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Abstract—Urban housing price is widely accepted as an economic indicator which is of both business and research interest in urban

computing. However, due to the complex nature of influencing factors and the sparse property of transaction records, to implement

such a model is still challenging. To address these challenges, in this work, we study an effective and fine-grained model for urban

subregion housing price predictions. Compared to existing works, our proposal improves the forecasting granularity from city-level to

mile-level, with only publicly released transaction data. We employ a feature selection mechanism to select more relevant features.

Then, we propose an integrated model, JGC_MMN (Joint Gated Co-attention Based Multi-modal Network), to learn all-level features

and capture spatiotemporal correlations in all-time stages with a modified densely connected convolutional network as well as current

ingredients and future expectations. Next, we devise a novel JGC based fusion method to better fuse the heterogeneous data of multi-

stage models by considering their interactions in temporal dimension. Finally, extensive empirical studies on real datasets demonstrate

the effectiveness of our proposal, and this fine-grained housing price forecasting has the potential to support a broad scope of

applications, ranging from urban planning to housing market recommendations.

Index Terms—Subregion house price prediction, multi-modal networks, heterogeneous data fusion

Ç

1 INTRODUCTION

HOUSING price forecasting plays a vital role in macroeco-
nomic and financial decision supporting. In the past

decade, a global financial crisis has been witnessed, due to
inaccurate housing price forecasting and unconscionable
financial policymaking [1]. In terms of spatial granularities of
predictions, existing studies on housing price forecasting
models are mostly on city levels, for supporting macroeco-
nomic analysis and policymaking. The city-level forecasting,
however, can not capture the fact of imbalanced development
between a city’s mile-level subregions. For instance, in Xi’an,
the average real estate prices of three districts in Sept. 2018
increasedmore than 10 percentwhile the average prices of the
other six districts decreased about 5 percent during the same
period [2].

Thus, in this work, we study another type of housing price
forecasting, that supports fine-grained and micro-level analy-
sis. Specifically, the analysis of mile-level subregion is more
fine-grained than urban regions. Such a type of forecasting
depicts the potential fluctuations, the distribution of housing
prices among different urban subregions as well as the rele-
vant static impact factors. With the help of that, we can find
broad applications in urban planning, such as community ser-
vice support and transportation facilities optimization.

There exist many studies, however, on city-level housing
price forecasting, which can be categorized as machine
learning-based methods [3], [4], [5], [6], [7], [8], [9] and deep
learning-based methods [10], [11], [12], [13]. Most machine
learning-based methods only capture the temporal dependen-
cies. Some newly proposedmethods involve extra spatial dep-
endencies by learning low-level spatial features. Deep learning
methods aim at predicting housing prices by capturing tempo-
ral correlations. Nevertheless, all solutions cannot be extended
to the subregion scenarios because of the unavailability of
involving the all-level spatiotemporal influences in the learn-
ing process and the unavoidable overfitting in small and spa-
rse subregion-level datasets. Also, there exist works [7], [14],
[15], [16] on predicting the price of individual houses. How-
ever, such methods have a high dependency on data quality,
i.e., requiring detailed property-transaction records and fea-
tures, which are unavailable formost publicly released data.

Challenges. However, challenges arise for accomplishing
fine-grained urban subregion housing price forecasting and
analysis. The influence factors of housing price forecasting are
known to be complex. Existing works mostly take the long-
term, short-term, and low-level spatial correlations of house
prices into account. Moreover, as mentioned in [17], the cur-
rent policies also affect the tendency of housing prices. And
the trend of macroeconomic or future price-growth expecta-
tion also has a great influence on the current housing price
[17], e.g., the economic growth of Japan in the 1980s and
China’s megalopolis in the last decade. Besides, some addi-
tional static features such as house properties, transportation
conditions, school districts, surrounding environments, and
facilities can also significantly affect individual housing price.
So far, how to design an integrated framework to incorporate
various impact factors with considering their different charac-
teristics remains challenging.
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Another challenge is the sparsity of property-transaction
data. Sparse data limits the sample size and incurs selectiv-
ity sample bias for building efficient and accurate forecast-
ing models [18], letting alone the limited availability of
publicly released data with heterogenous transaction prop-
erties. Such data might be dense enough for city-level fore-
casting but is shown to be sparse when the urban region is
decomposed into mile-level subregions. In particular, the
sparse data can result in insufficient house price features
which are critical in model training.

Contributions. In summary, previous works on housing
price forecasting never set foot on the issues of mile-level
subregion housing price predictions.

To our best knowledge, our JGC_MMN is the first work
on effective mile-level subregion housing price forecasting,
which has profound effects on trading recommendations
for housing markets and urban planning for public facility
and optimization. Our main contributions are as follows.

i) We propose to use densely connected networks to cap-
ture the all-level features in order to overcome the sparsity
challenge and alleviate the corresponding overfitting. Besides,
we consider more well-selected factors, including current
ingredients and future price-growth expectations, as the sub-
modules of prediction. ii) We propose a novel multi-modal
framework by fusingmultiple learners on the different tempo-
ral characteristics (i.e., long-term periodicity, recent tendency,
current, and future periods) for depicting spatiotemporal
dependencies. To achieve that, we improve the original Dense-
Net structure, combine the Kalman Filter, and adjust the
diverse structures to further improve the accuracy. iii) To fully
fuse these numerous factors with four learners, we design a
newmethod, JGC, to learn the correlations between themauto-
matically by generating joint attention flows within various
modalities and filtrating noises of multiple similar modalities
with the gated function. iv) We evaluate our proposed
JGC_MMN with real-world house price datasets from NYC
and Beijing. Extensive cross-validation experiments demon-
strate that our model can improve the accuracy significantly
compared to the start-of-the-art solutions.

The rest of this paper is organized as follows. After discus-
sing related works in Section 2, Section 3 introduces prelimi-
naries and formalizes the problem. Section 4 investigates our
technical proposals. Section 5 presents empirical studies, Sec-
tion 6 discusses some practical issues of this paper, and Sec-
tion 7 concludes the paper.

2 RELATED WORKS

Many efforts have been paid in housing price forecasting,
including city-level housing price forecasting [3], [4], [5], [6],
[7], [8], [9], [10], [11], [12], [13], [19], [20], [21], [22], [23], [24],
[25], [26], [27], [28], [29], [30], [31], [32] and predicting housing
price of individual real estates [7], [14], [15], [16]. The individ-
ual housing price predictionmethods rely heavily on the level
of detailed property-transaction records and features, where-
as most publicly released data is not adequate to support that.
So in this paper, we focus on how to achieve fine-grained
housing price forecastingwith such publicly released data.

2.1 City-Level Housing Price Forecasting

Existing results on housing price forecasting models are
mostly on city-level, and researches in this field can also be

divided into three categories, geostatistical methods, machine
learning-basedmethods, and deep learning-basedmethods.

� Geostatistical methods: Geostatistical approaches mainly
include Geographically Characteristically Temporally
Weighted Regression (GCTWR) models [19], [20], [21],
[22], [23] and Eigenvector Spatial Filter Regression
(ESFR) models [13], [24], [25]. The GCTWR models,
which are a typical category of geostatistical models,
integrate both temporal and spatial information in
weightedmatrices to capture both spatial and temporal
heterogeneity in house price predictions. In particular,
[19] first proposes a geographically weighted regres-
sion (GWR) model for spatiotemporal analysis and
modeling. [20] proposes a geographical and temporal
weighted regression (GTWR), which is an extension of
geographicallyweighted regression, to account for spa-
tiotemporal local effects, and [22] employs the GTWR
approach to estimate house prices by using travel time
distance as themetric. Based on the previous GWR and
GTWR models, [21] develops a geographically and
temporally weighted autoregressive model (GTWAR)
to account for both non-stationary and auto-correlated
effects simultaneously, and formulates a two-stage
least squares framework to estimate this model. To fur-
ther improve house price estimations, [23] proposes a
Kernel-Based GTWAR (KBGTWAR) model by incor-
porating the basic principles of support vectormachine
regression. The ESFR models incorporate spatial influ-
ences with the traditional Ordinary Least Square (OLS)
model to achieve better performances. An early study
conducted by [24] analyzes two different spatial filter-
ing approaches to create spatial predictors which can
be easily incorporated with conventional regression
models. Considering the interactions in spatial per-
spective, [25] introduces an ESF model to the predic-
tions of house prices to achieve a comprehensive
understanding of complex spatial dependencies and
autocorrelations. [13] verifies the spatial distributions
of house prices with an eigenvector spatial filtering
(ESF) procedure and then analyzes the local variations
and spatial heterogeneity of house prices.

� Machine learning-based methods:Most machine learning-
based methods can only capture the single temporal
dependencies. In particular, [3] first uses the VAR (Vec-
tor Auto Regression) to forecast city-level average
housing price with time series analysis. By taking tem-
poral dependencies into account, [5] forecasts housing
prices with the STAR (Smooth Transition AutoRegres-
sion) model. And [6] proposes a hybrid algorithm for
the housing price prediction by combining the SVR
and particle swarm optimization together.[7] makes
the predictions by building a univariatemodel with the
ARIMA (Auto regression Integrated Moving Average)
model, which is applied for the short-term prediction
of time series. [8] uses a decision tree-basedmethod for
summarizing possible influence factors of housing pri-
ces. [9] uses a SOM (Self Organizing Map) and LVQ
(Learning Vector Quantization) combined complex
network for the real estate forecasting. In addition,
some methods such as the SPVAR, CAR, SAR, and
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Lasso and Ridge regression models, can involve extra
spatial dependencies by learning low-level spatial fea-
tures. On the basis of VAR, [4] forecasts housing price
for districts in city-level with the SPVAR (Space Vector
AutoRegressive) model by taking both spatial (low-
level) and temporal dependencies into account. The
CAR models are also a typical category of spatial
econometric models. For modeling and statistical anal-
ysis of spatiotemporal economic data, [33] proposes a
spatial temporal conditional autoregressive model.
Similarly, [26] proposes a poisson conditional autore-
gressive model to analyze spatiotemporal economic
data. Given the fact that traditional CAR neighborhood
selections are based on distances or boundaries
between regions, [27] proposes a Stochastic Neighbor-
hood CAR (SNCAR) model where the neighborhood
selection depends on unknown parameters. The SAR
models are another typical category of spatial econo-
metric models, and are similar to the spatial lag model.
As a pioneer of SAR methods, [28] proposes a two-
stage least squares spatial estimator to improve the spa-
tial lagmodel. Based on [28], [29] proposes the best spa-
tial two-stage least squares estimators, which are
asymptotically optimal instrumental variable estima-
tors, to further improve the spatial lag model. To
achieve cross-sectional spatial autoregressive, [30]
combines the spatial lag model with nested random
effects to propose new estimators based on the instru-
mental variable approaches, and the proposed
approach is used to analyze the house price variation
in England. The lasso and ridge regression models are
the variants of standard linear regression by adding
L1 and L2 regularization, respectively. Specifically,
[31] employs both the lasso and ridge regression mod-
els on house price predictions, and demonstrates that
both these two regressions can deal with multi-collin-
earity. [32] involves multiple boosting tricks into ridge
regression to achieve better performances.

� Deep learning-based methods:Deep learning-basedmeth-
ods refer to using models such as LSTM (Long Short
Term Memory), or ANN (Artificial Neural Network),
to capture low-level temporal correlations to predict
housing prices. Specifically, [10] utilizes ANN to pre-
dict house price on city-level by considering low-level
spatial and additional static features. It investigates the
predictive power of both the hedonic model and the
ANN model. [4] proposes a memristors-based ANN
model to learn a multi-variable regression model from
housing price labeled samples. [7] adopts massive
deep learning functions such as Adam optimizer and
Relu function to capture the price trends, and then fed
them into the ARIMA model to predict housing price
on city-level. [11] first uses LSTM to build housing
price prediction model by exploiting temporal correla-
tions, and further employs stateful LSTM and stack
LSTM to improve the accuracy.

2.2 Analysis of City-Level Works

The reasons that these city-level solutions cannot be
extended to solve the problem of subregion-level housing
price forecasting are as follows:

� Unavailability of involving all-level spatiotemporal depen-
dencies:Most previous models can only capture tempo-
ral dependencies with time series methods. Given that
some newly proposed methods can utilize low-level
spatial dependencies to improve housing price predic-
tion model, the all-level spatial dependencies in near
and far neighborhoods, which are essential for region-
level housing price forecasting, have never been effec-
tively captured by proposedmethods due to the lack of
massive convolutions in the structure of thesemethods.

� Inefficiency of fusions: Feature-based fusion is widely
used in previous housing price prediction methods to
improve the accuracy of prediction by involving more
realistic features. However, owing to the fact that the
increasing number of features for fusing may lead to
the curse of dimensionality and spatial-temporal asyn-
chronism, the effectiveness of feature-based fusion
remains limited. To enhance the effectiveness of fea-
ture-based fusion, model-based fusion is employed in
some recent methods. However, instead of effectively
capturing the correlations among multiple modalities,
traditional model-based fusion tends to lean to some
special models, hence affects the accuracy of proposed
models.

� No non-linear capability of classic geostatistical andmachine
learning methods: Due to the lacking of non-linear capa-
bility, geostatistical approaches and most machine
learning-basedmethods cannot extract the complicated
interactions among multiple influential modalities
which are essential for house price learning in both spa-
tial and temporal perspectives, therefore the perform-
ances of thesemethods can be significantly limited.

� Overfitting of advanced deep learning approaches: In recent
years, tons of advanced deep learningmethods includ-
ing DNN-based Deep-ST [34] , ST-ResNet [35] and ST-
InceptionV4 [36] have been devised to address the spa-
tiotemporal prediction issues. Actually, due to the
network connectivity, these methods are mainly
dependent on high-level features instead of all-level
features, and this eventually leads to their weakness in
generalization and unavoidable overfitting in small
and sparse subregion datasets.

3 PRELIMINARIES

3.1 Problem Definition

In this paper, we formally define basic concepts as well as
the problem studied in the work.

Definition 1 (City Region). Given a city, its urban region
can be divided into small square-shaped subregions with
the side-length of d0

1 kilometers. So, the urban region can
be represented by a set of equal-sized grids, withmr rows
and mc columns. A grid at ith row and jth column can be
denoted as ri;j, where i 2 f1; . . . ;mrg and j 2 f1; . . . ;mcg.

1. The setting of d0 should balance the trade-off between the fineness
of urban region house price predictions and the densities of historical
data. To eliminate the influences of some adventive abnormal transac-
tions, we request that there should be no less than 10 transactions in
one single area during one whole month. To this end, in our implemen-
tation, we divide cities into small square-shaped areas with the length
of 2 kilometers.
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Fig. 1a illustrates the urban regions of Beijing, which has
been divided into a 30� 30 subregions.

Definition 2 (Housing Price Set). Given a month T and a
city, we define the housing transaction price set of the entire
city during this month as ST . We have ST ¼ STr1;1 [ . . . [
STrmr;mc

, where STri;j ði 2 f1 . . .mrg; j 2 f1 . . .mcgÞ denotes
the housing price set of an urban subregion ri;j during
month T . Within each set STri;j , a transaction can be uniquely
identified by the transaction timestamp tk together with the
subregion IDs, so that the transaction can be represented by
STri;j ¼ fst1ri;j ; st2ri;j . . .g ðt1; t2; . . . 2 T Þ, where s

tk
ri;j indicates the

price of the transaction in region ri;j and time tk.

Definition 3 (Housing Price of a Subregion). Given a
month T and a subregion ri;j, the housing price of this
subregion can be calculated by:

pTri;j ¼
1

STri;j

��� ���
XSTri;j
��� ���
k¼1

stkri;j : (1)

The subregion housing prices of all mr �mc subregions
of month T can be denoted as a tensor pTri;j 2 Rmr�mc�1. The
image-like housing price matrix is shown in Fig. 1b.

Definition 4 (Subregion Housing Price Forecasting).
Given a historical housing price dataset fST t ¼ 0; . . . ; nj g
of a city, our purpose is to design a method such that
the housing price pnþ1

ri;j
can be predicted for any subregion

ri;j.

The quality of the prediction can be measured by RMSE
(Root Mean Square Error) as shown by Equation 2, wheredpnþ1
ri;j

denotes the predicted housing price of subregion ri;j.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

mr �mc

Xmr

i¼1

Xmc

j¼1

dpnþ1
ri;j

� pnþ1
ri;j

� �2

vuut : (2)

4 SUBREGION HOUSING PRICE FORECASTING

MODEL

In this section, we first analyze the parameters which can
influence the subregion housing price and then introduce
the forecasting model for the subregion housing price
problem.

4.1 Influence Factors of Subregion Housing Price

In most previous works, the housing price prediction is
modeled in the form of temporal dependency analysis .
Some recent research suggests that the de facto influence
factors are more complicated [37]. To this end, we analyze
the ingredients that influence the future housing price,
systematically.

Spatial Correlations. To formulate the problem in Section 2,
we have divided an entire city into small subregions. Intui-
tively, the housing prices of two neighboring subregions
have strong correlations. For instance, a more developed
subregion tends to be more commercially bustling, more
convenient in transportation, and safer in securities. Such
ingredients have a radiative effect on their neighboring sub-
regions as shown in Fig. 2.

Long-Term Periodicity and Short-Term Tendency. It is widely
accepted that the future housing price is greatly affected by
long-term periodicity and short-term tendency. In [17], the
influences of long-term periodicity2 are discussed. The
impacts of short-term tendency3 on future housing price are
evaluated in [38].

Current Ingredients. It has been concluded that the future
housing price is greatly affected by many current economic
and social elements, such as down-payment ratios, mort-
gage rates, house property tax policy, GDP (Gross Domestic
Product) growth, and demographic factors, and some other
static features.

The Future Price-Growth Expectations. Theoretically, from
an economic perspective, the future price-growth expecta-
tions would give feedbacks on the tendency of housing
price, once the public shows cognitions on the housing mar-
ket [37]. Such a type of influence has been observed in
Tokyo before 1991 and in China in the past decade.

In summary, the influence factors can be generalized into
four parts: Long-term spatiotemporal correlations, short-term
spatiotemporal correlations, current economic and social
ingredients, and future price-growth expectations. All these
factors are integrated for predicting subregion housing prices.

4.2 Major Components of the Forecasting Model

Hereby, we propose the solution framework for the prob-
lem of subregion housing price forecasting. The architecture
overview is shown in Fig. 3, which consists of five major

Fig. 1. AnExample of Beijing. (a) Regions; (b) Housing PriceDistributions

Fig. 2. Subregion Housing Prices of Beijing during 2017.

2. The regression period of long-term periodic influences on housing
price prediction llong can be set to 5 years. [17].

3. In previous studies [38], the regression period of short-term ten-
dency lshort is set to 12 months (1 year).
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components: i) Long-term spatiotemporal DenseNet; ii)
Short-term spatiotemporal DenseNet; iii) Current ingredient
module; iv) Kalman Filter for future price-growth expecta-
tions; v) Joint gated co-attention based fusion. The previous
four components are in correspondence to the above-men-
tioned influence factors. We organize them as four types of
inputs in accordance with their time dimensional attributes,
i.e., distant periodicity, recent tendency, current, and future
factors, as shown in the upper half of Fig. 3. And finally, the
outputs of the previous components are fused with the last
fusion component by considering the correlations between
the previous components.

Given historical transactions of a city, we transform them
into tensors Pl 2 Rmr�mc�5 and Ps 2 Rmr�mc�12 , whereas
each tensor refers to the monthly aggregated housing price
values.

The long-term and short-termDenseNet components share
the same network structure with a modified DenseNet [39].
Such a structure captures the spatial correlations of housing
prices between neighboring subregions and the temporal
dependencies during different time periods. For the current
ingredient component, we manually extract features from
economic, social, and static ingredients, then feed them into
the embedding layer and the FC (Fully Connected) layer. The
last component simulates the effects of future price-growth
expectations. In our implementation,we use theKalmanFilter
tomodel the subjective expectations from the public.

The outputs of the previous four components, Pl, Ps, Pc,
and Pf , are fed into the joint gated co-attention based fusion
as the input respectively. The integrated result is further
mapped by a Tanh function to interval ½�1; 1�. Compared
with standard logistic functions, Tanh function offers a faster
convergence in processing back-propagation learning [40].

4.2.1 Long-Term and Short-Term Spatial-Temporal

DesNet

The long-term and short-term components share the same
network structure consisting of three sub-components: con-
volution, dense block, and a transition layer. Based on the
particular characteristics of housing price predictions, we
modify DenseNet as illustrated in Fig. 4.

Convolution. As described in Section 3.1, the housing pri-
ces of neighboring subregions have obvious spatial correla-
tions. Such a type of correlations can be effectively captured
by adopting CNN (Convolution Neural Network), which
has shown its efficiency on extracting spatial structural
information [40]. Also, as shown in Fig. 2, this kind of corre-
lations has radiative effects, not only affecting direct neigh-
boring subregions, but also rather distant neighboring
subregions. To perceive more neighboring urban subre-
gions, we adopt a multi-layer CNN. [35]. For example, there
are m convolutions (i.e., Conv14), as shown in Fig. 4a, in one
dense block. The total number of all Conv1s in the compon-
net is N �mþ 1, so that the stack of convolutions is capable
of capturing subregion housing price correlations city-wide.

Dense Block. With the increased number of layers, the
issues of gradient vanishing and overfitting become more
and more serious. To handle these issues, [39] proposes a
densely connectivity mode Dense Connectivity, as illustrated
in Fig. 4b. For dense block i, the input of layerm is:

Im ¼ HmðP 0
i ; P

1
i . . . ; P

m�1
i Þ; m ¼ 1; 2; 3; . . . (3)

The function Hm is a nonlinear function consisting of one
convolution Conv1, one Relu function, and one BN (Batch
Normalization) [41] function. The BN is to convert the out-
put of each layer into a normal distribution, which can also
avoid the overfitting significantly. Compared to P 0

i , the
Pm�1
i is transformed into high-level features from low-level

after several nonlinear functions. Notice that the connection
mode between feature maps Pm

i and P 0
i ; P

1
i . . . ; P

m�1
i is an

channel-wise addition. We have:

CNðPm
i Þ ¼ sumfCNðP 0

i Þ;CNðP 1
i Þ . . . ;CNðPm�1

i Þg: (4)

Fig. 3. Architecture.

Fig. 4. Architecture of long-term and short-term DesNet.

4. The kernel size of convolution Conv1 is fixed to 3� 3.
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Here, function CN denotes the channel number. And we can
observe that the last layer’s input comes from all the front
layers output, which indicates that our model can learn the
low-level and high-level features. Whenmaking decisions for
prediction, our model depends on both the high-level and the
low-level futures, which can help model remit overfitting in
some extent. Besides, the features of sparse housing price
datasets are insufficient, which makes it hard to capture the
spatiotemporal characteristics completely. Thus this kind of
densely connectivity can make sure that our model learns all
levels of spatiotemporal features, which proves that we can
have superior performance on small and sparse datasets.

Transition Layer. In the original DenseNet, an average pooling

function is used in the transition layer to reduce the features
while they are lacking, which is unfit for sparse datasets.
Besides, the original FC layer after Dense Block N is initially
used for image classification, which can not be adopted for the
task of forecasting subregion housing prices. Therefore, in the
improved version of DenseNet of our work, we replace the
average pooling function by a BN function to further remit the
overfitting.

To aggregate the multi-channel feature maps into the
final prices better, we try a Conv2 to replace the original FC
layer. As shown in Fig. 4a, Pinner has multiple channels after
N dense blocks. The final output feature map is then calcu-
lated by the following equation,

Poutput ¼ fðWin � Pinner þ binÞ: (5)

Here, function f is the activation function Tanh. � denotes
the convolution Conv25. Win and bin are the learnable
parameters in the modified DenseNet.

4.2.2 Current Ingredient Module

As analyzed in Section 4.1, subregion housing prices can be
influenced by many complex economic, social, and political
factors as well as some additional static factors. All these
factors at the current time point can be collectively known
as current ingredients, and they can be divided into five cat-
egories, economic and social factors, transportation condi-
tions, school district, house properties, and surrounding
environment and facilities, as shown in Table 1.

Economic and Social Factors. As shown in Table 1, eco-
nomic and social factors including the growth of GDP,
mortgage rates, average incoming of the public, unemploy-
ment rate and the number of permanent residents. Figs. 5
and 6 illustrate the historical trends of the ingredients of
mortgage rates, average incoming of the public and the
number of permanent residents in both NYC and Beijing.
As observed, these ingredients changed hugely, constantly
and randomly in both cities. Due to the inherent correlations
between economic and social ingredients and housing pri-
ces [17], we select the five economic and social ingredients
as the main current ingredients.

Static Feature Selection. Also as demonstrated in Table 1,
housing prices can also be influenced by other categories of
static factors. However, the trade-off between costs and bene-
fits of involving static factors should be carefully balanced in
practice. To this end, we evaluate the detailed contribution of

each factor to the final accuracy of subregion housing price
prediction, and select the ones with higher contributions. Spe-
cifically, we employ the widely-used IGI (Information Gain
Index) [42] as the metric to evaluate the validity and impor-
tance of each feature. The validity and importance vi of feature
i can be defined as follows:

vi ¼ sumðI iÞ
sumðF iÞ: (6)

Where I i denotes the information gain index of the i th fea-
ture (0<¼i<¼20), and F i denotes the frequency that this
feature occurs. The validities of all additional static features
are then evaluated and illustrated in Fig. 7. Intuitively, the
features of total units and schools have the two maximum
validities, while the factors of tourist spot and museum are
with the two minimum importances. Next, we combine the
top k valid static features with the five main current ingre-
dients as the final current ingredients. We will discuss the
impacts of the value of k in experiments.

Feature Processing. Notice that all static factors are con-
fined to individual houses. To calculate a selected static fac-
tor of a given subregion, we use the mean value of the
corresponding factors of all houses within this subregion.
For the economic and social ingredients, we let each subre-
gion be with the same values of them. Next, we integrate all
features as a mr �mc � ðkþ 5Þ tensor and then feed it into
the embedding layer to map the data fields into a structural
and dense input space. Finally, we use the FC layer to trans-
form low-dimensional values into the high dimensions in
order to get ready for the final fusion.

4.2.3 Future Price-Growth Expectations

In this subelement, we simulate the subjective expectations
of the public. [17] proposes a Kalman Filter (KF) based
method to predict the influences of future price-growth
expectations. We hereby adopt the KF-based filter into our
integrated network. The solution of combining KF into the
integrated networks is borrowed from the idea of bagging
in machine learning. With the integrated KF-based methods
and neural networks, we construct a novel stronger learner,
which effectively enhances the prediction accuracy.

Given a historical housing price dataset fST jT¼1;...;ng, for
time nþ 1 and subregion ri;j, we define the housing demands
of all residents of the subregion as Dnþ1

ri;j
. The growth rate of

the housing demands in this region is defined as G nþ1
ri;j

. The

average trading price of the subregion is defined asPnþ1
ri;j

.

By using the proposed KF-based method in [17], we first
predict the housing demands Dnþ1

ri;j
and the growth rate of

the housing demands G nþ1
ri;j

, based on the historical housing
price set fSn�1; Sng. After predicting the housing demand
and growth rate of the housing demand of future time nþ
1, we can calculate the expected housing price of region by:

E Pnþ1
ri;j

fDnþ1
ri;j

;G nþ1
ri;j

g
���� �

¼
Dnþ1

ri;j

r
þ

G nþ1
ri;j

rðrþ nÞ : (7)

Here, r and n indicate the discount rate and the demand
growth revision [17], respectively. With the method, we can
calculate the price-growth expectation for each subregion in5. The kernel size of Conv2 should be 1� 1.
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the city, and generate the future price-growth expectation
tensor sizedmr �mc � 1.

4.2.4 Joint Gated Co-Attention Based Fusion

So far, we have discussed the learners in different temporal
dimensions, the outputs of which should be fused. Theoreti-
cally, the impacts of each learner on the final prediction result
should be differential, and the outputs of Pl, Ps, Pc, and Pf

should be significantly interactional with each other. For
instance, long-term, short-term tendencies and future expect-
ations of housing prices can definitely be influenced by those
current ingredients. This kind of correlations between the out-
puts of different components is not considered in previous
multi-modality housing price prediction. Besides, the outputs
of four components are quite heterogeneous. As demon-
strated in Table 2, the properties, units and structures of data
in these four modalities are disparate in some extent. Hence,
how to fuse them reasonably is a challenging task.

To address the fusion issue of multi-modality learnings
with considering the correlations between different learners,
co-attention based fusion has beenwidely used in the fields of
question answering [43], healthcare prediction [44], entity rec-
ognition [45], and commodity recommendation [46] in recent
years. The co-attention mechanism aims at capturing the rela-
tionships among various modalities. However, co-attention
based fusion can only capture partial correlations among

different components due to their linear-combination-
based conditional fusion. To this end, we propose a novel
fusion method, JGC, as illustrated in Fig. 8, for completely
fusing multi-modality components. The JGC based fusion
includes three submodules: joint co-attention submodule,
filtration gate submodule, and joint representation sub-
module. We will introduce the detailed design of this
fusion module subsequently.

Joint Co-Attention Submodule. In this submodule, we first
incorporate all linear combinations in the original co-attention
based method as the conditional affinity matrices for compo-
nents pairs. To learn the correlations between paired compo-
nents completely, we further compute the corresponding joint
affinitymatrices between components defined as:

Al ¼ softmax

� P l � Ps

P l � Pc

P l � Pf

2
4

3
5�� softmax

� P l � Ps

P l � Pc

P l � Pf

2
4

3
5�

As ¼ softmax

� Ps � Pl

Ps � Pc

Ps � Pf

2
4

3
5�� softmax

� Ps � Pl

Ps � Pc

Ps � Pf

2
4

3
5�

Af ¼ softmax

� Pf � Pl

Pf � Ps

Pf � Pc

2
4

3
5�� softmax

� Pf � Pl

Pf � Ps

Pf � Pc

2
4

3
5�

8>>>>>>>>>>>><
>>>>>>>>>>>>:

:

(8)

Here, � and � are the element-wise addition and element-
wise multiplication. Notice we only compute the conditional

TABLE 1
Current House Pricing Features in NYC

Fig. 5. Historical influence ingredients in NYC. Fig. 6. Historical influence ingredients in Beijing.
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and joint affinity matrices for Pl, Ps, and Pf , it is because Pc

including complex static features is different from other out-
puts in the value and property of data and is not appropriate
to be directly concatenated with them. Therefore, we only
fuse Pl, Ps, and Pf by considering their correlations. Next, as
defined in Equation (8), the conditional and joint affinity
matrices are all normalized to produce the attention weights
by the softmax function, and finally, as illustrated in Fig. 8,
combined into the final balancedweights.

Filtration Gate Submodule. Even if there exist significant
correlations among multiple modalities, the final fusion
result may still be dominated by some individual submod-
ule [47]. Furthermore, the calculation of joint representa-
tions may bring noises if two modalities are too similar.
Therefore, we then introduce the mechanism of Filtration

Gate (FG) to dynamically adjust the weight of each modal-
ity. The definition of FG can be formulated by:

bl
s

bl
c

bl
f

bs
l

bs
c

bs
f

b
f
l

bf
s

bf
c

2
6666666666664

3
7777777777775
¼ s

Wl
sðjjhl � hsjjF Þ�1

Wl
cðjjhl � hcjjF Þ�1

Wl
fðjjhl � hf jjF Þ�1

Ws
l ðjjhs � hljjF Þ�1

Ws
c ðjjhs � hcjjF Þ�1

Ws
f ðjjhs � hf jjF Þ�1

Wf
l ðjjhf � hljjF Þ�1

Wf
s ðjjhf � hsjjF Þ�1

Wf
c ðjjhf � hcjjF Þ�1

2
66666666666666664

3
77777777777777775

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

(9)

Fig. 7. The validity evaluation of static features in NYC.

TABLE 2
Heterogeneous Data of Four Components

Modality Property and unit Structure

Pl; P s Property: housing price; Unit: $; Hierarchical convolutional characteristics;

Pf Property: housing price; Unit: $; Non-linear simulation of public expectation;

Pc Property: rate, count, price and encoding; Unit: square foot, $; Linear concatenation of ðkþ 5Þ separate factors;

Fig. 8. Architecture of joint gated co-attention based fusion and detailed procedure of joint co-attention submodule.
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where

hl

hs

hc

hf

2
664

3
775 ¼ Tanh

WlP l

WsPs

WcPc

WfPf

2
664

3
775þ

bl

bs

bc

bf

2
664

3
775

0
BB@

1
CCA: (10)

Here the series of b refer to the filtration gates, and the
value of an individual b depends on the similarity between
the two corresponding modalities. The series ofW and b are
the learnable parameters in the FG, and s is the logistic sig-
moid activation function. Besides, jjF refers to the Frobenius
Norm [48] which is widely adopted to measure the distance
of matrices, and it is helpful to simplify the computational
process and reduce the number of parameters compared to
the design of traditional filtration gate [49].

Joint Representation Submodule. Based on the balanced
weights obtained by the joint co-attention submodule, we
first compute the temporary joint representations Cl

t, C
s
t ,

and Cf
t for different components by:

Cl
t ¼ ½bl

sP
s;bl

cP
c;bl

fP
f � �Al

Cs
t ¼ ½bs

l P
l;bs

cP
c;bs

fP
f � �As

Cf
t ¼ ½bf

l P
l;bf

sP
s;bfc P

c� �Af

8><
>: : (11)

Notice that, to address the noises caused by the similarities
between paired modalities, we filter the output of the previ-
ous four components by multiplying them with the corre-
sponding filtration gate respectively. Next, to capture
further correlations between modalities, we consider the
joint representations for components in Equation (11) by:

Cl ¼ Cl
t � softmaxðPl � PaÞ

Cs ¼ Cs
t � softmaxðPs � PaÞ

Cf ¼ Cf
t � softmaxðPf � PaÞ:

8<
: ; Pa ¼ Pl � Ps � Pf

(12)

By fusing these three formal joint representations, we then
generate an intermediate joint representation C.

C ¼ Cl � Cs � Cf: (13)

Finally, to consider the all-stage joint representations, we
calculate the final output of our JGC based fusion by,

dPnþ1 ¼ Wl � ðPl � Cl
tÞ þWs � ðPs � Cs

t Þ
þWf � ðPf � Cf

t Þ þWc � C

� �
: (14)

Here Wl, Ws;Wf , and Wc are the learnable parameters for
adjusting the influence weights of various components
respectively.

5 EXPERIMENTS

5.1 Setup and Data Analysis

In this subsection, we introduce the datasets of NYC and
Beijing, as well as some settings of experiments.

NYC and Beijing Datasets. The house transaction price
dataset of NYC is provided on the public platform of NYC
Open Data.6 The current ingredients can be taken from the

Federal Reserve Economic Data.7 The NYC house transac-
tion dataset, which starts from Jan. 2003 to Feb. 2015, has a
time span of 13 years.

The house transaction dataset of Beijing is taken from the
Lianjia dataset8 in Kaggle public datasets and the Zhugez-
haofang.9 In addition, the current ingredients are provided
on the website of the State Statistics Bureau.10 The house
transaction dataset of Beijing, which starts from Jan. 2011 to
June. 2018, has the time span of 7 years.

Data Sparsity. For the datasets of NYC and Beijing, the
average number of transaction records (AVT) per subregion
is no more than 30, as shown in Table 3. The work of VAR
model applies for datasets with AVT greater than 100. For
works of SVR and ANN models, the AVT value is above 50.
Hence, our housing price data is sparse.

Settings. The model we proposed is implemented based on
Keras.11 In our JGC_MMN,we useMin-Max normalization to
scale the input data into the range [-1,1] before feeding them
into the network. There are two kind of convolutions (Conv1
and Conv2) in our model with the filter sizes of 3� 3 and 1�
1 respectively. The filter number of Conv1 appeared in each
DenseBlock is named growth rate, which has been set to a
fixed value in our model. The filter number of the last Conv2
after DenseBlockN is 1, and the filter number of other Conv2
is set to different values (e.g., 32, 64) according to the experi-
mental results.We use 90 percent of the original data for train-
ing and 10 percent for validation. For every model, we adopt
the same learning rate and epochs. Theparameter ofKF-based
submodule follows the setting of [37].

Housing Price Data Analysis. For both NYC and Beijing,
we analyze the long-term and short-term housing price
trends in different regions. We first randomly select 3
regions from two cities, and illustrate the long-term housing
prices of selected regions in Figs. 9 and 10. As observed, for
long-term housing prices, there exist significant differences
between the long-term housing prices of different regions.
For instance, from 2012 to 2013, the housing price of region
1 in NYC increases rapidly while the prices of the other two
regions decrease moderately. The same scene happens in
Beijing from 2017 to 2018. For short-term housing prices,
from the selected regions in the year 2015 in Figs. 11 and 12,

TABLE 3
Datasets Description

DataSets NYC house Beijing house

Time Span 1/2003-12/2015 1/2011-12/2017
Time Span of Training Set 1/2003-8/2014 1/2011-3/2017
Time Span of Testing Set 9/2014-12/2015 4/2017-12/2017
Time Interval Size one month one month
Range of House Prices 95053-81262300 USD 500000-19980000 CNY
Number of Subregions (12*12) (30*30)
AVT of a subregion 15+ 10+
Number of Time Intervals 156 84
Number of Ingredients 156*5 84*5

6. https://opendata.cityofnewyork.us

7. https://fred.stlouisfed.org
8. https://www.kaggle.com/ruiqurm/lianjia
9. http://su.zhuge.com
10. http://www.stats.gov.cn/
11. https://keras.io/
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we find that the prices of different regions in NYC vary
independently. These phenomena confirm the necessity of
carrying out the research, and also reflect the challenge of
the problem.

5.2 Baselines

The baseline solutions are as follows:
GTWR. Geographical and temporal weighted regression

is an extension of geographically weighted regression, to
account for spatiotemporal local effects, and we utilize addi-
tional software to model it.

SAR. Spatial auto-regression model is a typical category
of spatial econometric models and is similar to the spatial
lag model. We also use the same features as our models to
calculate its result.

Lasso. Lasso regression is a traditional regression method
wildly used in economic areas. We feed it with the same fea-
ture as our models in each region.

Ridge. Like the lasso regression, ridge regression is another
classic regression method in economic issues. We feed this
model aswhat we do in Lasso regression.

SVR. We feed the same features as our models including
historical transaction records, current ingredients and
future expectations into SVR for training. Further, to involve
the spatial correlations, we also feed the SVR with the hous-
ing prices of 8 neighboring regions.

VAR. Vector AutoRegressive is a widely used method in
economic issues including forecasting housing price in city-
level. For each subregion, we feed it with the same features
as our models.

ST-ANN. The ST-ANN is fed with the spatial (8 neigh-
boring regions’ prices) and temporal (12 previous months’
prices) features of each subregion. Besides, the same current
ingredients and future expection are also considered.

Deep_ST. The DNN-based model has been widely used
for spatial-temporal prediction issues. We adopt it by the

method suggested in [34]. And other factors are also consid-
ered in the process of training.

ST-InceptionV4. InceptionV4 [36] has the same excellent
performance as other deep networks on abundant datasets
in image classification. We adjust the layers of network
structure and feed it with the same features, to select opti-
mal results to make comparisons.

ST-ResNet. ST-ResNet is first proposed for spatiotemporal
crowd flows predictions [35]. Similar to InceptionV4, the pop-
ularmodel is comparedwith ours in the same condition.

P-D6-L9*. P-D6-L9* are a set of ablative variants based on
the model of the previous version.

Further, to investigate the effectiveness of our joint gated
co-attention based fusion, we use two additional baselines.

Conditional Co-Attention. We here simplify our JGC_fu-
sion by only employing the linear combination to exploit
partially relationships among multiple modalities, and
name this variant as conditional co-attention.

Model-Based Fusion. In model-based fusion, we just fuse
all the outputs of the long-term and short-term DesNets,
current ingredient module and future KF by multiplying
them with a series of learnable weights.

5.3 Evaluation

5.3.1 Comparison With Baseline Solutions in Both NYC

and Beijing

We show the comparison results on NYC and Beijing data-
sets with baseline solutions in Tables 4 and 5, respectively.
Also, we consider 3 other variants of JGC_MMN, by varying
the number of layers and dense blocks and the inclusion of
different features (i.e., current ingredients, or future expect-
ations). We use C and F to represent the inclusion of current
ingredients and future expectations, respectively. We use D
and L to represent the number of dense blocks and the num-
ber of layers of a dense block, respectively. For example, D6-
L9-F refers to a variant of JGC_MMN, which has 6 dense

Fig. 9. Long-term prices of different regions in NYC.

Fig. 10. Long-term prices of different regions in Beijing.

Fig. 11. Short-term prices of different regions in NYC in 2015.

Fig. 12. Short-term prices of different regions in Beijing in 2015.
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blocks of 9 layers and is associated with future expectations
as features. It can be observed that our method can outper-
form most alternative solutions in terms of RMSE and
MAPE. Particularly, in Tables 4 and 5, we find that D6-L9-
C-F gets the best forecasting accuracy, which has a 23.12
percent lower RMSE value and a 38.55 percent lower MAPE
value than the SVR method averagely.

5.3.2 Impacts of Components and Features

From Tables 4 and 5, we then analyze the impacts of the
proposed components. Compared to the model-based
fusion, we here have considered the relationships among
submodules. First, as can be discovered, the long-term and
short-term DenseNets decrease the RMSE by 11.36 and
12.57 percent and the MAPE by 7.54 and 12.36 percent
respectively and independently. Also, the results show the
importance of incorporation of different features. For exam-
ple, in Table 4, D6-L9-C-F has a lower RMSE value than D6-
L9-C, which demonstrates the necessity of considering
future expectations. Similar results can be observed for the
effect of current ingredients. The current ingredients and
KF components decrease the mean RMSE by 6.57 and 7.0
percent respectively. For D6-L9, the RMSE values and
MAPE values of NYC and Beijing are 24.32 and 67.12
respectively, and it still outperforms other baselines.

5.3.3 Impacts of JGC Based Fusion

In this subsection, we investigate the effectiveness of our JGC
based fusion by comparing it with conditional co-attention
and model-based fusion based on the network structures of
D6-L9-C-F, D5-L9-C-F, and D5-L9-C-F in Table 6. In both NYC
and Beijing, our approach with JGC based fusion can outper-
form the other two alternative approaches with different net-
work structures, and this verifies the effectiveness of our JGC
based fusion in terms of the accuracy of forecasting. Specifi-
cally, with the network structure of D6-L9-C-F, our JGC based
fusion can reduce the RMSE by 5.39 percent averagely com-
pared to the model-based fusion. Further, the conditional co-
attention can always outperform the model-based fusion with
all three different network structures. This indicates that the

co-attention mechanism works for the fusion optimization,
even a small part of correlations among different temporal
components are obtained. It also verifies the rationality of the
idea of enhancing the fusionmethods by fully and deeply cap-
turing the correlations between different components.

5.3.4 Impacts of Parameters

Furthermore, we test the effect of other parameters, such as
the number of dense blocks and its layers. The result is
shown in Fig. 14. X-axis refers to the total number of layers
in the network, including the head and tail convolutional

TABLE 4
Comparison With Different Baselines in NYC,

and Different Variants of Our Models

TABLE 5
Comparison With Different Baselines in Beijing,

and Different Variants of Our Models

TABLE 6
Comparison With Different Fusion Methods in NYC and Beijing

Fusion methods NYC/RMSE Beijing/RMSE

Joint gated co-attention(D6-L9-C-F) 21.43 60.19

Conditional co-attention(D6-L9-C-F) 22.38 63.22
Model based Fusion(D6-L9-C-F) 22.53 63.97

Joint gated co-attention(D5-L9-C-F) 21.71 61.85
Conditional co-attention(D5-L9-C-F) 22.51 64.89
Model based Fusion(D5-L9-C-F) 22.93 65.88

Joint gated co-attention(D4-L9-C-F) 22.54 62.03

Conditional co-attention(D4-L9-C-F) 23.79 65.08
Model based Fusion(D4-L9-C-F) 24.02 66.85

Fig. 13. RMSE of different number of static features.
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layers (i.e., Conv1 and Conv2) in the JGC_MMN, and the
transition layers between dense blocks. We can see with a
larger number of dense blocks and layers, our model can
learn more all-level features and thus better capture the spa-
tiotemporal dependencies. The performance converges
when the number of layers is greater than 61. But the com-
putation overheads increase sharply with a large number of
layers. In our work, we find the D6-L9 setting best captures
the tradeoff between accuracy and efficiency and hence is
used as our default setting.

To evaluate the impact of k in the static feature selection,
we first sort the 16 static features by their validities in the
descending order. The result is shown in Fig. 13, where X-
axis refers to the number of increased static features. It can
be observed that our model gets the best RMSE results
when adding top 10 and 11 features for NYC and Beijing. If
more (	 10) features are incorporated, overfitting may occur
due to the information redundancy. Hence we select top 10
and 11 features, for NYC and Beijing, which are combined
with the other five ingredients to form the final ingredients.

The effect of subregion size is studied in Fig. 15. We find
the balance point between the information granularity12

and the best normalized RMSE is achieved when subregion
size equals 2km � 2km, which is thus selected as the default
subregion size for our model.

6 CONCLUSION

In this paper, we propose a fine-grained forecasting model,
JGC_MMN, for subregion spatiotemporal housing price

prediction. In particular, we modify the structure of Dense-
Net and adopt the method of bagging by fusing the KF-
based method to improve the accuracy. For better fusion,
we design a novel method to fuse the heterogeneous data of
multi-stage models by fully and deeply capturing the corre-
lations between them. Experiments on two different real-
world datasets have demonstrated that our proposed model
outperforms state-of-the-art solutions. In the future, we will
apply our model which includes an all-time period(i.e., dis-
tant , recent, current, and future time) and fuse their correla-
tions to other similar domains, such as air quality prediction
and power demand prediction.
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