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Abstract—Traffic patterns of urban road intersections are
important in traffic monitoring and accident prediction, thus
play crucial roles in urban traffic management. Although real-
time traffic information is consistently provided by surveil-
lance cameras equipped at road intersections, the sparsity of
surveillance distribution poses great challenges in performing
a complete real-time traffic pattern analysis. To tackle that,
existing works either assume that the traffic patterns are static,
or assume a multi-variant distribution model for intersection
traffic volumes. The former assumption neglects the temporal
features of traffic patterns, and the latter is limited in capturing
fine-grained spatiotemporal dependencies. To tackle the problem,
we propose a novel framework, SpatioTemporal-Generative Ad-
versarial Network (ST-GAN), that exploits deep spatiotemporal
features of urban networks and offers accurate traffic pattern
inferences with incomplete surveillance information. The ST-
GAN framework incorporates a modified GCN network wired
with the encoder-decoder mechanism and an LSTM network,
which are further boosted by an iterative adversarial training
process. Comprehensive experiments on real datasets show that
ST-GAN achieves better inference accuracies than state-of-the-art
solutions.

Index Terms—Inference, intersection, traffic pattern, sparse
surveillance, GAN.

I. INTRODUCTION

HE proliferation of road video surveillance systems [1]—

[3] gives prominence to intelligent transportation ser-
vices [4]-[6], including optimization of urban vehicle driv-
ing [7]-[10] and analysis of road network traffic flows [1], [2],
[11], [12]. Most traffic analysis with surveillance systems as-
sumes a dense coverage of surveillance distribution over road
network intersections. However, the sparsity of surveillance
distribution can hardly be avoided in real applications, due to
the high deployment cost and dynamic characteristics of urban
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" (a) SIP (3.0%, 103/3,468) (b) Shenzhen (0.8%, 129/16,264)

Fig. 1. Sparse distributions of road surveillance cameras in SIP and Shenzhen.
Red dots indicate intersections where a surveillance camera is deployed. The
surveillance camera coverage rates of SIP and Shenzhen are 3.0% (103/3,468)
and 0.8% (129/16,264), respectively.

road networks. For instance, Figure 1 shows the distributions
of road surveillance cameras of two leading cities in China,
Suzhou Industrial Park (SIP) and Shenzhen. In this figure,
only 3.0% (103) of the 3,468 road intersections in SIP are
surveillance-equipped, while only 0.8% (129) of the 16,264
road intersections in Shenzhen are surveillance-equipped.

There have been studies [13]-[15] on forecasting traffic
statuses with data incompleteness caused by the data sparsity
issue or networking failure. However, these seemingly similar
techniques cannot be directly used for inferences with the
permanent incomplete traffic information caused by the sparse
coverage of road surveillance cameras. Recently, there have
also been studies [16]-[21] on modeling and inferring citywide
traffic statues with sparse surveillance information, which
can be clustered into two categories, discrete road segment
similarity based methods [16], [18], [19] and holistic road
network spatiotemporal correlation based methods [17]. The
former makes inferences based on the calculation of similari-
ties between surveillance-equipped and surveillance-free road
segments with contextual information, such as velocities, road
segment length, and Point of Interest (POI) features. However,
these methods simplify the profound natures of spatiotemporal
correlations into pair-wise similarity score comparisons, thus
fall short in making accurate inference [22]. The latter infers
traffic volumes for surveillance-free intersections with the
assumption of multi-variant distribution models [17]. Never-
theless, the assumption may yield biased estimation due to the
lack of parameters of surveillance-free intersections.

To tackle the challenges mentioned above, we propose
a novel framework, SpatioTemporal-Generative Adversarial
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Network (ST-GAN), inspired by recent advances in face com-
pletion techniques [23]. Our ST-GAN consists of a modified
Encoder-Decoder based Graph Convolution Network (ED-
GCN) and a Long Short-Term Memory (LSTM) neural net-
work, for learning latent correlations in graph-structure data
like road network [24]-[26] and temporal dependencies of
traffic volumes [24], [27], [28], respectively. The iterative
adversarial training process of GAN enables our framework to
improve the quality of volume inference within surveillance-
free intersections.

Our work is a sub-system of a real project, i.e., the in-
tegrated urban computing system, in cooperating with the
traffic administrative agency of SIP, as shown in Figure 2.
However, the information is incomplete in the sense that the
distribution of surveillance cameras is sparse, as shown in SIP
and Shenzhen in Figure 1. We also collect the third-party GPS
data of 4,367 and 8,572 taxicabs with an average sampling
rate of 20 seconds for Shenzhen and SIP to generate the
training data, we mask a set of randomly selected intersections
for the GPS data, in order to imitate the incomplete video
surveillance scenarios. We then train the generator of our ST-
GAN framework to reconstruct the original data with incom-
plete training data, which captures the deep spatiotemporal
correlations through ED-GCN and LSTM modules. The ability
of the generator is further enhanced by an iterative adversarial
training process with the discriminator in ST-GAN. At last,
the trained generator can be used to infer traffic volumes of
surveillance-free intersections, with only real-time and sparse
surveillance information collected from surveillance-equipped
intersections. Experiments show that our proposal can improve
the inference accuracy at least 10.43% and 13.85% on two
real-world datasets, respectively.

Our main contributions are summarized as follows.

o To the best of our knowledge, this is the first work
that utilizes the GAN-based deep learning framework to
tackle the sparse-surveillance based real-time urban traffic
pattern inference problem, by modeling the holistic urban
traffic patterns of the entire urban road network from a
third-party dataset and using the learned holistic patterns
to infer traffic volumes of surveillance-free intersections
only based on real-time and reliable inferred volumes of
sparse surveillance-equipped intersections.

o The proposed generative adversarial network, ST-GAN,
takes the well-designed ED-GCN and LSTM integrated
module as the generator, to jointly capture spatial corre-
lations and temporal dependencies. Through adversarial
training on a dynamically masked third-party dataset,
the generator of our ST-GAN is capable of inferring
traffic volumes for surveillance-free intersections, and
the seamlessly combined generator and discriminator can
iteratively improve the performance of our ST-GAN.

o We evaluate the performance of our proposal with real-
world large-scale monitoring datasets collected from two
cities, i.e., SIP and Shenzhen. Extensive experiments
cross-validate that our proposal significantly outperforms
other alternative state-of-the-art solutions. Furthermore,
we perform a case study to demonstrate that our ST-GAN
can effectively capture the dynamic and diverse traffic
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patterns well and tackle the permanent sparse challenges
by visualizing the inferred results of ST-GAN.

The rest of this paper is organized as follows. Section II
reports recent related works. Section III introduces prelimi-
naries and formalizes the problem. Section IV investigates the
proposed ST-GAN framework. Section V presents empirical
studies. Section VI further discusses issues related to our
problem and Section VII concludes the paper.

II. RELATED WORK

In recent years, tons of works [13], [14], [16]-[21] have
been achieved to address the data sparsity problem in urban
traffic analysis. And the data sparsity problem in urban traffic
surveillance can be divided into two categories, temporal
missing, and spatial sparsity.

Regarding the issue of temporal missing which is mainly
caused by the data sparsity issue or network failure, many
methods of time series analysis and forecasting [13], [14] have
been raised to address the problem. Obviously, these kinds of
time series analysis and forecasting technologies, which highly
rely on the spatial completeness of data, cannot be used to
solve the problem of spatial sparsity in our task by making
inferences with the permanent incomplete traffic information.

The problem of spatial sparsity is caused by the sparse
coverage of road surveillance cameras, and there are also a
small number of recent novel studies [16]-[19] aim at solving
this problem. We can also summarize existing efforts on this
field into two categories, discrete road segment similarity
based methods [16], [18], [19] and holistic road network
spatiotemporal correlation based methods [17], [20].

Regarding discrete road segment similarity based methods,
[16] calculates and ranks the similarities within road segments
to determine whether they should be selected into a candidate
set, then infers the traffic volumes of those surveillance-free
road segments based on the combination of the candidates by
a key-value attention method. [18] proposes a Spatiotemporal
Semi-Supervised Learning network (ST-SSL) to solve the
problem of citywide traffic volume inference. It first constructs
spatial and temporal affinity matrices to represent the corre-
lations within road segments by taxicab trajectories as well
as some other static features of road segments, then infers
segment traffic volumes based on the assumption that two
segments should have similar lane volume patterns if they
share similar urban features. [19] first collects traffic speeds
and volumes from original GPS data, then solves the problem
of speed missing with the method of collaborative matrix
factorization and abstracts training traffic features with the
bayesian network, and finally infers citywide traffic volumes
with the K-Nearest Neighbor (KNN) algorithm. In practice,
the road traffic volumes of individual road segments can be
significantly influenced by the topology and traffic statuses
of the entire road network, so this kind of discrete road
segment similarity based methods should have very poor
performances on inferring traffic statuses of complex urban
road networks. Besides, these discrete road segment similarity
based methods mostly focus on the traffic volume completion
issue of individual road segments, while the traffic statuses of
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Fig. 2. Urban Computing System of SIP. The size of points represents the relative value of the traffic volume at the corresponding intersection, and the point
color of red or purple demonstrates the traffic volume of an intersection is monitored by the pre-deployed surveillance cameras or inferred by our method,

respectively.

urban intersections are more important for urban traffic admin-
istrative departments since it has been proved that most urban
hazards and traffic problems concentrate on intersections [22].

For holistic road network spatiotemporal correlation based
methods, [17] first models the traffic volume of the entire road
network with transferred transition probabilities from a third-
party GPS dataset, uses a multi-variate normal distribution
model that takes transition probabilities as inputs to make the
incomplete surveillance space approximately complemented,
and finally infers real-time traffic volumes in road networks
with only partial intersections equipped with surveillances.
However, the hypothesis that the traffic volumes of urban road
networks follow a multi-variant distribution is too idealistic for
real-world data research. Further, this statistical model based
method cannot truly address the challenge of surveillance-free
intersection traffic volume inference since it still has to fill the
parameters of surveillance-free intersections by the parameters
of the nearest surveillance-deployed intersections.

In summary, existing works on addressing the problem
of spatial sparsity cannot effectively and deeply capture the
holistic inter-intersection spatial correlations which are the
essential elements in inferring citywide traffic volumes when
some parts of the surveillance information are unavailable. To
this end, we should tackle the problem of spatial sparsity with
a new holistic and deep learning perspective.

III. PROBLEM DEFINITION

In this section, we formally define basic concepts as well
as the problem studied in the work.

%2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See htt ://www.ieeeorf/ 1l fc
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 28,2022 at 06:23:02 UTC from IEEE Xplore. Restrictions apply.

Definition 1 (Road Network): Given an urban road network,
it can be formalized as a directed graph G(V, E) where vertex
v; € V denotes urban intersection v; and edge e;; € &
indicates the directed road segment from intersection v; to
’Uj.

In practice, as demonstrated in Figure 1, traffic surveillance
cameras are pre-deployed on the road intersections to obtain
intersection traffic volumes by analyzing and comprehending
captured images and videos. Based on the fact that whether
surveillance devices have been deployed, urban intersections
can be divided into two classes, monitored intersections V,,
and unmonitored intersections V,, where V,, UV,, = V and
Vi NV = 0.

Definition 2 (Taxicab Traffic Volume): Given an intersection
v; and a time interval At, we can compute the traffic volume
of this intersection v; within the given interval At and denote
it as fAt. Therefore, the traffic volumes of the entire road
network can be formulated by:

Fao= Lot g ()

Definition 3 (Surveillance Traffic Volume): Given road net-
work G(V, E) and the pre-deployed road surveillance system,
the surveillance volume of intersection v; during time interval
At can be written as siAt. The surveillance traffic volumes of
the entire road network can be defined by:

SAt:{ SlAt 82At Sﬁ;ﬁ } )
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Fig. 3. Solution overview.

Here, the surveillance traffic volume of a surveillance-free
intersection i is null (s; = null iff s; € V) regardless the
setting of time interval At.

Worth noting that the traffic volume of an unmonitored
intersection is null, while the traffic volume of a monitored
intersection which has no vehicle cross by during a given time
interval should be 0. Notice that it is commonly accepted
that urban traffic flows have obvious time-varying patterns,
and the setting of the time interval can significantly influence
the understanding of urban traffic patterns [29]-[32]. With
this preliminary, we define taxicab volumes and surveillance
volumes with the time-varying traffic features'.

Definition 4 (Inference with Sparse Surveillance): In the
road network G(V, ), given sparse surveillance information
from monitored intersection set V,, and a time interval At,
our purpose is to design an algorithm to estimate the traffic

volume of intersection v; € V,,, during the same time interval
At.

Assuming 92! and ¥9* are the actual and estimated traffic
volumes of intersection v; during At respectively, if v; € V,,,
we have 92t = s8¢, The accuracy of traffic volume inference

' At should be set with considering the equilibrium within the inference
accuracies and temporal granularity. We here divide the temporal data into
30-minute slots according to common knowledge [17]. The setting of At has
obvious correlations with the results of accuracy, and meanwhile, restricts the
pervasiveness of our model.
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IRt
Inference Accuracy (IA) = L (3)

IR+ [9R 9

According to this equation, the accuracy of a monitored
intersection is 100%, and for an unmonitored intersection,
the accuracy is determined by the ratio of the real value to
the summation of the real value and the estimation error, and
notice that such a setting of the denominator is to normalize
the accuracy to 1.

IV. ST-GAN FOR TRAFFIC VOLUME INFERENCE
A. Solution Overview

The overview of our proposed solution is illustrated in
Figure 3. The main approach includes three stages, the data
pre-processing stage, the ST-GAN training stage, and the
inference stage. Details about each stage are illustrated as
follows.

B. Data Pre-processing

Since the surveillance traffic data are inherently incomplete,
we use a third-party taxicab dataset for learning traffic patterns
of the entire road network. Figure 4 demonstrates the analysis
of similarities of traffic volumes between taxicab and surveil-
lance data in SIP. Figure 4 (a) illustrates the Pearson coefficient
analysis with different volumes, where positive correlations
can be observed between taxicab and surveillance data for
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Fig. 4. Analysis of the similarities of taxicab and monitored traffic volumes
in Suzhou

intersection traffic volumes. Figure 4 (b) shows the variation
tendencies of normalized average traffic volumes for both
taxicab and surveillance data, which also shows significant
correlations between the two. Based on such observations, we
use taxicab traffic data as training data for the learning of
traffic patterns of urban vehicles, and for further inferring the
traffic volumes of surveillance-free intersections. The benefits
gained from adopting taxicab traffic data are for its full
coverage of all urban intersections. For making it adaptive
to the incomplete surveillance scenario, we randomly mask a
set of intersections for making the training data sparse. Thus,
the masked taxicab data for traffic volumes are as follows.

]-"_maskm =

{ f_mask®t  f_mask{? k&St

f_mas Wl

} “4)

where f_mask®! is the after-masking taxicab volume of
intersection v; during At, satisfying:

JA
null

v; 18 unselected
v; 18 selected to be masked

f_maskiAt = { 5)

With the random masking method, we can enhance the
robustness and generalization of our trained model, supporting
to capture the dynamic patterns of urban surveillance systems.
After being masked, the taxicab data is concatenated with
other static features of intersections, such as the numbers
of connected road segments and the surrounding POIs, to
generate an incomplete graph snapshot = for time interval
At. By doing so, we can use a series of incomplete graph
snapshots X' = {gAt=(m=1) pAt=(m=2) . 3A a5 inputs of
the ST-GAN network to infer the complete citywide volumes
in At, where m is the number of input time intervals.

2 According to the settings in [33], we set the value of m as 3.
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C. ST-GAN for Traffic Volume Inference

Our ST-GAN includes two modules following the conven-
tional GAN framework, a generator G and a discriminator
D. Generator G consists of two submodules, an ED-GCN
for spatial correlation learning and an LSTM for temporal
correlation learning. The encoder of ED-GCN first extracts
and maps the spatial correlations of the inputted incomplete
graph snapshots into high dimensional graphs. The decoder of
ED-GCN then decodes the mapped high dimensional graphs
to complete graph snapshots. Finally, the outputted complete
graph snapshots are fed into the LSTM to learn and exploit the
temporal correlations of intersection volumes. Regarding the
discriminator D, it contains two Fully Connected (FC) layers
and a Sigmoid activation layer. We then feed the generated
complete graph snapshots and the real graph snapshots into
the discriminator D to distinguish whether it is fake or real.
With this minimax two-player game, this adversarial process
can eventually force GG to generate plausible and high-quality
recovery of surveillance-free intersection volumes.

1) Generator G: As above mentioned, G contains two
parts, ED-GCN and LSTM, for extracting the spatial and
temporal correlations of intersection volumes respectively. We
hereby introduce detailed implementations of this generator.

ED-GCN for spatial correlation learning: The detailed
architecture of ED-GCN is illustrated in Figure 5. Here, we use
a multi-layer modified GCN to exploit the spatial correlations
within urban intersections in an encoder-decoder manner. The
convolution can only affect 1-hop neighbors of an intersection
vertex, while the distribution of monitored intersections is
sparse. Thus we modify multi-layer convolutions to extract
the correlations within multi-hop neighbors®. Specifically, the
encoder and decoder are two three-layer symmetric GCNs.
Two additional ReLU activation functions are employed in
the second and fifth layer to make sure the results are non-
linearized. For calculating this multi-layer GCN network, in-
stead of calculating the adjacent matrix of urban intersections,
we compute the weighted adjacent matrix M, for all urban
intersections by the following equation.

a1 aq|y|
M,y = :
A v (6)
where o — Lane number of e;;  e;; €&
v 0 otherwise

Here, the element «;; in the matrix M, indicates the potential
traffic intensity from intersection v; to v;. Notice that the
fact a;; = ay; may not hold, so that matrix M, maybe
not symmetric. We thus generate a new matrix .4 by setting
A = Mg + I}y Here, Iy is the identity matrix of [V| x [V].
Next, we generate the degree diagonal matrix D of all inter-

3Considering the scale of the urban road network and the sparsity of
surveillance devices, we here set the number of layers to 6.
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sections by the following equation. hidden states Z2(*~1) of LSTM cell of the last time interval
d 0 0 as inputs, the LSTM equation is defined as:
1 e
0 dao 0 VI I8 = LSTM (Haty, Z207Y)
b= : : : where dy; = Zl i The LSTM cells enable our model to learn to retain or discard
0 0 vy = historical information according to the training data. The final

(7
Here «;; is the i_th row and j_th column element of matrix
A, d;; is the degree of intersection v; in the road network
graph G(V, £). With these preliminaries, we then calculate the
weight laplacian matrix M of connections within intersections
by:

M =D 2AD" % ®)
For given time interval At¢, we can compute the ED-GCN by:
ReLUMHEL W) 1=2,5
H = ©)
MHEW, otherwise

Here, HlA_tl and HlAt are the input and output of the [_th layer,
respectively. And H5* = x2t. W) represents the parameters
of the [_th layer.

The encoder sub-part is to learn the spatial correlations
between urban intersections by encoding the input incomplete
graph snapshots to high-dimensional feature maps. It diffuses
the features of intersections to their adjacent neighbors, in
accordance to the adjacent matrix M,, by increasing the
dimensionality of features to 128, 256, and 512 respectively.
The output of the encoder is |V| x 512. By using the output
of the encoder as the input, the decoder of a 3-layer GCN
is to decrease the dimensionality of features. The output of
the decoder, denote as H3Ly, is |V| x 1. The outputted low
dimensional complete snapshots have involved all the initial
high dimensional features of urban road networks.

LSTM for temporal correlation learning: Due to the time-
varying features of urban traffics, we adopt the LSTM network
which is widely used in time sequence issues [34]. By con-
sidering the complete graph snapshots 4%, which enclosed
with the spatial correlations among all urban intersections, traf-
fic volumes of surveillance-free intersections can be inferred
with the time sequence analysis. Given time interval At, by
using the outputted complete graph snapshots "HétcN and the
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output of the LSTM cell Z2? can be regarded as the inferred
citywide volumes at time interval At.
Volume loss of generator G: With the outputted inference of
At At At
T1 To T‘V| )

traffic volumes Z2t = of all urban

intersections, where 7t corresponds to the inferred taxicab

volume of intersection v;. We define the traffic volume loss
function of generator G as:
1 Ad 2
Loss$, = MSE (F2', 72" = W ST =T an
i=1
2) Discriminator D: The discriminator contains two FC
layers and one Sigmoid activation layer. Assuming the input
of discriminator D is ©2* for time interval At, where
FAt The input is real taxicab volumes
@At _
T2t The input is inferred taxicab volumes
(12)
These two FC layers can reduce the input of real or inferred
taxicab volumes to a number 3¢ for evaluating the reliability
of the inputs, where y»* = FC [FC (©4!)]. The Sigmoid
function of discriminator D in the activation layer can be
written as:
1
Aty _ q; : Aty _
D(O) = Sigmoidp(y™) = 1=
The result of discriminator D is in the range [0, 1]. With the
discriminator, we calculate the discriminator losses of real and
inferred traffic volumes by the following equations.

13)

Loss? , =log(1 — D(FAY)) (14)
and
Loss%fer'red = log(D(IAt)) (15)

Notice that for the two equations, we expect the discriminated
results of real traffic volumes can be close to 1, as much as
possible. Also, we expect the discriminated result of inferred
volumes can be close to 0.
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3) Losses of ST-GAN: The target of the discriminator is to
improve generator G on the accuracies of traffic volume infer-
ence, until the inferred data is able to deceive the discriminator.
Therefore, we expect discriminator D can well distinguish
real and inferred data, so the overall loss for training D is
as follows.

Loss? = LossD , + Lossﬁfewed (16)

To help the generator G to deceive the discriminator, we have
to make sure that the discriminated result of inferred volumes
is close to 1. So, the loss function for training G is as follows.

Loss§,, =1 — Loss} sorrea (17)

Based on that, the overall loss for training the proposed
generator G can be formulated as follows.

Loss® = LossS,, + LossC. (18)

vol

The parameters of ST-GAN are trained iteratively. We fix all
parameters of the discriminator during the training of generator
G with Loss®. We also fix all parameters of the generator
while training the discriminator D, similarly.

D. Traffic Volume Inference of Unmonitored Intersections

As illustrated in Figure 3, after the training of ST-GAN,
generator GG is capable of inferring taxicab volumes for urban
intersections with masked taxicab volume dataset. Then, gen-
erator G can be used for inferring urban traffic volumes with
sparse surveillance information in a transfer learning manner,
with the input of S2*. Accordingly, the traffic volumes of
surveillance-free intersections can be inferred.

E. Pseudocode of the Training Algorithm of ST-GAN

Algorithm 1 demonstrates the pseudocode of the training
pipeline of our ST-GAN model. Algorithm 1 takes the adja-
cency matrix M, timestep parameter m in the LSTM model
and a series of incomplete graph snapshots as inputs. The
outputs of Algorithm 1 are parameters in the ST-GAN model,
where 6; and 05 are parameters of the ED-GCN module and
the LSTM module in generator GG respectively, and 63 is
the parameter of discriminator D. In Algorithm 1, we first
initialize the parameters with the standard normal distribu-
tion. In the training phase, we input m incomplete graph
snapshots {22, 2211 ... A+ 0m=11 into the ED-GCN at
one time, and we can obtain m complete graph snapshots
{HAL, gAML .. gAHm=D1 from the output of the ED-
GCN. Then, we input these m complete graph snapshots into
the LSTM module and get the final complete graph snapshots
at At+ (m —1) time slot. According to the ground truth
at this time slot, we calculate the loss of generator G via
Equation 18 and the loss of discriminator D via Equation 16,
respectively. To be specific, when 61,65 in G are fixed, we
adjust the parameter f5 through the loss of D. In the same
way, we fix 03 in D when we adjust the parameters 61, 65 in
generator GG. After the model trained with the training data, the
parameters 61, 6> and 63 are obtained finally. To achieve stable
training of ST-GAN, we use adaptive momentum estimation
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Algorithm 1 Training Algorithm of ST-GAN.

Input: Timestep m;
Adjacency matrix M;
Road Network G(V, E);
Incomplete graph snapshots
{IAt’ zAt+1’ .. IAtJr(mfl)}.
Output: Learned ST-GAN model, all parameters (61, 02, 03)
in this framework .
1: Initialize 91, 92, 93
2. fort<+ 1---T do
{]{At7 ]_IAtJrl7 . HAH»(mfl)} — ED-GCN({IAt,

: :EAHI, L. :L,AtJr(mfl)}’ M, 61);

4 JAt+(m—1) . LSTM({HAt, HAt+17 . HAth(mfl)}’
m, 02);

5 Loss® — 1 — L0880 ippea(01,02,03) +
LossS ,(61,0);

6: Loss® < Loss? 1 (03) + Lossy foryeq(01,02,03);
7: Let 64, 05 fixed, do

8 05 < Adamopt(Loss”, [05]);

9: Let 65 fixed, do

10: (01, B2) < Adamopt(Loss®, [0, 02]);

11: end for

12: return 61, 92, 93

(Adma) optimizer [35] with learning rate of 0.001, 8; = 0.5,
and B = 0.999. For ED-GCN, we set the node number to
16264 and the window size to 3. All our results are generated
on 8 NVIDIA Tesla V100 GPUs with a batch size of 4.

V. EXPERIMENTS

In this section, we conduct extensive empirical studies to
evaluate our incomplete volume inference framework on two
real-world datasets.

A. Data Description

We use datasets from two different modern cities, i.e., SIP
and Shenzhen. The statistics are shown in Table 1. Each dataset
contains two sub-datasets: GPS data and surveillance data at
road intersections as follows.

o GPS data: There are 4, 367 and 8, 572 taxicabs that
upload their accurate GPS information every 20 seconds
via their equipped 4G devices running independently
in SIP and Shenzhen, respectively. We collect the GPS
data in SIP and Shenzhen from Jan 1, 2017 to Mar
31, 2017, and subsequently generate the corresponding
training data.

o Surveillance data: For the same period from Jan 1, 2017
to Mar 31, 2017, we use all sparse surveillance informa-
tion collected from monitoring in SIP and Shenzhen, and
match this dataset with the GPS dataset.

ublications_standards/

ublications/rights/index.html for more information.



0018-9545 (c

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2022.3176653, IEEE

Transactions on Vehicular Technology

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2022 8
TABLE 1 =0= ST-GAN == TISV  =#= CT-Gen =4= DAE = LR
0.80 0.80
DATASETS STATISTICS. -
S - -
0.75 —~— - 075 e e e
GPS data SIP — E 070 weekdays weekends 3 - weekdays weekends
Time span 172017-3/2017 172017-372017 g™ N g™
Number of taxicabs 4367 8,572 <o.65 r Sce et D065 Smemmmmmts e es
Average sampling rate 20 seconds per record 20 seconds per record 23 3 r
© I
Surveillance data SIP Shenzh i 0.60 EEEE;::""=="<><:=¢:: 5 0.60 0-:::":::2:_‘_ "‘=$Aﬁ
Time span 172017-3/2017 172017-372017 3055 2 I 3:055 L mamNa
Number of total intersections 3,468 16,264 . AN T
Number of surveillance-equipped intersections 103 129 e
AP 0503 2 3 45 6 7 8 9 10 95

Coverage rate 3.0% 0.8%

B. Implementation Details

In the training phase, we first generate citywide taxicab
volumes by GPS data. At each time interval, we randomly
select to mask part of intersection volumes, leaving the masked
intersection volumes as the target data to be inferred. The
original citywide volumes are viewed as the ground-truth to
train our ST-GAN model, with the Adam optimization in a
back-propagation manner.

In the testing phase, we use the traffic volume information
obtained by surveillance-equipped intersections. The traffic
volume information of surveillance-free intersections can be
seen as the masked values in the training phase. Due to the
inherent lack of ground-truth data at surveillance-free intersec-
tions, we randomly select 20% surveillance-equipped intersec-
tions with volumes and assume they are also surveillance-free
for numerical comparisons and model evaluations.

C. Evaluation Results and Analysis

1) Baselines: We evaluate the performance of our ST-GAN
model by comparing it with the following baseline models.

o Linear Regression (LR) [36]: It is a linear model which
learns to infer traffic volumes from previous observations
of surveillance-equipped intersections and related road
network features.

o Generalization module for citywide volume inference
(CT-Gen) [16]: It is a generalized model which infers the
volumes by distilling the extrinsic dependencies among
existing volume surveillances with neural key-value at-
tention architecture.

o Traffic Volume Inferring with Sparse Video Surveillance
Cameras (TISV) [17]: It is a multi-variate distribution
based citywide volume inference model by utilizing third-
party vehicle GPS data.

o Deep Autoencoder (DAE) [37]: It is an encoder-decoder
based method with a deep neural architecture to infer
the citywide volumes. In this paper, we use the ED-
GCN which is part of our ST-GAN as the deep neural
architecture.

2) Performance Comparison: We evaluate the performance
of different models on the metric of Inference Accuracy (IA)
proposed in Equation 3.

Impact of day type: We show the effectiveness of our
proposal in Figure 6. It can be observed that the accuracy
of our proposed ST-GAN method is steadily above 75%
in SIP and 73% in Shenzhen during randomly selected ten
days, whether on weekdays or weekends. Compared with
the baseline methods (i.e. CT-Gen, TISV, LR and DAE),
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Fig. 6. Performance comparisons on different days.

our solution can increase the accuracy by 35.89%, 29.86%,
28.81%, 10.43% in SIP and 32.41%, 27.42%, 25.90%, 13.85%
in Shenzhen. Among four baselines, DAE performs the best
with the encoder-decoder mechanism. Since DAE does not
consider temporal relationships and lacks the discriminator, the
inference accuracy is significantly less than ours. For TISV, the
strong assumption of multi-variant normal distribution traps
the algorithm into a relatively lower accuracy. LR is a linear
model and it fails to capture complex spatial relationships
between intersections. As shown, CT-Gen performs the worst
due to the lack of spatial correlations in consideration. By
contrast, we consider the complex spatiotemporal relationships
and solve the sparse problem with the help of third-party data,
which takes effect in our spatial sparsity challenge task.

Impact of time slots: We also examine the performance with
respect to the effects of time slots in Figure 7. Obviously, our
method consistently obtains higher accuracies than others in
any time slot even though with little fluctuations. This kind of
fluctuation may be related to the complexity and variations in
traffic patterns. For example, During the day, especially during
the rush hours, since taxis are for-profit and the road conditions
are prone to congestion, the travel routes chosen by some
drivers may be unconventional, so there is a deviation between
the taxi travel pattern and the overall travel pattern. At night,
the overall traffic condition is relatively smooth, and the travel
choices of drivers are more normal, so the taxi travel pattern is
more similar to the overall travel pattern. Further, as shown in
Figures 8 and 9, whether on weekdays or weekends, taxicab
and monitored traffic volumes are more similar during night
times than during rush hours, which more clearly demonstrates
the fluctuations in inference accuracy.

3) Inferring Error Analysis: We also utilize widely used
metrics to quantify the inferring errors of different methods,
including Mean Absolute Error (MAE), and Root Mean Square
Error (RMSE), shown as below.

D) -
MAE = ‘%'z PRy (19)
=1
El .
MSE = | — IRt — YAt 20
RMS IDI;(l A1) (20)

where 92 and 92 are the actual and inferred traffic volumes
at intersection v; during At, respectively. D is the total number
of verifying intersections. The experimental results are shown
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in Table II. We found our ST-GAN model achieves the best
performance on both two real-world datasets.

TABLE I
INFERRING ERROR COMPARISONS.

SIP / Shenzhen
Model MAE RMSE
LR 206 /228 | 211 /243
TISV 229 /236 250 / 268
CT-Gen 249 /255 | 275/ 287
DAE 164 / 187 196 / 214
ST-GAN 84 /103 105 / 127

Figure 10 visualizes the inferring errors of all evaluated
models in terms of MAE. To achieve a more comprehensive
and intuitive understanding of the absolute error values of all
methods, we first leverage the Kernel Density Estimation [38]
method to calculate the probability density distribution of all
intersections’ average traffic volumes during all time intervals
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our ST-GAN, the inferring errors fluctuate in a small range.
Although the inferring error range of LR is also small, the
value of inferring errors in the range is fairly large.

D. Ablative Studies

In order to evaluate the importance of each component
in our ST-GAN, we design the following ablation study.
We remove four well-designed components subsequently as
follows: (i) LSTM module (Model 1), (ii) Substitute ED-GCN
for a traditional GCN layer (Model 2), (iii) Discriminator in
GAN (Model 3), (iv) LSTM, and discriminator (Model 4).
Except for the changed part(s), all ST-GAN variants have
the same structure and parameter settings. We compare the
performance of variants both on weekdays and weekends to
observe the changes between them. The numerical results are
shown in Table III.

Overall, the integrated model consistently outperforms other
alternative variants regardless of weekdays or weekends. As
illustrated, LSTM and discriminator modules contribute to
more than 10.4% improvement in SIP and 13.8% improvement
in Shenzhen, respectively. This also verifies the effectiveness

2 at 06:23:02 UTC from IEEE Xplore. Restrictions apply.
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TABLE III
PERFORMANCE ON DIFFERENT VARIANTS OF ST-GAN.

SIP Shenzhen
Variants Weekdays | Weekends | Weekdays | Weekends
Model 1 0.7033 0.6968 0.6829 0.6653
Model 2 0.7180 0.6940 0.6983 0.6914
Model 3 0.7228 0.7063 0.7039 0.6827
Model 4 0.6709 0.6553 0.6550 0.6453
Integrated 0.7668 0.7551 0.7424 0.7380

of our consideration of temporal effects and the generative-
adversarial process. Further, as the result of Model 2 shows,
incorporating the encoder-decoder mechanism in traditional
GCN also makes sense in our integrated model.

E. Case Study

As Figure 2 shows, our work is a sub-research based on
a real project in cooperating with the traffic administrative
agency of SIP. Figure 11 shows our real application within
three time intervals of two typical subregions, i.e., (i) Jinji
CBD and (ii) Xietang Residential Community. In the figure,
the point color of red or purple demonstrates the traffic volume
of an intersection is monitored by the pre-deployed surveil-
lance camera or inferred by our method. In addition, the size
of points represents the relative value of the traffic volumes.
The visualization results show that the inferred traffic volumes
have achieved the expected effect, and we will interpret it from
the following three perspectives:

e Spatial similarity: Whether in Jinji CBD or Xietang
Residential Community, the distribution of inferred traffic
volumes of surveillance-free intersections and volumes
of surveillance-equipped intersections are consistent. If
the traffic volumes at these intersections are integrated,
we find that the overall distribution of traffic volumes
across the region is reasonable. Especially in CBD area,
the traffic flow shows a distribution that spreads to the
surrounding area.

e Temporal dynamics: In Jinji CBD, for surveillance-
equipped intersections, the actual traffic volumes dur-
ing the interval of 7:00 ~ 8:00 a.m. show an upward
trend, which indicates that this interval is rush hour.
For surveillance-free intersections, the inferred traffic
volumes during this interval also show an upward trend,
which is consistent with the actual situation. In Xietang
Residential Community, the actual traffic volumes show a
stable trend, which is also in line with the characteristics
of residential areas. In addition, the inferred traffic vol-
umes change smoothly, which is consistent with the actual
situation. The above changes indicate that our model can
learn this dynamic trend of traffic over time. The above
information indicates that our model can learn the trend
of dynamic change of traffic volume.

o Mobility tendency: In Jinji CBD, the actual traffic vol-
umes during the interval of 7:00 ~ 7:30 is small. As
officers move from various residential areas mostly lo-
cated in the southern and western in SIP to business
blocks during peak hours in the morning, the actual traffic
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volumes during the time interval of 7:30 ~ 8:00 increase
significantly, and traffic volumes tend to move from south
to north and from west to east in these time intervals.
Obviously, the inferred traffic volumes also conform to
this trend.

According to the above analysis, ST-GAN already has the
ability to capture spatial similarity, temporal dynamics, and
mobility tendency. The visualized results not only corroborate
other experimental results but also show that our model can
tackle the permanent sparse challenges effectively.

VI. DISCUSSION

In this section, we discuss some practical issues and lessons
learned in this paper.

Inferring traffic volumes with sparse surveillance informa-
tion: In this work, we propose a novel ST-GAN to exploit
the spatiotemporal correlations within urban intersections,
and then infer traffic volumes with only sparse surveillance
information in a transfer learning manner. Experiments show
that our approach can effectively infer traffic volumes for
unmonitored intersections with the information obtained from
fixed sparse urban traffic surveillance cameras, which only
cover 3.0% and 0.8% of all intersections in SIP and Shenzhen,
respectively. Further, the time complexity of each GCN layer
is O(|E|CF) [39], where |€| is the number of graph edges,
C' is the number of input channels, and F' is the dimension
of feature maps in the output layer. Our modified multi-layer
GCN component can finish one inferring in 0.129 seconds on
average with 8 NVIDIA Tesla V100 GPUs.

The superiority of the technique for urban computing ap-
plications: In most existing intelligent transportation appli-
cations, urban traffic information is usually retrieved on the
crowdsourcing platforms [40]-[42], or provided by telecom-
munication suppliers [43]. The results are somehow untrust-
worthy due to the inherent unreliable nature of the low-
deployment-cost crowdsourcing platforms. Figure 12 demon-
strates a case of cheating existing monitoring Apps, which
originated from a performance art by the German artist Simon
Weckert [44]. Specifically, in this case study, 99 used smart-
phones are transported in a handcart to generate virtual traffic
jams in Google Maps. Through this activity, it is possible
to turn a green street into red, which has an impact on
the physical world. In our work, the information collected
by traffic video surveillance systems is obtained in real-time
and accurately for the intersections with equipped devices.
Combined with advanced communication technology [45],
[46], we believe that it makes a better and more reliable basis
for advanced urban traffic intelligent systems.

Scalability of ST-GAN network: Our work is cross-validated
in two typical cities in China. Further, it can also be a paradig-
matic solution in various spatiotemporal applications, ranging
from regional epidemics predictions to masked human action
detection in vision tasks where sparse surveillance data is
collected permanently [47], [48]. Specifically, the encoder and
decoder of GCN empower to extract the node-wise correlations
in graph-structure data, such as infected populations in cities
or detected human skeletons in the graph form. Then the nodes
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Fig. 11. Traffic volumes visualization of typical regions. The size of points represents the relative value of the traffic volume at the corresponding intersection,

and the point color of red or purple demonstrates the traffic volume of an intersection is monitored by the pre-deployed surveillance camera or inferred by
our method, respectively.

Fig. 12. A case of cheating existing monitoring Apps with a small toy trailer
of mobile phones: Google map shows that the street is heavily congested
while the traffic of the street is quite smooth [44].

that need to be predicted in the objective graph can be inferred
by the GAN architecture with an auxiliary dataset, advancing
the deeper applications of the graph-level management like
population flow controlling and action prediction.

Possibility to integrate with federated learning: Federated
learning has recently been widely used in intelligent trans-
portation [49]-[51] and the Internet of Vehicles [52], [53] due
to the ability to break down isolated data islands and protect
data privacy. Integrating federated learning with ST-GAN is a
potential means to improve model accuracy and generalization
in the future. Inspired by federated learning, we can leverage
distributed organizations to cooperatively train local traffic
datasets in different regions to obtain a globally shared traffic
pattern inference model without exchanging raw data, which
can maximize the available resources of the model and ensure
the privacy and security of users.

Further issues of the inferring model: Even though our
proposed model ST-GAN can alleviate the overfitting on local
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neighborhood structures for graphs with very wide node degree
distributions, the possible influence of the percentage that
intersections with stationary surveillance cameras account for
has not been discussed since the case of intensive traffic
surveillance devices in urban areas has not been found. We
will further investigate what will happen if the coverage of
monitored intersection decreases, and where is the lowest
boundary of the coverage ratio if we want to push the proposed
algorithm to become practical.

VII. CONCLUSION

In this paper, we propose a novel integrated network ST-
GAN to infer the traffic volumes for surveillance-free inter-
sections with only sparse surveillance information. Based on
highly positive correlations between taxicab and surveillance
traffic patterns, we generate the training data with masked
taxicab traffic volumes obtained from third-party trajectory
datasets of reliable floating vehicles. With the well-designed
ED-GCN and LSTM incorporated, our ST-GAN has the
ability to capture the spatiotemporal traffic patterns between
intersections. We further enhance the deep representations
by taking advantage of the iterative improved adversarial
mechanism. And finally, we infer the traffic volumes of
surveillance-free intersections with only sparse surveillance by
using the generator of the trained ST-GAN independently in
a transfer learning manner. Performance evaluations on real-
world datasets demonstrate the effectiveness of our proposal.
Therefore, our work provides a brand-new solution to tackle
the permanent spatial sparsity challenge from a deep-learning
perspective.

In the future, our possible improvement directions include
task-specific and task-independent. Task-specific promotion is
to leverage multi-source data rather than just taxicab trajec-
tories to further establish the knowledge graph with various
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auxiliary information for spatiotemporal fusion. Thus, the
sparsity challenge of monitored traffic data can be alleviated

sub

sequently, and the inference accuracy of our model can

also be improved. Task-independent modification is to further
investigate and understand the uncertainty caused by the
sparsity of spatiotemporal data, and to support more general
predictions like mobility-based pandemic controlling problem
and the cold-start problem in recommender systems.
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