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Abstract

The long-tailed distribution is the underlying nature of real-world data, and it
presents unprecedented challenges for training deep learning models. Existing
long-tailed learning paradigms based on re-balancing or data augmentation have
partially alleviated the long-tailed problem. However, they still have limitations,
such as relying on manually designed augmentation strategies, having a limited
search space, and using fixed augmentation strategies. To address these limi-
tations, this paper proposes a novel LLM-based long-tailed data augmentation
framework called LLM-AutoDA, which leverages large-scale pretrained mod-
els to automatically search for the optimal augmentation strategies suitable for
long-tailed data distributions. In addition, it applies this strategy to the original
imbalanced data to create an augmented dataset and fine-tune the underlying long-
tailed learning model. The performance improvement on the validation set serves
as a reward signal to update the generation model, enabling the generation of
more effective augmentation strategies in the next iteration. We conducted exten-
sive experiments on multiple mainstream long-tailed learning benchmarks. The
results show that LLM-AutoDA outperforms state-of-the-art data augmentation
methods and other re-balancing methods significantly. The code is available in
https://github.com/DataLab-atom/LLM-LT-AUG.

1 Introduction

As a revolutionary technology, deep learning has shown a broad and significant impact on various
tasks, including image classification [21], object detection [34], natural language processing [19],
and many interdisciplinary research problems [40, 47]. The success of these endeavors relies heavily
on the support of large-scale manually curated datasets, e.g., ImageNet [35]. However, for the
convenience of training and evaluating models, most artificially constructed datasets typically follow
the assumption of uniform distribution, which contradicts the real-world data distribution, i.e., long-
tailed distribution. This deviation between the ideal and real distributions has resulted in many deep
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Figure 1: Different long-tailed data augmentation paradigms. (a) The traditional augmentation
paradigm randomly samples augmentations from the fixed strategy. (b) The strategy fixed augmen-
tation paradigm samples augmentations from the fixed strategy according to the data distribution.
(c) The LLM-driven augmentation paradigm combines LLMs with long-tailed learning to learn the
optimal augmentation strategy.

models trained on balanced datasets failing to produce satisfactory results in real-world applications,
e.g., they only perform well on a few classes and ignore many vulnerable classes [4, 36].

To address the ubiquitous long-tailed problem, researchers have been continuously proposing various
carefully designed research paradigms. One popular approach is to rebalance the training data by
oversampling the tail classes or undersampling the head classes [6, 13]. However, this approach
cannot fundamentally address the problem of insufficient global information, even though the data
for the tail classes increases significantly. Another line of work focuses on designing specialized loss
functions or reweighting strategies to alleviate the impact of class imbalance [11, 5, 37, 39]. However,
these methods either introduce additional computational overhead or require careful manual design.

Recently, using data augmentation (DA) to improve long-tailed learning has attracted significant
attention from researchers and is considered as a viable research paradigm [44]. For example,
FASA [46] enhances the tail classes by generating class-level features based on Gaussian priors.
Remix [8] achieves this goal through a rebalanced mixup approach. However, these DA-based
methods either manipulate high-dimensional information in the feature space or directly apply tradi-
tional transformations (e.g., flipping, cropping, and rotation) to expand the training set and generate
diverse data, without considering the underlying relationships between data augmentation and class
classes. To avoid ineffective augmentation, some studies suggest applying different augmentations
to different classes [41]. Typically, CUDA [2] improves the overall performance of models by
dynamically adjusting the augmentation intensity for each class during training. Considering the
issue of pseudo-boosting in augmentation, DODA [39] allows each class to choose its own suitable
augmentation method, thereby avoiding weak classes being sacrificed. Unfortunately, they still have
significant limitations: (i) these strategies are often based on manually designed human knowledge
and experience, which may be suboptimal for specific data and tasks. (ii) the search space of these
strategies is often limited. (iii) these fixed strategies lack flexibility to adapt to changes in the data
distribution during the training process.

To address the above limitations, we leverage the recently popular large language models (LLMs) [29,
24, 45] to provide augmentation suggestions for long-tailed learning. We first designed a feasible
and straightforward framework called SimpleLLM, which guides the LLM to generate augmentation
strategies and apply them to long-tailed learning by providing specific prompts. Analysis revealed
that the augmentation strategies generated by SimpleLLM are comparable to the effectiveness of
CUDA [2] and DODA [39]. Figure 1 illustrates the differences between this framework and previous
methods.

2



Furthermore, inspired by AutoML [17], particularly automated data augmentation [10], we propose
LLM-AutoDA, a novel LLM-based long-tailed data augmentation framework. LLM-AutoDA
leverages large-scale pretrained models to automatically search for the optimal augmentation strategies
suitable for long-tailed data distributions. Specifically, we first define a broad search space that
includes augmentation operations and their parameters. Then, we train an augmentation strategy
generation model that generates augmentation strategies based on the class-wise statistics of the long-
tailed data. This strategy is applied to the original imbalanced data to create an augmented dataset,
which is used to fine-tune the underlying long-tailed learning model. Importantly, the performance
improvement on the validation set serves as a reward signal to update the generation model, enabling
the generation of more effective augmentation strategies in the next iteration. This process is repeated
until the performance converges or the computational budget is exhausted.

Compared to previous long-tailed data augmentation methods, LLM-AutoDA offers several advan-
tages: (i) it leverages LLMs to automatically learn augmentation strategies tailored to the charac-
teristics of long-tailed data, without relying on human expertise. (ii) it has a more extensive search
space, allowing it to discover more novel strategies. (iii) it can dynamically adjust the augmentation
strategies based on performance feedback during the training process, providing flexibility and robust-
ness. Extensive experiments on multiple mainstream long-tailed learning benchmarks demonstrate
that LLM-AutoDA outperforms state-of-the-art data augmentation methods and other rebalancing
techniques significantly.

The main contributions of this work are summarized as follows:

• New augmentation paradigm: We combine LLMs with long-tail data augmentation for the first
time, providing a novel perspective for efficient long-tail learning.

• New automated framework: We propose a novel AutoML framework called LLM-AutoDA,
which automates the search for effective data augmentation strategies for long-tailed learning,
significantly reducing the cost of manually designing augmentation strategies.

• Compelling empirical results: We conduct extensive experiments on multiple mainstream long-
tailde benchmarks, demonstrating the superiority of LLM-AutoDA compared to state-of-the-art
methods.

• In-depth analysis and insights: We provide detailed analysis and insights into the discovered
augmentation strategies, guiding future research in long-tailed learning.

2 Related Work

2.1 Long-tailed Learning (LTL)

Various approaches have been proposed to address the long-tailed learning problem, including re-
balancing the training data through over-sampling the tail classes [6, 13] or under-sampling the head
classes [12, 14], modifying loss functions or adjusting class weights during training [22, 11], and
decoupling representation and classifier learning [18]. Among these methods, data augmentation
has emerged as a promising solution for long-tailed learning [8, 9, 20, 25, 46]. The key idea is to
generate additional samples for the tail classes to alleviate the data imbalance issue. Recent research
has attempted to design sophisticated strategies by observing performance changes during the training
process to adjust augmentation operator [39] or intensity [2]. However, these methods still rely on
hand-crafted augmentation strategies that may not be optimal for the specific long-tailed data and
have limited search space for discovering novel and effective strategies. In contrast, LLM-AutoDA
automatically learns data augmentation strategies tailored to the long-tailed data distribution without
manual design.

2.2 Large Language Models (LLMs)

Large language models (e.g., BERT [19], GPT [29, 30, 3], and T5 [31]) have achieved remarkable
success in various natural language processing tasks. They exhibit strong generalization abilities
and can be easily fine-tuned for downstream tasks with limited labeled data [16, 28]. Researchers
have explored the potential of LLMs in automating algorithm design and implementation, such as
generating source code [7], optimizing hyperparameters [42], and designing neural architectures [32].
However, the interaction between large and small language models and its impact on improving the

3



design of small models have been less explored, particularly in the context of data augmentation
for long-tailed learning. LLM-AutoDA aims to bridge this gap by harnessing the knowledge and
generative capabilities of large language models to discover effective data augmentation strategies
tailored to long-tailed distributions automatically. By defining a rich search space of augmentation
operations and training an augmentation strategy model conditioned on the class-wise statistics,
LLM-AutoDA can generate adaptive and optimized augmentations specifically designed for the
given long-tailed data. This novel approach opens up new possibilities for leveraging the interaction
between large and small language models to improve the design of machine learning algorithms in
various imbalanced learning scenarios.

3 LLM × LTL: Can LLMs Provide DA Strategies for Long-tailed Learning?

In this section, we attempt to analyze whether LLMs can be applied to long-tailed learning and how
to implement this learning paradigm.

SimpleLLM. As shown in Figure 1(b), strategy fixed DA is the current mainstream paradigm
for long-tailed data augmentation. It utilizes carefully designed augmentation strategies to
dynamically adjust augmentation operators or intensities during the training process, allow-
ing different classes to choose advantageous augmentation methods. In this paradigm, the
key step is to design a high-quality augmentation strategy. When dealing with balanced
data distributions, we often employ class-independent augmentation strategies, which apply the
same data augmentation to all classes. However, as mentioned in DODA [39], when deal-
ing with imbalanced data distributions, this class-independent augmentation strategy can poten-
tially sacrifice certain classes, thus requiring the design of class-dependent augmentation strate-
gies. However, the manual design process for such strategies is highly complex and costly.

Question: 
You are requested to design a
novel algorithm that, given a
set of augmentation techniques 
... ...

Non-parametric Prompt Augmentation  
StrategyLL

M
s

Long-tailed
Model

Figure 2: Strategy generation paradigm of SimpleLLM.

Recent research has shown
that LLMs can replace
many manually engineered
tasks [7]. Inspired by
this, we first designed
a simple yet efficient
paradigm for generating
augmentation strategies
called SimpleLLM. As
shown in Figure 2, we
initially constructed a
data augmentation-themed
prompt from the perspective of prompt engineering, including task description, algorithm input,
algorithm output, parameter interpretation, etc. We then input this prompt into pre-trained LLMs
to generate a functional function that conforms to the prompt, i.e., an algorithm implementation
containing augmentation strategies. Finally, this augmentation strategy is applied to the conventional
training process of long-tailed learning. It is worth noting that this paradigm allows us to generate
multiple augmentation strategies suitable for long-tailed learning at a low cost.

Comparative Analysis. To further validate the effectiveness of the augmentation strategies generated
by this paradigm, we conducted experiments on CIFAR-100-LT (IR=100) dataset. We selected
several mainstream long-tailed learning baselines and integrated SimpleLLM with them. In addition,
we compared the latest state-of-the-art long-tailed DA methods, CUDA and DODA, under the
same settings. The experimental results, as shown in Figure 4, reveal that SimpleLLM achieves
acceptable average performance, comparable to CUDA and DODA, indicating that LLMs can be
used as generators of augmentation strategies to enhance the performance of long-tailed learning.

Under this paradigm, we believe that with appropriate prompts, augmentation strategies similar to
CUDA and DODA can also be generated by LLMs. In other words, within a search space, we can
obtain multiple similar locally optimal strategies.
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Figure 3: Overview of LLM-AutoDA. LLM-AutoDA leverages large-scale pretrained models to
automatically search for the optimal augmentation strategies suitable for long-tailed data distributions.

4 LLM-AutoDA: A Resourceful Adviser for Long-tailed Learning

4.1 Framework

The overall framework of LLM-AutoDA is illustrated in Figure 3. The framework consists of
two interactive modules: the LLM-based data augmentation strategy generation module and the
long-tailed learning training and evaluation module.

LLM-based Data Augmentation Strategy Generation. As shown in Figure 3 (left, pink), to design
the DA strategies automatically, LLM-AutoDA incorporates a pre-trained LLM L as a search operator.
Using prompt engineering techniques, a series of prompt templates are designed to incorporate prior
knowledge about data augmentation into the generation process of LLM. LLM generates diverse data
augmentation strategies based on these prompts, including both natural language descriptions and
Python code implementations. Furthermore, the generated strategies are stored in a strategy pool and
interact with the long-tail learning model to search for the optimal data augmentation strategy.

Long-tailed Learning Training and Evaluation. As shown in Figure 3 (right, pink), LLM-AutoDA
utilizes a pretrained long-tailed learning model M for fine-tuning on a given long-tailed distributed
dataset D. At the beginning of each training epoch, the algorithm adaptively determines the DA
operator Ac and DA intensity Ec for each class based on information such as the accuracy of each
class in the previous epoch and historical accuracy.

The key aspect of LLM-AutoDA lies in the synergy between the DA strategies generated by LLMs
and the long-tailed learning model. This close interaction allows the discovered DA strategies
to dynamically align with the model training process, effectively enhancing the performance of
long-tailed learning in a targeted manner.

4.2 Strategy Evaluation

To evaluate the performance of candidate data augmentation strategies, we insert them into the model
training process, conduct a small amount of additional training on the training set, and then test the
accuracy on the validation set, using the accuracy as the fitness score for the algorithm. Assuming the
data augmentation function generated by LLM is denoted as faug and the training-testing function is
denoted as T , the evaluation process can be represented as follows:

Fitness(faug) = T (faug, eckp, Nft) (1)
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where eckp is the starting checkpoint epoch number and Nft is the epoch number of fine-tune. The
function T injects faug into the training flow:

T (faug, eckp, Nft) = Accval(Fine− tune(faug,Dtrain, eckp, Nft)) (2)

The Finetune function starts training from the eckp checkpoint and performs Nft epochs of training
on the training set Dtrain. At the beginning of each epoch, it dynamically selects data augmentation
methods for each class using faug.

A(t)
c ,E(t)

c = faug(W
(t−1)
c ,a(t−1)

c ,H(t−1)
c ,A(t−1)

c ,E(t−1)
c , t) (3)

Here, A(t)
c represents the DA selection matrix for class c at time t, E(t)

c represents the corresponding
augmentation intensity, W(t−1)

c represents the weights of each augmentation method on class c from
the previous time step, a(t−1)

c represents the accuracy of class c at time t− 1, and H
(t−1)
c represents

the historical accuracy of class c when using different augmentation methods in the previous step.

After training, the model is evaluated using the no augmented validation set Dval, and the overall
accuracy Accval is obtained as the fitness score for faug .

Fitness(faug) = Accval(Finetune(faug,Dtrain, eckp, Nft),Dval) (4)

A higher fitness score indicates better performance of the algorithm on long-tailed distributions. By
injecting candidate algorithms into the real training process and evaluating them on the validation set,
we can accurately and efficiently measure their actual ability to address the long-tailed problem.

4.3 LLM-based Search Operator

LLM-AutoDA leverages Pretrained Language Models (PLMs) to automatically generate data aug-
mentation algorithms. To guide the PLM in generating algorithms that meet specific requirements,
we employ prompt engineering techniques and carefully design a series of prompts. By incorporating
task descriptions, input-output formats, novelty requirements, and other prior knowledge through
prompts, we can constrain the generation process of the PLM within the desired search space. We
design the following three types of search operators, corresponding to different prompt templates:

• Initialization operator I: Based on the task description prompt Ptask and the knowledge base

of data augmentation K, a set of randomly initialized population algorithms A(0)
i

N

i=1 is generated.

• Crossover operator E: Building upon Ptask, Np parent algorithms A
(t)
i i = 1Np from the

current population are used as references, along with the incorporation of knowledge base K.
The PLM is required to generate Ne new algorithms A(t)

j j = 1Ne that are different in both form
and logic from the existing algorithms, thereby expanding the search space.

• Mutation operator M : Based on Ptask, Nm individuals A(t)
i

Nm

i=1 are selected from the current
population, and local improvement directions are provided. The PLM is tasked with generating
a mutated algorithm Â

(t)
i for each A

(t)
i within its neighborhood for further exploration.

Taking the crossover operator E as an example, its prompt PE can be represented as follows:

PE(Ptask, {A(t)
i }Np

i=1,K, Dfunc) = Ptask+Pref ({A(t)
i }Np

i=1)+Pknow(K)+Pdiff+Pformat(Dfunc)
(5)

where Ptask represents the task description, Aii = 1N represents N parent algorithms, and Dfunc
represents the domain of the objective function. Pref formats the parent algorithms into reference
code, Pdiff requires the generation of new algorithms that are completely different from the existing
ones, and Pformat specifies the input and output of the objective function.

Once we have obtained the prompt PE , we input it into the pretrained language model L, and as a
result, we obtain Ne new crossover algorithms.

{A(t)
j }Ne

j=1 = L(PE(Ptask, {A(t)
i }Np

i=1,K, Dfunc)) (6)

Each A
(t)
j typically consists of a natural language description of the algorithm and its corresponding

Python code implementation. Similarly, the prompts PI and PM for the initialization operator I and
the mutation operator M can be constructed in a similar manner, with the main difference lying in
the introduced prior information.
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5 Experiments

5.1 Experimental Settings

Datasets and Metrics. Like most long-tailed learning methods, we conducted experiments on several
mainstream long-tailed learning datasets, including CIFAR-100-LT [5], ImageNet-LT [26], and iNatu-
ralist 2018 [38]. Among them, CIFAR-100-LT is the long-tailed version of CIFAR-100, with various
imbalance ratios. To validate the effectiveness of LLM-AutoDA in addressing the long-tailed problem,
we selected three testing environments: 50, 100, 200. Compared to CIFAR-100-LT, both ImageNet-
LT and iNaturalist 2018 have more classes and larger data sizes. It is worth noting that, similar to
CIFAR-100-LT, ImageNet-LT is a long-tailed version artificially constructed from the well-known
ImageNet [35] dataset. On the other hand, iNaturalist 2018 is a naturally occurring long-tailed dataset
collected from the real world. We used the official complete versions of these datasets, and detailed in-
formation about the datasets is provided in Appendix B. We use Top-1 accuracy as the evaluation met-
ric and provide the performance of subsets based on the class divisions provided by the official datasets.

CE CE-DRW LDAM-DRW BS RIDE BCL
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Figure 4: Average accuracy (%) on CIFAR-100-LT dataset (Im-
balance ratio=100) with CUDA and DODA. SimpleLLM is com-
parable to the effectiveness of CUDA and DODA when combined
with long-tailed learning baselines.

Baselines. Following the
settings of CUDA [2], we
considered various research
theories when selecting the base-
lines. In addition to the classic
cross-entropy loss (CE) [15],
we also validated different
data augmentation methods
on other baselines, such as
loss-based re-balancing methods:
CE-DRW [5], LDAM-DRW [5],
Balanced Softmax (BS) [33],
and model-based re-balancing
methods: RIDE [43], BCL [48].
In terms of data augmenta-
tion methods, we compared
LLM-AutoDA with the latest
SOTA methods: CUDA [2] and
DODA [39]. We observed their
advantages and disadvantages
by combining these DA methods
with the long-tailed baselines. The relevant descriptions of the baselines are also provided in
Appendix A.

Implementation Details. All our models are implemented based on PyTorch [27]. We trained
and evaluated the models on 2 NVIDIA Tesla A100 GPUs and reported the experimental results.
We utilized the powerful gpt-3.5-turbo for strategy generation and employed AEL [23] for strategy
optimization. In the experimental process, we first trained the models for 50 epochs without using
augmentation strategies, then continued training with augmentation strategies for an additional 20
epochs, employing a novel evaluation mechanism. Additionally, during the final evaluation stage of
long-tailed learning, we adopted the same settings as DODA [39] for all baseline methods and our
approach.

5.2 Comparison with the State-of-the-art

Results on CIFAR-100-LT. We first evaluated LLM-AutoDA and other long-tailed data augmentation
(DA) methods on CIFAR-100-LT dataset (IR = 50, 100). The experimental results are shown in Table
1. From the results, it can be observed that both SimpleLLM and the improved version LLM-AutoDA
significantly improve the global accuracy of the model compared to the original long-tailed learning
baseline, achieving robust improvements. In the horizontal comparison with long-tailed DA methods
CUDA [2] and DODA [39], as analyzed earlier, SimpleLLM achieves comparable performance
to the former through a non-optimized way. This indicates that within our framework, a locally
optimal strategy can replace a carefully designed complex strategy. In addition, LLM-AutoDA
brings more significant and stable gains, reflecting that existing long-tailed DA methods may be
suboptimal strategies within our augmentation strategy space, while LLM-AutoDA can provide the
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Table 1: Accuracy (%) on CIFAR-100-LT dataset (Imbalance ratio={50, 100}) with SOTA DA
methods. Blod indicates the best performance while underline indicates the second best. (+) and (-)
indicate the relative gain.

Method IR = 50 IR = 100

Head Medium Tail All Head Medium Tail All

CE [15] 63.9 36.2 15.2 43.8 (+0.0) 65.6 36.2 8.2 40.1 (+0.0)
CE + CUDA 68.3 38.4 13.7 46.2 (+2.4) 70.7 41.4 9.3 42.0 (+3.9)
CE + DODA 71.2 40.3 12.6 48.0 (+4.2) 74.8 43.8 10.0 44.5 (+6.4)
CE + SimpleLLM 71.4 39.9 13.1 48.0 (+4.2) 72.5 44.9 9.8 44.0 (+5.9)
CE + LLM-AutoDA 72.3 40.0 14.1 48.6 (+4.8) 74.9 45.3 9.6 45.0 (+6.9)

CE-DRW [5] 60.6 39.0 22.9 45.0 (+0.0) 63.4 41.2 15.7 41.4 (+0.0)
CE-DRW + CUDA 63.8 48.0 37.0 52.5 (+7.5) 63.5 48.9 25.3 46.9 (+5.5)
CE-DRW + DODA 63.4 47.4 38.9 52.5 (+7.5) 60.2 51.9 29.6 48.1 (+6.7)
CE-DRW + SimpleLLM 62.3 49.4 38.8 52.7 (+7.7) 62.1 49.6 27.9 47.5 (+6.1)
CE-DRW + LLM-AutoDA 63.1 48.4 39.3 52.8 (+7.8) 62.9 50.7 29.9 48.7 (+7.3)

LDAM-DRW [5] 63.0 41.2 25.1 47.2 (+0.0) 62.8 42.6 21.1 43.2 (+0.0)
LDAM-DRW + CUDA 66.2 46.2 26.4 50.8 (+3.6) 66.0 49.5 22.1 47.1 (+3.9)
LDAM-DRW + DODA 64.7 46.3 27.5 50.5 (+3.3) 65.4 50.8 25.5 48.3 (+5.1)
LDAM-DRW + SimpleLLM 65.1 45.2 27.3 50.1 (+2.9) 65.7 49.4 23.9 47.5 (+4.3)
LDAM-DRW + LLM-AutoDA 66.7 46.1 27.4 51.2 (+4.0) 66.7 50.1 26.3 48.8 (+5.6)

BS [33] 60.3 41.3 34.3 47.9 (+0.0) 59.6 42.3 23.7 42.8 (+0.0)
BS + CUDA 63.6 48.4 37.3 52.7 (+4.8) 62.5 49.1 29.4 47.9 (+5.1)
BS + DODA 62.2 51.2 41.5 54.0 (+6.1) 63.1 49.3 31.2 48.7 (+5.9)
BS + SimpleLLM 62.4 48.8 37.7 52.4 (+4.5) 62.4 48.8 30.6 48.1 (+5.3)
BS + LLM-AutoDA 63.3 50.5 40.2 53.9 (+6.0) 63.3 50.0 31.0 49.0 (+6.2)

RIDE [43] 65.7 47.7 31.8 52.2 (+0.0) 65.7 48.6 25.0 47.5 (+0.0)
RIDE + CUDA 67.8 47.0 33.4 53.1 (+0.9) 67.9 51.2 27.6 50.0 (+2.5)
RIDE + DODA 68.2 46.1 29.3 52.1 (-0.1) 68.7 50.9 25.7 49.6 (+2.1)
RIDE + SimpleLLM 67.3 46.8 30.8 52.3 (+0.1) 69.3 48.8 25.4 49.0 (+1.5)
RIDE + LLM-AutoDA 67.1 47.3 32.7 52.8 (+0.6) 69.1 50.2 28.1 50.2 (+2.7)

BCL [48] 61.6 43.1 34.3 49.1 (+0.0) 63.1 42.9 23.9 44.2 (+0.0)
BCL + CUDA 64.0 47.4 39.4 52.7 (+3.6) 64.7 49.7 29.1 48.8 (+4.6)
BCL + DODA 64.9 48.0 40.6 53.6 (+4.5) 66.0 50.7 33.8 51.0 (+6.8)
BCL + SimpleLLM 65.0 49.2 39.9 54.0 (+4.9) 64.1 50.4 30.1 49.0 (+4.8)
BCL + LLM-AutoDA 64.9 49.2 44.1 54.8 (+5.7) 66.6 50.6 33.1 51.0 (+6.8)
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Figure 5: Impact of different LLMs on
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ing models.
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optimal augmentation strategy through continuous optimization. To evaluate the effectiveness of
LLM-AutoDA in highly imbalanced scenarios, we adjusted the imbalance ratio to 200 and conducted
comparative experiments in Appendix D.

Results on ImageNet-LT and iNaturalist 2018. We also conducted comparative experiments
on large-scale benchmark datasets, ImageNet-LT and iNaturalist 2018. As expected, different
long-tailed learning methods showed significant performance improvement when integrated with
LLM-AutoDA. Similar to the highly imbalanced setting mentioned earlier, both of these large-scale
datasets are inherently highly imbalanced. Therefore, the augmentation strategies provided by LLM-
AutoDA can consistently demonstrate superiority in various imbalanced environments. Importantly,
LLM-AutoDA does not rely on meticulous manual design, which reduces the optimization cost on
large-scale datasets.
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Table 2: Accuracy (%) on ImageNet-LT and iNaturalist 2018 datasets with SOTA DA methods. Blod
indicates the best performance while underline indicates the second best. (+) and (-) indicate the
relative gain.

Method ImageNet-LT iNaturalist 2018

Head Medium Tail All Head Medium Tail All

CE [15] 64.0 33.8 5.8 41.6 (+0.0) 73.9 63.5 55.5 61.0 (+0.0)
CE + CUDA 67.1 47.1 13.4 47.2 (+5.6) 74.6 65.0 57.2 62.5 (+1.5)
CE + DODA 67.4 47.5 13.9 48.1 (+6.5) 74.9 66.0 58.4 63.6 (+2.6)
CE + LLM-AutoDA 68.2 47.1 14.3 50.4 (+8.8) 75.1 66.3 58.9 64.0 (+3.0)

CE-DRW [5] 61.7 47.3 28.8 50.1 (+0.0) 68.2 67.3 66.4 67.0 (+0.0)
CE-DRW + CUDA 61.7 48.4 30.5 51.1 (+1.0) 68.8 67.9 66.5 67.4 (+0.4)
CE-DRW + DODA 62.4 48.5 31.3 52.2 (+2.1) 69.0 68.2 67.8 68.2 (+1.2)
CE-DRW + LLM-AutoDA 62.8 48.3 31.7 51.6 (+1.5) 68.8 68.8 68.1 68.7 (+1.7)

LDAM-DRW [5] 60.4 46.9 30.7 49.8 (+0.0) - - - 66.1 (+0.0)
LDAM-DRW + CUDA 63.2 48.2 31.2 51.5 (+1.7) 68.0 67.5 66.8 67.3 (+1.2)
LDAM-DRW + DODA 63.7 48.6 31.9 52.4 (+2.6) 68.6 68.1 67.9 68.7 (+2.6)
LDAM-DRW + LLM-AutoDA 63.3 49.4 32.4 52.5 (+2.7) 68.0 69.4 68.6 69.5 (+3.4)

BS [33] 60.9 48.8 32.1 51.0 (+0.0) 65.7 67.4 67.5 67.3 (+0.0)
BS + CUDA 61.8 49.1 31.8 51.5 (+0.5) 67.6 68.2 68.3 68.2 (+0.9)
BS + DODA 61.9 49.5 32.4 52.0 (+1.0) 68.1 68.9 69.5 69.4 (+2.1)
BS + LLM-AutoDA 62.5 50.0 32.8 52.5 (+1.5) 68.0 69.1 69.9 69.8 (+2.5)

RIDE [43] 64.9 50.4 34.4 53.6 (+0.0) 70.4 71.8 71.8 71.6 (+0.0)
RIDE + CUDA 66.0 51.7 34.7 54.7 (+1.1) 70.6 72.6 72.7 72.4 (+1.4)
RIDE + DODA 66.6 51.9 35.9 55.8 (+2.2) 70.9 72.4 73.9 73.7 (+2.8)
RIDE + LLM-AutoDA 67.1 52.3 37.3 56.5 (+2.9) 70.9 72.8 73.8 73.9 (+3.0)

BCL [48] 65.3 53.5 36.3 55.6 (+0.0) 69.4 72.4 71.8 71.8 (+0.0)
BCL + CUDA 66.8 53.9 36.6 56.3 (+0.7) 70.8 72.7 72.0 72.2 (+0.4)
BCL + DODA 66.9 54.1 37.4 56.9 (+1.3) 71.2 73.2 73.4 73.7 (+1.9)
BCL + LLM-AutoDA 67.2 55.1 38.3 57.5 (+1.9) 70.9 73.6 74.7 74.2 (+2.4)

5.3 More Analysis and Discussion

Do different LLMs produce differentiated effects? In the aforementioned experiments, we used
GPT-3.5 [3] as the LLM to respond to the designed prompts. To analyze whether LLM-AutoDA is
dependent on specific LLM models (e.g., GPT-3.5), we replaced the LLM model in LLM-AutoDA
with other popular methods such as GPT-4 [1] and Claude-3-Opus, and conducted experiments.
The experimental results, shown in Figure 5, demonstrate that all three LLMs exhibit consistent
performance trends when selecting augmentation strategies in different score ranges. For instance,
they all show high performance near the augmentation strategies with scores around 12, while
augmentation strategies with excessively high scores lead to performance degradation across the three
LLMs due to insufficient diversity.

Operator 3
6
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11

Intensity
0.1

0.3
0.4

Loss

10
20
30
40

Figure 8: Visualization of the pro-
cess of finding the optimal so-
lution for different augmentation
paradigms.

Do different population numbers have an impact on perfor-
mance? In LLM-AutoDA, we employed two different types of
prompts: crossover prompts and mutation prompts. Crossover
prompts involve transforming multiple parent populations into
a single population, while mutation prompts replace the current
augmentation strategy with an equivalent one.

Throughout the iterative process of framework evolution, when
performing crossover and mutation operations, we need to spec-
ify the number of populations generated each time. Figures 6
and 7 illustrate the scores of strategies generated by two dif-
ferent mutation prompts (m1, m2) and two different crossover
prompts (e1, e2), respectively. It can be observed that different
prompts exhibit consistent trends in score variations. Particu-
larly, compared to e1, e2 demonstrates a higher score variance,
which indirectly reflects the bias in its prompt content.

Why are fixed strategy methods often local optima? Strategy
fixed data augmentation methods, such as CUDA and DODA, aim to adapt to long-tailed distributions
by dynamically adjusting the augmentation operators or intensities. However, their focus is limited.
We visualized the loss variations when searching for optimal augmentation strategies using different
paradigms. From Figure 8, it can be observed that CUDA (i.e., green plane) and DODA (i.e., red
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plane) can only search for local optimal strategies on a single plane, while LLM-AutoDA is capable
of flexibly searching for the points with the lowest loss across the entire curved surface to obtain a
global optimal solution.

6 Conclusion

Existing paradigms for long-tailed learning have partially alleviated the long-tailed problem but
still have limitations. To address this, this paper presents an LLM-driven long-tailed data augmen-
tation framework called LLM-AutoDA, which utilizes large-scale pre-trained language models to
automatically search for data augmentation strategies optimized for long-tailed data distributions. Ex-
periments on multiple mainstream benchmark datasets demonstrate that LLM-AutoDA outperforms
state-of-the-art methods.
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Appendix
LLM-AutoDA: Large Language Model-Driven Automatic Data

Augmentation for Long-tailed Problems
The content of the Appendix is summarized as follows:

1) in Sec. A, we summarize long-tailed learning baselines and data augmentation baselines.

2) in Sec. B, we demonstrate the details of datasets.

3) in Sec. C, We present the pseudocode corresponding to the LLM-AutoDA.

4) in Sec. D, we illustrate more detailed empirical results and analyses.

5) in Sec. E, we show the prompts used in our framework.

6) in Sec. F, we discuss the limitations of our framework.

7) in Sec. G, we discuss the broader impacts of our framework.

A Baselines Details

Cross-Entropy Loss (CE) [15] As a classic classification loss function, cross-entropy (CE) is
widely used in both balanced and imbalanced data distributions, directly computing the loss based on
the true labels of samples and the predicted probability distributions of the model. Although simple
and effective, CE tends to overly focus on head classes while overlooking tail classes in long-tailed
scenarios.

Loss-based Re-balancing Strategies

• CE-DRW [5] combines re-weighting of training samples based on the inverse class frequency and
gradient reversal that considers class frequencies during backpropagation, enhancing the focus on
tail classes.

• LDAM-DRW [5] further improves upon CE-DRW by introducing learnable amplification factors
to automatically adjust the weight of each class, better optimizing the inter-class balance.

• Balanced Softmax (BS) [33] re-weights the logits based on the prior class probabilities, giving
higher attention to tail classes.

Model-based Re-balancing Strategies

• RIDE [43] ensembles multiple expert models, each focusing on different class distributions, and
adaptively combines their outputs based on the test data to adapt to distribution shifts.

• BCL [48] for CNN classifiers, optimizes the losses of head and tail components while considering
intra-class variance and inter-class distances to enhance the separability of classification boundaries.

Data Augmentation Methods

• CUDA [2] proposes a contrastive learning-based automatic data augmentation method that gener-
ates transformations during training, significantly boosting performance in long-tailed scenarios.

• DODA [39] dynamically adjusts the data augmentation strategies for different classes from a
distribution perspective, ensuring sufficient augmentation for tail classes while avoiding over-
augmentation for head classes.

The above baseline methods offer unique insights into addressing long-tailed distributions, laying the
foundation for our research. The experimental section will comprehensively compare and analyze the
performance of these methods across different datasets and evaluation metrics.

B Evaluation Datasets

To comprehensively evaluate the effectiveness of our proposed method, we conduct experiments
on four representative long-tailed datasets: CIFAR100-LT, ImageNet-LT, iNaturalist 2018, and
Places365-LT. These datasets cover diverse domains and exhibit varying degrees of class imbalance,
providing a comprehensive and challenging testbed for long-tailed learning algorithms.
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Table 3: Statistics of the long-tailed datasets.

Dataset # Classes # Train # Test Max Imbalance Ratio

CIFAR100-LT 100 50,000 10,000 100
ImageNet-LT 1,000 115,846 50,000 256
iNaturalist 2018 8,142 437,513 24,426 500

CIFAR100-LT [5] is the long-tailed version of the renowned CIFAR100 dataset, comprising 60,000
32× 32 color images across 100 classes. The long-tailed distribution is induced by exponentially
decreasing the number of samples per class, with a maximum imbalance ratio of 100.

ImageNet-LT [26] is a long-tailed subset of the large-scale ImageNet dataset, containing over
115,000 images spanning 1,000 classes. The class cardinalities follow a Pareto distribution with
α = 6, leading to a maximum imbalance ratio of 256.

iNaturalist 2018 [38] is a real-world dataset reflecting the long-tailed distribution in nature, com-
prising approximately 450,000 images across 8,142 species categories. Due to the drastic variation
in the number of images per species, this dataset has a maximum imbalance ratio of 500, posing a
significant challenge with extreme class imbalance and high intra-class variation.

C Pseudocode

Algorithm 1: LLM-AutoDA: Automatic Data Augmentation with Language Models
1: Input:
2: - Long-tailed datasets Dtrain,Dval

3: - Pretrained language model L
4: - Initial data augmentation policies K
5: - Long-tailed learning model fθ with parameters θ
6: Output:
7: - Optimal data augmentation algorithm A∗

8: - Final model fθ
9: Define task description prompt Ptask

10: Define exploration operator prompt template PE

11: Define mutation operator prompt template PM

12: Initialize algorithm population {A(0)
i }Ni=1 = INITIALIZE(L,Ptask,K)

13: for each generation t do
14: {A(t)

i }Np

i=1 = SELECT({A(t−1)
i }Ni=1) {Select parents}

15: {A(t)
j }Ne

j=1 = EXPLORE(L,PE , {A(t)
i }Np

i=1,K) {Explore}

16: {Â(t)
i }Nm

i=1 = MUTATE(L,PM , {A(t)
i }Nm

i=1,K) {Mutate}
17: {A(t)

i }Ni=1 = {A(t)
i }Np

i=1 ∪ {A(t)
j }Ne

j=1 ∪ {Â(t)
i }Nm

i=1

18: for each A(t)
i do

19: fitness
(t)
i = EVALUATE(A(t)

i , fθ,Dtrain,Dval, eckp, Nft)
20: end for
21: end for
22: A∗ =Ai

fitnessi {Select algorithm with highest fitness}
23: return A∗, fθ

=0

where INITIALIZE uses an initialization operator to generate a random population of algorithms,
EXPLORE and MUTATE correspond to the exploration and mutation operators respectively. In each
generation, a subset of individuals is selected from the previous generation as parents, then new
algorithms are generated using the exploration and mutation operators, and merged into the population.
For each candidate algorithm, EVALUATE is called to compute its fitness:
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function EVALUATE(A, fθ,Dtrain,Dval, eckp, Nft):
f ′
θ = FINETUNE(A, fθ,Dtrain, eckp, Nft)

return ACCURACY(f ′
θ,Dval) =0

FINETUNE starts from the eckp-th checkpoint and incrementally trains for Nft epochs on the training
set, with the algorithm A dynamically selecting augmentations for each class:

function FINETUNE(A, fθ,Dtrain, eckp, Nft):
Load checkpoint of fθ at epoch eckp

for e = eckp to eckp +Nft do
for each class c do
A(e)

c , E(e)
c = A(W

(e−1)
c ,H

(e−1)
c , acc

(e−1)
c ,A(e−1)

c , E(e−1)
c , e)

end for
Train fθ for one epoch on Dtrain using {A(e)

c , E(e)
c } for augmentation

end for
return fθ =0

where W
(e−1)
c are the weights of augmentation techniques for class c, H(e−1)

c is the history of
accuracies for c, and acc

(e−1)
c is the accuracy in the previous epoch.

D Future Anylysis

D.1 Highly Imbalanced Scenarios

To evaluate the effectiveness of LLM-AutoDA in highly imbalanced scenarios, we adjusted the
imbalance ratio to 200 and conducted comparative experiments. The experimental results, as shown
in Figure 9, demonstrate that LLM-AutoDA consistently outperforms other long-tailed data augmen-
tation methods.
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Figure 9: Accuracy (%) on more imbalanced CIFAR-100-LT dataset (Imbalance ratio=200) with
SOTA DA methods.
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D.2 Visualization of Selection Process
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Figure 10: Trends in the augmentation intensities and number of times different strategies are selected.

In the figure13, we visualize the selection process of the data augmentation strategies provided by
the model. We train the discovered data augmentation methods on CIFAR-100 with an imbalance
ratio of 100 under the bi-entropy loss, where the x-axis is the epoch. The y-axis represents the data
augmentation techniques that may be used in this work, including Mirror, EdgeEnhance, Detail,
Smooth, AutoContrast, Equalize, Invert, GaussianBlur, Rotate, and Flip. The augmentation intensity
ranges from 0 to 1 for all of these techniques. For samples of the first class, on the right side,
different data augmentation methods are represented, with a dot in the grid indicating that the method
represented by that row is selected, and dots of different colors indicating multiple selections. The
height in the grid represents the intensity given by our strategy. In the early stages of training, the
selected data augmentation strategies are relatively random, but as the model continues training, the
trends in the selected data augmentation methods, intensities, and number of times selected gradually
stabilize. This shows that the data augmentation methods provided by the large model can effectively
achieve convergence on the long-tailed learning model. This demonstrates the feasibility of using a
large model to search for and design data augmentation strategies for long-tailed learning models.

D.3 Cost Analysis

Using LLM-AutoDA to optimize data augmentation strategies for long-tailed recognition tasks
requires significantly less time compared to the manual design of data augmentation strategies by
humans. LLM-AutoDA can obtain highly effective strategies within a mere 2 3 hours under a given
framework.
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E Prompts

You are requested to design a novel algorithm that, given a set of 
augmentation techniques, selects several of them based on the 
change in per-class accuracy between the current training time point 
and the previous one, to be employed in the subsequent training 
phase, with the aim of enhancing the model's ability to tackle long-
tail problems. This algorithm should deviate from existing 
methodologies present in the literature.

Describe the new algorithm and main steps in one sentence, place 
the sentence inside curly braces, Next, implement it in Python as a 
function named get_aug_type. This function should accept 6 input(s): 
'aug_weight', 'ACCs', 'History_ACCs', 'lats_chose_matix', 
'lats_chose_exts', 'epoch'. The function should return 1 output(s): 
'chose_matrix,chose_exts'. aug_weight is a two-dimensional integer 
array initialized to 1, used to record the historical weight information 
for each category (indexed by rows) across every augmentation 
technique (indexed by columns). ACCs is a one-dimensional integer 
array showcasing the performance of each category at the current 
training instant, specifically, the count of correct predictions within 
that category. History_ACCs is a two-dimensional integer array that 
records the number of correct predictions made by each 
augmentation technique (column-wise) the last time they were 
employed for every category. lats_chose_matrix is a two-
dimensional Boolean array indicating whether specific augmentation 
techniques (by column index) were utilized for each category (row 
index) in the previous training step; True signifies usage, while False 
denotes non-usage. lats_chose_exts is a two-dimensional float array 
representing the application intensity of each augmentation method 
across classifications at the current point in time, with a range from 0 
to 1, where higher numbers imply greater enhancement strength. 
epoch is an integer denoting the current training epoch, indicating 
the number of completed training cycles. chose_matrix is a two-
dimensional Boolean array marking which augmentation techniques 
(by column index) will be employed in the next training step; True 
values indicate adoption, and False, rejection. chose_exts is a two-
dimensional float array signifying the intensity of applying each 
augmentation technique to individual categories in the upcoming 
time step, also ranging from 0 to 1, with larger values indicating 
more substantial augmentation efforts. All are Numpy arrays.

Do not give additional explanations.

Figure 11: An example of initialization prompts.
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You are requested to design a novel algorithm that, given a set of augmentation techniques, selects several of them based on the
change in per-class accuracy between the current training time point and the previous one, to be employed in the subsequent 
training phase, with the aim of enhancing the model's ability to tackle long-tail problems. This algorithm should deviate from 
existing methodologies present in the literature.

I have 1 existing algorithms with their codes as follows: 

No.1 algorithm and the corresponding code are: 

The algorithm dynamically adjusts augmentation technique selection and intensity based on per-class accuracy improvements, 
historical usage, and a decay factor to address class imbalance and enhance model performance on underrepresented classes.

import numpy as np
import random

def get_aug_type(aug_weight,ACCs, History_ACCs, lats_chose_matix, lats_chose_exts,epoch):
cls_num,num_aug_type = History_ACCs.shape
# solve a weight as self.aug_weight

for cidx in range(cls_num):
indices = lats_chose_matix[cidx]
assert indices.any() ,f'class index {cidx} has no chose_aug (num of aug must > 0)
aug_weight[cidx][indices] = np.where(ACCs[cidx] > History_ACCs[cidx][indices],

aug_weight[cidx][indices] + 1,
aug_weight[cidx][indices] - 1)

aug_weight = np.maximum(aug_weight, 1)

chose_aug = np.zeros((cls_num ,num_aug_type)).astype(bool)

chose_exts = np.random.rand(*lats_chose_exts.shape)

aug_list = [i for i in range(num_aug_type)]

for i in range(cls_num):
indexes = random.choices(aug_list , weights = aug_weight[i , : ].tolist() , k = 1) #self.args.MAX_N
for index in indexes:

chose_aug[i][index] = True
return chose_aug,chose_exts

Please help me create a new algorithm that has a totally different form from the given ones. 

Describe the new algorithm and main steps in one sentence, place the sentence inside curly braces. Next, implement it in Python 
as a function named get_aug_type. This function should accept 6 input(s): 'aug_weight', 'ACCs', 'History_ACCs', 
'lats_chose_matix', 'lats_chose_exts', 'epoch'. The function should return 1 output(s): 'chose_matrix,chose_exts'. aug_weight is a 
two-dimensional integer array initialized to 1, used to record the historical weight information for each category (indexed by rows) 
across every augmentation technique (indexed by columns). ACCs is a one-dimensional integer array showcasing the performance 
of each category at the current training instant, specifically, the count of correct predictions within that category. History_ACCs is 
a two-dimensional integer array that records the number of correct predictions made by each augmentation technique (column-
wise) the last time they were employed for every category. lats_chose_matrix is a two-dimensional Boolean array indicating 
whether specific augmentation techniques (by column index) were utilized for each category (row index) in the previous training 
step; True signifies usage, while False denotes non-usage. lats_chose_exts is a two-dimensional float array representing the 
application intensity of each augmentation method across classifications at the current point in time, with a range from 0 to 1,
where higher numbers imply greater enhancement strength. epoch is an integer denoting the current training epoch, indicating the
number of completed training cycles. chose_matrix is a two-dimensional Boolean array marking which augmentation techniques 
(by column index) will be employed in the next training step; True values indicate adoption, and False, rejection. chose_exts is a 
two-dimensional float array signifying the intensity of applying each augmentation technique to individual categories in the 
upcoming time step, also ranging from 0 to 1, with larger values indicating more substantial augmentation efforts. All are Numpy
arrays.

Do not give additional explanations.

Figure 12: An example of crossover prompts.
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You are requested to design a novel algorithm that, given a set of augmentation techniques, selects several of them based on the
change in per-class accuracy between the current training time point and the previous one, to be employed in the subsequent 
training phase, with the aim of enhancing the model's ability to tackle long-tail problems. This algorithm should deviate from 
existing methodologies present in the literature.

I have one algorithm with its code as follows. Algorithm description: The algorithm dynamically adjusts augmentation technique 
selection and intensity based on per-class accuracy improvements, historical usage, and a decay factor to address class imbalance 
and enhance model performance on underrepresented classes.

Code:
import numpy as np
import random

def get_aug_type(aug_weight,ACCs, History_ACCs, lats_chose_matix, lats_chose_exts,epoch):

cls_num,num_aug_type = History_ACCs.shape

# solve a weight as self.aug_weight
for cidx in range(cls_num):

indices = lats_chose_matix[cidx]
assert indices.any() ,f'class index {cidx} has no chose_aug (num of aug must > 0)'
aug_weight[cidx][indices] = np.where(ACCs[cidx] > History_ACCs[cidx][indices],

aug_weight[cidx][indices] + 1,
aug_weight[cidx][indices] - 1)

aug_weight = np.maximum(aug_weight, 1)

chose_aug = np.zeros((cls_num ,num_aug_type)).astype(bool)
chose_exts = np.random.rand(*lats_chose_exts.shape)
aug_list = [i for i in range(num_aug_type)]

for i in range(cls_num):
indexes = random.choices(aug_list , weights = aug_weight[i , : ].tolist() , k = 1) #self.args.MAX_N
for index in indexes:

chose_aug[i][index] = True
return chose_aug,chose_exts

Please assist me in creating a new algorithm that has a different form but can be a modified version of the algorithm provided. 

First, describe the new algorithm and main steps in one sentence, place the sentence inside curly braces.Next, implement it in 
Python as a function named get_aug_type. This function should accept 6 input(s): 'aug_weight', 'ACCs', 'History_ACCs', 
'lats_chose_matix', 'lats_chose_exts', 'epoch'. The function should return 1 output(s): 'chose_matrix,chose_exts'. aug_weight is a 
two-dimensional integer array initialized to 1, used to record the historical weight information for each category (indexed by rows) 
across every augmentation technique (indexed by columns). ACCs is a one-dimensional integer array showcasing the performance 
of each category at the current training instant, specifically, the count of correct predictions within that category. History_ACCs is 
a two-dimensional integer array that records the number of correct predictions made by each augmentation technique (column-
wise) the last time they were employed for every category. lats_chose_matrix is a two-dimensional Boolean array indicating 
whether specific augmentation techniques (by column index) were utilized for each category (row index) in the previous training 
step; True signifies usage, while False denotes non-usage. lats_chose_exts is a two-dimensional float array representing the 
application intensity of each augmentation method across classifications at the current point in time, with a range from 0 to 1,
where higher numbers imply greater enhancement strength. epoch is an integer denoting the current training epoch, indicating the
number of completed training cycles. chose_matrix is a two-dimensional Boolean array marking which augmentation techniques 
(by column index) will be employed in the next training step; True values indicate adoption, and False, rejection. chose_exts is a 
two-dimensional float array signifying the intensity of applying each augmentation technique to individual categories in the 
upcoming time step, also ranging from 0 to 1, with larger values indicating more substantial augmentation efforts. All are Numpy
arrays.

Do not give additional explanations.

Figure 13: An example of mutation prompts.
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F Limitations

This paper aims to innovate the data augmentation paradigm in long-tailed learning, which greatly
improves the degree of freedom of long-tailed data augmentation. However, there are still some
limitations of our approach. For example, the scoring mechanism for augmentation strategies is not
perfect, and a more comprehensive scoring mechanism is needed. In addition, how to break through
the search space limitation and generate novel augmentation methods is also a problem to be solved.

G Broader Impacts

Traditional data augmentation is not the best choice for long-tail learning, and recent long-tail data
augmentation methods still lack degrees of freedom. The positive impact of our method is that it can
give a large number of augmentation strategies suitable for long-tail learning in a short time, which
greatly reduces the time and human cost consumed to design the strategy. Of course, there is also a
small negative impact, that is, it is easy to cause dependence on LLMs.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We describe the contributions of this paper in detail.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of this paper in the appendix.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide a complete demonstration process and data support.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide implementation details and code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide the complete code as well as the details of the publicly available
datasets used.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the relevant details and analysis of the experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We reported the average results of multiple tests in the experiment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided the code for easy reproduction.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We are fully qualified.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the implications in the appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We give references to the datasets and code used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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