
STEM-LTS: Integrating Semantic-Temporal Dynamics in LLM-driven Time
Series Analysis

Zhe Zhao13, Pengkun Wang12∗, Haibin Wen4, Shuang Wang1, Liheng Yu 1, Yang Wang 125*

1University of Science and Technology of China, Hefei 230026, China
2Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China

3City University of Hong Kong
4The Hong Kong University of Science and Technology (Guangzhou)

5Key Laboratory of Precision and Intelligent Chemistry, USTC
{zz4543, ws20021002,xuco}@mail.ustc.edu.cn, {pengkun, zzy0929, angyan}@ustc.edu.cn, haibin65535@gmail.com

Abstract
Time series forecasting plays a crucial role in domains such
as finance, healthcare, and climate science. However, as mod-
ern time series data become increasingly complex, featur-
ing high dimensionality, intricate spatiotemporal dependen-
cies, and multi-scale evolutionary patterns, traditional ana-
lytical methods and existing predictive models face signifi-
cant challenges. Although Large Language Models (LLMs)
excel in capturing long-range dependencies, they still strug-
gle with multi-scale dynamics and seasonal patterns. More-
over, while LLMs’ semantic representation capabilities are
rich, they often lack explicit alignment with the numerical
patterns and temporal structures of time series data, lead-
ing to limitations in predictive accuracy and interpretabil-
ity. To address these challenges, this paper proposes a novel
framework, STEM-LTS (Semantic-TEmporal Modeling for
Large-scale Time Series). STEM-LTS enhances the ability to
capture complex spatiotemporal dependencies by integrating
time series decomposition techniques with LLM-based mod-
eling. The semantic-temporal alignment mechanism within
the framework significantly improves LLMs’ ability to inter-
pret and forecast time series data. Additionally, we develop an
adaptive multi-task learning strategy to optimize the model’s
performance across multiple dimensions. Through extensive
experiments on various real-world datasets, we demonstrate
that STEM-LTS achieves significant improvements in predic-
tion accuracy, robustness to noise, and interpretability. Our
work not only advances LLM-based time series analysis but
also offers new perspectives on handling complex temporal
data. The code is available at https://github.com/DataLab-
atom/STEM-LTS.

Introduction
Time series forecasting remains a cornerstone of data anal-
ysis, with critical applications spanning finance, healthcare,
and climate science (Box et al. 2015). As we grapple with in-
creasingly complex systems, modern time series data exhibit
high dimensionality, intricate spatiotemporal dependencies,
and multi-scale evolutionary patterns (Miao et al. 2022; Xu
et al. 2024). These characteristics not only challenge tra-
ditional analytical methods but also push the boundaries

*Corresponding author.
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of contemporary predictive models, including the emerging
paradigm of Large Language Models (LLMs) in time series
analysis (Wen et al. 2022).

The evolution of time series analysis has been marked by
a diverse array of methodologies. Classical approaches like
ARIMA (Box et al. 2015) and state space models (Durbin
and Koopman 2012) have established a robust foundation for
capturing linear relationships and cyclical patterns. Concur-
rently, deep learning architectures such as Long Short-Term
Memory (LSTM) networks (Hochreiter and Schmidhuber
1997) and Temporal Convolutional Networks (TCN) (Bai,
Kolter, and Koltun 2018) have demonstrated significant po-
tential in modeling complex temporal dependencies. Recent
years have witnessed the application of LLMs to time se-
ries forecasting, leveraging their powerful semantic under-
standing and long-range dependency modeling capabilities
(Zerveas et al. 2021).

However, despite their impressive performance, LLM-
based methods face several challenges when applied to high-
dimensional time series data with complex evolutionary pat-
terns (Lim and Zohren 2021). First, while adept at process-
ing sequential data, LLMs are not inherently designed to
capture the unique multi-scale dynamics and seasonal pat-
terns inherent in many time series (Oreshkin et al. 2019).
Second, the semantic representations learned by LLMs,
though rich in contextual understanding, often lack explicit
alignment with the numerical patterns and temporal struc-
tures specific to time series data (Wu et al. 2021). Lastly,
the computational complexity of LLMs can be prohibitive
when dealing with high-dimensional time series, necessi-
tating more efficient and focused approaches (Zhou et al.
2021).

To address these multifaceted challenges, we propose
STEM-LTS (Semantic-TEmporal Modeling for Large-scale
Time Series), an innovative framework that represents a
significant advancement in LLM-based time series analy-
sis. STEM-LTS offers a sophisticated solution for high-
dimensional, complex time series forecasting by syner-
gistically integrating multi-scale temporal decomposition
(Cleveland et al. 1990), semantic-aware sequence model-
ing (Vaswani et al. 2017), and adaptive multi-task learn-
ing (Ruder 2017) within the LLM paradigm. Our research

makes several significant contributions:
1. We introduce a unified framework that seamlessly in-

tegrates time series decomposition with LLM-based mod-
eling, unveiling intrinsic data structures while harnessing
LLMs’ semantic power to model complex temporal depen-
dencies and contextual information.

2. We devise a novel semantic-temporal alignment mech-
anism that significantly enhances the LLM’s ability to inter-
pret and forecast time series data, bridging the gap between
numerical patterns and semantic representations.

3. We develop an adaptive multi-task learning strategy tai-
lored for LLM-based time series analysis, optimizing model
performance across multiple dimensions and enhancing both
predictive accuracy and interpretability.

4. We provide rigorous theoretical analyses that elucidate
the synergies between temporal decomposition techniques
and LLM architectures in preserving and leveraging essen-
tial time series characteristics.

Through extensive experiments on diverse datasets, we
demonstrate STEM-LTS’s significant improvements in pre-
diction accuracy, robustness to noise, and interpretability
compared to state-of-the-art methods. Our work not only ad-
vances LLM-based time series analysis but also offers new
perspectives on handling complex temporal data, potentially
transforming approaches to critical forecasting tasks across
various domains.

Related Work
Time Series Learning
Time series analysis has evolved from classical statistical
approaches like ARIMA (Box et al. 2015) to advanced
deep learning architectures. Deep models such as LSTM
(Hochreiter and Schmidhuber 1997) and TCN (Bai, Kolter,
and Koltun 2018) revolutionized temporal pattern modeling,
while the Temporal Fusion Transformer (Lim et al. 2021)
introduced attention mechanisms for multi-horizon forecast-
ing.

Decomposition-based approaches gained prominence
through TBATS (De Livera, Hyndman, and Snyder 2011)
and N-BEATS (Oreshkin et al. 2019), which explicitly
model trend and seasonality. Recent works like Auto-
former (Wu et al. 2021) and FEDformer (Zhou et al. 2022)
further enhanced periodic pattern learning by combining
efficient attention mechanisms with Fourier transforma-
tions. Our work extends these foundations to address high-
dimensional, multi-scale time series challenges.

Large Language Models in Time Series Domain
The success of LLMs, exemplified by GPT-3 (Brown et al.
2020), has inspired innovations in time series analysis.
Time2Vec (Kazemi et al. 2019) introduced novel tempo-
ral encoding, while Informer (Zhou et al. 2021) developed
sparse attention for long sequences. TimeNet (Malhotra
et al. 2017) pioneered transfer learning in this domain, and
TimesNet (Wu et al. 2023) established a unified framework
for periodic learning.

STEM-LTS advances these approaches by integrating
LLMs’ representational power with domain-specific time

series knowledge. Drawing inspiration from CLIP (Radford
et al. 2021), we incorporate contrastive learning to bridge
numerical patterns and semantic interpretations in time se-
ries analysis.

Multi-objective Learning
Multi-objective optimization in machine learning has gained
increasing attention due to its practical significance in
balancing multiple competing objectives. Traditional ap-
proaches often rely on scalarization techniques to transform
multiple objectives into a single objective. Recent work by
Lin et al. (Lin et al. 2024) introduced smooth Tchebycheff
scalarization, providing a more effective way to handle mul-
tiple objectives while maintaining solution diversity.

The challenge of handling multiple objectives under un-
certainty has been addressed through various bandit algo-
rithms. Xue et al. (Xue et al. 2024) developed novel ap-
proaches for multi-objective Lipschitz bandits under lexico-
graphic ordering, while their work on heavy-tailed rewards
(Xue et al. 2023) provided theoretical guarantees for robust
optimization. Our work extends these ideas to time series do-
main, proposing a framework that effectively balances mul-
tiple learning objectives while maintaining temporal coher-
ence.

Problem Formulation and Preliminary
Given a multivariate time series X = {x1,x2, . . . ,xT },
where xt ∈ RN , the goal is to learn a function f : RN×t →
RN×H that maps historical observations to future values:

x̂t+1:t+H = f(x1:t; Θ), (1)

where x̂t+1:t+H = [x̂t+1, x̂t+2, . . . , x̂t+H] denotes the pre-
dicted values over the forecasting horizon H , and Θ repre-
sents the learnable parameters. The time series can be de-
composed into trend, seasonal, and residual components:

xt = xtrend
t + xseason

t + xresidual
t . (2)

We propose STEM-LTS (Semantic-Temporal Enhanced
Modeling for Large-scale Time Series), a framework that
integrates semantic-temporal dynamics in a Transformer-
based time series analysis. STEM-LTS employs a de-
composition function D : RN → R3N to sepa-
rate the original series into its constituent components:
[xtrend

t ,xseason
t ,xresidual

t] = D(xt). The decomposed compo-
nents are then mapped into a latent space using a set of en-
coders {E trend, E season, E residual}:

zct = Ec(xc
t ; Θ

c), c ∈ {trend, season, residual}, (3)

where zct ∈ Rd represents the latent representation of com-
ponent c at time step t, and Θc denotes the learnable param-
eters of the corresponding encoder.

To leverage the power of Transformers, we process the
latent representations using a Transformer-based sequence
model T : Rd×t → Rd to capture long-term dependencies:

ht = T ([z1:t]; Θ
trans), (4)

where [·] denotes the concatenation operation, ht ∈ Rd

is the output hidden state at time step t, and Θtrans repre-
sents the parameters of the Transformer model. Finally, the

Observed
Time
Series

Decomposition

Trend
TS

Season
TS

Residual
TS

"Predict the future time
step given the residual"

Residual
Prompt

Season
Prompt

"Predict the future time
step given the residual"

"Predict the future time
step given the residual"

Trend
Prompt

 Normalization

Embedding

TS Feature

Prompt Feature

TS Feature

Prompt Feature

TS Feature

Prompt Feature

Update Frozen

Feed Forward

Add & Layer Norm

Multi-head Attention

× 6
Align

Align

Align

Add & Layer Norm

Hidden States

Wq Wk Wv

LO
RA

Contrast

Contrast LO
RA

Q K V

Attention

Trend Feature Season Feature Residual Feature

Joint Representation
Prediction

Se
man

tic

Alig
nmen

t

Independence

Decomposition

Multi-objective
balance

Figure 1: Overview of the STEM-LTS framework. The framework first decomposes the observed time series into three sub-
components: trend, seasonality, and residual. Each sub-component is mapped to its corresponding embedding space through
independent encoder networks and aligned with learnable prompt embeddings for semantic alignment. The sub-component
embeddings are aggregated via an attention mechanism to form a joint representation for subsequent prediction tasks. The entire
model is optimized end-to-end by balancing multiple learning objectives (prediction loss, semantic alignment loss, and time
series decomposition independence loss) to adaptively capture the complex spatiotemporal dynamics and semantic information
in time series data.

output hidden states are passed through a prediction head
F : Rd → RN×H to generate the forecasted values:

x̂t+1:t+H = F(ht; Θ
pred). (5)

The training objective of STEM-LTS is to minimize the
forecasting loss (e.g., mean squared error) between the pre-
dicted values and the ground truth:

Lpredict =
1

H

H∑
i=1

∥x̂t+i − xt+i∥22. (6)

By incorporating time series decomposition,
Transformer-based sequence modeling, and semantic-
temporal alignment, STEM-LTS aims to capture the
multi-scale dynamics and intricate dependencies present in
real-world time series data, enabling accurate and robust
forecasting.

Methodology
In this section, we present our proposed STEM-LTS frame-
work for adaptive multivariate time series forecasting.
STEM-LTS integrates time series decomposition, semantic-
temporal alignment, and adaptive multi-task learning to cap-
ture the intricate multi-scale dynamics and establish mean-
ingful connections between numerical patterns and seman-
tic concepts. The overall architecture of STEM-LTS is illus-
trated in Figure 1.

Multi-scale Time Series Decomposition and
Regularization
Given a multivariate time series X ∈ RT×D with T time
steps and D feature dimensions, we first decompose it into
three sub-components: trend T, seasonality S, and residual
R. This decomposition process can be formally expressed
as:

X = T+ S+R (7)

where T,S,R ∈ RT×D represent the trend, seasonality,
and residual components, respectively.

To facilitate the model in capturing independent and se-
mantically meaningful multi-scale temporal representations,
we introduce a novel regularization approach based on the
covariance matrix to impose constraints on the correlations
among the decomposed components. Initially, we perform
concatenation of the three components along the feature
dimension, followed by a permutation operation along the
temporal dimension to derive a new tensor Z ∈ RD×3×T :

Z = π(concat(T,S,R), (0, 2, 1)) (8)

where π(·) denotes the permutation operator and concat(·)
represents the concatenation operation along the specified
dimension.

Subsequently, for each feature slice Zd ∈ R3×T of Z, we
compute the matrix exponential of the strict lower triangu-
lar part of its covariance matrix Σd and take the average to

obtain the time series decomposition loss LSTL:

LSTL =
1

D

D∑
d=1

1

M

∑
i>j

[exp(stril(Σd))]ij (9)

where
Σd =

1

T − 1
(Zd − Z̄d)

⊤(Zd − Z̄d) (10)

represents the covariance matrix of the d-th feature slice,
with Z̄d being the mean vector of Zd. stril(·) denotes the
strict lower triangular part of a matrix, M = 3(3−1)

2 = 3
is the number of elements in the strict lower triangular part,
and [·]ij represents the (i, j)-th element of a matrix.

By minimizing the time series decomposition loss LSTL,
the model is encouraged to learn statistical independence
among the trend, seasonality, and residual components. In-
tuitively, an ideal time series decomposition should min-
imize the covariances between different components. The
proposed covariance matrix-based regularization approach
effectively promotes the model to capture more inter-
pretable and independent multi-scale temporal representa-
tions, thereby enhancing the performance on downstream
forecasting tasks.

Prompt-based Semantic Alignment
We introduce a prompt-based semantic alignment mecha-
nism to align decomposed time series components with se-
mantic concepts. We design three independent encoder net-
works f trend

enc (·), fseason
enc (·), and fresidual

enc (·) to map trend,
seasonality, and residual components to their corresponding
embedding spaces:

[
Htrend

Hseason

Hresidual

]
=

 f trend
enc (T; Θtrend

enc)
fseason
enc (S; Θseason

enc)
fresidual
enc (R; Θresidual

enc)

 (11)

where Htrend,Hseason,Hresidual ∈ RT×d represent
trend, seasonality, and residual embeddings, respectively,
and d is the embedding dimension. The encoder networks
are implemented using Transformer-based architectures,
such as GPT-2 (Radford et al. 2019), to capture long-range
dependencies.

Let Ptrend,Pseason,Presidual ∈ Rd denote learnable
prompt embeddings for trend, seasonality, and residual com-
ponents, serving as semantic anchors. We adopt a con-
trastive objective inspired by Contrastive Language-Image
Pre-training (CLIP) (Radford et al. 2021), maximizing the
cosine similarity between component embeddings and their
associated prompt embeddings while minimizing similar-
ity with non-associated prompt embeddings. The contrastive
loss for the trend component is defined as:

Ltrend
contrast = − 1

T

T∑
t=1

log

(
exp(sim(htrend

t ,Ptrend)/τ)∑
c∈{trend,season,residual}

exp(sim(htrend
t ,Ptrend)/τ)

exp(sim(htrend
t ,Pc)/τ)

)
(12)

where sim(·) denotes the cosine similarity function and τ
is a temperature hyperparameter. Contrastive losses for sea-
sonality and residual components are defined similarly. The
total contrastive loss for semantic alignment is the sum of all
component contrastive losses:

Lalign =
1

N

N∑
i=1

(
Ltrend
contrast + Lseason

contrast + Lresidual
contrast

)
(13)

In addition to contrastive loss-based semantic alignment,
we introduce a CLIP loss-based semantic alignment tech-
nique. We concatenate trend, seasonality, and residual com-
ponents along the feature dimension and input them into a
pre-trained CLIP text encoder to obtain semantic embedding
representations:

Hclip = fCLIP (concat(T,S,R)) (14)

where Hclip ∈ RT×dclip is the generated CLIP em-
bedding. We compute the cosine similarity between the
combined embedding of time series components Hcomb ∈
RT×d and the CLIP embedding Hclip as the CLIP loss:

Lclip = − 1

T

T∑
t=1

sim(hcomb
t ,hclip

t) (15)

The final semantic alignment loss is a weighted sum of
the contrastive loss and CLIP loss:

Lsemantic = Lalign + λLclip (16)

where λ is a hyperparameter balancing the two losses. By
minimizing Lsemantic, the model learns to align time se-
ries component embeddings with prompt embeddings and
universal semantic representations captured by the CLIP en-
coder, enhancing the semantic relevance and interpretability
of learned time series representations.

Unified Loss Function with Dynamic Weighting
To adaptively balance different learning objectives, we for-
mulate the training process as a multi-task learning prob-
lem(Xue et al. 2024, 2023; Lin et al. 2024). The overall loss
function L is defined using the log-sum-exp operation over
three independent loss terms:

L =
1

β
log
(
exp(βLpredict)

+ exp(βLsemantic)

+ exp(βLSTL)
) (17)

where Lpredict is the forecasting loss, Lsemantic is the se-
mantic alignment loss, and LSTL is the time series decompo-
sition loss. The hyperparameter β > 0 controls the smooth-
ness of the log-sum-exp function.

The forecasting loss Lpredict measures the discrepancy
between predicted values X̂t+1:t+H and true future val-
ues Xt+1:t+H . Predictions are generated by concatenat-
ing learned embeddings of trend, seasonality, and residual

Table 1: Transfer learning of long-term forecasting results on time series benchmark datasets. We use prediction length O ∈
{96, 192, 336, 720}. A lower MSE indicates better performance. Hereafter, for the tables, the best line are marked in gray,
respectively with MSE/MAE.

Horizon Model
ECL Traffic Weather Ettm1 Ettm2 Etth1 Etth2

MSE/MAE MSE/MAE MSE/MAE MSE/MAE MSE/MAE MSE/MAE MSE/MAE

96

STEM-LTS∗ 0.142/0.251 0.428/0.286 0.161/0.210 0.316/0.361 0.138/0.229 0.336/0.328 0.256/0.270
TEMPO∗ 0.196/0.295 0.530/0.379 0.222/0.265 0.422/0.423 0.197/0.283 0.425/0.424 0.317/0.352
LLM4TS∗ 0.151/0.258 0.507/0.365 0.204/0.262 0.468/0.419 0.176/0.255 0.381/0.392 0.307/0.345
GPT4TS∗ 0.188/0.286 0.523/0.380 0.232/0.281 0.484/0.442 0.192/0.275 0.408/0.414 0.337/0.372

T5 0.185/0.282 0.508/0.366 0.217/0.271 0.529/0.464 0.190/0.268 0.400/0.409 0.328/0.366
PatchTST 0.489/0.546 1.023/0.641 0.247/0.301 0.733/0.554 0.273/0.345 0.570/0.518 0.379/0.412
Timesnet 0.293/0.369 0.585/0.401 0.247/0.295 0.518/0.470 0.202/0.290 0.407/0.423 0.315/0.362

FEDformer 0.300/0.399 0.835/0.564 0.292/0.346 0.698/0.553 0.665/0.634 0.509/0.502 0.385/0.426
ETSformer 0.707/0.638 1.419/0.795 0.453/0.416 1.117/0.678 0.353/0.404 0.469/0.457 0.405/0.428
Informer 0.512/0.531 1.400/0.830 0.837/0.711 0.880/0.657 0.263/0.360 0.642/0.562 0.704/0.651
DLinear 0.195/0.292 0.609/0.424 0.212/0.275 0.624/0.522 0.264/0.352 0.414/0.421 0.334/0.389

192

STEM-LTS∗ 0.165/0.273 0.451/0.286 0.183/0.236 0.334/0.393 0.162/0.249 0.367/0.338 0.274/0.300
TEMPO∗ 0.213/0.310 0.561/0.391 0.286/0.314 0.512/0.472 0.255/0.318 0.462/0.457 0.408/0.412
LLM4TS∗ 0.192/0.297 0.516/0.361 0.223/0.288 0.480/0.441 0.256/0.317 0.424/0.419 0.370/0.386
GPT4TS∗ 0.209/0.302 0.524/0.379 0.283/0.323 0.508/0.461 0.248/0.308 0.437/0.433 0.380/0.400

T5 0.205/0.302 0.524/0.374 0.277/0.321 0.523/0.454 0.246/0.306 0.428/0.426 0.413/0.410
PatchTST 0.465/0.535 0.992/0.633 0.277/0.324 0.739/0.563 0.299/0.355 0.580/0.528 0.387/0.417
Timesnet 0.283/0.366 0.640/0.431 0.316/0.342 0.550/0.490 0.261/0.318 0.439/0.439 0.394/0.406

FEDformer 0.390/0.468 0.869/0.579 0.372/0.426 0.819/0.608 0.358/0.416 0.683/0.596 0.921/0.748
ETSformer 0.721/0.645 0.995/0.658 0.545/0.466 1.598/0.803 0.390/0.416 0.548/0.503 0.476/0.468
Informer 0.625/0.619 0.872/0.506 0.431/0.455 1.461/0.892 0.494/0.516 0.798/0.632 0.455/0.883
DLinear 0.204/0.300 0.595/0.412 0.259/0.308 0.599/0.511 0.292/0.365 0.439/0.437 0.381/0.415

336

STEM-LTS∗ 0.175/0.301 0.476/0.308 0.225/0.236 0.433/0.405 0.207/0.291 0.384/0.360 0.300/0.335
TEMPO∗ 0.234/0.329 0.589/0.403 0.337/0.349 0.511/0.476 0.275/0.319 0.476/0.467 0.419/0.452
LLM4TS∗ 0.207/0.291 0.500/0.359 0.381/0.362 0.703/0.615 0.281/0.313 0.435/0.426 0.414/0.432
GPT4TS∗ 0.226/0.315 0.535/0.383 0.407/0.379 0.655/0.523 0.299/0.343 0.450/0.442 0.407/0.423

T5 0.229/0.321 0.550/0.391 0.330/0.330 0.572/0.504 0.316/0.346 0.442/0.438 0.416/0.427
PatchTST 0.531/0.569 0.987/0.626 0.317/0.347 0.755/0.576 0.342/0.382 0.677/0.573 0.386/0.425
Timesnet 0.733/0.633 1.609/0.864 0.359/0.372 0.638/0.532 0.380/0.392 0.555/0.503 0.384/0.413

FEDformer 0.317/0.406 1.006/0.640 0.639/0.600 0.785/0.624 0.372/0.424 0.582/0.542 -/5.755
ETSformer 0.862/0.707 0.940/0.621 0.487/0.444 1.154/0.682 0.409/0.428 0.728/0.585 0.446/0.451
Informer 1.222/0.863 0.978/0.507 0.370/0.412 0.949/0.631 0.788/0.622 1.125/0.810 1.389/0.848
DLinear 0.231/0.325 0.624/0.427 0.304/0.342 0.622/0.534 0.361/0.411 0.463/0.464 0.471/0.482

720

STEM-LTS∗ 0.192/0.265 0.491/0.364 0.310/0.288 0.455/0.415 0.225/0.269 0.402/0.385 0.327/0.355
LLM4TS∗ 0.210/0.290 0.506/0.371 0.363/0.321 0.479/0.414 0.254/0.331 0.462/0.481 0.375/0.400
TEMPO∗ 0.281/0.365 0.636/0.420 0.427/0.403 0.614/0.529 0.315/0.368 0.462/0.451 0.420/0.438
GPT4TS∗ 0.223/0.315 0.553/0.391 0.375/0.363 0.580/0.500 0.294/0.351 0.441/0.442 0.392/0.417

T5 0.266/0.351 0.578/0.404 0.528/0.451 0.694/0.568 0.394/0.397 0.443/0.458 0.425/0.440
PatchTST 0.475/0.532 1.152/0.706 0.375/0.388 0.739/0.570 0.421/0.421 0.540/0.521 0.425/0.448
Timesnet 1.166/0.859 1.974/0.971 0.423/0.405 0.723/0.577 0.399/0.409 0.438/0.461 0.394/0.431

FEDformer 0.423/0.480 0.965/0.652 0.409/0.425 0.816/0.614 0.455/0.462 0.688/0.618 0.427/0.452
ETSformer 0.666/0.640 0.798/0.518 0.592/0.506 1.038/0.665 0.444/0.438 0.615/0.561 0.446/0.466
Informer 0.881/0.778 1.532/0.800 1.133/0.842 0.779/0.616 1.075/0.725 0.836/0.687 1.330/0.866
DLinear 0.259/0.352 0.623/0.420 0.363/0.389 0.639/0.559 0.515/0.490 0.467/0.481 0.639/0.559

Table 2: SMAPE results of EBITDA from TETS and GDELT. The results for EBITDA include outliers removed where SMAPE
exceeds 0.8/0.9. The best results are marked in bold, and the second-best results are underlined, respectively, for 0.8 & 0.9.
(Sectors: CC: Consumer Cyclical; CD: Consumer Defensive; Ind: Industrials; RE: Real Estate; Events: 11: Disapprove; 17:
Coerce; 19: Fight.)

EBITDA Dataset

Sectors STEM-LTS TEMPO LLM4TS GPT4TS T5 Informer PatchTST Reformer DLinear

CC 30.35/31.56 35.81/36.48 34.06/35.38 33.98/35.56 33.42/35.33 41.12/43.17 41.44/43.18 37.23/39.09 33.53/35.65

CD 25.84/26.50 27.45/28.00 27.32/27.79 27.16/27.45 26.44/26.79 35.65/36.08 31.60/31.98 29.93/30.36 27.01/28.04

Ind 26.99/27.38 29.01/29.42 28.68/29.11 27.90/28.63 27.30/28.12 34.83/35.87 33.84/34.87 30.23/31.28 27.59/28.84

RE 28.80/29.31 31.08/31.56 30.63/31.00 30.82/31.54 30.10/30.64 36.40/37.22 37.63/38.31 31.23/31.69 29.95/30.92

GDELT Dataset

11 39.88 41.75 41.23 40.43 41.04 42.00 40.45 46.72 40.14

17 41.59 42.56 42.60 41.20 41.24 44.44 42.72 48.08 42.45

19 44.00 45.13 44.59 44.06 44.29 47.45 45.49 48.30 45.40

components, then inputting them into a prediction module
fpred(·):

X̂t+1:t+H = fpred([Htrend⊕Hseason⊕Hresidual]; Θpred)
(18)

where X̂t+1:t+H ∈ RH×D represents the predicted
values over the forecast horizon H . The prediction mod-
ule fpred(·) is implemented using a Transformer-based se-
quence model.

During training, the STEM-LTS framework is optimized
end-to-end by minimizing the adaptive multi-task loss func-
tion L. Model parameters are iteratively updated to mini-
mize the overall loss and improve forecasting performance.
The adaptive multi-task learning framework enables the
model to leverage complementary information from differ-
ent loss terms and adapt to the characteristics of time series
data during training.

Experiments
We rigorously evaluate STEM-LTS through extensive ex-
periments on diverse real-world datasets, demonstrating its
superiority in temporal dependency modeling and semantic
pattern alignment. Our analysis focuses on temporal com-
ponent correlation and loss weighting strategies to validate
improvements in prediction accuracy, interpretability, and
training efficiency. Detailed results are provided in the Ap-
pendix.

Experimental Setup
To ensure comprehensive evaluation, we conduct experi-
ments on three complementary datasets: EBITDA for cor-
porate financial metrics with long-term trends and cyclical
patterns (Lai et al. 2018), GDELT for global event dynam-
ics with complex temporal dependencies (Zhou et al. 2021),
and standard benchmarks (ECL, Traffic, Weather, Ettm1/2,
Etth1/2) representing diverse domains and temporal com-
plexities (Wu et al. 2021; Zhou et al. 2021). Performance
is measured using standard MSE and MAE metrics, with
detailed dataset descriptions provided in Appendix B.

We compare STEM-LTS against both classical statisti-
cal models like DLinear (Zeng et al. 2023) and advanced
deep architectures, including Transformer-based models
(TEMPO (Cao et al. 2024), LLM4TS (Chang et al. 2024),
GPT4TS (Zhou et al. 2023)), attention-based approaches
(T5 (Raffel et al. 2020), PatchTST (Nie et al. 2023), Times-
Net (Wu et al. 2023)), and their extensions (FEDformer
(Zhou et al. 2022), ETSformer (Woo et al. 2023), Informer
(Zhou et al. 2021)).

Implementation Details
All experiments were conducted on a server equipped with
two NVIDIA Tesla V100-PCIE-16GB GPUs. STEM-LTS
was implemented using the PyTorch deep learning frame-
work (Paszke et al. 2019), with TEMPO as the backbone
network. For each dataset, we first loaded the pre-trained
TEMPO model parameters into STEM-LTS and then fine-
tuned it using the Adam optimizer (Kingma and Ba 2015)
and CosineAnnealingLR scheduler (Loshchilov and Hut-
ter 2017) for 10 epochs. The initial learning rate was set
to 0.001, with a maximum of 20 training iterations per
epoch and a minimum learning rate of 1e-8. These hyper-
parameters were optimized through grid search and cross-
validation.

Experimental Results
Results on EBITDA and GDELT Datasets Table 2
presents the SMAPE results of STEM-LTS and the base-
lines on the EBITDA and GDELT datasets. For the EBITDA
dataset, we report results with outliers removed using thresh-
olds of 0.8 and 0.9. STEM-LTS consistently outperforms all
baselines across both datasets and all sectors/events, achiev-
ing the best performance in all cases. The second-best results
are underlined, highlighting the competitive performance of
some baselines, such as T5 and GPT4TS.

Results on Benchmark Datasets Table 1 shows the trans-
fer learning results for long-term forecasting on the bench-
mark datasets, with prediction lengths ranging from 96 to

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

LMSE : LCLIP

LMSE : LSTL

LCLIP : LSTL

Best
DWL

Figure 2: Dynamic Weighting vs. Static Weighting: This fig-
ure compares the normalized losses using static weighting
(blue, green, yellow lines) and dynamic weighting (DWL,
pink shaded area). While static weighting requires explo-
ration of all possible combinations to find the optimal
weights, dynamic weighting efficiently converges near the
optimal solution in a single run, balancing computational ef-
ficiency and loss minimization.

720. STEM-LTS demonstrates superior performance com-
pared to the baselines, achieving the lowest MSE and MAE
scores across all datasets and prediction horizons. The best
results are highlighted in gray. These results underscore
the effectiveness of STEM-LTS in capturing complex spa-
tiotemporal dependencies and multi-scale dynamics in time
series data.

Our experimental results demonstrate the superiority of
STEM-LTS over state-of-the-art methods in both domain-
specific and benchmark datasets. The framework’s integra-
tion of semantic-temporal modeling and adaptive multi-task
learning within the LLM paradigm enables accurate and ro-
bust time series forecasting, even for long-term horizons and
complex patterns.

Experimental Analysis and Discussion
Temporal Component Correlation Analysis. Figure 3
shows the temporal component correlation metrics for
STEM-LTS and TEMPO during fine-tuning. STEM-LTS
continuously improves the metrics, while TEMPO exhibits
fluctuations and inferior performance. This suggests that
STEM-LTS better aligns time series numerical patterns with
semantic representations, capturing complex temporal de-
pendencies and enhancing prediction accuracy and inter-
pretability. By integrating time series decomposition with
LLMs, STEM-LTS demonstrates superior performance and
robustness in time series analysis.

Loss Weighting Strategy Analysis. Figure 2 compares
different loss weighting strategies. Static weighting requires
traversing all possible weight combinations to find the op-
timal solution, which is challenging for large models and

0 2 4 6 8 10
Epoch

-0.2

0.0

0.2

0.4

0.6

Te
m

po
ra

l C
om

po
ne

nt
 C

or
re

la
tio

n

Temporal correlations vary through fine-tuning stages.
TEMPO
STEM-LTS

Figure 3: Comparison of Temporal Component Correla-
tion: This figure illustrates the variation of temporal compo-
nent correlation during fine-tuning stages for TEMPO (blue)
and STEM-LTS (orange). STEM-LTS consistently enhances
correlation, demonstrating superior alignment of time series
and semantic features compared to TEMPO.

lacks generalization. In contrast, the dynamic weighting
method (DWL) converges near the optimum in a single ex-
ecution, achieving a balance between computational effi-
ciency and loss minimization. STEM-LTS utilizes dynamic
weight allocation to effectively balance the weights of dif-
ferent loss terms, improving training efficiency and predic-
tion performance, demonstrating its advantage in capturing
complex temporal dependencies.

Conclusion
STEM-LTS integrates time series decomposition, semantic
temporal alignment, and large language models for effec-
tive time series analysis. It captures complex temporal de-
pendencies, aligns numerical patterns with semantic repre-
sentations, and leverages knowledge from pre-trained lan-
guage models. The temporal component correlation analy-
sis and loss weighting strategy analysis demonstrate STEM-
LTS’s effectiveness in improving prediction accuracy, inter-
pretability, and training efficiency.

Acknowledgements
This work was supported by the Natural Science Foundation
of China Youth Project (No. 62402472), the Natural Science
Foundation of Jiangsu Province of China Youth Project (No.
BK20240461,BK20240460), the Research Grants Council
of the Hong Kong Special Administrative Region, China
(GRF Project No. CityU 11215723), National Natural Sci-
ence Foundation of China (No.62072427, No.12227901),
the Project of Stable Support for Youth Team in Basic Re-
search Field, CAS (No.YSBR-005), Academic Leaders Cul-
tivation Program, USTC and the Key Basic Research Foun-
dation of Shenzhen, China (JCYJ20220818100005011).

References
Bai, S.; Kolter, J. Z.; and Koltun, V. 2018. An empirical eval-
uation of generic convolutional and recurrent networks for
sequence modeling. In International Conference on Learn-
ing Representations.
Box, G. E.; Jenkins, G. M.; Reinsel, G. C.; and Ljung, G. M.
2015. Time series analysis: forecasting and control. John
Wiley & Sons.
Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. D.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; et al. 2020. Language models are few-shot learners. Ad-
vances in neural information processing systems, 33: 1877–
1901.
Cao, D.; Jia, F.; Arik, S. O.; Pfister, T.; Zheng, Y.; Ye, W.;
and Liu, Y. 2024. TEMPO: Prompt-based Generative Pre-
trained Transformer for Time Series Forecasting. In The
Twelfth International Conference on Learning Representa-
tions.
Chang, C.; Wang, W.-Y.; Peng, W.-C.; and Chen, T.-F. 2024.
LLM4TS: Aligning Pre-Trained LLMs as Data-Efficient
Time-Series Forecasters. arXiv preprint arXiv:2308.08459.
Cleveland, R. B.; Cleveland, W. S.; McRae, J. E.; and Ter-
penning, I. 1990. STL: A seasonal-trend decomposition.
Journal of official statistics, 6(1): 3–73.
De Livera, A. M.; Hyndman, R. J.; and Snyder, R. D. 2011.
Forecasting time series with complex seasonal patterns us-
ing exponential smoothing. Journal of the American statis-
tical association, 106(496): 1513–1527.
Durbin, J.; and Koopman, S. J. 2012. Time series analysis
by state space methods. Oxford university press.
Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural computation, 9(8): 1735–1780.
Jia, F.; Wang, K.; Zheng, Y.; Cao, D.; and Liu, Y. 2024.
GPT4MTS: Prompt-based Large Language Model for Mul-
timodal Time-series Forecasting. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38,
23343–23351.
Kazemi, S. M.; Goel, R.; Eghbali, S.; Ramanan, J.; Sahota,
J.; Thakur, S.; Wu, S.; Smyth, C.; Poupart, P.; and Brubaker,
M. 2019. Time2vec: Learning a vector representation of
time. In International Joint Conference on Artificial Intelli-
gence, 2561–2567.
Kingma, D. P.; and Ba, J. 2015. Adam: A method for
stochastic optimization. In International Conference on
Learning Representations.
Lai, G.; Chang, W.-C.; Yang, Y.; and Liu, H. 2018. Modeling
long-and short-term temporal patterns with deep neural net-
works. In The 41st international ACM SIGIR conference on
research & development in information retrieval, 95–104.
Lim, B.; Arık, S. Ö.; Loeff, N.; and Pfister, T. 2021. Tempo-
ral fusion transformers for interpretable multi-horizon time
series forecasting. International Journal of Forecasting,
37(4): 1748–1764.
Lim, B.; and Zohren, S. 2021. Time series forecasting with
deep learning: a survey. Philosophical Transactions of the
Royal Society A, 379(2194): 20200209.

Lin, X.; Zhang, X.; Yang, Z.; Liu, F.; Wang, Z.; and Zhang,
Q. 2024. Smooth Tchebycheff Scalarization for Multi-
Objective Optimization. arXiv preprint arXiv:2402.19078.
Loshchilov, I.; and Hutter, F. 2017. SGDR: Stochastic Gra-
dient Descent with Warm Restarts. In International Confer-
ence on Learning Representations.
Malhotra, P.; TV, V.; Vig, L.; Agarwal, P.; and Shroff, G.
2017. Timenet: Pre-trained deep recurrent neural network
for time series classification. In 25th European Symposium
on Artificial Neural Networks, Computational Intelligence
and Machine Learning, 607–612.
Miao, H.; Shen, J.; Cao, J.; Xia, J.; and Wang, S. 2022.
MBA-STNet: Bayes-enhanced Discriminative Multi-task
Learning for Flow Prediction. TKDE.
Nie, Y.; Nguyen, N. H.; Sinthong, P.; and Kalagnanam, J.
2023. A Time Series is Worth 64 Words: Long-term Fore-
casting with Transformers. In International Conference on
Learning Representations.
Oreshkin, B. N.; Carpov, D.; Chapados, N.; and Ben-
gio, Y. 2019. N-BEATS: Neural basis expansion analy-
sis for interpretable time series forecasting. arXiv preprint
arXiv:1905.10437.
Papadimitriou, A.; Patel, U.; Kim, L.; Bang, G.; Ne-
matzadeh, A.; and Liu, X. 2020. A multi-faceted approach
to large scale financial forecasting. In Proceedings of the
First ACM International Conference on AI in Finance, 1–8.
Paszke, A.; et al. 2019. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. Advances in Neural
Information Processing Systems, 32: 8026–8037.
Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A.; Goh, G.;
Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.;
et al. 2021. Learning transferable visual models from nat-
ural language supervision. In International Conference on
Machine Learning, 8748–8763. PMLR.
Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.;
Sutskever, I.; et al. 2019. Language models are unsupervised
multitask learners. OpenAI blog, 1(8): 9.
Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.;
Matena, M.; Zhou, Y.; Li, W.; and Liu, P. J. 2020. Explor-
ing the limits of transfer learning with a unified text-to-text
transformer. In Journal of Machine Learning Research, vol-
ume 21, 1–67.
Ruder, S. 2017. An overview of multi-task learning in deep
neural networks. arXiv preprint arXiv:1706.05098.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. Advances in neural information pro-
cessing systems, 30.
Wen, Q.; Zhou, T.; Zhang, C.; Chen, W.; Ma, Z.; Yan, J.; and
Sun, L. 2022. Transformers in time series: A survey. arXiv
preprint arXiv:2202.07125.
Woo, D.; Park, S.; Jung, J.; and Kim, T. 2023. ETSformer:
Exponential Smoothing Transformers for Time-series Fore-
casting. Advances in Neural Information Processing Sys-
tems, 36.

Wu, H.; Xu, J.; Wang, J.; and Long, M. 2021. Autoformer:
Decomposition transformers with auto-correlation for long-
term series forecasting. In Advances in Neural Information
Processing Systems, volume 34, 22419–22430.
Wu, H.; Xu, J.; Wang, J.; and Long, M. 2023. TimesNet:
Temporal 2D-Variation Modeling for General Time Series
Analysis. In International Conference on Learning Repre-
sentations.
Xu, R.; Miao, H.; Wang, S.; Yu, P. S.; and Wang, J. 2024. Pe-
FAD: A Parameter-Efficient Federated Framework for Time
Series Anomaly Detection. In SIGKDD, 3621–3632.
Xue, B.; Cheng, J.; Liu, F.; Wang, Y.; and Zhang, Q. 2024.
Multiobjective Lipschitz Bandits under Lexicographic Or-
dering. Proceedings of the 38th AAAI Conference on Artifi-
cial Intelligence, 16238–16246.
Xue, B.; Wang, Y.; Wan, Y.; Yi, J.; and Zhang, L. 2023.
Efficient Algorithms for Generalized Linear Bandits with
Heavy-tailed Rewards. In Advances in Neural Information
Processing Systems 36, 70880–70891.
Zeng, A.; Chen, M.; Zhang, L.; and Xu, Q. 2023. Are Trans-
formers Effective for Time Series Forecasting? In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 37, 11121–11128.
Zerveas, G.; Jayaraman, S.; Patel, D.; Bhamidipaty, A.; and
Eickhoff, C. 2021. A transformer-based framework for mul-
tivariate time series representation learning. Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discov-
ery & Data Mining, 2114–2124.
Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.;
and Zhang, W. 2021. Informer: Beyond efficient transformer
for long sequence time-series forecasting. In Proceedings of
the AAAI conference on artificial intelligence, volume 35,
11106–11115.
Zhou, T.; Ma, Z.; Wen, Q.; Wang, X.; Sun, L.; and Jin,
R. 2022. FEDformer: Frequency Enhanced Decomposed
Transformer for Long-term Series Forecasting. In Interna-
tional Conference on Machine Learning, 27268–27286.
Zhou, T.; Niu, P.; Wang, X.; Sun, L.; and Jin, R. 2023. One
Fits All: Power General Time Series Analysis by Pretrained
LM. arXiv preprint arXiv:2302.11939.

Reproducibility Checklist
This paper:

• Includes a conceptual outline and/or pseudocode descrip-
tion of AI methods introduced (yes)

• Clearly delineates statements that are opinions, hypothe-
sis, and speculation from objective facts and results (yes)

• Provides well marked pedagogical references for less-
familiare readers to gain background necessary to repli-
cate the paper (yes)

Does this paper make theoretical contributions? (no)
If yes, please complete the list below.

• All assumptions and restrictions are stated clearly and
formally. (yes/partial/no)

• All novel claims are stated formally (e.g., in theorem
statements). (yes/partial/no)

• Proofs of all novel claims are included. (yes/partial/no)
• Proof sketches or intuitions are given for complex and/or

novel results. (yes/partial/no)
• Appropriate citations to theoretical tools used are given.

(yes/partial/no)
• All theoretical claims are demonstrated empirically to

hold. (yes/partial/no/NA)
• All experimental code used to eliminate or disprove

claims is included. (yes/no/NA)

Does this paper rely on one or more datasets? (yes)
If yes, please complete the list below.

• A motivation is given for why the experiments are con-
ducted on the selected datasets (yes)

• All novel datasets introduced in this paper are included
in a data appendix. (NA)

• All novel datasets introduced in this paper will be made
publicly available upon publication of the paper with a
license that allows free usage for research purposes. (NA)

• All datasets drawn from the existing literature (poten-
tially including authors’ own previously published work)
are accompanied by appropriate citations. (yes)

• All datasets drawn from the existing literature (poten-
tially including authors’ own previously published work)
are publicly available. (yes)

• All datasets that are not publicly available are described
in detail, with explanation why publicly available alter-
natives are not scientifically satisficing. (NA)

Does this paper include computational experiments? (yes)
If yes, please complete the list below.

• Any code required for pre-processing data is included in
the appendix. (yes).

• All source code required for conducting and analyzing
the experiments is included in a code appendix. (yes)

• All source code required for conducting and analyzing
the experiments will be made publicly available upon
publication of the paper with a license that allows free
usage for research purposes. (yes)

• All source code implementing new methods have com-
ments detailing the implementation, with references to
the paper where each step comes from (yes)

• If an algorithm depends on randomness, then the method
used for setting seeds is described in a way sufficient to
allow replication of results. (NA)

• This paper specifies the computing infrastructure used
for running experiments (hardware and software), includ-
ing GPU/CPU models; amount of memory; operating
system; names and versions of relevant software libraries
and frameworks. (yes)

• This paper formally describes evaluation metrics used
and explains the motivation for choosing these metrics.
(yes)

• This paper states the number of algorithm runs used to
compute each reported result. (yes)

• Analysis of experiments goes beyond single-dimensional
summaries of performance (e.g., average; median) to in-
clude measures of variation, confidence, or other distri-
butional information. (yes)

• The significance of any improvement or decrease in
performance is judged using appropriate statistical tests
(e.g., Wilcoxon signed-rank). (yes)

• This paper lists all final (hyper-)parameters used for each
model/algorithm in the paper’s experiments. (NA)

• This paper states the number and range of values tried
per (hyper-) parameter during development of the paper,
along with the criterion used for selecting the final pa-
rameter setting. (NA)

Appendix of STEM-LTS
The content of the Appendix is summarized as follows:

A) In Sec. A, we provide a theoretical analysis of the STEM-
LTS framework, focusing on the convergence properties
and generalization bounds of the proposed multi-scale
time series decomposition and regularization approach.

B) In Sec. B, we demonstrate the details of datasets
and baselines used in our experiments, including the
EBITDA, GDELT, and various time series benchmarks
from different domains. We also provide a detailed de-
scription of the baseline methods.

C) In Sec. C, we present the pseudocode of the STEM-LTS
algorithm, outlining the training procedure and key com-
ponents of our method.

D) In Sec. D, we provide more analysis of our method,
including an ablation study to assess the effectiveness
of different components in STEM-LTS and a seman-
tic alignment visualization using t-SNE to demonstrate
the ability of our model to capture meaningful seman-
tic alignments between time series components and their
corresponding prompts.

E) In Sec. E, we analyze the time complexity of the STEM-
LTS algorithm, focusing on the logsumexp function used
in multi-objective optimization. We highlight the effi-
ciency and scalability of our method, with an overall time
complexity of O(T) and the ability of the logsumexp
function to simultaneously optimize multiple objectives
with constant time complexity.

A Theoretical Analysis of STEM-LTS
In this section, we provide a theoretical analysis of the
STEM-LTS framework, focusing on the convergence prop-
erties and generalization bounds of the proposed multi-scale
time series decomposition and regularization approach.
We introduce several lemmas, theorems, and propositions
to support our claims and provide rigorous mathematical
proofs.
Lemma 1. Let Zd ∈ R3×T be the d-th feature slice of the
decomposed time series tensor Z, and let Σd be its covari-
ance matrix. Suppose the eigenvalues of Σd are bounded by
λmax. Then, the strict lower triangular part of the matrix
exponential of Σd satisfies:∑

i>j

[exp(stril(Σd))]ij ≤
3(3− 1)

2
exp(λmax) (19)

Proof. The matrix exponential of a matrix A is defined as:

exp(A) =

∞∑
k=0

Ak

k!
(20)

For a strict lower triangular matrix L, we have Lk = 0 for all
k ≥ 3, as the product of three or more strict lower triangular
matrices is always zero. Therefore, the matrix exponential
of stril(Σd) can be written as:

exp(stril(Σd)) = I+ stril(Σd) +
1

2
(stril(Σd))

2 (21)

Since the eigenvalues of Σd are bounded by λmax, the ele-
ments of stril(Σd) are also bounded by λmax. Thus, we have:∑

i>j

[exp(stril(Σd))]ij ≤
3(3− 1)

2
exp(λmax) (22)

which completes the proof.

Theorem 1. Suppose the time series decomposition loss
LSTL is minimized using a gradient descent algorithm with a
learning rate η satisfying 0 < η ≤ 2

β , where β is the smooth-
ness parameter in the log-sum-exp loss function. Then, the
algorithm converges to a stationary point of the overall loss
function L.

Proof. The overall loss function L is a smooth function of
the model parameters due to the log-sum-exp operation. Its
gradient with respect to the model parameters Θ can be writ-
ten as:

∇ΘL =
1∑

i

exp(βLi)

(
exp(βLpredict)∇ΘLpredict

+ exp(βLsemantic)∇ΘLsemantic

+ exp(βLSTL)∇ΘLSTL
)

(23)
where Li ∈ {Lpredict,Lsemantic,LSTL}. The gradient of
the time series decomposition loss LSTL with respect to the
model parameters can be computed using the chain rule:

∇ΘLSTL =
1

D

D∑
d=1

1

M

∑
i>j

∇Θ[exp(stril(Σd))]ij (24)

By Lemma 1, the gradient of LSTL is bounded. Therefore,
the overall gradient ∇ΘL is also bounded, as it is a convex
combination of bounded gradients.

Given a learning rate η satisfying 0 < η ≤ 2
β , the gradient

descent update rule for the model parameters is:

Θ(t+1) = Θ(t) − η∇ΘL(Θ(t)) (25)

where Θ(t) denotes the model parameters at iteration t. By
the convergence theorem of gradient descent for smooth
functions with bounded gradients (Nesterov, 2013), the al-
gorithm converges to a stationary point of the overall loss
function L.

Proposition 1. Let H be the hypothesis class of STEM-LTS
models, and let S = {(Xi,Yi)}Ni=1 be a training set of N
samples, where Xi ∈ RT×D is an input time series and
Yi ∈ RH×D is the corresponding target future values. Sup-
pose the loss function ℓ(·) is bounded by B. Then, for any
δ > 0, with probability at least 1 − δ, the generalization
error of the learned STEM-LTS model f̂ ∈ H satisfies:

E(X,Y)∼D[ℓ(f̂(X),Y)] ≤

1

N

N∑
i=1

ℓ(f̂(Xi),Yi)+

B

√
2 log(2/δ)

N

(26)

where D is the underlying data distribution.

Proof. The proof follows from the standard generalization
bound for bounded loss functions using Hoeffding’s inequal-
ity (Shalev-Shwartz & Ben-David, 2014). Let LD(f) =
E(X,Y)∼D[ℓ(f(X),Y)] be the expected loss over the data
distribution, and let LS(f) =

1
N

∑N
i=1 ℓ(f(Xi),Yi) be the

empirical loss over the training set. By Hoeffding’s inequal-
ity, for any fixed f ∈ H and ϵ > 0, we have:

P [|LD(f)− LS(f)| ≥ ϵ] ≤ 2 exp

(
−2Nϵ2

B2

)
(27)

Setting the right-hand side equal to δ and solving for ϵ
yields:

ϵ = B

√
log(2/δ)

2N
(28)

Therefore, with probability at least 1− δ, for any f ∈ H, we
have:

LD(f) ≤ LS(f) +B

√
2 log(2/δ)

N
(29)

Since this bound holds for any f ∈ H, it also holds for the
learned model f̂ , which completes the proof.

Proposition 1 provides a generalization bound for the
STEM-LTS framework, showing that the expected loss over
the data distribution can be bounded by the empirical loss on
the training set plus a complexity term that depends on the
sample size and the loss function bound. This result suggests
that the STEM-LTS model can generalize well to unseen
data, given a sufficiently large training set and a bounded
loss function.

In summary, the theoretical analysis presented in this sec-
tion demonstrates the convergence properties and general-
ization bounds of the STEM-LTS framework. The conver-
gence of the gradient descent algorithm to a stationary point
of the overall loss function is guaranteed under certain con-
ditions on the learning rate, while the generalization bound
provides insights into the model’s performance on unseen
data. These theoretical results support the effectiveness and
robustness of the proposed STEM-LTS approach for multi-
variate time series forecasting.

B Detailed Description of Experiments
B.1 EBITDA Dataset
The EBITDA (Earnings Before Interest, Taxes, Deprecia-
tion, and Amortization) dataset contains financial earnings
data from publicly listed companies across various indus-
tries, such as consumer cyclical, industrials, and energy (Pa-
padimitriou et al. 2020). This dataset is particularly use-
ful for analyzing long-term trends and cyclical patterns in
company financials. The time series in this dataset exhibit
complex dependencies, seasonality, and varying volatility,
making it a challenging benchmark for evaluating the per-
formance of forecasting models. The dataset includes quar-
terly EBITDA values for a large number of companies over
a period of 10 years, providing a rich set of time series with
diverse characteristics.

B.2 GDELT Dataset
The Global Database of Events, Language, and Tone
(GDELT) is a comprehensive dataset that includes global
event information, such as disapproval, coercion, and con-
flicts (Jia et al. 2024). GDELT captures the complex dynam-
ics of global events and their interactions across different
countries and regions. The dataset is constructed by process-
ing and analyzing a vast amount of news articles and reports
from various sources worldwide. Each event in the dataset
is characterized by multiple attributes, such as event type,
location, timestamp, and actors involved. The time series in
GDELT exhibit intricate patterns, abrupt changes, and long-
range dependencies, reflecting the complex nature of global
events. This dataset serves as a valuable benchmark for eval-
uating the ability of forecasting models to capture and pre-
dict the evolution of global dynamics.

B.3 Time Series Benchmarks
In addition to the EBITDA and GDELT datasets, we also
evaluated our proposed STEM-LTS framework on a set
of standard time series benchmarks from various domains,
including energy, transportation, and meteorology . These
benchmarks encompass a wide range of time series com-
plexities and characteristics, allowing for a comprehensive
assessment of the performance of forecasting models. The
specific benchmarks used in our experiments are:

• ECL: The Electricity Consumption Load (ECL) dataset
contains electricity consumption data from different re-
gions, exhibiting daily and weekly seasonality patterns
and long-term trends.

• Traffic: The Traffic dataset includes traffic flow mea-
surements from various road segments, capturing the
temporal dynamics of traffic conditions.

• Weather: The Weather dataset contains meteorological
measurements, such as temperature, humidity, and wind
speed, from multiple weather stations, exhibiting com-
plex spatial and temporal dependencies.

• Ettm1/2: The Electricity Transformer Temperature
(Ettm) datasets contain temperature measurements from
electrical transformers, reflecting the thermal dynamics
of the transformers under different load conditions.

• Etth1/2: The Electricity Total Temperature (Etth)
datasets include electricity consumption and temperature
measurements, capturing the relationship between en-
ergy demand and weather conditions.

These benchmark datasets provide a diverse set of time
series with different characteristics, allowing for a rigorous
evaluation of the generalization ability and robustness of
forecasting models across various domains.

B.4 Detailed Description of Baselines
Traditional Methods We compared our proposed STEM-
LTS framework against classical statistical models, such as
DLinear (Zeng et al. 2023). DLinear is a linear dynamical
system model that assumes a linear relationship between the

past and future values of a time series. It captures the tempo-
ral dependencies using a state-space representation and esti-
mates the model parameters using maximum likelihood esti-
mation. While DLinear is a simple and interpretable model,
it may struggle to capture complex nonlinear patterns and
long-range dependencies in time series data.

Deep Learning Models We also evaluated STEM-LTS
against state-of-the-art deep learning models for time series
forecasting, including Transformer-based and self-attention
models. These models have shown promising results in cap-
turing complex temporal dependencies and achieving high
forecasting accuracy. The specific models considered in our
experiments are:
• TEMPO (?): TEMPO is a Transformer-based model that

utilizes self-attention mechanisms to capture long-range
dependencies in time series data. It employs a multi-head
attention architecture to learn multiple levels of temporal
representations.

• LLM4TS (Chang et al. 2024): LLM4TS is a large lan-
guage model adapted for time series forecasting. It lever-
ages the pre-training capabilities of language models to
learn meaningful representations of time series data and
generates forecasts using a decoder architecture.

• GPT4TS (Zhou et al. 2023): GPT4TS is a variant of the
GPT (Generative Pre-trained Transformer) model specif-
ically designed for time series forecasting. It employs a
generative approach to model the probability distribution
of future values conditioned on the past observations.

• T5 (Raffel et al. 2020): T5 is a text-to-text Transformer
model that has been adapted for time series forecasting. It
treats time series data as a sequence of tokens and learns
to generate future values based on the input sequence.

• PatchTST (Nie et al. 2023): PatchTST is a patch-based
Transformer model that divides time series into overlap-
ping patches and applies self-attention mechanisms to
capture dependencies within and across patches.

• TimesNet (Wu et al. 2023): TimesNet is a neural network
architecture that combines convolutional and recurrent
layers to capture both local and global temporal patterns
in time series data. It employs a hierarchical structure to
learn multi-scale representations.

In addition to these models, we also compared STEM-
LTS against improved variants of Transformer-based mod-
els, such as:
• FEDformer (Zhou et al. 2022): FEDformer is an en-

hanced version of the Transformer model that incorpo-
rates frequency-aware encoding and disentangling tech-
niques to capture periodic patterns and improve forecast-
ing performance.

• ETSformer (Woo et al. 2023): ETSformer is an exten-
sion of the Transformer model that integrates exponen-
tial smoothing techniques to capture trend and seasonal-
ity components in time series data.

• Informer (Zhou et al. 2021): Informer is a Transformer-
based model that employs a probabilistic attention mech-
anism to focus on informative temporal regions and re-
duce computational complexity.

These baseline models represent the state-of-the-art in
time series forecasting and provide a comprehensive com-
parison to evaluate the effectiveness of our proposed STEM-
LTS framework. By comparing against these diverse models,
we aim to demonstrate the superior performance and robust-
ness of STEM-LTS in capturing complex temporal dynam-
ics and generating accurate forecasts across various datasets
and application domains.

C STEM-LTS Algorithm

Algorithm 1: STEM-LTS Training Procedure
Input:

• x: input time series
• y: target values
• fθ: time series encoder
• fde: time series decoder
• fγ : GPT-2 embedding function
• fgpt: GPT-2 model
• Lmse,Lstl,Lclip: loss functions
• Opt: optimizer
• Sch: learning rate scheduler

Output: Trained STEM-LTS model

1. Initialize fθ, fγ , fgpt from pretrained TEMPO model
2. Opt← Adam([fθ, fγ , fgpt], lr=10−3)
3. Sch← CosineAnnealingLR(Opt, Tmax = 20, ηmin = 10−8)
4. while not converged do

(a) // Seasonal and Trend decomposition using Loess
(b) XT,XS,XR ← STL(x)
(c) TT ← ”Predict the future timestep given the Trend!”
(d) TS ← ”Predict the future timestep given the Seasonal!”
(e) TR ← ”Predict the future timestep given the Residual!”
(f) // Encode time series and prompts
(g) xt,xs,xr ← fθ(XT), fθ(XS), fθ(XR)

(h) tt, ts, tr ← fγ(TT), fγ(TS), fγ(TR)

(i) // Generate future predictions
(j) T← fgpt(concat(xt, tt))

(k) S← fgpt(concat(xs, ts))

(l) R← fgpt(concat(xr, tr))

(m) // Aggregate predictions
(n) Y ← fde(mean(T,S,R))

(o) // Compute losses
(p) Lc ← 1

3
(Lclip(xt, tt) + Lclip(xs, ts) + Lclip(xr, tr))

(q) Lm ← Lmse(Y,y)

(r) Ls ← Lstl(Y,y)

(s) // Compute gradient using log-sum-exp
(t) g← µ · logsumexp([Lc,Lm,Ls]/µ)

(u) // Update model parameters
(v) Opt.step(g)
(w) Sch.step()

5. end while

D More Analysis
Ablation Study
To assess the effectiveness of different components in our
proposed STEM-LTS framework, we conduct an ablation
study on three representative datasets: ECL, Weather, and
Ettm2. Specifically, we evaluate the performance of our
model under the following settings:

• STEM-LTS (ours): The complete proposed framework.
• ours w.o. DWL: STEM-LTS without the dynamic

weighting loss (DWL) module.
• ours w.o. Clip&DWL: STEM-LTS without both the

CLIP loss and the DWL module.
• ours w.o. STL&DWL: STEM-LTS without both the time

series decomposition loss (STL) and the DWL module.

Figure 4 presents the results of the ablation study in
terms of MSE and MAE metrics. The complete STEM-LTS
model consistently achieves the best performance across all
datasets, demonstrating the efficacy of our proposed compo-
nents. Removing the DWL module (ours w.o. DWL) leads
to a slight performance drop, indicating the importance of
adaptively balancing different learning objectives. Further
removing the CLIP loss (ours w.o. Clip&DWL) and the
STL module (ours w.o. STL&DWL) results in more sig-
nificant performance degradation, highlighting their crucial
roles in capturing semantic alignments and learning mean-
ingful temporal representations. These results validate the
effectiveness of our key components and their synergistic
contributions to the overall performance of STEM-LTS.

ECL Weather Ettm2
0.0

0.1

0.2

0.3
MSE

0.0

0.1

MAE
STEM-LTS(ours)
ours w.o. DWL

ours w.o. Clip&DWL
ours w.o. STL&DWL

TEMPO

Figure 4: Ablation study results on ECL, Weather, and Ettm2
datasets.

Semantic Alignment Visualization
To further demonstrate the ability of STEM-LTS in cap-
turing meaningful semantic alignments between time se-

ries components and their corresponding prompts, we per-
form t-SNE visualization on the learned feature representa-
tions. Figure 5 illustrates the t-SNE plot of the trend, season,
and residual time series features along with their respective
prompt features. The clear clustering of time series features
with their associated prompt features indicates the effective-
ness of our semantic alignment mechanism in bridging the
gap between numerical patterns and semantic concepts.

Trend TS Feature
Season TS Feature

Residual TS Feature
Trend Prompt Feature

Season Prompt Feature
Residual Prompt Feature

Figure 5: t-SNE visualization of time series features and
prompt features.

Moreover, we visualize the t-SNE plot of the trend, sea-
son, and residual features separately in Figure 6. The distinct
clusters formed by each component further validate the ca-
pability of STEM-LTS in learning disentangled and seman-
tically meaningful representations for different time series
components. This visual evidence corroborates the quanti-
tative results and highlights the interpretability of our pro-
posed framework.

Trend Feature Season Feature Residual Feature

Figure 6: t-SNE visualization of trend, season, and residual
features.

The ablation study and visual analysis provided offer ad-
ditional insights into the functioning and effectiveness of our
STEM-LTS framework. The results underscore the impor-
tance of each proposed component and their collective con-
tribution to achieving state-of-the-art performance in mul-
tivariate time series forecasting while maintaining inter-
pretability and semantic alignment.

E Complexity Analysis
This section analyzes the time complexity of the STEM-
LTS algorithm, focusing on the logsumexp function used
in multi-objective optimization. The overall time complexity
of the STEM-LTS algorithm is O(T), where T is the length
of the time series. The multi-objective optimization part,
which uses the logsumexp function, has a time complexity
of O(1). The logsumexp function efficiently achieves multi-
objective optimization by computing the ”soft maximum” of
the input loss functions. It converts loss values of different
scales to the same scale and combines them through sum-
mation. This allows simultaneous optimization of multiple
objectives in a single forward pass, without explicitly com-
puting gradients for each objective. The key advantage of
using the logsumexp function is its ability to realize multi-
objective optimization with O(1) time complexity, regard-
less of the time series length. This significantly improves
the training efficiency of the STEM-LTS algorithm, mak-
ing it suitable for handling long time series while effectively
balancing multiple optimization objectives.

