Enabling High-Goodput Backscatter
Communication with Commodity BLE

Maoran Jiang™, Yunyun Feng!*, Amiya Nayak!, and Wei Gong'**

tUniversity of Science and Technology of China; fUniversity of Ottawa
mrjiang @mail.ustc.edu.cn, yunyunf@mail.ustc.edu.cn, anayak @site.uottawa.ca, weigong @ustc.edu.cn

Abstract—Recently, backscatter technology has attracted much
interest in wireless communication due to its novel low-cost and
battery-free design. Since Bluetooth Low Energy (BLE) was born
to be low energy consumption, great efforts have been made
in BLE-based backscatter systems, like FreeRider, RBLE. In
this paper, we present BonusBlue, a BLE backscatter system
that enables high-goodput communication with commercial BLE
devices. BonusBlue tag generates BLE packets by modulating
data on excitation signals and set up a data connection with BLE
receiver using a state machine, thus achieving a high-goodput
communication link. We present this state machine design and
build a prototype of our tag using an FPGA, and evaluate its
performance with BLE devices. Our evaluation shows that the
backscatter tag can build a robust data connection link with
commodity BLE device in the guidance of our state machine
and transmit tag data on this link. Experimental results show
that our backscatter system can achieve a goodput of up to 16.9
kbps.

I. INTRODUCTION

Recent years have witnessed a dramatic development in
the field of Internet-of-Things (IoT). It depicts a world with
tremendous mobile sensors deployed in all walks of life.
During this progress, there is an increasing demand for cheaper
sensor nodes that can maintain a long working time. Because
it is hard to replace batteries for the massive nodes deployed
in the ocean.

Fortunately, backscatter technology has presented a novel
low-cost and low power consumption communication design.
One of the most well-known backscatter systems is RFID. A
typical RFID system consists of reader and tags. RFID reader
generates carrier and receives backscattered signal from RFID
tag and decodes out the transmitted data. However, the high
cost of dedicated readers obstructs the development of RFID.
For this reason, a bunch of backscatter paradigms that leverage
different carrier signals have been proposed [1]- [14]. Recent
studies have shown that backscatter systems can work with
ambient signals of wireless TV, visible light, Bluetooth, WiFi,
ZigBee and LoRa [1], [2], [4], [S1, [6], [7], [9], [10], [11], [12],
[13], [14]. And the most popular branch is to modulate data on
the radio signals around us, which achieves great compatibility.

Bluetooth is one of the most popular wireless technology
in the market. In 2019, the total annual Bluetooth shipments
have astonishingly achieved 4.2 billion [15]. There are mainly
two types of Bluetooth device in today’s market, Bluetooth

*Co-primary authors: Maoran Jiang, Yunyun Feng; **Corresponding au-
thor: Wei Gong.

Backscatter

=

Tag

< \W\

Carrier

Fig. 1. BounsBlue design. The BonusBlue regenerates BLE packets from the
excitation signal and fabricates a connection with a commercial BLE device
using a state machine.

Classic (BR/EDR) and Bluetooth Low Energy (BLE), which
are incompatible with each other. Since BLE can provide con-
siderably low power consumption, it has become a commonly
used communication protocol in IoT systems. Meanwhile,
BLE-based backscatter system also benefits from this and there
are some distinguished works on this, e.g., Ble-backscatter
[4], FreeRider [16], RBLE [17]. FreeRider utilizes codeword
translation technique and modulates its data on the payload
of the excitation packet. However, its unreliable modulation
scheme makes backscattered packets fail to pass CRC in
commercial BLE receivers. Ble-backscatter and RBLE only
support direct communication with commodity BLE devices
in a low rate of advertisement packets, which makes them be
limited to a low-goodput transmission.

In this paper, we present a novel design for backscatter
communication: setup a data connection between backscat-
ter tag and BLE receiver, thus achieving a high-goodput
communication. As shown in Fig. 1, when the tag receives
carrier from excitation device, it modulates data on the carrier
to generate new BLE packets. Then receiver will get these
packets and response to them. They alternate to send packets
on agreed channels.

There are mainly two challenges in building a data connec-
tion:

e« BLE Spec defines the procedure of establishing data
connection between BLE devices. The device that is
going to be connected will first advertise on the ad-
vertisement channel and the peer device that wants to
initiate a connection should send a request at a specific
time after the advertising packet. The two devices pri-
marily negotiate the connection parameters in the request

transmitWindowSize
—

M: Master (Host B)
S: Slave (Host A)

Host A Host B

Advertisment Connect

Packet Request
T_FS

transmitWindowDelay

T_FS
Connection Interval

Data Channel

Adv. Channel

Fig. 2. Bluetooth link layer connection setup procedure timing.

packet. Then they transmit packets in different channels
in different time slots. Thus the tag should follow the
time and channel hopping manner defined by Bluetooth
specification when building a data connection. So far,
the tag is not able to initiate a data connection with
commodity BLE receiver.

o BLE is a multi-layer protocol. It adopts acknowledgment
mechanism and flow control in link layer. During data
connection, the slave (to whom was connected) will
respond to every packet sent by the master (who initiates
the connection). In BLE packets, proper data fields are set
to notify the peer device that the current packet is whether
a new packet or an old packet. Since backscatter tag does
not adopt an active radio, it cannot properly set this data
field based on the response from the peer device. Thus
the packets backscattered by the tag may be dropped by
the link layer of BLE receiver.

We build the first backscatter system that supports build-
ing data connections with commodity BLE receivers. Our
backscatter tag can initiate connection request to the BLE
receiver and transmit data in different channels following the
hopping manner agreed by both devices. This connection can
support a high-goodput communication link.

We have made two key contributions to this design.

o State machine for data connection. Data connection
requires the packet to be sent at the correct time window
and channel. Our key solution is to build a state machine
to guide tag to initiate a connection. This state machine is
used to control tag’s behavior and state during connection.
It manages tag to transmit data in correct channel in
different time slots.

o Comprehensive evaluation. We provide a comprehen-
sive prototype evaluation for our high-goodput backscat-
ter system. We compare its goodput with state-of-the-art
BLE backscatter systems and also show the variability of
the data connection built by our tag system. Results show
that our tag can achieve a goodput of 16.9 kbps, which
is 2x larger than RBLE [17]. Meanwhile, our tag is also
able to adapt to different transmission rates.

II. BLE PRIMER

BLE has been popular in applications of healthcare, fitness,
and wearable devices due to its significantly reduced power
consumption. Generally, we can classify communication links

Commercial
BLE Receiver

Fig. 3. BonusBlue overview. Upon receiving the signal from receiver,
BonusBlue tag parses this command and does packet generation channel
configuration following data connection manner. All these behaviors are
controlled by a state machine.

in BLE into two types: connectionless and connection-
oriented. BLE advertising is considered as a connectionless
link, which is used to transmit a small amount of data.
However, connection-oriented link is more common in BLE
applications and it supports higher packets transmission rate.
In the following, we present a typical example of the setup
process of BLE connection.

How does commercial BLE devices setup connection?We
illustrate this process from three parts: interactions in adver-
tising channels, process of channel hopping, and interactions
in data channels. The details are shown in Fig. 2.

Host A first periodically broadcasts data on three advertising
channels, indicating that it is ready to be connected. Host B
will scan these three advertising channels one by one and
initiate a connection by sending a connect request immediately
after T_IFS=150 ps when detecting the advertising packet.

The second part is channel hopping. Host A, to be con-
nected, is denoted as the slave, and Host B, which initiates
the request, is denoted as the master. When the slave receives
the request, it then hops to the data channel and listens for
packet from the master within a transmit window. This window
is determined by several parameters including transmitWin-
dowDelay, transmitWindowOffset, and transmitWindowSize.
These parameters are either specified by BLE protocol or
declared in the connect request packet. The time point at which
the master transmits the packet is denoted as the anchor point,
which is a time reference for the remaining actions.

The third part is about data exchange in data channels.
Starting from the anchor point, the timeline is divided into
several equal time slots, where each one is called connection
event and corresponds to a channel index. In each connection
event, the master and the slave should transmit packets in
their corresponding channel. It is worth noting that the slave
will send out a response packet if it receives a packet from
the master. What’s more, it is worth noting that BLE adopts
acknowledgment mechanism. When the connection was setup,
both the master and slave will maintain two local variables,
and they compare them with the data field in incoming packets,

Continuous wave
f. = 2402 MHz

Backscattered BLE Symbol

Af, = 10.5MHz f. = 2412 MHz

Af, = 9.5MHz

2411.5MHz 2412.5MHz

Channel 4

Fig. 4. Example of frequency modulation. BonusBlue tag shifts a continuous-
wave to the target channel to construct a BLE symbol.

thus knowing that the packet is whether a new packet or an old
one. And the device will drop the old packet. We will discuss
it later.

III. SYSTEM DESIGN

In this section, we first give an overview of our system
design. Then we briefly discuss the modulation scheme our
backscatter tag uses, followed by the introduction of our
state machine design for the data connection. Finally, the
process of using redundant sequence number to confront
acknowledgment mechanism is proposed.

A. Overview

Fig. 3 shows the framework of our high-goodput backscatter
system. The system consists of three parts: Backsactter tag,
excitation generator, and BLE receiver. Upon receiving BLE
signal from the receiver, tag detects and parses the command.
The state machine will receive internal command and control
tag to configure the channel and generate raw packet bits
corresponding to a different channel. Then the modulation
module will modulate the raw bits on the carrier from excita-
tion generator to regenerate BLE packets. The state machine
makes sure the tag follows the manner of data connection of
a commercial BLE device, thus a data connection can be built
between the tag and the commodity receiver.

B. Modulation Scheme

We adopt RBLE’s [17] frequency shift modulation scheme
but use continuous-wave as excitation signal. As shown in
Fig. 4, the frequency of continuous-wave is 2402 MHz, which
will be reflected by RF switch of tag. We control the on-off
pattern of RF switch at a specific frequency to generate a
frequency shift, which can be formulated as multiplying exci-
tation signal with a baseband signal. Since BLE adopts BFSK
modulation, to generate BLE symbol ’0’, we use 9.5 MHz
frequency clock to control the RF switch and the excitation
signal will be shifted to 2409.5 MHz. And we use 10.5 MHz
to generate symbol ’1’ in the same way. By generating this
baseband signal following the raw bits of packet, the tag can
reflect out a BLE packet that can be received by commercial
receiver.

Wait_T_IFS

| Wait_Tc I

lEndI

Fig. 5. State machine on tag for building a data connection. The procedure
is classified into two stages: connection request and connection event. Con-
nection request stage consists of detecting advertising packets and initiating
request. Connection event stage consists of transmitting packets, waiting for
responses, and configuring frequency clocks for different channels. In different
waiting states, Wait_ is followed with different waiting time. T_IFS = 150
s, T'a is determined by the transmit window, T'b is determined by the time
interval between consecutive packets from tag, and T'c is determined by the
connection interval of each connection event.

Connect request

| Configure I

!

Connection event

C. State Machine on Tag

As we introduced in section II, BLE specification has
defined an explicit procedure about data connection setup,
which involves connection request and data exchanging in
different channels. The recent work RBLE [17] first involves
a channel hopping mechanism to confront interference, but
it fails to satisfy the accurate hopping routine since data
connection has a strict requirement of transmitting in the right
channels at right time. We designed a state machine for tag
to manage its radio state and timing requirements during data
connection.

As shown in Fig. 5, the left dotted box is the procedure of
connection request and the right dotted box is the procedure
in connection event part. The tag stays at Idle state when it
doesn’t transmit data. If receiver sends a particular sequence
of packets, the tag parses this command and is waked up to
Detect state, ready to setup a connection. If the advertisement
packet of receiver is detected, tag enters WAIT_T_IFS state
to waits T_IFS = 150 us, which is a packet interval defined
by the protocol, otherwise, tag will back to Idle state. The tag
will backscatter a request packet to receiver after T_IFS. Then
it configures frequency clock and enters Wait_Ta state to wait
time T'a for transmit window. During this process, the timer
is set according to BLE Specification.

Since the tag cannot tell the differences between packets in
different advertising channels, we need to make the receiver
broadcast on only one channel and make it known to tag,

Transmitting Data Receiving Data

Different
(old data)

Different
(ack)

Inc sn

TX new data, sn

Same
(new data

TX old data, sn RX new data Ignore RX data

Fig. 6. Link layer acknowledgment mechanism.

thus the peer BLE device can receive the connection request
from tag. When this connect request is accepted, both the
receiver and tag will move to data channel. They alternate to
send packets in each connection event. The tag will first be in
Transmit state to send the first packet and waits for receiver’s
response in state Wair_Tb, and then it transmits next packet.
At the end of each connection event, tag will enter Configure
state to configure the frequency clock that controls RF switch
and then enters Wait_Tc state to wait for the start of next
connection event.

In each connection event, tag and receiver will hop to
different channels. This channel sequence is determined by
the channel map and channel selection algorithm, which was
declared in connect request packet. There are two channel
selection algorithms currently. Algorithm #1 is a simple in-
cremental algorithm, which produces a uniform sequence of
channels. Compared to Algorithm #1, #2 is more complex
and it produces a randomized sequence of channels. Here we
choose Algorithm #1 to reduce the complexity of implemen-
tation.

To implement the channel hopping mechanism, we cannot
generate all the frequency clocks for RF switch at one time,
since BLE occupies 40 channels, and RF switch needs two
frequency clocks for backscattering to each target channel,
which leads to 80 frequency clocks in total. Generating all
these clocks at one time is unrealistic. Thus we adopt FPGA’s
Mixed-Mode Clock Manager (MMCM) to provide clocks for
RF switch. We can dynamically change the output clock of
MMCM through dynamic configuration port it provides.

It is worth noting that BLE also adopts whitening to
avoid transmitting constant symbols. Whitening is an XOR
operation between data bits and whitening sequence, which
was generated using a whitening seed. In BLE, channel index
is used to produce this whitening seed. So in each connection
event, our tag must apply whitening to the raw bits of packet
according to the current channel index before transmitting.

D. Redundant Sequence Number

As we mentioned above, BLE is a multi-layer protocol. In
link layer, BLE device maintains several data fields to indicate
that the incoming packets are new ones or old ones. The
device will drop these old ones, which could be a problem
in our backscatter systems. As shown in Fig. 6, when the

T_IFS
otg ty o
Ty
T->R| [R->T | T->R R->T | T->R!
_________________________ T T T T T T Time
(a) Write Request
t, t,
l‘T->R R->T T->R R->T T->R \\
____________________________________ T im_e>

(b) Write Command

Fig. 7. Example of two different write operations in a connection event.
"T—R’ denotes that it’s a packet send from tag to receiver. The length of
rectangle denotes the length of this packet.

connection is built up, both the master and slave will maintain
two local variables, transmitSeqNum (denoted as sn), and
nextExpectedSeqNum (denoted as mesn), initiated with bit
”0”. For packets, they contain two fields: SN and NESN.
Before the master (or slave) sends a packet, it will assign sn to
SN, nesn to NESN. Upon receiving a packet, the receiver
compares the NESN with local sn. If they are equal, the old
packet will be transmitted, otherwise the receiver increments
local sn and transmits a new packet. If SV is equal to nesn,
the receiver will accept the data, otherwise, the data will be
ignored.

From the above procedure, we can see that the data fields
(transmitSeqNum and nextExpectedSeqNum, each occupies
1 bit) of each packet are set based on the previous packet.
However, backscatter tag doesn’t employ an active radio and
cannot decode BLE packets. So we let tag transmit multiple
packets with different data fields (sequence number) in each
connection event. The two data fields (transmitSeqNum, nex-
tExpectedSeqNum) lead to 4 cases. We can simply transmit
these packets with different data fields one by one in a
connection event. Although our tag cannot decode the response
from receiver and some packets will be dropped, there will
always be a packet be recognized as new data by the receiver.

To transmit multiple packets in one connection event, we
need to design the transmit time of each packet. Because in
data connection, the slave will always respond with a packet
when it receives a packet from the master. In each connection
event, if tag knows the length of each packet from the peer
device, then it can transmit packet at the correct time, which is
T_IFS after the previous received packet. This can be achieved
using ATT Protocol, which is used to discover, read and write
the attributes (one kind of data structure) of peer device. We
can make the commercial devices provide writable attributes
as a server. And BonusBlue tag, as a client, will write these
attributes. However, there are two different write operations,
Write Request and Write Command. Write Request operation

——4— BonusBlue
“@ RBLE

B
o8a
o Bgga
oL -
oH.g

NN

Goodput (kbps)
NN
ONBDOONBNPRON S

12345678 910111213141516
Distance between tag and RX (m)

(a) PER (b) Goodput

Fig. 8. Backscatter PER, and goodput across distances in LOS scenario.

will ask for a write response, which will change the length of
response packet, as shown in Fig. 7(a). When the tag transmits
packet after t, + 2 « T_IFS, there would be a collision.
However, Write Command operation doesn’t ask for this write
response as shown in Fig. 7(b), thus the peer BLE device
will always respond with an empty packet, which has a fixed
length known to the tag. And tag just transmit next packet
after t, + 2«7 _IFS. And tag’s packet can successfully be in
the receiving window of receiver.

IV. IMPLEMENTATION

We build a prototype of BonusBlue tag using FPGA, oft-
the-shelf ICs. The implementation is detailed as follows.
The backscatter tag consists of a signal detector, RF switch,
and control logic. The signal detector is constructed using
ADS8313, and TLV3501, which is used to build a threshold
tuning circuit. The RF switch is constructed using ADG902.
We implement the control logic using Zyng-7010, which
integrates ARM processor and Xilinx 7-series FPGA. ARM
processor is used to provide application data for packets.
FPGA is used to control RF switch to reflect excitation signal.

We use TI CC2650 to transmit continuous-wave at 5 dBm,
and Nordic nRF52840 with an amplifier of 20 dBm gain to act
as a receiver. The packet error rate (PER) is evaluated using
TI SmartRF software with CC2640R2F.

V. EVALUATION

In this section, we evaluate the performance of BonusBlue
and compare it with prior BLE backscatter system FreeRider
[16] and RBLE [17] in line-of-sight (LOS) and non-line-of-
sight (NLOS) scenarios. We also conduct experiments to eval-
uate the variability of connection. Performance is evaluated
through PER and goodput.

A. End-to-End Performance

To evaluate the end-to-end performance, we conduct experi-
ments in LOS and NLOS scenarios in indoor environment. We
deploy the backscatter tag 0.2m from the excitation, and then
gradually move the receiver far away from the tag. In NLOS
scenarios, we set a metal barrier between the tag and receiver.
We measure PER and goodput at each point and modify the
application of receiver (Nordic nRF52840) to make it advertise
only in channel 38. Our tag will detect and send a request to
the receiver in this channel. Meanwhile, for simplification, we
set tag and receiver to transmit data only on data channel 14

16 —+— BonusBlue
100 %2 2 2 3¢ 3¢ 3¢ 4 X X = @ RBLE

o a8 314 — % — FreeRider
g8 F S 12 eeRider
=10
g 8f o 3
102 . .

—+— BonusBlue o, B 8.5 geeeg
©@ RBLE B
— % —FreeRider

PER

6

4

2 a-f.
0 2]
12345678 910111213
Distance between tag and RX (m)

(b) Goodput

10
1234567 8910111213

Distance between tag and RX (m)

(a) PER

Fig. 9. Backscatter PER, and goodput across distances in NLOS scenario.

and 28. We transmit 4 redundant packets in each connection
event, and each connection event is set to 12.5 ms. Since
the receiver running a BLE application will drop the CRC
failed packets, we use TI CC2640R2F to sniff the packets in
channel 14 and 28, and calculate the PER. The goodput of
BonusBlue is measured through the printed information on
the laptop connecting to the receiver.

From Fig. 8(a) and Fig. 9(a), we can see the PER of
backscattered packets gradually increases as distance in-
creases. PER of BonusBlue tag in LOS is better than that of
NLOS. The maximum communication range of BonusBlue tag
is 16m for LOS and 13m for NLOS. This is because to build a
data connection, the tag needs to detect the advertising packet
of the receiver. The signal detector we use is constructed
using AD8313, which is a complete multistage demodulating
logarithmic amplifier. In this indoor environment with RF
noise, the signal detector can detect the packet at the maximum
distance of 16m, and 13m in NLOS.

Generally, when the distance between tag and receiver
(TT sniffer) is within 11 m, PERs for BonusBlue in LOS
environments are lower than 10%. However in NLOS scenario,
when the receiver is just 3 m away, the PER of BonusBlue
rises over 10%. We notice that the PERs of FreeRider [16]
in LOS and NLOS are both 100%. Because we evaluate the
performance of communication with commercial BLE device.
FreeRider adopts codeword translation technique. During re-
dundant encoding, the excitation packet will be shifted to the
target channel and the payload will be modified. But the CRC
of backscattered packet is not set properly, so backscattered
packets fail to pass the CRC check on commodity receivers.
Thus PERs of FreeRider will always be 100%. The PERs of
RBLE are higher than BonusBlue in LOS and NLOS scenarios
to some extent. This could be caused by the difference of
excitation signal. BonusBlue needs continuous-wave to be
carrier, whose frequency could be more accurate, while RBLE
takes the BLE packets as excitation signal.

Despite the small gap of PERs between RBLE and Bonus-
Blue, our system has a significant advantage in goodput. As
depicted in Fig. 8(b) and Fig. 9(b), the maximum goodput
of BonusBlue is 16.9 kbps and 13.4 kbps in LOS and
NLOS scenarios, respectively. In contrast, the counterparts of
RBLE are 8.3 kbps and 7.6 kbps for LOS and NLOS cases,
respectively. We notice that the goodput of FreeRider are O in
LOS and NLOS scenarios. Because FreeRider’s packets cannot
pass CRC and its PERs are all 100%. So for commercial

16 —+— BonusBlue

10 20 50 100 200 500 1000 2000
Connection interval (unit(1.25ms))

(a) PER (b) Goodput

Fig. 10. Backscatter PER, and goodput across different connection interval.

receiver, its packets cannot be received and the goodput are
all 0. Considering the maximum goodput, BonusBlue is 2.03x
and 1.54x better than RBLE. This is because our tag generates
more packets than RBLE, and the key point is that our tag
uses data connection to communicate with receiver. Thus
the receiver can receive data at such a high rate, which is
not supported in advertisement. The above experiment results
show that our tag can achieve a high-goodput communication
link with commercial BLE receiver using data connection.

B. Adaptability of BonusBlue

Next, we evaluate the flexibility of BonusBlue tag. Our
system utilizes data connection to transmit data. We measure
the PERs and Goodput with different connection intervals,
which are defined in unit time of 1.25 ms. We conduct
experiments between 12.5 ms and 2500 ms. The receiver is
fixed at 1 m from tag, and other setups are the same as the
end-to-end evaluation. As depicted in Fig. 10(a), PERs under
different connection interval are all below 5%. For goodput
shown in Fig. 10(b), we can see that as the connection interval
increases, the goodput decreases rapidly, since the transmitting
rate decreases. The goodput with a connection interval of 12.5
ms is 16.42 kbps, and when connection interval is 2500 ms,
the goodput is 0.082 kbps, which is almost near zero.

VI. RELATED WORK

Our work is inspired by the previous progress on Bluetooth-
based backscatter systems. We will discuss the closely related
work and differences between them as follows.

Interscatter [7] first transforms a commercial BLE de-
vice into a continuous-wave (CW) generator and regenerate
802.11b signals on it. However it fails to generate BLE
packets. FreeRider [16] realizes a backscatter system entirely
using BLE radios. However, since FreeRider adopts code-
word translation, it fails to have direct interactions between
backscatter tag and commercial BLE. First, it only modifies
the payload of BLE packet, thus the backscattered packets
cannot pass the CRC check and be dropped by commercial
devices without extra modifications. Second, FreeRider needs
packets in original channel to decode the tag data, which adds
complexities to the BLE receivers. BLE-Backscatter [4] and
RBLE [17] enable direct interaction with commercial BLE
devices. But their applications are both limited in advertis-
ing. Although they can regenerate data channel packets, the
commercial receivers (not in test mode) cannot receive them

since BLE devices will not directly listen for packets in data
channels.

VII. CONCLUSION

In this paper, we propose BonusBlue, a high-goodput
backscatter system that works with commodity BLE device.
BonusBlue is able to establish a data connection with standard
BLE device using a state machine, and it also adopts redundant
sequence numbers to pass the acknowledgment mechanism of
receiver. We present the design of the first connection-enabled
tag and build a prototype. Our evaluation shows that the tag
can successfully build a data connection with a commercial
BLE receiver and achieve a goodput of up to 16.9 kbps with
a communication range (tag-to-receiver) up to 16 m.

ACKNOWLEDGMENT

This work was supported by NSFC Grant No. 61932017 and
61971390, and Hefei Healthcare Grant No. J2020Y03, and the
Fundamental Research Funds for the Central Universities No.
WK5290000002.

REFERENCES

[1] V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, and J. R. Smith,
“Ambient backscatter: wireless communication out of thin air,” in Proc.
of ACM SIGCOMM, 2013.

[2] X. Xu, Y. Shen, J. Yang, C. Xu, G. Shen, G. Chen, and Y. Ni, “Pas-
sivevlc: Enabling practical visible light backscatter communication for
battery-free iot applications,” in Proc. of ACM MobiCom, 2017.

[3] D. Bharadia, K. R. Joshi, M. Kotaru, and S. Katti, “Backfi: High
throughput wifi backscatter,” in Proc. of ACM SIGCOMM, 2015.

[4] J. F. Ensworth and M. S. Reynolds, “Ble-backscatter: Ultra low-power
iot nodes compatible with bluetooth 4.0 low energy (ble) smartphones
and tablets,”

[5] B. Kellogg, A. Parks, S. Gollakota, J. R. Smith, and D. Wetherall, “Wi-
fi backscatter: Internet connectivity for rf-powered devices,” in Proc. of
ACM SIGCOMM, 2014.

[6] B. Kellogg, V. Talla, S. Gollakota, and J. R. Smith, “Passive wi-fi:
Bringing low power to wi-fi transmissions,” in Proc. of USENIX NSDI,
2016.

[71 V. lIyer, V. Talla, B. Kellogg, S. Gollakota, and J. Smith, “Inter-
technology backscatter: Towards internet connectivity for implanted
devices,” in Proc. of ACM SIGCOMM, 2016.

[8] P. Zhang, M. Rostami, P. Hu, and D. Ganesan, “Enabling practical
backscatter communication for on-body sensors,” in Proc. of ACM
SIGCOMM, 2016.

[9]1 P. Zhang, D. Bharadia, K. Joshi, and S. Katti, “Hitchhike: Practical
backscatter using commodity wifi,” in Proc. of ACM SenSys, 2016.

[10] J.Zhao, W. Gong, and J. Liu, “X-tandem: Towards multi-hop backscatter
communication with commodity wifi,” in Proc. of ACM Mobicom, 2018.

[11] Q. Wang, S. Chen, J. Zhao, and W. Gong, “RapidRider: Efficient WiFi
Backscatter with Uncontrolled Ambient Signals,” in Proc. of IEEE
INFOCOM, 2021.

[12] V. Talla, M. Hessar, B. Kellogg, A. Najafi, J. R. Smith, and S. Gollakota,
“Lora backscatter: Enabling the vision of ubiquitous connectivity,” in
Proc. of ACM IMWUT, 2017.

[13] W. Gong, L. Yuan, Q. Wang, and J. Zhao, “Multiprotocol backscatter
for personal iot sensors,” in Proc. of ACM CoNEXT, 2020

[14] L. Yuan, C. Xiong, S. Chen, and W. Gong, “Embracing self-powered
wireless wearables for smart healthcare,” in 2021 IEEE International
Conference on Pervasive Computing and Communications (PerCom).
IEEE, 2021, pp. 1-7.

[15] “Bluetooth market update” https://www.bluetooth.com/wp-
content/uploads/2019/03/Bluetooth_Market_Update_2018.pdf

[16] P.Zhang, C. Josephson, D. Bharadia, and S. Katti, “Freerider: Backscat-
ter communication using commodity radios,” in Proc. of ACM CONEXT,
2017.

[17] M. Zhang, J. Zhao, S. Chen, and W. Gong, “Reliable backscatter with
commodity BLE,” in Proc. of IEEE INFOCOM, 2020.

