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Abstract
In material science, the properties of crystalline materials largely
depend on their structures, and space group is a key descriptor
of crystal structure. With the rapid advancement of deep learn-
ing, the traditional artificial structure analysis method based on
X-ray diffraction (XRD) has become cumbersome and is being grad-
ually supplanted by neural networks. However, existing models
are too simplistic and lack a comprehensive understanding of ma-
terial structure. Our approach XRDMamba integrates chemical
knowledge and presents a fresh crystal planes perspective on XRD
data. We also introduce a knowledge-driven model for space group
identification tasks. We have thoroughly analyzed our approach
through numerous experiments, observing its SOTA performance
and excellent generalization capabilities. The code is available
in https://github.com/baigeiguai/XRDMamba.

CCS Concepts
• Computing methodologies → Knowledge representation
and reasoning.
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1 Introduction
In the field of materials science, the properties of materials are
largely determined by their atomic arrangement and crystal struc-
ture. Determining the crystal structure of a material is crucial for
understanding itsmechanical, electromagnetic, and thermodynamic
properties [13, 19, 21]. In crystallography, the space group is a way
to describe the structural characteristics of a crystal [11, 14]. There
are theoretically 230 space groups, which represent different com-
binations of atomic symmetries and unit cell arrangements in a
crystal. In material analysis, powder X-ray diffraction (XRD) [1]
is a critical technique for characterizing materials. The diffraction
pattern generated by XRD encodes information about the crystal
symmetry, lattice parameters, crystal type, and atomic stacking of
nano-scale domains [4, 16]. Traditional XRD-based crystal struc-
ture determination methods, such as indexing techniques, require
extensive manual operations and prior knowledge obtained from
the material [2, 8–10, 12, 16]. Unfortunately, manual crystal struc-
ture determination becomes more challenging, time-consuming,
and less accurate when dealing with materials containing small
amounts of impurity phases or characterizing materials for which
no background knowledge is available.

Recently, due to the need for automated XRD analysis, deep
learning-based space group identification(as shown in Figure 1)
has attracted the attention of researchers [15, 20]. Many studies
primarily employ end-to-end black-box models, which treat the
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Figure 1: Motivation of XRDMamba. We employ deep learn-
ing models to replace experienced scientists in swiftly de-
termining the corresponding space group type of a given
crystal.

XRD spectrum as a sequence and use common sequence represen-
tation models for encoding, resulting in a multi-classification result.
For example, Salgado [17] attempted to characterize XRD using
simple MLP and convolutional neural network (CNN) structures.
However, such modeling approach is overly simplistic and lacks
certain chemical knowledge. The performance of these models sig-
nificantly decreases when dealing with datasets containing a large
number of crystal classes or crystals with complex structures. To
address this issue, RCNet [3] reduces the identification difficulty
of the task by customizing crystal structure classes and introduces
residual convolutional networks to improve identification accuracy.
Unfortunately, this classification method fails to meet the require-
ments of all scenarios. Essentially, this approach can be seen as a
secondary choice or a compromise.

To address the aforementioned issues, we combine knowledge
from the field of materials science and propose a novel perspective
for processing XRD spectral data, starting from the perspective of
crystal planes. This perspective provides a better modeling of XRD
spectra and offers improved inputs for subsequent model training.
It is worth noting that the recent popular deep learning architecture,
Mamba [7], has introduced a selective mechanism into the state
space model, enabling it to discern the importance of information
similar to an attention mechanism. For XRD spectra of crystal ma-
terials, the length of spectral sequences is often in the thousands or
tens of thousands. Therefore, when directly applying self-attention
models like Transformer, their high-dimensional complexity often
leads to extremely high computational requirements. In contrast,
the selective state space model [6] (SSM) is beneficial for improving
this problem. Thus, based on the aforementioned novel analytical
perspective, we propose a complex selective SSM-based architec-
ture, called XRDMamba, which can better encode the structural
information of crystals. Furthermore, we validate our approach
on a large-scale CCDC crystal database. Comprehensive experi-
mental results demonstrate that XRDMamba outperforms other
baselines significantly and exhibits impressive performance even
on out-of-domain data.

Our contributions in this paper are summarized as follows:

• New insight: for the first time, we incorporate chemical knowl-
edge into DL-based space group identification and propose a
novel perspective for analyzing XRD spectra from the viewpoint
of crystal planes.

Figure 2: Principle of XRD spectrum obtained by diffraction
of crystal planes.

• New model: we introduce a knowledge-driven model, called
XRDMamba, which accurately encodes XRD spectral data.

• Compelling empirical results: we conduct extensive experiments
on a large-scale CCDC dataset, demonstrating the effectiveness
and generalization of our approach.

2 Preliminaries
2.1 Problem Statement
As shown in Figure 2, the input for the analysis task is an XRD
spectrum, which is a curve of length 𝑛 obtained from diffraction
experiments on a crystalline powder. The curve is represented as
𝑆 = [𝑆1, 𝑆2, ..., 𝑆𝜃 , ..., 𝑆𝑛], (𝜃 ∈ [0◦, 𝛿, 2𝛿, 3𝛿, ..., 180◦]), where 𝜃 rep-
resents the diffraction angle of the X-ray and 𝑆𝜃 represents the
corresponding diffraction intensity when the incident angle is 𝜃 .
The interval 𝛿 is the interval used for recording the diffraction
intensities. In the analysis of crystal structures, the diffraction in-
tensities at high angles are often very small and have minimal
impact on the analysis. Therefore, researchers typically extract
key segments for processing. The range of 𝜃 is usually defined
as an interval 𝑅(𝜃𝑙 , 𝜃𝑟 , 𝛿), where 0◦ ≤ 𝜃𝑙 ≤ 𝜃𝑟 ≤ 180◦ (typi-
cally 𝜃𝑙 ≤ 5◦ and 50◦ ≤ 𝜃𝑟 ≤ 130◦). Here, 𝑅(𝜃𝑙 , 𝜃𝑟 , 𝛿) represents
[𝜃𝑙 , 𝜃𝑙 +𝛿, 𝜃𝑙 +2𝛿, ..., 𝜃𝑟 ]. The output of the analysis task is the space
group class 𝑌 ∈ [0, 229], which describes the 230 different theoreti-
cal crystal structures. Previous methods [3, 17] directly used 𝑆 to
represent the XRD curve and trained a mapping 𝑓 : 𝑋 → 𝑌 using
simple MLP or one-dimensional convolution models.

2.2 Mamba Architecture
The Mamba architecture is a sequence transformation model that
effectively captures dependency information in long sequences by
incorporating a data-dependent selectionmechanism and hardware-
aware parallel algorithms into the state space model S4. It maintains
nearly linear computational efficiency. The Mamba architecture
consists of multiple stackedMamba blocks. EachMamba block takes
a sequence𝑋 ∈ R𝐵×𝐿×𝐷 as input, where 𝐵 represents the batch size,
𝐿 represents the sequence length, and 𝐷 represents the dimension
of each item in the sequence. Within each Mamba block, the data
undergoes operations such as projection, state space modeling,
and residual connections, resulting in an output 𝑌 ∈ R𝐵×𝐿×𝐷 .
Therefore, the transformation of Mamba can be formulated simply
as sequence to sequence: 𝑌 = 𝑀𝑎𝑚𝑏𝑎(𝑋 ).
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Figure 3: Overview of XRDMamba. From the perspective of chemical knowledge driven, it combines selective SSM to realize
efficient space group identification.

3 Methodology
3.1 Crystal Plane Perspective
In theory, during the diffraction process, each diffraction angle cor-
responds to a crystal plane in the crystal. The diffraction intensity
at a specific angle represents the presence of that type of crystal
plane, where a higher intensity indicates a greater quantity of such
planes. Therefore, the positions of peaks in XRD indicate the pres-
ence of important crystal planes in the crystal. We believe that
these crystal planes largely reflect the structural information, while
the peak intensity merely reflects the significance of each crystal
plane in the crystal (an intensity of 0 indicates its non-existence).
Hence, we propose using each angle 𝜃 in 𝑅(𝜃𝑙 , 𝜃𝑟 , 𝛿) to represent
a specific crystal plane and 𝑆𝜃 to denote the importance of that
crystal plane in the crystal. We differentiate the XRD spectrum data
of a crystal into two sequences of length 𝑛: 𝑆 and 𝑅(𝜃𝑙 , 𝜃𝑟 , 𝛿) ∈ R𝑛 ,
which are processed separately. From this perspective, we aim to
train a model that maps (𝑆, 𝑅(𝜃𝑙 , 𝜃𝑟 , 𝛿)) to 𝑌 , denoted as

𝑓 : (𝑆, 𝑅(𝜃𝑙 , 𝜃𝑟 , 𝛿)) → 𝑌 (1)

3.2 XRDMamba
From our perspective, as shown in Figure 3, we propose a knowledge-
driven model called XRDMamba. The entire model consists of three
components: the crystal plane representation module, the represen-
tation transformation module, and the classifier.
Part 1 - Crystal Plane Representation Module. In this module,
ourmain objective is to tokenize the crystal planes and assign higher
attention to the crystal planes corresponding to the peaks in XRD.
Specifically, we start by using a linear projection layer to embed
each diffraction angle 𝜃 into a 𝑘-dimensional vector, resulting in
an 𝑛 × 𝑘 matrix that represents the 𝑛 different crystal planes. Next,
we consider the peak intensity 𝑆𝜃 at each 𝜃 angle as a measure of
the importance of each crystal plane, which is used to weight the
representation of the crystal planes. Therefore, we multiply the
peak intensity vector with the crystal plane matrix to obtain an
𝑛 × 𝑘 feature matrix 𝑆 ′. More specifically,

𝑆 ′ = 𝑃𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛1→𝑘 (𝑅(𝜃𝑙 , 𝜃𝑟 , 𝛿)) × 𝑆𝜃 (2)

where 𝑆𝜃 , 𝑅, 𝑆′ ∈ R𝑛 .
Part 2 - Representation TransformationModule.We aim to fur-
ther characterize 𝑆 ′ to learn the structural information of XRD and
obtain an embedding 𝐸 ∈ R𝐷 with a dimension of 𝐷 . Specifically,
we apply several Mamba blocks for seq2seq transformations [18].
The selective state space model (SSM) adaptively selects the im-
portant crystal planes from the data and retains long-range con-
textual sequence information, which helps the model learn the
correlations between crystal planes. Next, we use a stack of one-
dimensional residual convolutional blocks and pooling layers for
further characterization, as illustrated in Figure 3. The residual con-
volutional block consists of residual connections, one-dimensional
convolutions, and normalization modules. The kernels in the one-
dimensional convolutional layers and pooling layers are small-sized,
and the number of channels in the convolutional blocks gradually
increases. This approach of stacking multiple layers with small
kernels and reducing dimensionality layer by layer enables the ag-
gregation of information from all crystal planes, resulting in a final
representation 𝐸 that captures the characteristics of the crystal. The
specific formula is as follows:

𝐸 = 𝑅𝑒𝑠𝑁𝑒𝑡 (𝑀𝑎𝑚𝑏𝑎(𝑆 ′)) (3)

Part 3 - Classifier. We employ a simple MLP (Multi-Layer Percep-
tron) model as the classifier to classify 𝐸 into 230 classes, yielding
the final classification result as 𝑌 = MLP(𝐸).

4 Experimental
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Figure 4: Distribution of metal-organic frameworks data ac-
quired from the Cambridge Structural Database.
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Dataset & Baseline. We obtained a dataset of over 280,000 metal-
organic frameworks (MOFs) from the Cambridge Structural Data-
base [5] for our experiments. The dataset covers 225 out of 230
classes, as shown in Figure 4. We used 50% of the data for model
training, and the remaining 50% for evaluating the model’s perfor-
mance, which we refer to as MOF. However, due to the imbalanced
nature of the test data, we further extracted a balanced dataset from
the test set. Specifically, we sampled 10 samples from each class
with more than 10 test samples, resulting in a balanced test dataset
of over 200 samples, referred to as MOF-Balanced in the subse-
quent analysis. On the above two datasets, we selected four state-
of-the-art methods in the field as our baselines, including MLP [17],
CNN [17], NoPoolCNN [17] (CNN without pooling layers), and
RCNet [3] (introduces residual connections based on NoPoolCNN).
Implementation. In the model, we set the number of stacked
Mamba blocks to be 8. The dimensionality𝑘 representing the crystal
planes is set to be 8. The hidden state dimensionality is set to be 16.
We use the Adam optimizer with weight decay set to 1𝑒−5 and a
learning rate of 5𝑒−5 to optimize the model. The model is trained
for 100 iterations using cosine annealing learning rate scheduling,
with a warm-up period of 20 iterations.

4.1 Benchmark Results
We compared the performance of XRDMamba and the SOTA meth-
ods on two test sets, MOF and MOF-Balanced. Table 1 presents the
Top-1 accuracy and Top-2 accuracy of each model on the two test
sets. Specifically, for simple models like MLP, CNN, and NoPool-
CNN, their accuracy is generally below 50%, indicating unsatisfac-
tory performance. After introducing residual connections, RCNet
shows an improvement of more than 10% across all metrics. Our
method incorporates new crystal plane perspectives and theMamba
module, resulting in an improved residual convolutional model that
achieves the best performance on the MOF and MOF-Balanced
datasets. It is evident that incorporating chemical knowledge and
modeling is crucial for this task. The outstanding performance of
XRDMamba can assist scientists in making rapid judgments on
crystal structures to a certain extent.

Table 1: Accuracy (%) on CCDC dataset wtih state-of-the-art
methods. Blod indicates the best performance. (+) indicates
the the relative gain.

Method Top-1 Accuracy Top-2 Accuracy

MOF-Balanced MOF MOF-Balanced MOF

MLP [17] 4.1 (+0.0) 9.1 (+0.0) 5.4 (+0.0) 15.1 (+0.0)

CNN [17] 22.9 (+18.8) 39.0 (+29.9) 32.4 (+27.0) 56.4 (+41.3)
NoPoolCNN [17] 33.8 (+29.7) 38.2 (+29.1) 40.7 (+35.3) 51.8 (+36.7)
RCNet [3] 44.5 (+40.4) 59.0 (+49.9) 55.5 (+50.1) 73.7 (+58.6)

XRDMamba 48.7 (+44.6) 72.2 (+63.1) 61.7 (+56.3) 85.2 (+70.1)

4.2 Ablation Study
We conducted further ablation experiments, and the results are
shown in Table 2. Firstly, we used the traditional perspective by di-
rectly using the one-dimensional diffraction intensity as the model
input and employed a residual convolutional network as the model
backbone, which yielded relatively average results. Next, we in-
troduced the crystal plane perspective while still using a residual
convolutional network as the model backbone, and we observed a
significant improvement in the F1 score in the test results. Finally,

when the Mamba module was introduced, the model achieved an
additional performance improvement of approximately 6%. This
reflects that XRDMamba, incorporating chemical knowledge, can
effectively learn the underlying patterns in XRD data.

Table 2: Ablation study (%) on CCDC dataset.

ResNet Crystal Plane SSM Top-1 Accuracy F1-Score Top-2 Accuracy

✔ 66.1 44.5 81.3
✔ ✔ 66.6 47.7 80.5
✔ ✔ ✔ 72.2 47.6 85.2

4.3 Generalization Analysis
According to [17], we obtained data for over 8,000 inorganic crystals,
which essentially belong to out-of-domain data. We tested and
compared the model trained on the MOF training set using this
out-of-domain data. The results, as shown in Table 3, indicate that
XRDMamba demonstrates stable and excellent performance on out-
of-domain data compared to all other SOTAmodels. This highlights
its superior generalization ability.

Table 3: Generalization analysis (%) wtih SOTA methods.

Method Top-1 Accuracy F1-Score Top-2 Accuracy

MLP [17] 15.5 8.5 21.4

CNN [17] 29.6 7.7 44.6
NoPoolCNN [17] 30.4 15.9 41.6
RCNet [3] 41.7 19.4 52.4

XRDResNet 50.5 22.6 62.6
XRDMamba 54.5 24.1 64.7

4.4 Crystal Case Study
We conducted visual analysis on some representative samples. As
shown in Figure 5, for the crystal structure on the left, XRDMamba
incorrectly predicted its space group type. However, we found
that the Top-2 result was consistent with the correct space group.
Further analysis revealed that 𝐹4132 and 𝐼4132 belong to the same
crystal system and the same point group, making it challenging to
effectively differentiate them solely based on the low-dimensional
information from XRD. On the other hand, the crystal structure on
the right belongs to a rare space group type (only two structures
are included in the dataset). XRDMamba successfully predicted
its space group type, demonstrating its robustness in dealing with
challenging crystal materials.

Crystal name: JEJWEB Space group: I4132 Crystal name: WITRAS Space group: P42mc

Top-1 Result: F4132 Confidence: 0.751

Top-2 Result: I4132 Confidence: 0.237

Failure Case Challenging Case

Top-1 Result: P42mc Confidence: 0.999

Top-2 Result: P!421c Confidence: 3.395e-5

Figure 5: Typical case of crystal structure identification.

5 Conclusion
In this paper, we propose a chemically informed deep learning
model, XRDMamba, that achieves accurate large-scale crystal mate-
rial space group identification. We conducted comprehensive exper-
iments on the renowned Cambridge Structural Database, demon-
strating the superiority of XRDMamba.
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