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ABSTRACT
Seeking for generalizable graph representations becomes hot
spot in the area of graph learning. Recently, causality the-
ory has been applied for extracting the causal relations be-
tween graph data and labels, which are generalizable under
distribution shift and result in better OOD generalization. In
this paper, for more accurately capturing causal representa-
tion of graph data, we propose a gradient reactivation en-
hanced causal subgraph extraction method. The proposed
model utilizes attention mechanism to extract the causal fea-
tures and attenuates the confounding effect of shortcut fea-
tures. For ensuring stability of extracted causal features, we
propose a novel gradient reactivation method to filter features
with greater effect on making prediction. Extensively experi-
mental result proves the effectiveness of the proposed model.

Index Terms— Graph classification, out of distribution,
causal models, graph neural networks, gradient reactivation

1. INTRODUCTION

Graph structured data Neural Networks (GNNs) [1, 2, 3] have
been extensively studied due to their powerful fitting ability
to non-euclidean data. The progress of GNNs benefit various
applications in many domains, including molecular analysis,
recommendation systems and social networks [4, 5, 6].

Existing works are mostly based on in-distribution (ID)
hypothesis, i.e., training and testing datasets are identically
distributed. However, in real-world scenarios, there exist dis-
tribution shifts between training and testing datasets, which
is against in-distribution hypothesis and attenuates the perfor-
mance of existing models in such Out-Of-Distribution (OOD)
test evaluation [7]. The poor generalization of ID based mod-
els results from their learning paradigm that maximizes the
mutual information between extracted graph representations
and corresponding labels [8]. Such paradigm makes models
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trapped in noncausal shortcut features [9, 10, 11], which are
discriminative in training data but indiscriminative in testing
data. Therefore, while existing models are well performing on
training data by simply extracting the shortcut features, they
fail to perform satisfying classification on testing data. Fig.1
shows a simple example of shortcut features in graph classifi-
cation. When classifying graphs with subgraph house, models
may wrongly extract star as it is discriminative in training set.

Training set Testing set

star

house

Fig. 1. An example of shortcut features. Star is shortcut fea-
ture which is discriminative in training set but not correlated
to the classification target, i.e., having house or not.

Tackling this issue, great recent efforts have been made to
develop generalizable models based on causal theory [12, 13,
14, 15]. The key of those methods is the strategies of extract-
ing causal features and shortcut features. OOD-GNN [12]
introduce Hilbert-Schmidt Independence Criterion and sam-
ple reweighting mechanism to eliminate the statistical depen-
dence between graph representations, so that the model is
forced to learn more generalizable graph representations. Sta-
bleGNN [13] extracts high-level graph representations and re-
sorts to the distinguishing ability of causal inference to get
rid of spurious correlations. DGNN [14] follows the idea of
StableGNN proposes a framework for OOD generalized node
representation learning by jointly optimizing a decorrelation
regularizer and a weighted GNN model. However, all these
models focus on feature-wise graph representations and are
unable to extract structural causal parts of graphs. Although
many recent works propose novel mechanisms for extracting
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Fig. 2. Framework overview.

critical subgraphs, these works fail to take a causal look and
fall short of OOD generalization.

Addressing the above issue, in this paper, we propose an
attention based framework to explicitly and dynamically sep-
arate causal and noncausal subgraphs, and design a new do-
calculus method for backdoor adjustment [16] so as to get rid
of low generalization caused by noncausal shortcut features.
A novel gradient reactivation module is proposed to ensure
the reliability of the extraction of causal subgraphs. The pro-
posed framework can be easily plugged into existing works
to achieve good OOD generalization. Experimental result on
several widely used datasets proves the superiority of the pro-
posed framework. Our contribution can be summarized as,

1) We propose an attention based causal subgraph extrac-
tion module to separate causal and noncausal subgraphs, and
a novel gradient reactivation module is proposed to ensure the
reliability of the extraction of causal subgraphs.

2) We design a distance based method for backdoor ad-
justment, which enable our model to cut off the the backdoor
path caused by noncausal shortcut features.

3) Extensive experiments demonstrate that the proposed
method achieves SOTA prediction performance on several
widely used data sets.

2. PROBLEM DEFINITION

We denote a graph as G = {A,X}. A ∈ RN×N is the adja-
cency matrix, where Aij 6= 0 if there exists an edge between
i-th and j-th nodes. X ∈ RN×D denotes the features of all
nodes and N is the number of nodes. Let {yi, Gi} be the i-th
sample of a given dataset, where Gi is the graph data and yi
denotes the corresponding label. The goal of graph classifica-
tion is to learn a mapping function f with trainable parameters
θ from graph data to corresponding labels.

3. METHOD

The proposed framework is composed with three compo-
nents, i.e., attention based causal subgraph extraction mod-

ule, causality determination module and gradient reactivation
module. In this section, we detail each component.

3.1. Causal Subgraph Extraction

Given a graph G = {A,X}, we obtain node-level and edge-
level representations of it through a GNN-based network,

H = GNN(A,X)

E = {eij = hi||hj}
(1)

where H = {hi|i ∈ [1, N ]} is the output representations of
all nodes generated by an arbitrary GNN backbone andE cor-
responds to representations of all edges. hi and hj correspond
to representations of two adjacent nodes, || is the concatena-
tion operation. Two MLPs are applied to calculate the atten-
tion score of nodes and edges respectively,

αci , αsi = σ(MLPnode(node))

βcij , βsij = σ(MLPedge(edge))
(2)

σ represents the softmax activation function. αci and βcij
represent the attention score of i-th node and edge between
i-th and j-th nodes, which are employed to extract causal
subgraph. Similarly, αsi and βsij are employed to extract
noncausal subgraph. Noting that we have αci + αsi = 1,
βcij + βsij = 1. Attention scores represent how much atten-
tion the model pays to each edge and node. Therefore, mask
matrices Mx = {αci |i ∈ [1, N ]},Mx = {αsi |i ∈ [1, N ]}
at the node level and the mask matrices Ma = {βcij |Aij 6=
0},Ma = {βsij |Aij 6= 0} at the edge level are obtained.
According to the mask matrices, the original graph can be di-
vided into causal subgraph and noncausal subgraph as,

Gc = {Ma ·A,Mx ·X}
Gs = {Ma ·A,Mx ·X}

(3)

3.2. Causality Determination

After obtaining mask matrix through attention score and con-
structing causal and noncausal subgraph, for the causal sub-
graph Gc, in order to capture the causal features, we obtain
the representation of causal subgraph through another GNN,
and then make prediction through readout function and clas-
sification function as,

hGc
= freadout(GNNc(Gc))

zGc
= Φc(hGc

)
(4)

The prediction on causal features should be as close as pos-
sible to the real label, so the classification loss used here is
defined as,

Lossc = − 1

|D|
∑
G∈D

yTG log(zGc) (5)



Table 1. Performance comparison on graph classification datasets.
Dataset MUTAG NCI1 PROTEINS COLLAB IMDB-B IMDB-M

DGK 87.44±2.72 80.31±0.46 75.68±0.54 73.09±0.25 66.96±0.56 44.55±0.52
GlobalAtt 88.27±8.65 81.17±1.04 72.60±4.37 81.48±1.46 69.10±3.80 51.40±2.91
SortPool 86.17±7.53 79.00±1.68 75.48±1.62 77.84±1.22 73.00±3.50 49.53±2.29

GCN 88.20±7.33 82.97±2.34 75.65±3.24 81.72±1.64 73.89±5.74 51.53±3.28
GCN+CAL 89.24±8.72 83.48±1.94 76.28±3.65 82.08±2.40 74.40±4.55 52.13±2.96

GCN+GRECA 91.55±6.16 83.97±0.68 76.77±2.85 82.45±2.11 74.66±3.78 52.54±3.01
GIN 89.42±7.40 82.71±1.52 76.21±3.83 82.08±1.51 73.40±3.78 51.53±2.97

GIN+CAL 89.91±8.34 83.89±1.93 76.92±3.31 82.68±1.25 74.13±5.21 52.60±2.36
GIN+GRECA 89.94±5.18 84.14±1.22 77.04±3.51 82.79±1.11 74.44±4.77 52.83±2.21

GAT 88.58±7.54 82.11±1.43 75.96±3.26 81.42±1.41 72.70±4.37 50.60±3.75
GAT+CAL 89.94±8.78 83.55±1.42 76.39±3.65 82.12±1.95 73.30±4.16 50.93±3.84

GAT+GRECA 90.50±6.44 83.79±1.58 77.13±2.18 82.67±1.22 73.81±3.63 51.41±2.91

where D denotes the dataset, and |D| is the size of D.
Meanwhile, for the noncausal subgraph, we also have,

hGs
= freadout(GNNs(Gs))

zGs
= Φs(hGs

)
(6)

As we consider the noncausal subgraph to be trivial for clas-
sification, so we restrict the classification result on the non-
causal subgraph to be trivial, that is, the influence of the non-
causal part on the predicted result is as small as possible.
Thereby, the labels we use for noncausal subgraph are uni-
form distribution. We define the classification loss as the KL
divergence of the uniform distributed labels and the predicted
result on noncausal subgraph,

Losss =
1

|D|
∑
G∈D

KL(yunif , zGs
) (7)

By optimizing the above two losses, we can distinguish be-
tween causal and noncausal features.

Additionally, for more effective extraction of causal and
noncausal features, we further propose a do-calculus method
to cut off the association between noncausal features and la-
bels. Generally, we have,

Pm(Y |C) =
∑
sj∈S

Pm(Y |C, sj)Pm(sj |C)

=
∑
sj∈S

Pm(Y |C, sj)Pm(sj) =
∑
sj∈S

P (Y |C, sj)P (sj)
(8)

where S is the set of all environments (noncausal features).
This formula is called backdoor adjustment, which performs
causal intervention on C by combining C with different sj ,
thus cut off the association between S and labels. However,
Eq.8 requires traversal of S and combine every s in S with
C, which is intractable. Therefore, we propose a distance-
based causal intervention method, and the distance function
is defined as dis(zGc , zGs) = ||zGc − zGs ||22. Given a batch of
B graphs G = Gi|i ∈ [1, B], for each graph Gi, we calculate

the distance between its causal subgraph with every noncausal
subgraph of other graphs as,

dij = dis(zGi
c
, zGj

s
) (9)

Therefore, we can approximately achieve Eq.8 by combining
zGj

s
with the smallest distance function from zGi

c
in the data

of each batch. At this time, in the training, the difficulty of
distinguishing the subject and the environment of the model
can be increased, and the prediction generalization ability of
the model can be improved as much as possible. By the com-
bination, we have the following loss,

zG = Φ(zGc
+ zGs

)

Losscs = − 1

|D|
∑
G∈D

yTG log(zG)
(10)

After obtaining the three optimization objectives, we combine
them in a weighted way and optimize them simultaneously,

Loss = Lossc + λ1 · Losss + λ2 · Losscs (11)

where λ1 and λ2 are hyperparameters.

3.3. Gradient reactivation

To ensure the reliability of the separation of causal and non-
causal subgraphs, we further propose a gradient reactivation
method to filter the noncausal subgraphs. Specifically, after
obtaining the noncausal subgraph, we reactivate some nodes
and edges with large gradient into the causal subgraph as they
contribute a lot to making prediction. For the obtained non-
causal subgraph zGs

, the goal is to extract the wrongly di-
vided causal component from it. We calculate the loss of us-
ing zGs to make prediction of real label, as,

Losst = − 1

|D|
∑
G∈D

yTG log(zGs
) (12)

This cross entropy loss will not participate in back propaga-
tion, and serves only for the calculation of gradient of Ma



and Mx in Eq.3. Elements in Ma and Mx with large gradi-
ents should not be included in noncausal subgraph, so we re-
move them from noncausal subgraph and denote the new non-
causal subgraph masks with M ′a and M ′x. Then we propose
two more losses to ensure that elements with large gradients
will not be included in noncausal subgraph,

Lossnode = (Mx −M ′x)2

Lossedge = (Ma −M ′a)2
(13)

Therefore, the final loss of our framework becomes,

Loss = Lossc + λ1 · Losss + λ2 · Losscs+
λ3 · Lossnode + λ4 · Lossedge

(14)

4. EXPERIMENTS

We conduct experiments on eight datasets, including three bi-
ological datasets (MUTAG, NCI1, PROTEINS), three social
datasets (COLLAB, IMDB-B, IMDB-M) [17], and two su-
perpixel datasets (MNIST, CIFAR-10) [11].

Table 2. Performance comparison on image datasets.
Dataset MNIST CIFAR-10

GCN 90.49 54.68
GCN+CAL 94.58 56.21

GCN+GRECA 94.77 56.45
GIN 96.51 56.36

GIN+CAL 96.93 56.63
GIN+GRECA 97.02 56.81

GAT 95.53 64.22
GAT+CAL 95.91 66.16

GTA+GRECA 96.33 66.71

4.1. Main comparison

To evaluate the effectiveness of proposed Gradient De-
activation Enhanced Causal Attention learning (GRECA)
framework, we apply diverse GNN backbones as GCN [1],
GIN [18] and GAT [19]. We employ the following baselines:
GCN, GIN, GAT, DGK [20], GlobalAtt [21], SortPool [22]
and CAL [8]. The evaluation metric is classification accuracy,
and we use 10-fold cross-validation to ensure the reliability
of the results. As shown in Table.1 and Table.2, combi-
nations of GRECA and GNN backbones result in accuracy
improvement.

4.2. Ablation study

Impact of gradient reactivation. To evaluate the impact of
proposed gradient reactivation module, we set λ3 and λ4 in
Eq.14 as β ∈ [0, 1], which control the weight of gradient re-
activation in the final loss. As shown in Fig.3, when β ≤ 0.7,
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Fig. 3. Performance comparison with different values of β.

the performance is better when beta is bigger, which proves
that gradient reactivation can truly benefit classification. And
when β ≥ 0.7, the performance drops when beta is bigger.
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Fig. 4. Performance comparison with different backdoor ad-
justment strategies.

Impact of backdoor adjustment strategies. Our framework
proposes a distance based backdoor adjustment, to evalu-
ate the effectiveness of this strategy, we compare it with
two more strategies, i.e., randomly concatenation (RD) and
randomly adding (ADD). As shown in Fig.4, the proposed
distance based backdoor adjustment strategy achieves the
best performance on the tested five datasets.

5. CONCLUSION

In this paper, a gradient reactivation enhanced causal atten-
tion learning framework is proposed, which applies an at-
tention based module to separate causal and noncausal sub-
graphs. To ensure the reliability of the separation, a gradient
reactivation module is proposed to constrain the correlation
between noncausal subgraph and the real label. A distance
based backdoor adjustment strategy is proposed to learning
the causal and noncausal features. Experimental result on
eight widely used datasets validates the effectiveness of the
proposed framework on graph classification.
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