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Abstract

Self-Knowledge Distillation (SKD) leverages the student’s
own knowledge to create a virtual teacher for distillation
when the pre-trained bulky teacher is not available. Whilst
existing SKD approaches demonstrate gorgeous efficiency in
single-label learning, to directly apply them to multi-label
learning would suffer from dramatic degradation due to the
following inherent imbalance: targets with unified labels but
multifarious visual scales are crammed into one image, re-
sulting in biased learning of major targets and disequilib-
rium of precision-recall. To address this issue, this paper pro-
poses a novel SKD method for multi-label learning named
Multi-label Self-knowledge Distillation (MSKD), incorporat-
ing three Spatial Decoupling mechanisms (i.e. Locality-SD
(L-SD), Reconstruction-SD (R-SD), and Step-SD (S-SD)). L-
SD exploits relational dark knowledge from regional outputs
to amplify the model’s perception of visual details. R-SD re-
constructs global semantics by integrating regional outputs
from local patches and leverages it to guide the model. S-
SD aligns outputs of the same input at different steps, aim-
ing to find a synthetical optimizing direction and avoid the
overconfidence. In addition, MSKD combines our tailored
loss named MBD for balanced distillation. Exhaustive exper-
iments demonstrate that MSKD not only outperforms previ-
ous approaches but also effectively mitigates biased learning
and equips the model with more robustness.

Code — https://github.com/asaxuc/MSKD

Introduction
Multi-Label Learning (MLL) has exemplified eye-catching
applications in various downstream tasks, like action recog-
nition (Zhang et al. 2020b), recommendation (Schultheis
et al. 2022; Zhang et al. 2020a), and user profiling (Wang
et al. 2021). Different from Single-Label Learning (SLL),
the major challenge of MLL lies in learning severe non-
injective mapping between visual targets and labels, which
means the model is required to perceive all targets within an
image equally, regardless of their cardinality, size, or loca-
tion. While existing MLL models which propose to model
visual-label correlations (Li et al. 2023; Wang et al. 2020;
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Figure 1: Top-4 predictions of ResNet34 trained w \ w/o
our MSKD, ranked in descending order. MSKD endows the
model with significant distinguishing capability and robust-
ness to space-intricately distributed samples.

Chen et al. 2019) or design class-specific decoders (Liu et al.
2021; Ridnik et al. 2023) have made remarkable success,
most of them are costly and struggled to reach prevailing
lightweight demand on both efficiency and accuracy. In this
case, Knowledge Distillation (Hinton, Vinyals, and Dean
2015), the latest benchmark of model compression which
asks a lightweight student to mimic its pre-trained bulky
teacher to receive comparable performance, is widely ap-
plied to MLL and exemplifies prominent efficiency. (Yang
et al. 2023a; Xu et al. 2022; Song et al. 2021).

However, the fact is that pre-trained teachers aren’t al-
ways accessible in latency-sensitive circumstances. In this
case, SKD offers a competent solution by allowing students
to directly learn from their self-teachers. Notably SKD is a
non-trivial problem since no explicit peer model is provided.
Existing SKD approaches dig out self-teacher from various
layers (Yang et al. 2023b), samples (Yang et al. 2022), and
training stages (Yang et al. 2019; Kim et al. 2021) as the self-
teacher to form knowledge transferring, which has shown



prominent efficiency in SLL. However, they perform unsat-
isfyingly in MLL due to the tough awareness of inherent
imbalance, especially when faced with sophisticated back-
bones or datasets. Recently, a few SKD methods attempted
to approach MLL but work poorly and are restrictive. For
example, (Song et al. 2021) proposed the Uncertainty Dis-
tillation (UD) scheme to avoid over-training on difficult la-
bels; MulSupCon (Zhang and Wu 2024) proposed a super-
vised contrastive learning for MLL which selects positive
sets based on their overlapping degree with the anchor. How-
ever, both of them primarily leverage the coarse regulariza-
tion over the entire image semantics and show highly limited
performance, where further consideration of the inherent im-
balance problem of MLL is neglected.

Therefore, an urgent problem to be solved is: How to
design an exactly efficient and generic SKD for MLL,
which could alleviate the inherent imbalance? We answer
the question by proposing our Multi-label Self-Knowledge
Distillation (MSKD), incorporating three decoupling mech-
anisms attached with our tailored distillation for MLL. To
begin, we extract randomly cropped and resized regions
from original image. Intuitively, outputs of those regions
contain more limited but specific semantics which fall to
oblivion while processing the whole image, thus our first
mechanism L-SD lies in utilizing them to amplify the corre-
sponding features in the overall image. Moreover, we lever-
age these outputs to reversely identify the uniqueness of
each patch and generate corresponding pseudo labels, then
employ nonparametric graph propagation on them to capture
spatial correlations for semantic integration. Accordingly we
formulate our R-SD between integrated patches and vanilla
output logits. Another mechanism S-SD requires the model
to find a synthetical optimizing direction by aligning it’s out-
puts at near training steps, which would not only mitigate
overfitting tendencies towards fitful difficult or miss-labeled
targets but also enhance model’s stability.

In addition, we design a balanced distillation function
tailored for MLL named MBD. Inspired by ASL (Ridnik
et al. 2021), MBD employs reformulated softmax and dy-
namic KL-Divergence to mitigate the imbalance distillation
between positive and negative logits.

Comprehensive experiments exemplify MSKD’s state-of-
art performance. Figure 1 provides an intuitive visualiza-
tion of MSKD’s effects, indicating that MSKD enhances
the model’s ability to discriminate imbalanced samples and
strengthens decision boundaries. Our contributions are then
summarized as follows:

• New insight: To the best of our knowledge, our work is
the first study to expand SKD methods to MLL and pro-
poses a tailored benchmark SKD for it named MSKD.

• New advisable distillation framework: MSKD combines
three kinds of spatial decoupling mechanisms to address
inherent imbalance problems of MLL, supported by our
tailored distillation loss named MBD.

• Compelling empirical results: we conduct exhaustive
tests on multiple benchmark datasets. Results show our
MSKD’s state-of-art performance as well as superior ro-
bustness under sophisticated circumstances.

Related Works
Multi-Label Learning
Multi-Label Learning (MLL) has attracted prevalent inter-
est from research communities due to its widespread ap-
plication in real-world scenarios. Existing MLL works can
be roughly divided into the following categories: Loss Re-
balancing (LB), Relation Modeling (RM), and Class Spe-
cific Decoding (CSC). LB-based approaches (Lin 2017) en-
deavor to mitigate the biased label supervision resulted from
unmatching cardinality of positive and negative labels in
the dataset. For example, ASL (Ridnik et al. 2021) pun-
ishes easy negative learning and emphasizes positive learn-
ing by introducing flexible exponent hyperparams and spe-
cial threshold for negative probabilities. RM-based SKD uti-
lizes multi-source prior information like the co-occurrence
matrix, label embedding, or knowledge graphs (Lee et al.
2018) to assist the modeling of deep semantics across la-
bels. Typically, ML-GCN (Chen et al. 2019) extracts la-
bel embedding and condition probability as the node fea-
tures and edges separately and constructs a labeled graph
over the image. Then multiple GCN layers are employed
to model the label relation, and outputs are fused with vi-
sual features to generate integrated prediction. PatchCT (Li
et al. 2023) wisely utilizes the optimal transportation theory
to learn the visual-language interactions. CSC-based SKD
aims at designing class-specific decoder architectures for
better modeling the distinguished class semantics. For ex-
ample, Query2Label (Liu et al. 2021) adapts DETR (Carion
et al. 2020) from object detection and relies on distinguished
learnable queries to perform class-specific prediction.

Self-Knowledge Distillation
Firstly introduced by Geoffrey Hinton, Knowledge Distil-
lation (KD) aims to transfer the abundant knowledge of a
bulky teacher into a lightweight student which is more suit-
able for real-time applications. However, access to a pre-
trained teacher model is often impractical, thus it’s vital to
dig out a self-teacher to guide the model in such circum-
stances, which is Self-Knowledge Distillation (SKD). As a
general semi-supervised method, SKD mainly consists of
the following categories: Architecture Modification (AM),
Consistency Regularization (CM), and Label Smoothing
(LS). AM-based SKD employs auxiliary modules to draw
extra updating flows, such as BYOT (Zhang et al. 2019)
which employs an auxiliary classifier for each block, and
USKD (Yang et al. 2023b) which introduces an extra clas-
sifier for the middle layer to regularize the whole model.
CM-based SKD focuses on improving the model’s robust-
ness in multiple dimensions, for example, CS-KD (Yun et al.
2020) endeavors to close the logits between the same class.
PS-KD (Kim et al. 2021) and DLB (Shen et al. 2022) try
to keep the model’s robustness in different training stages.
In a more general perspective, several contrastive learning
approaches would be also treated as CM if the label super-
vision is applied. LS is regarded as a specific SKD cate-
gory where smoothed labels could be viewed as the virtual
teacher. For example, Zipf’s LS (Liang et al. 2022) employs
Zipf’s distribution to guide the model.



While numerous SKD methods have been proposed, few
have effectively addressed the specific challenges of MLL.
Reluctantly, (Song et al. 2021) proposes an uncertainty-
based self-distillation scheme (UD), but limited progress is
achieved due to the undistinguished calibration branch, and
its cumbersome training pipeline deviates efficiency princi-
ple of SKD. (Pan et al. 2022) introduces a self-distillation
scheme between visual encoder and label encoder, however,
it’s largely limited to specific backbones and prior knowl-
edge. Others like MulSupCon (Zhang and Wu 2024) devise
a supervised contrastive learning mechanism that imposes
dynamical weights based on the overlap between two sam-
ples. However, the essential bottleneck of MLL concerning
the aforementioned imbalance problem has not been con-
sidered. To the best of our knowledge, we first try to directly
utilize SKD theory to handle the inherent imbalance in MLL
and craft a tailored and pioneering SKD method for it.

Methodology
Preliminary. Firstly we define some notations for a C-
class MLL task. Given batch of samples (X ,Y) =
[(x1,y1), (x2,y2), · · · , (xi,yi), · · · , (xB ,yB)], where B
denotes the batch size and yi ∈ {0, 1}C denote the label,
where each element indicates whether the corresponding tar-
get exists in image xi or not. We denote the positive label
set of xi asMi (Mi ⊂ yi) in extra. For any feature extrac-
tor h(;ϕ) and classifier d(;ρ), we denote fi = h(xi;ϕ),
qi = d(fi;ρ)). The optimizer endeavors to discover the
optimal ϕ̃ and ρ̃ that minimize the expected Binary Cross-
Entropy loss on (X ,Y):

LBCE =
∑

(xi,yi)

yi log(σ(qi)) + (1− yi) log(1− σ(qi)),

(1)
where σ is the sigmoid function. Next, we introduce our tai-
lored SKD for dealing with the inherent imbalance problem.

Multi-label Self Knowledge Distillation
The general framework of MSKD is illustrated in Figure 2.
It incorporates three SD mechanisms, namely Locality-SD,
Reconstruction-SD, and Step-SD, arranged in three flows of
a single training step t.

Locality SD. We propose to randomly crop S patches
(each patch is denoted asOs

i ) from the original image xi and
resize them to magnify the details of the image and dilate the
influence of large visual targets. Cropped patches are then
fed into h(;ϕt) to generate regional feature maps fs

i and
output logits os

i , i.e fs
i = h(Os

i ;ϕ
t), and os

i = d(fs
i ;ρ

t).
We suggest treating these regional semantics as the self-
teacher and leveraging them to amplify the corresponding
regions of the original feature map. To achieve this, we
firstly employ Region-of-Interest Pooling to obtain the fea-
ture map regions corresponding toOs

i in the original feature
map fs

i , then use classifier d(;ρt) to generate outputs:

rsi = d(ROI(fi;Os
i );ρ

t). (2)

A naive idea to form regularization is directly aligning rsi
with os

i . However, it would incur excessive learning of

large targets and offset the locality regularization brought
by patches. Instead, we conduct relation distillation be-
tween them to utilize the batch-wise dark knowledge and
region-wise dark knowledge. Given r ∈ RB×S×C and o ∈
RB×S×C , we firstly calculate inter-patch and inter-batch
similarities (i.e., simp(·) and simb(·)) for both of them:

(simp(ri))jk = ||rji − rki ||2,
(simb(r))jk = ||avgs(rsj )− avgs(r

s
k)||2,

(3)

where simp(ri) ∈ RS×S , simb(r) ∈ RN×N . (·)jk denotes
the (j,k) element; || · ||2 denotes normalized 2-D Euclidean
distance. Notably, rsi is averaged when calculating simb(r)
since separate alignment of the same locations in different
samples is not expected. The same operation in Eq. 3 is con-
ducted on oi. To distill instance-wise and patch-wise dark
knowledge from the self-teacher, we employ Huber-Loss
like (Yang et al. 2023a) as follows:

LLSD =
1

B
(
∑
i

HuberLoss(simp(ri), simp(sg(oi))))

+ HuberLoss(simb(r), simb(sg(o))),
(4)

where sg(·) means stop-gradient.

Reconstruction SD. For certain, resized random patches
magnify visually subtle targets and provide different per-
spectives of viewing image semantics. With this regard, we
seek to synthetically utilize them to endow the model with
more sensibility to finer details. To be specific, we propose a
graph-based reconstruction module named Graph Propaga-
tion (GP), to generate dynamic weights for different regional
logits and reconstruct global semantics for regularization.
For a random patch Os

i of image xi, use os
i to denote its

output logits, GP firstly formulates pseudo label us
i with:

(us
i )j =


1, i, j, s ∈ argmax({osij − qij}, β)
−1, i, j, s ∈ argmin({osij − qij}, β)
0, else

(5)

where osij denotes the j-th class in os
i , the same meaning for

j in qij . Note that, the argmax operation is batch-wise and β
is set to |y| in default. Eq. 5 highlights top-β classes whose
prediction probabilities show the largest difference with that
of the overall image, i.e. ‘overachiever’ classes, as represen-
tatives of the patch. Intuitively, these pseudo labels indicate
the distinctiveness and specificity of patches with respect to
the original image in certain training stages: positive pseudo
labels exemplify more equal ‘existing’ uniqueness of targets
in the patch since the imbalance effect is dilated by the ran-
dom cropping; Negative pseudo labels indicate the peculiar-
ity of ‘non-existing’ by minus value, which would be trans-
ferred to the general ”existing” of corresponding classes in
other patches after normalization. As a result, the pseudo la-
bels are believed to indicate reliability of every class of each
logit in representing a patch or being a self-teacher, and are
more likely to concentrate on visually subtle targets.

Next, we consider forming graph propagation on these
pseudo labels to further obtain relation-aware representa-
tions. Specifically, os

i is selected to construct edges for its
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Figure 2: Overview of MSKD. ϕt represents parameters of the feature encoder in iteration t. ρt represents the parameters of
the classifier in iteration t. The slash (/) over arrows means stop-gradient. Label supervision is omitted.

abundant spatial dark knowledge. We refer to Geom-GCN
(Pei et al. 2020) and construct edge weights with normal-
ized 2-D Euclidean distance:

(As
i )jk =

||oj
i − ok

i ||2
max{||oj

i − ok
i ||2; (j, k) ∈ B2}

. (6)

then a nonparametric propagation is employed to endow
pseudo labels with deep spatial correlation:

us
i ← (Ds

i )
− 1

2 (As
i + I)(Ds

i )
− 1

2us
i (7)

where I is identity matrix, and Ds
i = diag[

∑
k(A

s
i ):,k +

(I):,k] is the diagonal degree matrix of As
i . Initial feature

us
i is updated T times based on Eq. 7 to capture deep rep-

resentations (denoted as esi ). Finally, esi is normalized with
Softmax, and then weighs the average of regional logits osi .
The averaged regional logits reconstruct the global seman-
tics from a finer locality perspective which the model fails
to capture, hence our R-SD leverages it to guide the model:

L(i)
RSD = LMBD(

∑
s

(softmax(esi )⊙ sg(os
i )), qi), (8)

where ⊙ is hadamard product, LMBD is our proposed MBD
loss for more balanced distillation and will be introduced in
the next subsection. Notably, softmax applied on esi makes
classes that frequently appear in different patches to obtain
averaged weights, enabling the awareness of multifarious
disjoint patterns and improving the model’s robustness.

Step SD. Since the inherent imbalance problem of MLL
gives a natural optimization challenge, we would like to find
an optimized direction for each iteration and avoid models
from being severely influenced by fitful difficult or miss-
labeled samples. In this case, our S-SD takes parameters
ϕt−1 of the model h in last iteration step t−1, and feed cur-
rent input xi into both h(;ϕt−1) and h(;ϕt). Denote their
output logits as qt−1 and qt respectively, S-SD hopes that
the model would find an integrated optimization direction
by shortening the discrepancy between qt−1

i and qti :

L(i)
SSD = LMBD(q

t
i , sg(q

t−1
i )) (9)

here LMBD is also employed to avoid the overwhelming dis-
tillation on negative logits.

Balanced Distillation Loss for MLL: MBD
Theoretical analysis. Let’s begin with the limitations of em-
ploying softmax-based KL-Div in MLL. Using p̃i and q̃i to
denote the prediction distribution of teacher and student af-
ter softmax, q̃it to denote the random t-th term of q̃i, then:

L(i)
sfx+KL =

C∑
j

p̃ij log(
p̃ij
q̃ij

). (10)

by taking the gradient of L(i)
sfx+KL with respect to q̃it we get

(see Appendix C for detailed steps):

∇q̃itL
(i)
sfx+KL = − p̃it

q̃it
+ (

∑
j ̸=t

p̃ij
1

q̃it ·
∑

j ̸=t e
qij

). (11)

after reformulation, we get:

∇q̃itL
(i)
sfx+KL = (−p̃it +

∑
j ̸=i p̃ij∑
j ̸=i e

qij
)
1

q̃it
. (12)

without loss of generality, assume
∑

j ̸=i e
qij ≫

∑
j ̸=i p̃ij .

Due to the existence of multi-labels, the discrepancy be-
tween p̃it and

∑
j ̸=i p̃i largely shrinks, which means the op-

timization strategy would push both positive and negative
logits to the same direction. This will lead to two issues:
• Negative logits would be largely mis-leaded;
• Positive and negative distillation is indistinguishable, re-

sulting in overwhelming learning of the latter one and
making the model conservative to positive prediction.

To deal with above issues, we propose MBD which simul-
taneously adopts reformulated softmax and reformulated
KL-Div Loss for balanced distillation.

Reformulated Softmax (RS). To solve issue 1, our Re-
formulated Softmax (RS) borrows the calibration branch
from (Song et al. 2021) and applies softmax on multiple
one-versus-negative combinations, to highlight the distinc-
tive group knowledge of the positive logits:

q̃ij =
1

|Mi|
∑
t∈Mi

eqij

eqit +
∑

j /∈Mi
eqij (13)



where |Mi| denotes number of elements inMi. RS gener-
ates probabilities for one-positive-all-negative combinations
rather than directly take all positive logits into considera-
tion, which substantially sharpen the discrepancy between
positive and negative distillation and avoids the misleading
of corrupted p̃it. From another perspective, RS avoids the
mutual influence between optimization of different positive
logits and unleashes the distinctiveness and equality of each
one, since the maximation of posterior distribution no longer
contradicts with the simultaneous propulsion of all positive
logits, where more pareto optimality could be discovered.

Reformulated Distillation (ReD). To deal with issue 2,
we rectify the KL-Divergence with separate coefficients re-
spectively for emphasizing positive distillation and punish-
ing negative ones. Reusing p̃i, q̃i in the former subsection,
our Reformulated Distillation (ReD) would be written as:

LReD =
∑

j∈Mi

w+
ij p̃ij log(

p̃ij
q̃ij

) +
∑

j /∈Mi

w−
ij p̃ij log(

p̃ij
q̃ij

)

(14)
w+

ij and w−
ij are trainable and formulated as:

w+
ij =|(1− ω) + p̃ij · ω − q̃ij |γ

+

w−
ij =|p̃ij · ω − q̃ij |γ

− (15)

with a little ambiguity, here | · | means absoulute value. ω
controls the balance and is set to 0.5 in default. γ+ and γ−

re-balance positive-negative learning and γ+ ≪ γ−.
Clearly, w+

ij and w−
ij are proportional with distance be-

tween both teacher outputs / student outputs and ground-
truth / student outputs. Intuitively, the rationality lies in:
• By measuring distance of outputs between teachers and

students, w+
ij and w−

ij slow the distillation of easy log-
its (true-positives and true-negatives), and focus on con-
quering hard logits (false-positives and false-negatives).

• By measuring distance of outputs between ground-truth
and students, w+

ij and w−
ij provide a synthetical evalu-

ation of the fidelity of both teacher and student, which
would largely avoid the misleading of teacher, especially
in SKD which always employs on-the-fly guidance of an
unreliable teacher.

the MBD loss then can be formulated as:

L(i)
MBD = LReD(RS(pi/τ),RS(qi/τ)) · τ2 (16)

where τ is the temperature. Following (Chen et al. 2020),
τ2 is multiplied to ensure that the relative contribution of
distillation loss remains roughly unchanged when combined
with other losses. Further analysis of how our MBD works
and ablation studies are attached to Appendix D.

Training Pipeline
Finally, the overall loss function is the weighted combina-
tion of our three decoupling losses and the BCE loss:

L = LBCE + ι · LLSD +
∑
i

(κ · L(i)
RSD + λ · L(i)

SSD) (17)

where ι, κ, and λ are hyper-params to balance each loss’s
contribution. We will discuss them in ablation studies.

Experiments
Experiment Settings
Datasets and Baselines. Three benchmark datasets are
employed in our experiments: Pascal-VOC 2007 (Evering-
ham 2009), MS-COCO (Lin et al. 2014), and MIRFLICKR
(Huiskes and Lew 2008). See Appendix A for a detailed
introduction. For baselines, see Appendix B for the intro-
duction of comparison methods.

Evaluation Metrics. We report five commonly used met-
rics for evaluation: (i) mean Averaged Precision (mAP), (ii)
Precision of top-1 predictions (P@1), (iii) Recall of top-
1 predictions (R@1), (iv) macro-F1 score (CF1), and (v)
micro-F1 score (OF1). Employing both (ii) and (iii) would
offer a more comprehensive view of performance on both
positive and negative samples.

Implementations. We employ three backbones: ResNet-
34, MobileNet v2, and Swin-Transformer Tiny (Swin-T),
which are the representations of CNN-based classical mod-
els, CNN-based lightweight models, and ViT-based models
respectively. Especially for Swin-T, we employ two heads
and adopt an attention dropout of 0.4. For all experiments we
train for 80 epochs. Images are random-augmented (Cubuk
et al. 2020) and resized to 224×224. We employ SGD as the
optimizer and the momentum and weight decay are set to 0.9
and 5e−4 respectively, combined with a cosine-annealing
scheduler for learning rate (LR). For Pascal-VOC 2007 and
MIRFLICKR, a batch size of 64 is employed and the initial
learning rate is set to 0.01. For COCO, we set the batch size
as 128, and the initial learning rate as 0.1. Full parameter
settings are listed in Appendix F.

Experiment Results
(I) Does MSKD outperforms existing state-of-arts? We
show comparison results with SOTA based on three back-
bones and datasets in Table 1 and 2. We observe that:
• Most previous works perform minor improvements. In

Table 1, PS-KD only receives 0.02% mAP improvement
compared with Vanilla on ResNet34. mAP of DLB and
DDGSD even decrease by -0.31% and -1.28%, accom-
panied by severe precision-recall imbalance, which also
makes the F1 score deteriorated. We argue that the over-
emphasis on consistency in DLB and DDGSD may make
the model conservative to positive prediction. UD and
USKD outperform the baseline mAP by 0.79% / 2.94%
respectively on ResNet34. However, they both received
negative results on Swin-T, with mAP dropped by 1.91%
/ 0.13% and precision dropped by 5.29%, revealing their
limited applications. Moreover, almost all methods fail
on large datasets like MIRFLICKR and COCO as shown
in Table 2, which may be ascribed to their naive and in-
competent self-teacher.

• Our MSKD exemplifies superior performance and bal-
anced Precision-Recall. On Pascal VOC 2007, MSKD
outperforms the previous state-of-art in mAP by 2.84%
on average, with precision boosts while the recall still
slightly increases. In particular, a significant increment of
all metrics with MobileNet v2 is observed, proving that



Methods ResNet34 MobileNet v2 Swin-T
mAP P@1 R@1 CF1 OF1 mAP P@1 R@1 CF1 OF1 mAP P@1 R@1 CF1 OF1

Vanilla 82.51 79.46 72.01 75.93 78.56 72.88 76.04 46.91 58.02 59.11 87.89 77.41 87.02 81.93 82.15
TF-KD 82.67 76.90 74.22 75.53 78.68 71.56 74.95 50.39 57.44 59.75 88.39 73.32 88.17 79.40 80.07
PS-KD 82.53 79.14 72.14 75.48 78.39 72.99 76.44 46.34 57.70 58.32 84.42 77.98 78.47 78.22 78.38
DLB 82.20 87.51 61.51 72.24 75.58 74.42 83.47 37.27 51.53 54.49 88.20 78.94 85.96 82.30 83.46

DDGSD 81.23 87.99 59.23 70.80 74.70 81.51 89.75 52.07 65.90 66.83 86.19 83.96 76.78 80.21 81.46
USKD 85.44 87.32 72.40 79.16 78.66 80.00 84.15 65.13 73.42 74.05 87.76 72.15 88.73 79.59 79.55

MulCon 83.46 79.26 72.64 76.34 78.21 72.86 76.18 46.99 58.12 60.30 82.43 78.31 72.93 75.53 75.58
UD 83.30 80.93 72.72 76.60 78.09 80.89 81.17 68.27 74.24 76.51 85.98 71.41 85.85 77.97 78.75

MSKD 86.83 85.42 74.98 79.37 80.29 82.62 85.38 69.43 76.58 78.77 89.16 80.50 88.77 84.43 85.79

Table 1: Comparison experiments on Pascal VOC 2007 based on ResNet34, MobileNet v2, and Swin-T.

Dataset Methods ResNet34 Swin-T
mAP P@1 R@1 CF1 OF1 mAP P@1 R@1 CF1 OF1

MIRFLICKR

Vanilla 76.33 77.98 60.68 68.88 78.85 80.69 76.99 73.76 75.34 83.16
DLB 75.46 76.39 58.97 66.56 72.07 80.46 81.69 65.01 72.40 80.78

USKD 74.68 78.71 59.44 67.63 73.53 79.64 78.52 64.71 70.95 80.43
UD 75.46 76.39 58.97 66.56 78.48 80.93 80.32 66.51 74.64 82.80

MSKD 78.54 82.90 60.75 71.09 80.80 81.77 81.56 70.20 75.46 83.48

COCO

Vanilla 66.26 73.64 49.01 59.78 65.99 71.94 76.09 56.70 64.98 68.24
DLB 65.25 78.21 44.26 56.53 64.52 70.77 75.19 52.93 62.54 68.59

USKD 61.06 76.68 42.01 54.28 66.48 70.54 76.84 54.95 64.70 58.62
UD 63.71 73.80 48.45 58.50 59.27 70.86 75.44 56.59 64.77 69.62

MSKD 67.02 74.96 54.84 63.84 67.19 73.62 76.17 61.71 68.18 71.61

Table 2: Extended comparisons on MIRFLICKR and COCO. For backbones, ResNet34 / Swin-T are selected.

LLSR LTSR LRSR mAP P@1 R@1 CF1 OF1
82.51 79.46 72.01 75.93 76.76

" 83.45 83.06 73.00 76.80 77.78
" 83.64 87.79 67.00 73.36 74.09

" 84.18 87.94 67.68 73.87 73.62
" " 83.54 86.13 74.16 79.37 80.63
" " 85.79 87.53 69.69 77.62 78.32
" 84.43 85.70 68.51 76.95 77.58
" " " 86.83 85.42 74.98 79.97 81.17

Table 3: Ablation study of three mechanisms and MBD.
"means to employ the loss. means to employ the loss
but MBD is replaced with softmax+KL-Div.

MSKD dramatically reverses the corrupted optimization.
Also, unlike stagnant peer works, MSKD performs re-
markably on MIRFLICKR and COCO, with an average
increment of 1.5% in mAP and 2% in F1. MSKD’s suc-
cess may lie in its proactive solution to inherent imbal-
ance which was highly neglected previously. By decou-
pling the intricate global semantics with cropping and
merging, models applied with MSKD obtain more spe-
cific representations of every single target.

layers mAP P@1 R@1 CF1 OF1

1 86.12 85.53 71.73 78.56 79.95
2 86.83 85.42 74.98 79.37 80.29
3 83.66 85.85 65.49 74.33 75.70

Table 4: Ablation study of graph propagation times T .

(II) Does MSKD work well in downstream tasks? We
further perform an image retrieval task to discover MSKD’s
application ability for downstream tasks. Following (Yang
et al. 2023a), we employ k-nn algorithm to retrieve top-5
correlated images and depict our results in Figure 3. It’s ob-
vious that our MSKD retrieves more accurate images than
UD, indicating MSKD gives even more concentration to
small targets and learns to distinguish classes well.

(III) How do components and hyper-parameters affect
the results? We answer this problem with following abla-
tion studies:
- Components. Table 3 reports the ablation study results of
three mechanisms and MBD on Pascal VOC with ResNet34
as the backbone. It can be observed that each mechanism
performs well in mAP with an average improvement of 1%.
Plus, we find that: LLSR is better in precision-recall balanc-
ing but not distinguished in mAP, while LTSR and LRSR are
the opposite. This mutual compensation forms a generalized
improvement across all metrics when these mechanisms are
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Figure 3: Performance of proposed MSKD on Image Retrieval. The first column is query images with labels. Each row of the
following columns exemplifies the retrieved images and labels, sorted by relevance in descending order. Labels marked with
green and red denote that they are included / not included in query labels respectively.
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Figure 4: Ablation study of hyperparams ι, λ and κ.

combined, as depicted in the last row. In extra, to employ
MBD provides further advancements in all metrics.
- Coefficients ι, λ, and κ. Results are shown in Figure 4
where optima are marked with red lines. It’s obvious that:

• Change of ι causes minor effects, possibly for the small
magnitude of LLSD. We set ι as 1.5 where local maxi-
mum locates.

• When λ grows larger than 2, all metrics are corrupted.
We suggest that S-SD is poisoned by over-emphasizing
the homogeneity. Slight improvements in all metrics are
observed when λ changes from 0 to 1, so we set λ to 2.

• All metrics deteriorate when κ approaches 0. There exists
about 0.5% decline in precision compared with the lo-
cal maximum when λ is 4, which would ascribe to over-
utilization of unreliable semantics in the initial stages.
We set κ to 2.0 as the trade-off.

- Propagation Times T . We empirically set T from 1 to 3 to
investigate the ablation results. As demonstrated in Table 4,
generally MSKD reaches its best performance when T is 2,
slightly outperforming that when T is 1, which be attributed
to better expressivity of two-layer propagation. However, all
metrics suffer from dramatic decrease when T is set to 3,
where over-smoothing may get severe.

(IV) Whether MSKD truly alleviates the inherent im-
balance? To validate this we collect the area of all visual
targets in Pascal VOC 2007 utilizing their bounding boxes,
then classify each target into 22 disjoint area ranges accord-
ingly (since all images are of 224×224). Then we calculate
correctly-predicted targets with MSKD, UD, and Vanilla and

MSKD
UD

Vanilla
Total

Figure 5: Number of total targets, correctly predicted targets
w/ MSKD, UD or Vanilla on Pascal VOC 2007 shown by
region scales, of which area is bounded by pow of adjacent
x-axis values multiply 10. For example, x-axis value 3 rep-
resents regions of which area is less than (10×3)2 but more
than (10 × 2)2. Fitting curve is plotted in extra to show the
distributions along different areas.

demonstrate them by each area set, as shown in Figure 5.
While UD has minor effects in promoting models to iden-
tify small targets and even poisons the large-scale recogni-
tion, MSKD receives up to 12% improvements in recogniz-
ing small targets and significantly shortens the distance to
total numbers (the goal) while keeping undisturbed in large
targets. See Appendix E for further analysis of how MSKD
works.

Conclusion
We propose to extend effective SKD methods from SLL to
MLL and design a tailored SKD named MSKD for the first
time. Faced with the inherent imbalance of visual targets
and labels in MLL, MSKD incorporates three spatial decou-
pling mechanism where detail semantics in each image is
magnified in nunanced perspectives, supported by tailored
distillation loss to propel the unbiased self-supervision. Ex-
periments validate the superior performance as well as the
general applicability of MSKD. In future we would like to
further enhance MSKD with other self-teachers.
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