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Abstract—Modern intelligent transportation system (ITS) has greatly benefitted people’s daily life. However, the chanciness and
suddenness of urban anomalies may greatly restrict the trouble-free operations of ITS. To be aware of future urban anomalies and their
possible influences, great efforts have been achieved on these two aspects, but comprehensive predictions of urban anomalies
including the predictions of distributions and durations, are still beingless. And the spatiotemporal cascade self/mutual exciting
influences among anomalies have never been considered in previous studies. In this paper, we propose a novel Anomaly Distribution
and Duration Joint-Prediction (A2DJP) algorithm to simultaneously filtrate urban subregions and estimate the duration of corresponding
potential anomalies in the future. To capture the spatiotemporal correlations between urban traffics and anomalies, we use a modified
Graph Convolution Network and Long Short-Term Memory integrated network. To learn the cascade correlations among anomalies
themselves, we devise a novel Spatiotemporal neural Hawkes Process model, which contains a Hawkes Process (HP) based GCN and
HP-based LSTM to extract the anomaly-wise spatiotemporal cascading correlations. By fusing the spatiotemporal correlations between
traffics and anomalies, we then simultaneously predict the distributions and durations of future anomalies. Extensive experiments on
real-world datasets demonstrate that our proposed method significantly outperforms state-of-the-art solutions.

Index Terms—Hawkes Process, spatiotemporal cascading correlations, anomaly prediction, anomaly duration prediction.

✦

1 INTRODUCTION

In recent years, to handle the increasingly serious traffic
congestions and facilitate daily urban travels, Intelligent Trans-
portation System (ITS) [1] was developed to provide high-quality
intelligent transportation services based on the massive collection
of traffic-related data and the effective management of urban
traffics. However, urban anomalies, which include different kinds
of abnormal urban events such as unusual congestions, accidental
traffic accidents, and sporadic road obstructions, may bring great
obstacles to the smooth operations of existing ITSs [2].

Simultaneously being aware of both distributions and dura-
tions of future urban anomalies 1 is of great significance to achieve
intelligent transportations. Specifically, knowing potential urban
anomaly distributions can reduce the likelihood of anomalies and
smooth urban road networks by scheduling some corresponding
resources in advance, and estimating feasible durations of future
anomalies can directly rationalize the planning of urban trips and
reduce the possibilities of secondarily derived anomalies.

Intuitively, the distributions and the durations of urban anoma-
lies are mutually correlated with each other. For instance, only the
places where accidents occur have the corresponding durations,
and a place with a higher anomaly risk usually has a relatively
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1. The distributions and durations of future urban anomalies respectively

indicate the specific numbers of anomalies and the average durations of
anomalies within each specific sub-region of an urban area in the future.

Fig. 1: An example of cascading correlations from anomaly to
anomaly: at 18:30, due to heavy urban traffic during rush hours, an
accident occurs at an intersection and cannot be resolved in time.
Shortly, this accident consequently causes serious congestion and
such congestion spread around along every out-going direction
of the intersection in 5 to 10 minutes. With the aggravation of
congestion, new anomaly is caused at 18:45.

higher anomaly severity and a longer average anomaly duration.
Considering the strong correlations between the distributions and
durations of urban anomalies and the great significance of simul-
taneously understanding both of them, the predictions of these two
tasks should be viewed as a joint-prediction mission to force them
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to promote each other from the perspective of learning.
Great efforts have been achieved in understanding urban

anomalies, and existing works can be divided into two categories:
i) distribution prediction of urban anomalies [3], [4], [5], [6],
[7], [8], [9], [10], [11], and ii) duration estimation of urban
anomalies [12], [13], [14], [15], [16]. Regarding the first category
of anomaly distributions, traditional deep learning methods mostly
use Recurrent Neural Network based (RNN-based) or Convolu-
tional Neural Network based (CNN-based) frameworks to cap-
ture the correlations between features and anomaly distributions.
However, these traditional methods cannot effectively capture any
dynamic or non-Euclidean correlation due to the time-invariant
and localized characteristics of their embedded aggregators. Most
recently, anomaly distribution methods are developed by time-
varying GNNs, which are capable of capturing the dynamic non-
Euclidean correlations among each region [10], [17], which are
naturally suitable for graph-structured data, to fully extract spa-
tiotemporal patterns between traffic features and anomalies within
urban road network. However, merely predicting future accidents
without giving the corresponding duration cannot accurately guide
daily travel and traffic management. Obviously, the occurrence of
an independent anomaly in a random road segment usually causes
serious traffic congestions within surrounding areas. This accident
may create a complex incentive relationship for the distribution
and duration of surrounding traffic accidents. Figure 1 shows a real
case which demonstrates cascading correlations from anomaly to
anomaly. Regarding the second category, existing results mostly
focus on the single task of predicting the durations of future
anomalies by taking advantage of different kinds of regression
analysis or temporal learning methods, and obviously, these du-
ration prediction approaches are incapable of achieving the joint-
prediction of both distributions and durations of future anomalies.
In summary, to the best of our knowledge, none of existing works
on the field of future anomaly prediction have considered the joint-
prediction of distributions and durations of future anomalies, and
the direct spatiotemporal cascading correlations [18], [19]. among
anomalies have never been well captured in previous anomaly
related predictions.

To address the above-mentioned issues, in this paper, we pro-
pose a novel Anomaly Distribution and Duration Joint-Prediction
(A2DJP) algorithm by developing two graph-based pipelines to
simultaneously filtrate urban subregions with high anomalous
degrees in the future and estimate the duration of future possible
anomalies. Specifically, for the GCN-LSTM pipeline, we employ
a Graph Convolution Network (GCN) and Long Short-Term
Memory (LSTM) network integrated network to embed urban
traffic volumes in both spatial and temporal perspectives. Worth
mentioning that there exist strong similarities between occurrence
probabilities of anomalies and traffic flow density, so the fixed ad-
jacency matrices of GCN are modified by traffic volume similarity
matrices for capturing dynamic correlations between similar road
segments. For the HP-GCN-LSTM pipeline, we propose a novel
SpatioTemporal neural Hawkes Process (ST-HP) model, which
borrows the core idea of accumulated and decayed influences from
HP, to learn the direct cascading correlations among anomalies
from both spatial and temporal perspectives. Finally, by fusing the
spatiotemporal correlations among urban traffics and anomalies as
well as the spatiotemporal cascading correlations among anoma-
lies, we then simultaneously predict the distributions and durations
of future anomalies. These two components are trained jointly in
a multi-task learning manner and the design of each block has its

scene and special function. The main contributions of this paper
are as follows:

• We propose a discrete-continuous task to respectively
achieve the predictions of discrete anomalies and con-
tinuous corresponding durations. To our best knowledge,
this is the first work targeting the joint-prediction issue
of future urban anomaly distributions and durations. We
use a novel two pipelines fusion network to decouple the
entangled influences of urban traffic volumes and direct
cascading correlations to future anomalies respectively
in both spatial and temporal perspectives. In order to
capture the correlation between the two sub-tasks, we use
a negative cosine loss function to constrain the similarity
of the two outputs and simultaneously filtrate subregions
with high anomalous degrees and predict the duration of
these anomalies.

• We design a novel ST-HP, which contains two novel deep
learning variants, HP-GCN and HP-LSTM, to respectively
capture the spatial and temporal cascading non-Euclidean
interactions among anomalies. By utilizing and extended
the core idea of Hawkes Process to concern the inherent
self/mutual-exciting characteristics of anomalies, ST-HP
can effectively capture the direct cascading correlations
among anomalies.

• We evaluate our proposed framework via two real-world
datasets, New York open data [20] and US Datasets [21],
and extensive experiments demonstrate our propose
method outperforms other alternative approaches in terms
of the accuracies of the distribution and duration joint-
prediction. Specifically, compared with the state-of-the-art
single-task anomaly distribution prediction and duration
estimation solutions respectively, our method gains at
least a 2.2% increase in both the predictions of anomaly
distributions and durations with different datasets in terms
of Acc@20.

2 RELATED WORK

Great efforts have been studied in addressing the issue of
future anomaly prediction, and most existing works [3], [4], [5],
[6], [7], [8], [9], [10], [11] about this issue focus on predict dis-
tributions of future urban anomalies, and the rest few works [12],
[13], [14], [15], [16] concern about the duration estimation of
urban anomalies.

The issue of predicting distributions of future anomalies can
also be seemed as predicting future anomalies. Regarding this
issue, [3] first proposes a classification and regression tree and
a negative binomial regression model to construct the correlations
between anomalies and geometric features of road segments for
predicting future anomalies, [5] proposes a support vector machine
with Gaussian kernel to predict the occurrence probabilities of
anomalies, and [4] devises a nonnegative matrix factorization
based model to predict risk levels of anomalies. However, these
traditional machine learning based methods are limited in approx-
imating complex spatiotemporal correlations from multi-source
data. To this end, some deep learning based methods including
RNN based model [7] and CNN based model [6] are proposed
to capture complex spatiotemporal dependencies. Regarding these
methods, they usually stack multi-layer aggregators to capture
dependencies between long range neighbors, and this leads to
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Fig. 2: Solution overview.

the tremendous computational complexities of proposed methods.
Further, traditional grid-based deep learning models cannot extract
any dynamic spatiotemporal correlation due to their inherent
invariant characteristics. To address these challenges, in recent
years, GNN based networks such as GCN [22] and Graph At-
tention Network (GAT) [23] are used to predict anomalies in
graph structured urban road networks. In particular, [8] proposes a
temporal GCN, which integrates gate recurrent unit with GCN, to
effectively detect abnormal traffic volumes within urban road net-
work by capturing both spatial and temporal correlations between
urban traffic features and volumes. [9] devises a novel relational
GCN to predict failure paths within road network, [10] uses a
novel differential time-varying GNN to predict traffic accidents by
capturing the differences of vehicle numbers and traffic volumes
in time series. Based on GAT, [11] proposes a novel graph multi-
attention network, which contains multiple spatio-temporal atten-
tion blocks, to detect traffic volume and speed anomalies within
road network. In summary, some events are excited or inhibited
by patterns in the sequence of previous events, none of them
has considered the direct cascading spatiotemporal interactions
among anomalies themselves. And nevertheless, existing methods
on predicting distributions of future anomalies cannot be directly
used to address the issue of anomaly duration prediction.

Regarding predicting anomaly durations, some machine learn-
ing based methods are proposed firstly. [12] uses a hybrid tree-
based quantile regression model to quantify the influences of
anomaly categories and traffic features on anomaly durations, [13]
proposes a K-nearest neighbor based model to address the issues
of sample-disequilibrium and cost-sensitive in predict durations
of anomalies, and [14] uses Xgboost to comprehensively estimate
the impact of each individual traffic feature on durations of future
anomalies. However, these machine learning based methods can
only use features of anomalies to predict anomaly durations, and
they have never taken the spatiotemporal information of anomalies
into account. To this end, recently, deep learning models are
then considered to be used to address this issue. To integrate
spatiotemporal information of anomalies in predicting anomaly
durations, [15] uses restricted Boltzmann machines and [16] de-

vises a novel scaled multinomial logit model. Without exception,
all these methods can only be used to predict durations of future
anomalies, and none of them is capable of predicting anomaly
distributions. And likewise, none of these methods has considered
the direct cascading correlations among anomalies themselves.

In summary, none of the existing works has raised the joint-
prediction issue of both anomaly distributions and durations, and
the direct cascading correlations among anomalies have never
been distinctively decoupled and considered in both spatial and
temporal perspectives either.

3 PROBLEM DEFINITION

In this section, we first introduce some preliminaries and basic
settings about this paper, and then formally define the problem that
we discussed in this paper. For convenient modeling in subsequent
steps, we first divide the total urban area into an I × J grid, and
each individual grid point is a square with the length of l. Worthing
note that the setting of l should equilibrate the trade-off between
the practicability and spatial granularity. In our implementation,
we divide the whole urban areas of New York City and Chicago
into small squares with the length of 1.5 km following the
requirements of practicability, and the urban areas of these two
cities are partitioned into 30× 22 and 28× 19 grids respectively.
Given the grid division, the whole urban area can be denoted as
a subregion set V = {v1, v2, · · · , vN} where N = I × J . For
one specific grid point vi, we then define its time-varying input
features, i.e.,

Definition 1 (Time-varying input features of subregions). The
setting of the length of an interval should trade-off between
the prediction performances and temporal granularity. In our
implementation, we slice the temporal information into intervals
of 30 minutes following the common settings. Notice that such a
setting may be related to the results of prediction performance.
Regarding subregion vi and time interval t, the corresponding
time-varying feature set can be denoted by

F t
vi =

{
f tvi , a

t
vi , s

t
vi , d

t
vi

}
(1)
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TABLE 1: Notation of features

Notation Definition
f t
vi

Traffic volume of vi during t
atvi Total number of anomalies in vi during t
stvi Severity of anomalies in vi during t
dtvi Duration of anomalies in vi during t

where notice here the traffic volume of a sub-region during a
specific interval corresponds to the average traffic volume of all
road segments within this grid area during that interval. The
anomaly severity of stvi can be calculated by

stvi =
∑
j

stvi (j) (2)

where stvi (j) is the severity of the jth anomaly in subregion vi
during interval t. And the duration of anomalies in vi can be
computed by

dtvi =
∑
j

dtvi(j)/a
t
vi (3)

where dtvi(j) is the duration of the j-th anomaly in subregion
vi during interval t. atvi is the total number of the anomalies in
subregion vi during interval t.

Definition 2 (Anomaly distribution and duration joint pre-
diction problem). Given F t

vi for all subregions vi ∈ V and
historical intervals {t−m+ 1, · · · , t− 1, t}, combining with
some external meteorological factors including dew, body tem-
perature, humidity, pressure, visibility, wind speed, gust speed,
and weather condition, the main target of this problem is to
filtrate the subregions with high incidences of accidents during
the next interval t + 1, i.e., ⅁t+1 = {vi

∣∣at+1
vi > β, i ∈ [1, N ]}

where β is a pre-defined threshold, and simultaneously predict the
corresponding durations of anomalies in all regions within ⅁t+1.
Here m is the length of historical temporal window for predicting
future anomaly distribution and duration.

4 ANOMALY DISTRIBUTION AND DURATION JOINT-
PREDICTION

In this section, we first introduce the overview of the proposed
two graph-based component fused solution, and then describe the
detailed implementation of each individual component.

4.1 Solution overview
In this paper, we propose a two-component-fused network

to simultaneously filtrate urban subregions with high anomalous
degrees in the future and estimate the duration of future possible
anomalies. The overview of this two-component fused network is
illustrated in Figure 2. As illustrated, in the first component, we
employ a modified GCN and LSTM network-integrated compo-
nent to embed urban traffic volumes in spatiotemporal perspec-
tive for learning the spatiotemporal correlations between urban
traffics and anomalies, and in the second pipeline, we propose a
novel ST-HP model to extract the direct cascading spatiotemporal
correlations among anomalies. To realize the collaboration and
mutual assistance of information, these two components are fused
in a multi-task learning framework. Eventually, by introducing
the bridge mechanism, we filter the learned node values to match
the areas with both events and durations in one-to-one manners,

and then suppress the duration of the accident-free area to zero.
In the following parts, we then describe the detailed designs and
implementations of the whole network.

4.2 Data pre-processing and feature map construction

In this subsection, we discuss the pre-processing issue of
input features, and then discuss the construction of corresponding
feature maps for the two different components.

As discussed, the input features of a specific sub-region vi
during an interval t include its traffic volume f tvi , total anomaly
number atvi

, anomaly severity stvi and average anomaly duration
dtvi . Our target is to predict the distributions of future anomalies
and the corresponding durations. However, since the vast ma-
jority are zero-labeled data inputs, deep learning methods will
definitely suffer from the notorious zero-inflated issue [24], [25].
For instance, if more than 90% of labels are zero, deep learning
networks can achieve a nearly 90% accuracy even if the predicted
results are all zero. This zero-inflated problem may shield the
performance and ability differences between different networks.
For anomaly prediction research line, the two anomaly related
labels, atvi and dtvi , are inherently sparse due to the sparsity
of urban anomalies. Figure 3 illustrates and verifies the sparse
distributions of anomalies in both New York City and Chicago
during an interval, i.e., 30 minutes. This kind of sparsity is quite
usual for most spatiotemporal datasets and may inherently cause
the zero-inflated issue during training. To this end, we should
address the sparse issue of these two anomaly-related labels firstly,
and we here design and employ a Global Prior Knowledge-based
Data Enhancing (GPKDE) strategy. Through this logarithm trans-
formation, the discrete and sparse data based prediction becomes
an explicit regression mission.

By taking the label of total anomaly number as an example,
regarding a specific region vi in region division V , we first
calculate the average anomaly risk of sub-region vi for all possible
time intervals t in the dataset by

εvi =

∑
t
atvi∑

t

N∑
j=1

atvj

(4)

notice here the total number of anomalies of a region during all
possible intervals is normalized to a value within [0, 1], and we
subsequently calculate the statistical anomaly occurrence number
of subregion vi by,

πvi = b1log2(εvi
+∆) + b2 (5)

With the logarithm transformation, we can easily transform the
average anomaly risk of sub-region vi into a negative value, and
here b1 and b2 are the coefficients to maintain that the range of
the absolute value of πvi is the same to the range of anomaly
numbers, hence preserving the ranks of actual anomaly numbers
among sub-regions. Notice here ∆ is an extremely small value
to make sure that the calculation of the logarithm transformation
can be trouble-free in case that εvi = 0. For all sub-regions, i.e.,
i ∈ [1, N ], we use this statistical anomaly occurrence number πvi
to replace atvi in case that atvi = 0, and a subregion with lower
statistical anomaly occurrence number has lower anomaly risk.
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Fig. 3: Sparse distributions of anomalies in New York City and
Chicago during an interval (30 minutes): the color filled in a
grid demonstrates the number of anomalies within this subregions
during 30 minutes, and the color of light blue, which can be found
in most subregions, means there doesn’t exist any anomaly during
the 30 minutes.

In a similar way, regarding the label of anomaly duration, we
first calculate the the average anomaly duration of sub-region vi
for all possible time interval t in dataset by,

ϕvi =

∑
t
dtvi∑

t

N∑
j=1

dtvj

(6)

and we subsequently calculate the statistical anomaly duration of
subregion vi by,

θvi = c1log2(ϕvi
+∆) + c2 (7)

where c1 and c2 are also the coefficients to maintain that the range
of the absolute value of θvi is the same to the range of anomaly
durations.

4.3 Modified GCN and LSTM integrated network for
spatiotemporal learning

In this subsection, we use a modified GCN and LSTM in-
tegrated network to respectively capture the embedded represen-
tations of both spatial and temporal dependencies among traffic
volumes. For extracting these spatiotemporal dependencies, we
first construct the corresponding traffic volume map based on
urban traffic volume dataset.
Construction of traffic volume map: Since urban traffic volumes
follow obvious daily and weekly periodicities [26], we should con-
struct the corresponding traffic volume map from three different
granularities: closeness, periodicity, and trend. Given the traffic
volumes of the entire subregion set V , the traffic volume map
of interval t can be denoted as ℧t =

{
f tv1 , · · · f

t
vN

}
. Regard-

ing time interval t, the traffic volume map in close granularity
includes the traffic volume maps during a number of previous
intervals before t, i.e.,

{
℧t−m+1, · · ·℧t

}
, the traffic volume

map in periodic granularity includes the traffic volume maps of
the same interval with t in a day during a number of previ-
ous days, i.e.,

{
℧t−(m−1)×48, · · · ,℧t−48,℧t

}
, and the traffic

volume map in trendy granularity includes the traffic volume
maps of the same interval with t in the same day with the
current day in a week during a number of previous weeks, i.e.,{
℧t−(m−1)×48×7, · · · ,℧t−48×7,℧t

}
. With these traffic volume

maps in three different granularities, deep learning model can
effectively exploit both long-term and short-term periodicities.
Spatial learning with modified GCN: In recent years, GCN
and its variants [27], [28], which have shown strong abilities to
capture non-Euclidean correlations within graph-structured data,
are suitable for mining road network related data. We here employ
a modified GCN, whose adjacency matrix is replaced by a traffic
volume similarity matrix, to adaptively learn the complex spatial
dependencies of road network and aggregate the information of
similar sub-regions. Specifically, GCN model follows layer-wise
propagation, i.e.,

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H lW l) (8)

where Ã is the adjacency matrix of graph with added self-
connections, D̃ corresponds to the degree matrix for Ã. Here σ
denotes an activation function, and W l is the learnable weight
matrix in the l-th layer, H l is the l-th hidden layer of GCN,
and H0 indicates the input feature matrix of GCN. Given the
fact that there exist obvious similarities between the occurrence
probabilities of anomalies within two urban sub-regions if their
traffic volumes are also similar [10], [29], we here design a novel
traffic volume similarity matrix to imply the potential anomaly
pattern. Specifically, given two sub-region vi and vj , the traffic
volume similarity between these two sub-regions with regard to
interval t can be calculated with cosine similarity, i.e.,

ψt(Ft
vi ,F

t
vj
) = cos(Ft

vi ,F
t
vj )

2 (9)

where Ft
vi =

{
f t−m+1
vi , · · · , f tvi

}
indicates the traffic volumes of

sub-region vi during a temporal window with fixed length m. And
the similarity matrix of interval t can be written as

Ψt =


ψt(Ft

v1 ,F
t
v1) · · · ψt(Ft

v1 ,F
t
vN )

...
. . .

...
ψt(Ft

vN ,F
t
v1
) · · · ψt(Ft

vN ,F
t
vN

)

 (10)

With this similarity matrix, the GCN module can be modified as,

H(l+1) = σ(D̃
− 1

2

Ψt
ΨtD̃

− 1
2

Ψt
H lW l) (11)

whereH0 corresponds to the traffic volume maps in three different
granularities, and D̃Ψt

corresponds to the degree matrix for Ψt.
Worth noting that the computational complexity of training this
modified GCN for all possible interval is O(N2 ∗ T ) where T
indicates the total number of possible intervals in the dataset. To
equilibrate the contradiction between the calculation burden and
performance of our algorithm, we set a traffic volume similarity
threshold ξ, and those cosine similarity values within two subre-
gions, which are less than the threshold ξ, are suppressed to 0.
Temporal learning with LSTM: We then feed the embedded
representations of spatial dependencies learned by the modified
GCN to the LSTM model to exploit the temporal dependencies
among traffic volumes. LSTM can automatically control the
weights of input information through the mechanism of ”gate”,
and finally export the embedded representations of both spatial

2. cos(−→x1,
−→x2) indicates the cosine similarity between two vectors −→x1 and

−→x2, and can be calculated by cos(−→x1,
−→x2) =

−→x1·−→x2

∥−→x1∥×∥−→x2∥
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Fig. 4: HP-GCN for anomaly cascade spatial learning.

and temporal dependencies among traffic volumes. Due to the
limitation of space, we here omit the detailed implementations
of standard LSTM in this subsection.

4.4 ST-HP for anomaly cascade learning
HP is widely used to model the inherent self/mutual-exciting

characteristics of social events [30] in previous studies, a tra-
ditional HP supposes that past event can temporarily raise the
probability of future events, assuming that exciting characteris-
tics is (1) positive, (2) additive over the past events, and (3)
exponentially decaying with time. In recent years, some studies
have tried to expand HP’s functions and make it more in line
with the patterns (excited or inhabited) of events in the real-
world, and some even try to combine HP with neural network to
learn the complex cascading correlations of events in time series
[31], [32]. Considering the inherent spatiotemporal self/mutual-
exciting characteristic of urban anomalies, to effectively capture
the cascading correlations among anomalies, we here introduce
spatiotemporal HP to modify traditional GCN and LSTM in
both spatial and temporal perspectives. In this subsection, we
here also first construct the corresponding anomaly cascading
map based on urban anomaly dataset, then introduce the detailed
implementations of the modified HP-GCN and HP-LSTM.

Construction of anomaly cascading map: Based on the fea-
tures about anomalies including atvi , stvi , and dtvi in F t

vi , we then
construct the anomaly map of the entire urban area during interval
t as At =

{
{atv1 , s

t
v1 , d

t
v1}, · · · , {a

t
vN , s

t
vN , d

t
vN }

}
. Similar to

the construction of traffic volume map, the corresponding anomaly
cascading map should also be constructed in the granularities of
closeness, periodicity, and trend. Regarding interval t, the anomaly
cascading maps in close, periodic, and trendy granularities should
be

{
At−m+1, · · · At

}
,
{
At−(m−1)×48, · · · ,At−48,At

}
, and{

At−(m−1)×48×7, · · · ,At−48×7,At
}

respectively. Also, with
these anomaly cascading maps in different granularities, deep
learning model can effectively exploit both long-term and short-
term periodicities within anomalies.

Spatial learning with HP-GCN: As discussed, an anomaly
may propagate its influences to surrounding areas, hence the
occurrence of new anomalies or the increasing of severities of
surrounding anomalies. On the other hand, this kind of influence
decrease with the increase of the distance within anomalies. To
capture this kind of cascading spatial correlations among anoma-
lies, we import HP into GCN. A detailed demonstration about how

HP-GCN learns cascading correlations among anomalies in spatial
perspective is given in Fig. 4. Specifically, given a subregion
vi ∈ V , to model the influences of anomalies within this grid
point on other surrounding subregions, we first define the basic
exciting influence of vi during interval t by

Itvi =


stvi
at
vi

atvi ̸= 0

0 atvi = 0

(12)

Notice here we use the quotient of the severity stvi over the total
anomaly number atvi as the basic exciting influence of vi during
t in case that there exist anomalies within vi during t. Therefore,
the basic exciting influence matrix of V during interval t can be
formalized by

It =

I
t
v1

· · · Itv1

...
. . .

...
ItvN · · · ItvN

 (13)

Notice that in Fig. 4, the upturned arrows indicate the basic
exciting influence of each individual subregion. On the other
hand, to calculate the decayed influences between two specific
subregions, we design a decaying matrix by

D =


e

−ηv1 v1
ηmax · · · e

−ηv1 vN
ηmax

...
. . .

...

e
−ηvN v1
ηmax · · · e

−ηvN vN
ηmax

 (14)

where ηvivj indicates the Euclidean distance between the centers
of vi and vj and ηmax corresponds to the maximum Euclidean
distance among the centers of all sub-regions. We here use the

variable e
−ηvi vj
ηmax to evaluate the decaying factor of influences

between these two specific subregions, and this factor increases
in case that the distance between two subregions decreases, and
the influence factor of a subregion on itself is 1 since ηvivi = 0,
and the influence factor equals to 0 while the distance between
two subregions is ∞. So far, the decayed anomaly influences of
all urban subregions pairs during interval t can be calculated by

Λt = It ◦ D (15)

where ◦ means Hadamard product. So far, the HP-GCN module
can be formulated by,

H(l+1) = σ(D̃
− 1

2

Λt
ΛtD̃

− 1
2

Λt
H lW l) (16)

whereH0 corresponds to the anomaly cascading maps in three dif-
ferent granularities, and D̃Λt corresponds to the degree matrix for
Λt. Regarding HP-GCN, the calculation of such decayed anomaly
influence matrix is based on the basic principle of HP theory, and
the calculated Λt is utilized as the adjacency matrix of HP-GCN,
hence involving mutual spatial excitements among subregions in
spatial learning. Moreover, as demonstrated in Equation (16), HP-
GCN multiple Λt with the cascading feature matrix in each layer,
and the result of such matrix multiplication at the first layer of our
GCN model indicates the self/mutual influences for demonstrating
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Fig. 5: Architecture of HP-LSTM.

the accumulated influences of all subregions on each subregion,
i.e.,

Λt ·

a
t
v1
...

atvN

 =


Itv1 ·

(
atv1e

−ηv1 v1
ηmax + · · ·+ atvN · e

−ηv1 vN
ηmax

)
...

Itv1 ·
(
atv1e

−ηv1 v1
ηmax + · · ·+ atvN · e

−ηv1 vN
ηmax

)


(17)
Here the i-th row of the result is the cumulative impact of anomaly
numbers of all subregions on the number of anomalies in the i-th
subregion. Likewise, the impact of all subregions on one specific
subregion in terms of anomaly severity and duration can be calcu-
lated in the same way. With HP-GCN, the cascading correlations
among anomalies can be extracted as shown in the upper half
part of Fig 4, and the impact of cascading influences of current
anomalies on a specific future anomaly are summed. Notice that
the learned cascading influences from current anomalies to future
anomalies can be bidirectional which means the influence of
current anomalies on a future anomaly at a specific location can be
either exciting or inhibiting, and we will further discuss the reason
in the Section of ”discussion”.
Temporal learning with HP-LSTM: The output matrices of
HP-GCN have already included the spatial representations of
cascading correlations among anomalies, and we still have to
capture the temporal cascading correlations among anomalies. To
this end, we propose a novel HP-LSTM by integrating HP with
LSTM. Figure 5 demonstrates the detailed implementation of HP-
LSTM, and this HP-LSTM can be formalized by

x =



qt = σ(Wq[ht−i, xt] + bq) (a)

pt = σ(Wp[ht−i, xt] + bq) (b)

c̃t = Tanh(Wc[ht−1, xt] + bc) (c)

ĉt = qt × ct−1 + pt × c̃t (d)

0t = σ(Wo[ht−1, xt] + bo) (e)

ct =Win · ĉt · exp(−tinter

ρt
) (f)

ht = ot × Tanh(ĉt) (g)

(18)

where function [, ] means the concatenation of two vectors,
W∗ = {Wq,Wp,Wc,Wo, } and b∗ = {bq, bp, bc, bo, } are
learnable weights and offsets. Here ”Forget gate” determines how
much information in the last cell i.e., ct−1, can be maintained
into the cell of the current time, i.e., ĉt, ”Input gate” determines
how much information of the current input xt can be filter to

the current cell ĉt, and ĉt, which indicates the combination of the
filtered information of ct−1 and xt, is outputted by ”Output gate”.
Regarding HP-LSTM, different from traditional LSTM which
directly fuse the outputs of forget gate and input gate as output,
HP-LSTM regards the output ĉt of each cell as the basic exciting
influence, and quantifies the temporal decaying influences of pre-
vious events on future events in Sub-Equation (f) of Equation (18)
by referring to classic HP theory. Notice here Win and ρt are both
learnable parameters, and such modification on LSTM enables the
adaptive learning of the temporal influence of previous events on
future events in all three temporal granularities. Likewise, in HP-
LSTM, the output of the forget gate corresponds to the self/mutual
influence function which demonstrates the accumulated influences
of anomalies during historical intervals on future anomalies.

4.5 Multi-task learning for 2D joint-prediction

The occurrence and severity of urban anomalies can be im-
pacted by their occurring locations and time, external meteorolog-
ical and urban traffic factors, as well as the cascading influences
among anomalies. To fully fuse all these related information, we
propose two novel fusion models: distribution fusion and duration
fusion. Regarding distribution fusion, we fuse these information to
predict the anomaly distribution of the next interval with a Fully
Connected (FC) layer and calculate the regression loss of anomaly
distribution prediction by

Lossdis =
∑
t

N∑
i=1

Distdis
(
at+1
vi

, ât+1
vi

)
(19)

Regarding duration fusion, we fuse all these information to predict
the anomaly duration of the next interval with a FC layer, and the
regression loss for this part can be written as,

Lossdur =
∑
t

N∑
i=1

Distdur
(
dt+1
vi , d̂t+1

vi

)
(20)

Here Dist (y, ŷ) is a distance related function which can be
used to quantify the difference between y and ŷ. Notice this
function can be Mean Absolute Error (MAE) or Mean Squared
Error (MSE), and we then discussed the selection of this function
in the section of ”Experimental Studies”. To better capture the
correlations between these two different prediction missions, we
add a negative cosine similarity loss to keep the two outputs from
different parts as consistent as possible, i.e.,

Losscos = −
∑
t

α̂t+1 · δ̂t+1

||α̂t+1|| · ||δ̂t+1||
(21)

where α̂t+1 =
{
ât+1
v1 , · · · ât+1

vN

}
and δ̂t+1 =

{
d̂t+1
v1 , · · · d̂t+1

vN

}
.

So far, the total loss in training phase for 2D joint-prediction multi-
task learning can be written as,

Loss(Θ) = Lossdis + λ1 ∗ Lossdur + λ2 ∗ Losscos + γ∥Θ∥2
(22)

where Θ includes all learnable parameters, ∥ · ∥2 is L2-norm for
preventing overfitting. We here adopt Adam optimizer to train our
joint-prediction framework, design a novel consistency regulariza-
tion architecture for mutual matching the predicted distributions
and durations of all subregions within V , and suppress the anomaly
numbers and durations of those subregions both to 0 in case that
their anomaly numbers are less than the threshold β meanwhile.
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TABLE 2: Dataset statistics.

City Dataset Time Span # of Regions # of Records

Crashes/Accidents 204k
New York Taxi Trip Data 01/01/2018- 30*22 (660) 6208k

City Meteorology 12/31/2018 204k
Anomaly duration 8.6k
Crashes/Accidents 24k

Chicago Taxi Trip Data 07/29/2018- 28*19 (532) 220k
Meteorology 12/31/2018 24k

Anomaly duration 12.4k

5 EXPERIMENTAL STUDIES

In this section, we evaluate the performances of the proposed
model, A2DJP, on the urban anomaly datasets of New York city
and Chicago. Meanwhile, we conduct extensive ablation experi-
ments to verify the effectiveness of each component. Eventually, to
further intuitively analyze our model, we introduce an interesting
case study.

5.1 Data preparation
Our experiments are conducted based on the real-world

anomaly distribution and duration datasets of two different cities,
New York City and Chicago. Regarding these two datasets, urban
anomalies contain unusual congestion, accidental traffic accidents,
and sporadic road obstructions. Regarding New York city, the
datasets are during January 1, 2018 and December 31, 2018. For
Chicago, the datasets are within August 1, 2018 and December 31,
2018. For both two cities, we utilize the taxicab volumes within
subregions as the indicator of traffic volumes of all subregions.
The statistics of data are shown in Table 2.

5.2 Experimental settings
In our experiments, we select 70%, 20% and 10% of datasets

for training, evaluation and validation. Meanwhile, to eliminate the
dimensional influences between different indicators, we normalize
all the features in the datasets. The New York City and Chicago are
both divided into squared subregions with the length of 1.5km×
1.5km. During the training phase, we set the batch size at 64 and
the learning rate at 0.001. Eventually, we implement our model,
A2DJP, based on Pytorch3. All parameter settings related to our
model are summarized in Table 3.

To evaluate the performance of our proposed model and all
alternative solutions, we use the information of urban traffics and
anomalies during m previous intervals to predict the possible dis-
tributions and durations of anomalies during the next 30 minutes,
and we use the following three metrics to evaluate.

• MAE:
Distdis

(
at+1
vi , ât+1

vi

)
=

∑
t{

1
N

∑N
i=1|a

t+1
vi − ât+1

vi |}

Distdur
(
dt+1
vi , d̂t+1

vi

)
=

∑
t{

1
N

∑N
i=1|d

t+1
vi − d̂t+1

vi |}
(23)

• MSE:
Distdis

(
at+1
vi , ât+1

vi

)
=

∑
t{

1
N

∑N
i=1(a

t+1
vi − ât+1

vi )2}

Distdur
(
dt+1
vi , d̂t+1

vi

)
=

∑
t{

1
N

∑N
i=1(d

t+1
vi − d̂t+1

vi )2}
(24)

3. Pytorch is an open source machine learning framework that accelerates
the path from research prototyping to production deployment.

TABLE 3: Parameter settings.

Symbol Description Value
−− Length of time intervals 30 min
m Number of historical intervals 8
β Threshold for filtrating anomalies 0.8

(∆, b1, b2) Overcome zero-inflated parameters 1 (10−6, 0.13, 0.66)
(c1, c2) Overcome zero-inflated parameters 2 (0.12, 0.26)

ξ Threshold of volume similarity matrix 0.3
(λ1, λ2) Weights of loss function (1.2, 0.8)
−− Number of GCN blocks 4
−− Number of LSTMs 2

• Accuracy of topK(Acc@K): this metric is the percentage
of accurate predictions for a list of predictions with length
K [33]. In this paper, we select K highest-risky areas in
predicted results and calculate the percentage of accurate
predictions in K predicted regions to the total anomalous
areas4. Considering the actual numbers of anomalous areas
in history, we here set K = 20 for comparison.

5.3 Baselines

We compare our A2DJP model with the following state-of-
the-art methods from various research lines, i.e., classical machine
learning algorithms, conventional time series forecasting methods,
spatiotemporal forecasting methods, and ensemble learning (re-
gression) models, and all alternative solutions can be categorized
into two categories, anomaly distribution prediction methods, and
anomaly duration prediction methods. For the sake of fairness,
regarding all solutions, we all carry out the predictions from the
three above-mentioned temporal granularities. Meanwhile, for all
alternative baselines, we first initialize the hyperparameters by
referring to their corresponding literature and published codes and
then fine-tune the parameters based on the characteristics of our
datasets (including but not limited to the number of nodes and
number of features). Consequently, we can ensure the fairness
of our experiments. The optimal parameters are given after the
description of baselines.

5.3.1 Anomaly distribution prediction methods
Auto-Regressive Integrated Moving Average (ARIMA)

[34]: it is a conventional time series learning model, and is usually
used to predict future values in time series. Here the parameter
tuple (p, d, q) of ARIMA are set as (1, 2, 6) in both two datasets.

Heterogeneous Convolutional LSTM (Hetero-ConvLSTM)
[7]: it is an advanced deep learning method for urban traffic
accident prediction. The urban areas of New York City and
Chicago are also divided into a 30 × 22 grid and a 28 × 19 grid
respectively, and the kernel size of CNN are set as 3×3 and 5×5
for New York City and Chicago respectively.

Temporal Graph Convolutional Network(TGCN) [8]: it is
a time series traffic flow prediction framework which combines
GCN with Gated Recurrent Unit (GRU) network to respectively
capture spatial and temporal correlations. Here we set the number
of GCN blocks to 2 and the number of GRU hidden units to 64
for both two datasets.

SpatioTemporal GCN (ST-GCN) [35]: it is a multi-step
traffic forecasting model which employs several spatiotemporal
convolutional to extract both spatial and temporal correlations,

4. Usually, the number of K is absolutely greater than the total number of
anomalous subregions.
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and the proposed spatiotemporal convolutional block integrates
both the operations of graph convolution and gated temporal
convolution. This spatiotemporal learning model can be used to
solve our anomaly distribution prediction task, and here each block
consists of three layers with 64, 64, 64 filters in New York Dataset,
and 32, 32, 32 filters in Chicago Datasets.

Attention based Spatial-Temporal GCN (ASTGCN) [26]:
it is a traffic flow prediction method which employs a spatial-
temporal attention mechanism to effectively capture the dynamic
spatial-temporal correlations within traffic data from the granular-
ities of short-term, middle-term and long-term. We here set the
number of input intervals as 8.

Graph Multi-Attention Network(GMAN) [11]: it follows
the encoder-decoder architecture where both the encoder and
the decoder consist of multiple spatiotemporal attention blocks,
and between the encoder and the decoder, a transformer layer is
applied to convert encoder embedding to sequence representations.
GMAN is designed to achieve traffic flow prediction, and in this
paper, we set the number of blocks to 3, the attention heads to 1,
and the dimensionality of attention head to 8 for both two datasets.

SpatioTemporal Adaptive Gated GCN (STAG-GCN) [36]:
This deep learning method introduces an adaptive graph gating
mechanism to dynamically extract selective spatial dependencies
within multi-head self-attention mechanism, and correct informa-
tion deviations caused by artificially defined spatial correlation. In
this paper, we use traffic flow similarity matrix instead of semantic
neighbor adjacency matrix, and set the number of multi-heads
equal to 3. In tcn layers, dilation factors d = 1, 2, 4 and filter size
k = 3 in both two datasets.

Riskseqs [37]: This model is a state-of-the-art model for urban
anomaly prediction at present. It designs region-wise proximity
measurements and temporal feature differential operations and
embed them into a novel differential time-varying graph convo-
lution network to dynamically capture traffic variations. We set
connectedness of urban graph to 0.1, interval length to 30min, and
number of GCN blocks to 4 in both two datasets.

A2DJP-DIS:We remove the fusion layer, the negative cosine
similarity loss component, and the redundant duration loss com-
ponent from A2DJP to generate A2DJP-DIS which focuses on the
single mission of anomaly distribution prediction.

5.3.2 Anomaly duration prediction methods
Linear HP [38]: This method, which incorporates Hawkes

process into linear regression network, has strong capability in
modeling sequential cascading data.

XGBoost [39]: This method, which introduces first-order and
second-order derivatives as well as regularization to traditional
loss functions to prevent overfitting, is well suited for the duration
regression task. Here we set learning rate to 0.01, max tree depth
to 5 in NeW York Dataset, and set learning rate to 0.015, max tree
depth to 3 in Chicago Dataset.

LSTM-FC [40]: An Encoder-Decoder framework using fully
connected LSTM units. Here we set the number of LSTM layers
is equal to 3 in both two datasets.

Neural HP [31]: This work models the streams of discrete
events in continuous time by constructing a neural multivariate
point process with a novel continuous-time LSTM, hence extract-
ing the complex influences of past events on future events. Here
we set layers as 3 in both two datasets.

Bayesian Neural Network (Bayesian NN) [13]: This work,
which consists of a cost-sensitive Bayesian network and a

weighted K-nearest neighbor model, predicts durations of future
accidents based on a given set of historical accident records and
the future new accidents.

Deep Fusion-Restricted Boltzmann Machine (DF-RBM)
[15]: DF-RBM, which proposes a deep fusion model based on
restricted Boltzmann machines for traffic accident duration pre-
diction, can fully mine nonlinear and complex patterns in traffic
accident and flow data. Here we trained two stacked RBMs sep-
arately, and then we used full connection layers for imformation
fusion.

A2DJP-DUR: We remove the fusion layer, the negative cosine
similarity loss component, and the redundant distribution loss
component from A2DJP to generate A2DJP-DUR which focuses
on the single mission of anomaly duration prediction.

5.4 Performance comparison

To better understand the performances of the proposed A2DJP
and the benefits from joint predictions of both distribution and
duration, we here separately evaluate the two anomaly forecasting
tasks by comparing it with different baseline models. The compre-
hensive performances are illustrated in Table 4.

From the perspective of anomaly distribution forecasting, we
can observe that: i) ARIMA takes temporal dependencies into
account while deep learning methods can simultaneously decode
both spatial and temporal correlations, therefore most deep learn-
ing models outperform ARIMA. Further, those methods, which
are embedded with the mechanisms of multi-granularity periodic
learning and varietal prior knowledge based data enhancing such
as STAG-GCN, RiskSeqs and our proposed approach, can sig-
nificantly outperform other alternative solutions in predicting the
distributions of urban anomalies, and this laterally verifies the
effectiveness of this mechanisms. ii) Compared with alternative
deep learning model, GNN-based models show better perfor-
mances in the task of urban anomaly distribution prediction. In
particular, the performances of ST-GCN, AST-GCN, STAG-GCN,
GMAN and RiskSeqs are better than the performances of Hetro-
ConvLSTM with all three metrics. iii) Compared with the state-of-
the-art solution on anomaly distribution prediction, RiskSeqs, our
model can improve the performance by more than 2% in terms of
Acc@20, and it can hit more than 58% and 50% of total anomalies
respectively within the 20 highest-risky subregions of New York
City and Chicago.

Regarding anomaly duration forecasting, some interesting
points can be easily concluded: i) our model, A2DJP, can sig-
nificantly outperform all other alternative solutions in predicting
durations of future anomalies with all three different metrics.
Considering that our model is the exclusive GNN-based one
in all anomaly duration prediction methods, it also indirectly
confirms the superiority of the GNN-based model on predicting
anomaly durations and capturing spatiotemporal relationships of
urban traffics. ii) Neural HP, which modifies the hidden states of
neurons within the LSTM network with degenerative HP modeled
influences among anomalies, hence involving the cascading corre-
lations among urban anomalies. With the embedded HP, Neural
HP significantly outperforms LSTM-FC in terms of all three
different metrics in both New York City and Chicago, and this
verifies the validity of HP and deep learning integrated network
on urban anomaly duration prediction.

Moreover, as can be easily observed in Table 3, RiskSeqs and
DF-RBM can respectively outperform A2DJP-DIS and A2DJP-
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TABLE 4: Performance comparisons among different methods.

Anomaly distributions Anomaly duration
Models MAE MSE Acc@20 Models MAE MSE

New
York
City

ARIMA 2.754 2.987 0.1869 – –
Hetro-ConvLSTM 2.488 2.841 0.2236 – –

TGCN 2.377 2.653 0.3561 Classical HP 0.8724 1.4230
ST-GCN 1.881 2.492 0.4711 XGBoost 0.6437 0.9058
ASTGCN 1.855 2.120 0.4805 LSTM-FC 0.6624 0.8703
GMAN 1.774 1.904 0.4423 Neural HP 0.5217 0.7004

STAG-GCN 1.429 1.578 0.3088 Bayesian NN 0.5872 0.8859
RiskSeqs 0.927 1.205 0.5642 DF-RBM 0.5190 0.5803

A2DJP-DIS 1.425 1.622 0.4329 A2DJP-DUR 0.5927 0.6334
A2DJP (ours) 0.787 1.112 0.5863 A2DJP(ours) 0.4589 0.4902

Chicago

ARIMA 3.497 4.105 0.1773 – –
Hetro-ConvLSTM 3.471 3.678 0.2107 – –

TGCN 2.698 3.015 0.2754 Classical HP 0.8234 1.3765
ST-GCN 2.387 2.660 0.3429 XGBoost 0.6013 0.7543
ASTGCN 2.119 2.472 0.3956 LSTM-FC 0.5568 0.5987
GMAN 1.703 2.014 0.3820 Neural HP 0.5003 0.5299

STAG-GCN 1.375 1.561 0.3567 Bayesian NN 0.5201 0.5484
RiskSeqs 1.207 1.349 0.4801 DF-RBM 0.3463 0.3867

A2DJP-DIS 1.336 1.546 0.3869 A2DJP-DUR 0.4578 0.5015
A2DJP (ours) 1.169 1.223 0.5007 A2DJP(ours) 0.2729 0.3209

DUR. Such an interesting phenomenon exactly verifies the ef-
fectiveness of our joint-prediction framework. In particular, given
the fact that A2DJP-DIS and A2DJP-DUR can be viewed as two
variants of A2DJP by respectively removing a prediction task
from the joint-prediction framework, the inter-task mutual rein-
forcement characteristic of this joint-prediction framework is then
restrained by the single-task prediction nature of A2DJP-DIS and
A2DJP-DUR, hence leading to such phenomenon. We will further
investigate the effectiveness of each individual component in our
proposed model by conducting a series of ablative experiments in
subsequent sections.

In summary, extensive main experiments have verified the
superiority of our A2DJP approach on both the predictions of
anomaly distributions and durations. Even though the main ex-
periments can laterally verify the effectiveness of some purpose-
designed mechanisms such as GPKDE, modified GCN, HP-
LSTM, and HP-GCN, the distinctive effect of each individual
mechanism and the superiority of the joint-prediction framework
should be further clarified through extensive ablative studies. To
this end, we conduct a series of ablation experiments in the next
subsection.

5.5 Ablation experiments
To verify the validity of each individual component as well

as the overall framework of A2DJP on addressing specific chal-
lenges, in this subsection, extensive ablation experiments are then
conducted to demonstrate how detailed implementations of our
model exactly contribute to final improvements.

5.5.1 Joint-prediction framework
As discussed, the output of our joint-prediction framework

is the distributions of future anomalies with their counterpart
durations. To further investigate the effectiveness of the proposed
joint-prediction framework, we select and concatenate two indi-
vidual baselines with the best performance respectively in the
predictions of anomaly distributions and durations to fenerate

four new models, i.e., Riskseqs+Neural HP, Riskseqs+DF-RBM,
STAG-GCN+Neural HP, and STAG-GCN+DF-RBM, and incor-
porate these four new models with the Information Fusion (IF)
component on our A2DJP to make sure the two sub-tasks in these
models can work in a joint-prediction manner, and finally compare
the performances of these eight temporarily generated networks
with the performance of A2DJP in terms of MAE and MSE.
The results are demonstrated in Table 5. Notice that the metric
of Acc@20 can only be used to evaluate the accuracy of anomaly
distribution prediction, and we here omit it in this part.

TABLE 5: Impacts of joint-prediction framework

New York City/Chicago
Model MAE8 MSE8

RiskSeqs+Neural HP 1.4278/1.6533 1.9240/2.1741
RiskSeqs+DF-RBM 1.5348/1.7423 1.8459/2.1884

STAG-GCN+Neural HP 1.6033/1.6657 1.6985/1.8834
STAG-GCN+DF-RBM 1.7322/1.8054 1.8511/1.9339

RiskSeqs+Neural HP+IF 1.3766/1.5424 1.7749/1.8235
RiskSeqs+DF-RBM+IF 1.4110/1.6087 1.8327/1.9001

STAG-GCN+Neural HP+IF 1.4588/1.5536 1.5398/1.7636
STAG-GCN+DF-RBM+IF 1.7001/1.7564 1.8034/1.9143

A2DJP (ours) 1.2319/1.4802 1.5234/1.6721

As can be observed, first of all, even though the IF component
is incorporated with the four new generated models, our A2DJP
method significantly outperforms these four temporarily generated
networks in terms of both MAE and MSE with New York City and
Chicago, and we think this kind of improvements can be mainly
attributed to the employment of the joint-prediction framework. To
further investigate the effectiveness of the joint-prediction frame-
work, we continue analyzing the experimental results and discover

8. Considering the temporarily concatenated networks and the joint-
prediction framework are intend to address the predictions of both anomaly
distributions and durations, we here use the sum of two MAEs respectively in
distribution and durations predictions as the MAE of the joint-task. And the
MSE of the joint-task is constructed in the same way.
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that, the performances of these four IF embedded new models are
respectively better than the performances of themselves without
IF component, and this completely verifies the effectiveness of
the joint-prediction framework. It is worth mentioning that the
influences of the employment of ST-HP cannot be ruled out yet. To
this end, we then further investigate the impacts of other purpose-
designed mechanisms.

5.5.2 Ablative studies of individual components in A2DJP
To fully estimate and understand the implications of individual

components, in this subsection, we construct a series of ablative
variants by removing or replacing some component within A2DJP.
Notice here we also use the MAE and MSE of the joint-task
as the main metrics for evaluating all variants, and we also
add the Acc@K criteria back for evaluating the predictions of
anomaly distributions for a more comprehensive assessment. The
constructed variants are listed as follows,

A2D-GPKDE: We omit our GPKDE mechanism during the
data pre-processing period in this ablative variant.

A2D-EF: We use all entangled features in F t
vi directly for

joint prediction, this ablative variant replaces all ST-HP embedded
components with typical GCN and LSTM modules.

A2D-SM: In this variant, we replace the traffic volume
similarity matrix in the modified GCN and LSTM integrated
network with the fixed distance-based matrix D as the ablative
variant.

A2D-HPGCN: We here replace the anomaly influence decay-
ing matrix Λt in HP-GCN with the fixed distance-based matrix D
to construct this ablative variant.

A2D-HPLSTM: In this ablative variant, we remove the tem-
poral decaying channel from HP-LSTM.

A2D-CLS: During training phase, we remove the negative
cosine loss function from the overall loss function.

A2DJP-GAT: we replace GCN and HP-GCN in A2DJP di-
rectly with GAT [23] to generate A2DJP-GAT.

A2DJP-GIN: we replace GCN and HP-GCN in A2DJP di-
rectly with GIN [41] to generate A2DJP-GIN.

A2DJP-HPGIN: we replace GCN and HP-GCN in A2DJP
respectively with GIN and HP-GIN to generate A2DJP-HPGIN.

TABLE 6: Performances of ablative variants

New York City/Chicago
Variant MAE MSE Acc@20

A2D-GPKDE 3.2701/3.0329 3.8025/3.2537 0.1873/0.2734
A2D-EF 1.4713/1.8365 1.8990/1.9012 0.3369/0.3850
A2D-SM 1.2767/1.9187 1.7132/2.1390 0.5734/0.4624

A2D-HPGCN 1.1819/1.5776 1.4911/1.7543 0.5803/0.4904
A2D-HPLSTM 1.2714/1.6754 1.5323/1.8131 0.5677/0.4824

A2D-CLS 1.3270/1.5438 1.6439/2.0173 0.5053/0.4417
A2DJP-GAT 1.4539/1.6002 1.6138/1.8677 0.5054/0.4422
A2DJP-GIN 1.3890/1.5977 1.5433/1.9048 0.5121/0.4576

A2DJP-HPGIN 1.3549/1.5887 1.4465/1.8011 0.4977/0.4589
A2DJP 1.1328/1.4726 1.5135/1.6702 0.5851/0.4987

The performances of all ablative variants are demonstrated
in Table 6. As can be easily observed, the unbroken A2DJP
significantly outperforms all alternative ablative variants on all
three evaluation metrics, and this verifies the validity of each indi-
vidual purposed-designed mechanism. Further, there exist some
interesting points that can be further discussed: i) The newly-
designed global prior knowledge-based data enhancement strategy
has the most significant impacts on predictions, and it triples and

doubles the distribution prediction accuracies respectively in New
York City and Chicago. This indicates that sparse issue is the
most critical challenge that should be considered in predicting
urban anomalies. ii) Compared with A2D-EF, regarding both the
predictions of anomaly distributions and durations, our model
is significantly better in terms of all three different metrics
in both New York City and Chicago, and this indicates that
the separate decouple and model of the correlations between
urban traffic features and anomalies as well as the cascading
correlations among anomalies can indeed contribute to both the
predictions of anomaly distributions and durations. iii) With the
elimination of spatial decaying matrix in HP-GCN and temporal
decaying channel in HP-LSTM, the performances of our method
decrease correspondingly in both distribution and duration pre-
dictions. It implicates that the consideration of spatiotemporal
direct cascading correlations among anomalies is authentically
beneficial to our model. iv) Regarding A2DJP-GAT, A2DJP-GIN,
and A2DJP-HPGIN, our A2DJP can still outperform all these
three new variants in terms of all metrics. The reasons may be
that, compared with A2DJP-GAT and A2DJP-GIN, A2DJP can
effectively capture the cascading correlations among anomalies,
and compare with A2DJP-HPGIN, the carefully designed dynamic
traffic similarity matrix of the GCN component in A2DJP is
more capable of capturing the direct similarity information of
each vertex pair. Your insights on incorporating GAT and GIN
with the joint-prediction framework has enlightened us on further
improving our work in the future. Due to the limited space of the
article, we only added the experimental results into section 5.5.2.

In summary, these ablative experiments establish a quantitative
evaluation framework for detecting individual contributions of
each purpose-designed component in our model. From these
promising results, it can be easily concluded that each well-
designed component in A2DJP plays a vital role in our anomaly
distribution and duration joint-prediction.

5.6 Impacts of hyper-parameters
To investigate how different hyper-parameters affect the per-

formance of the proposed framework, we show the tuning pro-
cesses of hyper-parameters on both two datasets.

5.6.1 Impacts of numbers of GCN blocks and LSTMs
In this subsection, we investigate the impacts of numbers

of GCN blocks and LSTMs on the final performances of our
proposed model. Considering the performances of alternative
models are basically consistent in three different metrics with
different prediction missions, to this end, we here take the metric
of Acc@20 as the main metric for investigating the impacts of
numbers of GCN blocks and LSTMs and tuning corresponding
parameters. The results are illustrated in Figure 6, and we can
easily discover that: i) the performances of A2DJP in New York
City and Chicago are consistently optimal while the numbers
of GCN blocks and LSTMs are set to 4 and 2 respectively.
Specifically, at this point, our proposed model can achieve 58%
in Nee York and 49% in Chicago in terms of Acc@20. ii) After
this point, with the increase of the numbers of GCN blocks and
LSTMs, the performances of our model decline gradually, and the
reason may be the model is trapped in the dilemma of over-fitting.

5.6.2 Impacts of weight parameters in loss function
Regarding all adjustable weight parameters in the overall loss

function, i.e., Equation (22), to investigate the impacts of all these
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Fig. 6: Impacts of numbers of GCN blocks and LSTMs

parameters, we here set the weight of anomaly distribution loss
as 1, and tune the weights of λ1 and λ2 by grid searching,
and the results are shown in Table 7. As demonstrated, we here
selected λ1 = 1.2 and λ2 = 0.8 as the final setting of the
weight parameters in the overall loss function. This parameter
combination is also consist with the fact that the absolute error
values of distribution predictions is relatively greater the absolute
values of duration distribution.

TABLE 7: Hyper-parameter settings in loss function

New York City/Chicago
λ1 λ2 Acc@20(%) MAE MSE
0.8 0.8 56.37/50.12 1.27/1.56 1.54/1.61
0.8 1.2 57.24/48.25 1.34/1.62 1.43/1.69
1.2 0.8 58.51/49.87 1.13/1.47 1.51/1.67
1 1.2 53.15/42.34 1.23/1.52 1.69/1.82

1.2 1 58.07/49.04 1.11/1.12 1.34/1.77
1.5 1 57.14/48.98 1.31/1.69 1.42/1.73
1 1.5 56.23/49.34 1.42/1.78 1.54/1.82

5.6.3 Impacts of threshold ξ in volume similarity matrix
To equilibrate the contradiction between the calculation bur-

den and performance of our algorithm, we set a traffic volume
similarity threshold ξ to suppress those similarity values in the
volume similarity matrices which are less than the threshold. In
this subsection, we investigate the impacts of this threshold on the
performances of our model and demonstrate the results in Figure 7.
From this figure, we observe that the performances of A2DJP are
optimal in both New York City and Chicago while the threshold ξ
is set to 0.3, and the curves of A2DJP in terms of MAE and MSE
haven’t change drastically while the threshold increases from 0 to
0.3. With this threshold, more than 15% of total parameters in the
volume similarity matrices are suppressed to 0 averagely, which
means about 15% of the computational burden are saved while
ξ = 0.3. For the sake of polytropic equilibrium, ξ is then set to
0.3.

5.6.4 Impacts of threshold β for filtrating anomalies
We also set another threshold β to suppress the anomaly

numbers and durations of those subregions both to 0 in case
that their anomaly numbers are less than the threshold β. To
investigate the impacts of this parameter, we then conduct a
series of experiments by tuning β from 0 to 1.2 with the step
of 0.1, and the results are illustrated in Figure 8. As shown, the

Fig. 7: Performances with different ξ in terms of different metrics
on two datasets

performances of our algorithm in terms of Acc@20 increases with
the increase of β and achieve the peaks of both two curves while
β = 0.8. Meanwhile, in case that β = 0.8, the performances of
our algorithm in terms of MAE are also optimal for both New
York City and Chicago. Therefore, the threshold β is then set to
0.8.

Fig. 8: Performance with different β on two datasets

6 DISCUSSION

In this section, we discuss some interesting issues and lessons
learned in this paper.

Case study for analyzing mutual-influences among anoma-
lies: In previous sections, we have introduced and analyzed the
self/mutual-exciting characteristics of anomalies, here we demon-
strate a case study about these characteristics in Figure 9. First,
the influences of two anomalies can be forward superimposed.
For instance, the influences of anomaly e1 decrease with time,
and the occurrence of e2 then enhance the influences, such
scenario can be the traffic congestions caused by an accident
can be eased gradually with time, and the occurrence of another
surrounding accident or traffic restriction may exacerbate the
congestions. A similar situation prevails while a new surrounding
anomaly, i.e., e3, e4, or e5, happens; Second, the influences of two
anomalies can be reversely offset. For instance, the occurrence
of e3 decreases the influences of e2, and this scenario can be
a traffic restriction in the main intersection may cause serious
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congestions in this intersection, and an accident in the main road
connected to this intersection may decrease the inflow volumes of
this intersection, hence remitting the serious congestions in this
intersection. Analogously, in case that anomaly e5 happens, its
absolute influences are also remitted by the subsequent influences
of e3. This kind of forward superposition and reverse offset
phenomenons among influences of anomalies determine that the
cascade correlations among anomalies can be either exciting or
suppressing.

Fig. 9: Case study for analyzing mutual-influences among anoma-
lies: the red and blue dashed lines indicate the average influence
intensities of two categories of anomalies, and the corresponding
solid lines illustrate the actual influence intensities of correspond-
ing anomalies. The sub-figure in the bottom half illustrates the
spatial distribution of five urban anomalies.

The contradiction between performances and long se-
quence learning: long sequence learning is a critical and chal-
lenging issue for deep learnings since it is really hard for LSTM
to capture long dependencies while the time span of the input
sequence is relatively long. Given the fact that there exist abundant
long sequences in inputted traffic data, this may affect the overall
performances of our model to a great extent.

Cross-domain generalization of our model: our proposed
model can effectively model the spatiotemporal cascade corre-
lations among events that are widespread in the anomalies of
different fields such as social media, cloud communication, earth-
quake, and environmental pollution. Even though temporal HP
has been superficially researched in some of the above-mentioned
areas, it would be very interesting and necessary to investigate the
generalization ability of our proposed model with cross-domain
experiments.

7 CONCLUSION

In this paper, we propose a discrete-continuous task of
anomaly prediction with counterpart duration. Compared with tra-
ditional anomaly detection methods [6], [7], [37], our framework
not only introduces the duration prediction of potential urban
events but also proposes to exploit the cascading of targeting
events to remedy the feature-oriented event forecasting task. To
achieve this, we first decouple the causes of urban anomalies
into two categories, i.e., abnormal traffic volumes and cascading
influences of previous anomalies. Then we design two GCN-
LSTM-based parallel spatiotemporal learning pipelines to capture
features-event and event-event correlations, respectively. In par-
ticular, inspired by the discrete Hawkes Process, we propose an

HP spatiotemporal learning scheme by utilizing and extending
the core idea of HP to adaptive learning the propagation and
attenuation of event flow influences in spatial and temporal per-
spectives. Finally, we summarize two categories of causes with
weighted fusion and determine potential event duration from two
perspectives, risk status, and the spatiotemporal context. To ensure
the consistency of the output results, we add cosine similarity loss
to the two input vectors to constrain them to keep their consistency
in direction. To conclude, our method can enable a more effective
and time-aware urban event forecasting with more informative
and global traffic statuses. Essentially, our framework provides
new insight into discrete-continuous spatiotemporal learning by
simultaneously decoupling feature-target disentanglements and
determining continuous forecasting by fully leveraging predicted
discrete results and various contexts. Last but not least, through ef-
fective design, our model enables each module to work effectively
and overcomes the shortcomings of previous work.
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