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5 Abstract—Urban housing price is widely accepted as an economic indicator which is of both business and research interest in urban

6 computing. However, due to the complex nature of influencing factors and the sparse property of transaction records, to implement

7 such a model is still challenging. To address these challenges, in this work, we study an effective and fine-grained model for urban

8 subregion housing price predictions. Compared to existing works, our proposal improves the forecasting granularity from city-level to

9 mile-level, with only publicly released transaction data. We employ a feature selection mechanism to select more relevant features.

10 Then, we propose an integrated model, JGC_MMN (Joint Gated Co-attention Based Multi-modal Network), to learn all-level features

11 and capture spatiotemporal correlations in all-time stages with a modified densely connected convolutional network as well as current

12 ingredients and future expectations. Next, we devise a novel JGC based fusion method to better fuse the heterogeneous data of multi-

13 stage models by considering their interactions in temporal dimension. Finally, extensive empirical studies on real datasets demonstrate

14 the effectiveness of our proposal, and this fine-grained housing price forecasting has the potential to support a broad scope of

15 applications, ranging from urban planning to housing market recommendations.

16 Index Terms—Subregion house price prediction, multi-modal networks, heterogeneous data fusion

Ç

17 1 INTRODUCTION

18 HOUSING price forecasting plays a vital role in macroeco-
19 nomic and financial decision supporting. In the past
20 decade, a global financial crisis has been witnessed, due to
21 inaccurate housing price forecasting and unconscionable
22 financial policymaking [1]. In terms of spatial granularities of
23 predictions, existing studies on housing price forecasting
24 models are mostly on city levels, for supporting macroeco-
25 nomic analysis and policymaking. The city-level forecasting,
26 however, can not capture the fact of imbalanced development
27 between a city’s mile-level subregions. For instance, in Xi’an,
28 the average real estate prices of three districts in Sept. 2018
29 increasedmore than 10 percentwhile the average prices of the
30 other six districts decreased about 5 percent during the same
31 period [2].
32 Thus, in this work, we study another type of housing price
33 forecasting, that supports fine-grained and micro-level analy-
34 sis. Specifically, the analysis of mile-level subregion is more
35 fine-grained than urban regions. Such a type of forecasting
36 depicts the potential fluctuations, the distribution of housing
37 prices among different urban subregions as well as the rele-
38 vant static impact factors. With the help of that, we can find
39 broad applications in urban planning, such as community ser-
40 vice support and transportation facilities optimization.

41There exist many studies, however, on city-level housing
42price forecasting, which can be categorized as machine
43learning-based methods [3], [4], [5], [6], [7], [8], [9] and deep
44learning-based methods [10], [11], [12], [13]. Most machine
45learning-based methods only capture the temporal dependen-
46cies. Some newly proposedmethods involve extra spatial dep-
47endencies by learning low-level spatial features. Deep learning
48methods aim at predicting housing prices by capturing tempo-
49ral correlations. Nevertheless, all solutions cannot be extended
50to the subregion scenarios because of the unavailability of
51involving the all-level spatiotemporal influences in the learn-
52ing process and the unavoidable overfitting in small and spa-
53rse subregion-level datasets. Also, there exist works [7], [14],
54[15], [16] on predicting the price of individual houses. How-
55ever, such methods have a high dependency on data quality,
56i.e., requiring detailed property-transaction records and fea-
57tures, which are unavailable formost publicly released data.
58Challenges. However, challenges arise for accomplishing
59fine-grained urban subregion housing price forecasting and
60analysis. The influence factors of housing price forecasting are
61known to be complex. Existing works mostly take the long-
62term, short-term, and low-level spatial correlations of house
63prices into account. Moreover, as mentioned in [17], the cur-
64rent policies also affect the tendency of housing prices. And
65the trend of macroeconomic or future price-growth expecta-
66tion also has a great influence on the current housing price
67[17], e.g., the economic growth of Japan in the 1980s and
68China’s megalopolis in the last decade. Besides, some addi-
69tional static features such as house properties, transportation
70conditions, school districts, surrounding environments, and
71facilities can also significantly affect individual housing price.
72So far, how to design an integrated framework to incorporate
73various impact factors with considering their different charac-
74teristics remains challenging.

� The authors are with the University of Science and Technology of China,
Hefei, China. E-mail: {pengkun, gcc810, zzy0929, wx309, liyuantao}
@mail.ustc.edu.cn, angyan@ustc.edu.cn.

Manuscript received 15 Apr. 2020; revised 15 May 2021; accepted 24 June 2021.
Date of publication 0 . 0000; date of current version 0 . 0000.
(Corresponding author: Yang Wang.)
Recommended for acceptance by L. Xiong.
Digital Object Identifier no. 10.1109/TKDE.2021.3093881

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

1041-4347 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4728-7347
https://orcid.org/0000-0003-4728-7347
https://orcid.org/0000-0003-4728-7347
https://orcid.org/0000-0003-4728-7347
https://orcid.org/0000-0003-4728-7347
https://orcid.org/0000-0002-6079-7053
https://orcid.org/0000-0002-6079-7053
https://orcid.org/0000-0002-6079-7053
https://orcid.org/0000-0002-6079-7053
https://orcid.org/0000-0002-6079-7053
mailto:pengkun@mail.ustc.edu.cn
mailto:gcc810@mail.ustc.edu.cn
mailto:zzy0929@mail.ustc.edu.cn
mailto:wx309@mail.ustc.edu.cn
mailto:liyuantao@mail.ustc.edu.cn
mailto:angyan@ustc.edu.cn


75 Another challenge is the sparsity of property-transaction
76 data. Sparse data limits the sample size and incurs selectiv-
77 ity sample bias for building efficient and accurate forecast-
78 ing models [18], letting alone the limited availability of
79 publicly released data with heterogenous transaction prop-
80 erties. Such data might be dense enough for city-level fore-
81 casting but is shown to be sparse when the urban region is
82 decomposed into mile-level subregions. In particular, the
83 sparse data can result in insufficient house price features
84 which are critical in model training.
85 Contributions. In summary, previous works on housing
86 price forecasting never set foot on the issues of mile-level
87 subregion housing price predictions.
88 To our best knowledge, our JGC_MMN is the first work
89 on effective mile-level subregion housing price forecasting,
90 which has profound effects on trading recommendations
91 for housing markets and urban planning for public facility
92 and optimization. Our main contributions are as follows.
93 i) We propose to use densely connected networks to cap-
94 ture the all-level features in order to overcome the sparsity
95 challenge and alleviate the corresponding overfitting. Besides,
96 we consider more well-selected factors, including current
97 ingredients and future price-growth expectations, as the sub-
98 modules of prediction. ii) We propose a novel multi-modal
99 framework by fusingmultiple learners on the different tempo-

100 ral characteristics (i.e., long-term periodicity, recent tendency,
101 current, and future periods) for depicting spatiotemporal
102 dependencies. To achieve that, we improve the original Dense-
103 Net structure, combine the Kalman Filter, and adjust the
104 diverse structures to further improve the accuracy. iii) To fully
105 fuse these numerous factors with four learners, we design a
106 newmethod, JGC, to learn the correlations between themauto-
107 matically by generating joint attention flows within various
108 modalities and filtrating noises of multiple similar modalities
109 with the gated function. iv) We evaluate our proposed
110 JGC_MMN with real-world house price datasets from NYC
111 and Beijing. Extensive cross-validation experiments demon-
112 strate that our model can improve the accuracy significantly
113 compared to the start-of-the-art solutions.
114 The rest of this paper is organized as follows. After discus-
115 sing related works in Section 2, Section 3 introduces prelimi-
116 naries and formalizes the problem. Section 4 investigates our
117 technical proposals. Section 5 presents empirical studies, Sec-
118 tion 6 discusses some practical issues of this paper, and Sec-
119 tion 7 concludes the paper.

120 2 RELATED WORKS

121 Many efforts have been paid in housing price forecasting,
122 including city-level housing price forecasting [3], [4], [5], [6],
123 [7], [8], [9], [10], [11], [12], [13], [19], [20], [21], [22], [23], [24],
124 [25], [26], [27], [28], [29], [30], [31], [32] and predicting housing
125 price of individual real estates [7], [14], [15], [16]. The individ-
126 ual housing price predictionmethods rely heavily on the level
127 of detailed property-transaction records and features, where-
128 as most publicly released data is not adequate to support that.
129 So in this paper, we focus on how to achieve fine-grained
130 housing price forecastingwith such publicly released data.

131 2.1 City-Level Housing Price Forecasting

132 Existing results on housing price forecasting models are
133 mostly on city-level, and researches in this field can also be

134divided into three categories, geostatistical methods, machine
135learning-basedmethods, and deep learning-basedmethods.

136� Geostatistical methods: Geostatistical approaches mainly
137include Geographically Characteristically Temporally
138Weighted Regression (GCTWR) models [19], [20], [21],
139[22], [23] and Eigenvector Spatial Filter Regression
140(ESFR) models [13], [24], [25]. The GCTWR models,
141which are a typical category of geostatistical models,
142integrate both temporal and spatial information in
143weightedmatrices to capture both spatial and temporal
144heterogeneity in house price predictions. In particular,
145[19] first proposes a geographically weighted regres-
146sion (GWR) model for spatiotemporal analysis and
147modeling. [20] proposes a geographical and temporal
148weighted regression (GTWR), which is an extension of
149geographicallyweighted regression, to account for spa-
150tiotemporal local effects, and [22] employs the GTWR
151approach to estimate house prices by using travel time
152distance as themetric. Based on the previous GWR and
153GTWR models, [21] develops a geographically and
154temporally weighted autoregressive model (GTWAR)
155to account for both non-stationary and auto-correlated
156effects simultaneously, and formulates a two-stage
157least squares framework to estimate this model. To fur-
158ther improve house price estimations, [23] proposes a
159Kernel-Based GTWAR (KBGTWAR) model by incor-
160porating the basic principles of support vectormachine
161regression. The ESFR models incorporate spatial influ-
162ences with the traditional Ordinary Least Square (OLS)
163model to achieve better performances. An early study
164conducted by [24] analyzes two different spatial filter-
165ing approaches to create spatial predictors which can
166be easily incorporated with conventional regression
167models. Considering the interactions in spatial per-
168spective, [25] introduces an ESF model to the predic-
169tions of house prices to achieve a comprehensive
170understanding of complex spatial dependencies and
171autocorrelations. [13] verifies the spatial distributions
172of house prices with an eigenvector spatial filtering
173(ESF) procedure and then analyzes the local variations
174and spatial heterogeneity of house prices.
175� Machine learning-based methods:Most machine learning-
176based methods can only capture the single temporal
177dependencies. In particular, [3] first uses the VAR (Vec-
178tor Auto Regression) to forecast city-level average
179housing price with time series analysis. By taking tem-
180poral dependencies into account, [5] forecasts housing
181prices with the STAR (Smooth Transition AutoRegres-
182sion) model. And [6] proposes a hybrid algorithm for
183the housing price prediction by combining the SVR
184and particle swarm optimization together.[7] makes
185the predictions by building a univariatemodel with the
186ARIMA (Auto regression Integrated Moving Average)
187model, which is applied for the short-term prediction
188of time series. [8] uses a decision tree-basedmethod for
189summarizing possible influence factors of housing pri-
190ces. [9] uses a SOM (Self Organizing Map) and LVQ
191(Learning Vector Quantization) combined complex
192network for the real estate forecasting. In addition,
193some methods such as the SPVAR, CAR, SAR, and
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194 Lasso and Ridge regression models, can involve extra
195 spatial dependencies by learning low-level spatial fea-
196 tures. On the basis of VAR, [4] forecasts housing price
197 for districts in city-level with the SPVAR (Space Vector
198 AutoRegressive) model by taking both spatial (low-
199 level) and temporal dependencies into account. The
200 CAR models are also a typical category of spatial
201 econometric models. For modeling and statistical anal-
202 ysis of spatiotemporal economic data, [33] proposes a
203 spatial temporal conditional autoregressive model.
204 Similarly, [26] proposes a poisson conditional autore-
205 gressive model to analyze spatiotemporal economic
206 data. Given the fact that traditional CAR neighborhood
207 selections are based on distances or boundaries
208 between regions, [27] proposes a Stochastic Neighbor-
209 hood CAR (SNCAR) model where the neighborhood
210 selection depends on unknown parameters. The SAR
211 models are another typical category of spatial econo-
212 metric models, and are similar to the spatial lag model.
213 As a pioneer of SAR methods, [28] proposes a two-
214 stage least squares spatial estimator to improve the spa-
215 tial lagmodel. Based on [28], [29] proposes the best spa-
216 tial two-stage least squares estimators, which are
217 asymptotically optimal instrumental variable estima-
218 tors, to further improve the spatial lag model. To
219 achieve cross-sectional spatial autoregressive, [30]
220 combines the spatial lag model with nested random
221 effects to propose new estimators based on the instru-
222 mental variable approaches, and the proposed
223 approach is used to analyze the house price variation
224 in England. The lasso and ridge regression models are
225 the variants of standard linear regression by adding
226 L1 and L2 regularization, respectively. Specifically,
227 [31] employs both the lasso and ridge regression mod-
228 els on house price predictions, and demonstrates that
229 both these two regressions can deal with multi-collin-
230 earity. [32] involves multiple boosting tricks into ridge
231 regression to achieve better performances.
232 � Deep learning-based methods:Deep learning-basedmeth-
233 ods refer to using models such as LSTM (Long Short
234 Term Memory), or ANN (Artificial Neural Network),
235 to capture low-level temporal correlations to predict
236 housing prices. Specifically, [10] utilizes ANN to pre-
237 dict house price on city-level by considering low-level
238 spatial and additional static features. It investigates the
239 predictive power of both the hedonic model and the
240 ANN model. [4] proposes a memristors-based ANN
241 model to learn a multi-variable regression model from
242 housing price labeled samples. [7] adopts massive
243 deep learning functions such as Adam optimizer and
244 Relu function to capture the price trends, and then fed
245 them into the ARIMA model to predict housing price
246 on city-level. [11] first uses LSTM to build housing
247 price prediction model by exploiting temporal correla-
248 tions, and further employs stateful LSTM and stack
249 LSTM to improve the accuracy.

250 2.2 Analysis of City-Level Works

251 The reasons that these city-level solutions cannot be
252 extended to solve the problem of subregion-level housing
253 price forecasting are as follows:

254� Unavailability of involving all-level spatiotemporal depen-
255dencies:Most previous models can only capture tempo-
256ral dependencies with time series methods. Given that
257some newly proposed methods can utilize low-level
258spatial dependencies to improve housing price predic-
259tion model, the all-level spatial dependencies in near
260and far neighborhoods, which are essential for region-
261level housing price forecasting, have never been effec-
262tively captured by proposedmethods due to the lack of
263massive convolutions in the structure of thesemethods.
264� Inefficiency of fusions: Feature-based fusion is widely
265used in previous housing price prediction methods to
266improve the accuracy of prediction by involving more
267realistic features. However, owing to the fact that the
268increasing number of features for fusing may lead to
269the curse of dimensionality and spatial-temporal asyn-
270chronism, the effectiveness of feature-based fusion
271remains limited. To enhance the effectiveness of fea-
272ture-based fusion, model-based fusion is employed in
273some recent methods. However, instead of effectively
274capturing the correlations among multiple modalities,
275traditional model-based fusion tends to lean to some
276special models, hence affects the accuracy of proposed
277models.
278� No non-linear capability of classic geostatistical andmachine
279learning methods: Due to the lacking of non-linear capa-
280bility, geostatistical approaches and most machine
281learning-basedmethods cannot extract the complicated
282interactions among multiple influential modalities
283which are essential for house price learning in both spa-
284tial and temporal perspectives, therefore the perform-
285ances of thesemethods can be significantly limited.
286� Overfitting of advanced deep learning approaches: In recent
287years, tons of advanced deep learningmethods includ-
288ing DNN-based Deep-ST [34] , ST-ResNet [35] and ST-
289InceptionV4 [36] have been devised to address the spa-
290tiotemporal prediction issues. Actually, due to the
291network connectivity, these methods are mainly
292dependent on high-level features instead of all-level
293features, and this eventually leads to their weakness in
294generalization and unavoidable overfitting in small
295and sparse subregion datasets.

2963 PRELIMINARIES

2973.1 Problem Definition

298In this paper, we formally define basic concepts as well as
299the problem studied in the work.

300Definition 1 (City Region). Given a city, its urban region
301can be divided into small square-shaped subregions with
302the side-length of d0

1 kilometers. So, the urban region can
303be represented by a set of equal-sized grids, withmr rows
304and mc columns. A grid at ith row and jth column can be
305denoted as ri;j, where i 2 f1; . . . ;mrg and j 2 f1; . . . ;mcg.

1. The setting of d0 should balance the trade-off between the fineness
of urban region house price predictions and the densities of historical
data. To eliminate the influences of some adventive abnormal transac-
tions, we request that there should be no less than 10 transactions in
one single area during one whole month. To this end, in our implemen-
tation, we divide cities into small square-shaped areas with the length
of 2 kilometers.
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306 Fig. 1a illustrates the urban regions of Beijing, which has
307 been divided into a 30� 30 subregions.

308 Definition 2 (Housing Price Set). Given a month T and a
309 city, we define the housing transaction price set of the entire
310 city during this month as ST . We have ST ¼ STr1;1 [ . . . [
311 STrmr;mc

, where STri;j ði 2 f1 . . .mrg; j 2 f1 . . .mcgÞ denotes
312 the housing price set of an urban subregion ri;j during
313 month T . Within each set STri;j , a transaction can be uniquely
314 identified by the transaction timestamp tk together with the
315 subregion IDs, so that the transaction can be represented by
316 STri;j ¼ fst1ri;j ; st2ri;j . . .g ðt1; t2; . . . 2 T Þ, where s

tk
ri;j indicates the

317 price of the transaction in region ri;j and time tk.

318 Definition 3 (Housing Price of a Subregion). Given a
319 month T and a subregion ri;j, the housing price of this
320 subregion can be calculated by:
321

pTri;j ¼
1

STri;j

��� ���
XSTri;j
��� ���
k¼1

stkri;j : (1)

323323

324

325 The subregion housing prices of all mr �mc subregions
326 of month T can be denoted as a tensor pTri;j 2 Rmr�mc�1. The
327 image-like housing price matrix is shown in Fig. 1b.

328 Definition 4 (Subregion Housing Price Forecasting).
329 Given a historical housing price dataset fST t ¼ 0; . . . ; nj g
330 of a city, our purpose is to design a method such that the
331 housing price pnþ1

ri;j
can be predicted for any subregion ri;j.

332 The quality of the prediction can be measured by RMSE
333 (Root Mean Square Error) as shown by Equation 2, where
334 dpnþ1

ri;j
denotes the predicted housing price of subregion ri;j.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

mr �mc

Xmr

i¼1

Xmc

j¼1

dpnþ1
ri;j

� pnþ1
ri;j

� �2

vuut : (2)

336336

337

338 4 SUBREGION HOUSING PRICE FORECASTING

339 MODEL

340 In this section, we first analyze the parameters which can
341 influence the subregion housing price and then introduce the
342 forecastingmodel for the subregion housing price problem.

3434.1 Influence Factors of Subregion Housing Price

344In most previous works, the housing price prediction is
345modeled in the form of temporal dependency analysis .
346Some recent research suggests that the de facto influence
347factors are more complicated [37]. To this end, we analyze
348the ingredients that influence the future housing price,
349systematically.
350Spatial Correlations. To formulate the problem in Section 2,
351we have divided an entire city into small subregions. Intui-
352tively, the housing prices of two neighboring subregions
353have strong correlations. For instance, a more developed
354subregion tends to be more commercially bustling, more
355convenient in transportation, and safer in securities. Such
356ingredients have a radiative effect on their neighboring sub-
357regions as shown in Fig. 2.
358Long-Term Periodicity and Short-Term Tendency. It is widely
359accepted that the future housing price is greatly affected by
360long-term periodicity and short-term tendency. In [17], the
361influences of long-term periodicity2 are discussed. The
362impacts of short-term tendency3 on future housing price are
363evaluated in [38].
364Current Ingredients. It has been concluded that the future
365housing price is greatly affected by many current economic
366and social elements, such as down-payment ratios, mort-
367gage rates, house property tax policy, GDP (Gross Domestic
368Product) growth, and demographic factors, and some other
369static features.
370The Future Price-Growth Expectations. Theoretically, from
371an economic perspective, the future price-growth expecta-
372tions would give feedbacks on the tendency of housing
373price, once the public shows cognitions on the housing mar-
374ket [37]. Such a type of influence has been observed in
375Tokyo before 1991 and in China in the past decade.
376In summary, the influence factors can be generalized into
377four parts: Long-term spatiotemporal correlations, short-term
378spatiotemporal correlations, current economic and social
379ingredients, and future price-growth expectations. All these
380factors are integrated for predicting subregion housing prices.

3814.2 Major Components of the Forecasting Model

382Hereby, we propose the solution framework for the prob-
383lem of subregion housing price forecasting. The architecture
384overview is shown in Fig. 3, which consists of five major

Fig. 1. AnExample of Beijing. (a) Regions; (b) Housing Price Distributions

Fig. 2. Subregion Housing Prices of Beijing during 2017.

2. The regression period of long-term periodic influences on housing
price prediction llong can be set to 5 years. [17].

3. In previous studies [38], the regression period of short-term ten-
dency lshort is set to 12 months (1 year).
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385 components: i) Long-term spatiotemporal DenseNet; ii)
386 Short-term spatiotemporal DenseNet; iii) Current ingredient
387 module; iv) Kalman Filter for future price-growth expecta-
388 tions; v) Joint gated co-attention based fusion. The previous
389 four components are in correspondence to the above-men-
390 tioned influence factors. We organize them as four types of
391 inputs in accordance with their time dimensional attributes,
392 i.e., distant periodicity, recent tendency, current, and future
393 factors, as shown in the upper half of Fig. 3. And finally, the
394 outputs of the previous components are fused with the last
395 fusion component by considering the correlations between
396 the previous components.
397 Given historical transactions of a city, we transform them
398 into tensors Pl 2 Rmr�mc�5 and Ps 2 Rmr�mc�12 , whereas
399 each tensor refers to the monthly aggregated housing price
400 values.
401 The long-term and short-termDenseNet components share
402 the same network structure with a modified DenseNet [39].
403 Such a structure captures the spatial correlations of housing
404 prices between neighboring subregions and the temporal
405 dependencies during different time periods. For the current
406 ingredient component, we manually extract features from
407 economic, social, and static ingredients, then feed them into
408 the embedding layer and the FC (Fully Connected) layer. The
409 last component simulates the effects of future price-growth
410 expectations. In our implementation,we use theKalmanFilter
411 tomodel the subjective expectations from the public.
412 The outputs of the previous four components, Pl, Ps, Pc,
413 and Pf , are fed into the joint gated co-attention based fusion
414 as the input respectively. The integrated result is further
415 mapped by a Tanh function to interval ½�1; 1�. Compared
416 with standard logistic functions, Tanh function offers a faster
417 convergence in processing back-propagation learning [40].

4184.2.1 Long-Term and Short-Term Spatial-Temporal

419DesNet

420The long-term and short-term components share the same
421network structure consisting of three sub-components: con-
422volution, dense block, and a transition layer. Based on the
423particular characteristics of housing price predictions, we
424modify DenseNet as illustrated in Fig. 4.
425Convolution. As described in Section 3.1, the housing pri-
426ces of neighboring subregions have obvious spatial correla-
427tions. Such a type of correlations can be effectively captured
428by adopting CNN (Convolution Neural Network), which
429has shown its efficiency on extracting spatial structural
430information [40]. Also, as shown in Fig. 2, this kind of corre-
431lations has radiative effects, not only affecting direct neigh-
432boring subregions, but also rather distant neighboring
433subregions. To perceive more neighboring urban subre-
434gions, we adopt a multi-layer CNN. [35]. For example, there
435are m convolutions (i.e., Conv14), as shown in Fig. 4a, in one
436dense block. The total number of all Conv1s in the compon-
437net is N �mþ 1, so that the stack of convolutions is capable
438of capturing subregion housing price correlations city-wide.
439Dense Block. With the increased number of layers, the
440issues of gradient vanishing and overfitting become more
441and more serious. To handle these issues, [39] proposes a
442densely connectivity mode Dense Connectivity, as illustrated
443in Fig. 4b. For dense block i, the input of layerm is:

Im ¼ HmðP 0
i ; P

1
i . . . ; P

m�1
i Þ; m ¼ 1; 2; 3; . . . (3) 445445

446

447The function Hm is a nonlinear function consisting of one
448convolution Conv1, one Relu function, and one BN (Batch
449Normalization) [41] function. The BN is to convert the out-
450put of each layer into a normal distribution, which can also
451avoid the overfitting significantly. Compared to P 0

i , the
452Pm�1

i is transformed into high-level features from low-level
453after several nonlinear functions. Notice that the connection
454mode between feature maps Pm

i and P 0
i ; P

1
i . . . ; P

m�1
i is an

455channel-wise addition. We have:

CNðPm
i Þ ¼ sumfCNðP 0

i Þ;CNðP 1
i Þ . . . ;CNðPm�1

i Þg: (4) 457457

Fig. 3. Architecture.

Fig. 4. Architecture of long-term and short-term DesNet.

4. The kernel size of convolution Conv1 is fixed to 3� 3.
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458 Here, function CN denotes the channel number. And we can
459 observe that the last layer’s input comes from all the front
460 layers output, which indicates that our model can learn the
461 low-level and high-level features. Whenmaking decisions for
462 prediction, our model depends on both the high-level and the
463 low-level futures, which can help model remit overfitting in
464 some extent. Besides, the features of sparse housing price
465 datasets are insufficient, which makes it hard to capture the
466 spatiotemporal characteristics completely. Thus this kind of
467 densely connectivity can make sure that our model learns all
468 levels of spatiotemporal features, which proves that we can
469 have superior performance on small and sparse datasets.
470 Transition Layer. In the original DenseNet, an average pooling

471 function is used in the transition layer to reduce the features
472 while they are lacking, which is unfit for sparse datasets.
473 Besides, the original FC layer after Dense Block N is initially
474 used for image classification, which can not be adopted for the
475 task of forecasting subregion housing prices. Therefore, in the
476 improved version of DenseNet of our work, we replace the
477 average pooling function by a BN function to further remit the
478 overfitting.
479 To aggregate the multi-channel feature maps into the
480 final prices better, we try a Conv2 to replace the original FC
481 layer. As shown in Fig. 4a, Pinner has multiple channels after
482 N dense blocks. The final output feature map is then calcu-
483 lated by the following equation,

Poutput ¼ fðWin � Pinner þ binÞ: (5)
485485

486 Here, function f is the activation function Tanh. � denotes
487 the convolution Conv25. Win and bin are the learnable
488 parameters in the modified DenseNet.

489 4.2.2 Current Ingredient Module

490 As analyzed in Section 4.1, subregion housing prices can be
491 influenced by many complex economic, social, and political
492 factors as well as some additional static factors. All these
493 factors at the current time point can be collectively known
494 as current ingredients, and they can be divided into five cat-
495 egories, economic and social factors, transportation condi-
496 tions, school district, house properties, and surrounding
497 environment and facilities, as shown in Table 1.
498 Economic and Social Factors. As shown in Table 1, eco-
499 nomic and social factors including the growth of GDP,
500 mortgage rates, average incoming of the public, unemploy-
501 ment rate and the number of permanent residents. Figs. 5
502 and 6 illustrate the historical trends of the ingredients of
503 mortgage rates, average incoming of the public and the
504 number of permanent residents in both NYC and Beijing.
505 As observed, these ingredients changed hugely, constantly
506 and randomly in both cities. Due to the inherent correlations
507 between economic and social ingredients and housing pri-
508 ces [17], we select the five economic and social ingredients
509 as the main current ingredients.
510 Static Feature Selection. Also as demonstrated in Table 1,
511 housing prices can also be influenced by other categories of
512 static factors. However, the trade-off between costs and bene-
513 fits of involving static factors should be carefully balanced in
514 practice. To this end, we evaluate the detailed contribution of

515each factor to the final accuracy of subregion housing price
516prediction, and select the ones with higher contributions. Spe-
517cifically, we employ the widely-used IGI (Information Gain
518Index) [42] as the metric to evaluate the validity and impor-
519tance of each feature. The validity and importance vi of feature
520i can be defined as follows:

vi ¼ sumðI iÞ
sumðF iÞ: (6)

522522

523Where I i denotes the information gain index of the i th fea-
524ture (0<¼i<¼20), and F i denotes the frequency that this
525feature occurs. The validities of all additional static features
526are then evaluated and illustrated in Fig. 7. Intuitively, the
527features of total units and schools have the two maximum
528validities, while the factors of tourist spot and museum are
529with the two minimum importances. Next, we combine the
530top k valid static features with the five main current ingre-
531dients as the final current ingredients. We will discuss the
532impacts of the value of k in experiments.
533Feature Processing. Notice that all static factors are con-
534fined to individual houses. To calculate a selected static fac-
535tor of a given subregion, we use the mean value of the
536corresponding factors of all houses within this subregion.
537For the economic and social ingredients, we let each subre-
538gion be with the same values of them. Next, we integrate all
539features as a mr �mc � ðkþ 5Þ tensor and then feed it into
540the embedding layer to map the data fields into a structural
541and dense input space. Finally, we use the FC layer to trans-
542form low-dimensional values into the high dimensions in
543order to get ready for the final fusion.

5444.2.3 Future Price-Growth Expectations

545In this subelement, we simulate the subjective expectations
546of the public. [17] proposes a Kalman Filter (KF) based
547method to predict the influences of future price-growth
548expectations. We hereby adopt the KF-based filter into our
549integrated network. The solution of combining KF into the
550integrated networks is borrowed from the idea of bagging
551in machine learning. With the integrated KF-based methods
552and neural networks, we construct a novel stronger learner,
553which effectively enhances the prediction accuracy.
554Given a historical housing price dataset fST jT¼1;...;ng, for
555time nþ 1 and subregion ri;j, we define the housing demands
556of all residents of the subregion as Dnþ1

ri;j
. The growth rate of

557the housing demands in this region is defined as G nþ1
ri;j

. The

558average trading price of the subregion is defined asPnþ1
ri;j

.

559By using the proposed KF-based method in [17], we first
560predict the housing demands Dnþ1

ri;j
and the growth rate of

561the housing demands G nþ1
ri;j

, based on the historical housing
562price set fSn�1; Sng. After predicting the housing demand
563and growth rate of the housing demand of future time nþ
5641, we can calculate the expected housing price of region by:

E Pnþ1
ri;j

fDnþ1
ri;j

;G nþ1
ri;j

g
���� �

¼
Dnþ1

ri;j

r
þ

G nþ1
ri;j

rðrþ nÞ : (7)
566566

567

568Here, r and n indicate the discount rate and the demand
569growth revision [17], respectively. With the method, we can
570calculate the price-growth expectation for each subregion in5. The kernel size of Conv2 should be 1� 1.
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571 the city, and generate the future price-growth expectation
572 tensor sizedmr �mc � 1.

573 4.2.4 Joint Gated Co-Attention Based Fusion

574 So far, we have discussed the learners in different temporal
575 dimensions, the outputs of which should be fused. Theoreti-
576 cally, the impacts of each learner on the final prediction result
577 should be differential, and the outputs of Pl, Ps, Pc, and Pf

578 should be significantly interactional with each other. For
579 instance, long-term, short-term tendencies and future expect-
580 ations of housing prices can definitely be influenced by those
581 current ingredients. This kind of correlations between the out-
582 puts of different components is not considered in previous
583 multi-modality housing price prediction. Besides, the outputs
584 of four components are quite heterogeneous. As demon-
585 strated in Table 2, the properties, units and structures of data
586 in these four modalities are disparate in some extent. Hence,
587 how to fuse them reasonably is a challenging task.
588 To address the fusion issue of multi-modality learnings
589 with considering the correlations between different learners,
590 co-attention based fusion has beenwidely used in the fields of
591 question answering [43], healthcare prediction [44], entity rec-
592 ognition [45], and commodity recommendation [46] in recent
593 years. The co-attention mechanism aims at capturing the rela-
594 tionships among various modalities. However, co-attention
595 based fusion can only capture partial correlations among

596different components due to their linear-combination-
597based conditional fusion. To this end, we propose a novel
598fusion method, JGC, as illustrated in Fig. 8, for completely
599fusing multi-modality components. The JGC based fusion
600includes three submodules: joint co-attention submodule,
601filtration gate submodule, and joint representation sub-
602module. We will introduce the detailed design of this
603fusion module subsequently.
604Joint Co-Attention Submodule. In this submodule, we first
605incorporate all linear combinations in the original co-attention
606based method as the conditional affinity matrices for compo-
607nents pairs. To learn the correlations between paired compo-
608nents completely, we further compute the corresponding joint
609affinitymatrices between components defined as:

Al ¼ softmax

� P l � Ps

P l � Pc

P l � Pf

2
4

3
5�� softmax

� P l � Ps

P l � Pc

P l � Pf

2
4

3
5�

As ¼ softmax

� Ps � Pl

Ps � Pc

Ps � Pf

2
4

3
5�� softmax

� Ps � Pl

Ps � Pc

Ps � Pf

2
4

3
5�

Af ¼ softmax

� Pf � Pl

Pf � Ps

Pf � Pc

2
4

3
5�� softmax

� Pf � Pl

Pf � Ps

Pf � Pc

2
4

3
5�

8>>>>>>>>>>>><
>>>>>>>>>>>>:

:

(8)
611611

612Here, � and � are the element-wise addition and element-
613wise multiplication. Notice we only compute the conditional

TABLE 1
Current House Pricing Features in NYC

Fig. 5. Historical influence ingredients in NYC. Fig. 6. Historical influence ingredients in Beijing.
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614 and joint affinity matrices for Pl, Ps, and Pf , it is because Pc

615 including complex static features is different from other out-
616 puts in the value and property of data and is not appropriate
617 to be directly concatenated with them. Therefore, we only
618 fuse Pl, Ps, and Pf by considering their correlations. Next, as
619 defined in Equation (8), the conditional and joint affinity
620 matrices are all normalized to produce the attention weights
621 by the softmax function, and finally, as illustrated in Fig. 8,
622 combined into the final balancedweights.
623 Filtration Gate Submodule. Even if there exist significant
624 correlations among multiple modalities, the final fusion
625 result may still be dominated by some individual submod-
626 ule [47]. Furthermore, the calculation of joint representa-
627 tions may bring noises if two modalities are too similar.
628 Therefore, we then introduce the mechanism of Filtration

629Gate (FG) to dynamically adjust the weight of each modal-
630ity. The definition of FG can be formulated by:

bl
s

bl
c

bl
f

bs
l

bs
c

bs
f

b
f
l

bf
s

bf
c

2
6666666666664

3
7777777777775
¼ s

Wl
sðjjhl � hsjjF Þ�1

Wl
cðjjhl � hcjjF Þ�1

Wl
fðjjhl � hf jjF Þ�1

Ws
l ðjjhs � hljjF Þ�1

Ws
c ðjjhs � hcjjF Þ�1

Ws
f ðjjhs � hf jjF Þ�1

Wf
l ðjjhf � hljjF Þ�1

Wf
s ðjjhf � hsjjF Þ�1

Wf
c ðjjhf � hcjjF Þ�1

2
66666666666666664

3
77777777777777775

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

(9)

632632

Fig. 7. The validity evaluation of static features in NYC.

TABLE 2
Heterogeneous Data of Four Components

Modality Property and unit Structure

Pl; P s Property: housing price; Unit: $; Hierarchical convolutional characteristics;

Pf Property: housing price; Unit: $; Non-linear simulation of public expectation;

Pc Property: rate, count, price and encoding; Unit: square foot, $; Linear concatenation of ðkþ 5Þ separate factors;

Fig. 8. Architecture of joint gated co-attention based fusion and detailed procedure of joint co-attention submodule.
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633 where

hl

hs

hc

hf

2
664

3
775 ¼ Tanh

WlP l

WsPs

WcPc

WfPf

2
664

3
775þ

bl

bs

bc

bf

2
664

3
775

0
BB@

1
CCA: (10)

635635

636

637 Here the series of b refer to the filtration gates, and the
638 value of an individual b depends on the similarity between
639 the two corresponding modalities. The series ofW and b are
640 the learnable parameters in the FG, and s is the logistic sig-
641 moid activation function. Besides, jjF refers to the Frobenius
642 Norm [48] which is widely adopted to measure the distance
643 of matrices, and it is helpful to simplify the computational
644 process and reduce the number of parameters compared to
645 the design of traditional filtration gate [49].
646 Joint Representation Submodule. Based on the balanced
647 weights obtained by the joint co-attention submodule, we
648 first compute the temporary joint representations Cl

t, C
s
t ,

649 and Cf
t for different components by:

Cl
t ¼ ½bl

sP
s;bl

cP
c;bl

fP
f � �Al

Cs
t ¼ ½bs

l P
l;bs

cP
c;bs

fP
f � �As

Cf
t ¼ ½bf

l P
l;bf

sP
s;bfc P

c� �Af

8><
>: : (11)

651651

652 Notice that, to address the noises caused by the similarities
653 between paired modalities, we filter the output of the previ-
654 ous four components by multiplying them with the corre-
655 sponding filtration gate respectively. Next, to capture
656 further correlations between modalities, we consider the
657 joint representations for components in Equation (11) by:

Cl ¼ Cl
t � softmaxðPl � PaÞ

Cs ¼ Cs
t � softmaxðPs � PaÞ

Cf ¼ Cf
t � softmaxðPf � PaÞ:

8<
: ; Pa ¼ Pl � Ps � Pf

(12)
659659

660 By fusing these three formal joint representations, we then
661 generate an intermediate joint representation C.

C ¼ Cl � Cs � Cf: (13)
663663

664 Finally, to consider the all-stage joint representations, we
665 calculate the final output of our JGC based fusion by,

dPnþ1 ¼ Wl � ðPl � Cl
tÞ þWs � ðPs � Cs

t Þ
þWf � ðPf � Cf

t Þ þWc � C

� �
: (14)

667667

668 Here Wl, Ws;Wf , and Wc are the learnable parameters for
669 adjusting the influence weights of various components
670 respectively.

671 5 EXPERIMENTS

672 5.1 Setup and Data Analysis

673 In this subsection, we introduce the datasets of NYC and
674 Beijing, as well as some settings of experiments.
675 NYC and Beijing Datasets. The house transaction price
676 dataset of NYC is provided on the public platform of NYC
677 Open Data.6 The current ingredients can be taken from the

678Federal Reserve Economic Data.7 The NYC house transac-
679tion dataset, which starts from Jan. 2003 to Feb. 2015, has a
680time span of 13 years.
681The house transaction dataset of Beijing is taken from the
682Lianjia dataset8 in Kaggle public datasets and the Zhugez-
683haofang.9 In addition, the current ingredients are provided
684on the website of the State Statistics Bureau.10 The house
685transaction dataset of Beijing, which starts from Jan. 2011 to
686June. 2018, has the time span of 7 years.
687Data Sparsity. For the datasets of NYC and Beijing, the
688average number of transaction records (AVT) per subregion
689is no more than 30, as shown in Table 3. The work of VAR
690model applies for datasets with AVT greater than 100. For
691works of SVR and ANN models, the AVT value is above 50.
692Hence, our housing price data is sparse.
693Settings. The model we proposed is implemented based on
694Keras.11 In our JGC_MMN,we useMin-Max normalization to
695scale the input data into the range [-1,1] before feeding them
696into the network. There are two kind of convolutions (Conv1
697and Conv2) in our model with the filter sizes of 3� 3 and 1�
6981 respectively. The filter number of Conv1 appeared in each
699DenseBlock is named growth rate, which has been set to a
700fixed value in our model. The filter number of the last Conv2
701after DenseBlockN is 1, and the filter number of other Conv2
702is set to different values (e.g., 32, 64) according to the experi-
703mental results.We use 90 percent of the original data for train-
704ing and 10 percent for validation. For every model, we adopt
705the same learning rate and epochs. Theparameter ofKF-based
706submodule follows the setting of [37].
707Housing Price Data Analysis. For both NYC and Beijing,
708we analyze the long-term and short-term housing price
709trends in different regions. We first randomly select 3
710regions from two cities, and illustrate the long-term housing
711prices of selected regions in Figs. 9 and 10. As observed, for
712long-term housing prices, there exist significant differences
713between the long-term housing prices of different regions.
714For instance, from 2012 to 2013, the housing price of region
7151 in NYC increases rapidly while the prices of the other two
716regions decrease moderately. The same scene happens in
717Beijing from 2017 to 2018. For short-term housing prices,
718from the selected regions in the year 2015 in Figs. 11 and 12,

TABLE 3
Datasets Description

DataSets NYC house Beijing house

Time Span 1/2003-12/2015 1/2011-12/2017
Time Span of Training Set 1/2003-8/2014 1/2011-3/2017
Time Span of Testing Set 9/2014-12/2015 4/2017-12/2017
Time Interval Size one month one month
Range of House Prices 95053-81262300 USD 500000-19980000 CNY
Number of Subregions (12*12) (30*30)
AVT of a subregion 15+ 10+
Number of Time Intervals 156 84
Number of Ingredients 156*5 84*5

6. https://opendata.cityofnewyork.us

7. https://fred.stlouisfed.org
8. https://www.kaggle.com/ruiqurm/lianjia
9. http://su.zhuge.com
10. http://www.stats.gov.cn/
11. https://keras.io/
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719 we find that the prices of different regions in NYC vary
720 independently. These phenomena confirm the necessity of
721 carrying out the research, and also reflect the challenge of
722 the problem.

723 5.2 Baselines

724 The baseline solutions are as follows:
725 GTWR. Geographical and temporal weighted regression
726 is an extension of geographically weighted regression, to
727 account for spatiotemporal local effects, and we utilize addi-
728 tional software to model it.
729 SAR. Spatial auto-regression model is a typical category
730 of spatial econometric models and is similar to the spatial
731 lag model. We also use the same features as our models to
732 calculate its result.
733 Lasso. Lasso regression is a traditional regression method
734 wildly used in economic areas. We feed it with the same fea-
735 ture as our models in each region.
736 Ridge. Like the lasso regression, ridge regression is another
737 classic regression method in economic issues. We feed this
738 model aswhat we do in Lasso regression.
739 SVR. We feed the same features as our models including
740 historical transaction records, current ingredients and
741 future expectations into SVR for training. Further, to involve
742 the spatial correlations, we also feed the SVR with the hous-
743 ing prices of 8 neighboring regions.
744 VAR. Vector AutoRegressive is a widely used method in
745 economic issues including forecasting housing price in city-
746 level. For each subregion, we feed it with the same features
747 as our models.
748 ST-ANN. The ST-ANN is fed with the spatial (8 neigh-
749 boring regions’ prices) and temporal (12 previous months’
750 prices) features of each subregion. Besides, the same current
751 ingredients and future expection are also considered.
752 Deep_ST. The DNN-based model has been widely used
753 for spatial-temporal prediction issues. We adopt it by the

754

755

756

757

758

759

760

761

762

763

764

765766method suggested in [34]. And other factors are also consid-
767ered in the process of training.
768ST-InceptionV4. InceptionV4 [36] has the same excellent
769performance as other deep networks on abundant datasets
770in image classification. We adjust the layers of network
771structure and feed it with the same features, to select opti-
772mal results to make comparisons.
773ST-ResNet. ST-ResNet is first proposed for spatiotemporal
774crowd flows predictions [35]. Similar to InceptionV4, the pop-
775ularmodel is comparedwith ours in the same condition.
776P-D6-L9*. P-D6-L9* are a set of ablative variants based on
777the model of the previous version.
778Further, to investigate the effectiveness of our joint gated
779co-attention based fusion, we use two additional baselines.
780Conditional Co-Attention. We here simplify our JGC_fu-
781sion by only employing the linear combination to exploit
782partially relationships among multiple modalities, and
783name this variant as conditional co-attention.
784Model-Based Fusion. In model-based fusion, we just fuse
785all the outputs of the long-term and short-term DesNets,
786current ingredient module and future KF by multiplying
787them with a series of learnable weights.

7885.3 Evaluation

7895.3.1 Comparison With Baseline Solutions in Both NYC

790and Beijing

791We show the comparison results on NYC and Beijing data-
792sets with baseline solutions in Tables 4 and 5, respectively.
793Also, we consider 3 other variants of JGC_MMN, by varying
794the number of layers and dense blocks and the inclusion of
795different features (i.e., current ingredients, or future expect-
796ations). We use C and F to represent the inclusion of current
797ingredients and future expectations, respectively. We use D
798and L to represent the number of dense blocks and the num-
799ber of layers of a dense block, respectively. For example, D6-
800L9-F refers to a variant of JGC_MMN, which has 6 dense

801

802

803

804

805

806

807

808

809

810

811

Fig. 9. Long-term prices of different regions in NYC.

Fig. 10. Long-term prices of different regions in Beijing.

Fig. 11. Short-term prices of different regions in NYC in 2015.

Fig. 12. Short-term prices of different regions in Beijing in 2015.
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812813 blocks of 9 layers and is associated with future expectations
814 as features. It can be observed that our method can outper-
815 form most alternative solutions in terms of RMSE and
816 MAPE. Particularly, in Tables 4 and 5, we find that D6-L9-
817 C-F gets the best forecasting accuracy, which has a 23.12
818 percent lower RMSE value and a 38.55 percent lower MAPE
819 value than the SVR method averagely.

820 5.3.2 Impacts of Components and Features

821 From Tables 4 and 5, we then analyze the impacts of the
822 proposed components. Compared to the model-based
823 fusion, we here have considered the relationships among
824 submodules. First, as can be discovered, the long-term and
825 short-term DenseNets decrease the RMSE by 11.36 and
826 12.57 percent and the MAPE by 7.54 and 12.36 percent
827 respectively and independently. Also, the results show the
828 importance of incorporation of different features. For exam-
829 ple, in Table 4, D6-L9-C-F has a lower RMSE value than D6-
830 L9-C, which demonstrates the necessity of considering
831 future expectations. Similar results can be observed for the
832 effect of current ingredients. The current ingredients and
833 KF components decrease the mean RMSE by 6.57 and 7.0
834 percent respectively. For D6-L9, the RMSE values and
835 MAPE values of NYC and Beijing are 24.32 and 67.12
836 respectively, and it still outperforms other baselines.

837 5.3.3 Impacts of JGC Based Fusion

838 In this subsection, we investigate the effectiveness of our JGC
839 based fusion by comparing it with conditional co-attention
840 and model-based fusion based on the network structures of
841 D6-L9-C-F, D5-L9-C-F, and D5-L9-C-F in Table 6. In both NYC
842 and Beijing, our approach with JGC based fusion can outper-
843 form the other two alternative approaches with different net-
844 work structures, and this verifies the effectiveness of our JGC
845 based fusion in terms of the accuracy of forecasting. Specifi-
846 cally, with the network structure of D6-L9-C-F, our JGC based
847 fusion can reduce the RMSE by 5.39 percent averagely com-
848 pared to the model-based fusion. Further, the conditional co-
849 attention can always outperform the model-based fusion with
850 all three different network structures. This indicates that the

851co-attention mechanism works for the fusion optimization,
852even a small part of correlations among different temporal
853components are obtained. It also verifies the rationality of the
854idea of enhancing the fusionmethods by fully and deeply cap-
855turing the correlations between different components.

8565.3.4 Impacts of Parameters

857Furthermore, we test the effect of other parameters, such as
858the number of dense blocks and its layers. The result is
859shown in Fig. 14. X-axis refers to the total number of layers
860in the network, including the head and tail convolutional

861
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865
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868

869
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871

872

TABLE 4
Comparison With Different Baselines in NYC,

and Different Variants of Our Models

TABLE 5
Comparison With Different Baselines in Beijing,

and Different Variants of Our Models

TABLE 6
Comparison With Different Fusion Methods in NYC and Beijing

Fusion methods NYC/RMSE Beijing/RMSE

Joint gated co-attention(D6-L9-C-F) 21.43 60.19

Conditional co-attention(D6-L9-C-F) 22.38 63.22
Model based Fusion(D6-L9-C-F) 22.53 63.97

Joint gated co-attention(D5-L9-C-F) 21.71 61.85
Conditional co-attention(D5-L9-C-F) 22.51 64.89
Model based Fusion(D5-L9-C-F) 22.93 65.88

Joint gated co-attention(D4-L9-C-F) 22.54 62.03

Conditional co-attention(D4-L9-C-F) 23.79 65.08
Model based Fusion(D4-L9-C-F) 24.02 66.85

Fig. 13. RMSE of different number of static features.
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873874 layers (i.e., Conv1 and Conv2) in the JGC_MMN, and the
875 transition layers between dense blocks. We can see with a
876 larger number of dense blocks and layers, our model can
877 learn more all-level features and thus better capture the spa-
878 tiotemporal dependencies. The performance converges
879 when the number of layers is greater than 61. But the com-
880 putation overheads increase sharply with a large number of
881 layers. In our work, we find the D6-L9 setting best captures
882 the tradeoff between accuracy and efficiency and hence is
883 used as our default setting.
884 To evaluate the impact of k in the static feature selection,
885 we first sort the 16 static features by their validities in the
886 descending order. The result is shown in Fig. 13, where X-
887 axis refers to the number of increased static features. It can
888 be observed that our model gets the best RMSE results
889 when adding top 10 and 11 features for NYC and Beijing. If
890 more (	 10) features are incorporated, overfitting may occur
891 due to the information redundancy. Hence we select top 10
892 and 11 features, for NYC and Beijing, which are combined
893 with the other five ingredients to form the final ingredients.
894 The effect of subregion size is studied in Fig. 15. We find
895 the balance point between the information granularity12

896 and the best normalized RMSE is achieved when subregion
897 size equals 2km � 2km, which is thus selected as the default
898 subregion size for our model.

899 6 CONCLUSION

900 In this paper, we propose a fine-grained forecasting model,
901 JGC_MMN, for subregion spatiotemporal housing price

902prediction. In particular, we modify the structure of Dense-
903Net and adopt the method of bagging by fusing the KF-
904based method to improve the accuracy. For better fusion,
905we design a novel method to fuse the heterogeneous data of
906multi-stage models by fully and deeply capturing the corre-
907lations between them. Experiments on two different real-
908world datasets have demonstrated that our proposed model
909outperforms state-of-the-art solutions. In the future, we will
910apply our model which includes an all-time period(i.e., dis-
911tant , recent, current, and future time) and fuse their correla-
912tions to other similar domains, such as air quality prediction
913and power demand prediction.
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