicted status of vertex 𝑣𝑖 during interval 𝑗 and

𝑣
𝑗
𝑖
indicates the corresponding ground truth. To avoid the issue of

overfitting, we use L2-Regularization [8] during training phase.

5 EXPERIMENTS
In this section, to evaluate the performances of our proposed multi-
graph fusion based model, we conduct a series of experiments on six
real-world spatiotemporal datasets, including four public datasets
(PeMSD4, PeMSD8, BikeNYC, and TaxiBJ) [11, 40, 41] and two pri-
vate datasets (AirBJ and TrafficSIP). Worth noting that, with these
six datasets, our experiments consider four different categories of
spatiotemporal data, i.e., traffic flow, traffic speed, air quality, and
crowd flow. And with these multiple datasets from different do-
mains of urban traffic, human mobility, and air quality, we roundly
validate the scalability of our proposed approach.

5.1 Dataset Description
In this subsection, we then introduce the detailed information about
all used datasets. The four used public datasets contain PeMSD4,
PeMSD8, BikeNYC, and TaxiBJ. PeMSD4 refers to the traffic data
in Bay Area, San Francisco during January to February in 2018. In
PeMSD4, there are 307 detectors in total, and the collected data
are aggregated every 5 minutes, so each detector contains 288
data points per day. PeMSD8 indicates the traffic data collected
by 170 detectors in San Bernardino from July to August in 2016.
The traffic data in PeMSD8 are aggregated with the same sampling
frequency in PeMSD4. For both PeMSD4 and PeMSD8, they contain
the total traffic flows, average speeds, and average occupancies
of monitored road segments, and our proposed method is used
to predict the traffic flows of road segments. BikeNYC dataset is
taken from the NYC Bike system during 1st Apr. to 30th Sept., 2014.
For constructing this dataset, the urban area of New York city is

partitioned into a regular 16×8 grid map based on longitude and
latitude, and the hourly crowd inflow and outflow of each grid are
recorded as the crowd flow in the dataset.TaxiBJ corresponds to the
taxicab GPS data in Beijing during 1st Nov., 2015 to 10th Apr., 2016
and the sampling interval is 30 minutes. Similar to the construction
of BikeNYC dataset, the urban area of Beijing is divided into a
32×32 Manhattan grid, and each record in TaxiBJ corresponds to
the taxicab inflow and outflow of a specific grid within 30 minutes.
To further investigate our proposed model, we then investigate the
performances of our proposed model on two private datasets.AirBJ
includes the air quality data of 36 air monitoring stations in Beijing
during 1st May, 2014 to 30th Apr., 2015, and the sampling interval
of air quality is one hour, and each air quality record in this dataset
consists of the concentration of six different air pollutants, i.e., NO2,
SO2, O3, CO, PM2.5 and PM10. TrafficSIP dataset [47] contains the
traffic volumes of 108 surveilled intersections in Suzhou Industrial
Park during 1st Jan. to 31th, Mar., 2017, the surveilled data includes
the traffic flows and traffic speeds of surveilled intersections, and
our model is used to predict the traffic speed of each intersection.

Table 2: Evaluations on BikeNYC and TaxiBJ. The best results
are in bold and _ denotes the second-best results.

Model BikeNYC TaxiBJ
MAE RMSE MAPE(%) MAE RMSE MAPE(%)

ARIMA 8.79 16.6 108.25 37.76 60.03 70.26
LSTM 7.57 10.53 102.3 46.69 55.77 104.23
STGCN 12.93 19.61 108.54 82.51 110.84 258.89
STG2Seq 11.76 18.32 105.53 73.35 105.5 239.1
STSGCN 12.64 19.01 95.62 80.92 113.6 248.54
AGCRN 11.63 21.17 126.55 23.1 42.27 64.39
STFGNN 5.37 9.19 48.03 22.16 36.46 62.62

STG-NCDE 5.19 9.53 41.98 22.97 36.95 63.56
MGTF 4.84 8.45 41.14 21.99 35.85 57.83

5.2 Experiment Settings
To verify the effectiveness of our proposed model, we compare
it with the following alternative baselines. ARIMA [4] is a well-
known time series analysis method for predicting future values.
LSTM [14] treats different nodes separately by utilizing LSTM.
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STGCN [39] deploys graph convolution and temporal convolu-
tion for capturing spatial and temporal dependencies, respectively.
STG2Seq [1] uses multiple gated graph convolutional module and
seq2seq architecture with attention mechanism to make multi-
step predictions. STSGCN [31] is able to effectively capture the
complex localized spatiotemporal correlations through an elabo-
rately designed spatiotemporal synchronous modeling mechanism.
AGCRN [2] proposes node-adaptive graph convolution, which gen-
erates node-specific parameters from a parameter pool shared by
all nodes according to learnable node embeddings, and combines it
with GRU. STFGNN [18] can effectively learn hidden spatiotem-
poral dependencies based on a novel fusion operation of various
spatial and temporal graphs. STG-NCDE [7] extends the concept
of neural controlled differential equations and design two novel
NCDEs for spatial and temporal processing, respectively.

To eliminate the influence of different value ranges of different
data items, we first normalize all input data by standard normaliza-
tion for more stable training. And for all datasets and experiments,
we select earliest 60% of data as the training sets, use the following
20% of data as validation sets, and retain the rest 20% for validation.
The model is trained on Tesla V100 GPU with the batch size of 64,
and Adam [15] is adopted as optimizer. Further, we implement the
model in Python 3.6 with PyTorch 1.9.0, and trained for 100 epochs
on all datasets.

For multi-step forecasting, we use the data during 12 continuous
past time steps as the historical timewindow (𝑃 = 12) to forecast the
data during next 12 continuous time steps (𝑄 = 12). We employ grid
search strategy to locate the best parameters on validations, and
use three evaluation metrics, i.e., Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), and Mean Absolute Percentage Error
(MAPE), to evaluate the performances.

5.3 Main experiments
We evaluate our proposed model and all alternatives based on four
public and two private datasets, and the results are demonstrated
in Table 1 and 2. As can be obviously observed, our proposed model
outperforms all alternatives on all datasets.

As can be observed from Table 1 to 2, our proposed method
can outperform all alternative solutions with all different datasets
and predicting time steps, and this verify the superiority and cross-
domain scalability of our proposed model. Since AirBJ contains
more drastically changing data, our model outperforms other meth-
ods with a considerable margin by taking advantage of DVRmodule.
Meanwhile, the performance enhancements of our proposed model
are not such significant on BikeNYC and TaxiBJ, the reason may be
that the inflow and outflow data of quite a few grids equal to 0 dur-
ing some intervals, and this kind of data sparsity can significantly
influence the stability of complex deep learning methods [33, 46].

5.4 Ablation Study
To further illustrate the effectiveness of each individual novel com-
ponent in our model, we evolve four variants and exploit extensive
ablative experiments on AirBJ and PEMSD4. Notice that, in this
part, we use past 12 continuous time steps (𝑃 = 12) to predict fu-
ture 12 continuous time steps (𝑄 = 12). The hyper-parameters are

determined by the performance of 6 variants, which are described
as below:

• AHR: This variant only employs individual AHR module on
the fixed adjacent matrix from the structure graph.

• AHR+DVR: We add DVR module with individual AHR
module to additionally solve the smoothness problem in
time series in origin graph.

• AHR+DNS: We add DNS module with individual AHR mod-
ule to achieve the dynamic selection of node neighbors in
origin graph.

• AHR+DNS+DVR: We investigate the effectiveness of single
Feature Graph (FG) by making predictions without structure
graph, and AHR and DVR are employed to respectively cap-
ture both spatial and temporal correlations. Notice that DNS
should be employed during the construction of FG.

The results of ablation study are shown in Table 3. Comparing
with AHR, the performances of AHR+DVR are invariably better
on both two datasets in terms of two different metrics, and this
indicates the effectiveness of DVR module on temporal predic-
tions. Homogeneously, AHR+DNS always outperforms AHR on
two datasets and two metrics, and this verifies our DNS module can
significantly solve the localized receptive field issue by dynamically
selecting neighboring vertices. Regarding the single feature graph
mechanism, the performance of AHR+DNS+DVR is better than the
performances of AHR+DVR and AHR+DNS on both PeMSD4 and
AirBJ. So far, the effectiveness of fusing these two graphs has been
verified.

Table 3: Ablation studies on AirBJ and PeMSD4

Model
PeMSD4 AirBJ

MAE RMSE MAE RMSE
AHR 32.65 44.36 49.99 75.76

AHR+DVR 27.15 38.51 44.36 69.66
AHR+DNS 21.99 33.44 38.62 63.92

AHR+DNS+DVR 21.49 32.82 37.92 63.52

5.5 The effectiveness of AHR on alleviating
over-smoothing issue

Since our proposedAHRmodule aims at tackling the over-smoothing
issue and can be used as a basic component of graph convolution,
here we evaluate AHR module based on the metrics of Group Dis-
tance Ratio and Instance Information Gain which are introduced
in [45]. Group distance ratio measures the ratio of inter-group dis-
tance over intra-group distance in Euclidean space, and a small
group distance ratio leads to the over-smoothing issue where all
groups are mixed together. Instance information gain represents
how much input feature information is contained in the final rep-
resentation, and the over-smoothing issue would lead to a small
value of instance information gain.

We compare our AHRmodule with GCN andGATwhen the num-
ber of layers is 1 to 10, the results are shown in Figure 5. Due to our
well-designed attention and gated mechanism, the proposed AHR
has overall better group distance ratios and instance information
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(a) Geographical distribution of selected air monitoring stations. (b) Heatmap of dynamic vertex-wise correlations among 36 nodes.

Figure 4: Visualization of dynamic vertex-wise correlations derived with DNS
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Figure 5: Evaluate AHR on over-smoothing metrics

gains and performs best on tackling over-smoothing. Also, when
the number of layers grows, both metrics of AHR change slower
than the other two alternatives which indicates the robustness of
AHR on deeper network structure.

5.6 Visualization of dynamic vertex-wise
correlations derived with DNS

In this subsection, we elaborate how DNS captures time-varying
spatial correlation patterns, which are without explicit Euclidean
associations, for further boosting entire dynamic graph representa-
tions. Specifically, we illustrate the selected vertices, i.e., air moni-
toring stations, of Beijing in Figure 4(a) and subsequently derive
the vertex-wise correlation heat map with DNS in Figure 4(b). In
particular, we observe that vertex 34 and 6 reveal a spatially distant
correlation but tend to have a stronger connectedness beyond other
pairs. This is really interesting and inscrutable intuitively, so we
carry out an in-depth analysis on this. We think the inherent cause
of this abnormal phenomena maybe lie in the particular industrial
layout around Beijing. Specifically, pollutants and air pollution
in Beijing are mostly from Hebei Province, which locates at the
southwest of Beijing and is with intensive industrial parks, and as
a consequence, pollutants, which move from the direction of vertex
34 and go directly to vertex 6, bring strong correlations between

vertex 34 and 6. Further, directed seasonally prevailing wind and
some specific terrains may also facilitate to the formation of this
kind of strong correlations [6, 25]. From Figure 4, we also discover
that there exist heterogenous regional pollution influences among
different vertices, and this further imply various diffusion patterns
of air pollution. For instance, the regional pollution around vertex
34 covers a larger spatial scope than the regional pollution around
other vertices, and as illustrated, the surrounding area of vertex 11
is limitedly polluted. In conclusion, above thinking is consistent
with real-world phenomena and can exactly verify the effectiveness
and task-aware interpretability of our DNS module.

6 CONCLUSION
In this paper, we propose a novel multi-graph fusion based spa-
tiotemporal dynamic learning framework to simultaneously ad-
dress the issue of local receptive field and spatial smoothness for
spatiotemporal data prediction. With a carefully designed feature
graph, our model can learn global dynamic information in fea-
ture space by selecting most important neighbors from an entire
graph with a newly designed Dynamic Neighbor Search (DNS)
mechanism. Next, a newly designed Adaptive Heterogeneous Rep-
resentation (AHR) is employed on these two graphs to reduce re-
dundancy in spatial perspective by filtering irrelevant embedded
feature information. Finally, to handle complex inputs with drastic
and frequent changes, we propose a novel temporal Differential
Vertex Representation (DVR) module to take temporal differential
information among intervals into account. Extensive experiments
on six real-world cross-domain and cross-city datasets demonstrate
the superiority our proposed method.
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