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ABSTRACT
Missing value, which is common in multivariate time series, is
the most important obstacle towards the utilization and interpre-
tation of those data. Great efforts have been employed on how
to accurately impute missing values in multivariate time series,
and existing works either use deep learning networks to achieve
deterministic imputations or aim at generating different plausible
imputations by sampling multiple noises from a same distribution
and then denoising them. However, these models either fall short of
modeling the uncertainties of imputations due to their deterministic
nature or perform poorly in terms of interpretability and imputa-
tion accuracy due to their ignorance of the correlations between
the latent representations of both observed and missing values
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which are parts of samples from a same distribution. To this end,
in this paper, we explicitly take the correlations between observed
and missing values into account, and theoretically re-derive the
Evidence Lower BOund (ELBO) of conditional diffusion model in
the scenario of multivariate time series imputation. Based on the
newly derived ELBO, we further propose a novel multivariate impu-
tation diffusion model (MIDM) which is equipped with novel noise
sampling, adding and denoising mechanisms for multivariate time
series imputation, and the series of newly designed technologies
jointly ensure the involving of the consistency between observed
and missing values. Extensive experiments on both the tasks of
multivariate time series imputation and forecasting witness the su-
periority of our proposed MIDM model on generating conditional
estimations.

CCS CONCEPTS
•Mathematics of computing→ Time series analysis; Varia-
tional methods.
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1 INTRODUCTION
Massive multivariate time series data is generated in abundant real
world scenarios including electricity load, traffic flow and weather
condition. Fully analyzing and utilizing of these data can greatly
facilitate people’s lives. However, missing values resulted from
various reasons such as device failures and human errors [19] are
inevitable and will greatly hamper the utilization and interpretation
of multivariate time series data. Therefore, time series imputation,
which aims at addressing the issue of missing values by estimating
missing values from observed ones, has become a recent research
hotspot.

Many machine learning based time series imputation methods
were firstly proposed in the past few years [20, 28, 37]. Then, with
the rapid developments of deep learning technologies, many deep
learning based efforts [8, 9, 13–15, 26, 36, 43, 44] were subsequently
proposed to impute missing values in multivariate time series. Such
recent deep learning based works can be divided into two categories,
deterministic methods [8, 9, 13, 44] and probabilistic methods [14, 15,
26, 36, 43].

An intuitive implementation of deterministic model is to use
Recurrent Neural Networks (RNNs) for sequence modeling [8, 9],
where the missing values in input sequences are replaced with a
specific token. [13] takes the correlations among different time se-
ries into consideration and combines RNN with Graph Convolution
Network (GCN) together. And some other works [12, 31, 35] apply
attention or self-training mechanisms to enhance the representative
abilities of their models. Even though deterministic methods have
achieved fair deterministic imputations, their deterministic nature
determine that they are short in modeling the uncertainties of impu-
tations. However, modeling uncertainties is of vital importance in
various realistic scenarios as it allows the evaluation of the robust-
ness of both imputation models and downstream algorithms [1, 29].
Thus, increasing efforts have been devoted to probabilistic methods
in recent years.

Probabilistic models aim at generating different plausible im-
putations by sampling multiple noises from a same distribution
and then denoising them, thus naturally address the uncertainty
issue. Early attempts in probabilistic models [25, 43], which extend
Generative Adversarial Networks (GANs) to the scenario of multi-
variate time series imputation, utilize adversarial learning to force
their models to generate estimations of missing values following
the distribution of training dataset. However, GAN-based methods
are hard to be trained and with less interpretability. For seeking
interpretability of probabilistic models, some recent works [14, 15]
utilize Variational AutoEncoders (VAEs) as the cores of their models
and achieves comparable performance to those GAN-based meth-
ods. These works utilize variational inference to derive the Evidence
Lower BOund (ELBO) of conditional distribution of missing val-
ues with regard to given observations, thus providing theoretical

supports for their interpretability. However, even compared with
GAN based models, such models still perform poorly in generating
more high-quality estimations of missing values. More recently,
some works make attempts to extend diffusion models 1 to the
problem of multivariate imputation and propose many novel mod-
els for generating conditional distribution of missing values given
observations. Specifically, CSDI [36] learns conditional distribution
with conditional score-based diffusion model [18, 33] by feeding
observed values into denoising module of the diffusion model, and
SSSDS4 [1] applies state space model [17] as the denoising module
of Diffwave diffusion models [21] to achieve imputation. Neverthe-
less, existing imputation diffusion models, which borrow the idea
from existing diffusion models targeting other tasks, naturally fol-
low the diffusion processes of those existing diffusion models and
ignore the existence of the correlations between the latent
representations of both observed and missing values which
are parts of samples from a same distribution. Therefore, using
existing imputation diffusion models to construct conditional dis-
tribution of missing values with regard to given observed values is
necessarily unsatisfactory in approximating real conditional
distribution.
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Figure 1: Comparison of diffusion processes in CSDI and
MIDM. In this figure, 𝑥𝑐𝑡 and 𝑥𝑚𝑡 correspond to representa-
tions of observed and missing values at 𝑡-th step of diffusion
process. In case 𝑡 = 0, 𝑥𝑐𝑡 and 𝑥

𝑚
𝑡 correspond to original data.

𝑥𝑚𝑡 corresponds to estimation of representations of missing
values. Green arrowmeans sampling noise from distribution
and blue arrow means following the distribution.

1Diffusion models [11, 34], which are built on similar theoretical basis to VAEs, are
widely used in various generation tasks such as audio and image synthesis by recover-
ing data from noise through denoising.
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In this paper, considering the fact that diffusion model process
data with the guidance of ELBO and previous derived ELBO [14]
has never taken the consistency between observed and missing
values into account, we here first theoretically re-derive the ELBO of
conditional distribution ofmissing values in the context of involving
the consistency between observed and missing values. Based on the
re-derived new ELBO, we redesign the process of diffusion model
and propose a novel Multivariate time series Imputation Diffusion
Model (MIDM) which has different noise sampling, adding and
removing processes than vanilla diffusion models. We compare the
noise sampling and denoising processes of the proposed MIDM
with those of vanilla diffusion models (Select CSDI [36] as the
representative) in Figure 1. As illustrated, rather than sampling from
a standard Gaussian distribution as in CSDI, MIDM samples noise
from conditional distribution generated according to the latent
representation of observed values. Similarly, at each step of noise
adding process, MIDM add noise sampled from a joint Gaussian
distribution with non-identical covariance matrix rather than a
standard Gaussian. Note that in MIDM, the newly derived ELBO
requests that the diffused observations should be used as conditional
input for each step of denoising the noises corresponding to missing
values. We verify the effectiveness of MIDM on several widely used
multivariate imputation datasets. Note that multivariate time series
forecasting is a special case of imputation where all values in the
last several time steps are missing, we also evaluate our model
on multivariate forecasting task. The empirical results show that
MIDM achieves state-of-the-art performances on both the tasks of
multivariate time series imputation and forecasting.

The main contributions of this paper can be concluded as follows,
• We derive the new theoretical Evidence Lower BOund of
applying diffusion models on the problem of multivariate
time series imputation by taking the consistency between
observed and missing values into account.

• Based on the newly derived ELBO, we propose a brand new
diffusion model equipped with novel noise sampling, adding
and denoising mechanisms for multivariate time series impu-
tation, and the series of newly designed technologies jointly
ensure the involving of the consistency between observed
and missing values.

• We evaluate the proposed MIDM on several widely used
multivariate imputation and forecasting datasets. The em-
pirical results show that MIDM achieves state-of-the-art
performance on both multivariate time series imputation
and forecasting.

2 RELATEDWORK AND PRELIMINARY
2.1 Related work
Missing values are common in multivariate time series data. For
fully utilizing and analyzing multivariate time series data, great
efforts have been devoted to multivariate time series imputation for
many years. Early works address imputation issue with machine
learning methods. MICE [40] utilities chained equation to fill the
missing values. Some representative autoregressive models, such as
ARIMA [7] and VAR [47], can be used to impute missing values. [20]
selects 𝑘 nearest neighbors and uses the average of values of the
neighbors to fill missing values. MF [27] factorizes the incomplete

dataset into low-rank matrices and adopts the product of these two
matrices to impute missing values. Those methods struggle to fit
large datasets and the imputation accuracy of them is limited. With
the rapid developments of deep learning, researchers tend to tackle
the issue of missing values with deep models, which can be divided
into deterministic models and probabilistic models.

Deterministic models generate determined imputation given ob-
served values. [6] proposes bidirectional recurrent neural networks
for efficiently estimating missing values. GRUD [9] imputes missing
values by utilizing the last observation and mean of observations
to represent missing patterns. BRITS [8] build a bidirectional re-
current dynamical system which directly learns the missing values.
Both GRUD and BRITS take as input sequences with missing values
where missing values are replaced with specific tokens, and output
imputed sequences. To enhance the representative ability, [12] ap-
plies self-training mechanism for multivariate imputation. Since
attention based model have achieved impressive performance on
sequence model, [31, 35] proposes attention based multivariate
imputation models. Considering the correlations among different
variables, [13] combines RNN with Graph Convolution Network
(GCN) together for generating more accurate imputation. While
those deterministic methods have achieved fair performance on
imputation, they fall short of modeling the uncertainties of their
imputations. Considering the importance of modeling uncertainties
in various realistic scenarios [1, 29], increasing efforts have been
devoted to probabilistic methods in recent years.

Early attempts in probabilistic extends GAN [16, 39] to multi-
variate imputation. GAIN [43] proposes a general data imputation
model which uses hint vectors conditioned on observed values
for helping generate imputation. [24] proposes a two-stage GAN
based imputation model, which consumes lots of time to train.
E2𝐺𝐴𝑁 [25] proposes a compressing and reconstructing strategy
to skip the second stage in [24] and thus save the time consump-
tion. SSGAN [26] proposes a semi-supervised classifier to tackle
the issue of insufficient label. GAN-based methods are hard to be
trained and with less interpretability. For seeking interpretability of
probabilistic models, some recent works [14, 15] utilize Variational
AutoEncoders (VAEs) to address the problem of multivariate impu-
tation. Recently, diffusion models [11, 34] have achieved impressive
performance on various generation tasks such as audio and image
synthesis. Many researchers try to extend diffusion model to multi-
variate imputation and have achieved state-of-the-art performances.
Specifically, CSDI [36] tries to learn conditional distribution with
conditional score-based diffusion model [18, 33] by feeding ob-
served values into the denoising module of their diffusion model.
𝐷3𝑉𝐴𝐸 [22] equips a bidirectional VAE with diffusion model for
multivariate forecasting problem, where the noise for generating
imputation is sampled by the bidirectional VAE. SSSDS4 [1] applies
recent advanced state space model [17] as the denoising module and
combine it with Diffwave [21] to achieve imputation. Nevertheless,
those diffusion based model ignore the nature of multivariate time
series, that both observed and missing values are part of samples
coming from the same data distribution, and thus fail to approximat-
ing conditional distribution of missing values given observations
well.

2411



KDD ’23, August 6–10, 2023, Long Beach, CA, USA Xu Wang et al.

2.2 Problem definition
In this paper, we focus on multivariate time series imputation prob-
lem, where we aim at imputing missing values in multivariate time
series based on observed values of those series. The multivariate
time series we are interested in contains several time series of
the same length, each of which contains missing values. We here
formally define the problem of multivariate time series imputation.

Definition 2.1. The multivariate time series containing 𝑁 time
series with length 𝐿 can be denoted as 𝑋 ∈ R𝑁×𝐿 , where observed
values 𝑋𝑐 and missing values 𝑋𝑚 are given by a mask matrix𝑀 ∈
[0, 1]𝑁×𝐿 , i.e.,𝑋𝑐 = {𝑋 𝑖, 𝑗 |𝑀𝑖, 𝑗 = 1} and𝑋𝑚 = {𝑋 𝑖, 𝑗 |𝑀𝑖, 𝑗 = 0}. And
the problem of multivariate time series imputation can be defined as,

max
𝜃

𝑝𝜃 (𝑋𝑚 |𝑋𝑐 ) 𝑤ℎ𝑒𝑟𝑒 (𝑋𝑚, 𝑋𝑐 ) ∼ 𝑝 (𝑋 ) (1)

where 𝑝𝜃 is a probabilistic imputation model aiming at approximating
the real conditional distribution 𝑝 (𝑋𝑚 |𝑋𝑐 ).

3 METHOD
We aim at approximating conditional distribution 𝑝 (𝑋𝑚 |𝑋𝑐 ) based
on the premise that observed and missing values follow a joint
distribution, i.e., (𝑋𝑚, 𝑋𝑐 ) ∼ 𝑝 (𝑋 ). To achieve this goal, we first de-
rive the evidence lower bound of 𝑝 (𝑋𝑚 |𝑋𝑐 ), since none of existing
work consider conditional distribution 𝑝 (𝑋𝑚 |𝑋𝑐 ) with constraint
as (𝑋𝑚, 𝑋𝑐 ) ∼ 𝑝 (𝑋 ). With the light of derived ELBO, we are able
to design the noising, sampling and denoising process for our Mul-
tivariate time series Imputation Diffusion Model (MIDM). In this
section, we first derive the evidence lower bound of conditional
distribution 𝑝 (𝑋𝑚 |𝑋𝑐 ), then we detail the design of MIDM and
finally we detail our error estimation model for denoising.

3.1 ELBO of conditional distribution
We start from deriving ELBO of the conditional distribution 𝑝 (𝑋𝑚 |𝑋𝑐 ).
Typically, a diffusion model noise data into a standard Gaussian
distribution by gradually adding standard Gaussian noise in𝑇 steps,
which can be formulated as the following Markov chain:

𝑞(𝑋1:𝑇 |𝑋0) =
𝑇∏
𝑡=1

𝑞(𝑋𝑡 |𝑋𝑡−1) (2)

where 𝑋𝑡 corresponds to latent representation of 𝑋 at 𝑡 step, 𝑋0 is
the original data and equivalent to 𝑋 . Our goal is to approximating
conditional distribution of missing values given observed values,

log𝑝 (𝑋𝑚0 |𝑋𝑐0 ) = log
𝑝 (𝑋𝑚0 , 𝑋

𝑐
0 )

𝑝 (𝑋𝑐0 )
(3)

Since we have (𝑋𝑚, 𝑋𝑐 ) ∼ 𝑝 (𝑋 ), the ELBO of the conditional
distribution can be written as,

log𝑝 (𝑋𝑚0 |𝑋𝑐0 ) = log
𝑝 (𝑋0)
𝑝 (𝑋𝑐0 )

≥ E𝑞 (𝑋1:𝑇 |𝑋0) [log
𝑝 (𝑋0:𝑇 )

𝑞(𝑋1:𝑇 |𝑋0)
+ log

𝑞(𝑋𝑐1:𝑇 |𝑋
𝑐
0 )

𝑝 (𝑋𝑐0:𝑇 )
]

(4)

For brevity, we denote E𝑞 (𝑋1:𝑇 |𝑋0) as E. Consider E[log
𝑝 (𝑋0:𝑇 )

𝑞 (𝑋1:𝑇 |𝑋0) ],
we have,

E[log 𝑝 (𝑋0:𝑇 )
𝑞(𝑋1:𝑇 |𝑋0)

] = E[log
𝑝 (𝑋𝑇 )

∏𝑇
𝑡=1 𝑝𝜃 (𝑋𝑡−1 |𝑋𝑡 )∏𝑇

𝑡=1 𝑞(𝑋𝑡 |𝑋𝑡−1)
]

= E[log
𝑝 (𝑋𝑇 )𝑝𝜃 (𝑋0 |𝑋1)

∏𝑇
𝑡=2 𝑝𝜃 (𝑋𝑡−1 |𝑋𝑡 )

𝑞(𝑋1 |𝑋0)
∏𝑇
𝑡=2 𝑞(𝑋𝑡 |𝑋𝑡−1)

]

= E[log
𝑝 (𝑋𝑇 )𝑝𝜃 (𝑋0 |𝑋1)

∏𝑇
𝑡=2 𝑝𝜃 (𝑋𝑡−1 |𝑋𝑡 )

𝑞(𝑋1 |𝑋0)
∏𝑇
𝑡=2 𝑞(𝑋𝑡 |𝑋𝑡−1, 𝑋0)

]

= E[log 𝑝𝜃 (𝑋𝑇 )𝑝𝜃 (𝑋0 |𝑋1)
𝑞(𝑋1 |𝑋0)

+ log
𝑇∏
𝑡=2

𝑝𝜃 (𝑋𝑡−1 |𝑋𝑡 )
𝑞(𝑋𝑡 |𝑋𝑡−1, 𝑋0)

]

= E[log 𝑝 (𝑋𝑇 )𝑝𝜃 (𝑋0 |𝑋1)
𝑞(𝑋1 |𝑋0)

+ log
𝑇∏
𝑡=2

𝑝𝜃 (𝑋𝑡−1 |𝑋𝑡 )
𝑞 (𝑋𝑡−1 |𝑋𝑡 ,𝑋0)𝑞 (𝑋𝑡 |𝑋0)

𝑞 (𝑋𝑡−1 |𝑋0)

]

= E[log 𝑝 (𝑋𝑇 )𝑝𝜃 (𝑋0 |𝑋1)
𝑞(𝑋1 |𝑋0)

+ log
𝑇∏
𝑡=2

𝑝𝜃 (𝑋𝑡−1 |𝑋𝑡 )
𝑞 (𝑋𝑡−1 |𝑋𝑡 ,𝑋0)𝑔 (𝑋𝑡+𝑋0)

𝑞 (𝑋𝑡−1+𝑋0)

]

= E[log 𝑝 (𝑋𝑇 )𝑝𝜃 (𝑋0 |𝑋1)
𝑞(𝑋1 |𝑋0)

𝑞(𝑋1 |𝑋0)
𝑞(𝑋𝑇 |𝑋0)

+ log
𝑇∏
𝑡=2

𝑝𝜃 (𝑋𝑡−1 |𝑋𝑡 )
𝑞(𝑋𝑡−1 |𝑋𝑡 , 𝑋0)

]

= E[log 𝑝 (𝑋𝑇 )𝑝𝜃 (𝑋0 |𝑋1)
𝑞(𝑋𝑇 |𝑋0)

+
𝑇∑︁
𝑡=2

log
𝑝𝜃 (𝑋𝑡−1 |𝑋𝑡 )
𝑞(𝑋𝑡−1 |𝑋𝑡 , 𝑋0)

]

(5)
Therefore, the terms in Eq 4 can be transferred as,

log
𝑝 (𝑋0:𝑇 )

𝑞(𝑋1:𝑇 |𝑋0)
= log

𝑝 (𝑋𝑇 )𝑝𝜃 (𝑋0 |𝑋1)
𝑞(𝑋𝑇 |𝑋0)

+
𝑇∑︁
𝑡=2

log
𝑝𝜃 (𝑋𝑡−1 |𝑋𝑡 )
𝑞(𝑋𝑡−1 |𝑋𝑡 , 𝑋0)

log
𝑝 (𝑋𝑐0:𝑇 )

𝑞(𝑋𝑐1:𝑇 |𝑋
𝑐
0 )

= log
𝑝 (𝑋𝑐

𝑇
)𝑝𝜃 (𝑋𝑐0 |𝑋

𝑐
1 )

𝑞(𝑋𝑐
𝑇
|𝑋𝑐0 )

+
𝑇∑︁
𝑡=2

log
𝑝𝜃 (𝑋𝑐𝑡−1 |𝑋

𝑐
𝑡 )

𝑞(𝑋𝑐
𝑡−1 |𝑋

𝑐
𝑡 , 𝑋

𝑐
0 )
(6)

And the ELBO can be further transferred as,

log𝑝 (𝑋𝑚0 |𝑋𝑐0 ) = E𝑞 (𝑋1:𝑇 |𝑋0) [log
𝑝 (𝑋𝑇 )𝑝𝜃 (𝑋0 |𝑋1)𝑞(𝑋𝑐𝑇 |𝑋

𝑐
0 )

𝑝 (𝑋𝑐
𝑇
)𝑝𝜃 (𝑋𝑐0 |𝑋

𝑐
1 )𝑞(𝑋𝑇 |𝑋0)

+
𝑇∑︁
𝑡=2

log
𝑝𝜃 (𝑋𝑡−1 |𝑋𝑡 )𝑞(𝑋𝑐𝑡−1 |𝑋

𝑐
𝑡 , 𝑋

𝑐
0 )

𝑞(𝑋𝑡−1 |𝑋𝑡 , 𝑋0)𝑝𝜃 (𝑋𝑐𝑡−1 |𝑋
𝑐
𝑡 )

]
(7)

Applying 𝑋𝑡 = (𝑋𝑐𝑡 , 𝑋𝑚𝑡 ) to above equation, we finally achieve the
ELBO as,

log𝑝 (𝑋𝑚0 |𝑋𝑐0 ) ≥ E𝑞 (𝑋1:𝑇 |𝑋0) [log
𝑝 (𝑋0:𝑇 )

𝑞(𝑋0:𝑇 |𝑋0)
𝑝 (𝑋𝑐0:𝑇 )

𝑞(𝑋𝑐0:𝑇 |𝑋
𝑐
0 )

]

= E𝑞 (𝑋1 |𝑋0) [log𝑝𝜃 (𝑋
𝑚
0 |𝑋1, 𝑋𝑐0 )]

− 𝐷𝐾𝐿 (𝑞(𝑋𝑚𝑇 |𝑋0, 𝑋𝑐𝑇 ) | |𝑝 (𝑋
𝑚
𝑇 |𝑋𝑐𝑇 ))

−
𝑇∑︁
𝑡=1
E𝑞 (𝑋𝑡 |𝑋0) [𝐷𝐾𝐿 (𝑞(𝑋

𝑚
𝑡−1 |𝑋𝑡 , 𝑋0) | |𝑝𝜃 (𝑋

𝑚
𝑡−1 |𝑋𝑡 , 𝑋

𝑐
𝑡−1))]

(8)

3.2 Multivariate imputation diffusion model
Noising. To implement multivariate imputation diffusion model
based on Eq 8, we need first determine the noising process, i.e.,
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∏𝑇
𝑡=1 𝑞(𝑋𝑡 |𝑋𝑡−1). In existing diffusion models, such process is de-

fined as,
𝑞(𝑋𝑡 |𝑋𝑡−1) = N(√𝛼𝑡𝑋𝑡−1, (1 − 𝛼𝑡 )I) (9)

where 𝛼𝑡 evolves over time according to a fixed or learnable sched-
ule such that the distribution of the final latent 𝑝 (𝑋𝑇 ) is nearly
a standard Gaussian when 𝑇 is large. Eq 9 is the key of noising
process and is implemented by reparameterization trick as,

𝑋𝑡 =
√
𝛼𝑡𝑋𝑡−1 +

√︁
(1 − 𝛼𝑡 )𝜖 (10)

where 𝜖 ∼ N(0, I) is a random noise term sampled from standard
Gaussian. As mentioned, the prior distribution 𝑝 (𝑋𝑇 ) is always
a standard Gaussian, which results in independence of 𝑋𝑚

𝑇
and

𝑋𝑐
𝑇
. Noting that we have a conditional prior term 𝑝 (𝑋𝑚

𝑇
|𝑋𝑐
𝑇
) in

Eq 8, such independence makes the conditional term meaningless.
Therefore, we need to reconsider the noising process so that the
conditional prior term 𝑝 (𝑋𝑚

𝑇
|𝑋𝑐
𝑇
) is meaningful and tractable.

A feasible way is to utilize Gaussian processes to model the latent
distribution 𝑝 (𝑋𝑇 ) which have been utilized in abundant studies for
modeling time series [4, 5, 15, 30]. A Gaussian process is a collection
of random variables, where any finite number of variables have joint
gaussian distributions. To utilize Gaussian processes to model time
series, the key is to build proper mean and kernel functions. Once
the mean and kernel functions are determined, the conditional
distribution 𝑝 (𝑋𝑚

𝑇
|𝑋𝑐
𝑇
) can be achieved. For instance, when the

mean and kernel functions provide a joint distribution of 𝑋𝑚
𝑇

and
𝑋𝑐
𝑇
as, [

𝑥𝑐
𝑇
𝑥𝑚
𝑇

]
∼ N

( [
𝜇𝑐
𝜇𝑚

]
,

[
Σ𝑐𝑐 Σ𝑐𝑚
Σ𝑚𝑐 Σ𝑚𝑚

] )
(11)

Given observation of 𝑥𝑐
𝑇
, we can build the conditional distribution

as,

𝑝 (𝑥𝑚𝑇 |𝑥𝑐𝑇 ) = N(𝜇𝑚 +Σ𝑚𝑐Σ−1𝑐𝑐 (𝑥𝑐𝑇 − 𝜇𝑐 ), Σ𝑚𝑚 −Σ𝑚𝑐Σ
−1
𝑐𝑐 Σ𝑐𝑚) (12)

Since we are interested of the correlations between 𝑋𝑚
𝑇

and 𝑋𝑐
𝑇
, we

simply set mean as 0 and focus on the kernel function. Actually,
since we always have data with the same dimensionality, finding a
proper kernel function is equal to finding proper covariance matrix.
Noting in Eq 12, there is an operation of invert covariance matrix
Σ𝑐𝑐 , which generally has a time complexity of O(𝑛3), we here
apply a special form of covariance matrix for seeking of efficiency.
Specifically, we have,

Σ = 𝐾𝑇𝐾, 𝑤ℎ𝑒𝑟𝑒 𝐾𝑖 𝑗 =

{
𝑘𝑖 𝑗 𝑗 ∈ {𝑖, 𝑖 + 1}
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(13)

where 𝑘𝑖 𝑗 s are learnable parameter and 𝐾 is an upper triangular
band matrix which makes Σ positive definite, symmetric, and tridi-
agonal. The time complexity of inverting matrices with such form
can be reduced to linear [4]. So far, we have joint distribution of
observed values and missing values in latent space,[

𝑥𝑐
𝑇
𝑥𝑚
𝑇

]
∼ N

(
0, Σ =

[
Σ𝑐𝑐 Σ𝑐𝑚
Σ𝑚𝑐 Σ𝑚𝑚

] )
(14)

And profiting from Eq 13, we can determine the conditional distribu-
tion 𝑝 (𝑥𝑚

𝑇
|𝑥𝑐
𝑇
) with an accepted time consumption. To achieve the

latent distribution as Eq 15, we only need to sample 𝜖 in Eq 10 from
N (0, Σ) rather than N (0, I) at each step of the forward process of

MIDM. By adding such noise as in Eq 10, we transfer original multi-
variate time series to a latent space, where the latent representations
of the data follows a Gaussian distribution as,

𝑋𝑇 ∼ N (0, Σ) (15)

Noise sampling. As in Eq 8, the desired noise distribution is given
by 𝑝 (𝑋𝑚

𝑇
|𝑋𝑐
𝑇
), which can be calculated according to Eq 12. There-

fore, given observed values 𝑋𝑐0 , to sample noise for recovering
missing values, we first transfer 𝑋𝑐0 to latent space to get 𝑋𝑐

𝑇
. Then

following Eq 12, we can achieve posterior conditional distribution
𝑝 (𝑋𝑚

𝑇
|𝑋𝑐
𝑇
) and sample noise from it.

Denoising.MIDM generates estimation by gradually denoising the
noise sampled from 𝑝 (𝑋𝑚

𝑇
|𝑋𝑐
𝑇
). The denoising process is supervised

by the last term of Eq 8, which suggests to minimize KL-divergence
between 𝑞(𝑋𝑚

𝑡−1 |𝑋𝑡 , 𝑋0) and 𝑝𝜃 (𝑋
𝑚
𝑡−1 |𝑋𝑡 , 𝑋

𝑐
𝑡−1). 𝑝𝜃 (𝑋

𝑚
𝑡−1 |𝑋𝑡 , 𝑋

𝑐
𝑡−1)

is the learnable estimator with parameter 𝜃 . Thus, we need to calcu-
late the form of 𝑞(𝑋𝑚

𝑡−1 |𝑋𝑡 , 𝑋0) so as to compute the KL-divergence.
Due to𝑋𝑚

𝑡−1 corresponds tomissing part of𝑋𝑡−1, calculating𝑞(𝑋𝑚𝑡−1 |𝑋𝑡 , 𝑋0)
is equivalent to calculating 𝑞(𝑋𝑡−1 |𝑋𝑡 , 𝑋0). And we have

𝑞(𝑋𝑡−1 |𝑋𝑡 , 𝑋0) =
𝑞(𝑋𝑡 |𝑋𝑡−1, 𝑋0)𝑞(𝑋𝑡−1 |𝑋0)

𝑞(𝑋𝑡 |𝑋0)

=
N(√𝛼𝑡𝑋𝑡−1, (1 − 𝛼𝑡 )Σ)N (

√
𝛼𝑡−1, (1 − 𝛼𝑡−1)Σ)

N (𝛼𝑡𝑋0, (1 − 𝛼𝑡 )Σ)
∝ N(𝜇 (𝑋𝑡 , 𝑋0), Σ(𝑡))

(16)
where 𝛼𝑡 =

∏𝑡
𝑖=1 𝛼𝑖 . Σ(𝑡) only depends on 𝑡 and is prefixed given

the schedule of 𝛼𝑡 and Σ in Eq 15. 𝜇 (𝑋𝑡 , 𝑋0) can be derived as,

𝜇 (𝑋𝑡 , 𝑋0) =
1

√
𝛼𝑡

− 1 − 𝛼𝑡√
1 − 𝛼𝑡

√
𝛼𝑡
𝜖 (17)

In order to minimize the KL-divergence between 𝑞(𝑋𝑚
𝑡−1 |𝑋𝑡 , 𝑋0)

and 𝑝𝜃 (𝑋𝑚𝑡−1 |𝑋𝑡 , 𝑋
𝑐
𝑡−1), we make 𝑝𝜃 (𝑋𝑚𝑡−1 |𝑋𝑡 , 𝑋

𝑐
𝑡−1) a Gaussian dis-

tributionN(𝜇𝜃 (𝑋𝑡 , 𝑡, 𝑋𝑐𝑡−1), Σ(𝑡) with the following specific param-
eterization,

𝜇𝜃 (𝑋 ) =
1

√
𝛼𝑡
𝑋𝑡 −

1 − 𝛼𝑡√
1 − 𝛼𝑡

√
𝛼𝑡
𝜖𝜃 (𝑋𝑡 , 𝑡, 𝑋𝑐𝑡−1) (18)

Therefore, the backward process can be trained by solving the
optimization problem,

min
𝜃

| | (1 −𝑀) ⊗ (𝜖 − 𝜖𝜃 (𝑥𝑡 , 𝑡)) | |22 (19)

where𝑀 is the mask denoting the position of missing values and ⊗
means element-wise product. The denoising function with parame-
ter 𝜃 estimates the noise term 𝜖 added in the noising process. And
during inferring, we first sample a random noise 𝑥𝑇 from standard
Gaussian, then gradually denoise 𝑥𝑇 by removing the estimated
noise 𝜖𝜃 (𝑥𝑡 , 𝑡) at each step 𝑡 and finally get generated data 𝑥0.

3.3 Error estimation model
In this part, we detail the proposed error estimation model (EEM).
The proposed error estimation model takes 𝑋𝑡 and 𝑋𝑐𝑡−1 as input
and estimates the error term in Eq 17 at step 𝑡 . The architecture
of proposed EEM is shown in Fig 2, EEM has three components,
step embedding module, temporal embedding module and attention
based estimator.
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Figure 2: Architecture of error estimation model.

3.3.1 Step embedding module. Since at different steps, the values
of 𝑋𝑡 and 𝑋𝑐𝑡−1 are quite different, EMM needs to know the current
step 𝑡 for generating accurate error estimations. Step embedding
module is designed for denoting the steps of different inputs. Step
embedding module maintains𝑇 learnable 𝑁 -dimension embedding
vectors for all steps, and when given step 𝑡 , step embedding module
outputs a 𝑁 -dimension vector.

3.3.2 Temporal embedding module. The attention mechanism uti-
lized in EEM is agnostic to the order of features in the input series,
while the order information is critical in time series analysis. Thus,
for more accurate estimation, we need to explicitly induce the order
information to the attention module. Adding temporal embedding
to the input feature is a common practice. In our temporal embed-
ding module, fixed positional embedding is applied [38]. For an
input 𝑋 ∈ L × N, the temporal embedding 𝑇𝐸 is calculated as,

𝑇𝐸 (𝑡, 2𝑖) = sin(𝑡/100002𝑖/𝑑 )

𝑇𝐸 (𝑡, 2𝑖 + 1) = cos(𝑡/100002𝑖/𝑑 )
(20)

3.3.3 Attention based estimator. We build EEM with an attention
based estimator, as attention is a promising mechanism for mod-
eling series data. The input 𝑋𝑡 and 𝑋𝑐𝑡−1 are first summed and we
denote the summation result as 𝑋 ∈ R𝑁×𝐿 . The estimator trans-
poses 𝑋 to 𝐿 × 𝑁 , then calculates the temporal embedding of the
transposed input and sum up temporal embedding with step em-
bedding and transposed input.

𝑍0 = 𝑋
𝑇 + 𝑆𝐸 +𝑇𝐸 (21)

where SE and TE denote step embedding and temporal embedding
respectively. And 𝑍0 ∈ R𝐿×𝑁 is the summation result. Then 𝑍0 is
fed into several stacked attention layers. In each layer, we apply
a linear projection on 𝑍0 and map 𝑍0 to 𝑍1 ∈ R𝐿×512. We further
apply self-attention on 𝑍1, which can be formulated as,

Att(𝑍1) = softmax(
(𝑍1𝑊𝑄 ) (𝑍1𝑊𝐾 )𝑇√︁

𝑑𝑚𝑜𝑑𝑒𝑙

)𝑍1𝑊𝑉 (22)

where 𝑑𝑚𝑜𝑑𝑒𝑙 is set to 512. We then add Att(𝑍1) with 𝑍1 and nor-
malize the result as,

𝑍2 = Norm(𝑍1 + Att(𝑍1)) (23)

Layer normalization [2] is utilized here. Then we have another
round of residual connection and normalization.

𝑍3 = Norm(𝑍2 + Linear(𝑍2)) (24)

𝑍3 is then mapped back to R𝐿×𝑁 by a linear projection. Finally,
we apply another transpose operation to get the error estimation
𝜖𝜃 ∈ R𝑁×𝐿 .

𝜖𝜃 = Linear(𝑍3)𝑇 (25)

4 EXPERIMENTS
In this section, we evaluate the performance of MIDM on multivari-
ate time series imputation on four datasets with different settings.

4.1 Datasets and experimental settings
We apply four datasets to evaluate the proposed MIDM, including,
1) AQI [46] Air Quality Index dataset includes air quality data of
437 monitoring stations located in 43 Chinese cities over a period
of one year (from May 2014 to April 2015). The sampling interval
of air quality is one hour, and each air quality record in this dataset
consists of the concentrations of six different air pollutants, where
only PM2.5 is considered. There are around 26% missing values in
AQI dataset. 2) AQI-36 [41] AQI-36 is a reduced version of AQI,
which contains only records collected by 36stations in Beijing. Also,
we consider only the PM2.5 pollutant. In AQI-36, there are around
13%missing values. 3)PEMS-BAY [23]This dataset comes from the
California Department of Transportation (Caltrans) Performance
Measurement System (PeMS) [10] and is collected by 325 sensors
in the Bay Area over a period of 6 months from Jan 1st 2017 to May
31st 2017 with time interval 5 minutes. 0.02% of the data in PEMS-
BAY is missing. 4) CER-E [13] CER-E is a subset of data from Irish
Commission for Energy Regulation Smart Metering Project 2. CER-
E contains 485 time series sampled every 30 minutes, which record
the energy consumption of small and medium-sized enterprises.
0.04% of the data in CER-E is missing.

Table 1: Statistics of dataseets.

Data Missing Rate(%) Variables

AQI 25.67 437
AQI(processed) 31.34 437

AQI 13.24 36
AQI(processed) 24.57 36

PEMS-BAY 0.02 325
PEMS-BAY(Point) 25.02 325
PEMS-BAY(Block) 9.1 325

CER-E 0.04 486
CER-E(Point) 25.01 486
CER-E(Block) 8.42 486

2https://www.ucd.ie/issda/data/commissionforenergyregulationcer/
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Table 2: Imputation performance comparison on AQI and AQI-36. Performance averaged over 5 runs.

Model
AQI-36 AQI

MAE MSE MRE(%) MAE MSE MRE(%)

KNN 30.21±0.00 2892.31±00.00 43.36±0.00 34.10±0.00 3471.14±00.00 51.02±0.00
MF 30.54±0.26 2763.06±63.35 43.84±0.38 26.74±0.24 2021.44±27.98 40.01±0.35

MICE 29.89±0.11 2575.53±07.67 42.90±0.15 26.39±0.13 1872.53±15.97 39.49±0.19
VAR 13.16±0.21 513.90±12.39 18.89±0.31 18.13±0.84 918.68±56.55 27.13±1.26
rGAIN 12.23±0.17 393.76±12.66 17.55±0.25 17.69±0.17 861.66±17.49 26.48±0.25
BRITS 12.24±0.26 495.94±43.56 17.57±0.38 17.24±0.13 924.34±18.26 25.79±0.20
GRIN 10.51±0.28 371.47±17.38 15.09±0.40 13.10±0.08 615.80±10.09 19.60±0.11

GP-VAE 14.11±0.24 483.91±24.36 18.43±0.45 17.84±0.16 893.27±20.39 27.46±0.19
CSDI 9.60±0.14 372.49±16.90 15.49±0.37 11.37±0.12 589.31±11.20 18.26±0.24

MIDM 9.41±0.20 361.28±21.33 14.87±0.41 10.06±0.11 562.84±12.01 16.87±0.19

For the air quality datasets AQI and AQI-36, we follow the proto-
col proposed by previous works [8, 41], i.e., the 3𝑟𝑑 , 3𝑟𝑑 , 3𝑟𝑑 and 3𝑟𝑑
months are used as test data and the other months as the training
data. Since we have no ground truth of the original missing values
in AQI and AQI-36, the protocol constructs a structured missing
pattern by eliminating some observed values and the model is re-
quired to impute the eliminated values. We select time series of
length 𝐿 = 24 and 𝐿 = 36 for AQI and AQI-36 respectively.

PEMS-BAY and CER-E contains much fewer missing values than
AQI and AQI-36, which allows us to extract more flexible settings.
Specifically, we mask the two datasets for evaluation by considering
two different missing patterns: 1) Point missing, we randomly mask
out 25% data points in the datasets. 2) Block missing, 5% of the
available data is randomly dropped for each sensor at each time
step. And for each missing position, there is a 0.15% probability
that it is persistent and its persistent duration is sampled uniformly
in the interval [min, max], where min, max are set to 1 and 4 hours
in PEMS-BAY, 2 hours and 2 days for CER-E. Fig 3 illustrates both
missing patterns. All the dropped values are used as ground truth
for training and testing. For both PEMS-BAY and CER-E, we use
input sequences of 24 steps, which correspond to 2 hours and 12
hours of data respectively. We split both PEMS-BAY and CER-E into
three folds, 70% for training, 10% for validation and 20% for testing.
Tab 1 shows some statistics of the original datasets and processed
datasets, where Point and Block correspond to point missing and
block missing respectively.

Time

Se
ns
or
s

(a) Point Missing

Time

Se
ns
or
s

(b) Block Missing

Figure 3: Illustration of Point Missing and Block Missing.

Three metrics are extracted for evaluation, i.e., mean absolute
error (MAE), mean squared error (MSE) and mean relative error,

which are defined as,

𝑀𝐴𝐸 (X, X̂) =𝑚𝑒𝑎𝑛(𝑠𝑢𝑚( |X − X̂|))
𝑀𝑆𝐸 (X, X̂) =𝑚𝑒𝑎𝑛(𝑠𝑢𝑚((X − X̂)2))

𝑀𝑅𝐸 (X, X̂) =𝑚𝑒𝑎𝑛(𝑠𝑢𝑚( |X − X̂
X

|))

(26)

4.2 Baselines
We compare the proposed MIDM model with several widely-used
baselines and state-of-the-art models, including, 1) KNN [20], us-
ing the averaging values of the 𝑘 = 10 most correlated variates
as imputation. 2)MICE [40], creating multiple imputations with
chained equations. The maximum number of iterations is limited to
100 and the number of nearest features is limited to 10. 3) MF [27]
factorizes the incomplete dataset into two low-rank matrices and
adopts the product to impute missing values. 4) VAR [47] a Vec-
tor Autoregressive one-step-ahead predictor. 5) rGAIN [26] can
be seen as GAIN [43] with bidirectional recurrent encoder and
decoder. 6) BRITS [8] using recurrent dynamics to impute the
missing values in multivariate time series. 7) GP-VAE [15] a deep
probabilistic model for multivariate time series imputation, com-
bining ideas from variational autoencoders and Gaussian processes.
8) CSDI [36] a recent approach to impute multivariate time series
with conditional diffusion models.

4.3 Results
Tab 2 shows the experimental results on AQI and AQI-36 datasets.
As shown, the proposed MIDM achieves the best imputation per-
formance on all the three metrics on both AQI and AQI-36 datasets.
Specifically, MIDM decrease MAE, MSE and MRE w.r.t. the base-
line with closest performance to MIDM by {2.0%, 2.7%, 1.5%} and
{11.5%, 4.5%, 7.6%} on AQI and AQI-36 respectively. Additionally,
the divergence of imputations generated by MIDM over 5 runs is
larger than CSDI on the two datasets. The reason is that, the de-
noising process of CSDI takes original observations as input which
are deterministic while that of MIDM takes latent representations
of observations which are probabilistic. The experimental results
on AQI and AQI-36 prove the superiority of MIDM on multivariate
time series imputation.
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Table 3: Imputation performance on PEMS-BAY and CER-E with different missing patterns. Performance averaged over 5 runs.

Dataset Model
Block missing Point missing

MAE MSE MRE(%) MAE MSE MRE(%)

PE
M
S-
BA

Y
KNN 4.30±0.00 49.90±0.00 6.90±0.00 4.30±0.00 49.80±0.00 6.88±0.00
MF 3.28±0.01 50.14±0.13 5.26±0.01 3.29±0.01 51.39±0.64 5.27±0.02

MICE 2.94±0.02 28.28±0.37 4.71±0.03 3.09±0.02 31.43±0.41 4.95±0.02
VAR 2.09±0.10 16.06±0.73 3.35±0.16 1.30±0.00 6.52±0.01 2.07±0.01
rGAIN 2.18±0.01 13.96±0.20 3.50±0.02 1.88±0.02 10.37±0.20 3.01±0.04
BRITS 1.70±0.01 10.50±0.07 2.72±0.01 1.47±0.00 7.94±0.03 2.36±0.00
GRIN 1.14±0.01 6.60±0.10 1.83±0.02 0.67±0.00 1.55±0.01 1.08±0.00

GP-VAE 2.39±0.03 14.81±0.15 4.32±0.02 1.92±0.01 12.43±0.08 3.67±0.02
CSDI 1.16±0.01 7.02±0.09 1.96±0.01 0.83±0.00 1.79±0.00 1.42±0.00

MIDM 1.03±0.01 5.83±0.11 1.77±0.02 0.60±0.00 1.54±0.02 0.93±0.00

CE
R-
E

KNN 1.15±0.00 6.53±0.00 56.11±0.00 1.22±0.00 7.23±0.00 57.71±0.00
MF 0.97±0.01 4.38±0.06 47.20±0.31 1.01±0.01 4.65±0.07 47.87±0.36

MICE 0.96±0.01 3.08±0.03 46.65±0.44 0.98±0.00 3.21±0.04 46.59±0.23
VAR 0.64±0.03 1.75±0.06 31.21±1.60 0.53±0.00 1.26±0.00 24.94±0.02
rGAIN 0.74±0.00 1.77±0.02 36.06±0.14 0.71±0.00 1.62±0.02 33.45±0.16
BRITS 0.64±0.00 1.61±0.01 31.05±0.05 0.64±0.00 1.59±0.01 30.07±0.11
GRIN 0.42±0.00 1.07±0.01 20.24±0.04 0.29±0.00 0.53±0.00 13.71±0.03

GP-VAE 0.76±0.01 1.80±0.02 35.92±0.23 0.81±0.00 1.63±0.02 32.99±0.14
CSDI 0.41±0.00 1.12±0.00 19.38±0.05 0.26±0.00 0.49±0.01 13.62±0.04

MIDM 0.39±0.01 0.99±0.00 19.21±0.04 0.23±0.00 0.47±0.00 12.89±0.03

As mentioned, we extract experiments on PEMS-BAY and CER-
E with different synthesized missing patterns, i.e., block missing
and point missing. The experimental results are shown in Tab 3.
The proposed MIDM still achieves more accurate imputation than
compared baselines on both PEMS-BAY and CER-E with respect to
both missing patterns. Specifically, for PEMSE-BAY, MIDM achieves
{9.6%, 11.7%, 3.3%} and {10.4%, 0.6%, 13.9%} gain on MAE, MSE and
MRE than that of the best baseline under the blockmissing and point
missing settings respectively. And for CER-E, the three metrics of
MIDM, i.e., MAE, MSE and MRE, decreases 4.9%, 7.5%, 0.8% and
11.5%, 4.1%, 5.4% compared to the best baseline under the block
missing and point missing settings respectively. Such results further
indicates the generalizability of MIDM on dealing with various
missing patterns.

4.4 Analysis

Table 4: Performance on extremely sparse data Healthcare.

Model
Healthcare

10% missing 50% missing 90% missing

BRITS 0.284 0.368 0.517
GP-VAE 0.413 0.592 0.926
GRIN 0.245 0.317 0.472
CSDI 0.217 0.301 0.481

MIDM 0.206 0.287 0.449

4.4.1 Performance on extremely sparse data. To further evaluate the
robustness of MIDM, we apply one more dataset, Healthcare [32],

which contains around 80% missing values. Healthcare consists of
4000 clinical time series with 35 variables for 48 hours from ICU.
Following the process in previous works [8, 36], we split the dataset
into hourly multivariate time series with 48 data points in each
series. Since there is no ground-truth for the raw missing values,
10/50/90% of observed values are randomly chosen as ground-truth
for testing. Noting that Healthcare originally contains 80% missing
values, when the missing rate is set to 90%, the 90% of observed data
are masked out, leading to only 2% available data. Even for missing
rate as 10%, there is only 18% available data. Therefore, due to the
extreme sparsity of the data, the experiments extracted in this part
are quite difficult. Similarly, MAE is applied here evaluation and
GP-VAE, BRITS, GRIN and CSDI are used as baselines.

Tab 4 shows the imputation performance and we can find MIDM
outperformed all the baselines under all the three settings. Specif-
ically, MIDM achieves 5.1%, 4.7%, 11.2%MAE improvements than
the best MAE of all baselines under settings of 10%, 50%, 90% miss-
ing rates. Such result further proves the robustness of the proposed
MIDM when being applied on extremely sparse datasets.

4.4.2 Performance on various missing rates. We first evaluate the
robustness of MIDM on various missing rates. For this purpose,
we apply a series of missing rates ranging from 5% to 50% and
randomly mask out data points of CER-E with the missing rates.
MAE is applied here for evaluation. GP-VAE, BRITS, GRIN and
CSDI are used here as baselines.

As demonstrated in Fig 4, we find when the missing rate is small,
GRIN and CSDI are able to achieve competitive MAE to MIDM.
But when the missing value increases, the performance gap be-
tween MIDM and baselines becomes more significant. Such results
indicates that when the missing rates increase, the performance of
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MIDM decrease much slower than the baselines and MIDM is more
robust than the baseline w.r.t. missing rates.
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Figure 4: Imputation performance comparison on CER-E
with different missing rates.

4.4.3 Probabilistic imputation. As mentioned, one advantage of
applying probabilistic models for multivariate imputation is that
probabilistic models are able to generate different plausible imputa-
tions, which is nice for uncertainties estimation. We here provide
visual imputation examples of MIDM on AQI-36 dataset in Fig 5.
The red crosses denote observed values and blue circles denote the
ground truth of missing values. For generating the visualization
of probabilistic imputation, we generate plausible imputations 100
times, median values of the imputations are shown as the line and
5% and 95% quantiles are shown as the shade. As shown, in most
case, the median line fits original time series well and nearly all
ground truth of missing values fall in the shade. Such result indi-
cates that MIDM is able to generate accurate estimation of missing
values with high confidence.

Figure 5: Examples of probabilistic time series imputation.
Each subfigure shows probabilistic imputation of one chosen
variable. The horizontal axis represents time and the vertical
axis represents value.

4.4.4 Multivariate forecasting. Also, to show the generalizability of
MIDM, we evaluate MIDM for multivariate time series forecasting
task on PEMS-BAY. Actually, multivariate time series forecasting
can be seen as a special case of imputation where historical data is
observed and future data is missing. There exists abundant studies

tackling multivariate time series forecasting evaluate their methods
on PEMS-BAY, and we here follow their settings and compare
MIDMwith several state-of-the-art forecasting models, including 1)
GMAN [45] utilizes spatial and temporal attention for forecasting.
2) AGCRN [3] proposes an adaptive graph convolution and combine
it with RNN. 3) GWNET [42] introduces a covariance loss applicable
to many kinds of networks. PEMS-BAY are divided into training,
validation and testing set in chronological order with ratio as 7:1:2
as in [45]. Each series contains 24 data point, where the first 12 data
points are used to predict the next 12 data points. MAE and MRE
are applied here for evaluation.

As shown in Tab 5, MIDM can deal with multivariate forecasting
well and achieves satisfying forecasting accuracy. Compared to
SOTA forecasting models, MIDM achieves 1.6%, 2.4% performance
gain on MAE and MRE respectively. The result demonstrates the
generalizability of MIDM on multivariate forecasting problem and
shows the potential of applying MIDM on other generating tasks.

Table 5: Forecasting performance comparison on PEMS-BAY.

Model GMAN AGCRN GWNET MIDM

MAE 1.86±0.02 1.97±0.03 1.91±0.02 1.83±0.04
MRE(%) 4.31±0.02 4.58±0.02 4.47±0.04 4.21±0.06

5 CONCLUSION
In this paper, we propose a novel imputation diffusion model to
tackle the problem of multivariate time series imputation. In par-
ticular, we theoretically re-derive the ELBO of conditional diffu-
sion model with considering the correlations between observed
values and missing values, and we propose a multivariate time se-
ries imputation diffusion model (MIDM) by designing brand new
noise sampling, adding and denoising processes based on the new
ELBO, hence enabling the generation of more accurate estimations
of missing values by taking advantage of the involvement of the
consistency of observed and missing values. Extensive and cross-
domain experiments validate the effectiveness and superiority of
MIDM on both multivariate time series imputation and forecasting
under various settings.

Theoretically, as long as the consistency between observation
and missing values exists, the derivation of our ELBO can be extend-
edly utilized into generalized recovering problem in which missing
data is imputed based on given partial observations and eventually
recover the whole dataset. And this can promote our model to wider
application scenarios, e.g., image restoration and image resolution
enhancement. The potential of the proposed diffusion framework
in addressing other tasks is yet to be developed.
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