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Chapter 1

Introduction

1.1 Why nuclear physics

Nuclear physics is one of the most important branches and milestones in modern physics in the last
century. It has intrinsic connections to quantum mechanics and can be regarded as a laboratory for
quantum physics. The aim of nuclear physics is to understand the properties of nuclei and their
applications. Among many applications are (a) The origin of nuclei in the universe, i.e. nuclear
nucleosynthesis, nuclear cross section is the key to understanding of nuclear reaction in astrophysics;
(b) Nuclear energy, nuclear �ssion and fusion; (c) Nuclear transmutation of radioactive waste with
neutrons; (d) Radiotherapy for cancer with proton and heavy ion beams; (e) Medical Imaging, such
as nuclear Magnetic Resonance Imaging (MRI), X-ray imaging with better detectors and lower doses,
Positron-Electron Tomography (PET); (f) Radioactive Dating, such as C-14/C-12 dating for dead
lives, Kr-81 dating for ground water; (g) Element analysis, such as forenesic (as in hair), biology
(elements in blood cells) and archaeology (provenance via isotope ratios).

1.2 From cgs-Gaussian to natural unit system

We use natural units [~, c, eV] (the Planck constant, speed of light, and electro-Volt) for angular
momentum, velocity and energy to replace [g,cm,s] (gram, centmeter and second) for mass, length
and time [1]. So any quantities in the cgs unit can be expressed as gacmbsc, and in the natural unit
it can be expressed by ~αcβeVγ .

For electromagnetic phenomena, there are several unit system, here we will use cgs-Gaussian
units, in particular, the unrationalized Gaussian units (not Lorentz-Heaviside ones). We will explain
it in more details. In dealing with thermal phenomena, we have an additional unit kB (Boltzmann
constant) in the natural unit or equivalently K (Kelvin) in the cgs unit. The relations between two
systems of units are given by

1 c = 3× 1010 cm · s−1

1 ~ = 1.05× 10−27 g · cm2 · s−1

1 eV = 1.6× 10−12 g · cm2 · s−2

1 kB = 1.3806488× 10−16g · cm2 · s−2 ·K−1 (1.1)

5



CHAPTER 1. INTRODUCTION 6

From the above we can get the inverse relation

1 s = 1.52× 1015 ~ · eV−1

1 cm = 5.06× 104 ~ · eV−1 · c
1 g = 5.6× 1032 eV · c−2

1 K = 8.617× 10−5 eV · k−1
B (1.2)

Now we explain the feature of unrationalized Gaussian units in electromagnetics. In this unit
system, the Maxwell equations are written as

∇ ·E = 4πρ,

∇×B =
4π

c
j +

1

c

∂E

∂t
,

∇ ·B = 0,

∇×E = −1

c

∂B

∂t
, (1.3)

where the electric and magnetic �elds have the same unit. The inverse-square force laws are written
as

F =
q1q2

r3
r,

F =
1

c2

∫ ∫
I1dl1 × (I2dl2 × r)

r3
. (1.4)

We see that two of Maxwell equations (1.3) have the factor 4π while there is no such a factor in the
force laws. However in Lorentz-Heaviside units or rationalized Gaussian units, one can absorb 4π in
Maxwell equations by rede�ning �elds and charges. As a price there are 4π factors in the force laws.
The �elds and charges in two unit systems are related by

ELH =
1√
4π

Eunrat−Gauss,

qLH =
√

4πqunrat−Gauss. (1.5)

In nuclear physics, the unit for thermal system is not used very often. So we stick to the unit
[~, c, eV] or [g,cm,s] for convenience. From the relations in Eq. (1.1) we can derive following useful
conversion factors

~c = 197 MeV · fm
e2 ≈ 1

137
~c (1.6)

We have e2 ≈ 1/137 in unrationalized Gaussian units. In contrast this relation becomes e2/(4π) ≈
1/137 in rationalized Gaussian or Lorentz-Heaviside units.

In the cgs-Gaussian units, the charge is in the electrostatic unit (esu) which can be determined
from the Coulomb law

F =
q2

r3
r→ esu2 = g · cm · s−2 × cm2 = g · cm3 · s−2

→ esu = g1/2 · cm3/2 · s−1 (1.7)

We know that the Coulomb force law in the SI system has the following form

F =
1

4πε0

q2

r3
r (1.8)
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where ε0 = 8.8542 × 10−12 C2N−1m−2 and the charge unit is Coulomb (C). We can determine the
conversion rule for C to esu. In the SI system, we have q = 1 C and r = 1 m, then the force is
F = 8.99 × 109 N. In the unrationalized Gaussian units, we have q = 1 esu and r = 1 cm, then the
force is F = 1 dyn = 10−5 N. Comparing two units, we obtain 1 C = 3× 109 esu. An electron carries
the charge

1 e = 1.602× 10−19 C = 4.8× 10−10 esu (1.9)

In the SI system, the unit of the electric �eld is Volt/m = N/C, while in the unrationalized Gaussian
units, the electric and magnetic �elds have the same unit: Gauss (G). So we have

1 Gauss =
dyn

esu
= g1/2 · cm−1/2 · s−1

1 Volt = 1 N ·m/C =
107 dyn · cm

3× 109 esu

=
1

3
× 10−2esuVolt

esuVolt = g1/2 · cm1/2 · s−1 (1.10)

where we have the static Volt unit: esuVolt. Then we obtain 1 eV = 1.6 × 10−12 g · cm2 · s−2, the
third line of Eq. (1.1). Also we obtain

e2 = 2.304× 10−19 esu2 = 2.304× 10−19 g · cm3 · s−2

~c = 3.15× 10−17 g · cm3 · s−2 (1.11)

which give the second line of Eq. (1.6). We can express ~c by

~c = 3.15× 10−17 (g · cm2 · s−2) · cm

= 3.15× 10−4(g · cm2 · s−2) · fm
= 197 MeV · fm (1.12)

which is the �rst line of Eq. (1.6).
In summary, the quantity with the dimension [D] = gacmbsc = ~αcβeVγ gives following relations

α = b+ c

β = −2a+ b

γ = a− b− c (1.13)

In natural unit, we take
~ = c = kB = 1 (1.14)

Now we can convert some quantities in natural units. For electric and magnetic �elds in cgs units,
we have

1 Gauss = g1/2 · cm−1/2 · s−1

= 6.92× 10−2 (~c)−3/2 · eV2 (1.15)

We can convert the proton and neutron masses in cgs unit to natural unit.

mp = 1.672621× 10−24 g = 938.27 MeV · c−2

mn = 1.674927× 10−24 g = 939.57 MeV · c−2 (1.16)

Here is an example involving another natural unit kB. The shear viscosity is de�ned by F = ηA dv
dx and

entropy density is de�ned as thermal energy sV T . Their dimensions are determined from knowns,

[η] = [g · cm−1 · s−1]

[s] = [cm−3 · kB] (1.17)
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Table 1.1: Conventions for notations.
Symbols Physical Quantities
J, JA (1) Total angular momentum quantum number; (2) Nuclear spin quantum number
J,JA (1) Total angular momentum; (2) Nuclear spin
L Orbital angualr momentum quantum number
L Orbital angualr momentum
M (1) Atomic mass of an element; (2) Quantum transition amplitude;

(3) Orbital angualr momentum quantum number along one particular direction
S (1) Spin quantum number; (2) S-matrix; (3) S-factor in WKB approximation;

(4) Area in coordinate space
m (1) Nuclear mass; (2) Nucleon mass

x, r 3-dimensional coordinates space points
x, r Modula of 3-dimensional coordinate space points, x = |x|, r = |r|
xi, ri Three components of coordinates space points, i = 1, 2, 3
R Nuclear radius
q Particle charge
e Electric charge of a proton
Q (1) Electric quadrupole; (2) Q-value
µ Magnetic moment
g (1) g-factor in magnetic moment; (2) Coupling constant

k,p 3- dimensional momentum
k, p Modula of 3-dimensional momentum, k = |k|, p = |p|
A Nucleon number in a nucleus
Z Proton number in a nucleus
N (1) Neutron number in a nucleus; (2) Particle number;

(3) Quantum number in harmonic oscillator
n (1) Radial quantum number; (2) Occupation quantum number; (3) Particle number
E Electric �eld
B Magnetic �eld
A Electromagnetic vector potential
E Energy
B Binding energy

So the ration η/s has the dimension

[η/s] = [g · cm2 · s−1 · k−1
B ] = ~ · k−1

B (1.18)

1.3 Conventions

We list conventions for notations as follows. All superscripts or subscripts standing for texts in
mathematical expressions are shown in roman letters, those standing for variables are shown in
normal mathematical mode.
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Exercise 1. Unit transformation. Shear viscosity is a measure of the resistance of a �uid
when it is deformed by shear stress, often denoted as η. Entropy density is the entropy
per unit volume, denoted as s. Please try to express the unit of η/s in terms of ~ and
kB, with ~=h/2π the reduced Planck constant, and kB the Boltzmann constant. [Note: In
International System of Units, the unit of η is Pascal·Second.]

Exercise 2. Nuclear magneton. Convert the nuclear magneton in the natural unit µN = e
2mp

to the unit of Hertz/Tesla, where e is the electric charge of the proton in unit of Coulomb,
and mp is the proton mass.

Exercise 3. Given 1 Volt = esuVolt× 1
3 × 10−2, calculate e2/(~c).



Chapter 2

Properties of Nuclei

The static properties such as the charge, radius, spin, magnetic moment, electric qaudrapole etc. are
basic properties of nuclei. The dynamic properties include the structure and decay of nuclei.

2.1 Discover atomic nucleus

The beginning of particle and nuclear physics started from Rutherford's alpha scattering experiments,
which was the �rst experiment where a microscopic particle was shooted as projectiles into another
microscopic particle as target to detect the content of the target particle. This is the prototype of
modern particle and nuclear physics experiments.

To quote Rutherford in his original paper, "By means of a diaphragm placed at D, a pencil of
alpha particles was directed normally on to the scattering foil F. By rotating the microscope [M] the
alpha particles scattered in di�erent directions could be observed on the screen S."

To quote Rutherford, "I had observed the scattering of alpha-particles, and Dr. Geiger in my
laboratory had examined it in detail. He found, in thin pieces of heavy metal, that the scattering
was usually small, of the order of one degree. One day Geiger came to me and said, "Don't you think
that young Marsden, whom I am training in radioactive methods, ought to begin a small research?"
Now I had thought that, too, so I said, " Why not let him see if any alpha-particles can be scattered
through a large angle?" I may tell you in con�dence that I did not believe that they would be, since
we knew the alpha-particle was a very fast, massive particle with a great deal of energy, and you
could show that if the scattering was due to the accumulated e�ect of a number of small scatterings,
the chance of an alpha-particle's being scattered backward was very small. Then I remember two
or three days later Geiger coming to me in great excitement and saying "We have been able to get
some of the alpha-particles coming backward . . . " It was quite the most incredible event that ever
happened to me in my life. It was almost as incredible as if you �red a 15-inch shell at a piece of
tissue paper and it came back and hit you."

The Rutherford alpha scattering experiment proved that in the center of an atom locates its hard
core called nucleus with positive charge due to the large angle scatterings.

In 1932, Chadwick found neutron by bombarding Beryllium with α particles to produce Carbon-
12, 4

2He+9
4Be→ 12

6 C+n. He was awarded the Nobel prize later in 1935 for this discovery. Heisenberg
proposed that a nucleus is made of protons and neutrons. This marked the birth of nuclear physics.

A Nucleus is labeled by A
ZXN (in simple version, poeple also use A

ZX or AX), where X is the
name of the nucleus, A is the number of proton and neutrons A = Z +N , with Z/N the number of
protons/neutrons. A nuclide is the nucleus with speci�c proton and neutron number. Isotope is the
nuclide with the same Z but di�erent N , isotone is that with the same N but di�erent Z. Isobar:
the same A but di�erent Z.

Atomic mass unit is de�ned as 1/12 of the mass of 12
6 C, i.e. N−1

A ·gram where NA = 6.022142×1023

10
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Figure 2.1: Rutherford alpha scattering experiments.

Source

Collimator

 particleα

Thin Au foil

Detector

θ

is the Avogadro constant. Atomic unit is

1 u = 1.66× 10−27 kg = 931.494 MeV/c2, (2.1)

where

1 eV = 1.6022× 10−19 J = 1.78× 10−36 kg · c2
1 GeV = 1.6022× 10−10 J = 1.78× 10−27 kg · c2 (2.2)

The proton and neutron mass are

mp = 1.007276 u = 938.27 MeV/c2

mn = 1.008665 u = 939.57 MeV/c2 (2.3)

The nucleus mass can be measured by mass spectrometer. Often the material is heated to produce
an atomic vapor. Then the electron beam in transverse direction are used to strip the electrons out
of the atoms to make them ions. These ions are accelerated by an electric �eld and then pass through
an area with a magnetic �led exerted in upward direction perpendicular to the ion velocity. These
ions are then bent in a circular motion and some �nally enter the detector, see Fig. 2.4. Those ions
that pass through the magnetic zone to enter the detector satisfy qv|B| = mv2/R, where q, v,m,R
are the charge, circulating velocity, mass and radius of the circle the particle moves, respectively.
Then we can get the mass from m = qR|B|/v.

The Segre chart is the chart for nuclides in Z versus N . For light nuclei, we have Z ∼ N , but for
heavier nuclei, we have Z < N .

2.2 The size and density distribution of nucleus

A nucleus is a collection of protons and neutrons which can be regarded as a bulk of nuclear matter.
If the nucleus is treated as a sphere, while the volume of a nucleus is proportional to the number of
nucleons A, then the radius of the nucleus is in the form,

R = r0A
1/3, (r0 ≈ 1.2 fm) (2.4)

We can estimate the density of a nucleus. The number and mass densities are

n0 =
A

V
≈ A

(4/3)πr3
0A
≈ 0.138 fm−3 ≈ 1.38× 1038 cm−3

ρ0 = nmN ≈ 2.3× 1014 g · cm−3 (2.5)
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Figure 2.2: Chadwick found neutrons. The unknown particles carry no charges and has almost the
same mass as proton.

Po

Source

Be
9
 

α

neutron

C
12
 

target nuclei (H,He,N,...)

neutron

recoil particle

Actually it is not very precise to regard the nucleus as a sphere with a uniform density. The electron
scatterings tell us that a nucleus does not have a rigorous boundary but a surface with the width of
2-3 fm where the charge density gradually drops to zero. One can use the Woods-Saxon distribution
(or the Fermi distribution) to discribe the nuclear charge density,

ρ(r) =
ρ0

1 + exp[(r −R)/a]
(2.6)

where a ≈ 0.54 fm. The width of the surface t can be de�ned by the criterion that the density drops
from 90% to 10% of ρ0,

t ≈ 4.4a ≈ 2.4 fm (2.7)

One can introduce the angular dependence of the radius R(θ) to describe the non-spherical shapes of
the nuclei,

R(θ) = R0[1 + β2Y20(θ) + β4Y40(θ) + · · · ] (2.8)

where only even numbers l appear in spherical harmonic functions Yl0.

2.3 Spin and magnetic moment

Any microscopic particles have angular momenta. If they contain charged constituents they also have
magnetic moments. Here is the classical picture for magnetic moment. When a charged particle has
orbital angular momentum it must have a magnetic moment. Suppose it carries a charge q and move
in a circle with radius r and velocity v. Then its angular momentum is L = mvr. The magnetic
moment is the area times the current, µ = πr2 qv

2πr = q
2mL.
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Figure 2.3: Chart of Nuclide [see, e.g. �http://atom.kaeri.re.kr/ton/nuc8.html� and
�http://nsspi.tamu.edu/media/878612/img1.jpg�]
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Figure 2.4: Mass spectrometer.

Figure 2.5: The nuclear density distribution.
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Figure 2.6: Elastic electron scattering of the charge distribution of 16O, see Fig. 1(A) and Fig. 5 of
Ref. [23].
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Now let us consider the Maxwell equations (1.3) for magnetostatics,

∇×B = 4πj,

∇ ·B = 0. (2.9)

Using B = ∇×A, we obtain
∇(∇ ·A)−∇2A = 4πj. (2.10)

We impose Coulomb gauge condition ∇ ·A = 0 and the above becomes

∇2A = −4πj, (2.11)

whose solution is

A(r) =

∫
d3r′

j(r′)

|r− r′| (2.12)

We can make expansion of the integrand for r = |r| � r′ = |r′|,

1

|r− r′| =
1

r
− r′i ∂i

1

|r− r′|

∣∣∣∣
r′=0

+ · · · = 1

r
+ r′i

ri
r3

+ · · · (2.13)

Then Eq. (2.12) becomes

A(r) =
1

r

∫
d3r′j(r′) +

ri
r3

∫
d3r′r′ij(r

′) + · · ·

=
ri
r3

∫
d3r′r′ij(r

′) + · · · (2.14)

where the �rst term is vanishing
∫
d3r′j(r′) = 0. This can be shown by using ∇ · j = 0 and

0 =

∫
d3r′∇′ · (r′ij) =

∫
d3r′(ji + r′i∇′ · j)

=

∫
d3r′ji (2.15)

We can also have the following identity for j,

0 =

∫
d3r′∇′ · (r′ir′kj) =

∫
d3r′(r′kji + r′ijk + r′ir

′
k∇′ · j)

=

∫
d3r′(r′kji + r′ijk) (2.16)

Then we can re-write Eq. (2.14) as

A(r) = −ek
ri

2r3

∫
d3r′[r′kji(r

′)− r′ijk(r′)]

= −ek
1

2r3
εkilri

∫
d3r′[r′ × j(r′)]l

= − 1

r3
r× µ (2.17)

where the magnetic moment is de�ned by

µ =
1

2

∫
d3r′r′ × j(r′) (2.18)
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If we consider a system of charged particles, the current density is given by

j(r) =
∑
i

qiviδ(r− ri) (2.19)

where ri and vi are position and velocity of the particle i. Then the magnetic moment in Eq. (2.18)
can be re-written as

µ =
1

2m

∑
i

qi

∫
d3r′(r′ × pi)δ(r− ri)

=
1

2m

∑
i

qiLi (2.20)

where Li = ri × pi is the oribital angluar momentum for the particle i.
The quantum origin of the magnetic moment can be seen as follows. When a charged particle is

placed in an external magnetic �eld, its kinetic energy term is modi�ed to

p2

2m
→ (p− qA)2

2m
→ (−i∇− qA)2

2m

→ iq(∇ ·A + A · ∇)

2m
=
iq

m
A · ∇

= − iq

2m
(r×B) · ∇ =

iq

2m
B · (r×∇)

= − q

2m
B · L, (2.21)

where the vector potential A is related to the constant magnetic �eld B by

A = −1

2
r×B (2.22)

One can verify

(∇×A)k = −1

2
εijk∂i(r×B)j = −1

2
εijkεlsj∂i(rlBs)

=
1

2
(δilδks − δisδkl)Bs∂irl

=
1

2
Bk∂iri −

1

2
Bi∂irk = Bk

∇ ·A = ∂iAi = −1

2
εijkBk∂irj = 0 (2.23)

One can de�ne the orbital magnetic moment from Eq. (2.21),

µL =
q

2m
L (2.24)

so that the magnetic energy due to orbital angular momentum is

HL = −µL ·B (2.25)

The spin magnetic interaction can only be derived from the Dirac equation,

HS = −µS ·B (2.26)

where
µS = g

q

2m
S (2.27)
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with the factor of g and the spin S of the particle. We see that a non-zero spin always gives a non-zero
magnetic moment. For electrons with q = −e, where e is the charge modula of the electron, we have
ge = 2 following the Dirac equation.

We know that nucleons have magnetic moments,

µp = gpµNSp, gp = 5.586

µn = gnµNSn, gn = −3.82 (2.28)

where µN ≡ e/(2mp) is the nuclear magneton for nucleons with the proton mass mp, Sp = Sn = 1/2.
The value of the nuclear magneton is,

µN =
1/
√

137

2× 938.3
MeV−1 = 4.55× 10−11 eV

eV2

≈ 4.55× 10−11 × 1.05184× 1014 (s−1 · gauss−1)

≈ 4.79× 103 s−1 ·Gauss−1 = 4.79× 107 Hz · T−1. (2.29)

Here we express eV in s−1 by Eq. (1.2) and eV2 by Eq. (1.15) and then set to the natural unit. The
nuclear magneton can also be expressed in 0.105 e · fm. Normally people use the maximum value of
the magnetic moment for a particle in unit µN, for example, the magnetic moments of proton and
neutron are 5.586/2 = 2.793 and −3.82/2 = −1.91. Note that the magnetic moment of the neutrons
has the same sign as the electrons. The non-zero magnetic moment of the neutrons indicates an
inhomogeneous charge distribution. We know that a nucleon is composed of three constituent quarks,
so its magnetic moment can be given by those of three quarks.

The nucleus behaves as a single entity with an angular momentum JA, which is referred to as the
nuclear spin and is a vector sum of those of all constituent nucleons,

JA =
∑

i=1,··· ,A
(Li + Si) (2.30)

A nucleus has a magnetic moment which is proportional to its spin,

µA = gAµNJA (2.31)

with gA the g-factor for the nucleus. There are pairing forces in the nucleus to make two nucleons
coupled so that their spins and oribital angular momenta add up to zero. So the paring nucleons do
not contribute to magnetic moments. We only need to count a few valence nuclones. This makes the
magnetic moments of heavy nuclei much smaller than expected. Actually there are no nuclei whose
magnetic moments exceed 6µN.

Generally for even-A (even-even and odd-odd) nuclei, nuclear spin is an integer since the angular
momentum of each nucleon is a half integer and there are even number of nucleons, while for odd-A
nuclei, the nuclear spin is a half-integer. If we consider the shell structure and pairings, for even-even
nuclei, we have JA = 0 due to spin-0 pairings of every two protons or neutrons. For even-odd nuclei,
JA is determined by the unpaired nucleon. For odd-odd nuclei, JA is an integer and is determined
by unpaired nucleons. For example, the JA of 13C and 13N are 1/2, the spin is determined by the
nucleon outside the fully occupied shell. For nuclei with A > 10, nuclear spins come from J · J
couplings of constituent nucleons, i.e. J =

∑
i=1 Ji where Ji = Li+Si. For nuclei with A < 10, there

are LS couplings, J = L + S where L =
∑
i Li and S =

∑
i Si.

The nucleus magnetic moment can be measured by exerting an external magnetic �eld, the asso-
ciated energy is

E = −µA ·B = −gAµNMAB (2.32)

where MA = −JA,−JA + 1, · · · , JA − 1, JA. The energy di�erence of the neighboring levels is

∆E = gAµNB (2.33)
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Figure 2.7: Nuclear magnetic resonance imaging.

If the magnetic �eld oscillates with a high frequency which satis�es

2πν = ∆E (2.34)

there is a strong resonance absorption or emission. This phenomenon is called nuclear magnetic
resonance (NMR), and the frequency ν is called resonance frequency. This energy is at about 60-
1000 MHz in the range of VHF and UHF in television broadcasts. NMR allows the measurement of
magnetic properties of atomic nuclei in molecules, crystals, and non-crystalline materials and becomes
a useful tool for condensed matter physics and material sciences. There are two gradients in NMR,
one is the constant magnetic �eld exerting on the sample to align the nuclear spin, another one is
the electromagnetic pulse at radio frequency to produce perturbation of this alignment. At he NMR
frequency, there are nuclei which can be excited to the higher energy level by resonance absorption
and �ip their spins. After the electromagnetic pulse, those nuclei on the higher energy level can jump
back into the thermal state and emit photons at the same frequency. By analyzing the radiation
spectrum captured, we can build up a picture of the nuclear distribution.

Use this property for protons to make image of living tissues is called magnetic resonance imaging
(MRI). The MRI technology was developed in 1973. Most substance of human body is water whose
molecule has two hydrogen nuclei or protons. When a constant magnetic �eld of the scanner is
exerted onto the body, the alignment of magnetic moments of these protons in the direction of the
�eld will take place. An oscillating electromagnetic �eld is then turned on at resonant frequency, and
the protons will absorb or emit the electromagnetic quanta to �ip their alignment relative to the �eld.
When the �eld is switched o� they go back to their original ground state or magnetization alignment
in the constant magnetic �eld. By measuring the signal from the alignment changes people can build
up an image of the body. The position of the body can be located by using gradient magnetic �eld
so the resonant frequency depends on the position. By analytzing signals of di�erent frequency one
can know where the signals are from the body. Diseased tissue, such as tumors, can be identi�ed
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from the di�erent rates at which the tissue protons return to their equilibrium state. One can make
images of di�erent organs by the contrast between di�erent types of body tissue.

The resonance phenomenon for protons was demonstrated in 1946 by F. Bloch and E. M. Purcell
who were awarded the Nobel Prize in Physics in 1952. Further signi�cant discovery in magnetic
resonance led to two Nobel Prizes in Chemistry and one in Physiology or Medicine: R. Ernst (1991,
Chemistry), K. Wüthrich (2002, Chemistry), and P. C. Lauterbur and P. Mans�eld (2003, Physiology
or Medicine).

Exercise 4. We know that the nuclear magneton is de�ned by µN = e
2mp

in natural unit,

try to �nd its form in the cgs unit. [Hint: in accordance with the interaction energy from
the magnetic moment we can determine the real unit of the nuclear magneton. ]

2.4 Parity

Parity is one of the property of the wave function for a particle under spatial reversion r→ −r,

Pψ(r) = ψ(−r),

where P is the parity operator satisfying P 2 = 1. So the eigenvalue of P is either +1 or −1, i.e.
Pψ(r) = ±ψ(r), corresponding to the even or odd parity. For a particle moving in a central potential,
the wave function is written in the form,

ψ(r, θ, φ) = R(r)YLM (θ, φ),

where YLM (θ, φ) are spherical harmonics. Under spatial reversion θ → π−θ and φ→ φ+π, YLM (θ, φ)
transform as

YLM (θ, φ)→ YLM (π − θ, φ+ π) = (−1)LYLM (θ, φ)

So the parity corresponding to the orbital angular momentum is (−1)L.
Now we turn to the nuclear parity. The orbital parity of a single nucleon in the central potential

is (−1)L. The intrinsic parity of nucleons is +1. Suppose a nucleon moves in the potential formed
by other nucleons, we can obtain its wave function and then its parity. If we know the wave function
of each nucleon we could determine the parity of the nucleus by the product of the parities of all
nucleons. But in practice this is impossible. Like the nuclear spin, we regard the parity as an overall
property of the nucleus. The nuclear parity can be measured by the decay products of the nucleus.
We can denote the parity of a nucleus by JP where J denotes the nuclear spin and P the parity.

2.5 Electric multipole moment

The charge distribution of any charged systems can be described by electric multipole moments. The
lowest multipole moment is monopole moment, followed by the dipole and quadrupole ones. The
multipole expansion is a useful tool to describe the electromagnetic �eld of a remote source. Now we
consider electric multipole moments. Consider the electric potential from an electric source ρ(r′),

φ(r) =

∫
d3r′

ρ(r′)

|r− r′| (2.35)

which satis�es Poisson equation
∇2φ(r) = −4πρ(r) (2.36)

because

∇2 1

|r− r′| = −4πδ(r− r′) (2.37)
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Figure 2.8: Multipole expansion.
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We de�ne r = |r|. If r � r′, we can expand

1

|r− r′| =
1

r
− r′i ∂i

1

|r− r′|

∣∣∣∣
r′=0

+
1

2
r′ir
′
j ∂i∂j

1

|r− r′|

∣∣∣∣
r′=0

+ · · ·

≈ 1

r
+ r′i

ri
r3

+
1

2
r′ir
′
j

3rirj − r2δij
r5

(2.38)

where we have used

∂i
1

r
= − ri

r3
, ∂i∂j

1

r
= −∂j

ri
r3

= −ri∂j
1

r3
− 1

r3
∂jri =

3rirj − r2δij
r5

(2.39)

Then the potential in Eq. (2.35) becomes

φ(r) =

∫
d3r′

ρ(r′)

|r− r′| =
Q

r
+
riDi

r3
+

1

2

rirjQij
r5

(2.40)

where

Q =

∫
d3r′ρ(r′)

Di =

∫
d3r′r′iρ(r′)

Qij =

∫
d3r′[3r′ir

′
j − r′2δij ]ρ(r′) (2.41)

There is restriction on multipole moments from the symmetry of the nucleus, namely the parity of
the nuclear state in quantum mechanical sense. Each electromagnetic moment has a parity depending
on its property under parity transformation. The parity of the electric mulipole moment is given by
(−1)L, the the magnetic mulipole moment is given by (−1)L+1, where L is the order of the moment.
In quantum mechanics, the moment can be obtained by the expectation value of moment operator Ô

on the nuclear wave function,
〈
Ô
〉

=
∫
ψ∗Ôψ ∼

∫
Ô|ψ|2. For electric dipole, the operator is Ô = r;
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for the magnetic moment, the operator is Ô = −ir × ∇. The parity of the wave function does not
in�uence the result, but the parity of the moment operator does. For Ô with odd parity, the integral
is vanishing. So we conclude that all electric/magnetic moments of the odd/even order are vanishing.
So a nucleus does not have eletric dipole moment and magnetic quadrupole moment. This fact has
been veri�ed by experiments.

The next non-vanishing moment is the electric quadrupole moment. From Eq. (2.41), if the
nuclear is a sphere, we can clearly see that the dipole and quadrupole moments Di and Qij are zero.
For non-vanishing electric quadrupole moments, we consider the nucleus in ellipsoid, it has rotational
symmetry along z-axis, the length of the z-axis is 2c and the radius in xy-plane is a. The equation
for the ellipsoid is: (x

a

)2

+
(y
b

)2

+
(z
c

)2

≤ 1,

where we have a = b. We can parametrize the ellipsoid coodinates as x = aξ sin θ cosφ, y =
aξ sin θ sinφ, z = cξ cos θ, where ξ ≤ 1. In terms of (ξ, θ, φ), the volume element becomes d3r =
dxdydz = a2cdξdθdφξ2 sin θ. Then the quadrupole moment is diagonal Qij = Qiδij . Normally the
quadrupole moment is de�ned by Q ≡ Q3 and given by

Q =

∫
d3r(3z2 − r2)ρ(r) =

∫
d3r(2z2 − x2 − y2)ρ(r)

= 2
Z

V

(
1

5
c2V − 1

5
a2V

)
=

2

5
Z(c2 − a2) (2.42)

where we have used ∫
d3rz2 = a2c3

∫ 1

0

dξξ4

∫
dθ cos2 θ sin θ

∫
dφ

=
4π

15
a2c3 =

1

5
V c2∫

d3rx2 = a4c

∫ 1

0

dξξ4

∫
dθ sin3 θ

∫
dφ cos2 φ

=
4π

15
a4c =

1

5
V a2 (2.43)

Note that Q1 = Q2 = −Q/2. For spherical shape, the quadruple moment is vanishing, Q = 0; for
prolate or cigar-like shape, it is positive, Q > 0; for a oblate (discus-like) shape, it is negative, Q < 0.
So the quadruple part of the potential is

φ4(r) ≡ 1

2

rirjQij
r5

= −1

4

(x2 + y2 − 2z2)Q

r5
(2.44)

The deviation of the nuclear shape from a sphere is characterized by ε ≡ ∆R/R with R the radius
of the sphere with the same volume as the ellipsoid, then we have c = R(1 + ε) and a = R/

√
1 + ε

given by equating two volumes 4π
3 R

3 = 4π
3 a

2c. Inserting a and c back into Q in Eq. (2.42), we get

Q ≈ 6

5
ZR2ε ≈ 6

5
Zr2

0A
2/3ε (2.45)

The value of ε can be obtained by using the above formula and by measuring Q in experiments.
The electric quadruple moment can be measured by the violation of the separation rule in atomic
hyper�ne spectra. It can also be measured by the resonant absorption from the interaction between
the nuclear electric quadruple and electons outside the nucleus.

Table 2.1 shows the electric quadruple moments of some nuclides. The unit is barn which is
10−24 cm2. Usually the quadruple moment is about one tenth of electron-barn (eb) for nuclides with
A < 150 until it reaches about 2 for A > 150.
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Table 2.1: Some values of nuclear electric quadruple moments. Data from V. S. Shirley, Table of
Isotopes, Wiley, New York, 1978, Appendix VII.
Nuclide 2H 17O 63Co 63Cu 133Cs 161Dy 176Lu 209Bi
Q(eb) +2.88× 10−3 −2.578× 10−2 +0.40 −0.209 −3× 10−3 +2.4 +8.0 −0.37

Exercise 5. Electric quadrupole moment. Calculate the electric quadrupole moment of an
ellipsoid whose long axis is 2a and short axis is 2b. This ellipsoid is uniformly charged, and
the total electric charge is Q. [Hint: The volume of this ellipsoid is 4

3πab
2. ]

Exercise 6. From Table 2.1 and Eq. (2.45), determine ε for each nuclide.

2.6 The mass formula and binding energy

A nucleus is a bound state of protons and neutrons. The binding energy of a nucleus is de�ned as

B(Z,A) = Zmp + (A− Z)mn −m(Z,A) (2.46)

A nucleus can be regarded as an incompressible liquid drop which re�ects the satuaration property
of the nuclear force. According to the liquid drop model, the binding energy can be expressed by the
Weizsäcker's formula,

B(Z,A) = aVA− aSA
2/3 − aCZ

2A−1/3 − asymI
2A+ saPA

−1/2 (2.47)

where I = (N−Z)/A. Here aV ≈ 15.75 MeV is the volume energy, aS ≈ 17.8 MeV the surface energy,
aC ≈ 0.71 MeV the Coulomb energy, asym ≈ 23.3 MeV the symmetric energy, aP ≈ 12 MeV the
pairing energy. The sign of the surface energy is negative because the binding force of the nucleons
in the surface is weakened compared to those inside the volume. The Coulomb energy comes from
the static electric energy which is repulsive, so it is to decrease the binding energy. The symmetric
energy is a quantum e�ect. For the pairing energy, the coe�cient s is given by

s =

 1, even− even nuclei
0 odd A
−1 odd− odd nuclei

(2.48)

For the even-even nuclei are more stable becuase of the pairing of nucleons. See Table 2.2.
The volume energy is due to the short distance and satuation properties of nuclear force. If nuclear

force is between any pair of nucleons, the volume term would be proportional to A(A − 1)/2 ∼ A2.
The surface term is like the surface tension in liquid since a nucleus is like a liquid droplet. We know
the larger the droplet's surface, the less stable the droplet is. So the surface term is to reduce the
binding energy. The Coulomb term is from Coulomb energy of a charged sphere. With the constant
charge density ρC = Q

V where V = 4π
3 R

3 and Q = Ze, the electric potential inside a nucleus is

φ(r) =
Q

R
+

Q

2R3
(R2 − r2) (2.49)

So the Coulomb energy is

EC =
1

2

∫
d3rρCφ(r) =

3

5

Z2e2

R
≈ 3e2

5r0

Z2

A1/3
(2.50)
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Table 2.2: The binding energies per nucleon for some nuclei. The data are taken from Ref. [28].
3
1H 4

2He 5
2He 6

3Li 7
3Li 8

4Be 9
4Be 10

5 B 11
5 B

B/A (MeV) 2.8273 7.0739 5.4811 5.3323 5.6063 7.0624 6.4628 6.4751 6.9277
12
6 C 13

6 C 14
7 N 15

7 N 16
8 O 17

8 O 18
9 F 19

9 F 20
10Ne 21

10Ne
B/A (MeV) 7.6801 7.4698 7.4756 7.6995 7.9762 7.7507 7.6316 7.7790 8.0322 7.9717

Therefore aC = 3α
5r0
≈ 0.71 MeV with α = e2 = 1/137 = 1.44 fm ·MeV the �ne structure constant

and r0 ≈ 1.25 fm.
The binding energy for nuclei, Eq. (2.47), can be described by the model of the Fermi gas. We

now sketch the idea of this model. We consider a potential of a cubic box,

V (x) =

{
0, 0 < x1, x2, x3 < L,
∞, otherwise

(2.51)

One particle wave function under the periodic condition at the box boundaries is

ψ ∼ sin(k1x1) sin(k2x2) sin(k3x3)

where ki = 2πni
L for i = 1, 2, 3 with ni being integers. The eigen-energy is given by

E =
1

2m
(k2

1 + k2
2 + k2

3) =
1

2m

(2π)2

L2
(n2

1 + n2
2 + n2

3)

An eigenstate can be denoted by a 3-integers set (n1, n2, n3). The number of states for a given energy,
E ≡ k2

F/(2m) where kF is called the Fermi momentum kF, can be obtained by

n2
1 + n2

2 + n2
3 = 2mE

L2

(2π)2
= k2

F

L2

(2π)2

Nstate

L3
= dg

4

3
πk3

F

1

(2π)3
(2.52)

where dg is the degeneracy of each state, for a particle with spin 1/2, we have dg = 2. We see that
the density of states is proportional to k3

F.
Now we consider a nucleus as a system of nucleons in a volume. The nucleon number density is

related to the Fermi momentum kF,

ρ =
A

V
= dg

1

(2π)3

4π

3
k3

F =
dg

6π2
k3

F =
2

3π2
k3

F (2.53)

where dg = 4 is the degeneracy factor from the number of the spin states (2) and the isospin states (2).
Here we treat protons and neutrons as identical particles with di�erent isospins. From ρ = 0.16 fm−3,
we can determine kF = 1.36 fm−1 = 268 MeV. The corresponding kinetic energy is EF = k2

F/(2mN) ≈
38 MeV. The average kinetic energy per nucleon is then

E = dg
1

2π2ρ

∫ kF

0

dkk2 k2

2mN
=

3

5
EF ≈ 23 MeV (2.54)

When the numbers of protons and neutrons are not equal, the proton and neutron number densities
are

Z

V
=

1

3π2
k3

F,p =
1

2

(
kF,p

kF

)3
A

V
,
N

V
=

1

3π2
k3

F,n =
1

2

(
kF,n

kF

)3
A

V
(2.55)

where the degeneracy factors for protons and neutrons are the same dg = 2 accouting for two spin
states. Then the Fermi momenta for the protons and neutrons are given by

kF,p = kF

(
2Z

A

)1/3

, kF,n = kF

(
2N

A

)1/3

(2.56)
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The average kinetic energies are

E(I) =
1

π2ρ

(∫ kF,p

0

dkk2 k2

2mN
+

∫ kF,n

0

dkk2 k2

2mN

)

=
3

10
EF

[(
2Z

A

)5/3

+

(
2N

A

)5/3
]

=
3

10
EF

[
(1− I)5/3 + (1 + I)5/3

]
≈ 3

5
EF +

1

3
EFI

2 (2.57)

where I = (N − Z)/A. We can also obtain the surface energy after taking the boundary condition
into account, the nucleon number element is

dA = dg
L3

(2π)3
4πk2dk − 3dg

L2

(2π)2
2πkdk

= dg
V k2

2π2

(
1− π

2k

S

V

)
dk (2.58)

where the second term comes from three circle area corresponding to k1 = 0 (k2
2 +k2

3 ≤ k2
F) or k2 = 0

(k2
1 + k2

3 ≤ k2
F) or k3 = 0 (k2

1 + k2
2 ≤ k2

F). Here S = 6L2 and V = L3 are the surface area and
volume of the cube box with length L. Due to the wave function proportinal to sin k1x sin k2y sin k3z
all boundary states with ki = 0 have to be excluded. The average kinetic energy is

E =

∫ kF
0
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=
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8V kF

)
(2.59)

where we have treated the surface energy as a perturbation. The surface energy is then

ES ≈
3

5
EF

πSA

8V kF
= EF

9π

40r0kF
A2/3 ≈ 16.5A2/3 MeV (2.60)

The nuclear binding energies of all nuclei per nucleon are shown in Fig. 2.9, which is a benchmark
for how tight the nucleons are bound in nuclei. From the �rst three terms of the binding energy
in Eq. (2.47), we can estimate the most tightly bound nuclide by looking at the extrema point of
binding energy per nucleon,

∂

∂A

[
B(Z,A)

A

]
≈ ∂

∂A

(
−aSA−1/3 − aC

4
A2/3

)
= 0, (2.61)

which gives A ≈ 2aS/aC ≈ 51 roughly in agreement with the atomic numbers of iron or nickel. The
binding energies per nucleon are largest for nuclei with mediate atomic number and reach maximum
for iron nucleus 56Fe. So the splitting of heavy nuclei into lighter ones or the merging of lighter nuclei
into heavy ones can release substantial energy called nuclear energy by converting nuclear mass
di�erence of initial and �nal state nuclei to kinetic energy, following Einstein's mass-energy formula
E = mc2. The splitting and merging processes are called nuclear �ssion and fusion respectively.

Exercise 7. The nuclear binding energy can be expressed by

B(Z,A) = aVA− aSA
2/3 − aCZ

2A−1/3 − asymI
2A+ saPA

−1/2

where I = (N − Z)/A. Using the model of the fermion gas, determine the coe�cients aC,
aS and asym for Coulomb, surface and asymmetric energy respectively.
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Figure 2.9: The nuclear binding energy. From http://en.wikipedia.org/wiki/Nuclear_energy.

Exercise 8. Draw the binding energy per nucleon as a function of mass number as in Fig.
2.9 using data from the database NuDat2.6 of IAEA nuclear data services (https://www-
nds.iaea.org/).



Chapter 3

Radioactivity and nuclear decay

3.1 General property of radioactivity

Unstable nuclides will undergo spontaneously decays by emitting particles. The phenomenon is called
radioactivity. There two groups of elements or isotopes on the earth, one group were created by the
s-process or the r-process in stars, the other group were created in the big bang earlier than 4.5 billion
years ago. Most of lighter elements than lithium and beryllium belong to the �st group, they are
called primodial, meaning that they were created by the universe's stellar processes. All unstable
nuclides are subject to a series of radioactive decays (decay chains) untill they become stable. All
nuclides with their half-lives less than 100 million years on the earth almost disappear by radioactive
decays.

In addition to natually occuring radioactivity, we can also produce radioactive nuclei in laboratory.
The �rst experiment was �rst done by Irene Curie and Pierre Joliot in 1934. They used the α particles
to bombard aluminum to produce the isotope of Phosphorus 30

15P (Phosphorus-31 is stable) which
decay through positron emission with half-life of 2.5 min. For the discovery of arti�cially produced
radioactivity, the Joliot-Curie team won the Nobel prize in Chemistry in 1935. It is interesting to
note that Pierre and Marie Curie and Becquerel was also awarded Nobel prize in physics in 1903 for
their discovery of the natural radioactivity.

There are three main forms of radioactivities: (1) α decay. The nuclei emit α particles, i.e. the
Helium nuclei; (2) β decay, including β− and β+ decay for electron and positron emissions, and
electron capture (EC) where an orbital electron is captivated by a nucleus; (3) γ decay and internal
conversion (IC). In the γ decay, excited nuclei transits to the lower energy levels by emitting the
short wave length photons. In the internal conversion, nuclei transfer energy to the orbital electrons
directly.

The units for radioactivity are 1 Ci (Curie)=3.7× 1010 decays/s and 1 Bq(Becquerel)=1 decay/s.
The SI unit for radioactivity is Bq, but Ci is widely used. The activity is not a good quantity
to measure the radioactive strength for di�erent decays. For example, how can one compares the
strength of 1 µ Ci of γ decays with that of α decays? To this end, one can de�ne the exposure X
as the total electric charge Q on the ions produced by radiation in a given mass m of air, i.e. we
can de�ne X = Q/m. It measures the strength of the radiation in terms of its ability to ionize the
atoms in the medium into which it propagates. The traditional unit of the radiation exposure is
Roentgen (R), which is de�ned as ionization of 1 esu charge in 1 cm3 of air at 0◦C and 760 mm
pressure (m = 1.293× 10−3g), so we have

1 R =
1 esu

1.293× 10−3 g
= 2.58× 10−4 C/kg = 1.61× 1012e · g−1 (3.1)

where e is the charge (no sign) of the electron or proton, and we have used 1 C = 3 × 109 esu and
Eq. (1.9). From above one can see that 1 R is to produce 1.61 × 1012 electrons (ions) per gram or

27



CHAPTER 3. RADIOACTIVITY AND NUCLEAR DECAY 28

Table 3.1: (a) Quality factors or weighting factors for radiations. (b) Quantities and Units for
radiation.

(a)

Radiation type QF or WF

β, γ 1
p,n (∼keV) 2-5
p,n (∼MeV) 5-10

α 20

(b)

Quantity De�nition Traditional unit SI unit

Activity Decay rate 3.7× 1010 s−1, Curie (Ci) s−1, Becquerel (Bq)
Exposure Ionization in air esu/(0.001293g), erg·g−1 Coulomb/kg

Roentgen (R)
Absorption dose Energy absorption 100 erg·g−1, rad J·kg−1, Gray (Gy)
Dose equivalent Biological e�ectiveness 100 erg·g−1, rem J·kg−1, Sievert (Sv)

2.08× 109 electrons (ions) per cubic cm. On average, it costs about 34 eV energy to produce an ion
carrying one unit electron charge in the air. So the radiation exposure of 1 R in the air is equivalent
to energy absorption of 5.474× 1013 eV · g−1 = 88 erg · g−1.

The ionization by the γ ray depends on its energy. With about 34 eV to produce an ion in the
air, 1 MeV γ ray may produce 3×104 ions. To describe the energy absorption, one uses the absorbed
dose D de�ned as the energy deposited in the material by ionization. The unit for radiation absorbed
dose is rad, 1 rad = 100 erg/g. For radiation in the air, we have 1 R=0.88 rad. The SI unit of the
absorbed dose is Gray (Gy), de�ned as 1 Joule of energy absorbed in 1 kilogram of material. We
have 1 Gy=1 J/kg=100 rad.

In the above quantities, we have not yet considered the radiation e�ects on biological systems like
human body. For biological systems, the e�ects of the β and γ radiation are very di�erent from that
of α radiation. The energy absorption of the α particles per unit length is much more signi�cant than
that of β and γ radiation. To account for the e�ectiveness of radiation on biological systems, one
uses quality factor (QF) or weighting factors (WF) to measure the energy absorption of a given type
of the radiation per unit length. The QF of the β and γ radiation is set to 1. The QF of other types
of radiation can then be determined by comparing to the β and γ radiation. The e�ects of radiation
on biological systems depend on the quality factor and the absorption dose, so one de�ne the dose
equivalent (DE) as

DE = D ·QF (3.2)

The unit of DE is rem (Roentgen Equivalent Man) when D is in rad. In the SI unit when the unit
of D is Gray (Gy), the unit of DE is Sievert (Sv). We have 1 Sv=1 J/kg, and 1 Sv=100 rem.

The recommended safe dose for general public should be lower than 0.5 rem = 0.005 Sv per year.
The radioactive decay follows the power law,

dN

dt
= −λN

N(t) = N0e
−λt

t =

∫
dtte−λt/

∫
dte−λt = 1/λ

T1/2 = ln 2/λ (3.3)

where λ is the decay constant whose inverse gives the mean life t of the nuclei, T1/2 is the half-
life which is the time when the number of nuclei reaches half of its original value. For nuclei with
only one decay channel, they are identical. But for those with multiple channels they are di�erent.
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Figure 3.1: Type of nuclear decays in the nuclide chart. The scheme plots for alpha and beta decays
are shown.

Normally it is very hard to measure the number of nuclei to determine λ. It is easier to measure
A(t) = λN(t) = A(0)e−λt de�ned as the activity. One can read out λ from the plot of lnA(t) vs t.
This method is workable for nuclei of half-life which is not too long or not too short. For those nuclei
with very long half-lives we would not be able to observe substantial reduction of the activity. For
those nuclei with very short half-lives such as 10−6−10−12 s, one has to use other precise techniques.

Usually many nuclei have more than one decay channels. Suppose there are two decay ways for a
nuclide with λa and λb as decay constants respectively, the total decay rate is given by

dN

dt
= −N(λa + λb)

N = N0e
−(λa+λb)t (3.4)

We note that the only observable decay constant is λa+λb instead of each λa or λb alone. There is no
way to turn o� one and measure the other. We can generalize the above example to multi-channels
cases

dN/dt = −λN
N(t) = N0e

−λt (3.5)

where λ =
∑
i λi. The branching ratio for the channel i is given by Ri = λi/λ.

Sometimes we have to deal with nuclear production, e.g. in materials bombarded by proton or
neutron in reactors. The nuclei will capture a neutron or other charged particles to produce radioactive
nuclear species. The rate R depends on the number of target atoms N0, the �ux of incident particles
I and the reaction cross sections σ. We assume R is very small and N0 is a constant, which is valid
for most cases in accelerators or reactors, we have

R = N0σI (3.6)

Typically I is of order 1014 s−1cm−2 in reactors and the cross section is of few barns (10−24 cm2), so
we have R ∼ 10−10N0s−1, i.e only 10−10 of original nuclei are transmitted to radioactive nuclei. In
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presence of nuclear production, the nuclear activity follows the law

dN

dt
= R− λN

d(R− λN)

R− λN = −λdt

R− λN(t) = [R− λN(t0)]e−λt

N(t) =
1

λ
R(1− e−λt) +N(t0)e−λt

→ 1

λ
R, t→∞ (3.7)

We can consider the case N(t0) = 0, then we have

A(t) = R(1− e−λt)

≈
{
Rλt, t� t1/2
R, t� t1/2

(3.8)

We see the activity is linear in time for short time of bombardment and reach equilibrium for long
time.

For subsequent decay

N1
λ1−→ N2

λ2−→ N3
λ3−→

the decay rates are

dN1

dt
= −λ1N1

dN2

dt
= λ1N1 − λ2N2

dN3

dt
= λ2N2 − λ3N3 (3.9)

A general solution to Eq. (3.9) has the form,

N1 = a11e
−λ1t

N2 = a21e
−λ1t + a22e

−λ2t

N3 = a31e
−λ1t + a32e

−λ2t + a33e
−λ3t (3.10)

The initial conditions are assumed to be

a11 = N0

a21 + a22 = 0

a31 + a32 + a33 = 0 (3.11)

i.e. we assume that we only have A species at the initial time. Inserting the above solution into Eq.
(3.9) to determin aij , the second and third lines becomes

−a21λ1e
−λ1t = λ1a11e

−λ1t − a21λ2e
−λ1t

−a31λ1e
−λ1t − a32λ2e

−λ2t = a21λ2e
−λ1t + a22λ2e

−λ2t

−a31λ3e
−λ1t − a32λ3e

−λ2t (3.12)
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Then we get

a21 =
λ1

λ2 − λ1
a11

a22 = −a21

a31 =
λ2

λ3 − λ1
a21 =

λ1λ2

(λ3 − λ1)(λ2 − λ1)
a11

a32 =
λ2

λ3 − λ2
a22 =

λ1λ2

(λ3 − λ2)(λ1 − λ2)
a11

a33 = −a31 − a32 =
λ1λ2

(λ2 − λ3)(λ1 − λ3)
a11 (3.13)

Then Eq. (3.9) becomes

N1 = N0e
−λ1t

N2 = N0
λ1

λ2 − λ1
(e−λ1t − e−λ2t)

N3 = N0
λ1λ2

(λ3 − λ1)(λ2 − λ1)
e−λ1t +N0

λ1λ2

(λ3 − λ2)(λ1 − λ2)
e−λ2t

+N0
λ1λ2

(λ2 − λ3)(λ1 − λ3)
e−λ3t (3.14)

We can generalize the above case to any number of generations,

N1
λ1−→ N2

λ2−→ · · · λn−1−→ Nn
λn−→ Nn+1

λn+1−→
Assume that we already know all Nk (k = 1, · · · , n) which have the form

Nk = N0λ1λ2 · · ·λk−1

k∑
i=1

k∏
j 6=i

1

(λj − λi)
e−λit (3.15)

we can determine Nn+1 by

dNn+1

dt
= λnNn − λn+1Nn+1 (3.16)

We assume Nn+1 has the following form,

Nn+1(t) =

n+1∑
i=1

an+1,ie
−λit (3.17)

Inserting the above into Eq. (3.16) we obtain

−
n∑
i=1

an+1,iλie
−λit =

n∑
i=1

(λnan,i − λn+1an+1,i)e
−λit

→
−an+1,iλi = λnan,i − λn+1an+1,i

→
an+1,i =

λn
λn+1 − λi

an,i, i = 1, · · · , n (3.18)

From the initial condition, Nn+1(0) = 0, we can obtain an+1,n+1,

an+1,n+1 = −
n∑
i=1

an+1,i = N0λ1λ2 · · ·λn
n∏
i

1

λi − λn+1
(3.19)
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So we �nally get

Nn+1 = N0λ1λ2 · · ·λn
n+1∑
i=1

n+1∏
j 6=i

1

λj − λi
e−λit (3.20)

Assuming
∑n
i=1 an,i = 0, one can prove Eq. (3.19), this method is called mathematical induction

method. The trick for the proof is to replace an,1 in the last line of Eq. (3.18) with −∑n
i=2 an,i.

If we have
dN1

dt
' dN2

dt
=
dN3

dt
= · · · = 0 (3.21)

i.e. Ni (i = 1, · · · , n) are all constants in time, this means

λ1N1 = λ2N2 = λ3N3 = · · · (3.22)

In order for N1 to be nearly a constant in time, it is required that λ1 is very small. Then we have a
decay chain with a very long half-life isotope followed by shorter half-life isotopes as decay products.
This is called secular equilibrium.

There are about 200 or so stable nuclei in the universe, all decay chains end up there. Stable nuclei
have p/n ratios from 1 for light nuclei to about 0.7 for heavy nuclei like Pb. Any nuclei heavier than
Pb-208 are not stable, they will lose their weight mainly through alpha decays. Neutron-rich nuclei
normally adjust their high n/p ratio through beta decays. Sometime we call nuclei heavier than Pb
transuranics. For transuranic nuclei, there are only four types of decay chains, represented by A=4n,
4n+1, 4n+2, 4n+3. This is because they undergo the alpha decays in which their mass numbers
change by 4 and beta decays in which their mass numbers do not change but their proton/neutron
numbers increase/decrease by 1. Three of them start from long half-lives nuclei, U-238 (4n+2 series,
4.5 billion years), U-235 (4n+3 series, 700 million years) and Th-232 (4n series, 14 billion years),
known as natural decay chains. There are no natural decay chains of the 4n+1 series because there
are no natural nuclei with mass number of the 4n+1 type which have longer half-lives than the earth.
But arti�cially produced Np-237 have the decay chain of the 4n+1 series.
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Figure 3.2: The decay chain of thorium-232 (4n series). The energy released from Thorium to Pb-208
is 42.6 MeV. From wiki page about decay chain �http://en.wikipedia.org/wiki/Decay_chain�.
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Figure 3.3: The decay chain of Uranium-238 (4n+2 series). The energy released from Uranium-238 to
Pb-206 is 51.7 MeV. From wiki page about decay chain �http://en.wikipedia.org/wiki/Decay_chain�.
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Figure 3.4: The decay chain of Uranium-235 (4n+3 series). The energy released from Uranium-235 to
Pb-207 is 46.4 MeV. From wiki page about decay chain �http://en.wikipedia.org/wiki/Decay_chain�.
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Exercise 9. The Chernobyl disaster was a well-known nuclear accident of catastrophic
proportions that occurred at 1:23 a.m. on 26 April 1986, at the Chernobyl Nuclear Power
Plant in Ukraine (then in the Ukrainian Soviet Socialist Republic, part of the Soviet Union).
It is considered the worst nuclear power plant accident in history. The radioactive materials
were released immediately into the environment as radioactive dust. The most important
radioactive releases were: (i) Noble gases like radioactive isotopes of Kr and Xe in �ssion
products. Fortunately they do little harm to human body since once inhaled they are promptly
exhaled and so they do not remain in the body. (ii) 131

53 I that has 8.04 days half-life. Since it
is highly volatile it is readily released. When taken into the human body by inhalation or by
ingestion with food and drink, they can be transfered to the thyroid gland and cause thyroid
nodules or thyroid cancers. These diseases represent a large fraction of all health e�ects
predicted from nuclear accidents, but only a tiny fraction would be fatal. (iii) 137

56 Cs that
has 30.1 years half life. It decays mostly (94.6%) by emission beta particle with maximum
energy 0.512 MeV to a metastable nuclear isomer 137m

56 Ba, the rest 5.4% decays to the ground
state 137

56 Ba. 137m
56 Ba has a half-life of about 2.55 minutes by emissions of gamma rays with

energy 0.662 MeV. It does harm by being deposited on the ground where its gamma radiation
continues to expose those nearby for many years. It can be picked up by plant roots and
therefore get into the food chains. On May 2 of 1986, the main isotopes detected are (with
activity in Bq/m3 and half life)
Te-132 (18; 78.2 h) Ru-103 (4.5; 39.4 d)
I-132 (10.6; 2.3 h) Mo-99 (1.4; 6.02 h)
I-131 (8.5; 8.04 d) Te-129 (3.5; 33.6 d)
Cs-137 (4.3; 30.1 y) Ba-140 (2.3; 12.8 d)
Cs-134 (2.1; 2.04 y) La-140 (2.3; 40.2 h)
Cs-136 (0.6; 13.0 d)

(1) What is the total activity per cube meter at the time of the measurement and after 10
days? (2) Write the decay scheme plot for 137

56 Cs. (3) About 0.4 tons of 131
53 I were released

into the environment at the time of the accident, what's the radioactivity of 131
53 I at 11:00

a.m. on May 2 of 1986? [Hints: 1 Bq=1 decay/s]

3.2 Radioactive dating

Radiocarbon dating or carbon dating is a method to determine the age of carbonaceous materials up
to about 60,000 years using the radioactive isotope 14C. One use of carbon dating is to determine
the age of organic remains from archaeological sites. The idea is as follows. Carbon has two stable
isotopes 12C (98.9%) and 13C (1.1%) in atmosphere. There is a small portion of radioactive isotope
14C in atmosphere produced by collisions of neutrons from cosmic ray and 14N,

n + 14
7 N→ p + 14

6 C (3.23)

All 14C in atmosphere exists in the form of carbon dioxide CO2. The production rate of 14C can
be approximated as almost constant for thousands of years assuming that the �ux of the cosmic ray
does not vary much with time. The plants absorb 14C by photosynthesis. The abundance of 14C
in living plants maintains the same level as in atmosphere. When plants die or eaten by animals or
humans the density of 14C will not be in equilibrium with atmosphere but will decrease by decay. By
measuring the current amount of 14C and comparing with that in atmosphere one can determine the
age of plants, animals or humans after they die.

The decay channel of 14C is β-decay, 14
6 C → 14

7 N + e− + ν̄e, with half-life T1/2 = 5730 ± 40
years. There is one atom of 14C for 1012 atoms of 12C. We know that 1 g of carbon has about
NA/12 ≈ 5 × 1022 atoms of 12C and 5 × 1010 atoms of 14C, the radioactivity of 14C is estimated
as 5 × 1010 × ln 2/T1/2 ≈ 11.5 decays per minute. The atomic composition (mass composition) of
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Figure 3.5: Production of Carbon-14 in atmosphere.

carbon in a human body is about 12% (18%). Suppose a human has a weight of 60 kg, then he/she
has about 9× 10−10 mol of 14C in the body. So there are about 5.4× 1014 × ln 2/T1/2 ≈ 2.06× 103

decays of 14C in a second.
The carbon dating technique was developed by W. Libby and his colleagues at the University of

Chicago in 1949. The concept was �rst suggested by E. Fermi in a seminar at University of Chicago,
according to E. Segre. Libby was awarded Nobel prize in chemistry in 1960.

Exercise 10. Read the article and write a report: [C. B. Ramsey, �Radiocarbon Dating:
Revolutions in Understanding�, Archaeometry 50(2), 249-275(2008).]

3.3 α decay: strong interaction at work

Rutherford showed in his experiments in 1903 and 1909 that the α particles are actually Helium
nuclei. The α decay is one of the most important decays for heavy nuclei. Especially the decay chains
of naturally occuring nuclei involve only the α decay from strong interaction. The binding energy per
nucleon for a Helium-4 nucleus or an α particle is much larger than its neighbors (much more stable),
so it should be present in the heavy nuclear as clusters. In the binding energy formula of nuclei, the
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Coulomb term behaves as A5/3 while the volume term does as A. So for heavy nuclei, the Coulomb
repulsion e�ects increase rapidly and match or even exceed the volume e�ects. This makes the nuclei
unstable against cluster emission. The α decay is the most frequently occuring cluster decay.

The α-particles carry positive charges, so they can be measured by the spectrometer. The results
show that there is �ne structure in the energy spectra of the α-particles. They consist of some discrete
peaks indicating that the energies are almost discrete.

The α decay can be written as

A
ZX → A−4

Z−2Y +4
2 He (3.24)

Here X is the mother nucleus with the mass mX and Y the daughter particle with the mass mY .
The mass of the α-particle is mα. Their velocities are denoted vX , vY and vα. For the decay to take
place, the following decay energy must be satis�ed:

E0 = B(Z − 2, A− 4) +B(2, 4)−B(Z,A)

= mX −mY −mα

= (MX − Zme)− [MY − (Z − 2)me]− (MHe − 2me)

= MX −MY −MHe > 0 (3.25)

The decay energy can also be expressed in terms of binding energies

E0 ≈ −2
∂B

∂Z
− 4

∂B

∂A
+B(2, 4)

≈ 4aCZA
−1/3 − 4(aV −

2

3
aSA

−1/3 +
1

3
aCZ

2A−4/3) + 7.074× 4

≈ 4aCZA
−1/3 − 4

3
aCZ

2A−4/3 +
8

3
aSA

−1/3 − 4aV + 28.3

≈ 5

3
aCA

2/3 +
8

3
aSA

−1/3 − 4aV + 28.3 (3.26)

Inserting Eq. (2.47) into the above (we keep only the �rst three terms), we can get the decay energy
as a function of Z and A. We see that only when A > 100 is the positive decay energy possible. In
reality we have the positive decay energy when A > 140.

The momentum conservation leads to

vY = vα
mα

mY
(3.27)

The energy conservation is

E0 =
1

2
mαv

2
α +

1

2
mYv

2
Y = Eα

(
1 +

mα

mY

)
≈ Eα

A

A− 4
(3.28)

where Eα is the kinetic energy of the α-particle. The kinetic energy is related to the decay energy

Eα =
A− 4

A
E0 (3.29)

If A is very large, the kinetic energy is almost the decay one.
For example, the followings decay of polonium isotopes

210
84 Po → 206

82 Pb +4 He
212
84 Po → 208

82 Pb +4 He (3.30)
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Table 3.2: Comparison the Q-value of 210
84 Po (209.9829 u) in di�erent reaction channels. The unit is

MeV.

209
84 Po + n (208.9824,1.00867) u -7.6 205

82 Pb +5 He (204.9745, 5.01222) u -3.5
209
83 Bi +1 H (208.9804, 1.00783) u -4.96 204

82 Pb +6 He (203.9730, 6.01889) u -8.3
208
83 Bi +2 H (207.9797, 2.01410) u -10.15 204

81 Tl +6 Li (203.9739, 6.01512) u -5.7
207
83 Bi +3 H (206.9785, 3.01605) u -10.85 203

81 Tl +7 Li (202.9723, 7.016) u -5.03
206
82 Pb +4 He (205.9745, 4.0026) u 5.4

Figure 3.6: The potential for the α particles.
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can happen. We can check

M( 210Po) = 209.9829 u

M( 212Po) = 211.9889 u

M( 206Pb) = 205.9745 u

M( 208Pb) = 207.9766 u

M(4He) = 4.0026 u (3.31)

where 1 u=931.494027 MeV is the atomic mass unit, for example, the deuteron has 2.014 u. Then
the decay energies are

E0 = 209.9829− 205.9745− 4.0026 = 0.0058 u

≈ 5.4 MeV for 210Po

E0 = 211.9889− 207.9766− 4.0026 = 0.0097 u

≈ 9.03 MeV for 212Po (3.32)

All these masses can be found in NuDat at IAEA nuclear data services.
Before we deal with the α decay problem. We review the tunneling e�ect in quantum mechanics.

Suppose we have a potential V (r) which has only radial dependence. In spherical coordinates, the
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Hamiltonian reads,

Ĥ = −(1/2m)∇2 + V

= − 1

2m

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2

]
+ V (r)

= − 1

2m

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
− L2

r2

]
+ V (r) (3.33)

with L̂2 given by

L̂2 = −
[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
(3.34)

whose eigenfunctions are spherical harmonics Ylm(θ, φ) which satis�es

L̂2YLM (θ, φ) = L(L+ 1)YLM (θ, φ)

One can verify

[Ĥ, L̂2] = [Ĥ, L̂z] = 0 (3.35)

Because the operators {Ĥ, L̂2, L̂z} all commute to each other, the state can be labeled by quantum
numbers {n,L,M}, where n labels the energy level, L the angular momentum, M the projection to
the third axis. The wave function can be expanded by

ψ(k, r) =

∞∑
L=0

+L∑
M=−L

cLM (k)RLM (k, r)YLM (θ, φ) (3.36)

The Schrödinger equation is
Ĥψ = Eψ (3.37)

whose radial part reads

− 1

2m

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
− L(L+ 1)

r2

]
RL(k, r) + V (r)RL(k, r) = ERL(k, r) (3.38)

There is no dependence on the magnetic quantum number M , so RLM (k, r) is written as RL(k, r).
The above equation can be written as[

d2

dr2
+

2

r

d

dr
+ k2 − L(L+ 1)

r2
− U(r)

]
RL(k, r) = 0 (3.39)

where U(r) = 2mV (r). It is convenient to use

RL(k, r) =
uL(k, r)

r
(3.40)

to rewrite Eq. (3.39), [
d2

dr2
+ k2 − L(L+ 1)

r2
− U(r)

]
uL(k, r) = 0 (3.41)

If we consider the most simple case, l = 0, the above equation becomes similar to one dimensional
Schrödinger equation, [

d2

dr2
+ k2 − U(r)

]
u0(k, r) = 0 (3.42)
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Figure 3.7: Potential barrier.

Energy

potential

R1 R2 r

For simplicity of notation, we will suppress the subscript u0(k, r)→ u(k, r).
We consider a particle with energy E = k2/2m moving toward a potential barrier U(r), see Fig.

3.7. We denote the regions bounded by the classical turning points, r < R1, R1 < r < R2, and
R > R2, as I, II and III respectively. The regions I and III are classical allowed regions and the
region II is the classical forbidden region. The corresponding wave functions are denoted as u1(k, r),
u2(k, r) and u3(k, r), they satisfy the continuity conditions,

u1(k,R1) = u2(k,R1)

u′1(k,R1) = u′2(k,R1)

u2(k,R2) = u3(k,R2)

u′2(k,R2) = u′3(k,R2) (3.43)

Remember that we have suppressed the factor ~2 in front of the second order di�erential operator ∇2

in the Schrödinger equation since we use the natural unit. We can use the Wenzel-Kramers-Brillouin
(WKB) method to solve the one dimensional Schrödinger equation (3.41, 3.42). In the WKB method,
one assumes that the wave function has the following form,

u(k, r) = exp

[
i

~
S(r)

]
(3.44)

Substitute the above into Eq. (3.42) and make expansion of the equation in powers of the Planck
constant ~ or in the number of spatial derivatives, we can solve S(x) or the wave function order by
order. We assume S(r) can be expanded as

S(r) = S0(r) + (−i~)S1(r) + (−i~)2S2(r) + · · · (3.45)

Inserting Eq. (3.44) into Eq. (3.42), we derive

0 =

[
~2 d

2

dr2
+ k2 − U(r)

]
u(k, r)

= i~S′′(r) exp

[
i

~
S(r)

]
− [S′(r)]2 exp

[
i

~
S(r)

]
+[k2 − U(r)] exp

[
i

~
S(r)

]
(3.46)

Using Eq. (3.45), up to O(~) we obtain

[S′0(r)]2 = k2 − U(r)

S′′0 + 2S′0S
′
1 = 0 (3.47)
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Then we can solve

S0 = ±
∫
dr
√
k2 − U(r)

S′1 = −1

2
[lnS′0(r)]′

→
S1 = ln[k2 − U(r)]−1/4 (3.48)

Let's de�ne a new variable k̃ ≡
√
k2 − U(r). So the wave function has the form (we resume the use

of natural unit),

u(k, r) = exp [iS(r)] =
1√
k̃

exp

(
±i
∫ r

r0

drk̃

)
(3.49)

For the classically allowed region, i.e. k2 > U(r) or k̃ is real, the general form of the wave function is

u(k, r) =
C1√
k̃

exp

(
i

∫ r

r0

drk̃

)
+

C2√
k̃

exp

(
−i
∫ r

r0

drk̃

)
=

C ′1√
k̃

sin

(∫ r

r0

drk̃ + C ′2

)
(3.50)

where C1,2 and C ′1,2 are constants to be determined by the boundary and normalization condition.

For the classically forbidden region, i.e. k2 < U(r), k̃ in Eq. (3.49) is purely imaginary, so the wave
function has the following form,

u(k, r) =
C1√
|k̃|

exp

(
−
∫ r

r0

dr|k̃|
)

+
C2√
|k̃|

exp

(∫ r

r0

dr|k̃|
)

(3.51)

where C1,2 are constants to be determined by the boundary and normalization condition. One can
observe that the solution in the classically allowed region is oscillating while that in the forbidden
region is exponential. Note that at classical turning points, the points at which k2 = U(r), the WKB
solutions in Eqs. (3.50,3.51) are not valid since they are divergent.

Now we consider the boundary at r = R1 with the classically allowed region in the left-side and
the classically forbidden region in the right-side. The wave functions in the both sides have following
correspondence,

2√
k̃

sin

(∫ R1

r

drk̃ +
π

4

)
⇐⇒ 1√

|k̃|
exp

(
−
∫ r

R1

dr|k̃|
)

r < R1 r > R1 (3.52)

Note that the wave function in the left-side is the superposition of an incident and re�ection wave
with equal amplitude (we assume the loss from transmission is small),

sin

(∫ R1

r

drk̃ +
π

4

)
= −i exp

[
i

(∫ R1

r

drk̃ +
π

4

)]

+i exp

[
−i
(∫ R1

r

drk̃ +
π

4

)]
(3.53)

We can rewrite the right-side wave function in Eq. (3.52) as

1√
|k̃|

exp

(
−
∫ R2

R1

dr|k̃|
)

exp

(∫ R2

r

dr|k̃|
)

(3.54)
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The second factor has following correspondence to the wave function in the right side of the turning
point at r = R2,

exp

(∫ R2

r

dr|k̃|
)
⇐⇒ − exp

[
i

(∫ r

R2

drk̃ +
π

4

)]
r < R2 r > R2 (3.55)

With the factor in Eq. (3.54), we obtain the wave function in the region r > R2,

u(k, r > R2) = − 1√
|k̃|

exp

[
−
∫ R2

R1

dr|k̃|
]

exp

[
i

(∫ r

R2

drk̃ +
π

4

)]
(3.56)

So the transmission current is

j ∼ k̃|u(k, r > R2)|2 = exp

(
−2

∫ R2

R1

dr|k̃|
)

(3.57)

The transmission probability is then

P = exp

(
−2

∫ R2

R1

dr|k̃|
)

(3.58)

For the α decay, there are two forces in the nuclei, nuclear and Coulomb. We can assume the
nuclear and Coulomb forces reach balance for the α particles which can be treated as free inside the
nuclei. The potential for the α particles is

V (r) =

{ −V0, r < R
Z1Z2e

2

r , r > R
(3.59)

where Z1 = 2 and Z2 = Z. See Fig. 3.6. Let us estimate the height of potential barrier,

EB =
Z1Z2e

2

R
≈ 2Z × 1.44

1.2(A1/3 +A
1/3
α )

= 2.4
Z

A1/3 +A
1/3
α

≈ 27 MeV for 212
84 Po, (3.60)

where R ≈ 1.2(A1/3 +A
1/3
α ) = 9 fm.

One sees EB � E0. According to classical theory the α decay cannot escape. But in quantum
theory the penetration probability is given

P = e−G = exp

(
−2
√

2mα

∫ b

R

√
V − E0dr

)
(3.61)

where b = Z1Z2e
2

E0
. When b/R� 1,

G = 2
√

2mα

∫ b

R

√
Z1Z2e2

r
− E0dr = 4

√
2

√
mα

E0
Z1Z2e

2

∫ 1

ymin

√
1− y2dy

≈ 4
√

2

√
mα

E0
Z1Z2e

2

[∫ 1

0

√
1− y2dy −

∫ ymin

0

√
1− y2dy

]
≈ 4

√
2

√
mα

E0
Z1Z2e

2

(
π

4
−
√
R

b

)
= 2
√

2πZe2

√
mα

E0
− 8
√
e2mα

√
ZR

= 2
√

2π
1

137

√
3750

Z√
E0

− 8
√

3750/197/137
√
ZR

= 3.97
Z√
E0

− 2.98
√
ZR (3.62)



CHAPTER 3. RADIOACTIVITY AND NUCLEAR DECAY 44

where y ≡
√

r
b and ymin =

√
RE0

Z1Z2e2
=
√

R
b . We have used the �ne structure constant e2 = 1/137.

Obtaining the last line, we have used Z1 = 2, Z2 = Z, mα = 3750 MeV. In the last equality, R is in
unit fm and E0 is in MeV. The collision times per second for an α particle inside the nucleus is

n =
v

2R
≈
√

2Ek
mα

1

2R
≈ 3× 1021A−1/3E

1/2
k sec−1 (3.63)

where Ek = E0 + V0 is the kinetic energy of the α particle inside the nucleus in unit MeV. In
transforming the speed v from the natural unit to cgs one, we note that it has to times the speed of
light c. Then the average life for α decay is

τ =
1

λ
=

1

nP
≈ 3.5× 10−22A1/3E

−1/2
k eG (3.64)

We can take logarithm of above and obtain,

ln τ = a1 + a2
1√
E0

, (3.65)

where a1 = ln(3.5× 10−22A1/3E
−1/2
k )− 2.98

√
ZR and a2 = 3.97Z. Eq. (3.65) was �rst obtained as

an empirical law by Geiger and Nutall in 1911 and later con�rmed by quantum mechanics.
Let us estimate the half life of 210Po from α decay,

T1/2( 210Po) =
ln 2

λ
= ln 2× 3.5× 10−22A1/3E

−1/2
k eG

≈ ln 2× 3.5× 10−22 × 2101/3 × (5.4)−1/2 × exp(3.97× 84/
√

5.4− 2.98×
√

84× 9)

≈ 6.2× 10−22 × exp(61.6)

≈ 4.06 days (3.66)

T1/2( 212Po) ≈ ln 2× 3.5× 10−22 × 2121/3 × (9.03)−1/2

× exp(3.97× 84/
√

9.03− 2.98×
√

84× 9)

≈ 4.81× 10−22 × exp(29)

≈ 1.98× 10−9 s (3.67)

We can compare with the data, T1/2( 210Po) = 138.4 days and T1/2( 212Po) = 3× 10−7 s.
In the above simple model, we have made several approximations. (1) We have neglected the

in�uence of initial and �nal state wave functions. (2) we did not consider the angular momentum
of alpha particles. When the angular momentum is taken into account, there will be centrifugal

potential Vcent = L(L+1)
2mr2 which will modify the half life of alpha decay. (3) We used the nuclear

radius formula R = 1.2A1/3 fm, which is not correct for many heavy nuclei with strong deformation.
Since the half-lives are very sensitive to the nuclear radius, it becomes a method to measure the shape
of the nuclei through α decay half-lives.

The alpha decay is strong interaction which conserves parity. The parity of an alpha particle is
(−1)L where L is the quantum number of the orbital angular momentum. So parity conservation
requires the selection rule Pi = (−1)LPf , where Pi and Pf are the parity of the initial and �nal state
respectively.

A full description of alpha decay using time dependent quantum mechanics can be found in Ref.
[34, 35].

Exercise 11. Use the data at the IAEA nuclear data services [28] to draw the binding energy
per nucleon as a function of the number of nucleons in Fig. 2.9. Also draw the α particle
decay energy E0 in Eq. (3.25) as a function of the number of nucleons.
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Exercise 12. Calculate the half life of 238
92 U from emission of 4.2 MeV α-particles. One

assumes Ek ≈ E0.

Exercise 13. In the above we do not consider the angular momentum of alpha particles.

When the angular momentum is taken into account, the centrifugal potential Vcent = L(L+1)
2mr2

will modify the half life of alpha decay. Estimate its correction to T1/2( 210Po).

Exercise 14. A full description of alpha decay using time dependent quantum mechanics
can be found in Ref. [34, 35]. Read one of the articles and write a report of 2000 chinese
words.

Exercise 15. Calculate the α decay half-lives of thorium isotopes
(A=220,222,224,226,228,230,232) and compare to the experimental data.

Exercise 16. Consider the alpha decay A+4
Z+2X → A

ZY +α. The potential for the α particles
is

V (r) =

{ −V0, r < R
Z1Z2e

2

r , r > R

where Z1 = 2, Z2 = Z and R ≈ 1.2(A1/3 + A
1/3
α ). The kinetic energy of the alpha particle

is E0, from which we can determine classical turning point b = Z1Z2e
2

E0
. The transmission

probability for the alpha particle to go through the Coulomb barrier is

P = e−G = exp

(
−2
√

2mα

∫ b

R

√
V − E0dr

)

We assume b/R � 1. (1) Work out the integral to express P as a function of E0, Z and
R. (2) Write down the formula for the half-life of the alpha decay in terms of Ek = E0 +V0

and R.

3.4 β decay: weak interaction at work

In the α decay, when the recoil energy of the daughter nucleus is negligible, the energy of the α
particle re�ects its energy inside the mother nucleus. The energy spectrum is not continuous since
the α particle and the daughter nucleus form a quasi-bound state inside the mother nucleus and the
bound state energies form energy levels. Unlike the α decay, the energy spectrum of the β particle or
electron in the β decay is continuous ranging from the zero to the decay energy which is the energy
di�erence between the initial and �nal state. This poses a puzzle or a challenge for theorists. In
order to explain the continuous energy spectra in the β decay or the 'missing' energy Pauli proposed
the neutrino hypothesis, accompanying the emission of electrons is emitted a tiny particles called
neutrinos which escape the catch of the detector. Neutrinos are spin-one-half neutral particles with
very small mass. The β decay is then written as

A
ZX → A

Z+1Y + e− + νe (3.68)
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Figure 3.8: Beta minus decay. From http://en.wikipedia.org/wiki/Beta_decay.

as a three body decay. The electron anti-neutrino is denoted as νe. The simplest example is the
decay of neutron into proton accompanying emission of electron and neutrino [see Fig. 3.8],

n→ p + e− + νe (3.69)

From Table 6.1, we know that the neutron and proton masses are 939.56536 MeV and 938.27203
MeV respectively. The electron has rest mass 0.51 MeV. The mass di�erence between neutron and
proton plus electron is ∆m = mn −mp −me = 0.78 MeV. Then the Q-value of the neutron β-decay
is Q = ∆m−mν . The measured value of the maximal endpoint energy of the electron is about 0.78
MeV, so we conclude that the neutrino mass is very small.

Let us discuss all forms of the β decays in general sense. The �rst form is the β decay of electrons
in Eq. (3.68), whose decay energy is given by

E0 = mX(Z,A)−mY(Z + 1, A)−me

= MX(Z,A)−MY(Z + 1, A) (3.70)

where mX and MX are the nuclear and the atomic mass respectively. In order for the β decay to
occur, it is required that MX > MY.

The energy-momentum conservation for β decay in (3.68) reads

pe + pν + pY = 0

Ee + Eν + EY = E0 (3.71)

where E0 is the decay energy, Ei (i = e, ν,Y) are kinetic energies. Let us consider two extreme cases.
If pν = 0, we have

EY =
p2

Y

2mY
=

p2
e

2mY
≈ Ee(Ee + 2me)

2mY

E0 = Ee + EY ≈
Ee(Ee + 2me)

2mY
+ Ee ≈ Ee (3.72)

for Ee � mY. Here we have used for the kinetic energy E,

E =
√
p2 +m2 −m =

p2

2m
− 1

2m

(
p2

2m

)2

≈ p2

2m
− E2

2m
(3.73)

If pe = 0, then Ee = 0. We see that the energy of the electron is in the range between 0 and E0.
Neutrinos are neutral fermions with spin one-half and are almost massless. We can de�ne the

helicity for massless fermions, H = σ · p̂, see Fig. 3.10. Anti-neutrinos have positive helicity and are
right-handed meaning that their spins are along the momentum direction. Neutrinos have negative
helicity and are left-handed. Neutrinos rarely interact with other particles. The cross section of
neutrino-nucleus interaction is about σ ∼ 10−44 cm2. If the matter density is about n ∼ 1023 cm−3,
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Figure 3.9: Decay scheme for beta decay for Cobalt-60 and Gold-198. From
http://en.wikipedia.org/wiki/Decay_scheme.

Figure 3.10: Neutrino helicity.

momentum−direction
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Figure 3.11: The K-electron capture isotope 7
4Be, taken from Ref. [24].

the mean free path is about lmfp = 1/(nσ) ∼ 1016 km. Direct experimental tests of neutrinos are hard
to carry out. But there are some indirect evidences for their existence, for example, the beta particle
can be emitted at any angles with respect to recoiling nucleus. The measurement of the recoil energy
spectrum of an electron capture isotope is a good test of the single neutrino hypothesis. The kinetic
energy of the recoiling nucleus is

EY =
p2

Y

2mY
=

p2
ν

2mY
≈ E2

0

2mY
∼ MeV2

10, 000 MeV
∼ 100 eV (3.74)

We see that the recoil energy is very small. In order to enlarge the recoiling energy the light nuclei
are favorable. Davis Jr. measured the recoil energy of the process [24]

7
4Be + eK → 7

3Li + ν + 0.87 MeV (3.75)

which gave the expected result ER ∼ 56 eV.
The direct detection of neutrinos was made by F. Reines and C. L. Cowan in 1959 [25]. They

measured the cross section of the following process

ν + p → n + e+ (3.76)

The anti-neutrinos were emitted from a powerful �ssion reactor. They used 1400 liter liquid scintilla-
tion detector as the proton source, where a cadmium compound was added to the scintillator solution
mainly of triethylbenzene for the detection of the reaction by the delayed coincidence technique.
The positrons will annihilate with electrons emitting photons, while the neutrons are captured by
cadmium also producing photons.

The β decay of 3
1H put a more stringent limit on the neutrino mass,

3
1H→ 3

2He + e− + νe (3.77)

The atomic masses of 3
1H and 3

2He are 2809.431984 MeV and 2809.413284 MeV respectively. The
atomic mass di�erence between 3

1H and 3
2He is ∆m = MH−MHe ≈ 0.0186. The nuclear mass di�erence

between 3
1H and 3

2He + e− becomes ∆m = (MH −me) − (MHe − 2me) −me = MH −MHe ≈ 0.0186
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Figure 3.12: The anti-neutrino detector used by Reines and Cowan, taken from Ref. [25].
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MeV. The upper limit for neutrino mass is only about 18.6 KeV. The further study of momentum
spectrum of electrons gives an upper limit of only about 60 eV.

We provide two another examples for beta decays, Co-60 and Au-198, in Fig. 3.9. Co-60 is widely
used as radioactive source for radiotherapy. Co-60 mainly decay to two excited states of Ni-60 through
beta emission with a half life of 5.27 years. The excited states of Ni-60 emit two gamma rays with
energies at 1.1732 MeV and 1.33 MeV. The decay energies are 0.31 MeV and 1.48 MeV respectively.
For Au-198, it has three beta decay channels, to excited states of Hg-198 at 1.09 MeV and 0.41 MeV,
and to the ground state. The excited states decay to the ground state by emitting three gamma rays
of 0.68 MeV, 0.41 MeV and 1.09 MeV. The decay energies are 0.28 MeV, 0.96 MeV and 1.37 MeV
respectively.

The second form of beta decay is the β+ decay for positron emission,

A
ZX → A

Z−1Y + e+ + νe (3.78)

The decay energy is given

E0 = mX(Z,A)−mY(Z − 1, A)−me

= MX(Z,A)−MY(Z − 1, A)− 2me (3.79)

In order for the β+ decay to take place, one requires MX(Z,A) > MY(Z − 1, A) + 2me.
The third form of beta decay is the orbital electron capture (EC),

A
ZX + e−i → A

Z−1Y + νe (3.80)

where e−i is the electron in the i-shell. The decay energy is

E0i = mX +me −mY −Wi

= MX(Z,A)−MY(Z − 1, A)−Wi (3.81)

where Wi is the binding energy of the electron in the atom. The K-level electron capture takes place
with the largest probability, next to it is the L-level one. When

WK > MX(Z,A)−MY(Z − 1, A) > WL (3.82)

the K-level electron capture cannot happen but the L-level one can. Since 2me � Wi, the nuclei
which can β+ decay can also capture orbital electrons.

As an example, we look at the β+ decay and EC of Zn-65:

65
30Zn → 65

29Cu + e+ + νe

65
30Zn + e−i → 65

29Cu + νe (3.83)

The scheme plot is shown in Fig. 3.13. There are two EC channels, whose decay energies are 0.236
MeV (45%) and 1.34 MeV (53.5%). The decay energy of the β+ decay is 0.325 MeV. 64

29Cu is the
nucleus where all β−, β+ and EC can happen.

There are two kinds of double β decays, one with two neutrinos produced (ββ2ν) and another
without neutrinos ββ0ν.

A
ZX → A

Z+2Y + 2e− + 2ν, (ββ2ν)
A
ZX → A

Z+2Y + 2e−, (ββ0ν) (3.84)

The neutrinos in 2νββ are Dirac neutrinos for which anti-neutrinos and neutrinos are di�erent
fermions, those in 0νββ are Majorana ones for which anti-neutrinos and neutrinos are identical.
The neutrinoless double β deay (ββ0ν) is the combination of two processes,

n → p + e− + ν

ν + n → p + e− (3.85)
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Figure 3.13: β+ decay and electron capture of Zn-65.

No experiments so far have succeeded in proving that neutrinos are of Dirac or Majorana types. In β
decay, the �nal nucleus must have a larger binding energy than the initial nucleus. For some nuclei
the β decay cannot happen since the nucleus with one more proton and one less neutron has smaller
binding energy, the nucleus with two more protons and two less neutrons has larger binding energy
so that the double β decay can happen. Germanium-76 is an example, which can in principle decay
to selenium-76 via the double β decay. Here are isotopes which have been observed to have double β
decay: 48

20Ca,
76
32Ge,

82
34Se,

96
40Zr,

100
42 Mo, 116

48 Cd, 128
52 Te, 130

52 Te, 150
60 Nd, 238

92 U.

Exercise 17. Write down the reaction formula for the β and β+ decay for the nucleus A
ZX,

where the daughter nucleus is A′

Z′Y with A′ and Z ′ the nucleon and proton numbers. What
are conditions for these decays to take place? Express the conditions using the atomic masses
of X and Y .

Exercise 18. Write down the reaction formula for the ββ2ν and ββ0ν decay for the nucleus
A
ZX, where the daughter nucleus is A′

Z′Y with A′ and Z ′ the nucleon and proton numbers.
What is the di�erence in the electron energy spectra between the ββ2ν and ββ0ν decays?

Exercise 19. For following beta-type decays,

A
ZX → A

Z+1Y + e− + νe, (β)
A
ZX → A

Z−1Y + e+ + νe, (β+)
A
ZX + e−i → A

Z−1Y + νe, (EC)
A
ZX → A

Z+2Y + 2e− + 2νe, (ββ2ν)

Using atomic masses of X and Y to express the energy, what are the energy conditions for
the reactions to take place?
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Figure 3.14: Double beta decay. From: http://en.wikipedia.org/wiki/Double_beta_decay.

Figure 3.15: Similarity between an electron scattering and a beta decay-type reaction. The propagator
of the W± and Z0 can be approximated as a point contact interaction due to their heavy masses.

e−

e−

e−

e−

γ

n

e−

νe

p

W±, Z0

n n

p e−

νe

Exercise 20. List all mass data for mother and daughter nuclei for nuclides which can
undergo double beta decays. These are 48

20Ca,
76
32Ge,

82
34Se,

96
40Zr,

100
42 Mo, 116

48 Cd, 128
52 Te, 130

52 Te,
150
60 Nd, 238

92 U. Calculate the Q-values of each decay.

3.4.1 Fermi theory of β decay

In 1934 Fermi proposed a theory to describe the β decay. Fermi made an analogy of the β decay to
the quantum transition of two atomic states radiating light or electron-electron scatterings, see Fig.
3.15. Similarly in β decay a quantum transition takes place where a neutron changes to a proton
with emission of an anti-neutrino and an electron. In quantum electrodynamics, the amplitude of
electron-electron scatterings can be written as ψ̄γµψψ̄γ

µψ where ψ is a spinor �eld for electrons and
can be understood as the electron wave function. Fermi then proposed the four-fermion model for
the β decay. In this subsection, we will illustrate how the model works.

Before we discuss about the Fermi theory of the β decay. Let's �rst derive the Fermi golden rule
for the rate of a quantum transition process from the Schrödinger equation. Suppose the transition
is the concequence of the perturbative part of the Hamilton, Hint. The free part of the Hamilton is
denoted as H0. The Schrödinger equation reads,

i~
∂ψ

∂t
= (H0 +Hint)ψ (3.86)
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where Hint � H0. The eigenstates of H0 form a complete and orthorgonal set {|n〉 , n = 0, 1, 2, · · · }
with H0 |n〉 = En |n〉. Suppose at the initial time t = 0, the system is in one eigenstate of H0,
ψ(0) = |i〉. At a later time t, the wave function is in the form,

ψ(t) =
∑
n

Cni(t) exp

(
− i
~
Ent

)
|n〉 (3.87)

So we have Cni(0) = δni. We can calculate the amplitude Cnk(t) by substituting the above wave
function into the Schrödinger equation,

i~
∑
n1

d

dt
Cn1i(t) exp

(
− i
~
En1

t

)
|n1〉 =

∑
n1

Cn1i(t) exp

(
− i
~
En1

t

)
Hint |n1〉 (3.88)

We can determine Ċni(t) by projecting the above state on |n〉,

Ċni(t) =
1

i~
∑
n1

Cn1i(t) exp

[
i

~
(En − En1

)t

]
〈n|Hint |n1〉

≈ 1

i~
exp

[
i

~
(En − Ei)t

]
〈n|Hint |i〉 (3.89)

where we have used Cni(t) ≈ Cni(0) = δni. Then we can solve Cni(t) as

Cni(t) = δni +
1

i~

∫ t

0

dt exp

[
i

~
(En − Ei)t

]
〈n|Hint |i〉 (3.90)

If n 6= i, we get the transition probability for |i〉 → |n〉,

Pni =
1

~2

∣∣∣∣∫ t

0

dt exp

[
i

~
(En − Ei)t

]
〈n|Hint |i〉

∣∣∣∣2 (3.91)

If Hint is independent of time, the probability for t→∞ becomes,

Pni =
1

~2
|〈n|Hint |i〉|2

∣∣∣∣∫ t

0

dt exp

[
i

~
(En − Ei)t

]∣∣∣∣2
=

1

~2
|〈n|Hint |i〉|2

sin2[(En − Ei)t/(2~)]

(En − Ei)2/(4~2)

→ |〈n|Hint |i〉|2 2πtδ(En − Ei), (t→∞, in natural unit) (3.92)

where we have used

lim
x→∞

sin2(x)

x2
= πδ(x) (3.93)

Taking the density of �nal states into account, we obtain the transition rate

λ =

∫
dn(En) |〈n|Hint |i〉|2 2πδ(En − Ei)

= 2πρ(Ei) |〈n|Hint |i〉|2 (3.94)

where dn
dE = ρ(E) is the energy density of states. Eq. (3.94) is called the Fermi golden rule.

Now we deal with the β decay with the Fermi golden rule. The initial state is the state of the
mother nucleus and the �nal state is made up of daughter nucleus, an electron and an anti-neutrino,

|i〉 =
∣∣A
ZX
〉

= ui(x)

|f〉 =
∣∣A
Z+1Y, e

−, ν̄e

〉
= uf(x)φe(xe)φν(xν) (3.95)
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Here ui,f are eigenstates of mother and daughter nuclei respectively, and φe and φν are the wave
function of the electron and neutrino. Accoding to the Fermi golden rule the di�erential decay rate
reads

dλ = 2π |〈f|Hint |i〉|2 δ(Ef + Ee + Eν − Ei)dρ(e−, ν̄e) (3.96)

where dρ(e−, ν̄e) is the number of �nal states for electrons and (anti-)neutrinos. The matrix element
of the Hamiltonian between the initial and �nal state is

Mfi = 〈f|Hint |i〉

=

∫
d3xd3xed

3xνu
∗
f (x)φ∗e(xe)φ∗ν(xν)Hintui(x)

= G

∫
d3xd3xed

3xνu
∗
f (x)φ∗e(xe)φ∗ν(xν)ui(x)δ(xe − x)δ(xν − x)

= G

∫
d3xu∗f (x)φ∗e(x)φ∗ν(x)ui(x) (3.97)

where we assumed the interaction part of the Hamiltonian is in a point contact form,

Hint = Gδ(xe − x)δ(xν − x) (3.98)

with G the e�ective coupling constant for β decay.
The di�erential decay rate for emitting an electron within the momentum range [ke, ke + dke] is,

dλ ≈ G2

∣∣∣∣∫ d3xu∗f (x)φ∗e(x)φ∗ν(x)ui(x)

∣∣∣∣2 2πδ(Ef + Ee + Eν − Ei)dρ. (3.99)

Assuming that the electron and the neutrino are free particles, their wave functions can be approxi-
mated by the plane waves

φe =
1√
V
eike·x

φν =
1√
V
eikν ·x (3.100)

Substituting the above into Eq. (3.99), we obtain

dλ = G2 1

V 2

∣∣∣∣∫ d3xu∗f (x)ui(x)e−i(ke+kν)·x
∣∣∣∣2 2πδ(Ef + Ee + Eν − Ei)dρ

= G2 1

V 2

V d3ke

(2π)3

V d3kν
(2π)3

2πδ(Ef + Ee + Eν − Ei)|Mfi|2, (3.101)

where we have used

dρ =
V d3ke

(2π)3

V d3kν
(2π)3

= k2
ek

2
νdkedkν

V dΩe

(2π)3

V dΩν
(2π)3

,

|Mfi|2 ≡
∣∣∣∣∫ d3xu∗f (x)ui(x)e−i(ke+kν)·x

∣∣∣∣2 , (3.102)

where we used ke,ν ≡ |ke,ν |. Note that |Mfi|2 is dimensionless. If we neglect the neutrino massmν ≈ 0
and integrate over �nal state phase space where electron momenta are in the range [ke, ke + dke], Eq.
(3.101) becomes

dλ = 2πG2k2
edke

∫
dΩe

(2π)3

∫
d3kν
(2π)3

δ(Ef + Ee + Eν − Ei)|Mfi|2

=
G2

2π3
dkek

2
e (Ei − Ef − Ee)2|Mfi|2 (3.103)
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So the probability distribution is

dλ

dke
=

G2

2π3
k2

e (∆E − Ee)2|Mfi|2 (3.104)

where ∆E = Ei − Ef is the energy between the mother and daughter nucleus in the beta decay or
the decay energy.

Here we have neglected the in�uence of the Coulomb �eld on electrons from the nucleus. Normally
the plane wave function of an electron can be distorted in the Coulomb �eld from protons inside the
nucleus. The distortion to the electron wave function can be described by a Coulomb modi�cation
factor F (Z,Ee),

F (Z,Ee) =
x

1− e−x (3.105)

where x = ±2πZe2/ve for the β∓ decay with ve = m−1
e

√
E2

e −m2
e being the electron velocity. The

�nal form of the probability distribution is now

dλ

dke
=

G2

2π3
k2

e (E0 − Ee)2F (Z,Ee)|Mfi|2 (3.106)

We can re-write the above spectrum as√
dλ/dke

k2
eF (Z,Ee)

∼ C(∆E − Ee)

= C(E0 − Te) (3.107)

where Ee = Te +me, E0 is the Q-value, and C is a constant. We can see that
√

(dλ/dke)/[k2
eF (Z,Ee)]

is in linear relation to Ee, which is known as the Kurie plot. From the Kurie plot we can determine
the maximum energy ∆E or the Q-value from the intercept with the energy-axis. In Eq. (3.106),
we see that the electron spectrum is in the range ke = [0,

√
(∆E)2 −m2

e ] ≈ [0,∆E − m2
e/(2∆E)],

see Fig.3.16 for the electron momentum and kinetic energy spectra of electrons and positrons in β±

decays of 64
29Cu.

If we recover the neutrino mass in Eq. (3.106) we obtain

dλ

dke
=

G2

2π3
k2

e (∆E − Ee)2F (Z,Ee)

√
1− m2

ν

(∆E − Ee)2
|Mfi|2, (3.108)

where we have used k2
νdkν = kνEνdEν . The zero points read E

(0)
e = ∆E and E

(0)
e = ∆E±mν , where

the lowest zero point E
(0)
e = ∆E −mν is physical. So we can determine the neutrino mass from the

intercept with energy axis once we know ∆E.
We can obtain the integrated rate from Eq. (3.106) by using dimensionless variable w ≡ Ee/me

and w0 = ∆E/me,

λ =
G2

2π3

∫ E0

me

dEeF (Z,Ee)Eeke(∆E − Ee)2|Mfi|2

≈ G2m5
e

2π3
f(Z,w0)|Mfi|2, (3.109)

where f(Z,w0) is de�ned as

f(Z,w0) =

∫ w0

1

dwF (Z,w)
√
w2 − 1(w0 − w)2w (3.110)
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Figure 3.16: Momentum and kinetic energy spectra of electrons and positrons in β± decays of 64
29Cu.

Taken from Fig. 5.9 on p129 of Ref. [37].

Figure 3.17: Illustration of the Fermi-Kurie plot for 3H→3 He + e− + ν̄e. Suppose mν =30 eV, there
is di�erence between massive and massless neutrinos. Taken from Fig. 5.11 on p130 of Ref. [37].
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Figure 3.18: T1/2f(Z,w0) for superallowed transition. Taken from Table. 5.3 on p133 of Ref. [37].

If w0 is very large, we have f(Z,w0) ∼ w5
0/5. The the half life is given by

T1/2 =
ln 2

λ
=

2π3 ln 2

G2m5
ef(Z,w0)|Mfi|2

(3.111)

If we know T1/2 and |Mfi|2, we can determine the coupling G. It turns out that the quantity
T1/2f(Z,w0) is almost a constant for certain type of beta decays. It is called the comparative
half-life. For 0+ → 0+ transition, we have |Mfi|2 = 2, T1/2f(Z,w0) should be a constant, see Fig.
3.18 for the experimental data. From the data G can be determined to be 0.89× 10−4 MeV · fm3 =
1.16× 10−5 GeV−2. Eq. (3.111) can be put into a simple form,

T1/2f(Z,w0) ≈ 6185

|Mfi|2
second

So the dimensionless coupling constant is Gm2
p ≈ 1.026 × 10−5 with nucleon mass mp. This can be

compared to the counlings in strong and electromagnetic interactions whose coupling constants are
of the order 1 (strong) and 10−2 (electromagnetic). We see that the strength of the β decay is much
weaker, this is why the so-called weak interaction is at work in the β decay.

We can estimate the free neutron half life from the beta decay by Eqs. (3.110,3.111). We can
neglect F (Z,w). We can further neglect the recoil e�ect and approximate |Mfi|2 ∼ 1 + 3g2

A/g
2
V ∼ 5.8,

with ∆E ≈ 1.29 MeV, G = 0.89× 10−4 MeV · fm3 = 1.16× 10−5 GeV−2, and

f(Z,w0) =

∫ w0

1

dw
√
w2 − 1(w0 − w)2w ≈ 1.63, (3.112)

we obtain the neutron's half life

T1/2(n) ∼ 197× 10122π3 ln 2

1.152 × 10−10 × 0.515 × 1.63× 5.8
(fm/c)

≈ 654 s.

The data give T1/2(n) ≈ 661 s. We see the perfect agreement between the data and the theoretical
value.
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Let us discuss about the transition amplitude |Mfi|2, Eq. (3.102). Note that the phase is very
small (ke + kν) · x ∼ 0.1− 0.01� 1, so we can make an expansion of the phase factor ei(ke+kν)·x in
terms of powers of (ke + kν) · x. We can also make an expansion of it in terms of spherical harmonic
functions,

ei(ke+kν)·x =
∑
L=0

(2L+ 1)(−i)LjL(|ke + kν |x)PL(cos θ)

≈
∑
L=0

(2L+ 1)(−i)L
(2L+ 1)!!

|ke + kν |LxLPL(cos θ) (3.113)

Therefore the amplitude can be written as

Mfi =
∑
L=0

(2L+ 1)(−i)L
(2L+ 1)!!

∫
d3xu∗f (x)ui(x)|ke + kν |LxLPL(cos θ)

=
∑
L=0

ML
fi (3.114)

The matrix elements corresponding to two lowest partial waves are

ML=0
fi =

∫
d3xu∗f (x)ui(x)

ML=1
fi = −i

∫
d3xu∗f (x)ui(x)|ke + kν |xPL(cos θ) (3.115)

If ML=0
fi 6= 0, it is called the allowed transition. If ML=1

fi 6= 0, it is called the �rst order prohibited
transition and etc.. The partial wave contributionML

fi drops very fast as L increases. The suppression
of higher order contributions can be seen by

ML+1
fi

ML
fi

∼ kr

2L+ 1
∼ 10−2 (3.116)

for r ∼ 5 fm and k ∼ 1 MeV. So we see that the lowest order, L = 0, 1, contributions play the role.
In the original version of the Fermi model of the beta decay, the spin part is absent. Nucleons

and leptons are spin-1/2 fermions, we can recover the spin part in Eq. (3.114),

|Mfi|2 =
∑
L,Seν

|ML,Seν

fi |2 (3.117)

where Seν = Se + Sν is the lepton spin. The angular momentum conservation reads

Ji = Jf + Seν + L (3.118)

where L denotes the angular momentum of the leptons, and Ji(Jf) is the nuclear spin of the mother
(daughter) nucleus or the intitial (�nal) nuclear state. The spin of the leptonic system Seν can be
0 (singlet) or 1 (triplet), which correspond to Fermi and Gamow-Teller transition respectively. The
strength for Fermi and Gamow-Teller transition are di�erent. The coupling strength is charicaterized
by GGT/GF ∼ −1.26. For allowed transitions of the pure Fermi type (L = 0, Sl = 0), we have

|ML=0,Sl=0
fi |2 = 1. For allowed transitions of the pure Gamow-Teller type, we have |ML=0,Sl=1

fi |2 = 3,

because there are three spin states. For super-allowed transition, we have |ML=0,Sl=0
fi (0+ → 0+)|2 = 2

due to two pairing nucleons outside the shell in the initial 0+ state. For the mixed type decays, there
are both Fermi type and Gamow-Teller type contributions. We denote the matrix element squared
as G2

F|MF|2 +G2
GT|MGT|2. From Eq. (3.114) we have parity selection rule:

PiPf = (−1)L, (3.119)
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Table 3.3: Classi�cation for the beta decay. Parity selection rule: PiPf = (−1)L.

Sl = 0: Fermi Sl = 1: Gamow-Teller
L = 0: allowed Ji − Jf = 0 , PiPf = 1 Ji − Jf = 0,±1, PiPf = 1

0+ → 0+: super-allowed 0+ → 1+: unique Gamow-Teller
L = 1: 1st forbidden Ji − Jf = 0,±1 Ji − Jf = 0, ±1, ±2

PiPf = −1 PiPf = −1

where Pi(Pf) is the parity of the intitial (�nal) nuclear state.
For Seν = 0 and the allowed transition (L = 0), we get Ji − Jf = 0 and Pi = Pf , this is called

Fermi selection rule. For Seν = 1 and the allowed transition (L = 0), we get Ji − Jf = 0,±1 and
Pi = Pf , this is called Gamow-Teller seletion rule.

The classi�cation for the beta decay is in Table 3.3. For various types of transitions, the decay
strengths vary to many orders of magnitude: log10[T1/2f(Z,w0)] =2.9-3.7 (super-allowed), 4.4-6.0
(allowed), 6-10 (1st forbidden), above 15 (2nd forbidden), where T1/2 is in the unit of second.

Here are some examples for the allowed β-decays. (1) 14
8 O →14

7 N∗, 10
6 C →10

5 B∗, 18
10Ne →18

9 F∗

and 34
17Cl →34

16 S are 0+ → 0+ super-allowed Fermi-type transitions. The scheme plots for these
decays are shown in Fig. 3.19. (2) 10

6 C →10
5 B (0+ → 1+), 6

2He →6
3 Li (0+ → 1+), 13

5 B →13
6

C (3/2− → 1/2−), 28
12Mg →28

13 Al∗ (0+ → 1+) and 60
24Cr →60

25 Mn (0+ → 1+) are Gamow-Teller
transitions. The scheme plots for these decays are shown in Fig. 3.20. There are mixed type of
decays, here are some examples. (3) Mirror decays: n→ p(1/2+ → 1/2+), 3

1H→3
2 He(1/2+ → 1/2+),

13
7 N →13

6 C (1/2− → 1/2−), 21
11Na →21

10 Ne (3/2+ → 3/2+), 41
21Sc →41

20 Ca (4+ → 4+); Non-mirror
decays: 24

11Na →24
12 Mg (3/2+ → 3/2+), 41

11Ar →41
12 K (7/2− → 7/2−), 46

21Sc →46
22 Ti (4+ → 4+),

52
25Mn→52

24 Cr (2+ → 2+), 65
28Ni→65

29 Cu (5/2− → 5/2−).
We now discuss about the Fermi model of the orbital electron capture process. If the mass

di�erence between the mother nucleus and the daughter nucleus is larger than the electron's binding
energy, the orbital electron capture can take place. The electron capture process leads to an electron
vacancy in the orbit. The �lling of this vacancy by a free electron can release the binding energy by
emission of X-rays or Auger electrons. The decay constant can be obtained through the Fermi golden
rule,

dλEC = 2π|Mfi|2δ(Eν − E0)
dn

dEν
dEν , (3.120)

where E0 is the Q-value of the process and

Mfi = G

∫
d3xu∗f (x)φ∗ν(x)φe(x)ui(x),

dn

dEν
= V

1

2π2
E2
ν . (3.121)

Here φe(x) is the electron wave function in the atomic shell. Capture is most likely for 1s electrons
in the K-shell, since the s-wave function is maximal at the origin,

φe(x) =
1√
π

(Ze2me)3/2exp(−Ze2me|x|). (3.122)

The neutrino wave function is still a plane wave, φν = 1√
V
eikν ·x. Then we have

|Mfi|2 = G2 1

V

1

π
(Ze2me)3|Mfi|2,

Mfi =

∫
d3xu∗f (x)ui(x)exp(−ikν · x− Ze2me|x|), (3.123)
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Figure 3.19: The scheme plots for the allowed β-decays of the Fermi type. The half-lives are shown
as log10(fT1/2). From IAEA database NuDat 2.6 at �http://www.nndc.bnl.gov/nudat2/�.
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Figure 3.20: The scheme plots for the allowed β-decays of the Gamow-Teller type. The half-lives are
shown as log10(fT1/2). From IAEA database NuDat 2.6 at �http://www.nndc.bnl.gov/nudat2/�.
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where Mfi is dimensionless. So after integration Mfi is replaced by its average value, the decay rate
or constant is then

λEC =
G2

π2
(Ze2me)3|M̄fi|2E2

ν .

We have taken into account that there are two 1s electrons in the K-shell. We see that the decay
constant is proportional to Z3.

Now we calculate the cross section of the inverse beta decay processes described by

A
ZX + νe → A

Z+1Y + e−,
A
ZX + ν̄e → A

Z−1Y + e+. (3.124)

The simplest inverse beta decays are

p + ν̄e → n + e+,

n + νe → p + e−. (3.125)

The transition rate for the inverse reaction is given by

dλinv−b = 2π|Mfi|2δ(Ee −∆E)
dn

dEe
dEe (3.126)

where ∆E = Ei + Eν − Ef , and
dn

dEe
=

V

2π2
keEe (3.127)

After integration, we obtain

λinv−b = 2πG2 1

V 2
|M̄fi|2

dn

dEe
=

1

πV
G2peEe|M̄fi|2

=
1

πV
G2m2

e |M̄fi|2w
√
w2 − 1 (3.128)

where the dimensionless nuclear matrix element Mfi is de�ned by

Mfi =

∫
d3xu∗f (x)ui(x)ei(kν−ke)·x (3.129)

In general both Fermi-type and Gamow-Teller type reactions are present,

|M̄fi|2 = |M̄fi(F )|2 +
G2

GT

G2
F

|M̄fi(GT)|2 (3.130)

Note that GF ≈ G. The cross section is then given by

σinv−b =
λinv−b

Fν
= λinv−bV/c

=
1

π
G2m2

ew
√
w2 − 1|M̄fi|2 (3.131)

Using the value |M̄fi|2 ≈ 5, we can estimate the magnitude of σinv−b for e.g. w = 3: σinv−b ∼
20× 10−44 cm2.

In real situations we have to determine the electron energy from energy-momentum conservation.
We assume the inverse beta decay only a�ect the nucleon inside the nucleus. Then we have following
equations from energy-momentum conservation in the center-of-mass frame,

pcν = pci

pce = pcf

Ecν +
√
p2

ci +m2
p =

√
p2

ce +m2
e +

√
p2

cf +m2
n (3.132)
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We can express Ece as a function of pcν

Ece =
(pcν +

√
p2

cν +m2
p)2 +m2

e −m2
n

2(pcν +
√
p2

cν +m2
p)

(3.133)

The neutrino energy in the c.m.s. is related to that in the lab frame,

pcν = γc(pν − βcEν) =
1− βc√
1− β2

c

pν (3.134)

where γc = 1√
1−β2

c

and βc = pν
pν+mp

. Then we transform to the lab frame where the initial state

nucleon is static,

Ee = γc(Eec + βcpec cos θce) (3.135)

We can take average over θce for Ee, so we get the average electron energy in the lab frame, Ee = γcEce,
or explicitly,

〈Ee〉 = γc

(pcν +
√
p2

cν +m2
p)2 +m2

e −m2
n

2(pcν +
√
p2

cν +m2
p)

(3.136)

Substituting w = 〈Ee〉 /me into Eq. (3.131), we can obtain the cross section as a function of the
neutrino energy.

Exercise 21. When the neutrino has a mass, what happens to the electron energy spectra
dλ
dEe

as Ee → ∆E.

Exercise 22. Calculate the cross section of the inverse beta decay p + ν̄e → n + e+ and
n + νe → p + e− for pν = [0, 10]me. One should use exact masses for proton and neutron,
i.e. take the mass di�erence into acount.

Exercise 23. Read the article about solar neutrino problem in Ref. [36]. Write a report
about it in 2000 chinese words.

Exercise 24. Find as many as possible the super-allowed and unique Gamow-Teller β decays
and in the IAEA database NuDat. For each decay, please list the decay reaction formula and
the quantity log(ft) for the half life.
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Figure 3.21: The parity violation in the β decay.
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Exercise 25. The half-life of the beta decay is given by

T1/2 =
ln 2

λ
=

2π3 ln 2

G2m5
ef(Z,w0)|Mfi|2

where G = 0.88×10−4 MeV · fm3 = 1.15×10−5 GeV−2, w0 = ∆E/me with the decay energy
∆E and electron mass me = 0.511 MeV. For w0 � 1, we can approximate f(Z,w0) ∼ w5

0/5.
For a pure Fermi transition (L = 0, Seν = 0), we have |Mfi|2 = 1. For a pure Gamow-Teller
transition (L = 0, Seν = 1), we have |Mfi|2 = 3, because there are three spin states. For
super-allowed transition (0+ → 0+), we have |Mfi|2 = 2 due to two pairing nucleons outside
the shell in the initial 0+ state. See Fig. 3.19 for super-allowed transition of 14

8 O →14
7 N∗.

Calulate T1/2 for such a beta decay in the unit of second.

3.4.2 Parity violation in β decay

In 1950s there was a τ − θ puzzle that seemingly identical strange mesons θ+ and τ+ can decay into
two and three pions respectively,

θ+ → π+ + π0

τ+ → π+ + π+ + π−

Considering a pion has negative parity and the decay occurs in s-wave, it seems that θ+ and τ+ are
di�erent particles with opposite parity. But actually they are all kaons and parity is violated in weak
decays.

In 1957 C.S. Wu and her collaborators measured the electron distribution in the β decay of
polarized cobalt ,

60
27Co → 60

28Ni + e− + νe (3.137)

They found that electrons are predominantly emitted opposite to the nuclear spin. Under the parity
transformation r → −r, the magnetic �eld and the spin are invariant while the mometum changes
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the direction, i.e.

B → B

s → s

p → −p (3.138)

Along the direction of the magnetic �eld, a cobalt nucleus carries a spin of 5~ while a nickel nucleus
carries a spin of 4~. The di�erence in spin is compensated by the emitted electron and anti-neutrino.
Since the anti-neutrino is right-handed (the spin of the anti-neutrino is along its momentum), the
electron is predominantly emitted opposite to the direction of the nuclear spin, see the left panel of
Fig. 3.21.

Exercise 26. Wu and her collaborators measured the electron distribution in the β decay of
polarized cobalt, 60

27Co → 60
28Ni + e− + νe. Describe the main result of the experiment and

explain why the result indicates that the parity is violated.

3.5 γ decay: electromagnetic interaction at work

Nuclei are many body systems of nucleons which interact via nuclear force or strong interaction. A
nucleus can stay in some quantum states with speci�c energies. By external perturbation a nucleus
can be excited to higher energetic states and can jump onto its ground state by radiating photons
(for example, the nuclei normally stay in their excited states right after the α and β decay).

3.5.1 Classical electrodynamics for radiation �eld

Classical electrodynamics can be summarized by Maxwell equations,

∇ ·E = 4πρ,

∇×B =
4π

c
j +

1

c

∂E

∂t
,

∇ ·B = 0,

∇×E = −1

c

∂B

∂t
. (3.139)

From the last two equations, we can de�ne scalar and vector potential φ(t,x) and A(t,x),

B = ∇×A

E = −∇φ− 1

c

∂A

∂t
(3.140)

The above equations are invariant under gauge transformation

φ′ = φ+
1

c

∂f

∂t
A′ = A−∇f (3.141)

where f(t,x) is a function of space and time. Eq. (3.140) satis�es the last two equations of (3.139)
automatically. Then inserting Eq. (3.140) into the �rst two equations of (3.139), we obtain

−∇2φ− 1

c

∂

∂t
∇ ·A = 4πρ

1

c2
∂2A

∂2t
−∇2A +∇(∇ ·A) +

1

c

∂

∂t
∇φ =

4π

c
j, (3.142)
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We choose the Coulomb gauge,
∇ ·A = 0 (3.143)

and consider the free space where ρ = 0 and j = 0. Then Eq. (3.145) becomes

∇2φ = 0

1

c2
∂2A

∂2t
−∇2A +

1

c

∂

∂t
∇φ =

4π

c
j, (3.144)

We can further set φ = 0 as a solution to Poisson equation ∇2φ = 0 in free space with boundary
condition φ|x→∞ = 0. Then we obtain the wave equation for radiation

1

c2
∂2A

∂2t
−∇2A = 0 (3.145)

A vector �eld satisfying the Coulomb gauge is called a transverse �eld. We consider a solution to the
wave equation (3.145)

A(t,x) = A0e
i(k·x−ωt) (3.146)

with k2 = ω2/c2. The Coulomb gauge gives transverse condition

k ·A = 0 (3.147)

Such waves satisfying transverse condition are called radiation �elds. Now we collect all equations
we need for describing radiation,

B = ∇×A

ET = −1

c

∂A

∂t
∇ ·A = 0

1

c2
∂2A

∂2t
−∇2A = 0 (3.148)

where we have denoted ET as the transverse electric �eld. The Hamiltonian for radiation �eld is

Hrad =
1

8π

∫
d3x(E2

T + B2) (3.149)

In order to quantize the radiation �eld, we consider a box of length L and volume V = L3. The
periodic condition reads

A(t,x ∈ boundary) = constant (3.150)

We choose the following complete set of transverse orthonormal vectors which satisfy the above
periodic boundary condition,

1√
V
ε(r,k)eik·x (3.151)

where ε(r,k) with r = 1, 2 are two perpendicular real unit vectors and

k =
2π

L
(n1, n2, n3), n1, n2, n3 = 0,±1,±2, · · · (3.152)

The polarization vectors ε(r,k) satisfy following orthogonal and transverse conditions

ε(r,k) · ε(s,k) = δrs, k · ε(r,k) = 0 (3.153)

Then the vector potential can be expanded in this complete set of transverse orthonormal vectors as
Fourier series,

A(t,x) =
∑
k,s

(
2π

V ωk

)1/2

ε(s,k)[a(t, s,k)eik·x + a∗(t, s,k)e−ik·x] (3.154)
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where ωk = k. We see that A(t,x) in the above form is real. Substituting Eq. (3.154) into Eq.
(3.145), we get

∂2a(t, s,k)

∂t2
+ ω2

ka(t, s,k) = 0 (3.155)

So we can determine the time dependent part as

a(t, s,k) = a(s,k)e−iωkt (3.156)

Then the vector potential in (3.154) becomes

A(t,x) =
∑
k,s

(
2π

V ωk

)1/2

ε(s,k)[a(s,k)e−iωkt+ik·x + a∗(s,k)eiωkt−ik·x] (3.157)

The Hamiltonian (3.149) can be evaluated as

Hrad =
1

8π

∫
d3x

[(
∂A

∂t

)2

+ (∇×A)2

]
=

∑
k,s

ωka(s,k)a∗(s,k) (3.158)

The �rst term
(
∂A
∂t

)2
is evaluated as

∂A

∂t
= −i

∑
k,s

(
2π

V ωk

)1/2

ε(s,k)ωk[a(s,k)e−iωkt+ik·x − a∗(s,k)eiωkt−ik·x]

(
∂A

∂t

)2

= −i
∑
k,s

∑
k1,s1

2π

V
(ωkωk1)1/2ε(s,k) · ε(s1,k1)

×[a(s,k)e−iωkt+ik·x − a∗(s,k)eiωkt−ik·x]

×[a(s1,k1)e−iωk1 t+ik1·x − a∗(s1,k1)eiωk1 t−ik1·x]∫
d3x

(
∂A

∂t

)2

= −
∑
k,s

∑
k1,s1

2π

V
(ωkωk1)1/2ε(s,k) · ε(s1,k1)

×[a(s,k)a(s1,k1)e−iωkt−iωk1 t
∫
d3xei(k+k1)·x

−a(s,k)a∗(s1,k1)e−iωkt+iωk1 t
∫
d3xei(k−k1)·x

−a∗(s,k)a(s1,k1)eiωkt−iωk1 t
∫
d3xe−i(k−k1)·x

+a∗(s,k)a∗(s1,k1)eiωkt+iωk1 t
∫
d3xe−i(k+k1)·x]

=
∑
k,s

4πωka(s,k)a∗(s,k) + I1 (3.159)

where we have used
∫
d3xeik·x = V δk,0, and I1 denotes the oscillating terms ∼ e±2iωkt,

I1 = −
∑
k,s

∑
s1

2πωkε(s,k) · ε(s1,−k)

×[a(s,k)a(s1,−k)e−2iωkt + a∗(s,k)a∗(s1,−k)e2iωkt (3.160)
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we will see it will cancel the same term in (∇×A)2. The second term (∇×A)2 is evaluated as

∇×A = i
∑
k,s

(
2π

V ωk

)1/2

k× ε(s,k)[a(s,k)e−iωkt+ik·x − a∗(s,k)eiωkt−ik·x]

(∇×A)2 = −
∑
k,s

∑
k1,s1

2π

V
(ωkωk1)−1/2[k× ε(s,k)] · [k1 × ε(s1,k1)]

×[a(s,k)e−iωkt+ik·x − a∗(s,k)eiωkt−ik·x]

×[a(s1,k1)e−iωk1 t+ik1·x − a∗(s1,k1)eiωk1 t−ik1·x]∫
d3x(∇×A)2 = −

∑
k,s

∑
k1,s1

2π

V
(ωkωk1)−1/2[k× ε(s,k)] · [k1 × ε(s1,k1)]

×[a(s,k)a(s1,k1)e−iωkt−iωk1 t
∫
d3xei(k+k1)·x

−a(s,k)a∗(s1,k1)e−iωkt+iωk1 t
∫
d3xei(k−k1)·x

−a∗(s,k)a(s1,k1)eiωkt−iωk1 t
∫
d3xe−i(k−k1)·x

+a∗(s,k)a∗(s1,k1)eiωkt+iωk1 t
∫
d3xe−i(k+k1)·x]

=
∑
k,s

4πωka(s,k)a∗(s,k)− I1 (3.161)

where we have used

[k× ε(s,k)] · [k1 × ε(s1,k1)] = −{k1 × [k× ε(s,k)]} · ε(s1,k1)

= −[k1 · ε(s,k)][k · ε(s1,k1)]

+[k · k1][ε(s,k) · ε(s1,k1)] (3.162)

The combinging Eq. (3.159) and (3.161), we get Eq. (3.158).

Exercise 27. Derive the classical Hamiltonian in Eq. (3.158) using the momentum decom-
position for the classical �eld in Eq. (3.157).

3.5.2 Quantization of radiation �eld

The quantization of radiation �eld can be done by treating a(s,k) and a∗(s,k) as creation and
destruction operator. Then we impose following commutation relations[

a(s,k), a†(s1,k1)
]

= δs,s1δk,k1

[a(s,k), a(s1,k1)] =
[
a†(s,k), a†(s1,k1)

]
= 0 (3.163)

The vector potential is then an operator,

A(t,x) =
∑
k,s

(
2π

V ωk

)1/2

ε(s,k)[a(s,k)e−iωkt+ik·x + a†(s,k)eiωkt−ik·x] (3.164)

The Hamiltonian as an operator is written in the form

Hrad =
∑
k,s

ωk[a†(s,k)a(s,k) +
1

2
] (3.165)
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The number operator for mode (s,k) is given by

N(s,k) = a†(s,k)a(s,k) (3.166)

Its eigenstate is then

|n(s,k)〉 =
[a†(s,k)]n(s,k)√

n(s,k)!
|0〉 (3.167)

One can check

a(s,k) |n(s,k)〉 =
√
n(s,k) |n(s,k)− 1〉

a†(s,k) |n(s,k)〉 =
√
n(s,k) + 1 |n(s,k) + 1〉

a†(s,k)a(s,k) |n(s,k)〉 = n(s,k) |n(s,k)〉

The eigenfunction of radiation Hamiltonian Hrad is then a product of such states for a set of modes,

|A〉 =
∏
ki,si

|n(si,ki)〉 (3.168)

The energy is then

E = 〈A|Hrad |A〉 =
∑
k,s

ωk[n(s,k) +
1

2
] (3.169)

Now we can use creation and destruction operators to express the momentum of electromagnetic �eld,

P =
1

4π

∫
d3xET ×B

= − 1

4π

∫
d3x

∂A

∂t
× (∇×A)

= − 1

4π

∑
k,s

∑
k1,s1

2π

V

(
1

ωkωk1

)1/2

ωkk1[ε(s,k) · ε(s1,k1)]

×
∫
d3x[a(s,k)e−iωkt+ik·x − a†(s,k)eiωkt−ik·x]

×[a(s1,k1)e−iωk1t+ik1·x − a†(s1,k1)eiωk1t−ik1·x]

=
1

4π

∑
k,s

∑
k1,s1

2π

V

(
1

ωkωk1

)1/2

ωkk1[ε(s,k) · ε(s1,k1)]

×
∫
d3x[a(s,k)a†(s1,k1)e−i(ωk−ωk1)t+i(k−k1)·x

+a†(s,k)a(s1,k1)ei(ωk−ωk1)t−i(k−k1)·x]

=
∑
k,s

k[a†(s,k)a(s,k) + 1/2] =
∑
k,s

k[N(s,k) +
1

2
] (3.170)

Exercise 28. Derive the quantized energy momentum of the radiating EM system in Eqs.
(3.165,3.170) using the quantized �eld in Eq. (3.164).



CHAPTER 3. RADIOACTIVITY AND NUCLEAR DECAY 70

3.5.3 Interaction of radiation with matter

Now we can add matter and matter-�eld interaction part of Hamiltonian. Consider a system of point
charged particles with mass mi and charge qi, the matter part of Hamiltonian reads,

Hm =
∑
i

1

2mi
(pi − qiAi)

2

=
∑
i

1

2mi
p2
i −

∑
i

qi
2mi

(pi ·Ai + Ai · pi) +
∑
i

q2
i

2mi
A2
i

=
∑
i

1

2mi
p2
i −

∑
i

qi
mi

Ai · pi +
∑
i

q2
i

2mi
A2
i

≡ H0 +HI (3.171)

where H0 is the free part and HI is the interaction part of particles and �elds. Here we have used

pi ·Ai + Ai · pi = −i∇i ·Ai − iAi · ∇i = −2iAi · ∇i − i(∇i ·Ai) = −2iAi · ∇i (3.172)

under the Coulomb gauge condition. Here we have denoted Ai = A(xi) and Bi = B(xi). We can
look at the term Ai · pi, with A = 1

2B × r, we have qi
mi

Ai · pi = qi
2mi

Bi · Li with Li = ri × pi is
the orbital angular momentum of particle i. So this term is actually the interaction energy of the
magnetic moment from the orbital angular momentum in a magnetic �eld. Similarly there should
also be a term gi

qi
2mi

σ · Bi for spin angular momentum σ if the particle has spin, where gi is the
g-factor of the particle's spin magnetic moment. For neutrons with qi = 0, the spin magnetic moment
would be vanishing which is not true, in order to avoid this problem, we can write the spin magnetic
moment term as gi

e
2mi

σ ·Bi where e is the absolute value of the electron charge, all information of
the magnetic moment is contained in gi.

The electromagnetic energy is denoted as Hem,

Hem =
1

8π

∫
d3x(E2 + B2) (3.173)

where E = EL + ET is the full electric �eld. The electric part of the electromagnetic is

1

8π

∫
d3xE2 =

1

8π

∫
d3x(EL + ET)2

=
1

8π

∫
d3x(E2

L + E2
T)

=
1

2

∫
d3xd3x′

ρ(t,x)ρ(t,x′)

|x− x′| +
1

8π

∫
d3xE2

T (3.174)

In order to prove the above equation, we can use

EL = −∇φ, ET = −∂A

∂t
(3.175)

and the Coulmob gauge condition ∇ · A = 0. The mixed electric energy term for transverse and
longitudinal electric �elds cna be proved to be vanishing,∫

d3xEL ·ET =

∫
d3x(∇φ) · ∂A

∂t

=

∫
d3x∇ ·

(
φ
∂A

∂t

)
−
∫
d3xφ∇ ·

(
∂A

∂t

)
= φ

∂A

∂t

∣∣∣∣
boundary

−
∫
d3xφ

∂

∂t
∇ ·A = 0 (3.176)
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using the Coulmob gauge condition. The longitudinal electric energy beocmes∫
d3xE2

L =

∫
d3x(∇φ)2 = −

∫
d3xφ∇2φ = 4π

∫
d3xφρ

= 4π

∫
d3xd3x′

1

|x− x′|ρ(t,x)ρ(t,x′)

where we have used

φ(t,x) =

∫
d3x′

ρ(t,x′)

|x− x′| (3.177)

For discrete system of charged particles, we can further derive∫
d3xE2

L = 4π

∫
d3xd3x′

1

|x− x′|
∑
i

qiδ(x− xi)
∑
j

qjδ(x
′ − xj)

= 4π
∑
i 6=j

qiqj
|xi − xj |

(3.178)

where we have used
ρ(t,x) =

∑
i

qiδ(x− xi) (3.179)

So we can de�ne the Coulomb part of electric energy HC which comes from the longitudinal electric
�eld,

HC =
1

2

∑
i 6=j

qiqj
|xi − xj |

(3.180)

Therefore, we can summarize the total Hamiltonian as

H = Hm +Hem = H0 +HI +HC +Hrad (3.181)

where

H0 =
∑
i

1

2mi
p2
i

HI = −
∑
i

qi
mi

Ai · pi +
∑
i

q2
i

2mi
A2
i −

∑
i

gi
e

2mi
σ ·Bi

HC =
1

2

∑
i6=j

qiqj
|xi − xj |

Hrad =
1

8π

∫
d3x(E2

T + B2) (3.182)

Here we have added a spin-magnetic-�eld coupling term into HI.
Let us calculate the transition amplitude of an atom or a nucleus between two energy states of

electrons or nuclear by absorption of emission of one photon, a→ b +γ, through the coupling Ai ·pi.
The initial/�nal states for atom or nucleus and photons are as follows

initial = |a〉 |n(s,k)〉
final = |b〉 |n(s,k)± 1〉 (3.183)

The transition amplitude is then

Mfi = 〈b, n(s,k)± 1|HI |a, n(s,k)〉
= i

∑
i

qi
mi
〈b, n(s,k)± 1|Ai · ∇i |a, n(s,k)〉 (3.184)
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Note that we have neglected A2 term since it is of quadratic order in the electric charge.
First we consider the photon emission case. Inserting Eq. (3.164) into Eq. (3.184), we obtaine

the amplitude for photon emission,

Mfi = i
∑
k1,s1

(
2π

V ωk1

)1/2

〈n(s,k) + 1| a†(s1,k1) |n(s,k)〉

×ε(s1,k1) · 〈b|
∑
i

qi
mi

eiωk1t−ik1·xi∇i |a〉

= i

(
2π

V ωk

)1/2√
n(s,k) + 1ε(s,k) · 〈b|

∑
i

qi
mi

eiωkt−ik·xi∇i |a〉 (3.185)

Following the Fermi golden rule, we obtain the transition rate by taking an integral over the photon
mometum and a sum over the photon spin state,

λa→b+γ = 2π

∫
V d3k

(2π)3
δ(Eb + ωk − Ea)

∑
s=±
|Mfi|2

=
1

2π

∫
dΩkdkδ(Eb + ωk − Ea)ωk

∑
s=±

[n(s,k) + 1]

×
∣∣∣∣∣ε(s,k) · 〈b|

∑
i

qi
mi

e−ik·xi∇i |a〉
∣∣∣∣∣
2

(3.186)

After completing the integration over the photon energy to remove the energy conservation delta
function, we arrive at

λa→b+γ =
ωk
2π

[n̄(k) + 1]
∑
s=±1

∫
dΩk

×
∣∣∣∣∣ε(s,k) · 〈b|

∑
i

qi
mi

e−ik·xi∇i |a〉
∣∣∣∣∣
2

(3.187)

where we have used ωk = Ea − Eb = |k| and n̄(k) = (1/2)
∑
s=± n(s,k).

For photon absorption b + γ → a, we derive a similar formula

Mfi = i
∑
k1,s1

(
2π

V ωk1

)1/2

〈n(s,k)− 1| a(s1,k1) |n(s,k)〉

×ε(s1,k1) · 〈a|
∑
i

qi
mi

e−iωk1t+ik1·xi∇i |b〉

= i

(
2π

V ωk

)1/2√
n(s,k)ε(s,k) · 〈a|

∑
i

qi
mi

e−iωkt+ik·xi∇i |b〉 (3.188)

The transition rate reads,

λb+γ→a = 2π

∫
V d3k

(2π)3
δ(Eb + ωk − Ea)

∑
s=±
|Mfi|2

=
1

2π
dΩkdkδ(Eb + ωk − Ea)ωkn̄(k)

×
∑
s=±1

∣∣∣∣∣ε(s,k) · 〈a|
∑
i

qi
mi

eik·xi∇i |b〉
∣∣∣∣∣
2

(3.189)
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which has the following form after completing the integration over the photon energy

λb+γ→a =
ωk
2π
n̄(k)

∑
s=±1

∫
dΩk

×
∣∣∣∣∣ε(s,k) · 〈a|

∑
i

qi
mi

eik·xi∇i |b〉
∣∣∣∣∣
2

(3.190)

Now we look at the simplest case, the electric dipole radiation at the long wave length limit. At
this limit the wavelength of radiation is much larger than the size of the atom or the nucleus, so we
can approximate k ·x ≈ 0 or e−ik·x ≈ 1. Then the matrix element in Eq. (3.187) can be put into the
form,

〈b|
∑
i

qi
mi
∇i |a〉 = ωk 〈b|

∑
i

qixi |a〉 ≡ ωkDba (3.191)

where we have de�ned the electric dipole moment Dba = 〈b|∑i qixi |a〉. Here we have used

∇ = ip = im
dx

dt
= m[x, Ĥ0] (3.192)

Then the photon emission/absorption rate in Eqs. (3.187,3.190) becomes

λa→b+γ =
ω3
k

2π
[n̄(k) + 1]

∑
s=±1

∫
dΩk |ε(s,k) ·Dba|2

λb+γ→a =
ω3
k

2π
n̄(k)

∑
s=±1

∫
dΩk |ε(s,k) ·Dab|2 (3.193)

Note that we have |Dab|2 = |D∗ba|2. If there is no other photons in the environment, we can set
n̄(k) = 0(1) for the process a→ b + γ (b + γ → a), the above rates become

λa→b+γ = λb+γ→a =
ω3
k

2π

∑
s=±1

∫
dΩk |ε(s,k) ·Dba|2 (3.194)

The power of radiation is given by,

Iω = λa→b+γωk =
ω4
k

2π

∑
s=±1

∫
dΩk |ε(s,k) ·Dba|2 (3.195)

Suppose the photon is emitted along the z-axis (k is along the z-axis) and Dba is in the plane of
ε(1,k) and k, so Dba is perpendicular to ε(2,k). Suppose the angle between Dba and k is θ, the
above integral of matrix element becomes∑

s=±1

∫
dΩk |ε(s,k) ·Dba|2 =

∫
dΩk |ε(1,k) ·Dba|2

=

∫
dΩk |Dba|2 sin2 θ =

8π

3
|Dba|2 (3.196)

So the radiation power turns out to be

Iω =
4

3
ω4
k |Dba|2 (3.197)

which is consistent to the result of classical electrodynamics.
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We now look at the electric quadrupole radiation by considering the linear order term ∼ k · x in
the phase factor e−ik·x in Eq. (3.187). For simplicity of notation, we suppress the subscript i which
labels the charged particles, and we have

q

m
(k · x)(ε · p) = C+ + C− (3.198)

where C± is de�ned by

C± ≡ q

2m
[(k · x)(ε · p)± (k · p)(ε · x)] (3.199)

We focus on C+ which corresponds to quadrupole radiation,

C+ =
q

2m
[(k · x)(ε · p) + (k · p)(ε · x)]

=
q

2
[(k · x)ε · dx

dt
+ (k · dx

dt
)(ε · x)]

=
1

6
q
d

dt
[3(k · x)(ε · x)− x2(ε · k)]

=
1

6
εikj

d

dt
Qij = −i1

6
εikj [Qij , Ĥ0] (3.200)

where we used ε · k = 0 and we have de�ned Qij = q(3xixj − x2δij). We have also used the

Schroedinger equation for the operator O, i ddtO = [Q, Ĥ0]. Substituting Eq. (3.200) into Eq. (3.187)
and setting n̄(k) = 0, we obtain the emission rate

λa→b+γ =
ωk
72π

∑
s=±1

∫
dΩk

∣∣∣∣∣εi(k, s)kj 〈b|∑
n

[Q
(n)
ij , H0] |a〉

∣∣∣∣∣
2

=
ω3
k

72π

∑
s=±1

∫
dΩk

∣∣∣∣∣εi(k, s)kj 〈b|∑
n

Q
(n)
ij |a〉

∣∣∣∣∣
2

(3.201)

where n labels all charged particles in the system. This gives the electric quadrupole transition rate.
The absorption rate can be similarly derived from Eq. (3.190).

Let us look at the C− term in Eq. (3.199),

C− =
q

2m
[(k · x)(ε · p)− (k · p)(ε · x)] =

q

2m
(k× ε) · (x× p)

= (k× ε) · µL
Note that k×ε comes from B = ∇×A, so C− ∼ −µL ·B is from the interaction of magnetic moment
in magnetic �eld. So this term corresponds to the magnetic dipole transition. If the particle has spin,
there is also a term (k× ε) · µS . So we can combine µS and µL and write the term as

C− → (k× ε) · (µL + µS) (3.202)

We then obtain the magnetic dipole transition rate from

λa→b+γ =
ω3
k

2π

∑
s=±1

∫
dΩk

∣∣∣∣∣[k̂× ε(k, s)] · 〈b|∑
n

(µ
(n)
L + µ

(n)
S ) |a〉

∣∣∣∣∣
2

(3.203)

where n labels all charged particles in the system.
From Eq. (3.193) we further obtain

λa→b+γ

λb+γ→a
=

n̄(k) + 1

n̄(k)
(3.204)
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If we assume equilibrium,

N(A)λa→b = N(B)λb→a (3.205)

then we have N(a) ∝ e−Ea/T and N(b) ∝ e−Eb/T ,

N(a)

N(b)
=

n̄(k)

n̄(k) + 1
= e−ωk/T

n̄(k) =
1

eωk/T − 1
(3.206)

which is Bose-Einstein distribution.

3.5.4 Multipole expansion

Let's �rst look at electric and magnetic dipole radiation. A static electric dipole is made up of two
opposite charges (q,−q) separated by a distance d along the z-axis. The electric dipole moment is
DE = qd. Suppose it is oscillating in time, DE = qd cos(ωt), it will induce an electric current I in the
z-direction which produces a magnetic �eld tangent to the circle parallel to the xy-plane and centered
along the z-axis. So the magnetic �eld is perpendicular to the coordinate vector x, i.e. x ·B(E) = 0.

The electric �eld is determined by E(E) = B(E) × k̂ with k the wave vector. An oscillating magnetic
moment is expressed as DM = Ia cos(ωt) where I and a denote the electric current density and the
area of a coil. Similarly it will induce a circular electric �eld perpendicular to the coordinate vector
x, i.e. x ·E(M) = 0. The magnetic �eld is determined by B(M) = k̂×E(M). See Fig. 3.22.

Both electric and magnetic dipole radiation give the same power distribution but radiation �elds
have opposite parity under the transformation x → −x. The electric dipole moment is odd under
the transformation, therefore the magnetic �eld it induces changes sign, i.e. B(E)(−x) = −B(E)(x),
E(E)(−x) = −E(E)(x). The magnetic dipole moment is even under the transformation x → −x, so
the �elds do not change sign, i.e. B(M)(−x) = B(M)(x), E(M)(−x) = E(M)(x).

The wave equation for the vector potential in free space reads

1

c2
∂2A

∂2t
−∇2A = 0 (3.207)

Let us assume that the vector potential has an oscillating part of the form of e−iωt. The wave equation
becomes

(∇2 + k2)A(k,x) = 0 (3.208)

where k ≡ |k| = ω and ∇2 is given by

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
− 1

r2
L̂2

L̂ = −ix×∇

L̂2 = −
[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
Here L̂ is the angular momemtum operator and can be written as

L̂ =
∑

n=0,±1

L̂ne−n (3.209)

where L̂± = (L̂x ± iL̂y)/
√

2 are operator that can raise or lower the magnetic quantum number,

L̂±YLM =
1√
2

√
(L∓M)(L±M + 1)YL,M±1 (3.210)
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Figure 3.22: Electric and magnetic dipole radiation. Taken from page 329 of Ref. [4].
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and e±1 = 1√
2
(ex ± iey), e0 = ez and L̂0 = L̂z. So we obtain

L̂YLM =
∑

n=0,±1

L̂nYLMe−n

=
1√
2

√
(L−M)(L+M + 1)YL,M+1e−1

− 1√
2

√
(L+M)(L−M + 1)YL,M−1e1 +MYL,Mez

=
√
L(L+ 1)

∑
n=0,±1

CLML,M+n;1,−nYL,M+ne−n (3.211)

Any function can be expanded as,

F (x) =
∑
L,M

fL(r)YLM (θ, φ) (3.212)

The radial part fL(r) satis�es the following equation[
d2

dr2
+

2

r

d

dr
+ k2 − L(L+ 1)

r2

]
fL(r) = 0

Using the replacement fl(r) = ul(r)/r
1/2 , the above equation can be simpli�ed as[

d2

dr2
+

1

r

d

dr
+ k2 − (L+ 1/2)2

r2

]
uL(r) = 0 (3.213)

Its solution is the Bessel function with ν = 1 + 1/2. Then the radial part fL(r) has the following
solution

fL(r) = C
(1)
LMh

(1)
L (r) + C

(2)
LMh

(2)
L (r)

= (C
(1)
LM + C

(2)
LM )jL(r) + i(C

(1)
LM − C

(2)
LM )nL(r) (3.214)

where the coe�cients C
(i)
LM (i = 1, 2) can be determined by the boundary condition, and h

(1)
L (x) and

h
(2)
L (x) are spherical Bessel functions of the third kind, see Appenix B.
Let us look at the multipole radiation in electrodynamics. Let us assume that all �elds are

oscillating in the form of e−iωt. The Maxwell equations in vacuum read,

∇×E = ikB,

∇×B = −ikE,
∇ ·E = 0,

∇ ·B = 0, (3.215)

where k = ω. We can derive the equations for E and B respectively,

(∇2 + k2)B = 0, ∇ ·B = 0,

with E =
i

k
∇×B,

(∇2 + k2)E = 0, ∇ ·E = 0,

with B = − i
k
∇×E. (3.216)

The electric and magnetic �elds are related to the vector potential,

B = ∇×A, E = −∂A

∂t
(3.217)
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We can solve the vector potential and obtain all radiation �elds from above. One way of solving
Eq. (3.216) is to solve the wave equation for each component of E or B �rst and then insert all
components into the transverse condition ∇ ·E or ∇ ·B respectively and select the �nal solution.

We will solve E and B in a di�erent way. We have the following relations

(∇2 + k2)(x ·B) = 0

(∇2 + k2)(x ·E) = 0 (3.218)

where we have used

∇2(x ·B) = ∂i[∂i(xjBj)] = ∂i[(∂ixj)Bj + (∂iBj)xj ]

= 2∂iBi + (∂i∂iBj)xj = 2∇ ·B + x · ∇2B (3.219)

This combines the wave function and the transverse condition. We can de�ne the magnetic multipole
mode, or the transverse electric (TE) mode, of order (L,M) as follows

x ·B(M)
LM =

L(L+ 1)

k
gL(kr)YLM (θ, φ)

x ·E(M)
LM = 0 (3.220)

where gL(kr) = C
(1)
L h

(1)
L (kr) +C

(2)
L h

(2)
L (kr). From the last line of Eq. (3.216), we obtain the relation

for the electric �eld,

x ·B(M)
LM = − i

k
x · ∇ ×E

(M)
LM =

1

k
L̂ ·E(M)

LM

L̂ ·E(M)
LM = L(L+ 1)gL(kr)YLM (θ, φ) (3.221)

Then we obtain the �eld of the TE or magnetic multipole mode,

E
(M)
LM = gL(kr)L̂YLM (θ, φ)

B
(M)
LM = − i

k
∇×E

(M)
LM (3.222)

Similarly the electric multipole mode, or the transverse magnetic (TM) mode, of order (L,M) satis�es
the condition

x ·E(E)
LM =

i

k
x · ∇ ×B

(E)
LM = −1

k
L̂ ·B(E)

LM

≡ −L(L+ 1)

k
fL(kr)YLM (θ, φ)

x ·B(E)
LM = 0 (3.223)

The �elds of the TM mode are given by

B
(E)
LM = fL(kr)L̂YLM (θ, φ)

E
(E)
LM =

i

k
∇×B

(E)
LM (3.224)

It is convenient to use following normalized vector functions

XLM (θ, φ) =
1√

L(L+ 1)
L̂YLM (θ, φ) (3.225)
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which satisfy the normalization and orthogonality conditions∫
dΩX∗L′M ′ ·XLM = δLL′δMM ′∫

dΩX∗L′M ′ · (r×XLM ) = 0 (3.226)

So general solutions to Maxwell's equations in multipole expansion can be expressed by

E =
∑
L,M

[
i

k
c(E)(L,M)∇× fL(kr)XLM + c(M)(L,M)gL(kr)XLM

]

B =
∑
L,M

[
c(E)(L,M)fL(kr)XLM −

i

k
c(M)(L,M)∇× gL(kr)XLM

]
(3.227)

The vector potential can be obtained by E = −∂A/∂t = ikA,

A =
∑
L,M

[
1

k2
c(E)(L,M)∇× fL(kr)XLM −

i

k
c(M)(L,M)gL(kr)XLM

]
=

∑
L,M

[a(E)(L,M)A
(E)
LM (k,x) + a(M)(L,M)A

(M)
LM (k,x)] (3.228)

In Eqs. (3.227,3.228) a(E),(M) and c(E),(M) are all expansion coe�cients. We can verify that the above
vector potential really satis�es B = ∇×A. We can check this. The second term does obviously obey
B = ∇×A, so does the �rst term since

∇× {∇× [fL(kr)XLM ]} = ∇(∇ · [fL(kr)XLM ])−∇2[fL(kr)XLM ]

= k2fL(kr)XLM (3.229)

where we have used (∇2 + k2)[fL(kr)XLM ] = 0. We can choose fL(kr) = gL(kr) by re-de�ning c(E)

and c(M), then we have

A
(E)
LM (k,x) =

i

k
∇×A

(M)
LM (k,x) (3.230)

In proper nomalization, the vector potential of a TE mode is given by

A
(M)
LM = k

√
8π

R0
XLM (θ, φ)jL(kr) (3.231)

where have chosen jL(kr) for it full�ls the boundary condition A
(M)
LM (r = 0) should be �nite and

A
(M)
LM (r → ∞) = 0. The parity of the magnetic multipole �eld is (−1)L. Due to x · L̂ = 0, we see

that A
(M)
LM is perpendicular to x. The normalization constant can be determined from∫

d3xA
(M)∗
LM ·A(M)

L′M ′ =
8πkk′

R0

∫
dΩX∗LM ·XL′M ′

∫
drr2jL(kr)jL′(k

′r)

= 4πδLL′δMM ′δk,k′ (3.232)

where we have assumed for kR0 > kr � L,

jL(kr) ≈ 1

kr
sin(kr − π

2
L) (3.233)

The boundary condition

jL(kR0) = 0, knR0 −
π

2
L = nπ (3.234)
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So we have

k3

∫ R0

0

drr2j2
L(kr) =

∫ kR0

0

dyy2j2
L(y)

≈
∫ kR0

0

dy sin2(y − π

2
L) =

1

2
kR0 (3.235)

The the vector potential of a TM mode is obtained by Eq. (3.230),

A
(E)
LM (k,x) =

i

k
∇×A

(M)
LM (k,x) = i

√
8π

R0
∇×XLM (θ, φ)jL(kr)

The parity of the electric multipole �eld is (−1)L+1. The TE and TM modes are dual to each other,

E
(E)
LM = B

(M)
LM , B

(E)
LM = −E

(M)
LM (3.236)

The energy �ows of both TE and TM modes are along x.

Having the transverse radiation �elds A
(E),(M)
LM , we can write down the general solution by expan-

sion and quantize it,

A(t,x) =
∑
L,M,k

∑
σ=(E),(M)

1√
2ω

[
aσ(k, L,M)Aσ

LM (k,x)e−iωt

+a†σ(k, L,M)Aσ∗
LM (k,x)eiωt

]
(3.237)

where aσ and a†σ are destruction and creation operators,

[aσ(k, L,M), a†σ′(k
′, L′,M ′)] = δσ,σ′δLL′δMM ′δkk′

all others = 0 (3.238)

The Hamiltonian for the radiation �eld is

Hrad =
1

8π

∫
d3x(E2 + B2) =

1

8π

∫
d3x

[(
∂A

∂t

)2

+ (∇×A)2

]

=
∑

L,M,k,σ

k

[
a†σ(k, L,M)aσ(k, L,M) +

1

2

]
(3.239)

Here we treat the nucleus as a single identity. The transition amplitude from the initial state to the
�nal state is

λ = 2π |〈b, 1 |HI| a, 0〉|2 ρ(Ef ) (3.240)

where HI is given by Eq. (3.182). Here ρ(Ef ) is the density of �nal states,

ρ(Ef ) =
dn

dEf
=
R0

π
(3.241)

where we have used Eq. (3.234).
For electric multipole radiation or TM mode the non-vanishing term in the matrix element

〈b, 1 |HI | a, 0〉 comes from the creation operator term in the vector �eld A(t,x) and magnetic �eld
B(t,x),

1√
2ω
a†(E)(k, L,M)A

(E)∗
LM (k, r) = −ia†(E)(k, L,M)

√
4π

R0ω
∇× [X∗LM (θ, φ)jL(kr)]

1√
2ω
a†(E)(k, L,M)B

(E)∗
LM (k, r) = −ia†(E)(k, L,M)

√
4π

R0ω
∇×∇× [X∗LM (θ, φ)jL(kr)](3.242)
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where

A
(E)∗
LM (k, r) = −i

√
8π

R0
∇× [X∗LM (θ, φ)jL(kr)]

B
(E)∗
LM (k, r) = ∇×A

(E)∗
LM (k, r) (3.243)

Substituting Eq. (3.242) into HI in Eq. (3.182) and using Eq. (3.240), we obtain the amplitude for
one charged particle (we suppressed the particle label in the charge and g-factor),

〈b, 1 |HI| a, 0〉 = i
1

2m

√
4π

R0ωL(L+ 1)

×
{
eq
〈

b
∣∣∣[∇× (L̂∗Y ∗LM jL)] · (−i∇) + (−i∇) · [∇× (L̂∗Y ∗LM jL)]

∣∣∣ a〉
+ eg

〈
b
∣∣∣σ · ∇ × [∇× (L̂∗Y ∗LM jL)]

∣∣∣ a〉}
= i

1

2m

√
4π

R0ωL(L+ 1)

×{eq 〈b |[∇× (x×∇Y ∗LM jL)] · ∇+∇ · [∇× (x×∇Y ∗LM jL)]| a〉
+ eg

〈
b
∣∣∣σ · ∇ × [∇× (L̂∗Y ∗LM jL)]

∣∣∣ a〉}
= −i

√
4π(L+ 1)

R0ωL

kL+1

(2L+ 1)!!

×
{
eq
〈
b
∣∣rLY ∗LM ∣∣ a〉+ kg

e

2m

1

L+ 1

〈
b
∣∣∣[σ · L̂(rLY ∗LM )]

∣∣∣ a〉}

= −i
√

4π(L+ 1)

R0ωL

kL+1

(2L+ 1)!!
(Q1,LM +Q2,LM ) (3.244)

Here we have assumed that there is only one charged particle in the system, we will add a sum over
all particles in the end. We also assume that kr is very small, i.e. the photon wavelength is much
smaller than nucleus size. We have de�ned

Q1,LM = eq
〈
b
∣∣rLY ∗LM ∣∣ a〉

Q2,LM = g
e

2m

k

L+ 1

〈
b
∣∣∣[σ · L̂(rLY ∗LM )]

∣∣∣ a〉 (3.245)

We have used

ψ∗b[∇× (x×∇Y ∗LM jL)] · ∇ψa + ψ∗b∇ · [∇× (x×∇Y ∗LM jL)]ψa

= 2m
(L+ 1)kL

(2L+ 1)!!
ψ∗b{−

∇2

2m
(rLY ∗LMψa)− rLY ∗LM (−∇

2

2m
)ψa}

= 2m
(L+ 1)kL

(2L+ 1)!!
ψ∗b{[−

∇2

2m
+ V (r)]rLY ∗LM − rLY ∗LM [−∇

2

2m
+ V (r)]}ψa

= −2m
(L+ 1)kL

(2L+ 1)!!
(Ea − Eb)ψ∗br

LY ∗LMψa

= −2m
(L+ 1)kL+1

(2L+ 1)!!
ψ∗br

LY ∗LMψa (3.246)
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and

σ · ∇ × [∇× (L̂∗Y ∗LM jL)] = iσ · ∇ × [∇× (x×∇Y ∗LM jL)]

= iσ · ∇ × [x∇2(Y ∗LM jL)]

= −ik2σ · ∇ × (xY ∗LM jL) = ik2σ · [x×∇(Y ∗LM jL)]

≈ i
kL+2

(2L+ 1)!!
(σ × x) · ∇(rLY ∗LM )

= − kL+2

(2L+ 1)!!
σ · L̂(rLY ∗LM ) (3.247)

Here in deriving the above two formula we have used

ψ∗b[∇× (x×∇Y ∗LM jL)] · ∇ψa + ψ∗b∇ · [∇× (x×∇Y ∗LM jL)]ψa

≈ − (L+ 1)kL

(2L+ 1)!!
{ψ∗b[∇(rLY ∗LM )] · ∇ψa + ψ∗b∇ · [∇(rLY ∗LM )ψa]}

= − (L+ 1)kL

(2L+ 1)!!
{ψ∗b[∇(rLY ∗LM )] · ∇ψa + ψ∗b∇ · [∇(rLY ∗LMψa)− rLY ∗LM∇ψa]}

= − (L+ 1)kL

(2L+ 1)!!
{ψ∗b[∇(rLY ∗LM )] · ∇ψa

+ψ∗b[∇2(rLY ∗LMψa)−∇(rLY ∗LM ) · ∇ψa − rLY ∗LM∇2ψa]}

− (L+ 1)kL

(2L+ 1)!!
ψ∗b{∇2rLY ∗LM − rLY ∗LM∇2}ψa (3.248)

and

jL(kr) ≈ (kr)L

(2L+ 1)!!
, for kr � 1

xj∂j∂h = ∂hxj∂j − ∂h
∇× (x×∇Y ∗LM jL) = ehεhniεijk∂n(xj∂kY

∗
LM jL)

= ehεhniεijk(δnj∂k + xj∂n∂k)Y ∗LM jL

= eh(δhjδnk − δhkδnj)(δnj∂k + xj∂n∂k)Y ∗LM jL

= eh(xh∂
2 − 2∂h − xj∂j∂h)Y ∗LM jL

= eh[xh∂
2 − ∂h(1 + xj∂j)]Y

∗
LM jL

= [x∇2 −∇(1 + r∂r)]Y
∗
LM jL

= −xk2Y ∗LM jL − [∇(1 + r∂r)Y
∗
LM jL]

≈ −x
k2(kr)L

(2L+ 1)!!
− (L+ 1)kL

(2L+ 1)!!
∇(rLY ∗LM )

≈ − (L+ 1)kL

(2L+ 1)!!
∇(rLY ∗LM ) (3.249)

So the transition rate from the electric multipole �eld is

λ(E) = 2π |〈b, 1 |HI | a, 0〉|2 ρ(Ef )

=
8π(L+ 1)

L[(2L+ 1)!!]2
k2L+1

∑
Ma,Mb,M

1

2Ja + 1
|Q1,LM +Q2,LM |2 (3.250)

where we have taken average over the initial states and sum over the �nal states. When we recover
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the sum over all charged particles, Q1(2),LM are given by

Q1,LM = e
∑
i

qi
〈
b
∣∣rLi Y ∗LM (i)

∣∣ a〉
Q2,LM =

k

L+ 1

∑
i

gi
e

2mi

〈
b
∣∣∣(σi · L̂i)[rLi Y ∗LM (i)]

∣∣∣ a〉 (3.251)

From spherical harmonics, Y1,±1(θ, φ) = ∓
√

3/8π sin θe±iφ, Y1,0(θ, φ) =
√

3/4π cos θ, we have

Q1;1,±1 = ∓
√

3

8π

〈
b

∣∣∣∣∣e∑
i

qi(xi ± iyi)
∣∣∣∣∣ a
〉

Q1;1,0 =

√
3

4π

〈
b

∣∣∣∣∣e∑
i

qizi

∣∣∣∣∣ a
〉

(3.252)

If we neglect Q2,LM , Eq. (3.250) becomes

λ(E1) =
4

3
ω3
k

∑
Ma,Mb

1

2Ja + 1
|Dba(Mb,Ma)|2 (3.253)

The power of radiation is then

I(E1) =
4

3
ω4
k

∑
Ma,Mb

1

2Ja + 1
|Dba(Mb,Ma)|2 (3.254)

which is the same as Eq. (3.197). From Eq. (3.251) we have Q1 = Q2 = 0 when L = 0, so there is
no E0 transition.

Now we consider the magnetic multipole transition. The vector potential and magnetic �elds for
a L,M mode which appear in the creation operator term are given by

A
(M)∗
LM (k, r) = k

√
8π

R0
X∗LM (θ, φ)jL(kr)

B
(M)∗
LM (k, r) = ∇×A

(M)∗
LM (k, r) (3.255)

Then the creation operator terms in A(t,x) and magnetic �eld B(t,x) are given by

1√
2ω
a†(M)(k, L,M)A

(M)∗
LM (k, r) = a†(M)(k, L,M)

√
4π

R0ω
X∗LM (θ, φ)jL(kr)

1√
2ω
a†(M)(k, L,M)B

(M)∗
LM (k, r) = a†(M)(k, L,M)

√
4π

R0ω
∇× [X∗LM (θ, φ)jL(kr)] (3.256)



CHAPTER 3. RADIOACTIVITY AND NUCLEAR DECAY 84

Substituting the above into Eq. (3.240), we get the transition amplitude,

〈b, 1 |HI| a, 0〉 = − k

2m

√
4π

R0ωL(L+ 1)

×
{
eq
〈

b
∣∣∣(L̂∗Y ∗LM jL) · (−i∇) + (−i∇) · (L̂∗Y ∗LM jL)

∣∣∣ a〉
+ eg

〈
b
∣∣∣σ · [∇× (L̂∗Y ∗LM jL)]

∣∣∣ a〉}
= − k

2m

√
4π

R0ωL(L+ 1)

×{eq 〈b |(x×∇Y ∗LM jL) · ∇+∇ · (x×∇Y ∗LM jL)| a〉
+ eg

〈
b
∣∣∣σ · [∇× (L̂∗Y ∗LM jL)]

∣∣∣ a〉}
= − k

2m

√
4π

R0ωL(L+ 1)

kL

(2L+ 1)!!

×
{
−2ieq

〈
b
∣∣∣L̂ · ∇(rLY ∗LM )

∣∣∣ a〉− ieg(L+ 1)
〈
b
∣∣σ · ∇(rLY ∗LM )

∣∣ a〉}
= i

√
4π(L+ 1)

R0ωL

kL+1

(2L+ 1)!!
(M1,LM +M2,LM ) (3.257)

Here we have used

ψ∗b(x×∇Y ∗LM jL) · ∇ψa + ψ∗b∇ · (x×∇Y ∗LM jL)ψa

= 2ψ∗b(x×∇Y ∗LM jL) · ∇ψa = −2ψ∗b(∇Y ∗LM jL) · (x×∇ψa)

= 2ψ∗b∇ · (x×∇Y ∗LM jL)ψa

= −2ψ∗bx×∇ · [∇(Y ∗LM jL)ψa] (3.258)

σ · [∇× (L̂∗Y ∗LM jL)] = iσ · {∇ × [x×∇(Y ∗LM jL)]}

≈ −i (L+ 1)kL

(2L+ 1)!!
σ · ∇(rLY ∗LM ) (3.259)

The transition rate from the magnetic multipole �eld or TE mode is

λ(M) =
8π(L+ 1)

L[(2L+ 1)!!]2
k2L+1

∑
Ma,Mb,M

1

2Ja + 1
|M1,LM +M2,LM |2 (3.260)

where M1,LM and M2,LM are de�ned by

M1,LM =
1

L+ 1

∑
i

eqi
mi

〈
b
∣∣∣L̂i · ∇i[rLi Y ∗LM (i)]

∣∣∣ a〉
=

1

L+ 1

∑
i

eqi
mi

〈
b
∣∣∣{∇i[rLi Y ∗LM (i)]} · L̂i

∣∣∣ a〉
M2,LM =

∑
i

gi
e

2mi

〈
b
∣∣σi · ∇i[rLi Y ∗LM (i)]

∣∣ a〉 (3.261)

where we have recovered the sum over all charged particles. From Eq. (3.261) we have M1 = M2 = 0
for L = 0, so there is no M0 transition.

Let us estimate the magnitude of the transition. For the electric multipole �eld,

Q1,LM = eq
〈
b
∣∣rLY ∗LM ∣∣ a〉 ∼ e 〈rL〉 ∼ e∫ drrL+2∫

drr2
∼ e 3

L+ 3
RL

Q2,LM = g
e

2m

k

L+ 1

〈
b
∣∣∣(σ · L̂)(rLY ∗LM )

∣∣∣ a〉 ∼ eω

m

3

2(L+ 1)(L+ 3)
RL (3.262)



CHAPTER 3. RADIOACTIVITY AND NUCLEAR DECAY 85

For the nuclear γ decay, the ratio becomes

Q2,LM

Q1,LM
∼ ω

m
∼ 10−3 (3.263)

So we can neglect Q2,LM relative to Q1,LM . For the magnetic multipole �eld, M1,LM and M2,LM are
of the same order,

M1,LM ∼ M2,LM ∼
e

m
RL−1 (3.264)

The transitions of the higher order are much suppressed relative to the lower order,

λ(E)(L+ 1)

λ(E)(L)
∼ λ(M)(L+ 1)

λ(M)(L)
∼ k2R2 ∼ (MeV · 10 fm)2 ∼ 2.5× 10−3 (3.265)

The magnitude of the magnetic transition is suppressed relative to that of electric one of the same
order,

λ(M)(L)

λ(E)(L)
∼ 1

m2R2
∼ 1

(1 GeV · 10 fm)2
∼ 4× 10−4 (3.266)

Then we can roughly have the relation λ(E)(L + 1) ∼ λ(M)(L), i.e. E(L+1) radiation is comparable
to ML one in magnitude.

Selection rules for parity are given as follows. The parity of the operators are know as

P (rLY ∗LM ) = (−1)L

P [L · ∇(rLY ∗LM )] = P [σ · ∇(rLY ∗LM )] = (−1)L−1 (3.267)

For EL and ML transitions

PiPf = (−1)L, EL

PiPf = (−1)L+1, ML (3.268)

where Pi,f are parities for the initial and �nal states.
Selection rules for angular momentum. Following the Wigner-Eckart theorem,

〈Jf ,Mf |TLM | Ji,Mi〉 = C
JfMf

JiMi,LM
〈Jf ‖TLM‖ Ji〉 (3.269)

where

TLM = rLY ∗LM , L̂ · ∇(rLY ∗LM ), σ · ∇(rLY ∗LM ) (3.270)

and L 6= 0 obeys that Jf ,Ji,L form a vector triangle,

Jf = Ji + L

|Ji − Jf | ≤ L ≤ |Ji + Jf | (3.271)

There is no transition with Ji = Jf and L = 0. Note that the transition with L = |Ji−Jf | is dominant.
The mixing only takes place between E(2L) and E(2L'), M(2L) and M(2L') or ML and E(L+1)

[but not EL and M(L+1) due to the disparity of the two transition strengths]. For example, a
transition 2+ → 1+ can be M1 or E2. From the parity conservation (−1)L/(−1)L+1 must be 1 for
electric/magnetic �eld, so Lmust be even/odd for the electric/magnetic �eld. For angular momentum
conservation, we have L = 1, 2, 3. So the possible transitions are M1, E2 or M3. The dominant
transitions are M1 or E2.
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Table 3.4: Selection rules for parity and angular momentum.

|Ji − Jf | 0,1 2 3 4 5
PiPf = + M1(E2) E2 M3(E4) E4 M5(E6)
PiPf = − E1 M2(E3) E3 M4(E5) E5

Figure 3.23: Energy spectra of electrons from beta decay and internal conversion of radioactive nuclei.
The peaks on top of continuous the spectrum are from internal conversion.
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Figure 3.24: The electron spectrum in the β-decay 203Hg→203 Tl with internal conversion of 203Tl.
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There are no 0+ → 0+ transition, since this would need a monopole radiation with L = 0 which
does not exist. These decay processed can happen through internal conversion. Internal conversion is
a radioactive decay where a transition of an excited nucleus to its lower energy level takes place and the
energy is transfered to an electron on the inner atomic shell which is kicked out. Internal conversion
is not photo-electric e�ect since there is no photon involved. The electrons emitted from internal
conversion can be distinguished from those from the β-decay. The electron energy is continuous in
the β-decay, while it is discrete in the internal conversion. See Fig. 3.23.

The electron energy in internal conversion can be expressed by Te = Eγ −W , where Eγ is the
transition energy and W is the binding energy of the electron in the atomic shell. Normally an
electron in the K-shell (n = 1) is kicked out, so from the K-shell binding energy WK and the electron
energy Te we can determine the transition energy or the di�erence of the two energy levels. For the
L-shell (n = 2) electrons, there are atomic orbitals 2s1/2, 2p1/2 and 2p3/2, which are also called LI ,
LII and LIII shells. The vacancy left by the knocked out electron is instantly �lled by the electron
from an outer shell. This results in accompanying X-ray.

As an example we consider the β decay of 203
80 Hg→203

81 Tl followed by a γ-decay of energy 279.19
keV. We need to know the electron binding energies of the Tl (Thallium) atom whose lower shells are
[4],

B(K) = 85.529 keV

B(LI) = 15.347 keV

B(LII) = 14.698 keV

B(LIII) = 12.657 keV

B(MI) = 3.704 keV (3.272)

So the conversion electrons have energies as follows,

Te(K) = (279.19− 85.529) keV = 193.661 keV

Te(LI) = (279.19− 15.347) keV = 263.843 keV

Te(LII) = (279.19− 14.698) keV = 264.492 keV

Te(LIII) = (279.19− 12.657) keV = 266.533 keV

Te(MI) = (279.19− 3.704) keV = 275.486 keV (3.273)

See Fig. 3.24 for the electron spectrum of 203Hg. One can see the peaks on the continuous background
of the β-decay. The intensities of internal conversion varies from β decays. In some cases internal
conversion is favored over the γ emission, in others, it is opposite. We can de�ne the ratio of the
internal conversion rate (decay constant) to the γ-emission rate, α = λe/λγ . Then the total decay
constant can be put in the form λt = λγ(1 + α).

Let us take the γ-emission of Se-72 for an example. The enegry level of Se-72 is shown in Fig.
3.25. We notice that the 937-MeV transition must be an internal conversion since it is a 0+ → 0+

transition. Let us look at the energy level of 1317 keV. The half life of the level 1317 keV is 8.7 ps,
whose total decay rate is

λt =
ln 2

t1/2
=

0.693

8.7× 10−12s
= 7.97× 1010 s−1 (3.274)

The total decay rate is the sum of the rates for three transitions, 1317 keV, 455 keV and 380 keV,

λt = λ1317 + λ455 + λ380

= λγ,1317(1 + α1317) + λγ,455(1 + α455) + λγ,380(1 + α380)

≈ λγ,1317 + λγ,455 + λγ,380 (3.275)

The relative intensities for these γ-decays are

λγ,1317 : λγ,455 : λγ,380 = 51 : 39 : 10 (3.276)
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Figure 3.25: Energy level of Se-72.
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Then we obtain

λγ,1317 = 0.51λt = 4.1× 1010 s−1

λγ,455 = 0.39λt = 3.1× 1010 s−1

λγ,380 = 0.1λt = 8× 109 s−1 (3.277)

We can compare these partial rates to the values from Eqs. (3.245,3.250). Let us assume an E2
transition, then we get

λE2,1317 ≈ 8π(L+ 1)

L[(2L+ 1)!!]2
k2L+1e2

(
3

L+ 3

)2

R2L

∼ 4π

75× 137
× (1.317× 5/197)4 × 1.317/197 fm−1

≈ 3.67× 10−12 c/fm ∼ 1.1× 1012 s−1 (3.278)

where we have used R ≈ A1/3r0 ≈ 5 fm. We can obtain the rates of other E2 transitions as

λE2,455 = (455/1317)5λE2,1317 = 5.4× 109 s−1

λE2,380 = (380/1317)5λE2,1317 = 2.2× 109 s−1 (3.279)

We can see that there is di�erence between Eqs. (3.245,3.250) and from Eq. (3.277), which is within
a factor of 10. In real applications, Eqs. (3.245,3.250) have to be improved.

Exercise 29. Which is larger E(L+1) and EL radiation? Why?

Exercise 30. Write down the parity selection rules for EL and ML radiation.
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Figure 3.26: The Mössbauer e�ect: recoil-free nuclear resonance emission and absorption of gamma-
ray.
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Exercise 31. For the γ-decay from the transition 2+ → 1− , what are the possible types of
multipole radiations? why?

Exercise 32. The ratio of the transition rate of E(L+1) to EL and M(L+1) to ML transition
can be estimated as

r1 =
λ(E)(L+ 1)

λ(E)(L)
∼ λ(M)(L+ 1)

λ(M)(L)
∼ k2R2

where k is the wave number (momentum) of the Gamma ray and R is the typical radius
of the nucleus. The ratio of the transition rate of magnetic to electric transition can be
estimated as

r2 =
λ(M)(L)

λ(E)(L)
∼ 1

m2R2

where m is the nucleon mass. (1) Try to estimate r1 and r2 for typical values of k = 1 MeV
and R = 10 fm. (2) Given the initial and �nal state's parities Pi and Pf for Gamma decay,
write down the parity selection rule for EL and ML transition. (3) What is the angular
selection rule for the Gamma decay? (4) 167

68 Er has the following energy levels starting from
the ground state,

7
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−
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−
,

5

2

−

give the dominant Gamma transitions for each excited states.

3.6 Mössbauer e�ect

Mössbauer discovered the recoil-free emission and absorption of gamma rays by nuclei in 1958 and
was awarded the Nobel prize in physics for this e�ect name after him. See Fig. 3.26. Using the
Mössbauer e�ect one can make very high precision measurement of the energy to observe the �ne
structure.

The transition rate of an energy level is inversely proportional to its life and proportional to its
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width. In the γ decay, the ratio of its width to its energy is normally 10−8, which requires very high
precision measurement. One usually measure the width of a γ transition by the resonant absorption.
This emission and subsequent absorption is called resonant �uorescence. But the recoil of the mother
nuclei will take o� a lot of energy making the resonant absorption very di�cult. Mössbauer was the
�rst physicist who tackled this di�culty.

Take the gamma decay 14.4 KeV of 57
26Fe∗ as example. The momentum of the photon is

p ≡ |p| = 0.0144 MeV (3.280)

The recoil energy of the nucleus is

ER =
p2

2m
=

(0.0144)2

2× 57× 931
≈ 2× 10−3 eV (3.281)

The lifetime of the excited state of 57
26Fe∗ is τ ∼ 10−7s. The width of 57

26Fe∗ is then

Γ =
1

τ
≈ 1

10−7 × 3× 108 × 1015
fm−1 ≈ 3.3× 10−17 fm−1

≈ 197× 3.3× 10−17 MeV ≈ 6× 10−9 eV (3.282)

One sees
ER � Γ (3.283)

In this case the resonant absorption cannot take place. For the resonant absorption to occur, one
should have

Eγ,em = E0 − ER
Eγ,ab = E0 + ER

Eγ,ab − Eγ,em = 2ER < 2Γ (3.284)

It was a great breakthrough to realize that one could get resonance absorption of gamma rays by
putting the source nuclei in a crystal in low temperature. To see how many iron nuclei would have
to recoil together to keep the gamma within the natural linewidth:

ER =
p2

2mN
= Γ,

N =
p2

2mΓ
≈ 2× 10−3

6× 10−9
≈ 3.3× 105 (3.285)

which is many orders of magnitude smaller than the macroscopic scale 1023.

Exercise 33. The resonant absorption without recoil is observed in the γ-decay of 191
77 Ir114.

The energy of the photon is 120 KeV and the width of the spectrum is given by its life
τ ≈ 1.4 × 10−10 s. Estimate the recoil energy of the nucleus if the nucleus is put in free
space. In order for the resonant absorption to take place, what is the least mass of the crystal
in which the nuclei are embeded in order for the resonant absorption to take place.



Chapter 4

Nuclear models

A nucleus is a many body system of nucleons. Nucleons interact with each other via nuclear force.
Besides two-body forces, there are many-body forces like three-body forces etc.. Nuclear models are
simpli�ed descriptions of some of nuclear properties.

4.1 The shell model

4.1.1 Phenomena related to shell structure

It is found that a nucleus is stable when the neutron or proton number is 2,8,20,28,50,82, and the
neutron number is 126. These numbers are called the magic numbers. A nucleus can be singly magic
with proton or neutron number being a magic number, or doubly magic with both proton and neutron
numbers being magic numbers. Several evidences about the magic numbers are as follows.

(1) Abundance. (a) On the earth, the following nuclei are more abundant than their neighbors:

4
2He2,

16
8 O8,

40
20Ca20,

60
28Ni32,

88
38Sr50,

90
40Zr50,

120
50 Sn70,

128
56 Ba82,

140
58 Ce82,

208
82 Pb126 (4.1)

In nuclei with even proton numbers (even Z), it is less likely that their abundances are more than
50%. There are exceptions: the abundances of 88

38Sr50,
138
56 Ba82 and 140

58 Ce82 are 82.56%, 71.66% and
88.48%. One can see that when the neutron number is 50 or 82 the nucleus is much more stable than
a normal one. (b) In all stable elements, those with neutron number 20, 28, 50, 82 have more number
of isotones than their neighbors. Elements with N = 20, 28 have 5 isotones, N = 50 have 6, N = 82
have 7. (c) When the proton number Z = 8, 20, 28, 50, 82, the number of stable isotopes are much
larger than their neighbors. (d) The presence of pairing energy shows that even-even nuclei are more
stable than odd-odd ones, see Table 2.2. (e) The average excitation energy of the �rst excited state
in even-even nuclei show a maximum when the neutron number is a magic one.

(2) The binding or separation energies of the last nucleon for nuclei are de�ned by

Sn = B(Z,A)−B(Z,A− 1) = M(Z,A− 1)−M(Z,A) +mn

Sp = B(Z,A)−B(Z − 1, A− 1) = M(Z − 1, A− 1)−M(Z,A) +mp (4.2)

They are much smaller for nuclei with Z − 1 or N − 1 being magic numbers than others, which
indicates that the nuclei with magic number are more tightly bound. The neutron binding energy is
small for nuclei with N = 8, 20, impling that it is relatively hard for them to capture a neutron. The
empirical formula for the nuclear binding energy per nucleon deviates from data strongly when N or
Z are magic numbers. The neutron capture cross sections are much smaller for nuclei whose neutron
numbers are magic numbers. See Fig. 4.1.

(3) There are sudden changes of nucleus radius for nuclei whose neutron numbers are magic
numbers.

92
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Figure 4.1: Neutron separation energy Sn as a function of the neutron number of �nal nucleus.
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4.1.2 Main points of the shell model

The shell model was mainly developed in 1949 by several physicists independently, mainly by Wigner,
Mayer and Jensen, who was awarded by Nobel prize in physics in 1963. Every nucleon can be regarded
as moving in the mean �eld of other nucleons. For spherical shape, the mean �eld provides a central
force. Such a picture is called the independent particle model. Pauli exclusion principle limits the
maximum number of nucleons in one energy level. The mean free path of nucleon is large since a lot
of collision is forbiden if the �nal state is an occupied state.

There are mainly three kinds of single nucleon potentials, the square well, the Woods-Saxon and
the harmonic oscillator. The real potential is between the square well and the harmonic oscillator.
The Woods-Saxon nuclear potential is

V (r) = − V0

exp
(
r−R
a

)
+ 1

(4.3)

where V0 > 0, and R and a are the radius and the width of the potential. The potential for harmonic
oscillator is

V (r) =
1

2
mω2r2 (4.4)

Let us �rst consider harmonic oscillator. The wave function can be factorized into a radial part
and an angular part, ψ = RL(r)YLM (θ, φ). The radial part of the wave function RL(r) satis�es the
following radial part of the Schroedinger equation[

d2

dr2
+

2

r

d

dr
+ 2m

(
E − 1

2
mω2r2

)
− L(L+ 1)

r2

]
RL(r) = 0 (4.5)

We can �rst look at the solution with E = 0. Two possible divergent points are at r = 0,∞. We �rst
look at r = 0, where the equation becomes[

d2

dr2
+

2

r

d

dr
− L(L+ 1)

r2

]
RL(r) = 0 (4.6)
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which has two solutions,

RL ∼ rL,
1

rL+1
(4.7)

The solution is RL ∼ rL is physical. Then we look at the case for r =∞,(
d2

dr2
−m2ω2r2

)
Rl(r) = 0 (4.8)

The solutions are
RL(r) ∼ exp(±mωr2/2) (4.9)

where we only the solution with the minus sign is physical at in�nity. So we can assume a general
solution RL(r) for non-vanishing E has the following form

RL(r) ∼ rL exp(−mωr2/2)uL(r) (4.10)

Changing the variable r to a dimensionless ξ = mωr2, we arrive at the equation for the con�uent
hypergeometric function for uL(ξ),

ξ
d2uL
dξ2

+

[(
L+

3

2

)
− ξ
]
duL
dξ
−
(
L+ 3/2

2
− E

2ω

)
uL = 0 (4.11)

whose physical solution is

u(r) ∼ F (−nr, L+
3

2
, ξ) (4.12)

with the radial quntum number nr given by

nr =
E

2ω
− L+ 3/2

2

The wave functions of a harmonic oscillator can be written in a compact and analytic form,

ψnrLM (r, θ, φ) = RnrL(r)YLM (θ, φ)

RnrL(r) = α3/2

[
2L+2−nr (2L+ 2nr + 1)!!√

πnr![(2L+ 1)!!]2

]1/2

×(αr)L exp

(
−1

2
α2r2

)
F (−nr, L+ 3/2, α2r2) (4.13)

where F is the con�uent hypergeometrical function and α ≡ √mω. The energy level is,

E = (N + 3/2)ω

N = 2nr + L (4.14)

Some lowest levels and their quantum numbers are illustrated in Fig. 4.1. The degeneracy for the
energy level N is

dN = 2

[N/2]∑
nr=0

[2(N − 2nr) + 1]

= (N + 1)(N + 2) (4.15)

where we have included two spin states of nucleons.
Another example is the square well with depth −V0 in the range r ∈ [0, R]. The Schoedinger

equation for the radial part becomes the equation for spherical Bessel functions,[
d2

dr2
+

2

r

d

dr
+ k2 − L(L+ 1)

r2

]
RL(r) = 0 (4.16)
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Table 4.1: Some energy levels of the harmonic oscillator. The quantum numbers for the orbital
angular momentum are L = 0(s), 1(p), 2(d), 3(f), 4(g), 5(h).
EnrL(ω) nr state nucleon accumulation
(N) (nr, L) number number
0 0 0s 2 2
1 0 0p 6 8
2 0,1 1s, 0d 12 20
3 0,1 1p, 0f 20 40
4 0,1,2 2s, 1d, 0g 30 70
5 0,1,2 2p, 1f, 0h 42 112
6 0,1,2,3 3s, 2d, 1g, 0i 56 168

Table 4.2: The energy levels of the square well potential. Here n denotes the n-th zero point of
Jl+1/2(x).

nL xnL dn
∑
n dn

1s 3.1416 2 2
1p 4.4934 6 8
1d 5.7635 10 18
2s 6.2832 2 20
1f 6.9879 14 34
2p 7.7253 6 40
1g 8.1826 18 58
2d 9.0950 10 68
1h 9.3558 22 90
3s 9.4248 2 92
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where k =
√

2m(E + V0) with energy E < 0. Assuming RL = uL/
√
r, the above equation becomes,[

d2

dr2
+

1

r

d

dr
+ k2 − (L+ 1/2)2

r2

]
uL(r) = 0 (4.17)

The solution which satis�es the boundary condition is

RL = CjL(kr)

RL|r=0 = finite

RL|r=R = CjL(kR) = 0, (4.18)

where jL(x) =
√
π/(2x)JL+1/2(x) is the spherical Bessel function. The wave vectors k at zero points

are denoted as knL = xnL/R, where xnL is the n-th zero point of jL(x). The energy is then

EnL = −V0 +
x2
nL

2mR2
(4.19)

The degeneracy factor is
dn = 2L+ 1 (4.20)

When applying to a nucleon system, one has to include two spin states in dn. See Table 4.2 for the
energy levels of the square well potential.

We consider a charged particle with magnetic moment moving in a magnetic �eld. In the rest
frame of the moving particle, the interaction energy is

∆H = −µ ·B′ (4.21)

with magnetic moment µ = gq
2mS. Here the magnetic �eld B′ is related to B in the lab frame by

B′ = B− v ×E (4.22)

where E is the electric �eld in the lab frame felt by the moving particle. In the central potential we
have

qE = −r

r

dV (r)

dr
(4.23)

Then the interaction becomes

∆H = − gq

2m
S ·B +

g

2m2
(S · L)

1

r

dV (r)

dr
(4.24)

where L = m(r × v) is the orbital angular momentum. The second term is just the spin-orbital
coupling. Actually one can show that the spin-orbital coupling arises from the meson exchange in
the nuclear potential.

Mayer and Jensen introduced the spin-orbital coupling to nuclei for a nucleon moving in the mean
�eld of other nucleons,

∆V (r) = −CL · S = −C
2

[
(L + S)2 − L2 − S2

]
= −C

2

[
J(J + 1)− L(L+ 1)− 3

4

]
=

{
−C2 L, J = L+ 1/2

C
2 (L+ 1), J = L− 1/2

(4.25)

One sees that there is splitting between the levels with J = L + 1/2 and J = L − 1/2. The energy
level can be labeled by (nr, L, J).
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Figure 4.2: Nuclear shell model versus atomic shell model. For 3-d harmonic oscillator the energy
eigenvalue is controlled by N = 2nr+ l and while for hydrogen atom it is controlled by N = nr+ l+1.
The energy levels for nuclei are labeled by (nr, l, j) (left panel) or (nr + 1, l, j) (right panel). The 3-d
harmonic oscillator and hydrogen atom are labeled by (nr, l).
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The applications of the Mayer-Jensen shell models are given in following examples.
(1) The spins and parities (JP ) of the nuclei in ground states can be explained by the model. For

even-even nuclei, JP = 0+. Following the Racah seniority principle a pair of identical particles are
in the lowest energy if their coupling angluar momentum is zero. This is because the wave functions
have largest overlap if the total angluar momentum is zero. For even-even nuclei every two protons
or neutrons pair, so that the total angluar momentum is vanishing. The JP of even-odd nuclei are
determined by the unpaired nucleon. For example, the JP of 13

6 C and 13
7 N are (1/2)−, the spin and

parity are determined by the nucleon outside the fully occupied shell. Another example, an even-odd
nucleus Niobium, 93

41Nb52, there are two neutrons outside the full shell (50) which are in the 0g7/2

state. But their pair has J = 0. The spin of the nucleus is determined by the 41-th proton which is
in the 0g9/2 state. So the spin and parity of 93

41Nb52 are (9/2)+.
(2) The shell model can explain the JP of nuclei of the lowest excited states. An excited state

with the �lled shell plus or minus one nucleon shows single particle property and its JP is given by
that of the nucleon outside the shell.

(3) The magnetic moments of nuclei can be described by the shell model. The magnetic moment of
an odd-A nucleus is determined by the last unpaired nucleon. The magnetic moment of the unpaired
nucleon is

µJ = µL + µS = gLL + gSS = gJJ (4.26)

where J, L and S are the total, orbital and spin momenta. gi=J,L,S are their g-factors. We have

gJJ · J = gLL · J + gSS · J

gJJ = gL
J(J + 1) + L(L+ 1)− S(S + 1)

2(J + 1)
+ gS

J(J + 1) + S(S + 1)− L(L+ 1)

2(J + 1)
(4.27)

For an odd-A nucleus, its magnetic moment µJ is

µJ = gJJ = gL
J(J + 1) + L(L+ 1)− S(S + 1)

2(J + 1)
+ gS

J(J + 1) + S(S + 1)− L(L+ 1)

2(J + 1)

=

{
gL(J − 1/2) + gS/2, J = L+ 1/2

[J/(J + 1)][gL(J + 3/2)− gS/2], J = L− 1/2
(4.28)

For an odd-N and even-Z nucleus, the last nucleon is a neutron which has gL = 0 and gS = −3.82,

µJ =

{ −1.91, J = L+ 1/2
1.91 J

J+1 , J = L− 1/2
(4.29)

For an even-N and odd-Z nucleus, the last nucleon is a proton which has gL = 1 and gS = 5.58,

µJ =

{
J + 2.29, J = L+ 1/2
J − 2.29 J

J+1 , J = L− 1/2
(4.30)

The experiments partially verify the above behavior for odd-A nuclei.
(4) Electric quadrupole moments. The electric quadrupole moment of a nucleus is de�ned by

Q =
1

e

∫
d3r(3z2 − r2)ρe(r) =

q

e

(
2
〈
z2
〉
−
〈
x2
〉
−
〈
y2
〉)

(4.31)

where ρe(r) is the electric charge density and q =
∫
d3rρe(r) the total charge. If the charge distribution

is spherical, Q = 0. For long/short ellipsoid, Q > 0 and Q < 0. Following the shell model, the electric
quadruple moment is determined by the protons outside the �lled shell. For odd-Z and even-N
nucleus, there are np protons outside the �lled shell and have angular momentum J , the quadruple
momemt is given by

Q = −
〈
r2
〉 2J − 1

2(J + 1)

[
1− 2(np − 1)

2J − 1

]
(4.32)
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We see that when np < J + 1/2, i.e. the number of protons is less than half the number of levels,
Q < 0, otherwise Q > 0. So for an odd-A nucleus with number of protons being a magic number ±1,
we have Q < 0/Q > 0. The shell model can well describe the electric quadrupole moments with only
a few protons away from the magic numbers, but it can not describe those of other nuclei.

Exercise 34. For a square well potential with depth V (r) = −V0 for r ∈ [0, R] and V (r) = 0
for r > R. Calculate the lowest 15 energy levels.

Exercise 35. The magnetic moments of an odd-A nucleus is determined by the last unpaired
nucleon. Write down its formula with respect to the nuclear spin J .

Exercise 36. Give JP of 13C, 13N and 93
41Nb52.

Exercise 37. The electric quadruple moment of a nucleus is given by

Q =
1

e

∫
d3rρe(3z

2 − r2) =
q

e

(
2
〈
z2
〉
−
〈
x2
〉
−
〈
y2
〉)

For an ellipsoid which is symmetric with respect to rotation along the z-axis (symmetric for
x and y coordinates), give a simple explanation why Q > 0 and Q < 0 correspond to the
long and short ellipsoid.

Exercise 38. The ground states of nuclei can be treated as a many body system of identical
fermions where protons and neutrons are isospin doublets. A nucleon is moving in the mean
�eld of other nucleons. As a simple model, people use harmonic oscillator to simulate the
mean �eld potential. Then nucleons �ll in the single particle energy levels. The eigen-energy
reads,

EN = Nω = (2nr + L)ω

For a �xed N or eigen-energy, (1) calculate the degeneracy of the states, or how many states
are there having the same energy; (2) write down the states in terms of (nr + 1)L for N = 3
using the notation s, p, d, f, g, h and i for L = 0, 1, 2, 3, 4, 5, 6. For example, 1s or 2f
etc.. (3) When the number of protons or neutrons is the magic number 2, 8, 20, 28, 50, 82,
and 126, the nuclei are most stable. But the harmonic spectra can only reproduce the �rst
three magic numbers corresponding to N = 0, 1, 2. In order to explain all magic numbers,
Mayer and Jensen introduced the coupling −CL · S. How to explain the magic number 28
and 50? (4) The introduction of the L ·S coupling term shift the energy level for J = L+1/2
and J = L − 1/2. What the energy di�erence between the two levels? Which one is shifted
higher? (5) As an application of the shell model, what's the spin and parity of 13C and
13N?
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4.2 Collective models

For even-even nuclei, to form an excited state, it will cost much more energy to break a pair of
nucleons and excite one nucleon to higher level than in collective motion. There are three groups of
nuclei. (1) One group is around the double magic number which can be described by the shell model.
This is called single particle energy levels. (2) Even-even nuclei far away from magic numbers with
(60 < A < 150 or 190 < A < 220) whose lower excitations show the harmonic oscillation feature. (3)
Even-even nuclei far away from magic numbers with (150 < A < 190 or A > 220) whose energy levels
are like spectra of rotation.

The shape of nuclei with double magic numbers is sphere. With increase of nucleons outside the
�lled shell, the shape gradually turns into ellipsoid. See Fig. 4.3. This arises from the �lling of
nucleons in the energy state above the full shell in such a way that makes the binding energy larger.
The nuclear deformation can be described by a mulipole expansion of a position on the nuclear surface

R(θ, φ) = R0

[
1 +

∑
LM

αLMYLM (θ, φ)

]
(4.33)

where αLM are coe�cents characterizing the magnitudes of the deformation. Since Y ∗LM (θ, φ) =
(−1)MYL,L−M (θ, φ), the coe�cients satisfy α∗LM = (−1)MαL,L−M . We can remove the L = 0 term,
which corresponds to the volume change. The dipole component with L = 1 of an nucleus corresponds
to displacement of nucleus, which has nothing to do with internal motion of nucleons. The lowest non-
vanishing component deviating from sphere is the quadupole deformation with L = 2. A deformed
nuclei have non-zero electric quadrupole moments.

We now look at the lowest deformation, the quadrupole with L = 2. We now list spherical
harmonic functions Y2M (θ, φ) with M = −2,−1, 0, 1, 2 as follows

Y20(θ, φ) =
1

2

√
5

4π
(3 cos2 θ − 1),

Y2,±1(θ, φ) = ∓
√

15

8π
sin θ cos θe±iϕ,

Y2,±2(θ, φ) =
1

2

√
15

8π
sin2 θe±2iϕ. (4.34)

We de�ne a unit vector n = (sin θ cosϕ, sin θ sinϕ, cos θ) and Y2M (θ, φ) can be rewritten as

Y20 =
1

2

√
5

4π
(2n2

z − n2
x − n2

y),

Y2,±1 = ∓
√

15

8π
nz(nx ± iny),

Y2,±2 =
1

2

√
15

8π
(n2
x − n2

y ± i2nxny). (4.35)

So we see that (a) α20 describes the stretching or contraction along the z axis; (b) α2,±1 describe the
oblique deformation along the the z axis; (c) α2,±2 describe the length di�erence between the x axis
and y axis and the oblique deformation in the xy plane.

An ellipsoid satis�es R(θ, φ) = R(π − θ, φ) = R(θ,−φ), so we have α21 = α2,−1 = 0, α22 = α2,−2.
Then Eq. (4.33) becomes

R(θ, φ) = R0 [1 + α20Y20(θ, φ) + α22Y22(θ, φ) + α22Y2,−2(θ, φ)]

= R0

[
1 + α20

1

2

√
5

4π
(3 cos2 θ − 1) + α22

√
15

8π
sin2 θ cos(2ϕ)

]
(4.36)
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We can also use (β, γ) to replace (α20, α22),

α20 = β cos γ

α22 =
1√
2
β sin γ (4.37)

The deformed values of lengths of three axis from that of the sphere are

δRx = Rx −R0 =

√
5

4π
βR0 cos(γ − 2

3
π)

δRy = Ry −R0 =

√
5

4π
βR0 cos(γ − 4

3
π)

δRz = Rz −R0 =

√
5

4π
βR0 cos γ (4.38)

A symmetric ellipsoid with respect to the z-axis corresponds to γ = 0, i.e. α22 = 0, this corresponds
to

R(θ) = R0[1 + α20Y20(θ, φ)]

= R0

[
1 + α20

1

2

√
5

4π
(3 cos2 θ − 1)

]
(4.39)

and we have

Rx = Ry = R0(1− 1

2

√
5

4π
β)

Rz = R0(1 +

√
5

4π
β) (4.40)

A long/�at ellipsoid or prolate/oblate is described by β > 0/β < 0, see Fig. 4.3.
The Lagrangian for nuclear vibration is given by

L =
1

2

∑
LM

[
BLṘ

2
LM (t) + CLR

2
LM

]
(4.41)

The cannonical conjugated momentum of XLM is given by PLM = BLṘLM . The Hamiltonian is
given by

H =
1

2

∑
LM

[
1

BL
P 2
LM + CLR

2
LM

]
(4.42)

which is a sum of harmonic oscillators with the frequency ωL =
√
CL/BL.

The ground state is 0+ and the lowest excited state is 2+ which corresponds to quadrupole
deformation, whose excitation is called phonon. The next-lowest excited state with two phonon
excitations are JP = 0+, 2+, 4+. The total angular of momentum of two phonons with L = 2 can be
determined by J = (L1,m1)⊕ (L2,m2) = 0⊕ 2⊕ 4 with L1 = L2 = 2 and m1,m2 = (±2,±1, 0). We
can verify that J 6= 1, 3. The energy level of an oscillator has equal distance feature,

E = (N + 5/2)ω (4.43)

For quadrupole vibration mode, there are N phonons each of which contributes to 2 units angular
momentum. All states have positive parity. The oscillation spectra manifest themselves in nuclei
with �lled shells. The main form is quadrupole oscillation where β �uctuates around zero.
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The rotation of an ellipsoid even-even nucleus along an axis perpendicular to the symmetry axis
has observable e�ect. Rotation spectra can be described by

EJ =
1

2I
J(J + 1) (4.44)

where I is the inertial moment and J the total momentum. It can be proved that J must be even
and the parity must be positive. Eq. (4.44) is valid for small I. For larger I, a correction is needed
due to large centrifugal force which makes more deformation and less kinetic energy,

EJ =
1

2I
J(J + 1)−BJ2(J + 1)2 (4.45)

For deformed odd-A nuclei, there exists one energy band for every single particle energy level,

EI =
1

2I
[J(J + 1)−K(K + 1)] (4.46)

for K > 1/2. When K = 1/2,

EI =
1

2I

[
J(J + 1)− 3

4
+ a+ a(−1)J+1/2(J + 1/2)

]
(4.47)

The states in the same band have the same parity. For K > 1/2 we have,

EK+1 : EK+2 : EK+3 : · · · = (K + 1) : (2K + 3) : (3K + 6) : · · · (4.48)

4.3 Hatree-Fock self-consistent method

In a nucleus composed of A nucleons, a particluar nucleon can be regarded as moving in a mean
�eld of other A − 1 nucleons. But this is a very rough picture because it neglects the correlation or
interaction between nucleons beyond the mean �eld. The Hamiltonian can be written by

H =
∑
i

p2
i

2m
+

1

2

∑
i 6=j

V (ri, rj) (4.49)

and the trial wave function can be expressed by a Slater determinant of A single particle wave
functions,

Ψ(1, 2, · · · , A) =
1√
A!

∣∣∣∣∣∣∣∣
ψ1(r1) ψ1(r2) · · · ψA(rA)
ψ2(r1) ψ2(r2) · · · ψA(rA)
· · · · · · · · · · · ·

ψA(r1) ψA(r2) · · · ψA(rA)

∣∣∣∣∣∣∣∣
=

1√
A!

∑
P

(−1)PψP (1)(r1)ψP (2)(r2) · · ·ψP (A)(rA) (4.50)
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Figure 4.3: Nuclear potential versus shape. Shapes with quadrupole moments.
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where P denotes the permutation of (1, 2, · · · , A). Now we evaluae the expectation value of the
Hamiltonian, where the kinetic energy is∫

[dr]Ψ†
∑
i

p2
i

2m
Ψ =

1

A!

∑
i

∑
P,P ′

(−1)P+P ′
∫

[dr]

A∏
k=1

ψ†P ′(k)(rk)

(
−∇

2
i

2m

) A∏
l=1

ψP ′(l)(rl)

=
1

A!

∫
[dr]

A∏
k 6=i

ψ†P ′(k)(rk)

A∏
l 6=i

ψP ′(l)(rl)
∑
i

∫
driψ

†
P (i)(ri)

(
−∇

2
i

2m

)
ψP (i)(ri)

=
1

A

∑
i

∫
driψ

†
P (i)(ri)

(
−∇

2
i

2m

)
ψP (i)(ri)

=
∑
j

∫
drψ†j (r)

(
−∇

2

2m

)
ψj(r) (4.51)

where [dr] ≡ dr1dr2 · · · drA and we have used the orthogonality condition for each spatial integral
that P (k) = P ′(k) for k 6= i which gives (A− 1)! identical terms. The potential part is∫

[dr]Ψ†
1

2

∑
i 6=j

V (ri, rj)Ψ =
1

2

1

A!

∑
i6=j

∑
P,P ′

(−1)P+P ′
∫

[dr]

A∏
k=1

ψ†P ′(k)(rk)V (ri, rj)

A∏
l=1

ψP ′(l)(rl)

=
1

2

1

A!

∑
P,P ′

(−1)P+P ′
∫

[dr]

A∏
k 6=i,j

ψ†P ′(k)(rk)

A∏
l 6=i,j

ψP ′(l)(rl)

×
∑
i6=j

∫
dridrjψ

†
P ′(i)(ri)ψ

†
P ′(j)(rj)V (ri, rj)ψP (i)(ri)ψP (j)(rj)

=
1

2

1

A(A− 1)

∑
i6=j

(−1)P+P ′
∫
dridrjψ

†
P ′(i)(ri)ψ

†
P ′(j)(rj)

×V (ri, rj)ψP (i)(ri)ψP (j)(rj)

=
1

2

∑
k,l

∫
drdr′

[
ψ†k(r)ψ†l (r

′)V (r, r′)ψk(r)ψl(r
′)

−ψ†k(r)ψ†l (r
′)V (r, r′)ψk(r′)ψl(r)

]
(4.52)

So the expectation value of the Hamiltonian is

E =
∑
j

∫
drψ†j (r)

(
−∇

2

2m

)
ψj(r)

+
1

2

∑
k,l

∫
drdr′

[
ψ†k(r)ψ†l (r

′)V (r, r′)ψk(r)ψl(r
′)

− ψ†k(r)ψ†l (r
′)V (r, r′)ψk(r′)ψl(r)

]
(4.53)

We can solve the eigenstates through the variational method. The requirement is to make the expec-
tation value of the Hamiltonian stable with the variance of the wave function under the normalization
condition of the wave function,

δ

∫
[dr]Ψ†HΨ = 0∫

[dr]Ψ†Ψ = 1 (4.54)
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which is equivalent to

δ

∫
[dr]Ψ†HΨ− εδ

∫
[dr]Ψ†Ψ (4.55)

where ε is a Lagrange multiplier. The variances of the expectation values of the kinetic and interaction
energy are,

δ

∫
[dr]Ψ†

∑
i

p2
i

2m
Ψ =

∑
j

∫
drδψ†j (r)

(
−∇

2

2m

)
ψj(r)

+
∑
j

∫
drψ†j (r)

(
−∇

2

2m

)
δψj(r) (4.56)

and

δ

∫
[dr]Ψ†

1

2

∑
i 6=j

V (ri, rj)Ψ =
1

2

∑
k,l

∫
drdr′

{[
(δψ†k(r)ψ†l (r

′) + ψ†k(r)δψ†l (r
′)
]

×V (r, r′)ψk(r)ψl(r
′)

−
[
δψ†k(r)ψ†l (r

′) + ψ†k(r)δψ†l (r
′)
]
V (r, r′)ψk(r′)ψl(r)

}
+H.c.

=
∑
k,l

∫
drdr′

{
δψ†k(r)ψ†l (r

′)V (r, r′)ψk(r)ψl(r
′)

−δψ†k(r)ψ†l (r
′)V (r, r′)ψl(r)ψk(r′)

}
+H.c. (4.57)

where we have used V (r, r′) = V (r′, r). Then the requirement of Eq. (4.55) becomes(
−∇

2

2m

)
ψk(r) +

∑
l

∫
dr′V (r, r′)|ψl(r′)|2ψk(r)

−
∑
l

∫
dr′ψ†l (r

′)V (r′, r)ψl(r)ψk(r′) = εψk(r) (4.58)

The above equation is called the Hartree-Fock equation.
The above method is too complicated for the many body problems. A better method is to use

occupation number representation and the second quantization. Similar to the expectation value of
energy in Eq. (4.53), we can write down the Hamiltonian operator in terms of quantum �elds of
nucleons,

H =

∫
dxψ†(x)

(
−∇

2

2m

)
ψ(x)

+
1

2

∫
dxdx′ψ†(x)ψ†(x′)V (x,x′)ψ(x′)ψ(x) (4.59)

where the quantum �elds are

ψ(x) =
∑
s

ψs(x)ηs =
1√
Ω

∑
k,s

eik·xηsak,s

ψ†(x) =
∑
s

ψ†s(x)ηs =
1√
Ω

∑
k,s

e−ik·xηsa
†
k,s (4.60)
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where s = ±1 denote the spin orietation and η+ =

(
1
0

)
and η− =

(
0
1

)
. Note that the quantum

�eld has the same dimension as the wave function, so the creation and destruction operators are
dimensionless. One can check that the ordering of the second term in Eq. (4.59) would leading to
the Hermitian property of the Hamiltonian. They satisfy the following anti-commutator relations,

{ψs(x), ψt(x
′)} = {ψ†s(x), ψ†t (x

′)} = 0

{ψs(x), ψ†t (x
′)} =

1

Ω

∑
k,k′

eik·xe−ik
′·x′{ak,s, a†k′,t}

= δst
1

Ω

∑
k

eik·(x−x
′) = δstδ(x− x′) (4.61)

where
{ak,s, a†k′,t} = δstδk,k′ , {ak,s, ak′,t} = {a†k,s, a

†
k′,t} = 0 (4.62)

Then using Eq. (4.59) and (4.62), the Hamiltonian (4.59) becomes

H =
1

Ω

∑
k,k′,s,t

∫
dxei(k−k

′)·xη†t ηs
k2

2m
a†k′,tak,s

+
1

Ω2

∑
k1−4,s1−4

∫
dxdx′e−ik1·xe−ik2·x′eik3·x′eik4·xV (x,x′)

×η†s1η†s2ηs3ηs4a
†
k1,s1

a†k2,s2ak3,s3ak4,s4

=
∑
k,s

k2

2m
a†k,sak,s +

1

Ω2

∑
k1−4,s1,2

∫
dxdx′e−i(k1−k4)·xe−i(k2−k3)·x′V (x,x′)

×a†k1,s1a
†
k2,s2

ak3,s2ak4,s1

=
∑
k,s

k2

2m
a†k,sak,s +

1

Ω2

∑
k1−4,s1,2

∫
dXdy exp[i(k4 + k3 − k1 − k2) ·X]

exp[i(k2 − k3 − k1 + k4) · y/2]V (y)a†k1,s1a
†
k2,s2

ak3,s2ak4,s1

=
∑
k,s

k2

2m
a†k,sak,s +

∑
p,k,q,s1,2

Ṽ (q)a†k−q,s1a
†
p+q,s2ap,s2ak,s1 (4.63)

where we have assumed V (x,x′) = V (X,y) = V (y) with X = (x + x′)/2 and y = x − x′. We also

used Ṽ (q) = 1
Ω

∫
dxeiq·yV (y). We will assume that Ṽ (q) only depends on |q|.

Now we can calculate the expectation value of the groud state energy. The ground state is a state
that all states below the Fermi momentum kF = |kF | is occupied and those above it are empty,

|F 〉 =
∏

r,|k|<kF

a†k,r |0〉 (4.64)

Then the kinetic energy is

E0 =
∑
k,s

k2

2m
〈F | a†k,sak,s |F 〉 = 2

∑
k

k2

2m
θ(|k| < kF )

= 2Ω

∫
d3k

(2π)3

k2

2m
θ(|k| < kF ) =

3

5

k2
F

2m
N (4.65)

where N the total number of the fermions and is given by N = Ω 1
3π2 k

3
F . The expectation value of

the interaction energy is

E1 =
∑

p,k,q,s1,2

Ṽ (q) 〈F | a†k−q,s1a
†
p+q,s2ap,s2ak,s1 |F 〉 (4.66)
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Figure 4.4: The overlapping of Fermi surface in evaluating the potential energy of a fermionic system
at zero temperature.

q

pp+q

From two destruction operators acting on |F 〉 we see that both p and k must be below the Fermi
surface. Similarly from two creation operators acting on 〈F | we see that both k− q and p + q must
be below the Fermi surface. And the two groups of momenta must be the same otherwise there is
overlapping,

[(p, s2), (k, s1)] = [(k− q, s1), (p + q, s2)] (4.67)

Note that another order for the pair of momenta is not valid because p cannot be p + q. So the
potential energy (4.66) is evaluated as

E1 =
∑

p,k,q,s1,2

Ṽ (q) 〈F | a†k−q,s1a
†
p+q,s2ap,s2ak,s1 |F 〉

=
∑
p,q,s1

Ṽ (q) 〈F | a†p,s1a
†
p+q,s1ap,s1ap+q,s1 |F 〉

= −
∑
p,q,s1

Ṽ (q) 〈F |np,s1np+q,s1 |F 〉

= −2Ω2

∫
d3p

(2π)3

d3q

(2π)3
Ṽ (q)θ(|p| < kF )θ(|p + q| < kF )

The two step functions give the overlapping area of the Fermi surface if |q| < 2kF . We can �rst
integrate over p while �xing |q|,∫

d3pθ(|p| < kF )θ(|p + q| < kF )

= 2

[
2π

3
(1− x)k3

F −
π

3
k3
Fx(1− x2)

]
θ(x < 1)

=
2π

3
(2− 3x+ x3)k3

F θ(x < 1)

Then we carry out the integral over q,

E1 = − 2

3π4
Ω2k6

F

∫ 1

0

dxṼ (2kFx)x2(2− 3x+ x3)

= −6N2

∫ 1

0

dxṼ (2kFx)x2(2− 3x+ x3)



Chapter 5

Nuclear reaction

Like chemical reaction, in nuclear reaction some nuclei or particles and nuclei collide and give rise to
di�erent particles or nuclei in the �nal state. There are many type of nuclear reactions which can be
characterized by the type and energy of incoming particles and the target nuclei. The natural decay
processes can be regarded as without incoming particles but with Q > 0. In accelerator reactions,
charged particles, e.g. electrons, protons, alpha-particles or even heavier nuclei (heavy ions), are
accelerated to hit the target nuclei. Beams of neutrons can thus be obtained in nuclear reactors as
fragments in collisions of charged particles and target nuclei. Bombardment of leptons like electrons,
muons and neutrinos on target nuclei are also nuclear reactions. Here are notable examples of nuclear
reactions: nuclear fusion, �ssion, spallation, induced gamma emission etc.. The spallation is a kind
of nuclear reaction that a nucleus is hit by a lighter particle with su�cient energy and momentum
to knock out several small fragments or break into many fragments. Induced gamma emission is a
process that a nucleus absorbs a photon of a speci�c energy to be excited to a higher energy level,
and then emits �uorescent gamma rays often with a delay after absorption.

A two-to-two nuclear reaction can be written as a+X→ b+Y or the shorthand notation X(a,b)Y
where X and Y are the target and outgoing nuclei and ´a´ denotes the lighter projectile and ´b´ the
fragment particle.

We can classify the reaction by the reaction energy. Low energy nuclear reaction is characterized
by the order of 10 MeV per nucleon or less. The medium energy nuclear reaction is in the range 100
MeV to 1 GeV, where mesons can be produced and protons and neutrons can transform into each
other. In high energy nuclear reaction, all particles can be produced including quarks and gluons,
the constituents of nucleons.

We can classify the reaction by incident and outgoing particles. If the incident and outgoing
particles are the same, i.e. a + X → a + X, we call the reaction the elastic scattering process.
Sometimes ´b´ is the same as ´a´ but there is another nucleon being ejected, this reaction is called
a knockout reaction.

The reaction can also be classi�ed by the mechanism involved. In direct reactions, very few
nucleons take part in the reactions, while other nucleons serve as spectators. Such reactions can be
used to explore the inner structure of nuclei. In contrast, compound nucleus can be formed in some
types of reactions, where incoming and outgoing nuclei merge in very short time and sharing the
energy among all nucleons before ejecting a few nucleons. The resonance reactions are between the
direct and compound nculear reations, in which the incoming and outgoing particle form quasi-bound
state before emitting outgoing particles.

Here are examples of nuclear reactions [5],

108
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Figure 5.1: Momentum con�guration in the two-to-two nuclear reaction in the lab frame.
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(1) α+14
7 N→17

8 O + p

(2) p +14
7 N→7

4 Be + 2α

(3) p +27
13 Al→28

14 Si∗

(4) 3α→12
6 C

(5) γ +63
29 Cu→62

28 Ni + p

(6) γ +233
92 U→90

37 Rb +141
55 Cs + 2n

The reaction (1) was the �rst nuclear reaction made in laboratory by Rutherford in 1919. The �rst
three reactions are induced by lighter projectiles the α particle and proton on heavier nuclei. In
the reactions (3) there is only one product in the �nal state. The reaction (4) takes place in the
star interior at high temperature and density. The reactions (5) and (6) are radiative capture or
photo-nuclear reactions.

5.1 Conservation laws and kinematics

Here are the conservation laws for nuclear reactions: (a) Conservation of energy momentum; (b)
Conservation of total angular momentum; (c) Conservation of charge and baryon number; (d) Con-
servation of parity. At low energy, the conservation of baryon number in (c) becomes that of proton
and neutron number in which the energy is not enough to produce mesons. Note that we neglect
all weak processes because the time scale of weak interaction is much longer than that of nuclear
reactions.

We consider a two-to-two nuclear reaction a + X → b + Y or X(a,b)Y, see Fig. 5.1. The
conservation of energy requires that the total energy of incoming particles should be equal to the
outgoing particles. We have

TX +MX + Ta +Ma = TY +MY + Tb +Mb (5.1)

where Ti = 1
2Miv

2
i denote the kinetic energy. The Q-value of a reaction is de�ned by

Q = MX +Ma −MY −Mb = TY + Tb − TX − Ta (5.2)

In the lab and center-of-mass frames, the velocities for all particles are

Lab : vX = 0, va, vb, vY

CM : v′X, v′a, v′b, v′Y (5.3)
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We can express the velocities in the center of mass frame in terms of those in the lab frame,

v′X = −vCM, v′a = va − vCM, v′b = vb − vCM, v′Y = vY − vCM (5.4)

where vCM is the velocity of the center of mass frame in the lab frame and given by

vCM =
Mava

Ma +MX
(5.5)

According to mementum conservation we have

Mava = Mbvb +MYvY (5.6)

Suppose we choose the direction of va (same as vCM) as the z-axis, and denote the angles between
the direction of vb and the z-axis as θb and θ′b in the lab and center of mass frame respectively. We
decompose the total momentum into parallel and transverse directions, the momentum conservation
becomes

Mava = Mbvb cos θb +MYvY cos θY

0 = Mbvb sin θb −MYvY sin θY (5.7)

Once the initial state is �xed there are six variables, vb and vY, in the the �nal state. There are
four energy-momentum conservation relations. The two-to-two scattering is on a plane so there is
freedom to �x the orientation of the plane. Therefore there is only one free variable, we can choose
it to be the angle θb or the scalar velocity vb.

Now we can determine the Q-value, which is frame independent. We can eliminate vY and θY

since it is hard to measure in experiments from Eq. (5.7),

M2
Yv

2
Y = (Mbvb sin θb)2 + (Mava −Mbvb cos θb)2

= M2
bv

2
b +M2

a v
2
a − 2MaMbvavb cos θb (5.8)

Then the Q-value is

Q = TY + Tb − TX − Ta

=
1

2MY

[
M2

bv
2
b +M2

a v
2
a − 2MaMbvavb cos θb

]
+ Tb − TX − Ta

=

(
1 +

Mb

MY

)
Tb +

(
−1 +

Ma

MY

)
Ta − TX −

MaMb

MY
vavb cos θb (5.9)

If we let θb be the free variable, we can determine vb from the above energy conservation equation.
Then from Eqs. (5.7,5.8) we can determine vY and θY.

We obtain the relation between θb and θ′b,

v′b sin θ′b = vb sin θb,

v′b cos θ′b = vb cos θb − vCM,

tan θ′b =
vb sin θb

vb cos θb − vCM
. (5.10)

Here v′b is given by (v′b)2 = v2
b + v2

CM− 2vbvCM cos θb. In the center of mass frame, we have MYv′Y =
−Mbv′b, then we can determine v′Y = (Mb/MY)v′b.

The reaction rate depends on the energies of participating particles, the particle �ux and the cross
section of the reaction. The cross section is used to describe the probability for a type of nuclear
reaction to take place. The cross section is de�ned as,

σ =
R

I0NS
, (5.11)
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Figure 5.2: The cross section.
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where R is the number of reactions per unit time or the reaction rate, NS the number of nuclei per
unit area, and I0 the incident particles per unit time. Consider a sheet of target material with width
x in Fig. 5.2. We have NS = NVx, where NV is the number of nuclei per unit volume in the target.
Then the number of incident particles per unit time which are through the target without collisions
is

I(x) = I0 −R = I0(1− σNVx) ≈ I0e−σNVx (5.12)

We can see that I(x) decays with x exponentially. The mean free path is give by 1/(σNV).
The cross section means the reaction rate of one particle hitting one target nucleus per unit area.

The unit for the cross section is barn (b), mili-barn (mb) and micro-barn (µb),

1 b = 10−28 m2,

1 mb = 10−31 m2,

1 µb = 10−34 m2. (5.13)

The di�erential cross section is de�ned as,

dσ

dΩ
(θ, φ) =

∆R

I0NS∆Ω
, (5.14)

where ∆R is the number of scatterings in the solid angle ∆Ω per unit time.
The di�erential cross section depends on the frame since the polar angle θ is di�erent in di�erent

frame. Suppose the di�erential cross section is independent of the azimuthal angle, we have the
relation between the lab and center of mass frame,

dσ

dΩ
(θ) sin θdθ =

dσ

dΩ
(θ′) sin θ′dθ′, (5.15)

and we obtain from the �rst line of Eq. (5.10),

dσ

dΩ
(θ) =

d cos θ′

d cos θ

dσ

dΩ
(θ′) =

(
v

v′
+
vvCM cos θ′

v′2

)
dσ

dΩ
(θ′). (5.16)

Exercise 39. Consider the reaction d +6 Li → α + α with Td = 2 MeV in the lab frame,
calculate the emission angle θ of one α-particle in the lab frame as function of the velocity
of one alpha particle vα.
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Exercise 40. Derive Eq. (5.16).

5.2 Partial wave analysis and optical potential

The elastic, inelastic and total cross section are

σel =
π

k2

∞∑
l=0

(2l + 1)|1− Sl|2

σin =
π

k2

∞∑
l=0

(2l + 1)(1− |Sl|2)

σtot =
2π

k2

∞∑
l=0

(2l + 1)(1− ReSl) (5.17)

where Sl = |Sl|e2iδl(k) and δl(k) is the phase shift. Having |1−Sl|2 = 1− 2ReSl + |Sl|2, we can verify

σtot = σel + σin (5.18)

In nuclear reaction, the elastic scattering can be further divided into potential and resonance
scatterings

σel = σpot + σres (5.19)

So the total cross section can be decomosed in several di�erent ways,

σtot = σel + σin

= σpot + σres + σin

= σpot + σa

= σpot + σCN + σD (5.20)

where σa = σres +σin = σCN +σD, with σCN,σD the formation cross sections of compound nuclei and
direct reaction respectively.

The idea of the optical potential is to treat a nucleus as a semi-opaque ball. When incident particle
hits the nucleus part of it is re�ected or scattered, the other part of it is absorbed. It is convenient
to introduce the optical potential,

Veff(r) =

{
−(V0 + iU), r ≤ R
0, r > R

(5.21)

with the nuclear radius R. The wave function is in the form,

ψ = Aeikcx (5.22)

where

kc =
√

2m(T + V0 + iU)

≈
√

2m(T + V0) + iU

√
m

T + V0

= k + ik′ (5.23)

where T is the kinetic energy of the incident particle. So the wave function have a damping part,

ψ = Aeikcx = Aeikxe−k
′x (5.24)



CHAPTER 5. NUCLEAR REACTION 113

Figure 5.3: Optical potential [4].

The absorption rate is proportional to e−2k′x. The the typical attenuation length is given by

l =
1

2k′
=

1

2U

√
T + V0

m
(5.25)

We can estimate the mean free path when a neutron with energy T = 10 MeV hits a nucleus with
potential V0 = 40 MeV and U = 1 MeV. We obtain l ≈ 23 fm, which is much larger than nuclear size.
We conclude that such a neutron can go through the nucleus almost without collisions.

More precisely the square well potential can be replaced by Woods-Saxon potential as

Veff(r) = − V0(V0 + iU)

1 + e(r−R)/a
(5.26)

where a is the width of the nuclear surface. For nuclear reaction induced by neutron and proton, the
spin-orbital term can be included into the potential.
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Figure 5.4: Types of scatterings [4].

5.3 Resonance and compound nuclear reaction

Compound nuclear reaction is one of low energy nuclear reaction and was �rst proposed by N. Bohr
in 1936. It can be written as

a + X→ C∗ → Y + b (5.27)

where C∗ denotes the compound nucleus. The cross section for the above reaction is

σab = σa
Γb

Γ
(5.28)

where σa is the formation cross section for the compound nucleus C∗, Γ is the total decay width of
the compound nucleus C∗, and Γb is the decay width for the b-channel. When the incident particle
(nucleus or nucleon) enters the nucleus X it strongly interacts with surrounding nucleons incide X
and quickly loses its energy to the surrounding nucleons to reach equilibrium and then form the
excited compound nucleus C∗. The excitation energy levels are well discretized for low excitations.
So the cross section has a resonance feature. For higher excitations, the energy levels are continuous
so the cross section varies slowly with energy, which is called continuum region. The transition from
resonance to continuum depends on the energy and nucleus atomic number. The compound nucleus
in the excited state will decay by emitting a number of nucleons or a nucleus.

We can derive the resonance cross section. The total cross section is

σtot =
4π

k

∞∑
l=0

(2l + 1)Imfl(0)

=
4π

k2

∞∑
l=0

(2l + 1) sin2 δl(E) (5.29)

where is fl = (Sl − 1)/(2ik) with Sl = e2iδl(k). When δl(E) satisfy

δl(E) ∼ (n+ 1/2)π, or sin2 δl(E) ∼ 1 (5.30)

the partial wave cross section reaches maximum and the resonant states occur. We can expand near
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Figure 5.5: Test the compound nuclear reaction model. See �An Experimental Veri�cation of the
Theory of Compound Nucleus�, Phy. Rev. 80, 939(1950).
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the resonant energy E = E0 as

sin δl(E) ≈ sin δl(E0) +

[
cos δl(E)

dδl
dE

]
E0

(E − E0) ≈ 1

cos δl(E) ≈ cos δl(E0)−
[
sin δl(E)

dδl
dE

]
E0

(E − E0)

= − dδl
dE

∣∣∣∣
E0

(E − E0) = − 2

Γ
(E − E0) (5.31)

where we have de�ned

Γ = 2/
dδl
dE

∣∣∣∣
E0

(5.32)

So the partial wave amplitude The we have

fl =
1

k
exp[iδl(k)] sin δl(k)

=
1

k

sin δl(k)

cos δl(k)− i sin δl(k)

≈ 1

k

1

− 2
Γ (E − E0)− i =

1

k

−Γ/2

(E − E0) + iΓ/2

Imfl =
1

k

Γ2/4

(E − E0)2 + Γ2/4
(5.33)

If at E ∼ E0, the partial wave l is dominant, the cross section is then

σtot
l =

π

k2
(2l + 1)

Γ2

(E − E0)2 + Γ2/4
(5.34)

We can extend the above formula into the compound nuclear reaction a + X→ C∗ and choose the
lowest partial wave. The cross section is then

σa =
π

k2

ΓaΓ

(E − E0)2 + Γ2/4
(5.35)

where Γ is the total width and Γa is the partial width for the a-channel. So the cross section for
reaction (5.27) is then

σab =
π

k2

ΓaΓb

(E − E0)2 + Γ2/4
(5.36)

For incident nuclei with spins and resonance with non-zero spin, we should also include a spin counting
factor g = (2IC + 1)/[(2Ia + 1)(2IX + 1)], where IC, Ia and IX are spins of the resonance, incident
particle and target nucleus respectively.

To test the compound nuclear reaction model, Ghoshal measured p +63
29 Cu and α+60

28 Ni to form
64
30Zn∗,

p +63
29 Cu → 64

30Zn∗ →


63
30Zn + n
62
30Zn + 2n
62
29Cu + p + n

α+60
28 Ni → 64

30Zn∗ →


63
30Zn + n
62
30Zn + 2n
62
29Cu + p + n

(5.37)
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The data show that

σp,n : σp,2n : σp,pn = σα,n : σα,2n : σα,pn = Γn : Γ2n : Γpn (5.38)

which predicted by the model.
The angular distribution of nucleon emitted by compound nuclei is almost isotropic without

preferable direction, i.e. the compound nuclei lose the memory of the incident particle's direction.
The emission of outgoing particles is like evaporation. This is not surprising since the energy of the
incident particle is distributed among all nucleons in the nucleus. The more energy is pumped into
the nuclei, more particles are likely to evaporate.

Exercise 41. The Breit-Wigner formula for the single-level compound cross section in the
nuclear reaction a+X → C∗ is

σab = g
π

k2

ΓaΓb

(E − E0)2 + Γ2/4

where g = (2IC +1)/[(2Ia +1)(2IX +1)], IC, Ia and IX are spins of the compound nucleus or
resonance, incident particle and target nucleus respectively. Consider the compound nucleus
(resonance) reaction n +235

92 U→ C∗ with IU = 7/2 and In = 1/2. At neutron energies below
0.5 eV, the cross section is dominated by one resonance with IC = 3 at a kinetic energy of
0.29 eV with a width of 0.135 eV. There are three channels, which allow the compound state
to decay by neutron emission, photon emission, or �ssison. At resonance the contributions
to the neutron cross sections are (a) elastic and resonant scattering (� 1 barn); (b) radiative
capture (70 barns); (c) �ssion (200 barns). The questions: (1) Calculate the partial widths
for the three channels. (2) How many �ssions per second will there be in a sheet of U-235
of thickness 1mg/cm−2, traversed by normally by a neutron beam of 105 per second with a
kinetic energy of 0.29 eV?

5.4 Direct reaction

Stripping reaction is one kind of direct reaction, where the projectile nucleus loses some of its con-
stituents to the target nucleus and the rest of it pass through as �nal nucleus. Stripping reaction for
deuteron is a normal type and can be denoted as

A
ZX(D,p)A+1

Z Y
A
ZX(D,n)A+1

Z+1Y (5.39)

For example, we have
3H(D,n)4He, 32S(D,p)33S, 27Al(D,p)28Al (5.40)

Nuclear �ssion and fusion are also direct reactions.
Knock-out reaction is another type of direct reaction, where the projectile nucleus knocks out

some constituents of the target and stays in the target or emits with less energy. For example,

p +15
7 N→ p +14

7 N + n (5.41)

The transfer reaction is a reaction type where a number of protons or neutrons of the projectile
leave in the target or the projectile grab a number of protons or neutrons from the target nuclear.
For example,

17
8 O +12

6 C → 16
8 O +13

6 C
2
1H +20

10 Ne → 1
1H +21

10 Ne
2
1H +14

7 N → 3
2He +13

6 C (5.42)
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Figure 5.6: Examples for stripping and kock-out reactions.
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Another example is the reaction in which the neutron was �rst discovered by Chadwick in 1932,

4
2He +9

4 Be→ n +12
6 C (5.43)

It is also used for generating neutrons in the lab. The helium-4 particles come from radioactive
americium, and the beryllium is just a piece of metal.

Neutron absorption is a reaction where a neutron is absorbed by a nucleus, for example,

n +27
13 Al → 28

13Al→ 28
12Mg + p + ν̄e

n +235
92 U → 236

92 U→ 232
90 Th + α (5.44)

Note that aluminum-28 and uranium-236 are very unstable and decay very quickly through β and α
decay respectively.

Another important nuclear reaction is the heavy ion collisions, where two heavy nuclei collide each
other.

5.5 Nuclear �ssion

Nuclear �ssion is phenomenon where a nucleus split to two fragments of approximately equal mass.
The nuclear �ssion was discovered in 1939 by Hahn and Strassmann when they found the uranium
atom, when bombarded by neutrons, can produce barium, a much lighter element than uranium.

There are two types of nuclear �ssions: the spontaneous �ssion and induced �ssion. The spon-
taneous �ssion happens without any outside perturbations. The induced �ssion needs an absorption
of additional particles, e.g. a slow neutron, to excite the nucleus and fragment into smaller pieces.
Induced �ssion takes place in nuclear reactors.

5.5.1 Spontaneous �ssion

In order for the spontaneous �ssion to take place, �ssile nuclei must overcome the Coulomb barrier,
see Fig. 5.7(a). We take U-238 for example. We assume it split into two equal daughter nuclei
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Figure 5.7: (a) Droplet model for �ssion. Fission barrier is about 6 MeV. (b) The �ssion barrier as a
function of mass number.

whose surface touch. Then the distance between two daughter nuclei can be approximated as R =
2× 1.2× (238/2)1/3 ≈ 14.9 fm. We can estimate the Coulomb potential as follows,

V =
(Z/2)2e2

R
=

462 × 197

14.9× 137
≈ 204 MeV. (5.45)

This is roughly the energy released in �ssion. The �ssion barrier or the activation energy as a function
of mass number can be shown in Fig. 5.7(b).

Now we �rst discuss about the spontaneous �ssion in detail. We take a very simple example, a
mother nucleus splits into two daughters,

A
ZX→ A1

Z1
Y1 + A2

Z2
Y2 (5.46)

where A = A1 +A2 and Z = Z1 + Z2. The Q-value is

Q = aS(A2/3 −A2/3
1 −A2/3

2 ) + aC(Z2A−1/3 − Z2
1A
−1/3
1 − Z2

2A
−1/3
2 )

= aS[A2/3 −A2/3
1 − (A−A1)2/3]

+aC[Z2A−1/3 − Z2
1A
−1/3
1 − (Z − Z1)2(A−A1)−1/3] (5.47)

We resuire that Q is stable with respect to varying A1 and Z1, i.e.

∂Q

∂A1
=

2

3
aS[−A−1/3

1 + (A−A1)−1/3]

+
1

3
aC[Z2

1A
−4/3
1 − (Z − Z1)2(A−A1)−4/3] = 0

∂Q

∂Z1
= 2aC[−Z1A

−1/3
1 + (Z − Z1)(A−A1)−1/3] = 0 (5.48)

which gives A = 2A1 and Z = 2Z1. The stability of the nucleus with respect to the �ssion is that
the Q-value is less than zero, with A = 2A1 and Z = 2Z1, the threshold condition is then

Q(A1 = A/2, Z1 = Z/2) = aS(1− 21/3)A2/3 + aC(1− 2−2/3)
Z2

A1/3
= 0 (5.49)
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whose solution is
Z2

A
=

aS(21/3 − 1)

aC(1− 2−2/3)
≈ 0.7

aS

aC
≈ 18 (5.50)

where we have used aS ≈ 17.8 MeV and aC ≈ 0.71 MeV. Note that Q is an increasing function of A,
then we conclude that nuclei with A . 70 are stable with respect to spontaneous �ssion.

Like alpha decay, the spontaneous �ssion is also a quantum tunneling e�ect. For the spontaneous
�ssion to take place the Q-value must be equal to the Coulomb barrier at the distance of scission for
two daughter nuclei or at 2R1,

aS(1− 21/3)A2/3 + aC(1− 2−2/3)
Z2

A1/3
=
Z2

1e
2

2R1
(5.51)

where R1 ≈ r0A
1/3
1 ≈ r02−1/3A1/3 and Z1 ≈ Z/2. Then the solution is

Z2

A
=

aS(1− 21/3)

e2/(r028/3)− aC(1− 2−2/3)

≈ 0.26aS

0.37aC − 0.16e2r−1
0

≈ 2.25
aS

aC
≈ 56 (5.52)

where we have used r0 = 1.25 fm, e2 = 1/137, e2/r0 ≈ 1.62aC with aC = 0.71 MeV and aS = 17.8
MeV. The stability condition for spontaneous �ssion is Z2/A . 56. So we �nd a heavy nucleus with
A ≈ 226 and Z ≈ 113 cannot have spontaneous �ssion. Of course this is a very rough estimation.

Bohr explained the spontaneous �ssion using the nuclear droplet model, see Fig. 5.7. The de-
formation is assumed to be the reason for the �ssion. Nuclear density or volume is almost constant
under small deformations. A sphere has the smallest ratio of surface area to volume. If the sphere is
deformed to ellipsoid at constant density its surface area and surface energy will increase. Since the
deformation makes charges separate, the Coulomb energy will decrease. The surface tension tends
to make the deformed nucleus recover to sphere, while the Coulomb potential tends to make the
nucleus be even more deformed. That the nucleus will be stable or unstable for a small deformation
depends on whether the increase of surface energy outperforms the decrease of Coulomb energy. The
deformation can be described by a long ellipsoid with the half lengths of the long axis and short axis
are r1 = R(1 + a) and r2 = R/

√
1 + a respectively. The Coulomb and surface energies are

EC(a) =
1

2

∫
dV dV ′

1

|r− r′|ρ(r)ρ(r′) =
3

5

Q2

R

(
1− a2

5

)
= aCZ

2A−1/3

(
1− a2

5

)
ES(a) = 4πR2σ

(
1 +

2a2

5

)
= aSA

2/3

(
1 +

2a2

5

)
(5.53)

where we have used

V =
4π

3
r1r

2
2 =

4π

3
R3

S = 2π

[
r2
2 +

r1r2 sin−1 e

e

]
(5.54)

where e =
√

1− (r2/r1)2. The change in the binding energy of the deformed nucleus is from the
Coulomb and surface energy,

∆E = EC(a) + ES(a)− EC(0)− ES(0)

= −aCZ
2A−1/3 a

2

5
+ aSA

2/3 2a2

5
= aSA

2/3 2a2

5
(1− x) (5.55)

where x = aC
2aS

Z2

A . Here we have used 3
5
Q2

R = aC
Z2

A1/3 and 4πR2σ = aSA
2/3. When x < 1, the binding

gets positive correction, so the nucleus is stable against the spontaneous �ssion, when x > 1, the
binding gets negative correction, the nucleus is unstable against the �ssion.
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Figure 5.8: The potential energy of a nucleus as a function of deformation parameter Z2/A. (a)
Z2/A� 0.7 aSaC ; (b) Z

2/A & 0.7 aSaC ; (c) Z
2/A . 2.6 aSaC ; (d) Z

2/A > 2.6 aSaC .

(a) (b)

(c) (d)
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Exercise 42. Suppose a mother nucleus splits into two eqaul daughters,

A
ZX→ A1

Z1
Y + A2

Z2
V

where A1 = A2 = A/2 and Z1 = Z2 = Z/2. The coe�cients in the nuclear binding
energy are: aV ≈ 15.75 MeV (volume energy term), aS ≈ 17.8 MeV (surface energy term),
aC ≈ 0.71 MeV (Coulomb energy term), asym ≈ 23.3 MeV (symmetric energy term), aP ≈ 12
MeV (pairing energy term). (1) Express the Q-value of the above �ssion reaction. (2)
In order for the �ssion to take place, Q value must be no less than the Coulomb barrier
Z2

1e
2/(2R1), try to estimate the critical value of Z2/A at which �ssion can take place. Here

R1 = r0A
1/3
1 and r0 = 1.2 fm. (3) If we further assume Z = A/2, what would A be for

�ssible nuclei?

5.5.2 Induced �ssion

The uranium nucleus 235
92 U can have �ssion when absorbing a slow neutron which makes 236

92 U in an
excited state with excitation energy obtained by,

Sn(236U) = m(235U) +mn −m(236U)

= ∆(235U) + ∆mn −∆(236U)

= 40.91 + 8.07− 42.44 ≈ 6.54 MeV (5.56)

where ∆ denotes the nuclear mass excess relative to atomic mass unit (931.5 MeV) times the atomic
number. We see that Sn(236U) ≈ 6.54 MeV is larger than its �ssion barrier 5.9 MeV.

But 238U cannot undergo �ssion with a slow neutron. The di�erence is that 236U is an even-
even nucleus whose binding energy is larger with full pairings of neutrons while 239U is an even-odd
nucleus whose binding energy is smaller. The uranium nucleus 239U tends to decay to its ground
state through emitting a γ photon. Since 236U is tightly bound, so it tends to split into nearly equally
massive fragments. By capturing a slow neutron, the excitation energy of 239U is

Sn(239U) = m(238U) +mn −m(239U)

= ∆(238U) + ∆mn −∆(239U)

= 47.3 + 8.07− 50.6 ≈ 4.8 MeV (5.57)

which is not enough to overcome the �ssion barrier 6.2 MeV. Here are reactions of 238U when capturing
a slow neutron,

238
92 U + n → 239

92 U∗ → 239
92 U + γ

239
92 U → 239

93 Np + e- + ν
239
93 Np → 239

94 Pu + e- + ν (5.58)

Here 239
94 Pu is �ssionable element since it is an even-odd nucleus. The abundances of 235U and 238U

are 0.7% and 99.3% on the earth. 239
92 U and 239

94 Pu do not exist on the earth.
The �ssion cross sections for 235U/238U or 235U(n, f)/238U(n, f) are shown in Figs. 5.9 and 5.11.

In the thermal region, the cross section has 1/v behavior. In the energy range 1-100 eV there are
many resonances produced. For U-235, the cross section for �ssion induced by thermal neutrons is
3 orders of magnitude larger than by fast neutrons. For U-238, �ssion cannot occur in the thermal
region.

As we have shown before that the �ssionable nuclei are heavy nuclei, the heavier the nuclei are the
more neutrons they have because the number of neutron increases with the mass number. Therefore
the fragments have more neutrons and away from beta-stable line. These neutrons are called prompt
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Figure 5.9: The cross sections of the neutron induced �ssions for 235U and 238U. The data are from
Neutron Cross-section Standards 2006 [http://www-nds.iaea.org/].
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Figure 5.10: The energy spectra of �ssion neutron. (a) Fission neutron spectrum for the system
238U(n, f) measured with the FIGARO setup [32]. Data are for incident neutron energies from 2.1
to 4.0 MeV and are compared to a precision measurement at 2.9 MeV incident neutron energy [33].
(b) Prompt �ssion neutron spectrum of Neptunium-237 for 0.62 MeV incident neutrons.
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Figure 5.11: Cross sections for neutron induced �ssion of 235U and 238U. Taken from Ref. [4].

Figure 5.12: Fisssion fragment distribution of 235U(n, f). The �gure is taken from Ref. [30].
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Figure 5.13: Delayed neutron emission from Rb-93. Taken from Ref. [4].

neutrons because they emitted in less than 10−15s. Their distribution is isotropic. The �ssion
fragments normally undergo beta decay and followed by more neutron emission. These neutrons are
called delayed neutron. The delay time is of order of a few seconds. For example, following the
6-seconds beta decay of 93

37Rb→ 93
38Sr∗ + e− + ν̄e, the excited state 93

38Sr∗ has a larger enough energy
than neutron separation energy, so it can decay by neutron emission in competition with Gamma
emission, 93

38Sr∗ → 92
38Sr+n. The delay neutrons are normally used to controll chain reactions in �ssion

reactors. See Fig. 5.13 for the scheme plot of the above beta decay and delayed neutron emission.
The energy spectra of the prompt neutrons follows Maxwell distribution

f(E) ∼
√
E exp(−E/Tm) (5.59)

where TM is called Maxwell temperature of about one or two MeV, see Fig. 5.10. The example for
the neutron energy spectra are those in the spontaneous �ssion of 252

98 Cf and in the induced �ssion of
235
92 U with thermal neutrons, where Tm are

Tm[252
98 Cf] = 1.453± 0.017 MeV

Tm[235
92 U + nth] = 1.319± 0.019 MeV (5.60)

The average energy of neutrons is 3Tm/2. The number of neutrons follows the Gauss distribution

P (λ) =
1√
2πσ

exp

[
− (λ− λ)

2σ2

]
(5.61)

where λ is the average number of neutrons including prompt and delayed neutrons, which is about
2 to 4 for most nuclei. For thermal induced �ssion of 233U, 235U and 238U, the average numbers of
prompt neutrons are 2.48, 2.42, 2.86 respectively.
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The probability for a �ssionable nucleus to split to two equal fragments is very small. Normally
there is a distribution of �ssion fragments as a function of mass number, for example the fragments
of 235U(n, f) follow the distribution as shown in Fig. 5.12. The most probable fragments for induced
�ssion reaction 235U(n, f) are around A1 = 95 and A2 = 140. This is a typical example for induced
�ssion,

n +235
92 U → 93

37Rb +141
55 Cs + 2n

5.5.3 Self-sustaining nuclear �ssions and �ssion reactor

A nucleus of 235U absorb a slow neutron and undergoes �ssion and release on average 193 MeV of
energy. For example, the �ssion reaction

n + 235
92 U→ 92

36Kr + 142
56 Ba + 2n (5.62)

has the Q-value

Q = m(235
92 U)−m(92

36Kr)−m(142
56 Ba)−mn

= [235.04− (91.93 + 141.92)− 1.0] u

= 0.19 u ≈ 177 MeV (5.63)

Most of them is converted to thermal energy. On average 2.5 prompt neutrons and 0.018 delayed
neutrons are produced in each �ssion process. If at least one neutron is captured by the 235U nuclei
the nuclear �ssion is then self-sustaining with constant output of energy.

In natural uranium material on the earth the self-sustaining �ssion can not take place since 99.28%
of ingredients are 238U. The �ssions of 238U rely on higher energy neutrons of above 1 MeV but the
neutrons quickly lose their energies via inelastic scatterings. In the 1 MeV region the cross section
of 238U(n, γ)239U is 1/10 of 235U(n, f) but the aboundance of 238U is 138 times that of 235U. So in
natural uranium most neutrons produced in �ssions of 235U are absorbed by 238U which stop further
�ssions. There are two methods to solve this problem: either to enrich 235U or to change the energy
spectra of neutrons to enhance the cross section of 235U(n, f) over 238U(n, γ)239U. The latter method
can be realized by thermalization of neutrons. Note that the �ssion cross section of 235U follows a
1/v =

√
mn/2E law, the smaller v the larger the cross section.

Through elastic scattering of light nuclei, fast neutrons of about 1 MeV can lose their energies
very quickly. Now we can estimate how much energy a neutron would lose in each collision. Suppose
in the lab frame a neutron with velocity vn collides with a nucleus of mass M which is still, the
scattered neutron moves in the direction θ in the center-of-mass frame. The center-of-mass frame has
a velocity vCM = mnvn/(mn +M) in the lab frame. So in the lab frame the energy is

EL =
1

2
mn[((vn − vCM) cos θ + vCM)2 + (vn − vCM)2 sin2 θ]

=
1

2
mn[(vn − vCM)2 + v2

CM + 2(vn − vCM)vCM cos θ] (5.64)

The average energy over angle θ is then

EL =
1
2mn

∫
d cos θ[(vn − vCM)2 + v2

CM + 2(vn − vCM)vCM cos θ]∫
d cos θ

=
1

2
mn[(vn − vCM)2 + v2

CM] =
1

2
mn

m2
n +M2

(mn +M)2
v2

n (5.65)

So the fraction of EL in the incident energy Ein becomes

EL

Ein
=

M2
n +M2

(Mn +M)2
(5.66)
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If M → ∞, the lab frame coincides with the center-of-mass frame, so the neutron would not lose
energy by elastic scatterings. If we use carbon as a moderator with mass M ≈ 12Mn, the fraction
becomes EL/Ein = 145/169 ≈ 0.86, i.e. the neutron loses 14% of its energy per scattering. For a
neutron of 1 MeV it will undergo 6 ln(10)/ ln(1/0.86) ≈ 91 collisions to reach 1 eV. One would think
that hydrogen would be best choice for the moderator but the cross section of p(n, γ)d is very large
so that it is not suitable. But hydrogen in the form of heavy water D2O or some compound can
be used as the moderator in the reactor with enriched uranium. Graphite is the material used as
a moderator in natural uranium because 12C is a light nucleus and all nucleons are in pairs so the
nucleus is tightly bound.

5.5.4 Time constant of a �ssion reactor

The neutron number distribution in a reactor is a function of the time, position and energy of the
neutron. For an ideal case, we consider a homogeneous number density n for neutrons. Due to the
capture processes for these neutrons, the number of neutrons will decrease as follows dn/dt = −n/τ
whose solution is n = n0e

−t/τ . Here τ is the time constant and given by

1

τ
=
∑
i

σivNi (5.67)

where σi and Ni are the cross section and particle number density for the i-th process and nucleus
i respectively. For a neutron with energy 1/40 eV, the cross sections are 238U(n, γ)239U: 2.73 barns,
235U(n, f): 577 barns, 235U(n, γ)236U: 101 barns.

If we include the production of neutrons, the rate equation becomes

dn

dt
= (k − 1)

n

τ
(5.68)

where k is the neutron reproduction or multiplication factor and de�ned as the ratio of the number
of neutrons in one generation to the that in proceeding generations. It re�ects the net change in the
thermal neutron number between two generations. The solution to the above equation is then

n = n0e
(k−1)t/τ (5.69)

Only if k ≥ 1, will the number density of neutrons increase, and then the �ssion is self-sustaining.
If k > 1, we call it super-critical. If k = 1, we call it critical. If k < 1, we call it sub-critical. The
neutron reproduction factor k is de�ned by

k = ηfεp (5.70)

This is known as four-factor formula. Here f is the thermal fuel utilization factor for neutrons which
gives the fraction of neutrons available to U-235 and U-238. It is de�ned by

f =
NUσa(U)∑

iNiσa(i) +NUσa(U)
(5.71)

where σa(i) is the absorption (including �ssion) cross section for nuclide i. The factor η is de�ned as
the mean number of �ssion neutrons produced per thermal neutron in the last generation, which is
given by

η(U) = λ
σf(U)

σf(U) + σa(U)
(5.72)

where σa(U) is the absorption cross section by uranium. For example, for natural uranium and 1/40
eV neutrons, we have σf(

235U) = 577 b, σa(235U) = 101 b, σf(
238U) = 0 b and σa(238U) = 2.73 b,

then we can obtain

σf(U) = 0.0072σf(
235U) + 0.9928σf(

238U) = 4.15 b

σa(U) = 0.0072σa(235U) + 0.9928σa(238U) = 3.43 b
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With λ = 2.5, we get the factor η(U) = 1.37. One way to increase η(U) is to enrich uranium.
For natural uranium, a fast neutron can induce 238U to undergo �ssion which will also produce

neutrons, so ε is the factor for induced �ssion by fast neutrons (fast-�ssion factor) and de�ned by

ε =
Nfast +Nthermal

Nthermal
(5.73)

where Nfast and Nthermal are neutron numbers from induced �ssion by fast and thermal neutrons
respectively. In natural uranium before cooled down to thermal energy resonant absorption takes
place for some neutrons.

The escape rate from such resonance absorption is denoted by resonance escape probability p.
Here ε and p depend on the geometric shape of the reactor.

5.6 Accelerator-Driven System

5.6.1 Spallation neutron source

Neutrons have many properties that make them an ideal tool for certain types of research. Neutrons
are neutral and are highly penetrating. So they can be used as clean and non-destructive probe to
materials. Neutrons are very sensitive to hydrogen, they can locate hydrogen atoms and then to
determine the structure of molecules or materials. Neutrons are also sensitive to light atoms among
heavy ones. This properties have been used to locate light oxygen atoms in yttrium-barium-copper
oxide (YBCO), a high-Tc superconducting ceramic, whose positions in the ceramic are crucial to
the superconducting properties. Neutrons have spin and magnetic moment. Such a property makes
neutron act like a compass needle to detect the magnetic structure of materials and help develope
new magnetic materials. The energies of thermal neutrons almost match those of atoms in motion,
or in other words, the neutron wavelength is close to the atomic spacing, so neutrons can be used
to track molecular vibrations, movements of atoms during catalytic reactions, and crystal structures
and atomic spacings, etc..

Neutron sources have been built to meet the needs in many �elds. The Spallation Neutron
Source (SNS) is an accelerator-based neutron source in Oak Ridge, Tennessee , USA, at the site of
Oak Ridge National Laboratory by the U.S. Department of Energy (DOE). Spallation is a process in
which fragments of material (spall) are ejected from a body due to impact or stress. In nuclear physics
is the process in which a heavy nucleus emits a large number of nucleons as a result of being hit by a
high-energy particle. The SNS uses high-energy protons to bombard a target made of heavy particles
to produce many neutrons. For each collision 20 to 30 neutrons are ejected. The neutron energies
are about 30 MeV for proton beam with 1 GeV. For more about SNS, see �http://www.sns.gov/�.

These neutrons can be used to bombard nuclear fuel to make sustainable nuclear �ssion. This is
called the Accelerator-Driven sysytem (ADS). The neutrons produced by spallation act as a trigger to
ignite the �ssion which will continue by additional neutrons produced in the course of �ssion. There
is an advantage for the ADS system is that the �ssion will stop immediately once the proton beam is
switched o�, therefore an ADS is safer than conventional reactor. For more information about ADS,
see, e.g., �http://www.world-nuclear.org/�.

5.6.2 Thorium as �ssion fuel

Thorium reservation on the earth is 3 to 5 times that of uranium. Thorium can be used as �ssion
fuel by capturing a neutron,

n + 232
90 Th→ 233

90 Th (22 min)→ 233
91 Pa (27 days)→ 233

92 U (159200 years) (5.74)

which is analogous to

n + 238
92 U→ 239

92 U (23.5 min)→ 239
93 Np (2.4 days)→ 239

94 Pu (24110 years) (5.75)
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Figure 5.14: Fission cross section of Uranium-233.

The process of converting fertile isotopes to �ssile ones is called breeding. Uranium-233 needs enough
neutrons to undergo sustainable �ssion. Carlo Rubbia �rst proposed to use ADS to produce enough
neutrons to ignite sustainable �ssion of Thorium-232.

5.6.3 Nuclear waste incinerator

Used nuclear fuel in conventional reactors normally contain a lot of long-lived heavy isotopes, par-
ticularly actinides. Among nuclides heavier than Th-232, those with odd atomic number can most
probably absorb a neutron to undergo �ssion, while those with even atomic number will �rst undergo
beta-decay and then �ssion. ADS can be used to transmute these long-lived isoptopes into short-lived
ones. ADS can also be used to destroy long-lived �ssion product such as Tc-99 and I-129.

5.7 Nuclear fusion

As can be seen in the behavior of the binding energy per nucleon versus the mass number, two light
nuclei lower than iron in mass merge into a middle sized nucleus can release energy. This process is
called fusion. There are many types of nuclear fusion, among which are thermonuclear fusion, inertial
con�nement fusion, beam-beam and beam-target fusion etc.. Nuclear fusion have been known to
power the stars. H. Bethe found the main cycle of nuclear fusion in stars in 1930s. The hydrogen
bomb was successful in 1952 as part of the Manhattan Project. Civilian use of fusion power is not
successful until now because for the fusion to take place two light nuclei have to overcome the Coulomb
barrier which needs extremely high temperature environment.

The Coulomb barrier is shown in Fig. 5.15 and is given by

EB =
Z1Z2e

2

R
(5.76)

where R = r0(A
1/3
1 +A

1/3
2 ), and Z1 and Z2 are proton numbers for incident nuclei. The turning point
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is

Rtp =
Z1Z2e

2

E
(5.77)

where E = 1
2mrv

2 with the reduced mass mr = m1m2/(m1 + m2) of two incident nuclei and their
relative velocity v. The barrier transparency factor T is given by,

T ≈ e−G ≈ e−
√
EG/E = e−2πZ1Z2e

2/v (5.78)

where EG = 2mr(Z1Z2e
2π)2 is called the Gamow energy. The above is valid for EG � E. The

tunneling factor G can be evaluated as,

G = 2
√

2mr

∫ Rtp

R

dr
√
V (r)− E

= 4
√

2mrERtp

∫ 1

y0

dy
√

1− y2

≈
√
EG

E
, for R� Rtp (5.79)

where V (r) = Z1Z2e
2/r, y =

√
r/Rtp and y0 =

√
R/Rtp. We see that the Coulomb barrier is

extremely sensitive to Z1Z2. The less Z1Z2, the most probably the fussion reaction can take place.
The barrier is the lowest for hydrogen isotopes, EB ∼ e2/R ∼ 100/137 ∼ 0.7 MeV. This is still much
larger than typical kinetic energy of a few KeV.

The fusion cross section is normally parameterized as

σ ≈ σgeomTF (5.80)

where σgeom is the geometrical cross section and F is the reaction characteristic factor and depends
on the nature of the reaction. The geometrical cross section σgeom is given by the wavelength of the
induced mass,

σgeom ∼ λ2 ∼ 1

(mrv)2
∼ 1

mrE
(5.81)

So the fussion cross section can be �nally written as

σ(E) =
S(E)

E
e−
√
EG/E (5.82)

where S(E) is called astrophysical S-factor, a weakly energy dependent function for non-resonant
reactions.

The reaction rate per unit volume for two collision particles is given by

R12 =
n1n2

1 + δ12
〈σv〉 (5.83)

where σ is the cross section for the reaction,v is the relative velocity, n1 and n2 are number densities.
If two colliding particles are identical δ12 = 1, otherwise δ12 = 0. In thermal environment, the velocity
obeys Boltzmann-Maxwell distribution, then 〈σv〉 is evaluated as

〈σv〉 = N−1

∫
dv v2σv exp(−βmrv

2/2)

= 2N−1m−2
r

∫ ∞
0

dES(E) exp
[
−
(√

EG/E + βE
)]

(5.84)
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where β = (kBT )−1 and

N =

∫ ∞
0

dv v2e−mrv
2/(2kBT ) =

√
2

m
3/2
r

∫
dE
√
Ee−βE

=
√

2

(
kBT

mr

)3/2 ∫ ∞
0

dx
√
xe−x =

√
2

(
kBT

mr

)3/2
1

2
Γ

(
1

2

)
=

√
π

2

(
kBT

mr

)3/2

(5.85)

is the normalization constant. Inserting the above into Eq. (5.83), we obtain the reaction rate. Here
we have used the cross section formula in Eq. (5.82). The energy integral in Eq. (5.84) is dominated

by the minimum value of the function f(E) =
√

EG

E + βE in the exponent at E0,

df(E)

dE
= −1

2

√
EGE

−3/2
0 + β = 0

E0 = E
1/3
G

(
kBT

2

)2/3

(5.86)

So we can expand f(E) =
√

EG

E + βE at E = E0 and keep the quadratic term,

f(E) ≈ f(E0) +
1

2

d2f(E)

dE2

∣∣∣∣
E=E0

(E − E0)2

= f(E0) +
3

8
E

1/2
G E

−5/2
0 (E − E0)2 (5.87)

So Eq. (5.84) becomes

〈σv〉 ≈ 2N−1m−2
r S(E0) exp

[
−
(√

EG/E0 + βE0

)]
∫ ∞

0

dE exp

[
−3

8
E

1/2
G E

−5/2
0 (E − E0)2

]
≈ 24/3

√
3π

(Z1Z2e
2π)1/3(kBT )−2/3m−1/3

r S(E0) exp

[
− 3

22/3

(
EG
kBT

)1/3
]

(5.88)

The Sun is a perfect prototype of self-sustaining thermonuclear fusion reactor. The basic fusion
process in the sun is the hydrogen burning process into helium. Hydrogen is the most abundant
material in the universe, almost 90% of elements in the universe are hydrogens. The temperature in
the center of the Sun is about 1.6× 107 K (about 1.38 KeV with 1 eV = 1.1604× 104 K). Most fusion
reactions occur within 25% of the Sun's radius (R� = 6.95× 105 km). Most of the sun energy comes
from the proton-proton chain reaction. The reaction rate in the center is about 9.2 × 1037 times
per second. In each reaction four protons are converted into alpha particles or Helium-4. So about
3.7× 1038 proton out of 1057 protons are converted to Helium-4 per second. Each fusion releases the
energy of about 25.7 MeV (or 27.8 MeV if including electron-positron annihilation), see below. Thus
the energy power is about (3− 4)× 1026 W (1 W = 1 J · s−1 = 107 erg · s−1).

The proton-proton chain reaction of type-I (pp-I chain) is,

p + p → D + e+ + νe + 0.42 MeV

e+ + e− → 2γ + 1.02 MeV

p + D → 3
2He + γ + 5.49 MeV

3
2He + 3

2He → 4
2He + 2p + γ + 12.86 MeV (5.89)
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Figure 5.15: Coulomb barrier for fusion.
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Note that in de�nition of the Q-value we did not count the electron in the �nal state. If we do not
take the second reaction for electron-positron annihilation into account, the net reaction is

4p→ 4
2He + 2e+ + 2νe + 7γ + 25.19 MeV (5.90)

when including electron-positron annihilation, the net reaction becomes

4p + 2e− → 4
2He + 2νe + 7γ + 27.29 MeV (5.91)

The pp-I branch is dominant at temperatures of 10 to 14 megakelvins (MK = 106 K). Below 10 MK,
the 4

2He yield is suppressed. Since in the �rst reaction a proton must be converted to a neutron in the
weak interaction. The rate is controlled by the �rst reaction since the time scale for weak interaction
is much longer than the strong interaction. The cross section is of order 10−33 b and 10−23 b at KeV
and MeV respectively. The proton number density of the core of the Sun is about 7.5 × 1025 cm−3,
and the temperature is about 16 MK. Given these parameters, we can estimate the rate of the �rst
reaction, which is actually the rate of the pp-chain.

The pp-II chain is more important for temperatures of 14 to 23 MK. The pp-II chain reaction is

3
2He + 4

2He → 7
4Be + γ + 1.59 MeV

7
4Be + e− → 7

3Li∗(7
3Li) + νe + 0.861(0.383) MeV

7
3Li + p → 24He + 17.35 MeV (5.92)

whose net reaction is
3
2He + p + e− → 4He + νe + 19.8/19.3 MeV (5.93)

90% of the neutrinos produced in the reaction 7Be(e−, νe)
7Li∗ carry an energy of 0.861 MeV (Lithium-

7 in the excited state), while the remaining 10% carry 0.383 MeV (Lithium-7 in the ground state).
If the temperature is above 23 MK, there is pp-III chain reaction as follows,

3
2He + 4

2He → 7
4Be + γ + 1.59 MeV

7
4Be + p → 8

5B + γ + 0.197 MeV
8
5B → 8

4Be + e+ + νe + γ + 17.5 MeV
8
4Be → 24

2He + 0.092 MeV (5.94)
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Figure 5.16: Parameters for some fusions. The Q-value is only from nuclear mass di�erence. The table
is from S. Atzeni and J. Meyer-Ter-Vehn, �The Physics of Inertial Fusion: Beam Plasma Interaction,
Hydrodynamics, Hot Dense Matter�, Oxford University Press, 2009. The data is from C. Angulo et
al., Nucl. Phys. A656 (1999)3-187. [http://pntpm.ulb.ac.be/Nacre/nacre_d.htm]
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Figure 5.17: The pp chain reaction in the sun. From
�http://en.wikipedia.org/wiki/File:FusionintheSun.svg�.
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whose net reaction is
3
2He + p→ 4He + e+ + νe + 3γ + 19.3 MeV (5.95)

The pp III chain is not a major source of energy for the Sun (only 0.11%), but was very important
in the solar neutrino problem because it generates very high energy neutrinos (up to 14.06 MeV).

The CNO cycle is more important for heavier stars and higher temperatures (called CNO-I),

12
6 C + p → 13

7 N + γ + 1.94 MeV
13
7 N → 13

6 C + e+ + νe + 1.71 MeV
13
6 C + p → 14

7 N + γ + 7.55 MeV
14
7 N + p → 15

8 O + γ + 7.30 MeV
15
8 O → 15

7 N + e+ + νe + 2.24 MeV
15
7 N + p → 12

6 C + 4
2He + 4.96 MeV (5.96)

The net reaction is
4p→ 4

2He + 2e+ + 2νe + 3γ + 27.8 MeV (5.97)

Note that the Carbon, Nitrogen and Oxygen nuclei do not really participate the net reaction but
play as catalyst. The net reaction is still Eq. (5.91). There are also another chain reactions called
CNO-II invloving 16

8 O and 17
9 O.

The pp-chain and CNO cycle are not feasible on the earth because there is anything that can
con�ne the matter at such high temperatures in such a long time. The fusion reactions which can be
used on the earth are those with large cross sections at moderate temperatures. For example, here
are a few such reactions,

3
1H + 2

1H → 4
2He + n + 17.58 MeV (DT)

3
1H + 3

1H → 4
2He + 2n + 11.33 MeV (TT)

2
1H + 2

1H → 3
2He + n + 3.27 MeV (DD)

→ 3
1H + p + 4.04 MeV

→ 4
2He + γ + 23.85 MeV

2
1H + 3

2He → 4
2He + p + 18.4 MeV

Because of large energy release, the DT reaction is chosen for controlled fussion reaction in reactors.
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Figure 5.18: The cross sections for DD and DT fusion reactions. Also shown is the fusion reaction of
He-3 and deuteron. Taken from [4].
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Figure 5.19: The cross sections for DD and DT fussion reactions averaged over Boltzmann-Maxwell
disribution. Also shown is the fusion reaction of He-3 and deuteron. Taken from [4].

Exercise 43. The Sun is a perfect prototype of self-sustaining thermonuclear fusion reactor.
The basic fusion process in the sun is the hydrogen burning process into helium. The proton-
proton chain reaction of type-I (pp-I chain) is dominant one,

p + p → D + e+ + νe

p + D → 3
2He + γ

3
2He + 3

2He → 4
2He + 2p + γ

Given the atomic masses (not nuclear mass, given by mass excess relative to atomic mass
unit) of nuclides MD = 12.628 MeV, MHe3 = 14.931 MeV, MHe4 = 2.425 MeV. The
proton and neutron masses (mass excess) are mp = 0.007276 u, mn = 0.008665 u with
1 u = 931.494 MeV/c2. The electron mass is me = 0.511 MeV. (1) Calculate the Q-value of
each reaction. The Q-value is de�ned as the mass surplus of initial state nuclei relative to
�nal state nuclei. (2) Write the net reaction and the Q-value. (3) Among the three reactions,
which one is dominant to control the total reaction rate? Why? (4) The fusion cross section
of the �rst reaction p + p→ D + e+ + νe can be written as

σ(E) =
S(E)

E
e−
√
EG/E

where E = mrv
2/2 is the kinetic energy with reduced mass of two incident nuclei mr =

m1m2/(m1 + m2), and EG = 2mr(Z1Z2e
2π)2, S(E) = S(0) + (dS(0)/dE)E with S(0) =

3.8×10−22 KeV·barn and dS(0)/dE = 4.2×10−24 barn. We note that the fusion takes place
within 25% of the Sun's radius (R� = 6.95× 105 km) and the proton mass density is about
100 g/cm3. We can approximate that the kinetic energy E is given 3T/2 with T = 1.6× 107

K. For reference we list following constants here: 1 MeV= 1.16×1010 K, Avogadro's constant
NA = 6.022 × 1023/mol, barn=10−24 cm2. Try to calculate the rate of the fusion reaction
per unit volume.



CHAPTER 5. NUCLEAR REACTION 138

[Solution: E = 3T/2 = 2.07 KeV, S(E)/E ≈ 1.9 × 10−22 barn, EG ≈ 940 × 103 × π2/1372 ≈
494 KeV,

√
EG/E ≈ 15.4, e−

√
EG/E = 1.95 × 10−7. σ = 3.6 × 10−29 barn= 3.6 × 10−53 cm2.

v =
√

2E/mr =
√

4.14× 10−3/940 = 2.09 × 10−3 → 6.3 × 107 cm/s. σv = 2.3 × 10−45 cm3/s.
nH = 100×6.022×1023 = 6×1025/cm3. R/V = n2

Hσv/2 = 5.76×106 s−1cm−3. R = 1.92×10−19/s,
τ = 1/R = 5.2× 1018 s= 1.65× 1011 y.]



Chapter 6

Nuclear force and nucleon-nucleon

interaction

6.1 Properties of nucleons

The proton and neutron are nucleons, the building blocks of nuclei. The properties of nucleons are
summarized in Table 6.1. The main di�erence between the proton and the neutron is that the mass of
the neutron is 1.29 MeV larger than that of the proton and that the proton is stable but the neutron
is not. The dominant decay mode for the neutron is n→ p+ e− + νe.

6.2 General properties of nuclear force

The human knowledge about nuclear force started from 1934, shortly after neutron was discovered
in 1932 by J. Chadwick. Then H. Yukawa proposed that nuclear force was mediated by meson which
was discovered in 1947. From modern perspective nuclear force can understood as a residual force
of strong interaction whose the elementary particles are quarks and gluons. Mesons are actually
composite particles made of quarks and gluons. Nuclear force is like a Van der Waals force among
atoms which is a short range force much weaker than electromagnetic force. The Van der Waals
force originated from separation of charges (electric polarization) in atoms which are electric neutral.
Similarly quarks and gluons are bound together into a nucleon which is a color singlet object (color
neutral). When quarks and gluons with colors �uctuate inside the nucleon they produce a short
range force felt by a neighboring nucleon. Therefore the nuclear force is a residual force of quarks
and gluons.

1. Saturation and short distance. The forces which bind the nucleons together in nuclei are very

Table 6.1: Properties of nucleons.

proton neutron
quark content uud udd

I(JP ) 1
2

(
1
2

)+ − 1
2

(
1
2

)+
mass 938.27203±0.00008 MeV 939.56536±0.00008 MeV

Magnetic moment 2.792847351±0.000000028 µN −1.9130427±0.0000005 µN
Charge radius 0.875 ± 0.007 fm − 0.1161±0.0022 fm
Mean life > 2.1×1029 years 885.7±0.8 s

139
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Figure 6.1: Nuclear force mediated by meson. From �http://en.wikipedia.org/wiki/Nuclear_force�.

Figure 6.2: The nuclear force.
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Table 6.2: The states of NN system denoted by the symbol 2S+1L. B, H, M and W mean Bartlett,
Heisenberg, Majorana and Wigner force.

NN state L S I σ1 · σ2 τ1 · τ2 B H M W
pp,np,nn 1S 0 0 1 -3 1 1 1 -1 -1

np 3S 0 1 0 1 -3 -1 -1 -1 -1
np 1P 1 0 0 -3 -3 1 -1 1 -1

pp,np,nn 3P 1 1 1 1 1 -1 1 1 -1

strong because they can at least overcome the Coulomb repulsion among protons. The nuclear forces
have one property which we call the saturation: a nucleon can only interact with nucleons surrounding
it in a nucleus because it is an attractive force at short distances. This is why the binding energy is
proportional to the number of nucleons in a nucleus or the atomic number A. We can easily understand
it. Suppose the nuclear forces in the nucleus would be attractive between all pairs of nucleons, then
the total potential exerted on one nucleon by other A− 1 nucleons is proportional to (A− 1). There
are A nucleons, so the total potential energy is proportional to A2, which is not the real case. There
must be some other e�ects to keep the nucleons apart when the inter-nucleon distance is larger than
a threshold value. It turns out to be that the nuclear force is attractive in the intermediate short
range r ∈ [1, 2] fm and repulsive at very short distance r ∈ [0, 1] fm, where r is the distance between
two nucleons. In some sense the nuclear force is like Van der Waals force of molecules, which arises
from inhomogeneous distributions of electric charges though the molecule does not carry net charges
or is electric neutral. The nuclear force is illustrated in Fig. 6.2.

2. Exchange property. Nuclear force is mediated by mesons (pions and others) like the covalent
bonding in molecules. The force is attractive or repulsive depending on if the pair of nucleons is in
a symmetric or an anti-symmetric state in their separation. This counts in part for the saturation
of the forces. If we regard the proton and nucleon as an isospin doublet, we can extend the Pauli
principle by including the isospin. For a NN system, the total wavefunction must be anti-symmetric
with respect to exchange of two nucleons, which requires

(−1)L+S+I = −1 (6.1)

Assume ψ(r1, σ1, τ1; r2, σ2, τ2) is the wavefunction of the NN system, where σi and τi (i = 1, 2)
label the spin and isospin states. We introduce three exchange operators Pr, Pσ and Pτ which
exchange the spatial positions, spins and isospins of two nucleons,

Prψ(r1, σ1, τ1; r2, σ2, τ2) = ψ(r2, σ1, τ1; r1, σ2, τ2)

Pσψ(r1, σ1, τ1; r2, σ2, τ2) = ψ(r1, σ2, τ1; r2, σ1, τ2)

Pτψ(r1, σ1, τ1; r2, σ2, τ2) = ψ(r1, σ1, τ2; r2, σ2, τ1) (6.2)

These operators satisfy
P 2
r = P 2

σ = P 2
τ = 1 (6.3)

So the eigenvalues of the above operators must be ±1. Considering the properties under the exchange
of positions, spins and isospins for a NN state with the angular momentum, spin and isospin quantum
number L, S and I,

Pr = (−1)L

Pσ = (−1)S+1

Pτ = (−1)I+1 (6.4)

According to Eq. (6.1), we have

PrPσPτ = −1 (6.5)
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These operators can be expressed in terms of Pauli matrices for spins and isospins σ1,2 and τ1,2,

Pσ = (1 + σ1 · σ2)/2 = S(S + 1)− 1

Pτ = (1 + τ1 · τ2)/2 = I(I + 1)− 1

Pr = −(1 + σ1 · σ2)(1 + τ1 · τ2)/4 (6.6)

One can check S(S + 1)− 1 = (−1)S+1 for S = 0, 1.
In nucleon-nucleon interaction, the nuclear force can be modeled by nuclear potential in Schroedinger

equation. The most widely used nucleon-nucleon potentials are the Paris potential, the Argonne po-
tential, the Bonn potential and the Nijmegen potentials. The parameters of these potentials are �xed
by �tting experimental data, such as the deuteron binding energy, nucleon-nucleon elastic scattering
cross sections, etc.. A recent development is to systematically derive the nucleon-nucleon potential
from chiral e�ective �eld theory. Nuclear potential can be classi�ed into four kinds, they are attractive
or repulsive depends on the quantum state of the nucleon-nucleon system. In the following, vW(r),
vM(r), vH(r) and vB(r) are all positive functions.

� Spin exchange potential (Bartlett force),

VB = −1

2
(1 + σ1 · σ2)vB(r) (6.7)

The spin exchange potential is attractive for the spin triplet state S = 1 and repulsive for the
singlet S = 0.

� Isospin exchange potential (Heisenberg force),

VH =
1

2
(1 + τ1 · τ2)vH(r) (6.8)

The isospin exchange potential is attractive for the isospin singlet state I = 0 and repulsive for
the triplet I = 1.

� Space exchange potential (Majorana force),

VM =
1

4
(1 + σ1 · σ2)(1 + τ1 · τ2)vM(r) (6.9)

� Non-exchange potential (Wigner force),

VW = −vW(r) (6.10)

We see that the non-exchange potential is always attractive.

In the above we note that vW(r), vM(r), vH(r) and vB(r) are all positive functions. As shown in
Table 6.2, the above four forces are all attractive for the state 3S.

3. Charge independence or isospin invariance. The nuclear force between two nucleons is equal
irrelevant of if they are proton-proton, neutron-neutron or proton-neutron,

Vpp ≈ Vnn ≈ Vpn (6.11)

This property was veri�ed in the NN scattering experiments and in the presence of isospin multiplets
in nuclear structure. A good example is the mirror nuclei 3H and 3He (see Fig. 6.3). It is found that
the di�erence in binding energies of 3H and 3He only comes from the Coulomb energy of proton-proton
in 3He.

4. Momentum dependence. The nuclear force nontrivially depends on the relative momentum due
to the fact that it is mediated by meson exchange. The most important force that is momentum
dependent is the LS coupling,

(L · S)V (r) (6.12)
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Figure 6.3: Mirror nuclei: 3H and 3He.
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which is essential to explain the shell structure of in nuclei.
5. Spin dependent. Apart from the spin exchange force listed in Eq. (6.7), there is also tensor

force formed by three vectors σ1, σ2 and r̂ = r/|r|,

S12 = 3(r̂ · σ1)(r̂ · σ2)− (σ1 · σ2) = (3r̂ir̂j − δij)σ1iσ2j

= 6(S · r̂)2 − 2S2 (6.13)

The tensor force violates the angular momentum conservation.
In summary, the nuclear force has the following general form,

V = Vc(r) + Vσ(r)(σ1 · σ2) + Vτ (r)(τ1 · τ2) + Vστ (r)(σ1 · σ2)(τ1 · τ2)

+VI(r)S12 + VIτ (r)S12(τ1 · τ2) (6.14)

One sees that the potential conserves the total isospin since it is commutable with

I2 =
1

4
(τ1 + τ2)2 =

1

2
(3 + τ1 · τ2) (6.15)

The potential does not depend on I3, i.e. it does not discriminate protons and neutrons.
NN potentials have the following properties,

� A scalar, because it is an energy;

� Only depends on the relative distance between two nucleons r and σ ·r- locality and momentum
conservation;

� Invariant under the spatial re�ection - parity invariance;

� Invariant under rotation - angular momentum conservation;

� Invariant under the time re�ection;

� Invariant under the exchange of proton and neutron;

� Not dependent on velocity - static;

Exercise 44. What is general Pauli exclusive principle? From this principle, �ll the empty
space of the following table,

NN state L S I σ1 · σ2 τ1 · τ2 B H M W
pp,np,nn 1S 1 1 -1 -1

np 3S -1 -1 -1 -1
np 1P 1 -1 1 -1

pp,np,nn 3P -1 1 1 -1
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Table 6.3: Static properties of the deuteron nucleus (JP = 1+).

observables data
binding energy BD (MeV) 2.224
magnetic moment µD/µN 0.857

electric quadrupole QD (fm2) 0.286

average square root radius
〈√

r2
〉
(fm) 1.964

ratio of D to S states η = AD/AS 0.026

Exercise 45. What is the saturation property of nuclear force?

Exercise 46. Assume ψ(r1, σ1, τ1; r2, σ2, τ2) is the wavefunction of the nucleon-nucleon
system, where σi and τi (i = 1, 2) label the spin and isospin states. We introduce operators
Pσ and Pτ which exchange the spins and isospins of two nucleons,

Pσψ(r1, σ1, τ1; r2, σ2, τ2) = ψ(r1, σ2, τ1; r2, σ1, τ2)

Pτψ(r1, σ1, τ1; r2, σ2, τ2) = ψ(r1, σ1, τ2; r2, σ2, τ1)

Considering that the nucleon-nucleon state can be in spin and isospin singlet and triplet,
write down the formula for Pσ and Pτ using σi and τi.

6.3 Deuteron nucleus

The Deuteron nucleus is the second most simple nuclei and made of one proton and one neutron.
Following the Pauli principle 6.1, the total wave function must be anti-symmetric with the exchange
of two nucleons. The Deuteron nucleus is an isospin singlet and has spin-parity JP = 1+. The
interaction inside the deuteron is purely nuclear force without Coulomb contribution. Since S = 1
gives a stronger nuclear attraction, the deuterium ground state is in the S = 1, L = 0 state. As we
know from the positive parity and total angular momentum 1 of the deuteron, it must be in the states
with relative orbital angular momentum L = 0, 2, · · · , where two lowest states are 2S+1LJ =3 S1,

3D1.

6.3.1 S-state

For the 3S1 state, the relative motion of neutron and proton can be described by Schrödinger equation
with a square well potential, [

− 1

mN
∇2 + V (r)− E

]
ψ(r) = 0 (6.16)

Here the reduced mass is mN/2. The square well potential is de�ned by,

V (r) =

{
−V0, (r ≤ a)
0, (r > a)

(6.17)

Since the deuteron nucleus is in the S-state, the wave function only depends on the radius r,

ψ(r) = u(r)/r (6.18)
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Then the Schrödinger equation becomes[
− 1

mN

1

r2

d

dr
r2 d

dr
+ V (r)− E

]
u(r)

r
= 0 (6.19)

Using

1

r2

d

dr
r2 d

dr
=

d2

dr2
+

2

r

d

dr
d2

dr2

u(r)

r
=

u′′(r)

r
− 2

r3
(ru′ − u)

2

r

d

dr

u(r)

r
=

2

r3
(ru′ − u) (6.20)

the the Schrödinger equation can be simpli�ed as

− 1

mN
u′′(r) + [V (r)− E]u(r) = 0 (6.21)

and further as

u′′(r) +mN[E + V0]u = 0, (r ≤ a)

u′′(r) +mNEu = 0, (r > a) (6.22)

where the energy is chosen to be the binding energy E = BD = −2.224 MeV. Using the boundary
condition, u(0) = u(∞) = 0, we get the solution

u(r) =

{
A sin(

√
mN(E + V0)r), (r ≤ a)

B exp(−
√
mN|E|r), (r > a)

(6.23)

At r = a, u(r) and u′(r) must be continuous. So we get

A sin(
√
mN(E + V0)a) = B exp(−

√
mN|E|a)

A
√
mN(E + V0) cos(

√
mN(E + V0)a) = −B

√
mN|E| exp(−

√
mN|E|a) (6.24)

and then

1√
mN(E + V0)

tan(
√
mN(E + V0)a) = − 1√

mN|E|
(6.25)

which gives the relation between V0 and a. We can choose a = 2 fm. De�ne ka =
√
mN|E|a ≈√

938× 2.224× 2/197 ≈ 0.465 and k0a ≡
√
mNV0a, with k < k0, the above equation is rewritten as

tan(
√

(k0a)2 − (ka)2) = −
√

(k0a)2 − (ka)2

ka
(6.26)

In order for the above equation to have solutions, k0a must be within [(4n+ 1)π/2, (2n+ 1)π] so that
two functions y = tanx and y = −x/

√
(k0a)2 − x2 have intersections. The root is ka ≈ 2.019 which

gives V0 ≈ 36.5 MeV. We can estimate k0a ∼
√

938× 36.5× 2/197 ≈ 1.87 which is about 1.19 times
π/2 and within [π/2, π].

The electric dipole moment of the deuteron is zero. Its magnetic moment is

µJ = µL + µS = gLµNL + gSµNS = gJµNJ (6.27)

where J, L and S are the total, orbital and spin momenta. gi=J,L,S are their g-factors, and we
have gL = (gp

L + gn
L)/2 = gp

L/2 = 1/2 and gS = (gp
S + gn

S)/2. The g-factor of deuteron for oribital
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angular momentum can be easily understood by the fact that only proton contributes with half of
total orbital angular momentum: µL = gp

LµNLp = gp
LµNL/2. The g-factor of deuteron for spin can

also be derived:

µS = gSµNS =
1

2
µN(gp

Sσ1 + gn
Sσ2)

gSS · S =
1

4
(gp
Sσ1 · S + gn

Sσ2 · S)

=
3

4
(gp
S + gn

S) +
1

4
(gp
S + gn

S)σ1 · σ2 (6.28)

where we have used S = 1
2 (σ1 + σ2). We see that for S = 1, gS = (gp

S + gn
S)/2.

We multiply J to both sides of Eq. (6.27) and obtain

gJJ · J =
1

2
gp
L(L · J) +

1

2
(gp
S + gn

S)(S · J)

gJJ = gpL
J(J + 1) + L(L+ 1)− S(S + 1)

4(J + 1)

+(gp
S + gn

S)
J(J + 1) + S(S + 1)− L(L+ 1)

4(J + 1)
(6.29)

Then the magnetic moments of the deuteron states 3S1 (S = 1, J = 1 and L = 0) and 3D1 (S = 1,
J = 1 and L = 2) are

µJ(3S1) = gJJ =
1

2
(gp
S + gn

S) = 0.879

µJ(3D1) = gJJ =
3

4
gp
L −

1

4
(gp
S + gn

S) = 0.31 (6.30)

We can see we can reproduce the magnetic moment of deuteron nucleus in such a simple model.

6.3.2 S and D states

Data show that the deuteron has non-zero quadrupole moment, indicating that one should take non-
central potential into account. The most simple non-central potential is the tensor one, then the total
potential of the deuteron can be written as

V (r) = Vc(r) + S12VT(r) (6.31)

where the tensor operator S12 is given in Eq. (6.13). As we have mentioned in the last subsection
that the lowest ground states of the deuteron are states 3S1 and 3D1. Let us denote φS and φD as
the spin and angular part of the S- and D-state wavefunction,

φ1M
S = χ1MY00(θ, φ)

φ1M
D =

∑
M1,M2

c(M ;M1,M2)Y2M1(θ, φ)χ1M2 (6.32)

where the Clebsch-Gordon coe�cients c(m;m1,m2) can be taken from [19] and are listed below,

c(1; 2,−1) =
√

3/5, c(1; 1, 0) = −
√

3/10, c(1; 0, 1) =
√

1/10

c(0; 1,−1) =
√

3/10, c(0; 0, 0) = −
√

2/5, c(0;−1, 1) =
√

3/10

c(−1; 0,−1) =
√

1/10, c(−1;−1, 0) = −
√

3/10, c(−1;−2, 1) =
√

3/5 (6.33)
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The spin wave functions are

χ1,1 = ↑↑

χ1,0 =
1√
2

(↑↓ + ↓↑)

χ1,−1 = ↓↓ (6.34)

and angular momentum ones are

Y2,2(θ, φ) =
1

4

√
15

2π
sin2 θe2iφ =

1

4

√
15

2π

1

3

(
T 11 − T 22 + i2T 12

)
Y2,1(θ, φ) = −

√
15

8π
sin θ cos θeiφ = −

√
15

8π

1

3

(
T 13 + iT 23

)
Y2,0(θ, φ) =

√
5

4π

(
3

2
cos2 θ − 1

2

)
=

1

2

√
5

4π
T 33

Y2,−m(θ, φ) = (−1)mY ∗2,m(θ, φ) (6.35)

where the rand-2 tensor is de�ned by T ij = 3r̂ir̂j − δij . With Eq. (6.13), one can prove

S12φ
1M
S =

√
8φ1M

D

S12φ
1M
D =

√
8φ1M

S − 2φ1M
D (6.36)

Now we can introduce the D wavefunction into the ground state of the deuteron,

ψ(r) =
√
PSψS(r) +

√
PDψD(r)

=
u(r)

r
φ1M
S +

w(r)

r
φ1M
D (6.37)

Then PS and PD are given by

PS =

∫ ∞
0

∣∣∣∣u(r)

r

∣∣∣∣2 r2dr =

∫ ∞
0

u2(r)dr

PD =

∫ ∞
0

∣∣∣∣w(r)

r

∣∣∣∣2 r2dr =

∫ ∞
0

w2(r)dr

PS + PD =

∫ ∞
0

[u2(r) + w2(r)]dr = 1 (6.38)

The Schrödinger equation becomes[
− 1

mN
∇2 + Vc(r) + S12VT(r)− E

]
ψ(r) = 0 (6.39)
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We can simplify it by[
− 1

mN
∇2 + Vc(r) + S12VT(r)− E

](
u(r)

r
φ1M
S +

w(r)

r
φ1M
D

)
=

[
− 1

mN
∇2 + Vc(r)− E

](
u(r)

r
φ1M
S +

w(r)

r
φ1M
D

)
+S12VT(r)

(
u(r)

r
φ1M
S +

w(r)

r
φ1M
D

)
=

[
− 1

mN
∇2 + Vc(r)− E

](
u(r)

r
φ1M
S +

w(r)

r
φ1M
D

)
+VT(r)

(
u(r)

r

√
8φ1M

D +
w(r)

r

√
8φ1M

S − w(r)

r
2φ1M

D

)
=

[
− 1

mN
∇2 + Vc(r)− E

]
u(r)

r
φ1M
S +

w(r)

r

√
8VT(r)φ1M

S

+

[
− 1

mN
∇2 + Vc(r)− E

]
w(r)

r
φ1M
D + VT(r)

(√
8
u(r)

r
− 2

w(r)

r

)
φ1M
D = 0 (6.40)

The we get [
− 1

mN
∇2 + Vc(r)− E

]
u(r) + w(r)

√
8VT(r) = 0[

− 1

mN
∇2 + Vc(r)− 2VT(r)− E

]
w(r) +

√
8VT(r)u(r) = 0 (6.41)

The boundary conditions are
u(r), w(r) = 0, r = 0,∞

The coupled equations can be solved numerically. The solutions have to be adjusted to �t the data.
These equations can be decoupled outside the range of nuclear force, the asymptotic behaviors are

u(r) = ASe
−kr

w(r) = AD

[
1 +

3

kr
+

3

(kr)2

]
e−kr (6.42)

with k =
√
mN|E|. The ratio of D to S state is

η = AD/AS ≈ 0.025 (6.43)

The electric quadrupole moment is

QD =
〈
ψ|Q̂|ψ

〉
= PS

〈
ψS |Q̂|ψS

〉
+ PD

〈
ψD|Q̂|ψD

〉
+ 2
√
PSPD

〈
ψS |Q̂|ψD

〉
(6.44)

where the quadrupole operator is de�ned as

Q̂ =
1

4
(3z2 − r2) =

√
π

5
r2Y20(θ) (6.45)

Note that the �rst term in Eq. (2.42) does not contribute following the Wigner-Eckart theorem, i.e.
there is no [1] in [5]⊗ [1] = [5]. Then we can derive

QD =

√
2

10

∫ ∞
0

drr2u(r)w(r)− 1

20

∫ ∞
0

drr2w2(r) (6.46)
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Exercise 47. The spin-parity of deuteron is JP = 1+. What are two lowest states for
deuteron? Express the states using the optical spectrum symbol 2S+1LJ with S, P,D,G, F, · · ·
for L = 1, 2, 3, 4, 5, · · · .

Exercise 48. Prove Eq. (6.36).

Exercise 49. Prove Eq. (6.46).
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Figure 6.4: pp cross sections

6.4 Low energy nucleon-nucleon scatterings

When considering nucleon-nucleon scatterings, we have spin-orbit and spin-spin interactions in ad-
dition to the central potential. Neither spins nor orbital angular momenta are conserved in the
scatterings. Only the total angular momentum, its third compponent and the parity are conserved.
For a general two-to-two scattering a + b→ c + d , the selection rules for the interaction are

(1) PaPb(−1)L = PcPd(−1)L
′

(2) ma +mb +mL = mc +md +mL′

(3) J = J ′ (6.47)

where Pi are intrinsic parities for particles i = a,b, c,d; mi are the third components of the spins;
mL and mL′ are the third components of the relative angular momenta of initial and �nal states; J
and J ′ are the total angular momenta of initial and �nal states.

Nucleon-nucleon scatterings include np, pp and nn scatterings. One can measure the cross sections,
di�erential cross sections or angular distributions with or without polarizations. For low energy
scatterings ka� 1, s-wave is dominant. We can estimate the incident energy for which ka < 1 holds,
ka ≈ √mnEa ≈

√
mnEL/2a where EL is the energy in the lab frame. When EL ∼ 10 MeV and

a ∼ 2 fm, ka ∼ 0.7, so for EL < 10 MeV, we can safely consider only the s-wave. In this case the
total cross section is

σtot ∼ 4π
1

k2
(P1 sin2 δ1 + P3 sin2 δ3) ≈ π(a2

s1 + 3a2
s3) (6.48)

where δi and asi for i = 1, 3 are phase shifts and scattering lengths for the spin singlet and triplet.
The total cross section is obtained by summing over all the �nal states and taking average over the
initial states for which P1,3 = 1/4, 3/4 are degeneracy weights from spin counting. Since the total
angular momentum is conserved, there is no mixing of the singlet and triplet in the amplitude. From
Eq. (A.70) and (A.92), we have

k coth δ1 = − 1

as1
+

1

2
reff,1k

2

k coth δ3 = − 1

as3
+

1

2
reff,3k

2 (6.49)
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where reff,1,3 are e�ective force distances for the singlet and triplet. For neutron-proton scatterings,
their values are given by

as1 ≈ 23.7 fm

reff,1 ≈ 2.5 fm

as3 ≈ −5.4 fm

reff,3 ≈ 1.7 fm (6.50)

Note that the triplet/singlet channel is attractive/repulsive since as3/as1 is negative/positive. From
the scattering length we can determine the depth of the potential provided the potential width a is
known following Eq. (A.93). If we set a = 3 fm, we have the potential depths for singlet and triplet
channels are 311 and 96 MeV respectively, corresponding to k0a = 1.51π, 0.46π. The total cross
section is then about 20.4 barns (10−24 cm2), where those for the singlet and the triplet are 71 and
3.7 barns. From these value we can determine the potential depth and width from Eqs. (A.95,A.93).
At low energy the phase shift as function of wave number are independent of potential shape because
the wave length is much larger than the force distance. The scattering length for the triplet is negative
means the phase shift is positive and the force is attractive.

6.5 Nucleon-Nucleon scatterings in moderate energy

To gain knowledge about the deep structure of the nuclear force, one has to use high energy scatterings.
When the nucleon incident energy in the lab frame EL > 400 GeV, the internal mesonic degree of
freedoms can be excited and the relativistic e�ects enter the play. New particles can be produced by
transforming part of the kinetic energy into the masses.

Suppose the incident protons are moving along the z-axis in proton-neutron scatterings. The
di�erential cross section dσ/dΩ of neutron-proton scatterings in moderate energies has a feature that
there are peaks at θ = 0, π and the peak at θ = π is higher than that at θ = 0. There is a valley
at θ = π/2. The large peak at θ = π is understood as the signal for the exchange character of the
nuclear force. The protons can exchange a pion with the neutrons and turn to neutrons which emit
at small angles, while the protons transformed from the incident neutron absorbing the pions move
out along the negative z-axis.

In proton-proton scatterings the di�erential cross section shows an isotropic feature with respect
to polar angles except θ < π/8. This is a result of coherence e�ect among a variety of partial waves.

6.6 Meson exchange model for NN potentials

Yukawa �rst proposed in 1934 that in analogy to the scalar potential of the electromagnetic �eld there
is also a potential between the proton and the neutron. The potential has an additional exponential
factor besides the Coulomb potential,

V (r) = g
e−λr

r

where g is the coupling constant and λ characterizes the distance of the nuclear force. He argued
that λ is actually the mass of one kind of particle which mediate the nuclear force which was later
called the pion.

Fig. 6.5 shows the central force, one can see that the repulsive part of the nucleon-nucleon
potential in short distance is from the vector meson exchange ω and ρ. For intermediate distance the
potential is dominated by the σ meson exchange. The long distance part is from the pion exchange.
The tensor force is provided by the pion and the ρ meson, while the spin-orbital force is from the σ
and ω mesons.



CHAPTER 6. NUCLEAR FORCE AND NUCLEON-NUCLEON INTERACTION 152

Figure 6.5: Nucleon-nucleon potential.
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Figure 6.6: NN interaction through pion exchange.
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6.6.1 One pion exchange potential (OPEP)

The interaction potential via one pion exchange can be obtained from the Lagrangian by the scattering
amplitude of two nucleons. This can be translated into the Yukawa coupling igPSψγ5τjψφ

j
PS in the

Lagrangian where φjPS (j = 1, 2, 3 are isospin indices) denote the pseudoscalar pion �elds and τj are
Pauli matrices in isospin space. The coupling vertex is iΓj = −gPSγ5τj . It is easy to introduce the
pion propagator, i.e. the Green function in momentum space,

iGij(q) =
i

q2 −m2
π

δij (6.51)

where q is the four-momentum and mπ the pion mass. An incoming nucleon is denoted by uN(p) =

(up, un)T, an outgoing nucleon by uN(p) = u†Nγ0. Here γ0 and γ5 are Dirac matrices given by

γ0 =

(
1 0
0 −1

)
, γ5 =

(
0 1
1 0

)
(6.52)

We write down the T-matrix,

i 〈p′, h′1, h′2|T |p, h1, h2〉 = −uN(−p′, h′2)iΓiuN(−p, h2)

× i

q2 −m2
π

δijuN(p′, h′1)iΓjuN(p, h1) (6.53)

where q = p− p′ is the four-momentum transfer in nucleon-nucleon scattering and h =↑, ↓ denote the
spin states. At low energies we can transform all quantities to non-relativistic (NR) ones q2 → −q2,
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EN → mN and

uN(p, h) =

(
χ(h)

σ·p
E+mN

χ(h)

)
→
(

χ(h)
σ·p
2mN

χ(h)

)
(6.54)

where χ = (χp, χn)T with χp,n = |↑〉 , |↓〉 are Pauli spinors for spin states. We obtain

uN(p′, h′1)γ5τjuN(p, h1) = 〈χ(1′)| ( 1, σ·p′
2mN

)

(
1 0
0 −1

)(
0 1
1 0

)
τj

(
1

σ·p
2mN

)
|χ(1)〉

=
1

2mN
〈χ(1′)|σ · (p− p′)τj |χ(1)〉

uN(−p′, h′2)γ5τiuN(−p, h2) = − 1

2mN
〈χ(2′)|σ · (p− p′)τi |χ(2)〉 (6.55)

Then the T-matrix element in the non-relativistic limit can be simpli�ed by

〈p′, h′1, h′2|T |p, h1, h2〉NR

= − g2
PS

4m2
N(q2 +m2)

〈χ(1′)| (σ · q)τi |χ(1)〉 〈χ(2′)| (σ · q)τi |χ(2)〉 (6.56)

which give rise to the e�ective potential in the Born approximation,

Vπ(q) = − g2
PS

4m2
N

1

q2 +m2
π

(τ1 · τ2)(σ1 · q)(σ2 · q) (6.57)

The potential in coordinate space can be obtained by Fourier transformation,

Vπ(r) =

∫
d3q

(2π)3
eiq·rV (q)

=
g2

PS

4m2
N

(τ1 · τ2)(σ1 · ∇)(σ2 · ∇)

∫
d3q

(2π)3
eiq·r

1

q2 +m2
π

=
g2

PS

4m2
N

(τ1 · τ2)(σ1 · ∇)(σ2 · ∇)
e−mπr

4πr
(6.58)

where we have used∫
d3q

(2π)3
eiq·r

1

q2 +m2
π

=
1

(2π)2

∫ ∞
0

dqq2

∫ 1

−1

d cos θ
eiqr cos θ

q2 +m2
π

=
1

(2π)2

∫ ∞
0

dqq2

∫ 1

−1

d cos θ
eiqr cos θ

q2 +m2
π

=
−i

(2π)2r

∫ ∞
0

dqq
eiqr − e−iqr
q2 +m2

π

=
−i

(2π)2r

∫ ∞
−∞

dqq
eiqr

q2 +m2
π

=
−i

2(2π)2r

∫
C

dqeiqr
(

1

q − imπ
+

1

q + imπ

)
=

1

4πr
e−mπr (6.59)

where the contour C is in the upper half plane. The OPEP potential then becomes

Vπ(r) =
g2

PS

16πm2
N

τ1 · τ2

[(
1

r2
+
mπ

r
+
m2
π

3

)
S12 +

m2
π

3
σ1 · σ2

]
e−mπr

r
(6.60)

where S12 is de�ned by

S12 = 3(σ1 · r̂)(σ2 · r̂)− σ1 · σ2 (6.61)
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Table 6.4: Exchanged bosons in OBEP.

bosons spin, parity JP isospin I mass (MeV) coupling type
π± 0− 1 139.57 14.24 isovector, pseudoscalar
π0 0− 1 134.98 14.24 isovector, pseudoscalar
σ 0+ 0 (550) 3.16 isoscalar, scalar
η 0− 0 548.7 5.77 isoscalar, pseudoscalar
ρ 1− 1 759.9 0.71 isovector, vector
ω 1− 0 781.9 10.06 isoscalar, vector

Table 6.5: Lagrangian density for boson-nucleon couplings. For isospin multiplet like pions, we should
replace ψ → (ψp, ψn)T , φ→ φi and Γτi.

Boson type Lagrangian term (gψΓψφ) coupling term (iΓ)

scalar (S) gSψψφS igS

pseudoscalar (PS) igPSψγ5ψφPS −gPSγ5

pseudoscalar vector-type (PV) gPV

m ψγ5γ
µψ∂µφPS - gPV

m γ5γ
µqµ

vector (V) gVψγµψφ
µ
V igVγµ

vector (T) gT
2mψσµνψ∂

µφνV - gT2mσµνq
ν

and we have used

∇j
e−mπr

r
=

(
− rj
r3
−mπ

rj
r2

)
e−mπr

∇i∇j
e−mπr

r
= −∇i

[( rj
r3

+mπ
rj
r2

)
e−mπr

]
=

(
3
rirj
r5
− δij
r3

+ 2mπ
rirj
r4
−mπ

δij
r2

)
e−mπr

+mπ

(rirj
r4

+mπ
rirj
r3

)
e−mπr

=

[(
3

r3
+

3mπ

r2
+
m2
π

r

)
rirj
r2
−
(

1

r3
+
mπ

r2

)
δij

]
e−mπr

=

[(
1

r2
+
mπ

r
+
m2
π

3

)(
3rirj
r2
− δij

)
+
m2
π

3
δij

]
e−mπr

r
(6.62)

The OPEP can give the radius of deuteron rD = 1.94 fm, the quadrupole moment Q = 0.284 fm2,
which are in agreement with data. The OPEP can give the right description of the long range
attractive part of the nuclear force, but not the short distance part, because of the small mass of
pions.

6.6.2 One boson exchange potential

To describe the short and mediate distance of the nuclear force, one extends OPEP by including
other bosons, i.e. one boson exchange potential (OBEP), see Table 6.4. The Lagrangian density for
boson-nucleon couplings for various intermediate bosons are listed in Table 6.5.

In a similar way to one pion exchange, we can determine the potential from the σ exchange. As
we know from Table 6.4 that σ is an isoscalar and scalar particle, the interaction term is gsψψφs with
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vertex iΓ = igs. The T-matrix can be evaluated as

i 〈p′, h′1, h′2|T |p, h1, h2〉 = −uN (−p′, h′2)iΓuN (−p, h2)
i

q2 −m2
σ

uN (p′, h′1)iΓuN (p, h1)

= i
g2
s

q2 −m2
σ

uN (−p′, h′2)uN (−p, h2)uN (p′, h′1)uN (p, h1)

≈ −i g2
s

q2 +m2
σ

〈χ(2′)|
[
1− (σ · p′)(σ · p)

4m2
N

]
|χ(2)〉

× 〈χ(1′)|
[
1− (σ · p′)(σ · p)

4m2
N

]
τi |χ(1)〉

≈ −i g2
s

q2 +m2
σ

〈χ(2′)|
[
1− p · p′

4m2
N

− iσ · (p
′ × p)

4m2
N

]
|χ(2)〉

× 〈χ(1′)|
[
1− p · p′

4m2
N

− iσ · (p
′ × p)

4m2
N

]
|χ(1)〉 (6.63)

We have used q = p− p′ and we can also de�ne k = (p + p′)/2. In terms of k and q, the potential
in momentum space reads

Vσ(q) = − g2
s

q2 +m2
σ

[(
1− k2 − q2/4

4m2
N

)2

+ i
S · (p′ × p)

2m2
N

(
1− k2 − q2/4

4m2
N

)
− 1

16m4
N

σ1 · (p′ × p)σ2 · (p′ × p)

]
≈ − g2

s

q2 +m2
σ

[
1− k2 − q2/4

2m2
N

+
iS · (k× q)

2m2
N

]
(6.64)

where we have kept the terms upto k2/m2
N or q2/m2

N . The term iS · (k× q) gives the L ·S coupling
of the nuclear force. We only keep the leading order term we obtain

Vσ(q) ≈ − g2
s

q2 +m2
σ

→ Vσ(r) ≈ − g2
s

4πr
e−mσr (6.65)

which gives an attractive Yukawa potential.
Let us compute the potential from the exchange of the massive vector boson. The Lagrangian

reads

L = −1

4
FµνF

µν +
1

2
m2
vVµV

µ (6.66)

with Fµν = ∂µV ν − ∂νV µ is the strength tensor for the vector �eld. We can write the vector �eld
explicitly V µ = (V 0,V) and Vµ = (V 0,−V). The equation of motion can be obtained from the
Lagrangian equation,

∂λ
∂L

∂(∂λVσ)
− ∂L

∂Vσ
= 0

−1

2
∂λF

µν(gλµg
σ
ν − gσµgλν )−m2

vV
σ = 0

∂λF
λσ +m2

vV
σ = 0 (6.67)

The conjugate momenta are

Πσ =
∂L

∂(∂0Vσ)
= −1

2
Fµν(g0

µg
σ
ν − gσµg0

ν)

= (0, F i0) = (0,E) = (0,Π) (6.68)
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where

E = Π = −∇V0 −
∂V

∂t
(6.69)

This indicates that there is no conjugate momentum of V0 since the Lagrangian does not contain
∂0V0. Actually V0 is instantly obtained from Eq. (6.67),

V 0 = − 1

m2
v

∂λF
λ0 = − 1

m2
v

∇ ·Π (6.70)

So Eq. (6.69) becomes

E = Π =
1

m2
v

∇(∇ ·Π)− ∂V

∂t
(6.71)

Taking the derivative of Eq. (6.67), we �nd

∂σV
σ = 0 (6.72)

The Hamiltonian can be found

H = Πσ∂0Vσ − L = −Π · V̇ − L
= −Π · (−Π−∇V 0)− 1

2
(E2 −B2)− 1

2m2
v

(∇ ·Π)2 +
1

2
m2
vV

2

=
1

2
(Π2 + B2)− 1

m2
v

Π∇∇ ·Π− 1

2m2
v

(∇ ·Π)2 +
1

2
m2
vV

2

=
1

2

[
Π2 + B2 +

1

m2
v

(∇ ·Π)2 +m2
vV

2

]
+∇ · (ΠV0) (6.73)

which is de�nitely positive after dropping the last divergence term. Here we have used B = ∇×V.
The quantization condition reads

[V i(t, r),Πj(t, r′)] = −iδijδ(3)(r− r′) (6.74)

where the minus sign comes from the fact that Vi = −V i and Πi are conjugate variables. Note that
V and Π satisfy the constraint (6.72),

∇ ·V − 1

m2
v

∇ · Π̇ = 0 (6.75)

This is the binding condition for the longitudinal component of V and Π along the direction of the
wave vector.

Assume that V expands as

V(x) =
∑
k

1√
2EkV

(
Aλkε

λ
kak,λe

−ik·x +Aλ∗k ε
λ∗
k a
†
k,λe

ik·x
)

(6.76)

where k · x = Ekt − k · x. We assume that ε1,2
k ⊥ k and ε3

k ‖ k. Similar to the expansion of V, we
can express Π in the following form,

Π(x) =
∑
k

1√
2EkV

(
Cλk ε

λ
kak,λe

−ik·x + Cλ∗k ε
λ∗
k a
†
k,λe

ik·x
)

(6.77)

where the coe�cients Cλk can be obtained by solving Eq. (6.71). Inserting the expansion of V into
Eq. (6.71), we obtain

−∂V(x)

∂t
= i

∑
k

1√
2EkV

Ek

(
Aλkε

λ
kak,λe

−ik·x −Aλ∗k ελ∗k a†k,λeik·x
)

=
∑
k

1√
2EkV

[
Cλk

(
1 +

kk

m2
v

)
· ελkak,λe−ik·x + Cλ∗k

(
1 +

kk

m2
v

)
· ελ∗k a†k,λeik·x

]
(6.78)
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We can determine the coe�cients,

C1,2
k = iEkA

1,2
k , C3

k = i
m2
v

Ek
A3
k (6.79)

where we have used k · ε1,2
k = 0 and k ‖ ε3

k. From the commutator (6.74), we obtain

[V i(t,x),Πj(t,x′)] =
∑
k,k′

1√
2EkV

1√
2Ek′V

[(
Aλkε

iλ
k ak,λe

−ik·x +Aλ∗k ε
iλ∗
k a†k,λe

ik·x
)
,

(
Cλ
′

k′ ε
jλ′

k′ ak′,λ′e
−ik′·x′ + Cλ

′∗
k′ ε

jλ′∗
k′ a†k′,λ′e

ik′·x′
)]

=
1

V

∑
k,k′

1√
2Ek

1√
2Ek′

{
AλkC

λ′∗
k′ ε

iλ
k ε

jλ′∗
k′ e−ik·x+ik′·x′ [ak,λ, a

†
k′,λ′ ]

+Aλ∗k C
λ′

k′ ε
iλ∗
k εjλ

′

k′ e
ik·x−ik′·x′ [a†k,λ, ak′,λ′ ]

}
=

1

V

∑
k

1

2Ek

{
AλkC

λ∗
k εiλk ε

jλ∗
k eik·(x−x

′) −Aλ∗k Cλk εiλ∗k εjλk e
−ik·(x−x′)

}
= −i 1

V

∑
k,λ

1

2
|Aλk |2εiλk εjλ∗k

[
eik·(x−x

′) + e−ik·(x−x
′)
]

−i 1

V

∑
k

m2
v

2E2
k

|A3
k|2εi3k εj3∗k

[
eik·(x−x

′) + e−ik·(x−x
′)
]

= −iδijδ(3)(x− x′) (6.80)

where x = (t,x) and x′ = (t,x′). We have used [ak,λ, a
†
k′,λ′ ] = δk,k′δλ,λ′ and assumed εiλk ε

jλ∗
k are

real. The above requires ∑
λ=1,2

|Aλk |2εiλk εjλ∗k +
m2
v

E2
k

|A3
k|2εi3k εj3∗k = δij (6.81)

If we assume ε3
k = (Ek/mv)k̂ and A1

k = A2
k = A3

k = 1, we get

2∑
λ=1

εiλk ε
jλ∗
k = δij −

kikj

k2

3∑
λ=1

εiλk ε
jλ∗
k = δij +

kikj

m2
v

(6.82)

The zero-component becomes

V 0 = − 1

m2
v

∇ ·Π

= − i

m2
v

∑
k

1√
2EkV

(
Cλkk · ελkak,λe−ik·x − Cλ∗k k · ελ∗k a†k,λeik·x

)
=

∑
k

1√
2EkV

k

mv

(
ak,3e

−ik·x + a†k,3e
ik·x
)

(6.83)

We can de�ne the polarization tensor for V 0,

ε0,1
k = ε0,2

k = 0, ε0,3
k =

k

mv
(6.84)
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Then the four-vector V α reads

V α(x) =
∑
k

1√
2EkV

(
εα,λk ak,λe

−ik·x + εα,λk a†k,λe
ik·x
)

(6.85)

The orthogonal condition (6.82) can be written into a compact form,

3∑
λ=1

εα,λk εβ,λk = −gαβ +
kαkβ

m2
v

(6.86)

The propagator can be obtained from Eq. (6.85),

iG =
〈
0
∣∣T [V α(x)V β(x′)]

∣∣ 0〉
θ(t− t′)

〈
0
∣∣V α(x)V β(x′)

∣∣ 0〉+ θ(t′ − t)
〈
0
∣∣V β(x′)V α(x)

∣∣ 0〉
= θ(t− t′)

∑
k,k′

1

V
√

2Ek
√

2Ek′
εα,λk εβ,λ

′

k′ e−ik·xeik
′·x′
〈

0
∣∣∣ak,λa†k′,λ′ ∣∣∣ 0〉

+θ(t′ − t)
∑
k,k′

1

V
√

2Ek
√

2Ek′
εα,λk εβ,λ

′

k′ e−ik
′·x′eik·x

〈
0
∣∣∣ak′,λ′a†k,λ∣∣∣ 0〉

= θ(t− t′)
∑
k

1

2EkV
εα,λk εβ,λk e−ik·(x−x

′) + θ(t′ − t)
∑
k

1

2EkV
εα,λk εβ,λk eik·(x−x

′)

→
∫

d4k

(2π)4

i

k2 −m2
v + iδ

(
−gαβ +

kαkβ

m2
v

)
(6.87)

So the propagator in momentum space is

iG =
i

k2 −m2
v + iδ

(
−gαβ +

kαkβ

m2
v

)
(6.88)

Similarly we can compute the potential from the exchange of vector bosons. As we know from
Table 6.4 that ρ and ω are vector mesons. We take the ω meson as an example, which is an isospin
singlet. The interaction term is gvψγµψφ

µ
v (vector coupling) with vertex iΓµ = igvγµ. The T-matrix

is

i 〈p′, h′1, h′2|T |p, h1, h2〉 = −uN (−p′, h′2)iΓαuN (−p, h2)

i
(
−gαβ + qαqβ/m2

v

)
q2 −m2

v

uN (p′, h′1)iΓβuN (p, h1)

=
ig2
v

(
−gαβ + qαqβ/m2

v

)
q2 −m2

v

uN (−p′, h′2)γαuN (−p, h2)uN (p′, h′1)γβuN (p, h1) (6.89)

We can simplify

uN (p′, h′1)γ0uN (p, h1) = 〈χ(1′)| ( 1 σ·p′
2mN

)

(
1

σ·p
2mN

)
|χ(1)〉

= 〈χ(1′)| [1 +
(σ · p′)(σ · p)

4m2
N

] |χ(1)〉 ,

uN (p′, h′1)γuN (p, h1) = 〈χ(1′)| (σ · p
′)σ

2mN
+
σ(σ · p)

2mN
|χ(1)〉 (6.90)
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The two terms are

I1 = uN (−p′, h′2)γαuN (−p, h2)uN (p′, h′1)γαuN (p, h1)

= uN (−p′, h′2)γ0uN (−p, h2)uN (p′, h′1)γ0uN (p, h1)

−uN (−p′, h′2)γiuN (−p, h2)uN (p′, h′1)γiuN (p, h1)

= 〈χ(2′)| [1 +
(σ · p′)(σ · p)

4m2
N

] |χ(2)〉 〈χ(1′)| [1 +
(σ · p′)(σ · p)

4m2
N

] |χ(1)〉

+
1

4m2
N

〈χ(2′)| [(σ · p′)σi + σi(σ · p)] |χ(2)〉 〈χ(1′)| [(σ · p′)σi + σi(σ · p)] |χ(1)〉

and

I2 = uN (−p′, h′2)(q0γ0 − q · γ)uN (−p, h2)uN (p′, h′1)(q0γ0 − q · γ)uN (p, h1)

= uN (−p′, h′2)(q · γ)uN (−p, h2)uN (p′, h′1)(q · γ)uN (p, h1)

= − 1

4m2
N

〈χ(2′)| [(σ · p′)(σ · q) + (σ · q)(σ · p)] |χ(2)〉

× 〈χ(1′)| [(σ · p′)(σ · q) + (σ · q)(σ · p)] |χ(1)〉 (6.91)

where we have set q0 ≈ 0. The potential from vector meson exchange is

Vω(q) =
g2
v

q2 +m2
v

{[
1 +

(σ1 · p′)(σ1 · p)

4m2
N

] [
1 +

(σ2 · p′)(σ2 · p)

4m2
N

]
+

1

4m2
N

[(σ1 · p′)(σ2 · p′)(σ1 · σ2) + (σ1 · p′)(σ1 · σ2)(σ2 · p)

+(σ2 · p′)(σ1 · σ2)(σ1 · p) + (σ1 · σ2)(σ1 · p)(σ2 · p)]

− 1

4m2
N

[(σ1 · p′)(σ1 · q)(σ2 · p′)(σ2 · q) + (σ1 · q)(σ1 · p)(σ2 · p′)(σ2 · q)

+(σ1 · p′)(σ1 · q)(σ2 · q)(σ2 · p) + (σ1 · q)(σ1 · p)(σ2 · q)(σ2 · p)]} (6.92)

If we make non-relativistic approximation, |p|, |p′|, |q| � mN , the potential becomes

Vω(q) ≈ g2
v

q2 +m2
v

→ Vω(r) ≈ g2
v

4πr
e−mvr (6.93)

We can see that the potential resulting from vector boson exchange is repulsive.

Exercise 50. Try to derive Eq. (6.60) from Eq. (6.58). Try to extract the
spin/isospin/space exchange potential in one pion exchange potential in Eq. (6.60).



Chapter 7

The structure of hadrons

7.1 Symmetries and Groups

Group theory is the branch of mathematics to deal with symmetry. We take the rotation group
as an illustrative example. The set of rotations of a system form a group, each rotation being an
element of the group. Let R1 and R2 be two successive rotations, then R2R1 are equivalent to a single
rotation, another group element. The set of rotations is closed under multiplcation. There is identity
element corresponding to no rotation, and any rotation has an inverse, a back rotation. The product
is not necessarily commutative, R2R1 6= R1R2, but the associate law R3(R2R1) = (R3R2)R1 always
holds. The rotation group is a Lie group, where every rotation can be expressed as the product of
a succession of in�nitesimal rotations. The group is then completely de�ned by the neighborhood of
the identity.

The experimental results do not depend on the speci�c lab orientation of the system being mea-
sured. Rotation must form a symmetry group of a system. They are a subset of the Lorentz trans-
formations. By de�nition, the physics is unchanged by a symmetry operation. In particular these
operations leave the transition probabilities of the system invariant.

Suppose the states of a system under a rotation R transform as

|ψ′〉 = U |ψ〉 (7.1)

The probability is unchanged

|〈φ|ψ〉|2 = |〈φ′|ψ′〉|2 =
∣∣〈φ ∣∣U†U ∣∣ψ〉∣∣2 (7.2)

so U must be a unitary operator. The operators U(R) form a group with the same structure as the
original group R, they form a unitary representation of the rotation group.

Moreover the Hamiltonian is invariant under the rotation of the system, then we have

〈φ′ |H|ψ′〉 =
〈
φ
∣∣U†HU ∣∣ψ〉 = 〈φ |H|ψ〉 (7.3)

so we get [H,U ] = 0, i.e. U is a constant of motion.
Now let us �nd the generators of U from in�nitesimal rotations in the neighborhood of identity.

Under the in�nitesimal rotation R along the z-axis, the wave function transforms as

ψ′(r) = ψ(R−1r) = Uψ

= ψ(x+ εy, y − εx, z)

= ψ(x, y, z) + ε(y
∂ψ

∂x
− x∂ψ

∂y
)

= [1− iε(xpy − ypx)]ψ (7.4)

160
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where ε is a small rotational angle. Then the transformation matrix U becomes

U = 1− iεJ3 (7.5)

with J3 the angular momentum operator along the z-axis. A �nite rotation can be built up from
exponentiation,

U(θ) = [U(ε)]n = (1− i θ
n
J3)n → e−iθJ3 (7.6)

The general form of the matrix along a rotational axis is

U(θ) = e−iθ·J (7.7)

The commutators of generators are

[Ji, Jj ] = iεijkJk (7.8)

A �nite group is one which contains only a �nite number of elements. Two examples are spatial
re�ection

P : r→ −r

and particle-antiparticle transformation or charge conjugation

C : A→ A

where A denotes a particle and A denotes its anti-particle. There are two elements in these groups:
the identity e and an element g with g2 = e, where g denotes the operation P or C. Invariance of the
physics under g means that g is represented by a unitary (or anti-unitary) operator U(g) satisfying

[U(g), H] = 0 (7.9)

where U(g) is a representation for the group. Time-reversal invariance is the only symmetry requiring
an antiunitary operator. Here we take U to be unitary, i.e. U†U = 1, to represnet spatial re�ection
or charge conjugation. For our two-element group, we have

U2 = 1 (7.10)

Since U−1 = U†, so U = U†, i.e. U is hermitian. Thus U itself is an observable conserved quantity,
and its eigenvalues are conserved quantum number. If p is an eigenvaule of U corresponding to the
eigenstate |p〉, i.e. U |p〉 = p |p〉, then we have

U2 |p〉 = p2 |p〉 (7.11)

leading to p = ±1. Invariance of the system under the symmetry operation g means that if the system
is in eigenstate of U , the transition can only occur to eigenstates with the same eigenvalue. The
eigenvalues of U are multiplicative quantum numbers. By contrast, the eigenvalues of the commuting
generators of SU(n) are additive quantum numbers.

The spatial re�ection operation de�nes the parity property of a particle or a system, while the
charge conjugation de�nes the C-parity.

Under the spatial re�ection operation, the wave function changes as

P : ψ(t, r)→ ψ(t,−r)

ψ(t, r, θ, φ)→ ψ(t, t, r, π − θ, π + φ) (7.12)

The eigenvalues of the parity are ±1 corresponding to the even/odd parity, i.e. U(P )ψ(t, r) =
±ψ(t,−r). In central force potential the spatial wave-function can be written as

ψ(t, r, θ, φ) = Rn(r)Pml (cos θ)eimφ (7.13)
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Then under the transformation θ → π − θ, φ→ π + φ, the wave function becomes

ψ(t, r, π − θ, π + φ) = Rn(r)Pml (− cos θ)eim(π+φ)

= Rn(r)(−1)l+mPml (cos θ)(−1)meimφ

= (−1)lψ(t, r, θ, φ) (7.14)

So we see that the parity for a wave function in the central force potential is (−1)l. We know that
if the parity operator commutes with the Hamiltonian, the energy eigenstate has a speci�c parity.
Then the parity of the state does not change with time. This is so-called the parity conservation. If
the Hamiltonian is not invariant under the parity transformation, the parity conservation does not
hold. For the strong and electromagnetic interaction, the parity is conserved, but it is violated in
the weak interaction. Particles can also have intrinsic parity if their intrinsic wave functions have
speci�c transformation property under the spatial re�ection. It turns out that the intrinsic parity
can only de�ned for neutral particles, those with vanishing additive quantum numbers. The parities
of non-neutral particles are not completely �xed. One can prove in �eld theory that the parity of a
fermion is opposite in sign to its anti-fermion, and the parity of a boson is the same as that of its
anti-boson. The parity of photons is negative because the vector potential A for electromagnetic �eld
is an axial vector, i.e. P : A→ −A.

The charge conjugation transforms a particle to its anti-particle. All additive quantum numbers,
e.g. the charge, lepton number, baryon number, strange number etc., change their signs. The space-
time, momentum and angular momentum do not change. Suppose a state |A〉 is transformed into its
charge conjugate state

∣∣A〉,
U(C) |A〉 = ηA

∣∣A〉 (7.15)

where ηA is a phase factor, ηAη
∗
A = 1. We can transform the state twice,

U2(C) |A〉 = ηAηA |A〉 = |A〉 (7.16)

which requires ηAηA = 1, then we get ηA = η∗A, i.e. the phase factor of a conjugate state is the
complex conjugate of the factor of the state. According to the de�nition for the charge conjugation,
Eq. (7.15), a charge neutral state is the eigenstate of U(C). A neutral state is denoted by |n〉, then
we have

U(C) |n〉 = ηn |n〉 (7.17)

where ηn = ±1 is called the C-parity of the state. The C-parity is a multiplicative quantum number.
Let us look at the C-parity of the photon. For photons, the charge conjugation changes the sign of
the electric and magnetic �elds. Thus the photon �elds transform as

C : Aµ = (φ,A)→ (−φ,−A) = −Aµ (7.18)

So the C-parity of photons is −1.
For a neutral particle system composed of a particle and its anti-particle, the C-parity is given by

ηC = (−1)l+s. If we treat the system as consisting of identical particles by regarding the anti-particle
as the particle with di�erent addtitive quantum numbers, the general Pauli principle is applicable.
Then interchanging particle labels 1 ↔ 2 leads to the sign ± for the bosonic and fermionic system
respectively,

|1, 2〉 = (−1)l(−1)s−s1−s2ηC |2, 1〉 = ± |2, 1〉 (7.19)

where (−1)l and (−1)s−s1−s2 come from the angular momentum and spin sector respectively. ηC is
the C-parity of the system. We get

ηC = (−1)l+s (7.20)

for both the bosonic and fermionic system.
The Strong and electromagnetic interactions are invariant under both the parity and charge con-

jugate transformation. The weak interactions do not respect these symmetries. However, to a good
approximation, weak interactions are invariant under the product transformation CP .
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7.1.1 The group SU(2)

We have discussed that the rotational symmetry is connected the angular momentum. In this sub-
section we will introduce the group related to the rotational symmetry.

The lowest-dimension nontrivial representation of the rotation group (j = 1/2) has generators,

Ji =
1

2
σi, i = 1, 2, 3 (7.21)

where the Pauli matrices are

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (7.22)

The basis for this representation is conventionally chosen to be the eigenvectors of σ3,∣∣∣∣12 , 1

2

〉
=

(
1
0

)
=↑,

∣∣∣∣12 ,−1

2

〉
=

(
0
1

)
=↓ (7.23)

The SU(2) transformation matrices are

U(θi) = e−iθiσi (7.24)

One can check,
U(θi)U

†(θi) = 1, det(U(θi)) = e−iθiTr(σi) = 1 (7.25)

There are 1, 2, 3, · · · dimenional representation of SU(2) corresponding to j = 0, 1
2 , 1,

3
2 , · · · , respec-

tively. The two dimensional representation is called the fundamental representation of SU(2).
The combined angular momentum operators J = JA + JB also satisfy algebra (7.8). The Casimir

operators J2, J2
A and J2

B have eigenvalues J(J + 1), JA(JA + 1) and JB(JB + 1). The product of the
two irreducible representations of dimension 2JA + 1 and 2JB + 1 may be decomposed into the sum
of irreducible representations of dimensions 2J + 1 with

J = |JA − JB |, |JA − JB |+ 1, · · · , JA + JB (7.26)

with basis |JM〉, where M = mA +mB . One basis can be expressed in terms of the other by,

|JM〉 =
∑

mA,mB

C(mAmB ; JM) |JAmA, JBmB〉 (7.27)

where the coe�cients C are called Clebsch-Gordan coe�cients. These coe�cients are readily calcu-
lated by repeatedly applying the step-down operator J− = JA− + JB− to the fully stretched state
|J,M = J〉 = |JA,MA = JA; JB ,MB = JB〉 and using orthogonality.

We can denote the doublet [2] as∣∣∣∣12 , 1

2

〉
=

(
1
0

)
= |↑〉 ,

∣∣∣∣12 ,−1

2

〉
=

(
0
1

)
= |↓〉 (7.28)

We may write the system with two spin-1/2 particles may have spin 1 and 0 as

[2]⊗ [2] = [3]⊕ [1] (7.29)

Combining the third spin-1/2 particle, we have

([2]⊗ [2])⊗ [2] = ([3]⊗ [2])⊕ ([1]⊗ [2]) = [4]⊕ [2]MS ⊕ [2]MA (7.30)

where 'MS' and 'MA' mean mixed symmetric and mixed anti-symmetric. Normally the 4-plet com-
pletely symmetric and is expressed as

1√
3

(↑↑↓ + ↑↓↑ + ↓↑↑) (7.31)
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Figure 7.1: Clebsch-Gordan coe�cients, from Particle Data Group, http://pdg.lbl.gov.
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∣∣∣∣32 , 3

2

〉
= ↑↑↑∣∣∣∣32 , 1

2

〉
=

√
1

3
|1, 1〉

∣∣∣∣12 ,−1

2

〉
+

√
2

3
|1, 0〉

∣∣∣∣12 , 1

2

〉
=

√
1

3
↑↑↓ +

√
2

3

√
1

2
(↑↓ + ↓↑) ↑

=

√
1

3
(↑↑↓ + ↑↓↑ + ↓↑↑)∣∣∣∣32 ,−1

2

〉
=

√
2

3
|1, 0〉

∣∣∣∣12 ,−1

2

〉
+

√
1

3
|1,−1〉

∣∣∣∣12 , 1

2

〉
=

√
2

3

√
1

2
(↑↓ + ↓↑) ↓ +

√
1

3
↓↓↑

=

√
1

3
(↑↓↓ + ↓↑↓ + ↓↓↑)∣∣∣∣32 ,−3

2

〉
= ↓↓↓ (7.32)

The 2-plet from [1]⊗ [2] is expressed as∣∣∣∣12 , 1

2

〉
MA

=

√
1

2
(↑↓ − ↓↑) ↑∣∣∣∣12 ,−1

2

〉
MA

=

√
1

2
(↑↓ − ↓↑) ↓ (7.33)

The 2-plet from [3]⊗ [2] = [4]⊕ [2] is expressed as∣∣∣∣12 , 1

2

〉
MS

= −
√

2

3
|1, 1〉

∣∣∣∣12 ,−1

2

〉
+

√
1

3
|1, 0〉

∣∣∣∣12 , 1

2

〉
= −

√
2

3
↑↑↓ +

√
1

3

√
1

2
(↑↓ + ↓↑) ↑

=

√
1

6
[(↑↓↑ + ↓↑↑)− 2 ↑↑↓]∣∣∣∣12 ,−1

2

〉
MS

=

√
1

3
|1, 0〉

∣∣∣∣12 ,−1

2

〉
−
√

2

3
|1,−1〉

∣∣∣∣12 , 1

2

〉
=

√
1

3

√
1

2
(↑↓ + ↓↑) ↓ −

√
2

3
↓↓↑

=

√
1

6
[(↑↓↓ + ↓↑↓)− 2 ↓↓↑] (7.34)

7.1.2 SU(2) isospin, fundamental representation

Isospin arises because the nucleon may be viewed as having an internal degree of freedom with two
allowed states, the proton and neutron, which the nuclear interaction does not distinguish. We
therefore have an SU(2) symmetry in which the (p, n) form the fundamental representation.

p =

(
1
0

)
, n =

(
0
1

)
(7.35)
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Figure 7.2: Basic facts about proton and neutron. http://pdg.lbl.gov

7.1.3 Conjugate representation of SU(2)

Pronton and neutron are up and down state in the fundamental representation of SU(2). We can
label antiparticle doublet (n, p), which has I3 = (1/2,−1/2) just like (p, n). This new representation
is known as the conjugate representation. Use the following notation,

[2] = (p, n) , [2∗] = (n, p) (7.36)

Here is the transformation for φ =

(
p
n

)
,

φ′ = exp(iθn · σ)φ = (cos θ + in · σ sin θ)φ (7.37)

Acting charge conjugation (complex conjugate) to the above equation, we have

φ
′

= exp(−iθn · σ∗)φ = exp(iθσ2n · σσ2)φ

= σ2 exp(iθn · σ)σ2φ (7.38)

where φ =

(
p
n

)
and we have used σ∗i = −σ2σiσ2. We can rewrite Eq. (7.38) as

σ2φ
′

= exp(iθn · σ)σ2φ

De�ning φ̃ =

(
−n
p

)
= −iσ2φ, the above can be written as

φ̃′ = exp(iθn · σ)φ̃ (7.39)

the same transformation form as φ.
For a rotation about the 2-axis, we have(

p′

n′

)
=

(
cos θ sin θ
− sin θ cos θ

)(
p
n

)
(7.40)

Now make charge conjugation on both side of the above equation, p→ p and n→ n, we get(
n′

p′

)
=

(
cos θ − sin θ
sin θ cos θ

)(
n
p

)
(7.41)
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Figure 7.3: SU(3) triplet with I, U, V doublets.

Y−supercharge

isospin−3

I−spin

V−spin
U−spin

De�ne the conjugate doublet as φ̃ =

(
−n
p

)
, so that the transformation matrix is the same as that

for φ,

φ̃′ =

(
cos θ sin θ
− sin θ cos θ

)
φ̃ (7.42)

In general SU(N) there are basic representation N and N∗. In SU(2) we �nd 2 = 2∗. For
N = 3, 4, ..., N and N∗ are not equivalent.

Exercise 51. Pions π±,0 are composed of (u, d) and (u, d) which obey SU(2) fundamental
representation. Pions are �avor triplet of SU(2). Write down the �avor wave functions of
pions.

7.1.4 SU(3) symmetry

The extension from SU(2) to SU(3) is straightforward if we add a thrid component to a doublet to
form a triplet in fundamental representation,

φ =

 u
d
s

 (7.43)

The transformation is
φ′ = Uφ (7.44)

where U is now a 3× 3 unitary unimodular matrix,

U = exp

(
1

2
iθiλi

)
(7.45)
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where λi are eight independent Hermitian traceless 3× 3 matrices analogous to the σi of SU(2). We
can choose the form given by Gell-Mann,

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 , λ3 =

 1 0 0
0 −1 0
0 0 0

 ,

λ4 =

 0 0 1
0 0 0
1 0 0

 , λ5 =

 0 0 −i
0 0 0
i 0 0

 ,

λ6 =

 0 0 0
0 0 1
0 1 0

 , λ7 =

 0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 (7.46)

Normally we use Ti = 1
2λi. The SU(2) is subgroup of SU(3). The λ1,2 have the structure of SU(2)

in 12-block which is isospin subgroup. The λ6,7 have the same structure in 23-block which is called
U-spin. λ4,5 is related to V-spin. See �gures for their relation. The SU(2) doublets are

u, d(I) d, s(U) u, s(V ) (7.47)

We can de�ne ladder operators from Ti for isospin, U-spin and V-spin,

I± = T1 ± iT2 =

 0 1(0) 0
0(1) 0 0

0 0 0


U± = T6 ± iT7 =

 0 0 0
0 0 1(0)
0 0(1) 0


V± = T4 ± iT5 =

 0 0 1(0)
0 0 0

0(1) 0 0

 (7.48)

They satisfy

[I+, I−] = 2I3 = diag(1,−1, 0)

[U+, U−] =
3

2
Y − I3 = 2U3 = diag(0, 1,−1)

[V+, V−] =
3

2
Y + I3 = 2V3 = diag(1, 0,−1) (7.49)

where I3 = T3 = 1
2λ3 is the isospin operator since acting on u, d, s it has eigenvalues ± 1

2 , 0 respectively.
The hypercharge operator is

Y =
2√
3
T8 =

1√
3
λ8 (7.50)

The Gell-Mann matrices satisfy the Lie algebra,

[Ti, Tj ] = ifijkTk (7.51)

with the anti-symmetric structure constants fijk given in Tab. 7.1. Also we have anti-commutator

{Ti, Tj} =
1

3
δij + dijkTk (7.52)

where symmetric structure constants dijk are given in Tab. 7.1.
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Table 7.1: Structure constants of SU(3).

f123 = 1
f147 = f246 = f257 = f345 = f516 = f637 = 1/2

f458 = f678 =
√

3/2

d118 = d228 = d338 = −d888 = 1/
√

3
d146 = d157 = d256 = d344 = d355 = 1/2

d247 = d366 = d377 = −1/2

d448 = d558 = d668 = d778 = −1/(2
√

3)

We can generalise these results by de�ning N × N matrices Ti which satisfy Eq. (7.51) and
transform N-dimensional states by

φ→ φ′ = (1 + iθiTi)φ (7.53)

These states form N-dimensional multiplets of SU(3).
A SU(3) irreducible representation can be drawn in the I3 − Y diagram. We know that the

eigenvalues of I3 are 0,± 1
2 ,±1,± 3

2 , · · · , so are U3 and V3. From Y = 2
3 (U3 + V3), the eigenvalues of

hypercharge are 0,± 1
3 ,± 2

3 ,±1,± 4
3 , · · · . Then the basis vectors locate on the grid points with spacing

( 1
2 ,

1
3 ) for I3 and Y , see Fig. 7.4. The function of T± is to change I3 by ±1 while keeping Y �xed.

The operator U± is to change (I3, Y ) by (∓ 1
2 ,±1), while V± is to change (I3, Y ) by (± 1

2 ,±1). There
are three kinds of irreducible representation: (1) There is one point on (0, 0); (2) There is one point
on (0, 2

3 ); (3) There is one point on (0,− 2
3 ). As an example, the weight diagram for the irreducible

representation (p, q) = (4, 1) is shown in Fig. 7.6 and 7.5. Any SU(3) representation has a convex
boundary in I3 − Y space. The maximum state φmax can be de�ned by

I+φmax = U+φmax = V+φmax = 0 (7.54)

Let I3(φmax) = p/2 and U3(φmax) = q/2, we obtain for φmax

(I3, Y ) =

(
p

2
,
p+ 2q

3

)
(7.55)

The maximum state φmax can also be de�ned in an alternative way,

I+φmax = U−φmax = V+φmax = 0 (7.56)

Then (I3z, Y ) for φmax is obtained by acting (U−)q on φmax given in Eq. (7.55), changing (I3, Y ) by
(q/2,−q),

(I3, Y ) =

(
p+ q

2
,
p− q

3

)
(7.57)

Here we choose this φmax, see Fig. 7.6. We see that the maximum state φmax can be characterized by
a pair of numbers (p, q). The SU(3) irreducible representation can be completely speci�ed by a pair of
number (p, q), so we denote it as D(p, q), see Tab. (7.2). The maximum state is composed of p-quarks
and q-antiquarks. We will see in the next section that the irreducible representation notation D(p, q)

corresponds to a irreducible tensor representation T
i1···ip
a1···aq . The irreducible representation (p, q) can

be classi�ed into three categories by,

c(p, q) = p+ 2q = (p− q) (mod 3) (7.58)

as: (1) c(p, q) = 0, C2 and C3 are integers, there is one point on (0, 0) in (I3, Y ) plot; (2) c(p, q) = ±1,
C2 and C3 are fractions, there is one point on (0,− 2

3 ) and ( 2
3 , 0) respectively. If c(p, q) = −c(q, p),

where c(q, p) is the c-number for its conjugate representation.
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Figure 7.4: (I3, Y ) �gure and U±,V± and I±.
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Figure 7.5: The irreducible representation (p, q) = (4, 1). The weight of the states in the outer layer
is 1, while that of the states surrounded by circles in the inner layers is 2.

Y−supercharge

isospin−3

q*unit

q*unit

p*unit

p*unit



CHAPTER 7. THE STRUCTURE OF HADRONS 171

Figure 7.6: The maximum state φmax given in Eq. (7.57) for the octet, triplet and anti-triplet.
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The irreducible representation D(p, q) can also be expressed by the Young tableaux as shown in
Fig. 7.7.

There are two Casimir operators, C2 and C3 in SU(3). The quadratic Casimir operator C2 is
de�ned by

C2 =
∑
i

T 2
i =

1

2
{I+, I−}+ I2

3 +
1

2
{U+, U−}+

1

2
{V+, V−}+ T 2

8 (7.59)

We can compute the magnitude of the Casimir operator for any SU(3) representation by acting with
C2 on the maximal state of that representation. We can rewrite C2 by moving I+, V+ and U− are to
the right side of any pair of operators

C2 =
1

2
{I+, I−}+ I2

3 +
1

2
{U+, U−}+

1

2
{V+, V−}+ T 2

8

= I−I+ + I3 + I2
3 + U+U− − U3 + V−V+ + V3 + T 2

8

= I2
3 + 2I3 + I−I+ + U+U− + V−V+ +

3

4
Y 2 (7.60)

So we get

〈φmax|C2|φmax〉 =
〈
I2
3

〉
+ 2 〈I3〉+

3

4
Y 2 (7.61)

Then C2 for D(p, q) becomes

C2 =
1

3
(p2 + pq + q2) + (p+ q) (7.62)

We see that C2 is symmetric with respect to exchanging p and q. The values of C2 for some repre-
sentations are listed in Tab. (7.2).

The cubic Casimir operator C3 is de�ned by

C3 = −ifi1j1j2ifi2j2j3ifi3j3j1Ti1Ti2Ti3 = −[Tj1 , Tj2 ][Tj2 , Tj3 ][Tj3 , Tj1 ] (7.63)

The eigenvalue of C3 for the representation (p, q) is given by

C3 = (p+ 2q)(p+ 2)− 1

9
(p− q)(2p2 + 5pq + 2q2) (7.64)
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Table 7.2: Irreducible representations for SU(3).

tensor rank dimension C2

T i (1,0) 3 4/3
Ta (0,1) 3 4/3
T ia (1,1) 8 3
T ij (2,0) 6 10/3
Tab (0,2) 6 10/3
T ijk (3,0) 10 6
Tabc (0,3) 10 6

T ijab (2,2) 27 8

We see that C3 assumes di�erent values for conjugate representation, i.e. it is not symmetric for p
and q.

The commutation rule for SU(N) generators is given by,

[Gi, Gj ] = ifijkGk, (7.65)

where i, j, k = 1, ...,M . The coe�cients fijk are the structure constants of SU(N). There always
exists a M-dimensional representation, the so-called regular representation or adjoint representation
de�ned by the structure constants,

(Gi)jk = −ifijk. (7.66)

One can prove that the above matrices in Eq. (7.66) satisfy the commutation rule (7.65) by using
the Jacobi's identity,

[[Gi, Gj ], Gk] + [[Gj , Gk], Gi] + [[Gk, Gi], Gj ] = 0 (7.67)

Exercise 52. Prove the Casimir operator C2 is commutable with all Gell-Mann matrices Ti
(i = 1, · · · , 8), [C2, Ti] = 0.

7.1.5 Tensor representation of SU(3)

See Ref. [16]. Corresponding to the (n,m) irreducible representation, we have a (n,m) tensor T i1···ina1···am
transforming under SU(3),

T i1···ina1···am → U i1j1 · · ·U
in
jn
U+b1
a1 · · ·U+bm

am T j1···jnb1···bm (7.68)

There are three special tensors.
(1) δij is a (1,1) tensor.

δij → U ii1U
+j1
j δi1j1 = (UU+)ij = δij (7.69)

(2) εijk is a (3,0) tensor. εijk is a (0,3) tensor.

εijk → U ii1U
j
j1
Ukk1ε

i1j1k1 = εijkdetU = εijk (7.70)
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Using δij , ε
ijk and εijk, we can form di�erent tensors from T i1···ina1···am ,

Ai2···ina2···am = δi1a1T
i1···in
a1···am ,

Bi3···inba1···am = εbi1i2T
i1i2i3···in
a1···am ,

Cbi1···ina3···am = εba1a2T i1···ina1a2a3···am , (7.71)

where A, B and C are (n− 1,m− 1), (n− 2,m + 1) and (n + 1,m− 2) tensors respectively if they
are not zero. We say that T i1···ina1···am is reducible.

A irreducible (n,m) tensor T i1···ina1···am has following properties: (1) Symmetric under interchange of
any two subscript and superscript indices; (2) Contraction of any one superscript and one subscript
indices gives zero.

An irreducible (n,m) tensor T i1···ina1···am form a basis for the irreducible representation of SU(3). The
dimension of the representation is given by

d = (1 + n)(1 +m)[1 + (n+m)/2]. (7.72)

Now we give a proof. We �rst focus on the upper indices. Due to the symmetry, the order of the
indices is irrelevant. Suppose we put the indices in such an order: ones, twos and threes. If there are
j ones, and then (n − j) twos and threes. There are (n − j + 1) combinations in this case. In total
the number of di�erent components is then

n∑
j=0

(n− j + 1) =
1

2
(n+ 1)(n+ 2) (7.73)

Similarly for lower indices there are 1
2 (m+ 1)(m+ 2) linearly independent components. So a (n,m)

tensor has 1
4 (m + 1)(m + 2)(n + 1)(n + 2) independent components. The trace of the tensor is a

(n− 1,m− 1). The traceless requirement leads to 1
4m(m+ 1)n(n+ 1) conditions. The dimension of

the irreducible representation is then

d =
1

4
(m+ 1)(m+ 2)(n+ 1)(n+ 2)− 1

4
m(m+ 1)n(n+ 1)

=
1

2
(m+ 1)(n+ 1)(m+ n+ 2) (7.74)

Suppose Aij andB
i
j are two irreducible (1,1) tensors (octet), so they are traceless. We can construct

a (2,2) tensor T ijab = AiaB
j
b which can be reduced to tensors in Tab. (7.3). For example the 27-plet is

T ijab = AiaB
j
b +AibB

j
a +AjaB

i
b +AjbB

i
a − δia(AcbB

j
c +AjcB

c
b)− δja(AicB

c
b +AcbB

i
c)

−δib(AcaBjc +AjcB
c
a)− δjb(AicBca +AcaB

i
c) (7.75)

Exercise 53. Consider the tensor decomposition of D(2, 0)⊗D(0, 2).

7.1.6 Reduction of direct product of irreducible representations in SU(3)

There are many ways to reduce the direct product of two irreducible representations. Here we take
Young tableaux method as an example. As we have learned that an IR representation D(p, q) can be
represented by a Young table with the �rst and second rows to have p+ q and q boxes, as shown in
Fig. 7.7. The dimension of the representation is given in Eq. (7.72). Consider the following reduction
D(3, 1)⊗D(1, 1). The procedure is (1) Fix the �rst one D(3, 1), label each box of D(1, 1) by its row
number; (2) Move each box from D(1, 1) to D(3, 1) one by one; (3) For the labelled boxes which are in
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Table 7.3: Irreducible tensor from T ijab = AiaB
j
b .

tensor rank dim
S = AiaB

a
i (0,0) 1

F ia = AijB
j
a −BijAja (1,1) 8

Di
a = AijB

j
a +BijA

j
a − 2

3δ
i
jS (1,1) 8

AiaB
j
bε
abk+all permutations of (i,j,k) (3,0) 10

AiaB
j
bεijc+all permutations of (a,b,c) (0,3) 10

AiaB
j
b+symmetric term-(trace) (2,2) 27

the same row, the order of numbers from the left to the right should not decrease (equal or increase);
(4) For the labelled boxes which are in the same column, the numbers should be all di�erent, and
should increase from up to down; (5) Counting labelled boxes from up-right to down-left, the number
of boxes labelled by 1 should be no less than that labelled by 2 in each step of the counting. (6)
Delete any column with 3 or more boxes.

The result of the reduction is then,

D(3, 1)⊗D(1, 1) = D(4, 2)⊕D(5, 0)⊕D(2, 3)⊕D(3, 1)⊕D(3, 1)⊕D(2, 0) (7.76)

The dimension of an IR representation D(p, q) can also be computed by using the Young tableaux.
The dimension is gven by d1/d2 where d1 and d2 are products of two series of numbers �lled in each
box of the Young tableaux. The rule of the �lling for d1 is: (1) �ll one number in each box; (2)
�ll 3 [for SU(3)] in the upper-left box; (3) the number increases by 1 when moving to the right and
decreases by 1 when moving to down. The rule for d2 is: �ll one number in each box, which is the
number of boxes counting from this box to its right end plus that to its lower end and minus 1. For
example, we can compute the dimension of D(1, 1) = 8 according to this rule, see Fig. 7.8.

Exercise 54. Consider the decomposition of D(3, 2)⊗D(2, 1) in Young tableaux.

7.1.7 Quarks as building blocks for hadrons

According to the quark model, all hadrons are made up of a small variety of more basic entities, called
quarks, bound together in di�erent ways. The fundamental representation of SU(3), the multiplet
from which all other multiplets can be built, is a triplet. There are also anti-quark multiplets in
which the signs of additive quantum numbers are reversed. Each quark is assigned spin 1/2 and
baryon number B = 1/3. See Fig. (7.6). Baryons are made of three quarks (qqq) and mesons of
quark-anti-quark (qq). A new additive quantum number is called the hypercharge, i.e. the sum of
the baryon number and the strangeness number,

Y = B + S (7.77)

The charge, Qe, is given by the Gell-mann-Nishijima relation,

Q = I3 +
Y

2
(7.78)

The quantum number of the quarks are listed in Tab. (7.4).
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Figure 7.7: Young tableaux and reduction of the direct product.
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Figure 7.8: The dimension of D(3, 1).
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Table 7.4: Quantum numbers of the quarks.

quark spin B Q I3 S Y
u 1/2 1/3 2/3 1/2 0 1/3
d 1/2 1/3 -1/3 -1/2 0 1/3
s 1/2 1/3 -1/3 0 -1 -2/3
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7.1.8 Mesons as quark-anti-quark states

In the quark model, mesons are bound states made of a quark and an anti-quark. Consider two �avor
case, q = (u, d), q = (−d, u), the mesons are in isotriplet and isosinglet, i.e. [2] ⊗ [2] = [3] ⊕ 1 in
SU(2),

|I = 1, I3 = 1〉 = −ud

|I = 1, I3 = 0〉 =
1√
2

(uu− dd)

|I = 1, I3 = −1〉 = du

|I = 0, I3 = 0〉 =
1√
2

(uu+ dd) (7.79)

They are pions: π+ = ud (we neglect the minus sign), π− = du and π0 = 1√
2
(uu− dd). The masses

of pion are about: 140 MeV (π±) and 135 MeV (π0). The spin, parity and C-parity of pions are
JPC = 0−+. The isospin scalar 1√

2
(uu+ dd) will be mixed with other I3 = Y = 0 states.

For three �avor case, q = (u, d, s), q = (u, d, s), there are nine possible combinations. See Fig.
(7.9) for resulting meson nonet. The nine states divide into an SU(3) octet and an SU(3) singlet.
The decomposition can be written as

[3]⊗ [3∗] = [8]⊕ [1]

D(1, 0)⊗D(0, 1) = D(1, 1)⊕D(0, 0) (7.80)

Three states, A, B and C, have I3 = Y = 0. These are linear combinations of uu, dd, and ss states.
The singlet combination, C, must contain each quark �avor on an equal footing, so we have

C =
1√
3

(uu+ dd+ ss) (7.81)

State A is taken to be a member of the isospin triplet (du,A,−ud) and so we have

A =
1√
2

(uu− dd) (7.82)

By orthogonality to A and C, we can �nd B,

B =
1√
6

(uu+ dd− 2ss) (7.83)

We often use the notation (SU(3),SU(2)),

A = π0, ρ0([8], [3])

B = η8, ω8([8], [1])

C = η1, ω1([1], [1]) (7.84)

The physical η and η′ or ω and φ are mixtures of η1,8 and ω1,8 respectively. The η and η′ are almost
octet and singlet respectively,

η ≈ η8 =
1√
6

(uu+ dd− 2ss),

η′ ≈ η1 =
1√
3

(uu+ dd+ ss).
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Here are their masses and spin-parities: η(548) and η′(958), JPC = 0−+. The physical ω and φ
appear to be ideal mixture:

φ =
1√
3
ω1 −

√
2

3
ω8 = ss

ω =

√
2

3
ω1 +

1√
3
ω8 =

1√
2

(uu+ dd) (7.85)

Their masses and spin-parities are φ(1020), ω(1420), JPC = 1−−.
Octet mesons can be expressed by

[8] → M = qaqb −
1

3
δab q

cqc (7.86)

where qi is the quark �eld and qi is its Hermite conjugation (antiquark). Under the SU(3) transfor-
mation q → Uq, the meson tensor transforms as

M → UMU+ (7.87)

Matrix form

M =


π0
√

2
+ η8√

6
π+ K+

π− − π0
√

2
+ η8√

6
K0

K− K
0 − 2√

6
η8

 =
1√
2
ξaλa (7.88)

where

π± =
1√
2

(ξ1 ∓ iξ2), π0 = ξ3

K± =
1√
2

(ξ4 ∓ iξ5), K0/K
0

=
1√
2

(ξ6 ∓ iξ7)

η8 = ξ8 (7.89)

The singlet can be written as

[1] → S =
1

3
δab q

cqc =
η1√

3

 1 0 0
0 1 0
0 0 1

 (7.90)

One can verify

M + S =


π0
√

2
+ η8√

6
+ η1√

3
π+ K+

π− − π0
√

2
+ η8√

6
+ η1√

3
K0

K− K
0 − 2√

6
η8 + η1√

3


=

 u
d
s

 (u, d, s) =

 uu ud us

du dd ds

su sd ss

 (7.91)

Here are masses and spin-parity for kaons: K±(494), K0(498) and K
0
(498), JP = 0−.

Like any quantum-mechanical bound system, the qq pair will have a discretre energy level spectrum
corresponding to the di�erent modes of qq excitations. The intrinsic spin of qq is S = 0, 1. The spin
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Figure 7.9: Meson nonet as qq bound states. A,B,C are states with Y = I3 = 0 composed of
uu, dd, ss.

C

ud

dsbar usbar

dubar

subar sdbar

udbar

s

A

B

Table 7.5: Some examples of JP (spin-parity) about meson multiplets (nonets). We have used
abbreviation �S�=scalar,�PS�=pseudoscalar, �V�=vector, �AV�=axial vector, �T�=tensor, �AT�=axial
tensor.

multiplets S PS V AV T AT
JP 0+ 0− 1− 1+ 2+ 2−

J of the composite meson is the vector sum of this spin and the relative orbital angular momentum
L of the q and q. The parity of the meson is,

P = (−1)L+1 (7.92)

where the minus sign arises because the q and q have opposite intrinsic parity, and (−1)L arises from
the space inversion replacements θ → π − θ, φ → π + φ in the angular part of the qq wavefunction
YLM (θ, φ). A neutral qq system is an eigenstate of the particle-anti-particle conjugation operator
C. The value of C can be deduced by q ↔ q and then interchanging their positions and spins. The
combined operation gives

C = −(−1)S+1(−1)L = (−1)L+S (7.93)

where the minus sign arises from interchanging fermions, the (−1)S+1 from the symmetry of the qq
spin states, and the (−1)L from the angular momentum. Here S is the total intrinsic spin of the qq
pair. The total meson spin J is given by |L− S| < J < |L+ S|.

The C-parity is only de�ned for neutral particles or systems. Now we extend the C-partity by
introducing the G-partity which is not limited to neutral systems or particles. The ud state can be

Table 7.6: Some examples of JPC (spin-parity-C-parity) about ground state (L = 0) and �rst excited
(L = 1) mesons. We have used abbreviation �PS�=pseudoscalar, �V�=vector, �S�=scalar, �AV�=axial
vector, �T�=tensor.

multiplets PS (L = 0) V (L = 0) S (L = 1) AV (L = 1) T (L = 1)
JPC 0−+ 1−− 0++ 1++, 1+− 2++
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Figure 7.10: Pseudoscalar (JP = 0−) and vector mesons (JP = 1−).

dsbar usbar

dubar

subar sdbar

udbar

octet−triplet

octet−singletsinglet−singlet

pseudoscalar

dsbar1 usbar1

dubar1

subar1 sdbar1

udbar1

octet−triplet1

octet−singlet1singlet−singlet1

vector

either symmetric or anti-symmetric

φS =
1√
2

(ud+ du)

φA =
1√
2

(ud− du)

These states are distinguished by G-parity de�ned by

G = Ciτ2 = C

(
0 1
−1 0

)
where C is the charge conjugation operator. Let's see

G

(
u
d

)
= C

(
0 1
−1 0

)(
u
d

)
= C

(
d
−u

)
=

(
d
−u

)
G

(
d
−u

)
= G2

(
u
d

)
= −

(
u
d

)
so we have

GφS =
1√
2
G(ud+ du) = − 1√

2
(du+ ud) = −φS

GφA =
1√
2
G(ud− du) =

1√
2

(−du+ ud) = φA

We can see

π0 ∼ 1

2
[(uu− dd) + (uu− dd)] = φ0

S

ρ0 ∼ 1

2
[(uu− dd)− (uu− dd)] = φ0

A

This de�nition is consistent to the fact about the C-parity,

Cφ0
S = φ0

S , Cφ
0
A = −φ0

A
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Table 7.7: qq representations with explicit G-parity

K+(K+∗) 1√
2
(us± su)

K0(K0∗) 1√
2
(ds± sd)

K−(K−∗) 1√
2
(su± us)

K
0
(K

0∗
) − 1√

2
(sd± ds)

π+(ρ+) − 1√
2
(ud± du)

π−(ρ−) 1√
2
(du± ud)

π0(ρ0) 1
2 [(uu− dd)± (uu− dd)]

η0
8(ω0

8) 1
2
√

3
[(uu+ dd− 2ss)± (uu+ dd− 2ss)]

η0
1(ω0

1) 1√
6
[(uu+ dd+ ss)± (uu+ dd+ ss)]

Therefore 0− mesons (pseudoscalar) are the symmetric states with negative G-parity, while 1− mesons
(vector) are anti-symmetric states with positive G-parity.

Combining with spins, we have following possibilities for the symmetry property of SU(3)-SU(2)
wave function φχ under the interchange of 1 and 2,

symmetric : φSχS , φAχA

anti− symmetric : φSχA, φSχA

where χA denotes the spin single wave function and χS the triplet wave function. The 0− and 1−

mesons are totally anti-symmetric because the wave functions for neutral particles are

π0 ∼ φ0
SχA

ρ0 ∼ φ0
AχS

Hence the wave functions for the 0− mesons are φSχA while that for the 1− mesons are φAχS .

7.1.9 Baryons as three-quark states

A baryon is a bound state of three quarks. First we combine two quarks,

[3]⊗ [3] = [6]⊕ [3] (7.94)

Then the third one,

([3]⊗ [3])⊗ [3] = ([6]⊕ [3])⊗ [3] = [6]⊗ [3] + [3]⊗ [3]

= [10]⊕ [8]MS ⊕ [8]MA ⊕ [1] (7.95)

where 'MS' and 'MA' mean mixed symmetric and mixed anti-symmetric SU(3) multiplets. As an
example, we construct 'uud' whose combinations are denoted as ∆, pMS , and pMA. Combining the
non-strange member of the [3] with the u quark of the [3], we have

pMA =
1√
2

(ud− du)u (7.96)

Note that (ud − du) behaves like a s in SU(3)f . The decuplet states are totally symmetric under
interchange of quarks, as evidenced by the uuu, ddd, and sss members. The symmetric combination
of 'uud' is

∆ =
1√
3

[udu+ duu+ uud] (7.97)
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Requiring orthogonality of the remaining 'uud' state to both pMA and ∆ gives

pMS =
1√
6

[(ud+ du)u− 2uud] (7.98)

The states pMS and pMA have mixed symmetry, they are analogous to
∣∣ 1

2 ,± 1
2

〉
MA

in Eq. (7.33) and∣∣ 1
2 ,± 1

2

〉
MS

Eq. (7.34). The quark structure of other states can be readily obtained in a similar way
by using U or V spin. The singlet is (Problem: prove this)

(qqq)[1] =
1√
6

[u(ds− sd) + s(ud− du) + d(su− us)]

v
1√
6

[uu+ ss+ dd] (7.99)

The reduction of direct product of three spin-1/2 states is given in Eq. (7.30). The spin states
are displayed in Eq. (7.32)-(7.34). The two doublets have mixed symmetry that the spin states are
symmetric or anti-symmetric with interchange of two quarks. We can label states by (SU(3),SU(2)),

S : ([10], [4]) + ([8], [2])

MS : ([10], [2]) + ([8], [4]) + ([8], [2]) + ([1], [2])

MA : ([10], [2]) + ([8], [4]) + ([8], [2]) + ([1], [2])

A : ([1], [4]) + ([8], [2]) (7.100)

The ground state baryons �t into the JP = (3/2)+ decuplet and the JP = (1/2)+ octet. See Fig.
7.13. Their spatial wave functions are symmetric, belonging to the S wave (L = 0) in orbital agular
momentum. Their spin and �avor or SU(6) wavefunctions are totally symmetric. The total wave
functions for ground state baryons must be anti-symmetric. Then a new degree of freedom for quarks,
whose wave function is anti-symmetric, is needed for ground state baryons (and for all baryons). This
new degree of freedom is called the color. We will discuss it in Section 7.2. The decuplet and octet
ground state baryons belong to ([10], [4]) and ([8], [2]) respectively. For example, the wave function
of spin-up proton is∣∣∣∣p, Jz =

1

2

〉
=

1√
2

[
pMS

∣∣∣∣12 , 1

2

〉
MS

+ pMA

∣∣∣∣12 , 1

2

〉
MA

]
=

1√
18

{
1

2
(udu+ duu− 2uud)(↑↓↑ + ↓↑↑ −2 ↑↑↓)

+
3

2
(udu− duu)(↑↓↑ − ↓↑↑)

}
=

1√
18
{udu(2 ↑↓↑ − ↑↑↓ − ↓↑↑) + duu(2 ↓↑↑ − ↑↑↓ − ↑↓↑)

+ uud(2 ↑↑↓ − ↑↓↑ − ↓↑↑)} (7.101)

where spin wave functions
∣∣ 1

2 ,
1
2

〉
MA,MS

are given by Eq.(7.33,7.34).

A simple way to get the spin-�avor wave functions is to start from the simplest known wave
functions of certain baryons and to use the spin ladder operators. For example, staring from∣∣∣∣∆+, Jz =

3

2

〉
=

1√
3
P(|u ↑, u ↑, d ↑〉)

=
1√
3

(|u ↑, u ↑, d ↑〉+ |u ↑, d ↑, u ↑〉+ |d ↑, u ↑, u ↑〉) (7.102)
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where P(|u ↑, u ↑, d ↑〉) is to sum over all di�erent permutations, we can derive
∣∣∆+, Jz = 1

2

〉
by using

the spin ladder operator S− = s1− + s2− + s3−,∣∣∣∣∆+, Jz =
1

2

〉
= S−

∣∣∣∣∆+, Jz =
3

2

〉
=

1√
3

(s1− + s2− + s3−)(|u ↑, u ↑, d ↑〉+ |u ↑, d ↑, u ↑〉+ |d ↑, u ↑, u ↑〉)

=
1

2
√

3
{|u ↓, u ↑, d ↑〉+ |u ↓, d ↑, u ↑〉+ |d ↓, u ↑, u ↑〉

+ |u ↑, u ↓, d ↑〉+ |u ↑, d ↓, u ↑〉+ |d ↑, u ↓, u ↑〉
|u ↑, u ↑, d ↓〉+ |u ↑, d ↑, u ↓〉+ |d ↑, u ↑, u ↓〉}

→ 1

3
[P(|u ↓, u ↑, d ↑〉) + P(|u ↑, u ↓, d ↑〉) + P(|u ↑, u ↑, d ↓〉)] (7.103)

One can verify that the spin-up proton is the orthogonal state to
∣∣∆+, Jz = 1

2

〉
with the same values

of I3 and Sz.

Exercise 55. Write down the spin-�avor wave functions for the ground state decuplet (3/2)+

and octet (1/2)+ baryons, and show that they are totally symmetric under the interchange
of two quark labels. The decuplet (3/2)+ and octet (1/2)+ baryons are shown in the left and
right panel of Fig. 7.13 respectively.

Exercise 56. Starting from
∣∣Σ∗+, Jz = 3

2

〉
= |u ↑, u ↑, s ↑〉, �nd the spin-isospin function of∣∣Σ0, Jz = 1

2

〉
and

∣∣Λ, J = 1
2

〉
.

Exercise 57. For a non-relativistic particle with the charge Q and the mass m, its magnetic
moment is given by,

µ =
Q

2m
gs (7.104)

where g = 2 is the g-factor for elementary particles. We know that the magnetic moment of
a proton (neutron) is µp = 2.79µN (µn = −1.91µN ) with µN = e

2mp
the nuclear magneton,

which corresponds to gp = 5.6 (gn = −3.82). Since the neutron is a neutral particle, its
magnetic moment indicates that it is made of electrically charged particles: quarks. Show
the following relation with the wave functions of proton and neutron,〈

p, 1
2

∣∣µzp∣∣ p, 1
2

〉〈
n, 1

2 |µzn|n, 1
2

〉 = −3

2
(7.105)

where

µzp,n =
gq

2mq

3∑
i=1

Qisiz

where gq = 2, mq and Qi are the g-factor, mass and charges for quarks.
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Figure 7.11: The qq multiplet of SU(3). 3⊗ 3 = 6⊕ 3.
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Figure 7.12: The qqq multiplet of SU(3). 3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1.
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Figure 7.13: Ground state baryons, the decuplet [JP = (3/2)+] and octet [JP = (1/2)+].
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7.1.10 Gell-Mann-Okubo relations

Similarly as in Eq. (7.88), the �avor contents of the baryon and anti-baryon octets can also be written
as

B =


Σ0
√

2
+ Λ√

6
Σ+ p

Σ− −Σ0
√

2
+ Λ√

6
n

Ξ− Ξ0 − 2√
6
Λ



B =


Σ

0

√
2

+ Λ√
6

Σ
−

Ξ
−

Σ
+ −Σ

0

√
2

+ Λ√
6

Ξ
0

p n − 2√
6
Λ

 (7.106)

It can be proved that Bij can also be written in the form,

Bij ∼ qiqaqbεabj −
1

3
δijq

kqaqbεabk

The baryons and anti-baryons transform in SU(3) as

B → UBU+

B → UBU+ (7.107)

We can write the strong Hamiltonian as

H = Hsys +Hasym (7.108)

where Hsys is invariant under SU(3) transfromation. The SU(3) violated term is denoted by Hasym.
To make the baryon number conserve in Hasym, Hasym has to be in the bilinear form (as it gives the
masses of baryons) and traceless in �avor indices,

Sji ∼ qiγ0q
j − 1

3
δji qiγ0q

j ∼ ψ†i γ0ψj −
1

3
δjiψ
†
kγ0ψk (7.109)
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where qi ∼ ψi and qi ∼ ψ†i with ψi and ψ†i spinors and i the �avor index. Assume that Hasym � Hsys,
so Hasym can be regarded as perturbation. Suppose |h〉 is the eigenstate of Hsys,

Hsys |h〉 = γ |h〉 (7.110)

So the energy expectation value becomes

Eh ≈ γ + 〈h |Hasym|h〉 (7.111)

Let's determine the form of 〈h |Hasym|h〉. Note that |h〉 are eigenstates of Hsys and belong to the
representation of SU(3). The matrix 〈h |Hasym|h〉 can be regarded as the transition amplitude of the
process

h → h+ Sij (7.112)

where Sij is the pseudoparticle which belongs to SU(3) octet. Let's discuss a speical case S
i
j = S3

3δi3δj3.

Denote |h〉 = Bij , the gedanken process is

Bij → Bab + S3
3 (7.113)

The perturbation Hasym can be regarded as formed by three octets, Bij , B
a

b and S
i
j ,

Hasysm ∼ (αB
i

aB
a
j + βB

a

jB
i
a)Sji ∼ αB

3

aB
a
3 + βB

a

3B
3
a

= α(pp+ nn+
2

3
ΛΛ) + β(Ξ

−
Ξ− + Ξ

0
Ξ0 +

2

3
ΛΛ)

= α(pp+ nn) + β(Ξ
−

Ξ− + Ξ
0
Ξ0) +

2

3
(α+ β)ΛΛ (7.114)

The total energy is then

Eh ≈ γ + α(pp+ nn) + β(Ξ
−

Ξ− + Ξ
0
Ξ0) +

2

3
(α+ β)ΛΛ (7.115)

We can derive

EΣ = γ

EΛ − EΣ =
2

3
(α+ β)

EN − EΣ = α

EΞ − EΣ = β (7.116)

So we derive

3(EΛ − EΣ) = 2(EN − EΣ) + 2(EΞ − EΣ) (7.117)

which becomes

3EΛ + EΣ − 2EN − 2EΞ = 0 (7.118)

The above relation can be transformed into that of mesons by replacing Λ→ η, N → K, Ξ→ K,

3Eη + Eπ − 4EK = 0 (7.119)

The above relatons can be casted into ultra-relativistic case, where

Ei =
√
p2 +m2

i ∼ p+
m2
i

2p
(7.120)
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Table 7.8: Masses of octet baryons and mesons. Unit=MeV.

N 939 π 140

Λ 1116 K,K 495
Σ 1192 η 549
Ξ 1315

The above equations become

3m2
Λ +m2

Σ − 2m2
N − 2m2

Ξ = 0

3m2
η +m2

π − 4m2
K = 0 (7.121)

Here we have assumed that |h〉 is a state with momentum p� mi. For non-relativistic case we have

3mΛ +mΣ − 2mN − 2mΞ = 0

3mη +mπ − 4mK = 0 (7.122)

We can check the above relations (7.121) and (7.122) by inserting baryon and meson masses given in
Table (7.8).

The baryon decuplet can be expressed by,

Bijk =
1

n

∑
P

qP (i)qP (j)qP (k) (7.123)

where the sum is over all di�erent permutations and n is its number. The normalized state is given
by

1√
n

∑
P

qP (i)qP (j)qP (k) (7.124)

Then we have, e.g.

B333 = Ω

B133 =
1√
3

Ξ∗0

B113 =
1√
3

Σ∗+

B123 =
1√
6

Σ∗0 (7.125)

For the baryon decuplet, the mass formula can be derived in a similar way. The virtual process can
be written by

Blmn → Babc + Sij (7.126)

where we also take Sij = S3
3δi3δj3. The SU(3) violated Hamiltonian is then in the form,

Hasysm ∼
(
BiabB

jab − 1

3
δjiBdabB

dab

)
Sij ∼ β

(
B3abB

3ab − 1

3
BdabB

dab

)
(7.127)
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The total energy is

Eh ∼ α+ β

(
B3abB

3ab − 1

3
BdabB

dab

)
= α+ β

[
2

3
ΩΩ +

1

3
(Ξ
∗0

Ξ∗0 + Ξ
∗−

Ξ∗−)

−1

3
(∆

++
∆++ + ∆

+
∆+ + ∆

0
∆0 + ∆

−
∆−)

]
(7.128)

This gives the result that the masses of isospin multiplets ∆, Σ∗, Ξ∗ and Ω are equal-distant,

mΣ∗ −m∆ = mΞ∗ −mΣ∗ = mΩ −mΞ∗ =
β

3
(7.129)

One can check the above formula by inserting the mass values of the decuplet baryons. Eq. (7.121),
(7.122) and (7.129) can be summarized into the so-called Gell-Mann-Okubo relations [17, 18],

m = a+ bY + c

[
I(I + 1)− 1

4
Y 2

]
(7.130)

Exercise 58. Use the Gell-Mann-Okubo mass formula to obtain the masses of ground state
baryons, (1/2)+ and (3/2)+.

Exercise 59. We can de�ne a matrix in terms of meseon octet in Eq. (7.88) U = eiξaλa/f ,
where λa are Gell-Mann matrices in Eq. (7.46), ξa are meson �elds given in Eq. (7.89),
and f is a constant. Then the Lagrangian due to the quark masses is given by

Lm ∼ f2

4

{
Tr[M(U + U†)]

}
(7.131)

where M = diag(mu,md,ms) is the quark mass matrix. Derive the masses for the mesons
by extracting the coe�cients of quadratic terms of mesonic �elds.

7.2 Quarks and gluons

7.2.1 Color degrees of freedom

There are many evidences for the existence of color degree of freedom. We only take some of them
as examples.

The �rst one is from the baryons Ω(sss), ∆++(uuu) and ∆−(ddd) with the same �avor content.
We know that they belong to the ground state with orbital angular momentum L = 0, whose wave
function is symmetric. The �avor wave function is also symmetric. This seems to violate the Pauling
principle for a fermionic system. So quarks must carry another degree of freedom - color. There are
three colors, R, G and B which makes a color triplet. The color wave function for three quarks should
be a color singlet which is anti-symmetric,

(qqq)[1] = [(RB −BR)G+ (BG−GB)R+ (GR−RG)B]/
√

6 (7.132)

By the way, the color wave function for mesons is

(qq)[1] = (RR+GG+BB)/
√

3 (7.133)
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Figure 7.14: The de�nition of the R factor.
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The second evidence is the R factor de�ned by

R =
σ(e+e− → qq → hadrons)

σ(e+e− → µ+µ−)
(7.134)

Both reactions are electromagnetic interactions. Both quarks and electrons are pointlike particles.
The only di�erences are that muons carry unit charges, while quarks carry fractional charges, �avors
and colors. The number of colors can be determined by measuring R. The factor can be written as

R = Nc
∑
f

Q2
f (7.135)

where Qf is the quark electric charge for �avor f and Nc the number of colors. In the energy range
where only light quarks (u, d, s) are produced, R = 2

3Nc. When the charm quark threshold is reached,
the factor becomes R = 10

9 Nc. When the bottom quark is produced, we have R = 11
9 Nc. All these

values can be compared to data which show a clear evidence for Nc = 3.
The third evidence is the decay rate of π0 → γ + γ, see Fig. 7.16. for illustration. The rate is

given by

Γ(π0 → 2γ) = N2
c (Q2

u −Q2
d)

2 α
2m2

π

64π3f2
π

(7.136)

where α = e2/4π = 1/137, Nc is the number of colors, mπ is the mass of neutral pion, Qu,d are
charges of u and d quarks, fπ is the pion decay constant for π → µν. We can estimate the rate by
substituting Nc = 3, Qu = 2/3, Qd = 1/3, mπ = 140 MeV and fπ = 91 MeV,

Γ(π0 → 2γ) ≈ 9× 1

9

1

1372

1

64π3

(
140

91

)2

MeV ≈ 7.6 eV (7.137)

which agree with the date very well,

Γexp(π0 → 2γ) = 7.48± 0.33 eV (7.138)

If quarks carry no color, the measured decay rate in experiments is about 9 times larger than the
theoretical prediction.

Color degrees of freedom respect SU(3)c symmetry. Unlike �avor SU(3)f which is an approxi-
mated symmetry, this is an exact symmetry and has dynamic e�ects.
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Figure 7.15: The data for R [19].

Figure 7.16: Pions decay to two photons via axial vector current.
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Table 7.9: Part of color factors c for one gluon exchange. Ti = λi/2 with λi the Gell-Mann matrices
in Eq. (7.46).

initial �nal gluon color factor c
BB BB A8 (T8)33(T8)33 = 1

3

RR RR A3, A8 (T3)11(T3)11 + (T8)11(T8)11 = 1
3

RB RB A8 (T8)11(T8)33 = − 1
6

RB BR A4.A5 (T4)31(T4)13 + (T5)31(T5)13 = 1
2

BB BB A8 −(T8)33(T8)33 = − 1
3

BB RR A4, A5 −(T4)31(T4)13 − (T5)31(T5)13 = − 1
2

BB GG A6.A7 −(T6)23(T6)32 − (T7)23(T7)32 = − 1
2

7.2.2 Gluons as color carriers

The color interaction between quarks are carried by gluons. Gluons carry colors and anti-colors and
belong to a color octet. According to group theory, [3] ⊗ [3] = [1] ⊕ [8], the direct product of two
triplets can be reduced to a singlet and a octet. The gluon octet can be represented by gi (i = 1, ..., 8), R

G
B

 (R,G,B) =

 1
3 (2RR−GG−BB) RG RB

GR 1
3 (2GG−RR−BB) GB

BR BG 1
3 (2BB −RR−GG)


+

1

3
(RR+GG+BB)

 1 0 0
0 1 0
0 0 1


=


A3√

2
+ A8√

6
A1−iA2√

2
A4−iA5√

2
A1+iA2√

2
−A3√

2
+ A8√

6
A6−iA7√

2
A4+iA5√

2
A6+iA7√

2
− 2A8√

6

+
1√
3
A0

 1 0 0
0 1 0
0 0 1


=

1√
2
T aAa +

1√
3
A01 (7.139)

where A0 is the color singlet and A1, · · · , A8 are color singlet and de�ned by,

A0 = (RR+GG+BB)/
√

3,

A1 = (RG+GR)/
√

2,

A2 = i(RG−GR)/
√

2,

A3 = (RR−GG)/
√

2,

A4 = (RB +BR)/
√

2,

A5 = i(RB −BR)/
√

2,

A6 = (GB +BG)/
√

2,

A7 = i(GB −BG)/
√

2,

A8 = (RR+GG− 2BB)/
√

6 (7.140)

The singlet gluon couples equally to all quarks, and is independent of the octet.
The strength of the interaction coupling for the exchange of a single gluon between two colored

quarks is cαs, where c is the color factor that can be deduced from Eq. (7.139). Part of color factors
for one gluon exchange are listed in Tab. 7.9.
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Figure 7.17: One gluon exchange in baryons and mesons. The wavy lines denote gluons. Solid lines
are quarks.
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The color factor for two quarks inside a baryon can be determined as follows. The color wave
function for a baryon is

(qqq)[1] =
1√
6

[R(GB −BG) +B(RG−GR) +G(BR−RB)] (7.141)

For the RG term, i.e. the second term in the color wave function (7.141), the color amplitude is

1√
6

(δi1δj2 − δi2δj1)(Ta)i′i(Ta)j′j
1√
6

(δi′1δj′2 − δi′2δj′1)

=
1√
6

(δi1δj2 − δi2δj1)

[
1

6
(δii′δjj′ + δij′δji′)−

1

3
(δii′δjj′ − δij′δji′)

]
1√
6

(δi′1δj′2 − δi′2δj′1)

= − 1

18
(δi1δj2 − δi2δj1)(δii′δjj′ − δij′δji′)(δi′1δj′2 − δi′2δj′1)

= −2

9
(7.142)

where i, j denote the initial state color indices and i′, j′ denote the �nal state color indices. We have
used the formula,

(Ta)i′i(Ta)j′j =
1

2
δij′δji′ −

1

6
δii′δjj′

=
1

6
(δii′δjj′ + δij′δji′)−

1

3
(δii′δjj′ − δij′δji′) (7.143)

or

Ta(1)Ta(2) =
1

2

(
P12 −

1

N

)
(7.144)

for SU(N) group, where P12 is the permutation operator for indices 1 and 2. For other terms in
(7.141), the result is the same. So the color factor for any two quarks inside a baryon is cbaryon =
3× (−2/9) = −2/3.

The color singlet wave function for a meson is,

(qq)[1] =
1√
3

(RR+GG+BB) (7.145)

In the same way, we can determine the color factor for quark and anti-quark inside a meson c = −4/3,
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Figure 7.18: The �rst evidence for three-jet events in e+e− collisions at Petra [20, 21]. European
Physical Society high energy and particle physics prize (1995) by P. Söding, B. Wiik, G. Wolf, S.L.
Wu.

For the initial state BB, the color amplitude is

1√
3

(Ta)i′3(−Ta)3j′
1√
3
δi
′

j′

= −1

3
(Ta)3i′(Ta)i′3 = −4

9
(7.146)

where the minus sign in (−Ta)3j′ comes from the anti-quark. For other terms in 7.145 the result is
the same, so we have the factor 3 for the total result cmeson = 3× (−4/9) = −4/3.

Thus the Coulomb potentials between two quarks inside a baryon and a meson are

VC(r) = −2

3

αS
r
, inside baryon

= −4

3

αS
r
, inside meson (7.147)

Note that the negative sign indicates that the force is attractive. In order to take into account the
con�nement, one should include the con�nement potential which prevent two quarks from separating
to large distance,

V (r) = C
αS
r

+Ar (7.148)

where A ≈ 0.18 GeV2 ≈ 0.9 GeV/fm is the string tension.

Exercise 60. There are three constituent quarks inside a baryon. There are one quark and
one anti-quark in a meson. Each quark carries a color R, G or B. Each anti-quark carries
an anti-color R, G or B.Write down the color wave functions for a baryon and a meson.
What is the connection between baryon and meson color wave functions? Why?

Exercise 61. Describe why the color degrees of freedom is necessary for the baryon Ω−.
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Figure 7.19: Illustration of how vacuum polarization in QED and QCD shield a test charge. In QCD
there is another process which is absent in QED, i.e. a red charge can turn to be B or G by radiating
a gluon with RB or RG.
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7.2.3 Asymptotic Freedom

The electric charge can be probed by photons. The higher the energy of the photon, the smaller
size it can probe. The wave length of the photon can be de�ned by the inverse of an energy scale
λ ∼ 1/

√
Q2. It can be proved that as the energy of the photon increases, the e�ective coupling in

quantum electrodynamics changes as

αQED(Q2) ≡ αeff (Q2) =
α

1− α
3π ln Q2

m2
e

(7.149)

We see that αeff (Q2) increases as Q2 increases. The physical reason for the rising e�ective charge
with the increased Q2 of the probing photon is illustrated in Fig. 7.19. If Q2 is small then the photon
cannot resolve small distances and sees a point charge shielded by the vacuum polarization of the
in�nite sea of electron-positron pairs. As Q2 increases, the photon sees a smaller and smaller spatial
area and the shielding e�ect of the pair �uctuation becomes less and less.

In quantum chromodynamics (QCD), things get complicated. We know that photons as a carrier
of electromagnetic force are charge neutral. But this is not the case in QCD. The strong coupling
constant is de�ned by αs = g2

s/(4π) with gs the coupling of quark-gluon and gluon-gluon vertices,
whose running behavior is governed by

µ
∂αs
∂µ

= 2β(αs) (7.150)

where the beta-function is given by

β(αs) = −
(

11− 2

3
nf

)
α2
s

4π
(7.151)

with nf the number of �avors. We obtain

ln
µ2

µ2
0

=

∫ αs(µ)

αs(µ0)

dαs
β(αs)

αs(µ) =
1

1
αs(µ0) + 1

4π (11− 2
3nf ) ln µ2

µ2
0

=
αs(µ0)

1 + αs(µ0) 1
4π (11− 2

3nf ) ln µ2

µ2
0

(7.152)
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Figure 7.20: Running coupling constant [22].
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We see that when 11− 2
3nf > 0, αs(µ) < αs(µ0) for µ > µ0. We can make expansion of the inverse

of ln µ2

µ2
0
, we get the leading term,

αs(Q
2) =

4π

(11− 2nf/3) ln(Q2/Λ2)
(7.153)

where Λ is an arbitray energy scale. One observes that the essential di�erence of αS(Q2) from
αQED(Q2) is that αS(Q2) decreases as Q2 increases, just opposite to αQED(Q2). This is called the
asymptotic freedom. The physics is shown in Fig. 7.19. The quark-antiquark vacuum polarization
screen the color charge in a similar way as in QED. But there is another process which cannot
be found in QED: a color charge can turn into another color charge by radiating a gluon carrying
away the original charge. The contribution of this process dominate over the QED-like one provided
11 > 2nf/3 which is true for nf = 6 in the real world. The data and theoretical predictions for
αs(Q

2) are shown in Fig. 7.20.
The running coupling constant can be very large at the infrared end which means stong couplings.

This indicates a very important e�ect, color con�nement, where quarks and gluons can not be seen
freely at low energies. We will explain the color con�nement in the next section.

7.2.4 Phenomenological illustration of the con�nement [7]

Consider a system of quarks and gluons in a volume of L3, the coupling constant at length scale l is
given by gl, one can prove gL > gl for L > l. Let's introduce a color dielectric constant in vacuum
κL and a renormalized coupling constant g ≡ gl where l is the length in the order of proton radius.
Then κL is de�ned by

g2
L =

g2

κL
(7.154)

So when L = l, we have κl = 1 and

κL < κl, for L > l (7.155)

The perturbation theory gives to the leading order,

κL
κl

=
1

1 + αs
2π

(
11− 2

3nf
)

lnLl
(7.156)

When L → ∞, we have κ∞ = 0 and g2
∞ → ∞. So the vacuum is a medium with extremely strong

couplings.
In electromagnetism, the dielectric constant is κvacuum = 1. One can prove that κ ≥ 1 for all

physical dielectric media. This can be seen by the electric displacement vector,

D = E + 4πP = κE (7.157)

where the polarization vector P is parallel to E, so one has κ ≥ 1.
There is an electromagnetism analogy to the color con�nement. We consider a hypothetical

medium with a small dielectric constant,

κ ≡ κm � 1 or = 0 (7.158)

i.e. the medium is anti-screening because the polarization vector is anti-parallel to the electric �eld.
If we put a test charge into the medium, a hole must be formed as shown in Fig. 7.21. Inside the
hole is the perturbative vacuum with κ = 1. We can estimate the radius of this hole. Assume Eout,
Dout ,Ein and Din are normal components of the �elds outside and inside the sphere. We have

Din = Ein = Dout =
e

R2

Eout =
e

κmR2
(7.159)
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Figure 7.21: The e�ect of a test charge in an anti-screening medium.
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where e is the total electric charge of a charge distribution and R is the radius of the hole. The
electric energies in the medium and vacuum are given by

Umout =
1

8π

∫ ∞
R

dΩdrr2D ·E =
1

2

e2

κmR

Uvacout =
1

2

e2

R
(7.160)

where Uvacout So the energy di�erence is

∆Ue =
1

2

e2

R

(
1

κm
− 1

)
(7.161)

One needs an energy Uhole to create a hole. It has two parts: the volume energy and the surface one,

Uhole ∼ C1
4π

3
R3 + C24πR2 (7.162)

where C1 and C2 are two constants. The total energy is then

U = Umout + Uhole (7.163)

When κm → 0 and Uhole ∼ C1
4π
3 R

3, i.e. dominated by the volume energy, we can �nd the minimum
of U as,

dU

dR
=

d

dR

(
1

2

e2

κmR
+ C1

4π

3
R3

)
= −1

2

e2

κmR2
+ C14πR2 = 0 (7.164)
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Figure 7.22: The splitting of a bag.

Table 7.10: Comparison with superconductivity.

superconductivity (QED) hadron (QCD)
H Ea

µin = 0 κvac = 0
µvac = 1 κin = 1
internal external
external internal

which gives

Rmin =

(
e2

8πκmC1

)1/4

Umin =
1

2

e2

κmRmin
+ C1

4π

3
R3
min

∼ 4

3

(
e2

2κm

)3/4

(4πC1)1/4 (7.165)

One can extend this example by introducing two test particles in opposite charges into the vacuum.
Similar to the case of one test charge, a hole containing the two charges will form. This is the picture
for mesons with two opposite color charges. See Fig. 7.21.

When the couplings are extermely strong, there exists a strong repulsive force exerting on the
color charges. This is analogous to Van der Waals force between two helium atoms. There is also an
analogy between the Meissner e�ect in a superconductor and the color con�nement. See Table 7.10
and Fig. 7.23.

Exercise 62. Determine Rmin and Umin when Uhole ∼ C24πR2, i.e. the hole energy is only
from the surface.
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Figure 7.23: Comparison of superconductivity and hadron.
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Appendix A

Nucleon-nucleon scattering theory

A.1 Nucleon-nucleon scatterings

The nucleon-nucleon interaction is a basic for understanding the nuclear force, for a review of this
topic, see, e.g., Ref. [29]. The scattering experiments is one of the most e�cient tools to detect the
properties of particles. They are widely used in nuclear and particle physics. One of the earliest
attempt was made in the Rutherford's experiment where the alpha-particles were used to bombard
the atoms. It shows that there is a nucleus inside the atom. In 1960s, in order to �nd the structure of
nucleons Hofstadter used high energy electron-nucleon scatterings, which uncovers that the nucleon
is not a point-like particle but has a �nite size.

A.2 The stationary scattering wave function

Let us consider the non-relativistic scattering of a spinless particle of mass m by a central potential
V (r). The time-dependent Schroedinger equation is[

− 1

2m
∇2 + V (r)

]
ψ(t, r) = i

∂ψ(t, r)

∂t
(A.1)

For stationary solution,

ψ(t, r) = e−iEtψ(r) (A.2)

where E = k2/2m. So the time-independent Schroedinger equation becomes[
∇2 + k2 − 2mV (r)

]
ψ(r) = 0 (A.3)

We assume that the potential V (r) tends to zero faster than 1/r as r goes to in�nity. The asymptotic

form of the wave function at r →∞ is denoted by ψ
(+)
k (r),

ψ
(+)
k (r) → A

[
eik·r + f(θ, φ)

eikr

r

]
(A.4)

where the �rst term of Eq. (A.4) is the incident wave along k, while the second term is the scattering
wave. We can choose the incident momentum k = kẑ along the z-axis, so f(θ, φ) = f(θ) depending
only on the polar angle. This is because the incident wave has rotational symmetry which is conserved
during the scattering by a central potential.
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Figure A.1: Scattering of a plane wave.
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A.3 Cross section

The cross section σ(Ω)dΩ = dσ
dΩdΩ is the number of particles emitted per unit time and unit incident

�ux within the solid angle dΩ about the direction Ω(θ, φ). One can obtain it by computing the
outgoing �ux of particles scattered through the spherical surface r2dΩ devided by the incident �ux.

The probability current density is

j(r) = −i 1

2m
[ψ∗∇ψ − (∇ψ∗)ψ] =

1

m
Im(ψ∗∇ψ) (A.5)

It satis�es the continuity equation,

∇ · j +
∂ρ

∂t
= 0 (A.6)

where ρ = |ψ|2 is the probability density. Since ∂ρ
∂t = 0 in the stationary case, one has

∇ · j = 0 (A.7)

Now we try to calculate the current density. In spherical coordinates, we have

∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ
(A.8)

The radial outgoing �ux is

j · r̂ =
1

m
Im

{
AA∗

[
e−ikz + f∗(θ)

e−ikr

r

]
∂

∂r

[
eikz + f(θ)

eikr

r

]}
=

1

m
|A|2Im

[
e−ikz

∂

∂r
eikz

]
+

1

m
|A|2|f(θ)|2Im

[
e−ikr

r

∂

∂r

eikr

r

]
+

1

m
|A|2Im

[
f(θ)e−ikz

∂

∂r

eikr

r
+ f∗(θ)

e−ikr

r

∂

∂r
eikz

]
= (jinc + jout + jint) · r̂ (A.9)

Here the �ux corresponding to the incident wave

ψkẑ(r) = Aeikz (A.10)

is given by

jinc =
1

m
ẑ|A|2Im

[
e−ikz

∂

∂z
eikz

]
= ẑ|A|2 k

m
= ẑ|A|2v (A.11)
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One can verify

jinc · r̂ =
1

m
|A|2Im

[
e−ikz

∂

∂r
eikz

]
= |A|2 1

m
k cos θ (A.12)

The outgoing �ux is

jout · r̂ =
1

m
|A|2|f(θ)|2Im

[
e−ikr

r

∂

∂r

eikr

r

]
≈ |A|2 |f(θ)|2

r2

k

m
+O(1/r3) (A.13)

The inteference term is given by

jint · r̂ =
1

m
|A|2Im

[
f(θ)e−ikz

∂

∂r

eikr

r
+ f∗(θ)

e−ikr

r

∂

∂r
eikz

]
= |A|2 k

m

1

r
Re
[
f(θ)eik(r−z) + f∗(θ) cos θe−ik(r−z)

]
+O(1/r2) (A.14)

We see that as r → ∞, the exponential factor e±ik(r−z) oscillates drastically except at the forward
direction at θ = 0. The interference term can be neglected except at forward direction.

The particle outgoing �ux through the spherical area r2dΩ is

|A|2 |f(θ)|2
r2

k

m
r2dΩ = |A|2 k

m
|f(θ)|2dΩ (A.15)

Dividing by the incident �ux |A|2v, one gets the di�erential cross section,

dσ

dΩ
= |f(θ, φ)|2 (A.16)

The total cross section is then

σ =

∫
dΩ

dσ

dΩ
=

∫
dΩ|f(θ, φ)|2 (A.17)

A.4 The optical theorem

Now consider the forward scattering at θ = 0. Let us compute the �ux at forward direction from Eq.
(A.14),∫

θ=0

dΩr2jint · r̂ ≈
∫
θ=0

dΩr2|A|2 k
m

1

r
Re
[
f(θ = 0)eikr(1−cos θ) + f∗(θ = 0)e−ikr(1−cos θ)

]
= r|A|2 k

m
4π

∫ 1

cos δθ

d cos θRe
[
f(θ = 0)eikr(1−cos θ)

]
≈ r|A|2 k

m
4πRe

[
i

kr
f(θ = 0)(1− eikr(1−cos δθ))

]
≈ r|A|2 k

m
4πRe

[
i

kr
f(θ = 0)(1− eikrδθ2/2)

]
≈ −|A|2 1

m
4πImf(θ = 0) (A.18)

We have used the fact that krδθ2/2 → ∞ when r → ∞, so the phase factor eikrδθ
2/2 drastically

�uctuates and is negligible.
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From the continuity equation ∇ · j = 0, we have

r2

∫
dΩj · r̂ = 0 (A.19)

Using the fact that ∫
dΩjinc · r̂ = 0 (A.20)

we obtain

r2

∫
dΩ(jout + jint) · r̂ = 0 (A.21)

which can be written as

|A|2 1

m

[
k

∫
dΩ|f(Ω)|2 − 4πImf(θ = 0)

]
= 0 (A.22)

so that we get the total cross section,

σtot =
4π

k
Imf(θ = 0) (A.23)

This is called the optical theorem, a result of probability conservation, which states that the total
cross section is given by the imaginary part of the forward scattering amplitude.

A.5 Partial wave method

We consider a central potential V (r). In spherical coordinates, the Hamiltonian H = −(1/2m)∇2 +V
reads,

H = − 1

2m

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2

]
+ V (r)

= − 1

2m

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
− L2

r2

]
+ V (r) (A.24)

with L2 given by

L2 = −
[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
(A.25)

One can verify

[H,L2] = [H,Lz] = 0 (A.26)

Because the operators {H,L2, Lz} all commute to each other, the state can be labeled by quantum
numbers {n, l,m}, where n labels the energy level, l the angular momentum, m the projection to the

third axis. The scattering wave function ψ
(+)
k can be expanded in partial waves as

ψ
(+)
k (k, r) =

∞∑
l=0

+l∑
m=−l

clm(k)Rlm(k, r)Ylm(θ, φ) (A.27)

The radial part of the Schrödinger equation is

− 1

2m

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
− l(l + 1)

r2

]
Rl(k, r) + V (r)Rl(k, r) = ERl(k, r) (A.28)
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There is no dependence on the magnetic quantum number m, so Rlm(k, r) is written as Rl(k, r). Eq.
(A.28) can be written as[

d2

dr2
+

2

r

d

dr
+ k2 − l(l + 1)

r2
− U(r)

]
Rl(k, r) = 0 (A.29)

It is convenient to use

Rl(k, r) =
ul(k, r)

r
(A.30)

to rewrite Eq. (A.29), [
d2

dr2
+ k2 − l(l + 1)

r2
− U(r)

]
ul(k, r) = 0 (A.31)

When U(r) = 0, we can use variable ρ = kr to rewrite Eq. (A.29) as[
d2

dρ2
+

2

ρ

d

dρ
+ 1− l(l + 1)

ρ2

]
Rl(ρ) = 0 (A.32)

which is the spherical Bessel function.
For free particles, V (r) = 0, the solutions to Eq. (A.32) are spherical Bessel functions

Rl(kr) = C
(1)
l (k)jl(kr) + C

(2)
l (k)nl(kr) (A.33)

or
Rl(kr) = D

(1)
l (k)h

(1)
l (kr) +D

(2)
l (k)h

(2)
l (kr) (A.34)

Only jl(kr) is �nite at r → 0, all others diverge. At r →∞, we have

Rl(k, r) → C
(1)
l (k)

1

kr
sin

(
kr − l

2
π

)
− C(2)

l (k)
1

kr
cos

(
kr − l

2
π

)
∼ 1

kr

√
[C

(1)
l (k)]2 + [C

(2)
l (k)]2

×

 C
(1)
l (k) sin

(
kr − l

2π
)√

[C
(1)
l (k)]2 + [C

(2)
l (k)]2

− C
(2)
l (k) cos

(
kr − l

2π
)√

[C
(1)
l (k)]2 + [C

(2)
l (k)]2


∼ 1

kr
Al(k) sin

[
kr − l

2
π + δl(k)

]
(A.35)

where we have used

Al(k) =

√
[C

(1)
l (k)]2 + [C

(2)
l (k)]2

tan δl(k) = −C
(2)
l (k)

C
(1)
l (k)

(A.36)

and δl(k) is called the phase shift. The usual normalizations of scattering wave functions at r → ∞
are Al(k) = 1 or Al(k) = 1/ cos δl.

A.5.1 Scattering amplitude and cross section

The scattering wave function at r →∞ is

ψ
(+)
k (r) → A

[
eikz + f(θ)

eikr

r

]
(A.37)
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We can expand the plane wave eikz as

eikz =

∞∑
l=0

(2l + 1)iljl(kr)Pl(cos θ) (A.38)

The proof can be found in the Appendix. Then the scattering wave function can be written as

ψ
(+)
k (r) ∼

∞∑
l=0

(2l + 1)iljl(kr)Pl(cos θ) + f(θ)
eikr

r

∼
∞∑
l=0

(2l + 1)il
1

kr
sin

(
kr − l

2
π

)
Pl(cos θ) + f(θ)

eikr

r

∼
∞∑
l=0

(2l + 1)il
1

2ikr

{
exp

[
i

(
kr − l

2
π

)]
− exp

[
−i
(
kr − l

2
π

)]}
Pl(cos θ)

+f(θ)
eikr

r
(A.39)

If we assume

f(θ) =

∞∑
l=0

(2l + 1)flPl(cos θ)

=
1

2ik

∞∑
l=0

(2l + 1) {exp[2iδl(k)]− 1}Pl(cos θ)

=
1

2ik

∞∑
l=0

(2l + 1) {exp[2iδl(k)]− 1}Pl(cos θ)

=
1

k

∞∑
l=0

(2l + 1) exp[iδl(k)] sin δl(k)Pl(cos θ) (A.40)

where the partial wave scattering amplitude is written as fl = (Sl − 1)/(2ik) where Sl = e2iδl(k). We
obtain

ψ
(+)
k (r) ∼

∞∑
l=0

(2l + 1)il
1

2ikr
Pl(cos θ)

×
{

exp

[
i

(
kr − l

2
π + 2δl(k)

)]
− exp

[
−i
(
kr − l

2
π

)]}
∼

∞∑
l=0

(2l + 1)il
1

2ikr
exp[iδl(k)]Pl(cos θ)

×
{

exp

[
i

(
kr − l

2
π + δl(k)

)]
− exp

[
−i
(
kr − l

2
π + δl(k)

)]}
∼

∞∑
l=0

(2l + 1)il
1

kr
exp[iδl(k)]Pl(cos θ) sin

(
kr − l

2
π + δl

)
(A.41)

The di�erential cross section is given by

dσ

dΩ
= |f(θ)|2 =

1

k2

∞∑
l,l′=0

(2l + 1)(2l′ + 1) exp[iδl(k)] exp[−iδl′(k)]

× sin δl(k) sin δl′(k)Pl(cos θ)Pl′(cos θ) (A.42)
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Figure A.2: The positivity of the phase shift.
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The total cross section is then

σtot =

∫
dΩ|f(θ, φ)|2

= 2π
1

k2

∫ 1

−1

d(cos θ)

∞∑
l,l′=0

(2l + 1)(2l′ + 1) exp[iδl(k)] exp[−iδl′(k)]

× sin δl(k) sin δl′(k)Pl(cos θ)Pl′(cos θ)

= 4π
1

k2

∞∑
l,l′=0

δl,l′(2l
′ + 1) exp[iδl(k)] exp[−iδl′(k)] sin δl(k) sin δl′(k)

=
4π

k2

∞∑
l=0

(2l + 1) sin2 δl(k) (A.43)

where we have used ∫ 1

−1

dxPl(x)Pl′(x) =
2

2l + 1
δll′ (A.44)

The phase shift re�ect if the force is attractive or repulsive, one can see from ψ
(+)
k in Eq. (A.41)

δl =

{
> 0, attractive force
< 0, repulsive force

(A.45)

See Fig. A.2 for illustration.
We can estimate the maximum value of lmax as follows

lmax ∼ ka (A.46)

where a is the interaction range. For example, the range of nuclear force is about a few fm, for a
particle with the incident energy k ∼ 20 MeV/c,

ka ∼ 20× 1

197
∼ 0.1 (A.47)

So the partial wave one has to take into account is s and p wave.

A.5.2 Inelastic scattering and total cross section

The wave function at r →∞ is given in Eq. (A.41), we rewrite it here,
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ψ(r) ∼
∞∑
l=0

(2l + 1)
1

2ikr
il {Sl exp [i(kr − lπ/2)]− exp [−i(kr − lπ/2)]}Pl(cos θ)

=

∞∑
l=0

2l + 1

2ikr

[
Sl exp(ikr) + (−1)l+1 exp(−ikr)

]
Pl(cos θ) (A.48)

For elastic scatterings, δl is real and Sl is a purely phase factor, |Sl| = 1. For inelastic scatterings, δl
is complex and |Sl| 6= 1. The probability current density is given in Eq. (A.5), its radial part is given
by

jr(r) =
1

m
Im(ψ∗∂rψ) =

1

m
Im

∞∑
l=0

i
2l + 1

2kr

[
S∗l exp(−ikr) + (−1)l+1 exp(ikr)

]
Pl(cos θ)

×
∞∑
l′=0

2l′ + 1

2ikr
ik
[
Sl′ exp(ikr)− (−1)l

′+1 exp(−ikr)
]
Pl′(cos θ)

=
1

m

1

4kr2
Im

∞∑
l,l′=0

i(2l + 1)(2l′ + 1)
[
S∗l exp(−ikr) + (−1)l+1 exp(ikr)

]
Pl(cos θ)

×
[
Sl′ exp(ikr)− (−1)l

′+1 exp(−ikr)
]
Pl′(cos θ)

=
1

m

1

4kr2
Im

∞∑
l,l′=0

i(2l + 1)(2l′ + 1)Pl(cos θ)Pl′(cos θ)

×
[
S∗l Sl′ − (−1)l+l

′ − (−1)l
′+1S∗l exp(−2ikr) + (−1)l+1Sl′ exp(2ikr)

]
(A.49)

We can compute the outgoing �ow,∫
dΩjr(r)r

2 =
π

2mk
Im

∞∑
l,l′=0

i(2l + 1)(2l′ + 1)
2

2l + 1
δll′

×
[
S∗l Sl − 1 + 2i(−1)l+1Im[Sl exp(2ikr)]

]
=

π

mk

∞∑
l=0

(2l + 1)(|Sl|2 − 1) (A.50)

When |Sl|2 = 1, no outgoing �ow occurs, this corresponds to elastic scatterings. When |Sl|2 < 1,
there is negative �ow, this corresponds to an absorption. The di�erential and total cross sections for
inelastic scattering can be obtained by dividing the above by the incident �ow k/m,

dσin
dΩ

=
r2jr(r)

k/m

σin =

∫
dΩjr(r)r

2

k/m
=

π

k2

∞∑
l=0

(2l + 1)(1− |Sl|2) (A.51)

The total elastic cross section is

σel =

∫
dΩ|f |2 =

1

4k2

∞∑
l,l′=0

(2l + 1)(2l′ + 1)(Sl − 1)(S∗l − 1)Pl(cos θ)Pl′(cos θ)

=
π

k2

∞∑
l=0

(2l + 1)|1− Sl|2 = 4π

∞∑
l=0

(2l + 1)|fl|2 (A.52)
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where the scattering amplitude f is given in by Eq. (A.40). The total cross section is then

σtot = σel + σin =
2π

k2

∞∑
l=0

(2l + 1)(1− ReSl)

=
4π

k2

∞∑
l=0

(2l + 1) sin2 δl(k) (A.53)

From Eq. (A.40), we get

Imf(0) = − 1

2k

∞∑
l=0

(2l + 1)(ReSl − 1)

σtot =
4π

k
Imf(0) (A.54)

A.5.3 Phase shifts

In this subsection, we will derive the relation between the phase shift and the potential. Consider
two potentials U(r) and U(r) , the Schrödinger equation in Eq. (A.31) is rewritten as follows,[

d2

dr2
+ k2 − l(l + 1)

r2
− U(r)

]
ul(k, r) = 0[

d2

dr2
+ k2 − l(l + 1)

r2
− U(r)

]
ul(k, r) = 0 (A.55)

where ul = rRl. We choose the normalization constant as Al(k) = k/ cos δl in Eq. (A.35). The
Wronskian of the two solutions is

W (ul, ul) = ulu
′
l − u′lul (A.56)

From Eq. (A.55), we obtain

ulu
′′
l − ulu′′l − (U − U)ulul = 0 (A.57)

or

d

dr
W (ul, ul) = −(U − U)ulul

W (ul, ul)|∞0 = −
∫ ∞

0

[U(r)− U(r)]ul(r)ul(r)dr (A.58)

We already know ul(0) = ul(0) = 0, so we only need to know

(ulu
′
l − u′lul)(r =∞)

=
1

k

1

cos δl

1

cos δl
sin

(
kr − l

2
π + δl

)
cos

(
kr − l

2
π + δl

)
−1

k

1

cos δl

1

cos δl
cos

(
kr − l

2
π + δl

)
sin

(
kr − l

2
π + δl

)
=

1

k

1

cos δl

1

cos δl
sin
(
δl − δl

)
=

1

k

1

cos δl

1

cos δl
(sin δl cos δl − cos δl sin δl)

=
1

k

(
tan δl − tan δl

)
(A.59)
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Then we derive the equation for the phase shifts and potentials

tan δl − tan δl = −k
∫ ∞

0

[U(r)− U(r)]ul(r)ul(r)dr (A.60)

Note that the above equation is valid when U(r) and U(r) tend to zero faster than 1/r as r →∞. We
also require that the potentials should not be more singular than r−2 at the origin, since u0(r) → r
as r → 0. For U(r) = 0 we have δl = 0 and then

tan δl = −k
∫ ∞

0

U(r)jl(r)Rl(r)r
2dr (A.61)

where we have taken ul(r) = jl(r) since it is �nite at the origin. We see that if the potential is
repulsive then δl < 0, while δl > 0 for attractive potential. If the potential depends on a quantity,
say the coupling strength, λ, in such a way U(λ, r), then we have

dδl
dλ

= −k
∫ ∞

0

dU(λ, r)

dλ
[ul(λ, r)]

2dr (A.62)

If the potential has a �nite range r < a, we can determine the phase shift by the boundary
condition at r = a. The exterior solution may be written as

Rl(k, r) = Al(k)[jl(kr)− nl(kr) tan δl] (A.63)

Thus we denote

γl =
1

Rl

dRl
dr

∣∣∣∣
r=a

(A.64)

as the value of the logarithmic derivative of the interior solution Rl(k, r) at r = a, we �nd

γl = k
j′l(ka)− n′l(ka) tan δl
jl(ka)− nl(ka) tan δl

(A.65)

The phase shift is then given by

tan δl(k) =
kj′l(ka)− γljl(ka)

kn′l(ka)− γlnl(ka)
(A.66)

At low energy, de�ne the dimensionless quantity,

ql(k) =
k

γl(k)

j′l(ka)

jl(ka)
=
γ0
l (k)

γl(k)
(A.67)

If ql(k) = 1, tan δl = 0, it means no interaction, or Rl(kr) ∼ jl(kr). At ka� l,

γ0
l (k) = k

j′l(ka)

jl(ka)
∼ 1

a
[l +O(k2a2)] (A.68)

so that ql(k) is

ql(k) ∼ 1

γl(k)a
[l +O(k2a2)] (A.69)

At ka� l, Eq. (A.66) becomes

tan δl(k) =
kj′l(ka)− γljl(ka)

kn′l(ka)− γlnl(ka)

≈ − jl(ka)

nl(ka)

ql(k)− 1

[(l + 1)/l]ql(k) + 1

≈ (ka)2l+1

Dl

ql(k)− 1

[(l + 1)/l]ql(k) + 1

≈ (ka)2l+1

Dl

l − γl(k)a

l + 1 + γl(k)a
(A.70)
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where Dl ≡ (2l + 1)!!(2l − 1)!! and D0 = 1. Note that we have used the asymptotic form at small
x ∼ 0,

jl(x) → xl

(2l + 1)!!

[
1− x2/2

1!(2l + 3)
+ · · ·

]
,

j′l(x) → lxl−1

(2l + 1)!!

[
1− (l + 2)x2/2

1!l(2l + 3)
+ · · ·

]
,

nl(x) → − (2l − 1)!!

xl+1

[
1− x2/2

1!(1− 2l)
+ · · ·

]
,

n′l(x) → (l + 1)(2l − 1)!!

xl+2

[
1− (l − 1)x2/2

1!(l + 1)(1− 2l)
+ · · ·

]
. (A.71)

If we have at the limit k → 0,

lim
k→0

γl(k)a 6= −(l + 1) (A.72)

we see from Eq. (A.70) that the phase shifts tend to zero as k2l+1. The S matrix elements are then
given by

Sl(k) = e2iδl ∼ 1 + 2iδl (A.73)

The partial wave amplitude fl is given by

fl(k) =
1

2ik
[Sl(k)− 1] ∼ δl

k
∼ clk2l (A.74)

where the constant cl is real. Except for the s-wave (l = 0) which tends to a non-zero constant, all
partial cross section σl (l > 0) vanish as k4l. The scattering is therefore isotropic at very low energies
and σtot = σ0. It is convenient to de�ne the scattering length as as

as = − lim
k→0

tan δ0(k)

k
(A.75)

As k → 0, the s-wave partial amplitude is given by

lim
k→0

f0(k) = lim
k→0

tan δ0(k)

k
= −as (A.76)

The scattering amplitude at k → 0 is dominated by the s-wave

f ∼ f0 ∼ −as (A.77)

Hence the di�erential cross section becomes

dσ

dΩ
∼ a2

s, σ ∼ 4πa2
s

If by accident

lim
k→0

γl(k)a = −(l + 1) (A.78)

Eq. (A.69) becomes

ql ∼ − l

l + 1
+O(k2a2), l > 0 (A.79)
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Substituting the above into Eq. (A.70), we have

δl(k) ∼ k2l−1, k → 0 (A.80)

Then the S-matrix elements are such that

Sl(k) ∼ 1 + 2idlk
2l−1, k → 0 (A.81)

where the constant dl is real. The partial wave amplitude is then

fl(k) ∼ dlk
2l−2 (A.82)

For l = 1, the scattering amplitude is given by

f ∼ −as + b cos θ (A.83)

where as is the scattering length and b is a constant.

A.5.4 Square well scattering

Let us consider a square well potential,

V (r) =

{
−V0, r < a
0, r > a

(A.84)

where V0 > 0. We consider only the s-wave. In the range r < a,

d2u

dr2
+ (k2 + k2

0)u = 0

k =
√

2mE, k0 =
√

2mV0 (A.85)

The boundary condition is u(0) = 0. The solution is

u(r) = sin k1r

k1 =
√
k2 + k2

0 =
√

2m(E + V0) (A.86)

In the range r > a, the Schroedinger equation becomes

d2u

dr2
+ k2u = 0 (A.87)

with the solution

u(r) = A sin(kr + δ0) (A.88)

The boundary condition at r = a should be that the wave function and its derivative must be
continuous, then we have

1

k
tan(ka+ δ0) =

1

k1
tan(k1a) (A.89)

or

1

k

tan(ka) + tan δ0
1− tan(ka) tan δ0

=
1

k1
tan(k1a) (A.90)
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Then we get tan δ0,

tan δ0 =
k tan(k1a)− k1 tan(ka)

k1 + k tan(ka) tan(k1a)

δ0 = −ka+ tan−1

[
k

k1
tan(k1a)

]
(A.91)

At ka� 1, we can Taylor expand the above with respect to k, and obtain

k cot δ0 =
1

a

k1a+ ka tan(ka) tan(k1a)

tan(k1a)− (k1a/ka) tan(ka)
≈ − 1

as
+

1

2
reffk

2 (A.92)

We see that δ0 must be or the order k at the limit k → 0. Here the scattering length is

as = − lim
k→0

tan δ0(k)

k
= a

[
1− tan(k0a)

k0a

]
(A.93)

Note that as < 0 and δ0(k) > 0 for attractive interaction. For as < 0, k0a must be in [0, π/2]. We
have used

1

a

k1a+ ka tan(ka) tan(k1a)

tan(k1a)− (k1a/ka) tan(ka)
≈ − 1

as
+

1

2
reffk

2 (A.94)

where

reff
a

=
2

3

[
k0a

tan(k0a)− k0a

]2

−
[

tan(k0a)

tan(k0a)− k0a

]2

+
1

k0a[tan(k0a)− k0a]
+

2 tan(k0a)

tan(k0a)− k0a

=
2

3

a2

a2
s

− a2(1− as/a)2

a2
s

− 1

(k0a)2

a

as
− 2a

as
+ 2 = 1− a2

3a2
s

− 1

k2
0aas

reff = a− a3

3a2
s

− 1

k2
0as

(A.95)

Because for s-wave and low energy, then the total cross section is

σtot = 4π
sin2 δ0
k2

=
4π

k2 + k2 cot2 δ0
=

4π

k2 + (−1/as + ρk2/2)2
≈ 4πa2

[
1− tan(k0a)

k0a

]2

+O(k2)

(A.96)
When k0a = π/2,

δ0 = π/2 (A.97)

In this case the scattering length and cross section turn to negative in�nity. This corresponds to zero
energy resonance. Note that k0a = π/2 is also the threshold for the appearance of one s-wave bound
state. When π/2 < k0a < π, there is one bound state, so the scattering length is positive. When
k0a < π/2, there is no bound state, the scattering amplitude is negative.

A.5.5 Breit-Wigner formula

The total cross section is

σtot =
4π

k2

∞∑
l=0

(2l + 1) sin2 δl(E) (A.98)
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When δl(E) satisfy

δl(E) ∼ (n+ 1/2)π, or sin2 δl(E) ∼ 1 (A.99)

the partial wave cross section reaches maximum and the resonant states occur. We can expand near
the resonant energy E = E0 as

sin δl(E) ≈ sin δl(E0) +

[
cos δl(E)

dδl
dE

]
E0

(E − E0) ≈ 1

cos δl(E) ≈ cos δl(E0)−
[
sin δl(E)

dδl
dE

]
E0

(E − E0)

= − dδl
dE

∣∣∣∣
E0

(E − E0) = − 2

Γ
(E − E0) (A.100)

where we have de�ned

Γ = 2/
dδl
dE

∣∣∣∣
E0

(A.101)

So the partial wave amplitude is

fl = exp[iδl(k)] sin δl(k)

=
sin δl(k)

cos δl(k)− i sin δl(k)

≈ 1

− 2
Γ (E − E0)− i =

−Γ/2

(E − E0) + iΓ/2

|fl|2 =
Γ2/4

(E − E0)2 + Γ2/4
(A.102)

If at E ∼ E0, the partial wave l is dominant, the cross section so we have

σtotl =
4π

k2
(2l + 1)

Γ2/4

(E − E0)2 + Γ2/4
(A.103)

Generally the partial wave amplitude can be written as

fl =
1

2i
(ηle

2iδl − 1) =
i

2
− i

2
ηle

2iδl (A.104)

The amplitude fl can be plotted on the Argand plot of Imfl versus Refl. The center of the circle is
at (0, i/2). The resonant energy is located at (0, i(1 + ηl)/2) which corresponds to δl = π/2.

A.6 Scatterings of identical particles

There are two cases for scatterings of identical particles.
(1) Two incident particles with spin-0. One cannot distinguish which particle is captured by the

detector. The di�erential cross section is then

dσ

dΩ
= |f(θ) + f(π − θ)|2 (A.105)

In the c.m.s frame, the di�erential cross section is symmetric with respect to θ = π/2. In terms of
the partial wave decomposition, the di�erential cross section can be written

dσ

dΩ
=

1

4k2

∣∣∣∣∣
∞∑
l=0

(2l + 1) {exp[2iδl(k)]− 1} [Pl(cos θ) + Pl(− cos θ)]

∣∣∣∣∣
2

=
1

4k2

∣∣∣∣∣
∞∑

l=even

(2l + 1) {exp[2iδl(k)]− 1}Pl(cos θ)

∣∣∣∣∣
2

(A.106)
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Figure A.3: Argand plot for the partial wave amplitude. (a) ηl = 1; (b) ηl < 1.

resonant−energy

Imf_lImf_l

i/2 i/2

f_l

2delta_l

f_l

resonant−energy

Ref_l Ref_l

2delta_l

eta
_l

eta
_l=

1

Figure A.4: Identicle scatterings.

θ

ba

θ

ba

a

b a

b



APPENDIX A. NUCLEON-NUCLEON SCATTERING THEORY 215

Figure A.5: Scatterings of identical spin-1/2 particles.

θ

ba

θ

a b

θ

ba

θ

ba

where we have used Eq. (A.40) and Pl(− cos θ) = (−1)lPl(cos θ).
(2) Scatterings of two identical spin-1/2 particles. The wave function of two fermions are anti-

symmetric. The spin states are S = 0 and 1. For S = 0, the spatial wave function must be symmetric.
For S = 1, the spatial wave function must be anti-symmetric. So we have

dσ

dΩ
= |f(θ) + f(π − θ)|2, S = 0

dσ

dΩ
= |f(θ)− f(π − θ)|2, S = 1 (A.107)

For the second line, the partial wave decomposition reads

dσ

dΩ
=

1

4k2

∣∣∣∣∣
∞∑

l=odd

(2l + 1) {exp[2iδl(k)]− 1}Pl(cos θ)

∣∣∣∣∣
2

(A.108)

If the incident particles are not polarized, the probability in spin-0 state is 1/4, while that in spin-1
state is 3/4. So the total di�erential cross section is(

dσ

dΩ

)
tot

=
1

4

(
dσ

dΩ

)
S=0

+
3

4

(
dσ

dΩ

)
S=1

(A.109)

A.7 Lippman-Schwinger equation and Green function method

We now introduce another method for scattering problems: Lippman-Schwinger or Green func-
tion method. This method is suitable for high energy particle scatterings. The time-independent
Schrödinger equation reads

(∇2 + k2)ψ(r) = U(r)ψ(r) (A.110)

where k2 = 2mE and U(r) = 2mV (r). The wave function satis�es the boundary condition at r →∞,
Eq. (A.4). The solution ψ(r) is composed of a general solution of the homogeneous equation and a
special solution of the full equation,

ψ(r) = φk(r) +

∫
d3r1G0(r− r1)U(r1)ψ(r1) (A.111)
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where φk(r) is a general solution of
(∇2 + k2)φk(r) = 0

The Green function G0(r− r′) satis�es

(∇2 + k2)G0(r− r1) = δ3(r− r1) (A.112)

Obviously one can verify that ψ(r) of the form in Eq. (A.111) obey the Schrödinger equation. Eqs.
(A.111) can be written in a symbolic form

|ψ〉 = |φ〉+G0U |ψ〉
where |ψ〉 can be solved by

|ψ〉 = (1−G0U)−1 |φ〉 = (1 +GU) |φ〉 (A.113)

Note that G0 and U can thought of matrices in symbolic space. Here we have de�ned the full Green
function G,

G = (1−G0U)−1G0

The Green function G satis�es

[∇2 + k2 − U(r)]G(r− r1) = δ3(r− r1) (A.114)

So we can verify that |ψ〉 satis�es Eq. (A.110).
We can solve G0(r− r1) as

G0(r) = −
∫

d3q

(2π)3
eiq·r

1

q2 − k2
= − 1

(2π)2

∫
dqdθ sin θeiqr cos θ q2

q2 − k2

=
i

(2π)2

1

r

∫ ∞
0

dq
q

q2 − k2

∫ 1

−1

d(iqr cos θ)eiqr cos θ

=
i

(2π)2

1

r

∫ ∞
0

dq
q

q2 − k2
(eiqr − e−iqr) =

i

(2π)2

1

r

∫ ∞
−∞

dq
qeiqr

q2 − k2

=
i

2(2π)2

1

r

∫ ∞
−∞

dqeiqr
(

1

q − k +
1

q + k

)
(A.115)

We can extend q to compex plane and make it to the contour integral along C. To make the integral
converge, we assume Imq > 0 close the contour in the upper plane because eiqr → 0 in the upper half
circle at r → ∞. There are four contours C1,2,3,4. The integrals of contour C1,2,3 give contributions
proportional to eikr+e−ikr, 0, and e−ikr respectively. For the outgoing wave we need the contribution
proportional to eikr which comes only from C4. The choice of C4 can be implemented by making the
replacement 1

q2−k2 → 1
q2−k2−iε . Eq. (A.115) can be carried out

G0(r) = − 1

4π

1

r
eikr (A.116)

If we treat the potential as perturbation, i.e. we take Born approximation, in the leading order
Eq. (A.111) or (A.113) becomes

ψ(r) ≈ φk(r)− 1

4π

∫
d3r1

1

|r− r1|
eik|r−r1|U(r1)φk(r1)

≈ φk(r)− 1

4π

∫
d3r1

1

r − r1 cos θ
eik(r−r1 cos θ)U(r1)φk(r1)

≈ eik·r − 1

4πr
eikr

∫
d3r1e

−i(kf−k)·r1U(r1) (A.117)

where kf = kr/r. The scattering amplitude is then

f(kf ,k) = − 1

4π

∫
d3r1e

−i(kf−k)·r1U(r1) = − 1

4π
Ũ(kf − k) (A.118)
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Figure A.6: The possible contours for the integral in Eq. (A.115).
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Appendix B

A: Bessel functions

The Bessel equation reads

d2y

dx2
+

1

x

dy

dx
+

(
1− ν2

x2

)
y = 0 (B.1)

where ν and x are any complex number. The solutions are the Bessel functions Jν(x) of the �rst
kind,

Jν(x) =

∞∑
k=0

(−1)k
1

k!

1

Γ(ν + k + 1)

(x
2

)2k+ν

(B.2)

If ν is not an integer, then J−ν(x) is another independent solution. If Jν(x) = n an integer, then we
have

J−n(x) =

∞∑
k=0

(−1)k
1

k!

1

Γ(−n+ k + 1)

(x
2

)2k−n

=

∞∑
l=0

(−1)l+n
1

(l + n)!

1

l!

(x
2

)2l+n

= (−1)nJn(x) = Jn(−x) (B.3)

where we have used the fact that 1/(−l)! = 0 with l > 0. This means Jn(x) and J−n(x) are basically
the same solution of the Bessel equation. Another independent solution is the Bessel function of
second kind. When x is real, Jn(x) is an oscillating function with a damping amplitude.

The generating function of Bessel functions is

ex(t−t−1)/2 =

∞∑
n=−∞

Jn(x)tn, (0 < |t| <∞) (B.4)

One can write it in a di�erent way by using t = ieϕ, x = kr,

eikr cos θ =

∞∑
n=−∞

Jn(kr)ineinθ

= J0(kr) +

∞∑
n=1

[
Jn(kr)ineinθ + J−n(kr)i−ne−inθ

]
= J0(kr) + 2

∞∑
n=1

inJn(kr) cosnθ (B.5)
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where we have used J−n(x) = (−1)nJn(x).
The Bessel function of the second kind is de�ned by

Yν(x) =
Jν(x) cos νπ − J−ν(x)

sin νπ
(B.6)

If ν is not an integer, obviously Yν(x) is independent of Jν(x). One can prove that if ν = n, Yn(x) is
also an independent solution of Jn(x). Note that Yn(x) diverges at x = 0. For example, at x→ 0,

Y0(x) =
2

π
ln
x

2

Yn(x) = − (n− 1)!

π

(x
2

)−n
(B.7)

Bessel functions of third kind H
(1)
ν (x) and H

(2)
ν (x) are de�ned by

H(1)
ν (x) = Jν(x) + iYν(x)

H(2)
ν (x) = Jν(x)− iYν(x) (B.8)

The asymptotic forms of Bessel functions at |arg(x)| < π, |x| → ∞ are

Jν(x) =

√
2

πx
cos
(
x− νπ

2
− π

4

)
+O(x−3/2),

Yν(x) =

√
2

πx
sin
(
x− νπ

2
− π

4

)
+O(x−3/2),

H(1)
ν (x) =

√
2

πx
exp

[
i
(
x− νπ

2
− π

4

)]
+O(x−3/2),

H(2)
ν (x) =

√
2

πx
exp

[
−i
(
x− νπ

2
− π

4

)]
+O(x−3/2), (B.9)

The spherical Bessel functions are solutions of

d2y

dx2
+

2

x

dy

dx
+

[
1− l(l + 1)

x2

]
y = 0 (B.10)

Using y(x) = x−1/2η(x) and

dy

dx
= −1

2

1

x
√
x
η(x) +

1√
x

dη(x)

dx

d2y

dx2
=

3

4
x−5/2η(x)− x−3/2η′(x) + x−1/2η′′(x)

d2y

dx2
+

2

x

dy

dx
=

3

4
x−5/2η(x)− x−3/2η′(x) + x−1/2η′′(x)

+
2

x

[
−1

2

1

x
√
x
η(x) +

1√
x

dη(x)

dx

]
= −1

4
x−5/2η(x) + x−3/2η′(x) + x−1/2η′′(x) (B.11)

Then the spherical Bessel equation becomes the Bessel one

d2y

dx2
+

2

x

dy

dx
+

[
1− l(l + 1)

x2

]
y

= x−1/2

[
d2η

dx2
+

1

x

dη

dx
+

(
1− (l + 1/2)2

x2

)
η

]
= 0 (B.12)
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whose solution is the Bessel function η ∼ Jl+1/2, Yl+1/2. The solutions y = x−1/2η(x) to the spherical
Bessel equation are spherical Bessel functions

jl(x) =

√
π

2x
Jl+1/2(x)

nl(x) =

√
π

2x
Yl+1/2(x)

h
(1)
l =

√
π

2x
H

(1)
l+1/2(x) = jl(x) + inl(x)

h
(2)
l =

√
π

2x
H

(2)
l+1/2(x) = jl(x)− inl(x) (B.13)

They satisfy

ψl−1 + ψl+1 =
2l + 1

x
ψl

lψl−1 − (l + 1)ψl+1 = (2l + 1)ψ′l (B.14)

where ψl stands for jl(x), nl(x), h
(1)
l or h

(2)
l .

We can expand the plane wave eikz in terms of Legendre polynomials

eikr cos θ =

∞∑
l=0

cl(kr)Pl(cos θ)

where

cl(kr) =
2l + 1

2

∫ 1

−1

dxeikrxPl(x)

=
2l + 1

2l+1

1

l!

∫ 1

−1

dxeikrx
dl

dxl
(x2 − 1)l

=
2l + 1

2l+1

1

l!
(−ikr)

∫ 1

−1

dxeikrx
dl−1

dxl−1
(x2 − 1)l

=
2l + 1

2l+1

1

l!
(−ikr)l

∫ 1

−1

dxeikrx(x2 − 1)l

=
2l + 1

2l+1

1

l!
(−ikr)l

∞∑
m=0

(ikr)m

m!

∫ 1

−1

dxxm(x2 − 1)l

=
2l + 1

2l+1

1

l!
(−ikr)l2

∞∑
s=0

(ikr)2s

(2s)!

∫ 1

0

dxx2s(x2 − 1)l (B.15)

where we have used

dl−n

dxl−n
(x2 − 1)l

∣∣∣∣1
−1

= 0 (B.16)

where n = 1, 2, ..., l − 1. The integral is evaluated as∫ 1

−1

dxx2s(x2 − 1)l = (−1)l
1

2

∫ 1

0

duus−1/2(1− u)l

= (−1)l
1

2

Γ(s+ 1/2)F (l + 1)

Γ(l + s+ 3/2)

=
(−1)ll!(2s)!

√
π

22s+1s!Γ(l + s+ 3/2)
(B.17)
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where we have used

Γ(s+ 1/2) = Γ(2s+ 1)2−2s
√
π/Γ(s+ 1) =

(2s)!
√
π

22ss!
(B.18)

Eq. (B.15) becomes

cl(kr) =
2l + 1

2
il(kr/2)l

∞∑
s=0

(−1)s(kr/2)2s

√
π

s!Γ(l + s+ 3/2)

= (2l + 1)il
√

π

2kr

∞∑
s=0

(−1)s(kr/2)2s+l+1/2 1

s!Γ(l + s+ 3/2)

= (2l + 1)il
√

π

2kr
Jl+1/2(kr) = (2l + 1)iljl(kr) (B.19)



Appendix C

B: Spherical harmonic functions

A few lowest order harmonic functions. The Legendre and associated Legendre polynomials are given
by

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l

Pml (x) = (1− x2)m/2
dm

dxm
Pl(x)

=
(1− x2)m/2

2ll!

dl+m

dxl+m
(x2 − 1)l

Note that for the associated Legendre functions, the �rst equality holds for l ≥ m ≥ 0, but the second
one holds for all |m| ≤ l. They satisfy

Pl(−x) = (−1)lPl(x)∫ 1

−1

dxPl(x)Pk(x) =
2

2l + 1
δlk∫ 1

−1

dxPml (x)Pmk (x) =
(l +m)!

(l −m)!

2

2l + 1
δlk

A few lowest order terms are

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 − 1),

P3(x) =
1

2
(5x3 − 3x), P4(x) =

1

8
(35x4 − 30x2 + 3)

P5(x) =
1

8
(63x5 − 70x3 + 15x),

P6(x) =
1

16
(231x6 − 315x4 + 105x2 − 5)

The spherical harmonic functions are de�ned

Ylm = (−1)m
√

2l + 1

4π

√
(l −m)!

(l +m)!
Pml (cos θ)eimϕ, |m| ≤ l

Y ∗lm = (−1)mYl,−m

For m 6= 0, we have

Yl,0 =

√
2l + 1

4π
Pl(cos θ)

222



APPENDIX C. B: SPHERICAL HARMONIC FUNCTIONS 223

The orthogonal and complete property,∫
dΩY ∗lmYl′m′ = δll′δmm′

A few lowest order functions

Y00 =

√
1

4π

Y10 =

√
3

4π
cos θ, Y1,±1 = ∓

√
3

8π
sin θe±iϕ

Y20 =
1

2

√
5

4π
(3 cos2 θ − 1), Y2,±1 = ∓

√
15

8π
sin θ cos θe±iϕ,

Y2,±2 =
1

2

√
15

8π
sin2 θe±2iϕ

Vector spherical harmonic functions are

YLlM (θ, φ) =
∑
m,n

CLMlm,1nYlm(θ, φ)en (C.1)

The gradient formula

∇[f(r)Ylm(θ, φ)] = Ylm∇f(r) + f(r)∇Ylm
= f ′(r)r̂Ylm + eθf(r)

1

r

∂Ylm
∂θ

+ eφf(r)
1

r sin θ

∂Ylm
∂φ

where we have used

∇ = er
∂

∂r
+ eθ

∂

r∂θ
+ eφ

∂

r sin θ∂φ

∂Ylm
∂θ

= (−1)m+1 1

sin θ

√
2l + 1

4π

√
(l −m)!

(l +m)!
sin2 θ

d

d cos θ
Pml (cos θ)eimφ

= (−1)m+1 1

sin θ

√
2l + 1

4π

√
(l −m)!

(l +m)!

×
[

(l + 1)(l +m)

2l + 1
Pml−1(cos θ)− l(l −m+ 1)

2l + 1
Pml+1(cos θ)

]
eimφ

= − 1

sin θ
(l + 1)

√
(l −m)(l +m)

(2l − 1)(2l + 1)
Yl−1,m +

1

sin θ
l

√
(l −m+ 1)(l +m+ 1)

(2l + 1)(2l + 3)
Yl+1,m

=
1

sin θ
(−c1Yl−1,m + c2Yl+1,m)

∂Ylm
∂φ

= imYlm

eθ = ex cos θ cosφ+ ey cos θ sinφ− ez sin θ

= −e1
1√
2

cos θe−iφ + e−1
1√
2

cos θeiφ − ez sin θ

eφ = −ex sin θ + ey cos θ

=
1√
2

(sin θ + i cos θ)e1 +
1√
2

(− sin θ + i cos θ)e−1

ex =
1√
2

(−e1 + e−1)

ey =
i√
2

(e1 + e−1)
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We obtain

eθf(r)
1

r

∂Ylm
∂θ

+ eφf(r)
1

r sin θ

∂Ylm
∂φ

=
f(r)

r sin θ
(−c1Yl−1,m + c2Yl+1,m)(

−e1
1√
2

cos θe−iφ + e−1
1√
2

cos θeiφ − ez sin θ

)
+
f(r)

r sin θ
imYlm

[
1√
2

(sin θ + i cos θ)e1 +
1√
2

(− sin θ + i cos θ)e−1

]



Appendix D

Solutions to problems

Exercises in (6.3.2). We use S12 = T ijσ1iσ2j = 2T ijSiSj where T
ij = 3r̂ir̂j−δij and Si = 1

2 (σ1i+σ2i).
We can express the total spin operators in terms of ladder operators S± = S1 ± iS2 with

S±χ1,m =
√

(1∓m)(1±m+ 1)χ1,m±1

S±χ1,1 = 0,
√

2χ1,0

S±χ1,0 =
√

2χ1,±1

S±χ1,−1 =
√

2χ1,0, 0

with

S1 =
1

2
(S+ + S−)

S2 =
1

2i
(S+ − S−)

S2
1 =

1

4
(S2

+ + S2
− + S+S− + S−S+)

S1S2 = − i
4

(S2
+ − S2

− − S+S− + S−S+)

S2
2 = −1

4
(S2

+ + S2
− − S+S− − S−S+)

S2S1 = − i
4

(S2
+ − S2

− + S+S− − S−S+)

We get

SiSjχ1,1 =

 1
2 (χ1,−1 + χ1,1) i

2 (χ1,−1 + χ1,1)
√

2
2 χ1,0

i
2 (χ1,−1 − χ1,1) 1

2 (−χ1,−1 + χ1,1)
√

2
2 iχ1,0

0 0 χ1,1


SiSjχ1,0 =

 χ1,0 0 0
0 χ1,0 0√

2
2 (χ1,1 − χ1,−1) −

√
2

2 i(χ1,1 + χ1,−1) 0


SiSjχ1,−1 =

 1
2 (χ1,1 + χ1,−1) − i

2 (χ1,1 + χ1,−1) −
√

2
2 χ1,0

− i
2 (χ1,1 − χ1,−1) − 1

2 (χ1,1 − χ1,−1) i
√

2
2 χ1,0

0 0 χ1,−1
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where we have used for χ1,1,

S1S1χ1,1 =
1

4
(S2
− + S+S−)χ1,1 =

1

2
(χ1,−1 + χ1,1)

S1S2χ1,1 =
i

4
(S2
− + S+S−)χ1,1 =

i

2
(χ1,−1 + χ1,1)

S1S3χ1,1 = S1χ1,1 =
1

2
(S+ + S−)χ1,1 =

√
2

2
χ1,0

S2S1χ1,1 =
i

4
(S2
− − S+S−)χ1,1 =

i

2
(χ1,−1 − χ1,1)

S2S2χ1,1 = −1

4
(S2
− − S+S−)χ1,1 =

1

2
(−χ1,−1 + χ1,1)

S2S3χ1,1 = − 1

2i
S−χ1,1 =

√
2

2
iχ1,0

S3S1χ1,1 =
1

2
S3(S+ + S−)χ1,1 =

1

2
S3(S+ + S−)χ1,1 = 0

S3S2χ1,1 =
1

2i
S3(S+ − S−)χ1,1 = 0

S3S3χ1,1 = χ1,1

and for χ1,0,

S1S1χ1,0 =
1

4
(S+S− + S−S+)χ1,0 = χ1,0

S1S2χ1,0 = − i
4

(−S+S− + S−S+)χ1,0 = 0

S1S3χ1,0 = 0

S2S1χ1,0 = − i
4

(S+S− − S−S+)χ1,0 = 0

S2S2χ1,0 = −1

4
(−S+S− − S−S+)χ1,0 = χ1,0

S2S3χ1,0 = 0

S3S1χ1,0 =
1

2
S3(S+ + S−)χ1,0 =

√
2

2
(χ1,1 − χ1,−1)

S3S2χ1,0 =
1

2i
S3(S+ − S−)χ1,0 = −

√
2

2
i(χ1,1 + χ1,−1)

S3S3χ1,0 = 0
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and for χ1,−1,

S1S1χ1,−1 =
1

4
(S2

+ + S−S+)χ1,−1 =
1

2
(χ1,1 + χ1,−1)

S1S2χ1,−1 = − i
4

(S2
+ + S−S+)χ1,−1 = − i

2
(χ1,1 + χ1,−1)

S1S3χ1,−1 = −1

2
(S+ + S−)χ1,−1 = −

√
2

2
χ1,0

S2S1χ1,−1 = − i
4

(S2
+ − S−S+)χ1,−1 = − i

2
(χ1,1 − χ1,−1)

S2S2χ1,−1 = −1

4
(S2

+ − S−S+)χ1,−1 = −1

2
(χ1,1 − χ1,−1)

S2S3χ1,−1 = i
1

2
(S+ − S−)χ1,−1 = i

√
2

2
χ1,0

S3S1χ1,−1 =
1

2
S3(S+ + S−)χ1,−1 = 0

S3S2χ1,−1 =
1

2i
S3(S+ − S−)χ1,−1 = 0

S3S3χ1,−1 = χ1,−1

Then we obtain

S12φ
11
S = 2

1√
4π
T ijSiSjχ1,1

= 2
1√
4π

[
T 11 1

2
(χ1,−1 + χ1,1) + T 12 i

2
(χ1,−1 + χ1,1) + T 13

√
2

2
χ1,0

+T 21 i

2
(χ1,−1 − χ1,1) + T 22 1

2
(−χ1,−1 + χ1,1) + T 23

√
2

2
iχ1,0 + T 33χ1,1

]

=
1√
4π

[(
T 11 − T 22 + i2T 12

)
χ1,−1 +

√
2(T 13 + iT 23)χ1,0 + T 33χ1,1

]
=
√

8φ11
D

S12φ
10
S = 2

1√
4π
T ijSiSjχ1,0

= 2
1√
4π

[
T 11χ1,0 + T 22χ1,0 + T 31

√
2

2
(χ1,1 − χ1,−1)− T 32

√
2

2
i(χ1,1 + χ1,−1)

]

=
1√
4π

[
2
(
T 11 + T 22

)
χ1,0 +

√
2(T 13 − iT 23)χ1,1 −

√
2(T 13 + iT 23)χ1,−1

]
=
√

8φ10
D
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S12φ
1,−1
S = 2

1√
4π
T ijSiSjχ1,−1

= 2
1√
4π

[
T 11 1

2
(χ1,1 + χ1,−1)− iT 12χ1,1 − T 13

√
2

2
χ1,0

−T 22 1

2
(χ1,1 − χ1,−1) + iT 23

√
2

2
χ1,0 + T 33χ1,−1

]

=
1√
4π

[(
T 11 − T 22 − i2T 12

)
χ1,1 +

√
2(−T 13 + iT 23)χ1,0 + T 33χ1,−1

]
=
√

8φ1,−1
D

where φ1m
D are given by

φ11
D =

∑
m1,m2

c(1;m1,m2)Y2m1(θ, ϕ)χ1m2

=

√
3

5
Y2,2(θ, ϕ)χ1,−1 −

√
3

10
Y2,1(θ, ϕ)χ1,0 +

√
1

10
Y2,0(θ, ϕ)χ1,1

=

√
3

5

1

4

√
15

2π

1

3

(
T 11 − T 22 + i2T 12

)
χ1,−1 +

√
3

10

√
15

8π

1

3

(
T 13 + iT 23

)
χ1,0 +

√
1

10

1

2

√
5

4π
T 33χ1,1

=
1

4

1√
2π

(
T 11 − T 22 + i2T 12

)
χ1,−1 +

1

4

1√
π

(
T 13 + iT 23

)
χ1,0 +

1

4

1√
2π
T 33χ1,1

=
1√
4π

1√
8

[(
T 11 − T 22 + i2T 12

)
χ1,−1 +

√
2(T 13 + iT 23)χ1,0 + T 33χ1,1

]

φ10
D =

∑
m1,m2

c(0;m1,m2)Y2m1
(θ, ϕ)χ1m2

=

√
3

10
Y2,1(θ, ϕ)χ1,−1 −

√
2

5
Y2,0(θ, ϕ)χ1,0 +

√
3

10
Y2,−1(θ, ϕ)χ1,1

= −
√

3

10

√
15

8π

1

3

(
T 13 + iT 23

)
χ1,−1 −

√
2

5

1

2

√
5

4π
T 33χ1,0 +

√
3

10

√
15

8π

1

3

(
T 13 − iT 23

)
χ1,1

= − 1

4
√
π

(
T 13 + iT 23

)
χ1,−1 −

√
2

2
√
π
T 33χ1,0 +

1

4
√
π

(
T 13 − iT 23

)
χ1,1

=
1√
4π

1√
8

[
−
√

2
(
T 13 + iT 23

)
χ1,−1 − 4T 33χ1,0 +

√
2
(
T 13 − iT 23

)
χ1,1

]

φ1,−1
D =

∑
m1,m2

c(−1;m1,m2)Y2m1
(θ, ϕ)χ1m2

=

√
3

5
Y2,−2(θ, ϕ)χ1,1 −

√
3

10
Y2,−1(θ, ϕ)χ1,0 +

√
1

10
Y2,0(θ, ϕ)χ1,−1

=

√
3

5

1

4

√
15

2π

1

3

(
T 11 − T 22 − i2T 12

)
χ1,−1 −

√
3

10

√
15

8π

1

3

(
T 13 − iT 23

)
χ1,0 +

√
1

10

1

2

√
5

4π
T 33χ1,−1

=
1

4

1√
2π

(
T 11 − T 22 − i2T 12

)
χ1,−1 −

1

4

1√
π

(
T 13 − iT 23

)
χ1,0 +

1

4

1√
2π
T 33χ1,1

=
1√
4π

1√
8

[(
T 11 − T 22 − i2T 12

)
χ1,−1 −

√
2(T 13 − iT 23)χ1,0 + T 33χ1,1

]
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Now we have proved S12φ
1m
S =

√
8φ1m

D . By acting S12 on it again and use

S2
12 = [3(r̂ · σ1)(r̂ · σ2)− (σ1 · σ2)][3(r̂ · σ1)(r̂ · σ2)− (σ1 · σ2)]

= 9 + (σ1 · σ2)2 − 3(r̂ · σ1)σ1i(r̂ · σ2)σ2i − 3σ1i(r̂ · σ1)σ2i(r̂ · σ2)

= 9 + (σ1 · σ2)2 − 3r̂ar̂c(δia − iεiabσ1b)(δic − iεicdσ2d)− 3r̂ar̂c(δia + iεiabσ1b)(δic + iεicdσ2d)

= 3 + (σ1 · σ2)2 + 3r̂ar̂cεiabεicdσ1bσ2d + 3r̂ar̂cεiabεicdσ1bσ2d

= 3 + (σ1 · σ2)2 + 6r̂ar̂c(δacδbd − δadδbc)σ1bσ2d

= 3 + (σ1 · σ2)2 + 6(δbd − r̂br̂d)σ1bσ2d

= 3 + (σ1 · σ2)2 − 4(σ1 · σ2)− 2S12

= (σ1 · σ2 + 2)2 − 1− 2S12

we get

S2
12φ

1m
S =

√
8S12φ

1m
D = 8φ1m

S − 2S12φ
1m
S

S12φ
1m
D =

√
8φ1m

S − 2φ1m
D

Exercises in (3.6).
In order to change the life of the energy level in second into the energy width in eV, we use the

relation in the natural unit, c = 3× 1023 fm/s = 1, which gives 1 s = 3× 1023 fm. So the width is

Γ ∼ 1

τ
≈ 1

1.4× 3× 1013
fm−1 ≈ 197

1.4× 3× 1013
MeV ≈ 4.7× 10−12 MeV

The recoil energy is about

ER =
p2

2m
≈ (0.12)2

2× 191× 940
MeV ≈ (0.12)2

2× 191× 940
MeV ≈ 4× 10−8 MeV

For the resonant absorption to take place, one need at least

N ∼ 4× 10−8

4.7× 10−12
≈ 8.5× 103

atoms to reduce the recoil energy.
Exercises in (3.5). For the γ-decay 2+ → 1−, according to the parity selection rule, PiPf =

(−1)L, (−1)L+1 for EL and ML radiation which requires L be odd and even for EL and ML radiation
respectively. E1 and M2 are the lowest possible radiation. But the strength of M2 is much less than
E1. So the answer is E1 radiation.
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