
实验 2 FFT 算法实现

夏厚 PB18051031

2.1 实验目的

I、加深对快速傅里叶变换的理解。

II、掌握 FFT 算法及其程序的编写。

III、掌握算法性能评测的方法。

IV、熟悉 MatLab 编程。

2.2 实验原理

一个连续信号 Xa(t)的频谱可以用它的傅里叶变换表示为：

如果对该信号进行理想采样，可以得到采样序列：

同样可以对该序列进行 z 变换，其中 T 为采样周期：

当 z=𝑒𝑗𝜔的时候，我们就得到了序列的傅里叶变换：

其中 w 称为数字频率，它和模拟域频域的关系为：

其中 fs 是采样频率。上式说明数字频率是模拟频率对采样率 fs 的归一化。同模拟域的

情况相似，数字频率代表了序列值变化的速率，而序列的傅立叶变换称为序列的频谱。

序列的傅立叶变换和对应的采样信号频谱具有下式的对应关系。

即序列的频谱是采样信号频谱的周期延拓。从上式可以看出，只要分析采样序列的频谱，

就可以得到相应的连续信号的频谱。

在各种信号序列中，有限长序列在数字信号处理中占有很重要的地位。无限长的序

列也往往可以用有限长序列来逼近。对于有限长的序列我们可以使用离散傅立叶（DFT），

这一变换可以很好地反应序列的频域特性，并且容易利用快速算法在计算机上实现当序

列的长度是 N 时，我们定义离散傅立叶变换为：

其中𝑊𝑁=𝑒−2𝛱𝑗/𝑁，它的反变换定义为：

若直接计算DFT变换，整个DFT运算需要 4𝑁2次实数相乘和 2N(2N-1)次实数相加。

所以直接计算乘法次数与加法次数都和𝑁2成正比。例如 N=10 点的 DFT，需要 100 次复

数相乘，而 N=1024 时则需要 1,048,576 即一百多万次复数乘法运算。这对于实时性要

求很强的信号处理来说，必将对计算速度有十分严苛的要求。为此，FFT 作为对 DFT 的

改进诞生。

快速傅里叶变换 FFT 并不是与 DFT 不相同的另一种变换，而是在 DFT 计算规律上

建立的一种减少运算次数的快速算法。常用 FFT 是以基-2 的，长度 N=2𝑀。运算效率

高，程序简单，使用方便。本实验就使用以 2 为基实现 FFT。算法流程图可以用蝶形算

法来表示，以 8 点的基 2-FFT 算法为例：

每个蝶形运算为：

 可以看到，每个蝶形运算都可原位运算。

 当需要进行变换的序列长度不是 2 的整数次方的时候，为了使用以 2 为基的

FFT，可以用末尾补零的方法，使其长度延长至 2 的整数次方。IFFT 一般可以通过

FFT 程序来完成，只要对 X(k)取共轭，进行 FFT 运算，然后再取共轭，并乘以因子

1/N，就可以完成 IFFT。

2.3 实验内容

1、算法实现

以对高斯序列进行 FFT 代码为例：

①、使用 bitrevorder()函数对待变换信号顺序进行调整，存入 x1 中。例如 M=8 时

原顺序：000(0)，001(1)，010(2)，011(3)，100(4)，101(5)，110(6)，111(7)

对二进制翻转之后为：

新顺序：000(0)，100(4)，010(2)，110(6)，001(1)，101(5)，011(3)，111(7)

对比实验原理中 M=8 的 FFT 输入序列发现两者顺序一致。

②、n=1:m1 表示一共有 m1 层运算，比如 M=8 时有 3 层。

 k=1:M/(2^n)表示第 n 层分为 k 部分，比如 M=8 的第一层分为 4 个单独蝶形运

算，第二层分为 2 个两两蝶形运算，第三部分为 1 个四四蝶形运算。

 m 表示第 k 部分的第 m 个蝶形运算。

③、因为蝶形运算是原位运算，就不需要另外开辟空间，计算结果仍然存在原位置。

④、绘出编写的 FFT 计算结果与 MATLAB 的 FFT 计算结果，以及两者的差。

2、选取实验 1 中的典型信号序列验证算法的有效性

I、三角波

II、反三角波

III、高斯序列

IV、衰减正弦序列

V、单位脉冲序列

VI、矩形窗序列

VII、理想采样序列

注意每个序列自己编写的 FFT 计算结果和 MATLAB 的 FFT 计算结果，两者相差数量级

在10−16到10−14。说明编写的 FFT 算法正确性没有问题。

3、对所编制的 FFT 算法进行性能评估

算法的评估首先是其正确性，是否能够完成预期功能决定了该算法是否有意义，

上一部分已经通过典型信号序列验证了编写的 FFT 算法的有效性。

这里接下来主要从时间复杂度和空间复杂度两方面来进行评价。空间复杂度是指

该算法运行过程需要占用多少内存空间，随着半导体产业的发展，内存空间变得越来

越廉价，空间复杂度对算法性能的影响也越来越小。人们往往根据时间复杂度来评价

一个算法的性能。而时间复杂度主要依赖于算法的计算次数。已知基 2-FFT 算法的复

数乘法次数为
1

2
𝑁𝑙𝑜𝑔2𝑁。相比于加法，乘法在运算中要复杂得多，占用资源也更多，

所以时间复杂度主要依赖乘法次数。从理论复杂度来看，FFT 显然比 DFT 的𝑁2更优。

在 MARLAB 中查看程序运算时间有以下办法：

①、tic 和 toc 命令组合

tic；

operation；

toc；

tic 用来保存当前时间，也就是 operation 开始运行时间，toc 用来记录程序完成时间。

MATLAB 会自动计算时间差并显示（以秒为单位但能精确到小数点后 6 位，即 us）。

②、etime(t1,t2)和 clock 配合

t1=clock；

operation；

t2=clock；

etime(t1,t2);

通过调用 windows 系统时钟进行时间差计算得到运行时间，t1 和 t2 之间的时间差。

③cputime 函数

t1=cputime；

operation；

t2=cputime-t1；

使用 cpu 主频计算运行时间差，得到程序运行时间。

tic/toc 是 MATLAB 自身计数器，精度要高于后两者。而且，如②调用系统时钟计

算时间差，这段时间中系统可能还有其他后台程序。

MATLAB 官方推荐使用 tic/toc 组合，When timing the duration of an event,use the

tic and toc functions instead of clock or etime.所以接下来的评估程序运行时间，本实验

使用 tic/toc 命令。此外，程序运行时间和计算机本身的计算能力有着直接关系，以下

数据都是在个人笔记本电脑测得。由于电脑属于商务本，计算能力很有限，时间相对

会稍长一些。

以上主要说明了 FFT 算法评估方法和侧重点，具体评估数据在下面的 dofft 与

DFT、dofft 与 MATLAB-FFT 的性能比较中给出。

2.4 实验报告要求

1、总结自己实现的 FFT 算法时采用了哪些方法减少了运算量。

1）使用 matlab 的 bitrevorder()函数实现二进制翻转，由于 matlab 的函数是基于更底

层的的 c 语言编写的，有很专业的优化，执行速度肯定更快。

2）尽量使用小循环套大循环，因为执行的跳转原因，大循环单次执行时间优于小循

环。

3）利用蝶形运算的原位性，使用同一个地址空间存储变换前序列和变换后序列。

4）每相邻计算的蝶形运算数据在地址上尽量连续，减少寻址时间。

2、给出自己的 FFT 算法与实验 1 中的 DFT 算法性能比较结果。

为避免运算时间过短不利于记录，使用 20 次循环。dofft 程序见 2.3，其余程序如下

DFT 程序：

dofft 测试程序：

DFT 测试程序：

运行时间记录如下：

N

算法

8 32 256 512 1024 2048

dofft 1.524102 1.563602 1.820989 1.984634 2.814433 3.088558

DFT 0.367555 0.375953 0.945036 4.491770 22.746014 107.771205

作图：

测试序列为理想采样序列。为避免循环运行时，MATLAB 程序在前一循环已在内存中

开辟空间和留有数据，测试程序中使用了 clear all 命令来清除内存中的数据。这样测得

的时间更加准确。从记录的运行时间中可以看到，当 N 比较小的时候，DFT 运行时间

比 dofft 时间更小，这是因为 DFT 算法使用的是向量运算，而 dofft 中使用了循环。

MATLAB 本身对于向量计算的速度快于循环的计算速度。所以如果进一步优化 dofft 算

法，可以改用向量运算，避免循环。当 N 趋于更大时,DFT 运行时间迅速上升，很快

和 dofft 运行时间不在一个数量级。这和 DFT、FFT 两算法的理论时间复杂度一致。

3、给出自己的 FFT 算法和 MATLAB 中 fft 算法性能比较结果。

采用与 2 中相同的测试方法，同样使用 20 次循环。

fft 程序：

fft 测试程序：

运行时间记录如下：

N

算法

512 1024 2048 4096 8192

dofft 1.984634 2.814433 3.088558 3.579388 5.438975

FFT 0.349001 0.369433 0.365632 0.403413 0.334651

N

算法

16384 32768 65536 131072 262144

dofft 13.307104 18.961649 28.585727 61.441558 125.271445

FFT 0.350225 0.431561 0.430717 0.445077 0.530932

作图：

自己编写的 dofft 在进行变换长度的横坐标下近似线性增长。而 MATLAB 本身的 FFT 基

本上随着 N 的增大，运行时间基本上没有变化。显然 dofft 性能比 fft 性能差。想必

MATLAB 中的 fft 函数进行了更多技巧和优化。

4、总结实验中根据实验现象得到的其他结论。

①实验中测运行时间，当前后两个程序运行时间相差不大时，可能时间大小有波动。

比如 MATLAB 中的 fft 函数在做 2048 点计算时所用时间比 1024 点计算时间稍小，这

与 MATLAB 当前占 CPU 和电脑状态相关。也会出现同一个程序在不同时刻测运行时间

大小稍有差异，多测几次时间取平均时间长。

②DFT 在 N 较小时运行时间小于 dofft，说明 MATLAB 更优于计算向量。所以编写

MATLAB 程序时应尽量把 for 循环改为矩阵运算，尽量向量化。

③同样的算法，基于不同的编程，在运行速度上仍然会有很大的不同，比如在

MATLAB 中使用 for 循环编写，MATLAB 本身的 FFT，和用 C 语言编写的 FFT 在运行速

度上都会有很大不同。所以提高编程技巧，了解程序具体流水线、地址开辟、循环嵌

套等等如何对优化程序有很大意义。

④MATLAB 带有众多功能强大，高优化水平的函数，在编写程序时，尽可能查询

MATLAB 有无相关函数，充分利用，以提高编写的程序的执行效率，比如 dofft 中的

bitreorder。

⑤测量运行时间的时候要把绘图的函数注释掉，否者会占用程序大量运行时间。

