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Abstract    Face anti-spoofing aims at detecting whether the input is a real photo of a user (living) or a fake (spoofing)

image. As new types of attacks keep emerging, the detection of unknown attacks, known as Zero-Shot Face Anti-Spoofing

(ZSFA), has become increasingly important in both academia and industry. Existing ZSFA methods mainly focus on ex-

tracting discriminative features between spoofing and living faces. However, the nature of the spoofing faces is to trick an-

ti-spoofing systems by mimicking the livings, therefore the deceptive features between the known attacks and the livings,

which have been ignored by existing ZSFA methods, are essential to comprehensively represent the livings. Therefore, ex-

isting ZSFA models are incapable of learning the complete representations of living faces and thus fall short of effectively

detecting newly emerged attacks. To tackle this problem, we propose an innovative method that effectively captures both

the deceptive and discriminative features distinguishing between genuine and spoofing faces. Our method consists of two

main components: a two-against-all training strategy and a semantic autoencoder. The two-against-all training strategy is

employed to separate deceptive and discriminative features.  To address the subsequent invalidation issue of  categorical

functions  and the dominance disequilibrium issue  among different  dimensions  of  features  after  importing deceptive  fea-

tures, we introduce a modified semantic autoencoder. This autoencoder is designed to map all extracted features to a se-

mantic space, thereby achieving a balance in the dominance of each feature dimension. We combine our method with the

feature  extraction  model  ResNet50,  and  experimental  results  show  that  the  trained  ResNet50  model  simultaneously

achieves a feasible detection of unknown attacks and comparably accurate detection of known spoofing. Experimental re-

sults confirm the superiority and effectiveness of our proposed method in identifying the living with the interference of

both known and unknown spoofing types.
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1    Introduction

Face anti-spoofing is  becoming a popular  method

of  authentication,  with  widespread use  in  mobile  ap-

plications  such  as  account  login  and  unlocking  cell

phones,  which  has  greatly  enhanced  the  convenience

of  people's  daily  lives[1, 2].  With  the  continuous  in-

crease  in  the  accuracy  and efficiency  of  face  recogni-
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tion,  it  has  also  been  widely  applied  in  online  pay-

ment  and  banking,  bringing  safety  and  reliability  is-

sues.  The face spoofing attack[3] is  usually seen in fi-

nancial  crimes,  and  cheats  face  recognition  systems

with fake faces such as photos, masks, and videos. It

is one of the most severe safety threats to face recog-

nition  based  authentications,  while  traditional  face

recognition  technologies  are  incapable  of  distinguish-

ing  the  authenticity  of  input  faces[4, 5].  To  this  end,

face  anti-spoofing  has  been  raised  and  extensively

studied  during  recent  years,  which  aims  at  detecting

whether an input face is a fake image, e.g., a photo of

one's printed photo, or a real photo of a user.

Early work on this field is mainly based on manu-

al features[6–10] or deep features learned by neural net-

works[11–16].  Those  methods  have  achieved  promising

performance  in  intra-domain  experiments,  i.e.,  the

training sets  cover all  the spoofing types in the test-

ing sets. However, their performances decrease severe-

ly on the zero-shot face anti-spoofing (ZSFA) task, in

which  case  models  have  to  discriminate  unknown

types of spoofing faces. The scenario of zero-shot face

anti-spoofing is closer to real application scenarios as

new  spoofing  types  keep  emerging  and  one  has  no

idea about newly-emerging spoofing types. Several re-

cent  studies[11, 17–20] have  made  progress  in  tackling

the  problem  of  ZSFA.  These  studies  have  put  for-

ward carefully crafted deep learning based models and

effective  learning  strategies  to  extract  discriminative

features,  i.e.,  existentially  significant  differences  be-

tween spoofing and living faces. For instance, DTN[18]

proposes a tree-like neural network to extract discrim-

inative  features  hierarchically.  DC-CDN[21] is  a  dual-

cross central difference network with cross-feature in-

teraction  modules  for  dual-stream  feature  enhance-

ment.  AIM-FAS[22] learns  the  discriminative  features

to  recognize  new  living  and  spoofing  categories  from

predefined  living  and  spoofing  categories.  Although

existing work focuses on mining generalizable discrim-

inative features, it is highly uncertain whether the ex-

tracted features can be generalized to discriminate un-

known types of spoofing faces, since they are primari-

ly  based  on  known  types  of  spoofing  in  the  labeled

dataset. For example, if a new attack type is substan-

tially different from the known attack types and does

not  possess  these  distinguishing  features,  the  model

may mistakenly classify it as a genuine face. Further-

more, a living face that is not present in the training

data may exhibit these distinctive features and be in-

correctly identified as an attack.

Actually,  in  the  zero-shot  task,  it  is  more  impor-

tant  to  effectively  and  fully  represent  a  category

rather  than  mining  category-specific  features.  As  an

intuitive example, if we have tigers, pandas, and hors-

es  in  our  training  set  and  we  want  to  distinguish

tigers  from  other  animals,  we  may  find  stripes  the

most  discriminative  feature  of  tigers  in  the  training

set. However, if we have zebras in our testing set, we

will  find stripes  useless  to  distinguish tigers  from ze-

bras.  Similarly,  for  tackling  ZSFA,  only  extracting

discriminative features is not generalizable enough for

distinguishing unknown spoofing faces. It is more im-

portant to effectively and comprehensively character-

ize  the  living  faces  so  that  any  input  that  does  not

match the living face characterization can be consid-

ered  spoofing  faces.  Considering  the  nature  of  the

spoofing  faces  is  to  trick  anti-spoofing  systems  by

mimicking  the  living,  similar  features  between  living

faces  and one category of  fake ones may be valuable

for detecting other types of  attacks and may be cru-

cial  in  accurately  representing  living.  We  define  fea-

tures as deceptive features,  which are specific  to cer-

tain types of attacks and are shared with the live en-

tity,  excluding  other  types  of  attacks.  Deceptive  fea-

tures  are  considered  useless  for  detecting  fake  facial

inputs  and  their  positive  roles  have  been  ignored  in

traditional  methods.  For  instance,  as  illustrated  in

Fig.1,  printed  photos  have  similar  colors  and  facial

identity features to the living ones while masks have

similar depth information to the living. Colors and fa-

cial  identity  features  can be  utilized  to  detect  masks

and depth information can be used to detect printed

photos,  meaning  that  the  deceptive  features  between

a  spoofing  type  and  the  living  can  be  discriminative

for  other  spoofing  types.  Regarding  existing  ZSFA-

targeted methods, they may naturally miss some key

features  that  can be used to well  and roundly repre-

sent living samples well. To this end, we can rethink

the  ZSFA  task  from  a  new  perspective  that  a  new

type of spoofing faces, which can successfully deceive

existing  anti-spoofing  systems,  must  imitate  the  liv-

ing in terms of the discriminative features among the

living  and  all  known  types  of  spoofing  faces.  There-

fore,  deceptive  features  between  living  faces  and  all

known categories of fake inputs must be the essential

ingredients for detecting unknown types of spoofing.

In  this  paper,  we  investigate  the  potential  of  us-

ing  deceptive  features  to  improve  accuracy.  We  de-

couple the feature space into two orthogonal types of

features,  deceptive  features  and  discriminative  fea-

tures. Deceptive features are exclusive features shared

between a specific attack and living faces,  which can
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help  the  model  detect  other  types  of  attacks.  Thus,

this can boost the generalization of the model against

unknown attacks. On the other hand, by cross-check-

ing  these  features,  the  recognition  of  easily  confused

living  faces  would  be  beneficial.  Discriminative  fea-

tures  can  be  further  used  to  identify  livings  and  at-

tacks.  These two features work synergistically to im-

prove the accuracy of the model.

We  propose  a  novel  method  that  can  achieve  a

feasible  detection  of  unknown  categories  of  facial

spoofing  and  a  comparable  accurate  detection  for

known categories of spoofing. The uniquely deceptive

features  between each category of  spoofing  faces  and

living faces can be used to detect other spoofing cate-

gories, including unknown ones. To this point, we de-

sign a novel two-against-all training strategy. Specifi-

cally, a newly designed set of learnable mask modules

is introduced to mask partial features of facial images.

For  each  spoofing  category,  we  combine  the  masked

features of it with that of the living faces. The diver-

sity  between  the  combined  features  and  the  masked

features of other categories of spoofing faces are maxi-

mized. Meanwhile, the import of deceptive features in

detecting spoofing faces may bring the invalidation is-

sue  of  categorical  functions,  and  distance-based  met-

rics,  which  can  naturally  address  the  invalidation  is-

sue  may  cause  serious  disequilibrium  of  dominance

among  different  features.  To  address  these  subse-

quent  issues  of  employing  deceptive  features  in  anti-

spoofing, in this paper, we apply a modified semantic

auto-encoder[23] to represent all extracted features to a

semantic  space  where  each  dimension  has  almost

equal dominance for distinguish spoofing, hence a fea-

sible detection on unknown categories of spoofing and

accurate detection on known categories of spoofing.

The main contributions can be summarized as fol-

lows.

● We  reveal  the  fact  that  deceptive  features  be-

tween  known  spoofing  and  living  faces  are  essential

for  detecting  unknown  spoofing  and  take  an  initial

step  on  simultaneously  detecting  both  unknown  and

known spoofing by concerning both deceptive and dis-

criminative features between living and spoofing sam-

ples with one integrated network.

● To extract effective deceptive features,  we pro-

pose  a  novel  two-against-all  training  strategy  to

achieve  highly  efficient  and  variable-length  filtration

of the deceptive feature,  and propose a novel  idea of

employing a modified semantic auto-encoder to equili-

brate  the  dominance  among  different  features,  hence

the detection on both unknown and known spoofing.

● We  evaluate  our  proposed  method  on  the

datasets of SiW-M for the ZSFA scenario, and exten-

sive  experiments  demonstrate  that,  in  detecting  un-

known spoofing, our method can gain up to a 5% im-

provement  in  terms  of  ACER  while  compared  with

the  advanced  ZSFA  solutions.  Meanwhile,  in  detect-

ing  known spoofing,  our  method has  a  practical  per-

formance of 98.3% in terms of AUC.

The  remainder  of  this  paper  is  organized  as  fol-

lows. We introduce the existing studies on anti-spoof-

ing  and  review methodology  limitations  in Section 2.

Next, we describe the details of our proposed method

in Section 3. Section 4 uses multiple datasets to eval-

uate the proposed method, which mainly includes two

parts:  the  detection  accuracy  and  the  contribution

measure of each component. Finally, we make a con-

clusion for this paper in Section 5. 

2    Related Work

Great efforts have been made in the field of anti-
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Fig.1.  Impacts of deceptive features on anti-spoofing.
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spoofing.  Most  previous  work,  which  can  be  divided

into two sorts: manual feature based methods[6–10] and

deep feature based methods[11–16, 24, 25], regards this is-

sue as a classification problem.

Early  manual  feature  based  methods[6–10] distin-

guish  living  faces  and  spoofing  inputs  by  exploiting

specific  handcrafted  features  with  traditional  image

processing  methods.  Specifically,  [8]  extracts  color

textures  to  detect  attacks  by  integrating  the  lumi-

nance and the chrominance in HSV (Hue, Saturation,

Value)  space.  [6]  first  abstracts  and  aggregates  four

different features including specular reflection, blurri-

ness, chromatic moment, and color diversity, and us-

es  SVM to achieve dichotomies.  Based on the analy-

sis of living face inputs, [9] exploits and utilizes the lo-

cal binary pattern (LBP) features to detect fake ones

from  inputs.  [7]  carries  out  the  detection  based  on

both  the  multi-level  LBP features  in  the  HSV space

and  the  local  phase  quantization  (LPQ)  features  in

the YCbCr space. And [10] senses print and replay at-

tacks  by  analyzing  the  distortions  of  both  the  color

and the shape of the input images.  These traditional

manual feature based methods, which have outstand-

ing  performances  on  some  specific  datasets,  are  of

generally  insufficient  generalization  ability,  and  [26]

has  indicated  that  the  performances  of  this  kind  of

approach are limited in dealing with 3D face mask at-

tacks.

Recently,  deep  feature  based  methods[11–16] have

been proposed to address the issue of face anti-spoof-

ing  by  exploiting  deep  features  with  deep  learning

technologies.  In  particular,  [13]  first  designs  a  deep

convolutional  neural  network  (CNN)  to  estimate  the

depth map and rPPG signals, and fuses them to exe-

cute an end-to-end detection. [11, 12] aim at improv-

ing  the  generalization  abilities  of  the  proposed  mod-

els by regarding the face anti-spoofing problem as an

anomaly  detection  mission.  [14]  first  considers  spoof-

ing  faces  as  noise-distorted  living  faces,  and  extracts

abstracts the noises with a deep neural network, and

subsequently  makes  classification  decisions  based  on

learned noise pattern features. [15] extracts local and

global  features  based  on  randomly  collecting  patches

within  face  regions  and the  depth maps  of  entire  in-

put faces, respectively, and fuses these two results to

achieve accurate anti-spoofing. [16] considers both lo-

cal features and additional optical flow based motion

cues  to  improve  the  accuracy  of  face  anti-spoofing.

Also,  these  methods,  which  aim  at  effectively  learn-

ing the feature combination patterns of attacks, focus

on  specific  known  types  of  attacks.  Regarding  un-

known types of attacks, the performance of such tech-

nologies is limited.

All previous methods aim at learning specific fea-

tures from labeled datasets and using the learned pat-

terns  to  detect  attacks.  Without  exception,  these

methods  take  the  awareness  of  the  characteristics  of

attacks  as  an  essential  ingredient,  and  cannot  be  di-

rectly  used  to  address  the  challenge  of  unknown

spoofing detection.

Moreover,  to  address  the  challenge  of  ZSFA,  re-

searchers  proposed  some  well-designed  deep  models

and  learning  strategies  that  aim  at  learning  general-

ized  face  anti-spoofing  models.  Specifically,  [11, 17]

aim  at  addressing  ZSFA  by  representing  known  liv-

ing samples with carefully and manually designed fea-

tures,  and  [18]  distinguishes  living  faces  from  fake

ones by using a tree CNN to confirm living samples.

More recently, [19] introduces feature generation net-

works for producing hypotheses for the first time and

proposes  a  deep  learning  framework  for  building  a

generalized  face  anti-spoofing  model.  [21]  applies

patch-wise  data  augmentation  and proposes  the  DC-

DCN model which consists of horizontal/vertical and

diagonal sparse convolution C-CDC. Nevertheless, all

these  ZSFA-targeted  methods  have  never  considered

the similar features between known spoofing and liv-

ing  samples,  therefore  they  may  miss  some  key  fea-

tures that can be used to well and roundly represent

living samples and fall short in detecting unknown at-

tacks. 

3    Methodology

In this section, we will describe our method in de-

tails. The main contributions of our method include a

two-against-all training strategy for extracting decep-

tive  and  discriminative  features  and  an  autoencoder

for learning a robust representation space. 

3.1    Method Overview

As  shown  in Fig. 2,  our  method  for  face  anti-

spoofing consists of three subparts: feature extraction,

semantic  representation  for  extracted  features,  and

spoofing detection. In the feature extraction part, we

use a CNN-based feature extraction model ResNet50[27]

as  the  backbone  with  two well-designed classifiers  to

extract  deceptive  and discriminative  features,  respec-

tively.  To  accurately  extract  deceptive  features,  we
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design a two-against-all training strategy. Further, we

employ  an  improved  semantic  autoencoder  to  repre-

sent all extracted features into a robust semantic rep-

resentation  space  where  each  dimension  has  almost

equal  advantages  to  distinguish  spoofing.  Finally,  a

distance-based  classification  algorithm  is  applied  to

detect the spoofing faces. 

3.2    Feature Extraction of Facial Images

X

Xd

Xs

Previous methods of  face anti-spoofing mostly fo-

cus  on  mining  and  exploiting  discriminative  features

between  living  samples  and  known spoofing  samples.

Considering the fact that all attacks, including known

and unknown ones, are to cheat anti-spoofing models

by  imitating  some  features  of  living  face  images,  we

divide all features  obtained from living samples in-

to two categories: 1) the features that are discrimina-

tive  between  living  samples  and  all  known  spoofing

samples,  i.e., ;  2)  the  features  that  are  deceptive

between  living  samples  and  some  types  of  known

spoofing samples, i.e., . Further, assuming there are

X = (X 0,

X 1, . . . ,Xm) X i(1 ⩽ i ⩽ m)

X 0

0 ⩽ i ⩽ m X i = X i
s ⊕X i

d ⊕
X i

s X i
d

m known  categories  of  attacks,  we  have 

 where  indicates  the  fea-

tures  of  the i-th  category  of  attacks  and  corre-

sponds to the features of the living samples. Then giv-

en , we have , where  means

concatenation,  and  indicate the deceptive and

discriminative  features  between  the i-th  category  of

known spoofing samples and the livings, respectively.

To supervise feature extraction, as shown in Fig.3, we

introduce two classifiers to extract discriminative and

deceptive features, respectively. Next, we describe the

detailed design of these two classifiers. Notice that we

here  employ  ResNet50[27] in  our  experiments  as  the

backbone for feature extraction, as shown in Fig.3. 

3.2.1    Classifier for Discriminative Features

XdSince  the  discriminative  features  are  diverse

between  living  samples  and  all  known  spoofing  sam-

ples,  they  can  be  mapped  into  two  different  cate-

gories by a binary classifier, i.e.,
 

Y i
d ← φd [X i

d ] , i ∈ {0, 1, . . . ,m},

 

Feature

Extraction

Semantic

Representation

Spoofing

Detection

CNN

Semantic

Autoencoder

Distance-Based

Classification

Algorithm

Concatenation

Living or Spoofing

Samples


d


s

 

Fig.2.  Solution overview.

 

Auxiliary

Task 1 

Auxiliary

Task 2 

Discriminative Features Classifier Deceptive Features Classifier 

C
N

N

Samples


d




s

L
d

Ls





d

d

s

d

s

C
lassifier

C
lassifier

Fig.3.  Multi-task learning for feature extraction.

Li-Min Li et al.: Face Anti-Spoofing with Unknown Attacks: Feature Extraction and Representation 831



φd

ϖd Y i
d

where  denotes  the  binary  classification  network

with parameter , and  is the classification result

of  the i-th  category  of  known  attacks  (here  0  indi-

cates  the  living).  The  cross-entropy  loss  is  employed

for training the binary classification network, i.e.,
 

Lossφd
=

m∑
i=1

(−Li
d logY i

d − (1− Li
d) log(1− Y i

d)),

Li
d

φd

0

1

where  is the label with regard to the output of the

binary classifier  with the input of the i-th catego-

ry  known  spoofing  samples.  It  is  equal  to  for  any

known  spoofing  sample  categories  and  for  living

samples. 

3.2.2    Classifier for Deceptive Features

There  exist  similarities  between  the  livings  and

every known spoofing category, i.e.,
 

∀i ∈ [1, . . . ,m], ∃ ψi, ψi ⊙X 0
s ∼ ψi ⊙X i

s ,

⊙ ∼
ψi ⊙X 0

s ψi ⊙X i
s ψi

0 1

{φ1
s , . . . , φ

m
s }

where  means the Hadamard product, and  means

 and  follow a same distribution.  is

a vector with the elements of  or  to extract the de-

ceptive  features  between  the i-th  category  of  known

spoofing  samples  and  the  livings.  To  extract  the  de-

ceptive  features  between  all m categories  of  known

spoofing  samples  and  the  livings,  we  propose  a  two-

against-all  training  strategy,  which  employs m-way

two-against-all binary classifiers, i.e., . As

demonstrated  in Fig.4,  regarding  one  specific  spoof-

ing  type,  we  first  locate  the  deceptive  features  be-

tween it and the living by masking partial features of

φi
s

φi
s

all  spoofing types and the living in a learnable  man-

ner to minimize the diversity between it and the liv-

ing  and  simultaneously  maximize  the  diversity  be-

tween other spoofing types and the combined set of it

and the living. Specifically, the i-th category of spoof-

ing  and  the  livings  are  classified  into  one  category,

which is different from other spoofing types, by the i-
th classifier . Therefore, the output of the i-th two-

against-all binary classifier  for the j-th category of

spoofing can be calculated as,
 

Yj
s (i)← φi

s [ψi ⊙X j
s ], j ∈ {1, . . . ,m},

Yj
s (i) = 1 j = i

Y0
s (i) = 1

φi
s

Here  if  and only if .  Note that we

have  when  the  input  is  a  living  face.  For

the sake of efficiency, we here employ a single FC lay-

er, the two-against-all classification of  with regard

to all m categories of known spoofing, and the livings

can be rewritten as,
 

Yj
s (i) = Sigmoid (wi

s ⊗ (ψi ⊙X j
s ) + b

i
s) .

j ∈ {0, . . . ,m} j = 0

⊗
Note here we have  and  indi-

cates the livings. And  means the vector multiplica-

tion. The m-way two-against-all classifications can be

formulated by,
 

Yj
s = Sigmoid (Ws ⊙ Ψs ⊗X j

s +Bs) ,

Ws =
(
(ϖ1

s )
T
(ϖ2

s )
T
. . . (ϖm

s )
T
)T

,

Ψs = ( ψ1 ψ2 . . . ψm )
T
,

Bs = ( b1s b
2
s . . . bms )

T
,

Yj
s

Yj
s = (Yj

s (1), . . . ,Yj
s (m))

where  corresponds  to  the  output  of  all m classi-

fiers,  regarding  the  inputs  of  the j-th  categories  of

known spoofing. And we have .
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Fig.4.  Two-against-all training strategy.
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X 0
sFor the deceptive features of the livings , we have

 

L0
s = (

m︷ ︸︸ ︷
1 . . . 1)T,

L0
s

Li
s

1

0

where  corresponds to the label with regard to the

output  of  all m two-against-all  classifiers.  Regarding

the  input  of  the i-th  category  of  spoofing,  should

have the i-th element of  and the other elements of

, i.e.,

 

Li
s = (

i−1︷ ︸︸ ︷
0 . . . 0 1

m−i︷ ︸︸ ︷
0 . . . 0).

Ws ⊙ Ψs

Ψs

Ws Ws ⊙ Ψs

So  far,  the  problem  of  training  the m-way  two-

against-all  classifiers  can  be  transferred  to  the  opti-

mization  of  the  learnable  parameter  matrix .

This matrix is rather sparse due to the sparsity of .

We can simplify the problem to employ the L1-regu-

larization  on  matrix [28] to  replace .  The

loss  for  training  the m-way  classification  neural  net-

work can be defined by,

 

Lossφs
=

m∑
i=0

∥Y i
s − Li

s∥
2

2
+ λ1∥Ws∥1,

λ1where  is a hyper-parameter to adjust the weight of

the corresponding component. 

3.2.3    Overall Loss for Feature Extraction

As  mentioned,  we  obtain  the  two  kinds  of  fea-

tures  of  living  samples  by  employing  ResNet50  and

training two kinds of  classifiers  to  check the validity

of extracted features. The feature extraction network

can  be  viewed  as  the  combination  of  ResNet50  and

the two kinds of classifiers, and for training the inte-

grated  feature  extraction  network,  we  combine  the

losses of the two kinds of classifiers so that ResNet50

can  extract  both  the  two  categories  of  features.  The

overall  loss  for  training  the  feature  extraction  net-

work can be formulated by,
 

Lossfeature = Lossφd
+ λ2Lossφs

,

λ2where  is  a hyper-parameter to tune the weight of

the  corresponding component.  Further,  as  mentioned

in [29], the inter-class variation of a specific category

of  features  may  be  large,  leading  to  a  greater  inter-

class  variation  in  subsequent  semantic  representa-

tions.  We hence  modified  the  loss  function  for  train-

ing the feature extraction network as,

 

Loss∗feature = Lossφd
+ λ2Lossφs

+ λ3

(
m∑
i=0

∥X i − ϵi∥22

)
,

ϵi

i = 0 ϵi

λ3

where  is  randomly  initiated,  and  should  be  subse-

quently  updated  by  the  learnable  centers  of  the i-th
category  of  known  spoofing[29].  Notice  that  in  case

,  the  parameter  of  should  be  updated by the

learnable center of the livings. Also,  is a hyper-pa-

rameter to tune the weights. 

3.2.4    Visualization of Feature Space

To demonstrate  the  effectiveness  of  our  proposed

feature  extraction  network,  regarding  all  extracted

1920-dimensional  features  of  all  samples  including

both deceptive and discriminative features,  we trans-

form  them  into  a  three-dimensional  (3D)  space  via

the  t-SNE[30],  and  the  samples  of  a  specific  spoofing

category should be concentrated in the transferred 3D

space. Notice that during training the feature extrac-

tion network, we assume the attack category “Make-

up_Co” is  unknown.  As  illustrated  in Fig.5,  known

categories of samples are nicely clustered by separat-

ed categories, and this verifies that the extracted de-

ceptive  and  discriminative  features  can  be  further

used to distinguish known spoofing. However, the un-

known samples are relatively scattered in this  figure,

and  this  indicates  that  the  import  of  deceptive  fea-

tures may bring distractions to traditional anti-spoof-

ing classification functions, and they cannot be direct-

ly used to address the detection issue of both known

and  unknown  spoofing.  Further,  note  that  in Fig.5,

we cannot use distance-based clustering algorithms to

directly  distinguish  known  and  unknown  attacks  ei-
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Fig.5.  t-SNE visualization of the feature space.
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ther,  due  to  the  bar-like  inner-class  distributions  of

samples and the possible intersections among the bar-

like  distributions  of  different  categories  of  spoofing.

To  this  end,  we  still  need  to  seek  a  better  semantic

representation  of  all  extracted  features  to  equilibrate

the weights of different feature dimensions. 

3.3    Semantic  Representation  of  Extracted

Features

[0, 1]

1

[0, 1] X

As  discussed  above,  we  propose  a  semantic  au-

toencoder to represent all features in a semantic space

where  the  intra-class  semantic  distances  are  mini-

mized  while  the  inter-class  semantic  distances  are

maximized.  Further,  to  well  represent  the  living,  we

require  that  each  dimension  in  the  target  semantic

space  should  be  a  combination  of  owned  features  of

the  living.  To  balance  the  disequilibrium  among  dif-

ferent features, we normalize the value of each dimen-

sion in the target semantic space to be . Each di-

mension  of  the  semantic  representation  of  a  living

sample should be . Regarding a spoofing sample, the

value  of  each  dimension  of  its  semantic  representa-

tion, which corresponds to the similarity between this

sample  and  the  living  in  terms  of  the  corresponding

feature combination,  should be a real  number within

. The projection from extracted features  to the

semantic space can be written as,
 

ΘX ←WΘ ⊗X

s.t.


WΘ ⊗X 0 = (1 . . . 1) ,

WΘ ⊗X i =
(
θ1i . . . θ

|Θx|
i

)
,

θji ∈ (0, 1),

i ∈ {1, . . . ,m} i ∈ {1, . . . ,m} ΘX

X WΘ

X 0

X i

where  and .  denotes

the  corresponding  semantic  representation  of  feature

. The matrix  means the projection between the

semantic  and  feature  spaces.  Note  that  indicates

the extracted features of a living sample, and  cor-

responds to the extracted features of a sample within

the i-th category of spoofing.

Another  requirement  of  the  projection  from  the

feature space to the semantic space is that the infor-

mation loss  between the  originally  extracted  features

and  their  corresponding  semantic  representations

should be minimized, and this loss minimization prob-

lem  can  be  converted  to  a  reconstruction  problem

from the semantic space to the feature space, i.e.,
 

argmin
WΘ

∥X −W ′
Θ ⊗WΘ ⊗X∥

2

2
,

W ′
Θwhere  denotes  the  backward  projection  from

the semantic space to the feature space. Referring to

W ′
Θ

WT
Θ

[23, 31],  the  backward  projection  can  be  simpli-

fied as  with negligible losses. The problem can be

written as,
 

argmin
WΘ

∥∥X −WT
Θ ⊗WΘ ⊗X

∥∥2
2
+λ4(1−Y) ∥WΘ ⊗X∥1 .

Y = 1 X
Y = 0

Notice here  if  is the features of a living

face,  otherwise .  The  second  term  is  to  maxi-

mize  the  distance  between  spoofing  faces  and  living

faces.  To  equilibrate  the  weights  of  different  feature

dimensions, a center loss item is introduced, i.e.,
 

Loss =
∥∥X −WT

Θ ⊗WΘ ⊗X
∥∥2
2
+

λ4(1− Y) ∥WΘ ⊗X∥1 +

λ5

m∑
i=0

∥WΘ ⊗X i −WΘ ⊗ ϵi∥22,

ϵi λ4 λ5where  is the center of each category, and  and 

are  also  hyper-parameters  to  tune  the  weight  of  the

corresponding components. 

3.4    Face Detection with Trained Model

X

ΘX ΘX

WΘ ⊗ ϵi

1 ⩽ i ⩽ m WΘ ⊗ ϵi

i = 0 WΘ ⊗ ϵi

ΘX

WΘ ⊗ ϵ0

As  described  in Subsection 3.1,  we  combine

ResNet50[27] with  our  method  as  our  face  anti-spoof

model where ResNet50 is used for feature extraction.

The whole training process of our model is  described

in Algorithm 1.  Here  we  introduce  how  to  detect

whether  a  face  is  spoofing  or  living  using  ResNet50

trained  with  our  method.  Regarding  the  extracted

features  of  a  specific  sample  calculated  by  our

CNN backbone, we can obtain its semantic represen-

tation ,  and  calculate  the  distances  between 

and  for each category of samples. Notice that

for ,  is the center of the i-th cate-

gory of  spoofing faces in the semantic  space,  and for

,  corresponds  to  the  center  of  the  liv-

ings.  After  calculating  the  Euclidean  distance  within

the semantic space, we use it to determine whether a

sample is living or not, i.e., a sample is considered as

living  if  and  only  if  the  distance  between  and

 is  the  smallest  among  all  calculated  dis-

tances. 

4    Experiments

In this  section,  we evaluate the proposed method

on  multiple  datasets.  And  we  focus  on  the  following

potential questions.

● Q1.  Compared  with  the  most  advanced  meth-

ods,  how accurate  is  ResNet50  with  our  method  un-

der various scenarios (refer to Subsection 4.2)?
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Algorithm 1. Training Process of ResNet50 with Our Method

[X,Y ] fθ : X → [Xd,Xs]

ϕd

Wd

Φs = {ϕi
s|i ∈ [1, 2, . . . ,m]} Ws

WΘ {ϵ0, ϵ1, . . . , ϵm}

Input: training  data ,  CNN  backbone 

with parameter θ,  classifier  for  discriminative  features  with

parameter ,  classifier  for  deceptive  features

 with  parameter ,  semantic  projec-

tion  and category centers 

Output: trained ResNet50
Initialize all trainable parameters

[x, y] [X,Y ]for  in  do

　//extract deceptive and discriminative features

Xd,Xs = fθ(x)　

　//calculate loss of discriminative features

Lossϕd
= −y logϕd(Xd)− (1− y) log 1− ϕd(Xd)　

　//calculate loss of deceptive features

Ls(y) Φs　Construct label  of x for 

LossΦs
= ||Φs − Ls||22 + λ1||Ws||1　

　//loss for features

X = Xd ⊕Xs　

Lossfeature = Lossφd
+ λ2Lossφs

+ λ3

(
∥X − ϵy∥22

)
　

　//calculate loss of semantic representation

Lossr = ∥X −WT
Θ ⊗WΘ ⊗X∥

2

2
　

Lossc = λ4(1− †) ∥WΘ ⊗X∥1 + λ5∥WΘ ⊗X − ϵy∥22　

Losssemantic = Lossr + Lossc　
　//loss for calculating gradient

L = Losssemantic + Lossϕd
+ Lossfeature　

　Gradient back propagation with loss L
end
Return trained ResNet50

● Q2. Does each insight/component contribute to

the  performance  of  the  model  (refer  to Subsection

4.3)?

● Q3.  How  does  the  number  of  known  types  af-

fect  the  performance  of  the  model  (refer  to Subsec-

tion 4.4)? 

4.1    Experimental Setups
 

4.1.1    Datasets

Five  datasets  are  used  to  evaluate  the  proposed

method, including SiW-M[18],  OULU-NPU[32],  Replay-

Attack[4],  MSU-MFSD[6] and  CASIA[33].  SiW-M  con-

tains rich spoofing types and is designed for zero-shot

face anti-spoofing tasks. OULU-NPU is a high-resolu-

tion dataset and provides four protocols for tradition-

al  intra-domain  experiments.  Additionally,  following

the protocol  proposed in [11],  we apply cross-domain

testing on Replay-Attack, MSU-MFSD, and CASIA. 

4.1.2    Quality Measurements

For the OULU-NPU dataset, all methods are eval-

uated  with  the  following  widely  accepted  metrics:

1)  attack  presentation  classification  error  rate

(APCER)[34], which indicates the ratio of the amount

of false livings to the amount of spoofing; 2) bona fide

presentation  classification  error  rate  (BPCER)[34],

which corresponds to the ratio of the amount of false

spoofing to the number of livings; 3) average classifi-

cation  error  rate  (ACER)[34],  which  equals  the  aver-

age  of  APCER and  BPCER.  In  the  SiW-M dataset,

equal  error  rate  (EER) and ACER are  employed  for

evaluation as early work does. For cross-dataset test-

ing, we apply the area under the roc curve (AUC) to

evaluate all the methods. 

4.1.3    Setting

×

0.001

Lossφd
Lossφs

λ2

λ1 λ2 λ3 λ4 λ5

We extract faces from videos by utilizing the face

coordinates  given  by  the  datasets  themselves.  If  a

dataset does not provide face coordinates, we extract

face  coordinates  by  [35]  as  Replay-Attack  does.  And

then we resize all extracted faces into 224 224 resolu-

tion.  We  employ  ResNet50  as  the  backbone,  which

takes single images as inputs. Feature extraction net-

works  and  semantic  representation  networks  are

trained separately. Besides, the optimizer of Adam[36]

is  used  to  train  ResNet50  with  our  method,  and  the

learning rate is set to . The initial values of the

hyper-parameters  are  given  and  fine-tuned  according

to the dimensions of the vectors they control. For ex-

ample,  and  have the same dimensions;

thus  the  initial  value  of  is  1.  Analogously,  in  our

experiments,  the  initial  values  of  the  parameters  of

, , , , and  are fine-tuned and finally set to

0.001, 1, 0.001, 0.01, and 1, respectively. All hyper-pa-

rameters are tuned with grid search. 

4.2    Main Experiments (Q1)

We  compare  the  detection  accuracy  of  the  pro-

posed  model  and  SOTA  models  in  three  scenarios.

First,  we evaluate the performance of  each model  on

the ZSFA task, which mainly depends on the model's

ability to detect unknown attacks. Second, we evalu-

ate  the  model's  performance  against  hybrid  attacks

through  a  series  of  experiments  on  cross-data

datasets, which mix known and unknown attacks. Fi-

nally,  we  evaluate  models  for  the  traditional  anti-

spoofing task, covering only the types of seen attacks. 

4.2.1    Evaluation on SiW-M for ZSFA Testing

We train ResNet50 with our method on SiW-M[18]
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25.8%
28.6%

1%

in  a  leave-one-out  testing  manner  as  it  suggests,

which means each time we split one kind of spoofing

images  and  20%  of  the  living  images  as  the  testing

set,  and  train  our  model  with  the  rest.  To  evaluate

the  performance  of  ResNet50  with  our  proposed

method  on  ZSFA,  we  compare  it  with  five  state-of-

the-art (SOTA) ZSFA methods, Auxiliary[13], DTN[18],

SpoofTrace[20],  DC-CDN[21],  and  FGHV[19].  The  re-

sults  are  demonstrated  in Table 1,  where  the  bolded

values  mean optimal  performance and “Ours” means

ResNet50  with  our  method  (the  same  below).  The

great  variances  between  the  accuracy  of  models  on

different spoofing types indicate that diverse spoofing

types  differ  significantly.  Thus,  detecting  unknown

spoofing types based on known types is a challenging

problem.  According  to Table 1,  we  can  find  that

ResNet50 with our method outperforms other alterna-

tive  methods  in  terms  of  both  EER  and  ACER  in

nearly  half  of  all  spoofing  types.  In  particular,  our

method  achieves  an  overall  optimization  in

terms  of  EER  and  optimization  in  terms  of

ACER.  Although  the  performance  of  our  model  de-

creases  in  some  cases,  the  absolute  accuracy  of  our

model  in  such  cases  is  acceptable  and  is  competitive

with those of baselines. In the worst case, the perfor-

mance  of  our  model  is  lower  than  that  of  the  best

baseline with a minor margin of less than . These

experiments  verify  the  superiority  of  our  proposed

method in addressing the ZSFA issue.

To further  intuitively  illustrate  the  superiority  of

our  model  on  ZSFA,  as  in Fig.6,  we  here  show  two

samples that are successfully recognized by our mod-

el  but  wrongly  recognized  by  DC-CDN.  On  the  left,

we have a living face with a red injury as in the white

circle.  The  injury  here  could  confuse  existing  models

since  it  does  not  occur  in  most  living  faces  so  DC-

CDN  wrongly  recognizes  this  sample  as  a  spoofing

face.  As  for  the  right  figure,  the  key  difference  be-

tween  this  spoofing  face  with  living  faces  is  the  big

eyes.  While  such  a  difference  could  not  occur  in  the

training  set,  existing  models  may  wrongly  recognize

this image as a living face. From this comparison, we

can find clues of the superiority of introducing decep-

tive features. 

4.2.2    Evaluation for Cross-Dataset Testing

To  further  evaluate  the  generalization  ability  of

our  proposed  method,  by  following  the  protocol  pro-

posed  by  [11],  we  conduct  a  series  of  cross-dataset

evaluations  on  three  alternative  datasets,  including

CASIA,  MSU-MFSD,  and  Replay-Attack.  Based  on

the protocol,  the performances of all  methods are re-

ported with another widely used metric of area under

the ROC curve (AUC). Each time, one spoofing type

of  the  three  datasets  is  selected  for  testing,  and  the

other type for training. Due to the overlap of types in

the  three  datasets,  the  experiments  are  usually  ap-

plied to evaluate the performance of models when fed

into  images  collected  in  different  places  by  different

devices.  The  results  are  reported  in Table 2.  As  ob-

served, our proposed method can outperform other al-

ternative  approaches  in  most  scenarios.  The  better

performance  of  our  model  indicates  that  when  faced

with spoofing faces in diverse environments,  the pro-

posed model achieves more robust anti-spoofing accu-

racy.  This  can further  confirm the superiority  of  our

proposed  method  in  terms  of  generalization  ability. 

 

Table  1.    ZSFA Performances of Different Models on SiW-M

Model Metric Replay Print Mask Attack Makeup Attack Partial Attack Average

(%) Half Silicone Trans. Paper Manne. Obfusc. Imperson. Cosmetic Funny
Eye

Glasses Partial

Auxiliary[13] ACER 16.8 6.9 19.3 14.9 52.1 8.0 12.8 55.8 13.7 11.7 49.0 40.5 5.3 ±23.6 18.5

EER 14.0 4.3 11.6 12.4 24.6 7.8 10.0 72.3 10.1 9.4 21.4 18.6 4.0 ±17.0 17.7

DTN[18] ACER 9.8 6.0 15.0 18.7 36.0 4.5 7.7 48.1 11.4 14.2 19.3 19.8 8.5 ±16.8 11.1

EER 10.0 2.1 14.4 18.6 26.5 5.7 9.6 50.2 10.1 13.2 19.8 20.5 8.8 ±16.1 12.2

SpoofTrace[20] ACER 7.8 7.3 7.1 12.9 13.9 4.3 6.7 53.2 4.6 19.5 20.7 21.0 5.6 ±14.2 13.2

EER 7.6 3.8 8.4 13.8 14.5 5.3 4.4 35.4 0.0 19.3 21.0 20.8 1.6 ±12.0 10.0

DC-CDN[21] ACER 12.1 9.7 14.1 7.2 14.8 4.5 1.6 40.1 0.4 11.4 20.1 16.1 2.9 ±11.9 10.3

EER 10.3 8.7 11.1 7.4 12.5 5.9 0.0 39.1 0.0 12.0 18.9 13.5 1.2 ±10.8 10.1

FGHV[19] ACER 8.4 7.3 5.2 9.8 14.2 3.2 4.1 16.7 1.9 9.0 18.2 8.3 4.4 ±8.5 5.1

EER 9.0 8.0 5.9 9.9 14.3 3.7 4.8 19.3 2.0 9.2 18.9 8.5 4.7 ±9.1 5.4

Ours ACER 4.2 2.9 5.3 7.7 12.1 1.9 1.6 17.1 1.5 0.9 18.8 7.3 1.2 ±6.3 6.1

EER 4.7 2.6 7.1 7.8 11.2 2.1 1.9 18.6 1.3 1.1 19.0 6.8 0.8 ±6.5 6.3
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4.2.3    Evaluation for Intra-Dataset Testing

Although  our  model  is  proposed  for  ZSFA tasks,

we evaluate the performance of our model in the tra-

ditional  anti-spoofing  task  on  the  OULU-NPU

dataset[32].  This  series  of  experiments  strictly  follows

the four protocols that OULU-NPU suggests[32]. As in

Table 3,  the  performances  of  our  model  are  competi-

tive  with  or  better  than  the  performances  of  SOTA

solutions in traditional anti-spoofing. This result indi-

cates that introducing deceptive features will not lead

to  a  performance  decrease  on  known  spoofing  faces.

This suggests that our model can also handle the tra-

ditional anti-spoofing task as SOTA does.

Summary. Based on the analysis conducted above,

it can be concluded that the proposed model demon-

strates  competitive  performance  in  both  traditional

anti-spoofing tasks and more challenging ZSFA tasks.

This highlights the versatility of our model in the face

anti-spoofing domain. 

4.3    Ablation Study (Q2)

In this section, we evaluate the effects of each in-

dividual  component  through  a  series  of  ablation  ex-

periments. It is important to note that all ablation ex-

periments  are  conducted  in  the  ZSFA  scenario.  The

SiW-M[18] dataset  is  employed  here  for  the  ablation

study. 

4.3.1    Impacts of Deceptive Features

In the proposed model, we divide all features into

two categories:  discriminative and deceptive features.

To  investigate  the  impacts  of  deceptive  features  on

detection, we carry out a series of ZSFA experiments

by  ablatively  taking  one  category  of  discriminative

and deceptive features away at each round of evalua-

tions, and the results are given in Table 4. As we can

see, each category of features can effectively help de-

tect unknown category of spoofing faces, and the per-

formances  of  our  method  in  case  of  employing  only

one  category  of  features  are  almost  equivalent.  The

employment  of  these  two  categories  of  features  can

significantly enhance the performances of our method

in  terms of  all  the  metrics  of  APCER,  BPCER,  and

ACER.  This  verifies  that  the  employment  of  decep-

tive  features  is  effective  in  detecting  unknown spoof-

ing faces. 

4.3.2    Impacts of Semantic Representation

The  dimensionality  of  the  semantic  space  deter-

mines  the  representation  ability  of  the  semantic

space,  i.e.,  a  larger  dimensionality can help maintain

more information from the feature space, hence mini-

mizing  the  information  loss.  However,  when  the  fea-

ture  dimension  is  None,  it  means  that  the  semantic

representation of this component is invalid.

1 920, 1 024, 512, 256

We then set the dimensionality of semantic space

to ,  and  None,  respectively,  the

results are shown in Table 5. Note that in case the di-

mensionality is set to None, it means that we use the

feature space directly to detect unknown spoofing. As

shown  in  this  table,  increasing  the  dimensionality  of

the semantic space can positively enhance the perfor-

mance of  our proposal,  and this  verifies  our previous

assumptions. Notice that even though the dimension-

 

Living Funny_Eye

DC-CDN

Ours



Samples and

Corresponding

Category 

 

√



√

×

Fig.6.   Case  comparison  between  our  model  and  DC-CDN.
‘‘ √ ’’ means that the model can correctly identify this attack.
‘‘ ’’ means that the model makes a false identification.

 

Table  2.    AUC (%) of Cross-Dataset Anti-Spoofing on CASIA, Replay, and MSU-MFSD Datasets

Model CASIA[33] Replay[4] MSU-MFSD[6] Average

Video Cut
Photo

Wrapped
Photo

Video Digital
Photo

Printed
Photo

Printed
Photo

HR
Video

Mobile
Video

Auxiliary[13] 94.2 88.4 79.8 99.7 95.2 78.9 50.6 99.9 93.5 ±86.7 15.6

DTN[18] 90.0 97.3 97.5 99.9 99.9 99.6 81.6 99.9 97.5 ±95.9 6.2

SpoofTrace[20] 93.6 99.7 99.1 99.8 99.9 99.8 76.3 99.9 99.1 ±96.4 7.8

DC-CDN[21] 98.5 99.9 99.8 100.0 99.4 99.9 70.8 100.0 99.9 ±96.5 9.6

FGHV[19] 98.6 99.8 99.9 99.9 99.1 99.8 73.2 100.0 99.9 ±96.7 8.8

Ours 98.8 99.9 99.8 100.0 100.0 99.9 86.6 100.0 100.0 ±98.3 4.2
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1.0× 103

ality of the semantic space is set to 1 920, the compu-

tational  complexity  of  the  transformation  process  is

 times less than the computational complexi-

ty  of  ResNet50.  Thus,  in  our  final  implementation,

the dimensionality is 1 920.
 

4.4    Hyperparameter Experiment (Q3)

Given  the  fact  that  our  proposal  can  construct

better  descriptions  for  the  living  by  considering  the

deceptive  features  between  the  livings  and  known

spoofing, the impacts of the number of known spoof-

ing types should be investigated. For the sake of fair-

ness, in each round of the experiments, we fix a spe-

cific category of spoofing faces as the unknown spoof-

ing  type,  i.e.,  Replay.  The  size  of  the  training  set  is

fixed  by  selecting  the  same  number  of  samples  from

known  attacks  for  fair  comparison,  no  matter  how

many categories of known spoofing types are included.

Table 6 shows  the  results.  The  performance  of  our

method  deteriorates  dramatically  as  the  number  of

known types decreases, and this indicates that a rela-

tive number of known categories of spoofing is essen-

tial  for  extracting  enough  deceptive  features  to  well

represent  the  livings.  Also,  combined  with Table 1,

with respect to the Replay attack, we notice that our

method with only eight known categories  of  spoofing

can  achieve  an  equivalent  level  of  performance  to

those  SOTA  solutions  with  12  known  categories  of

spoofing.
  

Table  6.    Impacts of the Number of Known Types

Number of
Known Types

ACPER (%) BPCER (%) ACER (%)

12 8.7 1.0 4.2

11 9.4 1.7 6.5

8 10.9 5.9 8.5

5 40.6 38.1 40.1
 

5    Conclusions

In  this  paper,  we  proposed  a  new  method  to  en-

hance  the  identification  accuracy  of  unknown  spoof-

ing in the ZSFA scenario. Our method emphasizes ex-

tracting  dominant  features  from  both  deceptive  and

discriminative  perspectives  between  the  living  and

known  spoofing  samples.  Using  ResNet50[27] as  the

backbone,  we  introduced  a  semantic  autoencoder  to

represent  all  the  extracted  features  in  a  semantic

space, where each dimension carries almost equal im-

portance  in  distinguishing  spoofing  attacks.  This  al-

lows  ResNet50 to  better  differentiate  between decep-

tive  and  discriminative  features,  which  can  aid  in

identifying attacks from unknown sample classes. Our

experimental  results  demonstrated  that  our  method

can  significantly  improve  the  detection  of  unknown

spoofing. Specifically, ResNet50 with our method out-

performed  advanced  ZSFA solutions  by  up  to  5% in

terms of ACER. Additionally, our method achieved a

practical  performance  of  98.3% in  terms  of  AUC for

detecting  known  spoofing  instances.  In  future  work,

we plan to further investigate the classification of un-

known  attacks,  particularly  when  multiple  categories

 

Table  3.    Results of Traditional Anti-Spoofing on Four Pro-
tocols of OULU-NPU

Protocol Model APCER (%) BPCER (%) ACER (%)

1 Auxiliary[13] 1.6 1.6 1.6

DTN[18] 1.3 1.5 1.4

SpoofTrace[20] 0.8 1.3 1.1

DC-CDN[21] 0.5 0.3 0.4

FGHV[19] 0.5 0.2 0.4

Ours 0.4 0.2 0.3

2 Auxiliary[13] 2.7 2.7 2.7

DTN[18] 2.3 2.0 2.2

SpoofTrace[20] 2.3 1.6 1.9

DC-CDN[21] 0.9 1.9 1.3

FGHV[19] 0.8 1.6 1.2

Ours 0.8 1.6 1.2

3 Auxiliary[13] ±2.7 1.3 ±3.1 1.7 ±2.9 1.5

DTN[18] ±2.5 1.4 ±3.0 2.1 ±2.8 1.9

SpoofTrace[20] ±1.9 1.6 ±4.0 5.4 ±2.8 3.3

DC-CDN[21] ±2.2 2.8 ±1.6 2.1 ±1.9 1.1

FGHV[19] ±2.1 1.9 ±1.6 2.4 ±1.8 2.1

Ours ±2.0 1.5 ±1.5 2.5 ±1.8 2.0

4 Auxiliary[13] ±9.3 5.6 ±10.4 6.0 ±9.5 6.0

DTN[18] ±8.6 4.3 ±8.0 5.4 ±8.3 4.8

SpoofTrace[20] ±3.3 3.6 ±5.2 5.4 ±3.8 4.2

DC-CDN[21] ±5.4 3.3 ±2.5 4.2 ±4.0 3.1

FGHV[19] ±4.6 2.8 ±3.4 5.3 ±4.0 4.0

Ours ±3.1 2.8 ±3.3 4.0 ±3.2 3.4

 

Table  4.    Impacts of Different Kinds of Features

Feature APCER (%) BPCER (%) ACER (%)

Deceptive only ±28.7 21.8 ±3.14 3.22 ±14.30 12.1

Discriminative only ±20.4 15.2 ±6.44 3.72 ±15.70 18.1

Two kinds ±11.9 10.2 ±2.74 1.40 ±6.30 6.1

 

Table  5.    Impacts of Dimensionality in Semantic Space

Dimension APCER (%) BPCER (%) ACER (%)

None ±48.2 17.5 ±34.10 11.6 ±41.1 14.3

256 ±39.0 19.6 ±11.80 3.6 ±25.4 10.6

512 ±28.3 18.2 ±4.78 9.3 ±16.5 12.1

1 024 ±24.6 21.3 ±5.32 2.7 ±15.9 10.4

1 920 ±11.9 10.2 ±2.74 1.4 ±6.3 6.1
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of unknown attacks exist. 
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