
数字图像处理作业四

夏厚 PB18051031

2021 年 5 月 8 日

1 实验原理

1.1 图像金字塔

以多个分辨率来表示图像的一种结构时图像金字塔，这种结构非常有

效，且概念简单。图像金字塔最初用于机器视觉和图像压缩，是一系列以金

字塔形状排列的、分辨率逐渐降低的图像集合。金字塔底部是待处理图像的

高分辨率表示，顶部是一个低分辨率近似。向金字塔上层移动，尺寸和分辨

率逐步降低。基础图像大小为 N ×N，P+1 级金字塔中的像素总数是

N2

(
1 +

1

(4)1
+

1

(4)2
+ · · ·+ 1

(4)p

)
⩽ 4

3
N2

近似和预测残差金字塔都以一种迭代方式进行计算。

图 1: 创建近似和预测残差金字塔的简单系统

• 步骤 1 计算第 j 级输入图像分辨率降低的近似。这可以通过滤波并对

滤波后的结果以 2 为基进行下采样来完成。得到近似金字塔的第 j− 1

级。

1

• 步骤 2 由步骤 1 产生的分辨率降低的近似，创建第 j 级输入图像的一

个估计。对产生的近似与第 j 级图像进行上采样和滤波。

• 步骤 3 计算步骤 2 的预测图像和步骤 1 的输入之间的差。结果便是预
测残差金字塔的第 j 级。

其中上采样序列 f2↑(n) 如下式定义:

f2↑(n) =

{
f(n/2), n is even

0, else

下采样的互补操作定义为:

f2↓(n) = f(2n)

上采样可以视为在序列中的每个样本后插入以 0；下采样可以视为每隔一个
样本就丢弃一个样本。

1.2 二维快速小波变换

类似于一维离散小波变换，二维 DWT 可以用数字滤波器和下取样器
来实现。利用可分的二维尺度函数和小波函数，可以先简单地取 f(x, y) 的

行的一维 FWT，然后，取结果列的一维 FWT。如下图：

图 2: 分析滤波器组

f(x, y) 被用作 Wφ(J,m, n) 的输入。得到四幅 1/4 大小的输出子图像
——Wφ,WH

ψ ,W V
ψ ,WD

φ 如图 3：
其中 Wφ 是对原图的近似；WH

ψ ,W V
ψ ,WD

φ 分别是原图水平、垂直和对角方

向的细节。反向处理的综合滤波器组如图 4：

2

图 3: 分解结果

图 4: 综合滤波器组

2 实验内容

2.1 构建图像金字塔，复现图 7.3

产生花瓶图像的 4级近似金字塔时，使用低通高斯平滑滤波器，并进行
下取样操作。由于类似高斯滤波器对图像进行滤波，在前面的实验中有所涉

及，此处采用 MATLAB 的内置函数进行高斯滤波和下采样。得到的金字塔
包含 512× 512 分辨率的原图，和 3 个低分辨率的近似图像。
可以看到，金字塔的分辨率越低，伴随的细节就越少。通常，金字塔的

低分辨率级别用于分析较大的结构或图像的整体内容；而高分辨率图像适

合于分析单个物体的特性。

使用双线性内插滤波器用于产生预测残差金字塔。此处使用的双线性

内插滤波器是直接调用前面实验写过的双线性内插函数。

代码：

1 c l c ;

3

图 5: 近似金字塔

图 6: 预测残差金字塔

2 c l e a r ;
3 c l o s e a l l ;
4 f i l ename = ’demo−1 ’ ; %测试图像 2
5 img1 = uint8 (imread ([f i l ename , ’ . jpg ’])) ;
6 img1 = im2gray (img1) ;
7 [M,N]= s i z e (img1) ;
8 w=f s p e c i a l (’ gauss ian ’ , [3 3]) ;
9 img2=i m r e s i z e (i m f i l t e r (img1 ,w) , [M/2 N/ 2]) ;

10 img3=i m r e s i z e (i m f i l t e r (img2 ,w) , [M/4 N/ 4]) ;
11 img4=i m r e s i z e (i m f i l t e r (img3 ,w) , [M/8 N/ 8]) ;

4

12 imshow (img1) ;
13 imwrite ((img1) , s p r i n t f (’ r e s u l t/%s . jpg ’ , ’ img1 ’)) ;
14 f i gu r e , imshow (img2) ;
15 imwrite ((img2) , s p r i n t f (’ r e s u l t/%s . jpg ’ , ’ img2 ’)) ;
16 f i gu r e , imshow (img3) ;
17 imwrite ((img3) , s p r i n t f (’ r e s u l t/%s . jpg ’ , ’ img3 ’)) ;
18 f i gu r e , imshow (img4) ;
19 imwrite ((img4) , s p r i n t f (’ r e s u l t/%s . jpg ’ , ’ img4 ’)) ;
20 % imhi s t (img2) ; t i t l e (’近似图像直方图 ’) ;
21 img13=(img3−myBil inear (img4 ,2)+128) ;
22 f i gu r e , imshow (uint8 (img13)) ;
23 imwrite ((img13) , s p r i n t f (’ r e s u l t/%s . jpg ’ , ’ img13 ’)) ;
24 img12=(img2−myBil inear (img3 ,2)+128) ;
25 % imhi s t (img3−myBil inear (img4 ,2)+128) ; t i t l e (’近似图像直方图 ’) ;
26 f i gu r e , imshow (img12) ;
27 imwrite ((img12) , s p r i n t f (’ r e s u l t/%s . jpg ’ , ’ img12 ’)) ;
28 img11=img1−myBil inear (img2 ,2)+128 ;
29 f i gu r e , imshow (img11) ;
30 imwrite ((img11) , s p r i n t f (’ r e s u l t/%s . jpg ’ , ’ img11 ’)) ;

2.2 计算二维快速小波变换，并完成基于小波的边缘检测

实验中用到的 hφ(n) 正交归一化四阶对称小波滤波器系数如图 7：

图 7: hφ(n) 滤波器系数

5

原图像作为实验原理中所述分析滤波器的输入，输出 4 个 1/4 大小的
分解输出（即近似、水平、垂直和对角线)。类似的过程产生二尺度 FWT，此
时滤波器的输入变为一尺度输出的左上角近似图像。同理得到三尺度 FWT
结果。每次通过滤波器组，便会产生 4 个大小为 1/4 的输出图像。

图 8: 教材图 7.25 复现结果 (依次为原图、一尺度 FWT)

图 9: 教材图 7.25 复现结果 (依次为、二尺度 FWT、三尺度 FWT)

基于小波的边缘检测将前面得到的离散小波变换的近似分量置零，并通

过实验原理中所述的综合滤波器组进行反变换，最终效果是边缘增强。进一

步将水平细节置零，可以孤立出垂直边缘。

代码分为三个 MATLAB 文件，其中主函数位于 picture_7_25，分析

滤波器组与综合滤波器组独立成函数，分别位于 tranfor,intranfor 文件

6

图 10: 教材图 7.27 复现结果 (近似分量置零并反变换)

图 11: 教材图 7.27 复现结果 (进一步将水平细节置零并反变换)

中。下附主函数代码：

1 c l c ;
2 c l e a r ;
3 c l o s e a l l ;
4 f i l ename = ’demo−2 ’ ; %测试图像 2
5 img1 = uint8 (imread ([f i l ename , ’ . t i f ’])) ;
6 img1 = im2gray (img1) ;
7 [M,N]= s i z e (img1) ;
8

9 %%%%%

7

10 %以下块代码对图 7 .25进行复现
11 %%%%%
12 % imwrite ((img1) , s p r i n t f (’ r e s u l t/%s . jpg ’ , ’7_25_img1 ’)) ;
13 [img_1 img_2 img_3 img_4]= t r a n s f o r (img1 ,M,N) ;
14 img2=[img_1 img_2+128;img_3+128 img_4+128] ;
15 imshow (img2) ;
16 % imwrite ((img2) , s p r i n t f (’ r e s u l t/%s . jpg ’ , ’7_25_img2 ’)) ;
17 [img_5 img_6 img_7 img_8]= t r a n s f o r (img_1 ,M/2 ,N/ 2) ;
18 img33=[img_5 img_6+128;img_7+128 img_8+128] ;
19 img3=[img33 img_2+128;img_3+128 img_4+128] ;
20 f i g u r e ; imshow (img3) ;
21 % imwrite ((img3) , s p r i n t f (’ r e s u l t/%s . jpg ’ , ’7_25_img3 ’)) ;
22 [img_9 img_10 img_11 img_12]= t r a n s f o r (img_5 ,M/4 ,N/ 4) ;
23 img444=[img_9 img_10+128; img_11+128 img_12 +128] ;
24 img44=[img444 img_6+128;img_7+128 img_8+128] ;
25 img4=[img44 img_2+128;img_3+128 img_4+128] ;
26 f i g u r e ; imshow (img4) ;
27 % imwrite ((img4) , s p r i n t f (’ r e s u l t/%s . jpg ’ , ’7_25_img4 ’)) ;
28

29 %%%%%%
30 %复现图 7 .27第1 .2 图像请取消以下块代码注释
31 %%%%%%
32 % img_5=zeros (M/4 ,N/4) ;
33 % img33=[img_5 img_6+128;img_7+128 img_8+128];
34 % img3=[img33 img_2+128;img_3+128 img_4+128];
35 % f i g u r e ; imshow (img3) ;
36 % % imwrite ((img3) , s p r i n t f (’ r e s u l t/%s . jpg ’ , ’7_27_img1 ’)) ;
37 % im7_27_img22=i n t r a n s f o r (img_5 , img_6 , img_7 , img_8 ,M/4 ,N/4) ;
38 % im7_27_img2=i n t r a n s f o r (im7_27_img22 , img_2 , img_3 , img_4 ,M/2 ,N/2) ;
39 % f i g u r e ; imshow (u in t8 (im7_27_img2)+128);
40 % % imwrite ((u in t8 (im7_27_img2)+128) , s p r i n t f (’ r e s u l t/%s . jpg ’ , ’7_27_img2 ’)) ;
41

42 %%%%%%

8

43 %复现图 7 .27第3 .4 图像请取消以下块代码注释
44 %%%%%%
45 % img_5=zeros (M/4 ,N/4) ;
46 % img_6=zeros (M/4 ,N/4) ;
47 % img_2=zeros (M/2 ,N/2) ;
48 % img33=[img_5 img_6 ; img_7+128 img_8+128];
49 % img3=[img33 img_2 ; img_3+128 img_4+128];
50 % f i g u r e ; imshow (img3) ;
51 % % imwrite ((img3) , s p r i n t f (’ r e s u l t/%s . jpg ’ , ’7_27_img3 ’)) ;
52 % im7_27_img44=i n t r a n s f o r (img_5 , img_6 , img_7 , img_8 ,M/4 ,N/4) ;
53 % im7_27_img4=i n t r a n s f o r (im7_27_img44 , img_2 , img_3 , img_4 ,M/2 ,N/2) ;
54 % f i g u r e ; imshow (u in t8 (im7_27_img4)+128);
55 % % imwrite ((u in t8 (im7_27_img4)+128) , s p r i n t f (’ r e s u l t/%s . jpg ’ , ’7_27_img4 ’)) ;

3 总结

• 第一部分实验中涉及高斯滤波器，由于空域滤波器在前面的实验中有
涉及，本实验中为了提高程序运行效率，使用了 MATLAB 内置的滤
波器。

• 第二部分实验分析滤波器与综合滤波器由于都是自己手写的，还有很
大的优化空间。例如代码中使用了很多数组保存中间变量，出于时间

原因，我没有进行更多的优化。

9

