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ABSTRACT

Graph neural networks (GNNs) have achieved great success
in graph classification tasks across many domains. However,
the varying quality of real-world graph data leads to stabil-
ity and reliability issues for real-world applications of graph
neural networks (GNNs). Improving the robustness of GNNs
would help enhance the quality and safety of GNNs in real-
world applications. Recently, there have been studies that
incorporate insights from information theory, causal theory,
etc. into graph classification tasks to improve robustness.
However, these strategies rely on extensive task-specific de-
signs that increase model complexity and limit the scope of
the methods. In this work, we leverage the interdependence
between model stability and robustness by introducing sta-
bility constraints to graph neural network models through
two different consistency regularization methods. To balance
the trade-off between stability constraints and classifica-
tion performance, we adaptively adjust the strength of the
constraints dynamically using multi-objective optimization,
making our method applicable to graph classification tasks
of varying scales and domains. Extensive experiments on
graph datasets from different domains demonstrate the su-
periority of our proposed method. The code is available in
https://github.com/haibin65535/temp.

Index Terms— Graph neural networks, Robustness, Sta-
bility

1. INTRODUCTION

Graph classification is crucial for many real-world applica-
tions, such as predicting molecular properties, analyzing so-
cial networks, and detecting fake news [1, 2, 3, 4, 5]. Thanks
to abundant datasets and diverse advanced neural network ar-
chitectures, graph neural networks have achieved state-of-the-
art results on graph classification tasks across many domains.
However, graph neural networks (GNNs) are vulnerable to
adversarial attacks, improving the robustness of GNNs would
help ensure quality and security for many GNN-dependent
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Fig. 1. The left subfigure shows the traditional graph classi-
fication process. The right subfigure shows that an attack on
the graph data structure changes the GNN’s prediction of the
graph properties..

real-world applications. For example, enhancing GNN ro-
bustness could aid in detecting fake news or misinformation
in social networks. There have been studies on improving
GNN learning robustness, such as GIB [6] which compresses
irrelevant graph classification information in representations
to improve robustness by information bottleneck. In addition,
DIR [7] tries to reduce non-causal information extraction to
improve robustness through causal relevance relations. These
methods improve neural network robustness by incorporating
additional insights, but the introduction of different insights
relies on extensive task-specific designs (e.g. mutual informa-
tion estimators) unrelated to graph classification itself, thus
limiting the applicability of the methods across domains. To
achieve a more concise and generalizable robust graph clas-
sification learning framework, we try to leverage the connec-
tion between model stability and robustness. Model stability
refers to how much a machine learning model’s outputs vary
in response to small perturbations or noise in the inputs. Pa-
pers [8, 9, 10] explore the close ties between model stability
and adversarial attack robustness, that is, models with high
stability tend to be more robust to corrupted inputs like noisy
examples, adversarial examples, occlusions, etc. Inspired by
this, we propose a new framework that improves GNN graph
classification robustness by introducing stability constraints
during graph classification learning. We implement these sta-
bility constraints through different consistency regularization
methods and dynamically trade off imposing stability con-
straints and classification performance, making our method
applicable to graph classification tasks of varying complexity
across domains.
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Our contributions can be summarized as:

• New insight and framework: Unlike previous lines of
work controlling irrelevant information, we propose
a graph classification framework with stability con-
straints to improve graph learning robustness.

• New strategy: We propose two consistency regulariza-
tion strategies to enforce stability constraints, and adap-
tively optimize the trade-off between stability mainte-
nance and performance improvement through adaptive
optimization strategies, making our method widely ap-
plicable.

• Compelling empirical results: Extensive experiments
on graph datasets from multiple domains demonstrate
the effectiveness of our method in improving graph
classification robustness and its applicability across
domains.

2. RELATED WORK

2.1. Graph Neural Networks

Graph neural networks (GNNs) have achieved great success
in graph-based learning tasks [11, 12]. By propagating and
transforming node features, GNNs can learn high-level repre-
sentations of graphs. Given a graph G = (V,E) with node
features X ∈ RN×F where N is the number of nodes and F
is the feature dimension, graph convolution operates as:

H(l+1) = σ
(
AH(l)W(l)

)
(1)

where A ∈ RN×N is the adjacency matrix, H(l) ∈
RN×F is the hidden representation in the lth layer, W(l) ∈
RF×F ′

is a trainable weight matrix, and σ(·) denotes an
activation function. By stacking multiple convolutional lay-
ers, GNNs can learn hierarchical representations of the input
graph. However, existing GNNs still face challenges regard-
ing robustness and can be vulnerable to adversarial attacks or
subtle perturbations [13, 14, 15].

2.2. Enhancing Robustness of Graph Classification

Recent works have sought to improve GNN robustness
through information bottlenecks [6], capturing predictive sub-
structures. By filtering out non-predictive signals, bottleneck-
based methods enhance model invariance to perturbations.
Another line of work leverages causal discovery to identify
robust predictive subgraphs [16, 7], By focusing on invariant
causal mechanisms, these methods can debias GNNs from
spurious correlations. However, they rely on restrictive as-
sumptions and lack scalability. Different from these works,
we approach the problem of enhancing robustness by intro-
ducing a stability constraint for the graph classification task.
The universal existence of stability conditions makes our
framework more concise and widely applicable to various
domains and architectures.

3. METHOD

3.1. Problem Frame: Graph Classification with Stability
Constraints

In this section, we first provide a definition of our problem
framework. We give a formal description of the graph clas-
sification task, neural network robustness and neural network
stability. Then, we introduce the definition of our optimiza-
tion problem, namely, graph classification with stability con-
straints.Given a graph dataset D = {(Gi, yi)}Ni=1 with N la-
beled graphs Gi and labels yi ∈ Y , our goal is learning a
graph classifier fθ : G → Y parameterized by θ that is robust
to graph perturbations.

Formally, the graph classifier fθ aims to minimize the em-
pirical risk:

min
θ

1

N

N∑
i=1

ℓ(fθ(Gi), yi) (2)

where ℓ(·) is a loss function (e.g. cross-entropy). However,
standard empirical risk minimization often leads to models
that lack robustness and stability. To enforce this stability
property, we propose adding an explicit stability regulariza-
tion term:

min
θ

1

N

N∑
i=1

ℓ(fθ(Gi), yi) + λR(Gi) (3)

where R(·) measures the stability between predictions on the
original and perturbed graphs, and λ controls the regulariza-
tion strength. In order to optimize Equation (5), we need to
address the following issues:

1. How can we implement reliable stability constraints R
within graph neural network models to enhance robustness?

2. How can we balance the trade-off between stability
constraints and classification objectives, to maximize robust-
ness gains while maintaining classification performance?

We will introduce our proposed model in the next section,
and discuss how we address the above two challenges.

3.2. Model

3.2.1. Temporal Stability Regularization

Graph neural networks (GNNs) encode graph structured data
G = (V,E) into node representations Zv via message pass-
ing:

Z(t)
v = f(Z(t−1)

v , aggregateu∈N(v)Z
(t−1)
u ) (4)

where Zv(t) is the representation of node v at layer t. After
K layers, a readout function R aggregates the node represen-
tations into a graph-level embedding:

Z
(t)
G = R({Z(t)

v |v ∈ G}) (5)

This graph representation Z
(t)
G summarizes the structure of G

at training epoch t. To improve robustness, we apply temporal



Fig. 2. Model architecture. The part inside the upper dotted
line is the perturbation consistency stability module. The part
within the lower dotted line is the temporal consistency sta-
bility module.

stability regularization between Z
(t)
G at the current epoch and

Z
(t−1)
G from the prior epoch:

Ltemp =

{
|Z(t)

G − Z
(t−1)
G | − 0.5 if |Z(t)

G − Z
(t−1)
G | > 1

0.5(Z
(t)
G − Z

(t−1)
G )2 if |Z(t)

G − Z
(t−1)
G | < 1

(6)
Ltemp allows small evolving differences between epochs

but penalizes large inconsistent shifts in the graph representa-
tions. This allows small evolving changes in ZG over epochs
but heavily penalizes large inconsistent shifts. By constrain-
ing dramatic representation changes over time, temporal
stability regularization focuses learning on robust invariant
graph features and relies less on ephemeral fragile patterns.

3.2.2. Perturbation Stability Regularization

We decompose the graph representation ZG into invariant ZI

and perturbed ZP components using a learnable mask M ,
which is obtained by feeding ZG through a multilayer per-
ceptron (MLP) and sigmoid activation:

M = MLP(σ(ZG)) (7)

where σ(x) is the sigmoid function .This allows M to learn
to select robust invariant features and suppress fragile patterns
based on the input ZG. We then generate two perturbed sam-
ples by randomly adding ZI with different ZP :

Zpi = ZI + ZPi (8)

We enforce consistency between two Zpi stay consistent:

Lpert = |Zp1 − Zp2|2 (9)

By decomposing ZG into stable ZI and variable ZP , and ex-
plicitly regularizing their perturbation consistency, the model
becomes more robust. To dynamically adapt stability con-
straints for graph classification tasks across different domains

and interference levels, so that temporal stability and pertur-
bation stability can enhance model robustness without com-
promising model classification performance, we use multi-
objective optimization for the graph classification objective
and consistency constraints to achieve Pareto optimality of
classification performance and stability [17]. Specifically, we
compute gradients for three loss functions separately and dy-
namically calculate weights according to the gradients via the
Frank-Wolfe algorithm [18] to find a common descent direc-
tion. We recalculate new weights according to this method
for each propagation, to realize adaptive stability constraints.

4. EXPERIMENT

4.1. Datasets and Baselines

To demonstrate that our method is applicable to datasets with
different biases and from different domains, we conduct ex-
periments on synthetic datasets MNIST [19], KUZU [19],
Fashion [19] with different bias levels (b) and real molecu-
lar graphs (MUTAG, PROTEIN, NCI-1) and social network
graphs (IMDB-BINARY) from Tudateset[20].

We compared advanced graph classification methods
(DIR[7], Disc[16], SIB[6]) incorporating different insights
into graph classification We conducted experiments on differ-
ent architectures, including GCN[11], GIN[21] and GAT[12].

4.2. Performance Evaluation

The results of our method on real datasets are shown in Ta-
ble 1. It can be seen that our model outperforms the base-
line on molecules MUTAG, protein, and NCI-1), social net-
work (IMDB-BINARY). This shows that our improvements
are applicable to general graph data with different properties
in various fields. The results in Table 2 illustrate that, com-
pared with SOTA GNN graph classification methods (SIB[6]
and DISC[16]), We obtain average performance gains of 8.2%
and 2.6%. Our method has shown effective improvement on
datasets with different degrees of deviation and is more robust
to environmental interference than previous methods. Exper-
iments on both sets of data sets demonstrate that our method
is suitable for different GNN architectures.

4.3. Analysis

Subfigure (a) compares the training dynamics of the clas-
sification loss between SCGCN and its manually weighted
variant on MUTAG. The blue scatter points are the best-
performing settings under manual weight tuning. Compared
to manually finding the trade-off, dynamically seeking the
trade-off through multi-objective optimization achieves a
faster decline of the classification loss. This demonstrates the
facilitation of the dynamically balanced stability constraints
on the graph classification task. Subfigure (b) compares the



Fig. 3. Futher analysis on some datasets.

Table 1. Experiments on datasets with varying degrees of bias .
Dataset MNIST KUZU Fashion Avg.

bias 0.8 0.9 0.95 0.8 0.9 0.95 0.8 0.9 0.95 -
DISC 77.40±1.23 77.28±2.45 54.23±3.67 52.43±0.98 47.60±3.51 34.75±1.23 60.59±1.34 61.92±1.76 59.33±1.23 58.03±1.98
DIR 45.13±2.15 37.29±1.87 23.84±2.56 41.08±1.23 37.27±2.98 32.06±1.45 60.48±2.34 58.25±1.76 52.42±2.13 42.39±2.04
SIB 70.27±1.67 67.29±2.11 44.24±1.87 47.26±1.56 42.60±2.34 33.75±1.23 60.54±1.87 60.09±2.56 55.88±1.45 55.01±1.78

GCN 74.08±1.78 64.68±2.13 49.87±2.34 52.17±1.67 41.25±1.98 31.34±1.56 67.59±2.11 61.39±1.89 54.54±2.04 55.87±1.91
GIN 73.88±2.33 63.41±1.67 42.40±1.89 49.65±2.02 38.95±1.78 28.83±1.34 65.81±1.56 59.84±2.13 53.28±1.45 52.93±1.76
GAT 84.48±1.34 78.32±1.12 62.38±0.87 62.11±0.96 47.98±0.67 37.38±1.01 71.59±0.78 64.76±1.23 56.24±2.06 63.38±1.02

SCGCN 76.58±0.67 67.18±0.89 53.37±0.45 53.67±0.56 46.75±0.78 35.84±0.34 70.09±0.91 63.89±0.67 57.04±0.82 59.53±0.71
SCGIN 75.88±0.56 65.41±0.79 44.40±0.67 51.65±0.81 40.95±0.62 30.83±0.48 67.81±0.73 61.84±0.91 55.28±0.83 54.93±0.69
SCGAT 86.04±0.62 81.45±0.74 69.42±0.88 63.64±0.71 49.83±0.93 35.33±0.56 71.76±0.85 65.98±0.73 58.56±0.68 65.38±0.77

Fig. 4. T-SNE analysis on the MINIST bias = 0.8 dataset,
from left to right are DIR, GCN, and SCCCN.

Table 2. Experiments on real datasets.
Dataset MUTAG NCI1 PROTEINS COLLAB Avg.
GCN 88.20±7.33 82.97±2.34 75.65±3.24 81.72±1.64 82.14
GIN 89.42±7.40 82.71±1.52 76.21±3.83 82.08±1.51 82.61
GAT 88.58±7.54 82.11±1.43 75.96±3.26 81.42±1.41 81.77

SCGCN 89.39±6.54 84.06±1.81 75.12±3.36 83.06±1.85 82.91
SCGIN 90.12±7.72 83.87±1.63 75.76±3.93 82.75±1.29 83.13
SCGAT 91.55±6.64 84.06±1.81 76.01±2.49 82.28±1.29 83.48

performance between the two methods on three datasets from
different domains. We fix the CE loss weight to 1, α is the
weight for the temporal constraint, and 1-α is the weight for
the invariance constraint. It can be observed that no matter
how the relative ratio of the two constraints changes, our
method always achieves optimal performance. This shows
that the stability constraint strategies can automatically find
the best trade-off for datasets from different domains, hav-
ing better adaptability, while manual tuning of the trade-off

parameters can hardly adapt to cross-domain situations. Sub-
figure (c) shows the performance discount of different meth-
ods as the imbalance ratio of the MINIST dataset gradually
increases from 0.8 to 0.95. Stability constraints can reduce
the performance discount brought by the gradually increased
dataset bias for all GNN architectures. This demonstrates
that the enhanced robustness from stability constraints alle-
viates the interference brought by dataset imbalance. Fig. 4
explains a potential reason why stability constraints enhance
graph classification robustness. The three subfigures from
left to right are respectively the t-SNE visualizations of the
representations of DIR, GCN, and DSGCN on the MINIST
dataset with bias=0.8. Stability constraints significantly over-
come the influence brought by the confusing background, and
clearly separate the different digits into categories.

5. CONCLUSION

We propose a new framework to improve the robustness of
graph classification by incorporating stability constraints, and
implement the stability constraints through temporal consis-
tency and perturbation consistency. By adaptively finding
the trade-off between stability and classification performance,
our method can work with graph data from different domains
and interference levels. Our research provides a new perspec-
tive to enhance the robustness of graph classification.
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