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Preface

This textbook is the second in a two-part series covering the core material typically taught in a one-
year Ph.D. course in econometrics. The sequence is:

1. Introduction to Econometrics (first volume)

2. Econometrics (this volume)

Econometrics assumes that students have a background in multivariate calculus, probability theory,
linear algebra, and mathematical statistics. A prior course in undergraduate econometrics would be
helpful but not required. Two excellent undergraduate textbooks are Wooldridge (2015) and Stock and
Watson (2014). The relevant background in probability theory and mathematical statistics is provided in
Introduction to Econometrics.

For reference, the basic tools of matrix algebra and probability inequalites are reviewed in the Ap-
pendix.

For students wishing to deepen their knowledge of matrix algebra in relation to econometrics, I rec-
ommend Matrix Algebra by Abadir and Magnus (2005).

For further study in econometrics beyond this text, I recommend Davidson (2020) for asymptotic
theory, Hamilton (1994) and Kilian and Lütkepohl (2017) for time series methods, Cameron and Trivedi
(2005) and Wooldridge (2010) for panel data and discrete response models, and Li and Racine (2007) for
nonparametrics and semiparametric econometrics. Beyond these texts, the Handbook of Econometrics
series provides advanced summaries of contemporary econometric methods and theory.

Alternative PhD-level econometrics textbooks include Theil (1971), Amemiya (1985), Judge, Griffiths,
Hill, Lütkepohl, and Lee (1985), Goldberger (1991), Davidson and MacKinnon (1993), Johnston and Di-
Nardo (1997), Davidson (2000), Hayashi (2000), Ruud (2000), Davidson and MacKinnon (2004), Greene
(2017) and Magnus (2017). For a focus on applied issues see Angrist and Pischke (2009) and Cunningham
(2021).

The end-of-chapter exercises are important parts of the text and are meant to help teach students of
econometrics. Answers are not provided, and this is intentional.

I would like to thank Ying-Ying Lee and Wooyoung Kim for providing research assistance in preparing
some of the numerical analysis, graphics, and empirical examples presented in the text.
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Chapter 1

Introduction

1.1 What is Econometrics?

The term “econometrics” is believed to have been crafted by Ragnar Frisch (1895-1973) of Norway,
one of the three principal founders of the Econometric Society, first editor of the journal Econometrica,
and co-winner of the first Nobel Memorial Prize in Economic Sciences in 1969. It is therefore fitting
that we turn to Frisch’s own words in the introduction to the first issue of Econometrica to describe the
discipline.

A word of explanation regarding the term econometrics may be in order. Its definition
is implied in the statement of the scope of the [Econometric] Society, in Section I of the
Constitution, which reads: “The Econometric Society is an international society for the ad-
vancement of economic theory in its relation to statistics and mathematics.... Its main object
shall be to promote studies that aim at a unification of the theoretical-quantitative and the
empirical-quantitative approach to economic problems....”

But there are several aspects of the quantitative approach to economics, and no single
one of these aspects, taken by itself, should be confounded with econometrics. Thus, econo-
metrics is by no means the same as economic statistics. Nor is it identical with what we call
general economic theory, although a considerable portion of this theory has a defininitely
quantitative character. Nor should econometrics be taken as synonomous with the appli-
cation of mathematics to economics. Experience has shown that each of these three view-
points, that of statistics, economic theory, and mathematics, is a necessary, but not by itself
a sufficient, condition for a real understanding of the quantitative relations in modern eco-
nomic life. It is the unification of all three that is powerful. And it is this unification that
constitutes econometrics.

Ragnar Frisch, Econometrica, (1933), 1, pp. 1-2.

This definition remains valid today, although some terms have evolved somewhat in their usage.
Today, we would say that econometrics is the unified study of economic models, mathematical statistics,
and economic data.

Within the field of econometrics there are sub-divisions and specializations. Econometric theory
concerns the development of tools and methods, and the study of the properties of econometric meth-
ods. Applied econometrics is a term describing the development of quantitative economic models and
the application of econometric methods to these models using economic data.

1



CHAPTER 1. INTRODUCTION 2

1.2 The Probability Approach to Econometrics

The unifying methodology of modern econometrics was articulated by Trygve Haavelmo (1911-1999)
of Norway, winner of the 1989 Nobel Memorial Prize in Economic Sciences, in his seminal paper “The
probability approach in econometrics” (1944). Haavelmo argued that quantitative economic models
must necessarily be probability models (by which today we would mean stochastic). Deterministic mod-
els are blatently inconsistent with observed economic quantities, and it is incoherent to apply determin-
istic models to non-deterministic data. Economic models should be explicitly designed to incorporate
randomness; stochastic errors should not be simply added to deterministic models to make them ran-
dom. Once we acknowledge that an economic model is a probability model, it follows naturally that an
appropriate tool way to quantify, estimate, and conduct inferences about the economy is through the
powerful theory of mathematical statistics. The appropriate method for a quantitative economic analy-
sis follows from the probabilistic construction of the economic model.

Haavelmo’s probability approach was quickly embraced by the economics profession. Today no
quantitative work in economics shuns its fundamental vision.

While all economists embrace the probability approach, there has been some evolution in its imple-
mentation.

The structural approach is the closest to Haavelmo’s original idea. A probabilistic economic model
is specified, and the quantitative analysis performed under the assumption that the economic model
is correctly specified. Researchers often describe this as “taking their model seriously”. The structural
approach typically leads to likelihood-based analysis, including maximum likelihood and Bayesian esti-
mation.

A criticism of the structural approach is that it is misleading to treat an economic model as correctly
specified. Rather, it is more accurate to view a model as a useful abstraction or approximation. In this
case, how should we interpret structural econometric analysis? The quasi-structural approach to infer-
ence views a structural economic model as an approximation rather than the truth. This theory has led
to the concepts of the pseudo-true value (the parameter value defined by the estimation problem), the
quasi-likelihood function, quasi-MLE, and quasi-likelihood inference.

Closely related is the semiparametric approach. A probabilistic economic model is partially spec-
ified but some features are left unspecified. This approach typically leads to estimation methods such
as least squares and the Generalized Method of Moments. The semiparametric approach dominates
contemporary econometrics, and is the main focus of this textbook.

Another branch of quantitative structural economics is the calibration approach. Similar to the
quasi-structural approach, the calibration approach interprets structural models as approximations and
hence inherently false. The difference is that the calibrationist literature rejects mathematical statistics
(deeming classical theory as inappropriate for approximate models) and instead selects parameters by
matching model and data moments using non-statistical ad hoc1 methods.

Trygve Haavelmo

The founding ideas of the field of econometrics are largely due to the Nor-
weigen econometrician Trygve Haavelmo (1911-1999). His advocacy of proba-
bility models revolutionized the field, and his use of formal mathematical rea-
soning laid the foundation for subsequent generations. He was awarded the No-
bel Memorial Prize in Economic Sciences in 1989.

1Ad hoc means “for this purpose” – a method designed for a specific problem – and not based on a generalizable principle.
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1.3 Econometric Terms and Notation

In a typical application, an econometrician has a set of repeated measurements on a set of variables.
For example, in a labor application the variables could include weekly earnings, educational attainment,
age, and other descriptive characteristics. We call this information the data, dataset, or sample.

We use the term observations to refer to distinct repeated measurements on the variables. An indi-
vidual observation often corresponds to a specific economic unit, such as a person, household, corpo-
ration, firm, organization, country, state, city or other geographical region. An individual observation
could also be a measurement at a point in time, such as quarterly GDP or a daily interest rate.

Economists typically denote variables by the italicized roman characters Y , X , and/or Z . The con-
vention in econometrics is to use the character Y to denote the variable to be explained, while the char-
acters X and Z are used to denote the conditioning (explaining) variables. Following mathematical prac-
tice, random variables and vectors are denoted by upper case roman characters such as Y and X . We
make an exception for equation errors which we typically denote by the lower case letters e, u or v .

Real numbers (elements of the real lineR, also called scalars) are written using lower case italics such
as x. Vectors (elements of Rk ) are either written similarly using lower case italics, e.g.

x =


x1

x2
...

xk


or using by lower case bold italics such as x . We use bold in matrix algebraic expressions for compatibility
with matrix notation.

Matrices are written using upper case bold italics such as X . Our notation will not make a distinction
between random and non-random matrices. Typically we use U , V , X , Y , Z to denote random matrices
and use A, B , C , W to denote non-random matrices.

We denote the number of observations by the natural number n, and subscript the variables by the
index i to denote the individual observation, e.g. Yi . In some contexts we use indices other than i , such
as in time series applications where the index t is common. In panel studies we typically use the double
index i t to refer to individual i at a time period t .

We typically use Greek letters such as β, θ and σ2 to denote unknown parameters (scalar or vectors).
Parameter matrices are written using upper case Latin boldface, e.g. A. Estimators are typically denoted
by putting a hat “^”, tilde “~” or bar “-” over the corresponding letter, e.g. β̂ and β̃ are estimators of β,
and Â is an estimator of A.

The covariance matrix of an econometric estimator will typically be written using the upper case
boldface V , often with a subscript to denote the estimator, e.g. V β̂ = var

[
β̂
]

as the covariance matrix for

β̂. Hopefully without causing confusion, we will use the notation V β = avar
[
β̂
]

to denote the asymp-
totic covariance matrix of

p
n

(
β̂−β)

(the variance of the asymptotic distribution). Covariance matrix
estimators will be denoted by appending hats or tildes, e.g. V̂ β is an estimator of V β.

1.4 Observational Data

A common econometric question is to quantify the causal impact of one set of variables on another
variable. For example, a concern in labor economics is the returns to schooling – the change in earnings
induced by increasing a worker’s education, holding other variables constant. Another issue of interest
is the earnings gap between men and women.
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Ideally, we would use experimental data to answer these questions. To measure the returns to
schooling, an experiment might randomly divide children into groups, mandate different levels of ed-
ucation to the different groups, and then follow the children’s wage path after they mature and enter the
labor force. The differences between the groups would be direct measurements of the effects of differ-
ent levels of education. However, experiments such as this would be widely condemned as immoral!
Consequently, in economics experimental data sets are typically narrow in scope.

Instead, most economic data is observational. To continue the above example, through data collec-
tion we can record the level of a person’s education and their wage. With such data we can measure the
joint distribution of these variables and assess their joint dependence. But from observational data it
is difficult to infer causality as we are not able to manipulate one variable to see the direct effect on the
other. For example, a person’s level of education is (at least partially) determined by that person’s choices.
These factors are likely to be affected by their personal abilities and attitudes towards work. The fact that
a person is highly educated suggests a high level of ability, which suggests a high relative wage. This is an
alternative explanation for an observed positive correlation between educational levels and wages. High
ability individuals do better in school, and therefore choose to attain higher levels of education, and their
high ability is the fundamental reason for their high wages. The point is that multiple explanations are
consistent with a positive correlation between schooling levels and education. Knowledge of the joint
distribution alone may not be able to distinguish between these explanations.

Most economic data sets are observational, not experimental. This means that
all variables must be treated as random and possibly jointly determined.

This discussion means that it is difficult to infer causality from observational data alone. Causal
inference requires identification, and this is based on strong assumptions. We will discuss these issues
on occasion throughout the text.

1.5 Standard Data Structures

There are five major types of economic data sets: cross-sectional, time series, panel, clustered, and
spatial. They are distinguished by the dependence structure across observations.

Cross-sectional data sets have one observation per individual. Surveys and administrative records
are a typical source for cross-sectional data. In typical applications, the individuals surveyed are per-
sons, households, firms or other economic agents. In many contemporary econometric cross-section
studies the sample size n is quite large. It is conventional to assume that cross-sectional observations
are mutually independent. Most of this text is devoted to the study of cross-section data.

Time series data are indexed by time. Typical examples include macroeconomic aggregates, prices
and interest rates. This type of data is characterized by serial dependence. Most aggregate economic
data is only available at a low frequency (annual, quarterly, or monthly) so the sample size is typically
much smaller than in cross-section studies. An exception is financial data where data are available at a
high frequency (daily, hourly, or by transaction) so sample sizes can be quite large.

Panel data combines elements of cross-section and time series. These data sets consist of a set of
individuals (typically persons, households, or corporations) measured repeatedly over time. The com-
mon modeling assumption is that the individuals are mutually independent of one another, but a given
individual’s observations are mutually dependent. In some panel data contexts the number of time se-
ries observations T per individual is small while the number of individuals n is large. In other panel data
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contexts (for example when countries or states are taken as the unit of measurement) the number of
individuals n can be small while the number of time series observations T can be moderately large. An
important issue in econometric panel data is the treatment of error components.

Clustered samples are increasing popular in applied economics and are related to panel data. In clus-
tered sampling the observations are grouped into “clusters” which are treated as mutually independent
yet allowed to be dependent within the cluster. The major difference with panel data is that clustered
sampling typically does not explicitly model error component structures, nor the dependence within
clusters, but rather is concerned with inference which is robust to arbitrary forms of within-cluster cor-
relation.

Spatial dependence is another model of interdependence. The observations are treated as mutually
dependent according to a spatial measure (for example, geographic proximity). Unlike clustering, spatial
models allow all observations to be mutually dependent, and typically rely on explicit modeling of the
dependence relationships. Spatial dependence can also be viewed as a generalization of time series
dependence.

Data Structures

• Cross-section

• Time-series

• Panel

• Clustered

• Spatial

As we mentioned above, most of this text will be devoted to cross-sectional data under the assump-
tion of mutually independent observations. By mutual independence we mean that the i th observation
(Yi , Xi ) is independent of the j th observation

(
Y j , X j

)
for i 6= j . In this case we say that the data are inde-

pendently distributed. (Sometimes the label “independent” is misconstrued. It is a statement about the
relationship between observations i and j , not a statement about the relationship between Yi and Xi .)

Furthermore, if the data is randomly gathered, it is reasonable to model each observation as a draw
from the same probability distribution. In this case we say that the data are identically distributed.
If the observations are mutually independent and identically distributed, we say that the observations
are independent and identically distributed, i.i.d., or a random sample. For most of this text we will
assume that our observations come from a random sample.

Definition 1.1 The variables (Yi , Xi ) are a sample from the distribution F if
they are identically distributed with distribution F .
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Definition 1.2 The variables (Yi , Xi ) are a random sample if they are mutually
independent and identically distributed (i.i.d.) across i = 1, ...,n.

In the random sampling framework, we think of an individual observation (Yi , Xi ) as a realization
from a joint probability distribution F

(
y, x

)
which we can call the population. This “population” is in-

finitely large. This abstraction can be a source of confusion as it does not correspond to a physical popu-
lation in the real world. It is an abstraction since the distribution F is unknown, and the goal of statistical
inference is to learn about features of F from the sample. The assumption of random sampling provides
the mathematical foundation for treating economic statistics with the tools of mathematical statistics.

The random sampling framework was a major intellectual breakthrough of the late 19th century,
allowing the application of mathematical statistics to the social sciences. Before this conceptual devel-
opment, methods from mathematical statistics had not been applied to economic data as the latter was
viewed as non-random. The random sampling framework enabled economic samples to be treated as
random, a necessary precondition for the application of statistical methods.

1.6 Econometric Software

Economists use a variety of econometric, statistical, and programming software.
Stata is a powerful statistical program with a broad set of pre-programmed econometric and statisti-

cal tools. It is quite popular among economists, and is continuously being updated with new methods.
It is an excellent package for most econometric analysis, but is limited when you want to use new or less-
common econometric methods which have not yet been programed. At many points in this textbook
specific Stata estimation methods and commands are described. These commands are valid for Stata
version 16.

MATLAB, GAUSS, and OxMetrics are high-level matrix programming languages with a wide variety of
built-in statistical functions. Many econometric methods have been programed in these languages and
are available on the web. The advantage of these packages is that you are in complete control of your
analysis, and it is easier to program new methods than in Stata. Some disadvantages are that you have
to do much of the programming yourself, programming complicated procedures takes significant time,
and programming errors are hard to prevent and difficult to detect and eliminate. Of these languages,
GAUSS used to be quite popular among econometricians, but currently MATLAB is more popular.

An intermediate choice is R. R has the capabilities of the above high-level matrix programming lan-
guages, but also has many built-in statistical environments which can replicate much of the functionality
of Stata. R is the dominant programming language in the statistics field, so methods developed in that
arena are most commonly available in R. Uniquely, R is open-source, user-contributed, and best of all,
completely free! A growing group of econometricians are enthusiastic fans of R.

For highly-intensive computational tasks, some economists write their programs in a standard pro-
gramming language such as Fortran or C. This can lead to major gains in computational speed, at the
cost of increased time in programming and debugging.

There are many other packages which are used by econometricians, include Eviews, Gretl, PcGive,
Python, Julia, RATS, and SAS.

As the packages described above have distinct advantages many empirical economists end up using
more than one package. As a student of econometrics you will learn at least one of these packages and
probably more than one. My advice is that all students of econometrics should develop a basic level of
familiarity with Stata, MATLAB, and R.
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1.7 Replication

Scientific research needs to be documented and replicable. For social science research using obser-
vational data this requires careful documentation and archiving of the research methods, data manipu-
lations, and coding.

The best practice is as follows. Accompanying each published paper an author should create a com-
plete replication package (set of data files, documentation, and program code files). This package should
contain the source (raw) data used for analysis, and code which executes the empirical analysis and other
numerical work reported in the paper. In most cases this is a set of programs which may need to be ex-
ecuted sequentially. (For example, there may be an initial program which “cleans” and manipulates
the data, and then a second set of programs which estimate the reported models.) The ideal is full docu-
mentation and clarity. This package should be posted on the author(s) website, and posted at the journal
website when that is an option.

A complicating factor is that many current economic data sets have restricted access and cannot be
shared without permission. In these cases the data cannot be posted nor shared. The computed code,
however, can and should be posted.

Most journals in economics require authors of published papers to make their datasets generally
available. For example:

Econometrica states:

Econometrica has the policy that all empirical, experimental and simulation results must
be replicable. Therefore, authors of accepted papers must submit data sets, programs, and
information on empirical analysis, experiments and simulations that are needed for replica-
tion and some limited sensitivity analysis.

The American Economic Review states:

All data used in analysis must be made available to any researcher for purposes of replica-
tion.

The Journal of Political Economy states:

It is the policy of the Journal of Political Economy to publish papers only if the data used in
the analysis are clearly and precisely documented and are readily available to any researcher
for purposes of replication.

If you are interested in using the data from a published paper, first check the journal’s website, as
many journals archive data and replication programs online. Second, check the website(s) of the paper’s
author(s). Most academic economists maintain webpages, and some make available replication files
complete with data and programs. If these investigations fail, email the author(s), politely requesting the
data. You may need to be persistent.

As a matter of professional etiquette, all authors absolutely have the obligation to make their data and
programs available. Unfortunately, many fail to do so, and typically for poor reasons. The irony of the
situation is that it is typically in the best interests of a scholar to make as much of their work (including
all data and programs) freely available, as this only increases the likelihood of their work being cited and
having an impact.

Keep this in mind as you start your own empirical project. Remember that as part of your end prod-
uct, you will need (and want) to provide all data and programs to the community of scholars. The greatest
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form of flattery is to learn that another scholar has read your paper, wants to extend your work, or wants
to use your empirical methods. In addition, public openness provides a healthy incentive for trans-
parency and integrity in empirical analysis.

1.8 Data Files for Textbook

On the textbook webpage http://www.ssc.wisc.edu/~bhansen/econometrics/ there are posted a num-
ber of files containing data sets which are used in this textbook both for illustration and for end-of-
chapter empirical exercises. For most of the data sets there are four files: (1) Description (pdf format);
(2) Excel data file; (3) Text data file; (4) Stata data file. The three data files are identical in content: the
observations and variables are listed in the same order in each, and all have variable labels.

For example, the text makes frequent reference to a wage data set extracted from the Current Popula-
tion Survey. This data set is named cps09mar, and is represented by the files cps09mar_description.pdf,
cps09mar.xlsx, cps09mar.txt, and cps09mar.dta.

The data sets currently included are

• AB1991

– Data file from Arellano and Bond (1991)

• AJR2001

– Data file from Acemoglu, Johnson and Robinson (2001)

• AK1991

– Data file from Angrist and Krueger (1991)

• AL1999

– Data file from Angrist and Lavy (1999)

• BMN2016

– Data file from Bernheim, Meer and Novarro (2016)

• cps09mar

– household survey data extracted from the March 2009 Current Population Survey

• Card1995

– Data file from Card (1995)

• CHJ2004

– Data file from Cox, B. E. Hansen and Jimenez (2004)

• CK1994



CHAPTER 1. INTRODUCTION 9

– Data file from Card and Krueger (1994)

• CMR2008

– Date file from Card, Mas, and Rothstein (2008)

• DDK2011

– Data file from Duflo, Dupas and Kremer (2011)

• DS2004

– Data file from DiTella and Schargrodsky (2004)

• FRED-MD and FRED-QD

– U.S. monthly and quarterly macroeconomic databases from McCracken and Ng (2015)

• Invest1993

– Data file from Hall and Hall (1993)

• LM2007

– Data file from Ludwig and Miller (2007) and Cattaneo, Titiunik, and Vazquez-Bare (2017)

• Kilian2009

– Data file from Kilian (2009)

• Koppelman

– Data file from Forinash and Koppelman (1993), Koppelman and Wen (2000) and Wen and
Koppelman (2001)

• MRW1992

– Data file from Mankiw, Romer and Weil (1992)

• Nerlove1963

– Data file from Nerlov (1963)

• PSS2017

– Data file from Papageorgiou, Saam, and Schulte (2017)

• RR2010

– Data file from Reinhard and Rogoff (2010)



CHAPTER 1. INTRODUCTION 10

1.9 Reading the Manuscript

I have endeavored to use a unified notation and nomenclature. The development of the material is
cumulative, with later chapters building on the earlier ones. Nevertheless, every attempt has been made
to make each chapter self-contained so readers can pick and choose topics according to their interests.

To fully understand econometric methods it is necessary to have a mathematical understanding of its
mechanics, and this includes the mathematical proofs of the main results. Consequently, this text is self-
contained with nearly all results proved with full mathematical rigor. The mathematical development
and proofs aim at brevity and conciseness (sometimes described as mathematical elegance), but also at
pedagogy. To understand a mathematical proof it is not sufficient to simply read the proof, you need to
follow it and re-create it for yourself.

Nevertheless, many readers will not be interested in each mathematical detail, explanation, or proof.
This is okay. To use a method it may not be necessary to understand the mathematical details. Accord-
ingly I have placed the more technical mathematical proofs and details in chapter appendices. These
appendices and other technical sections are marked with an asterisk (*). These sections can be skipped
without any loss in exposition.

The key concepts of matrix algebra and probability inequalities are reviewed in Appendices A & B.
It may be useful to read or review Appendix A.1-A.11 before starting Chapter 3, and review Appendix B
before Chapter 6. It is not necessary to understand all the material in the appendices. They are intended
to be reference material and some of the results are not used in this textbook.
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1.10 Common Symbols

a scalar
a or a vector
A matrix
X random variable or vector
R real line
R+ positive real line
Rk Euclidean k space
P [A] probability
P [A | B ] conditional probability
F (x) cumulative distribution function
π(x) probability mass function
f (x) probability density function
E [X ] mathematical expectation
E [Y | X = x], E [Y | X ] conditional expectation
var[X ] variance or covariance matrix
var[Y | X = x], var[Y | X ] conditional variance
cov(X ,Y ) covariance
P [Y | X = x], P [Y | X ] best linear predictor
corr(X ,Y ) correlation
X n sample mean
σ̂2 sample variance
s2 biased-corrected sample variance
θ̂ estimator
s
(
θ̂
)

standard error of estimator
lim

n→∞ limit

plim
n→∞

probability limit

−→ convergence
−→

p
convergence in probability

−→
d

convergence in distribution

Ln(θ) likelihood function
`n(θ) log-likelihood function
Iθ information matrix
N(0,1) standard normal distribution
N(µ,σ2) normal distribution with mean µ and variance σ2

χ2
k chi-square distribution with k degrees of freedom
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I n n ×n identity matrix
1n n ×1 vector of ones
tr A trace
A′ vector or matrix transpose
A−1 matrix inverse
A > 0 positive definite
A ≥ 0 positive semi-definite
‖a‖ Euclidean norm
‖A‖ matrix norm
def= definitional equality
1 {a} indicator function (1 if a is true, else 0)
' approximate equality
∼ is distributed as
log(x) natural logarithm
exp(x) exponential function

n∑
i=1

summation from i = 1 to n
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Chapter 2

Conditional Expectation and Projection

2.1 Introduction

The most commonly applied econometric tool is least squares estimation, also known as regression.
Least squares is a tool to estimate the conditional mean of one variable (the dependent variable) given
another set of variables (the regressors, conditioning variables, or covariates).

In this chapter we abstract from estimation and focus on the probabilistic foundation of the condi-
tional expectation model and its projection approximation. This includes a review of probability theory.
For a background in intermediate probability theory see Chapters 1-5 of Introduction to Econometrics.

2.2 The Distribution of Wages

Suppose that we are interested in wage rates in the United States. Since wage rates vary across work-
ers we cannot describe wage rates by a single number. Instead, we can describe wages using a probabil-
ity distribution. Formally, we view the wage of an individual worker as a random variable wage with the
probability distribution

F (u) =P[
wage ≤ u

]
.

When we say that a person’s wage is random we mean that we do not know their wage before it is mea-
sured, and we treat observed wage rates as realizations from the distribution F. Treating unobserved
wages as random variables and observed wages as realizations is a powerful mathematical abstraction
which allows us to use the tools of mathematical probability.

A useful thought experiment is to imagine dialing a telephone number selected at random, and then
asking the person who responds to tell us their wage rate. (Assume for simplicity that all workers have
equal access to telephones and that the person who answers your call will answer honestly.) In this
thought experiment, the wage of the person you have called is a single draw from the distribution F of
wages in the population. By making many such phone calls we can learn the full distribution.

When a distribution function F is differentiable we define the probability density function

f (u) = d

du
F (u).

The density contains the same information as the distribution function, but the density is typically easier
to visually interpret.

14
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Figure 2.1: Wage Distribution and Density. All Full-time U.S. Workers

In Figure 2.1 we display estimates1 of the probability distribution function (panel (a)) and density
function (panel (b)) of U.S. wage rates in 2009. We see that the density is peaked around $15, and most
of the probability mass appears to lie between $10 and $40. These are ranges for typical wage rates in the
U.S. population.

Important measures of central tendency are the median and the mean. The median m of a continu-
ous distribution F is the unique solution to

F (m) = 1

2
.

The median U.S. wage is $19.23. The median is a robust2 measure of central tendency, but it is tricky to
use for many calculations as it is not a linear operator.

The mean or expectation of a random variable Y with discrete support is

µ= E [Y ] =
∞∑

j=1
τ jP

[
Y = τ j

]
.

For a continuous random variable with density f (y) the expectation is

µ= E [Y ] =
∫ ∞

−∞
y f (y)d y.

Here we have used the common and convenient convention of using the single character Y to denote a
random variable, rather than the more cumbersome label wage. An alternative notation which includes
both discrete and continuous random variables as special cases is to write the integral as

∫ ∞
−∞ ydF (y).

The expectation is a convenient measure of central tendency because it is a linear operator and arises
naturally in many economic models. A disadvantage of the expectation is that it is not robust3 especially
in the presence of substantial skewness or thick tails, which are both features of the wage distribution as

1The distribution and density are estimated nonparametrically from the sample of 50,742 full-time non-military wage-
earners reported in the March 2009 Current Population Survey. The wage rate is constructed as annual individual wage and
salary earnings divided by hours worked.

2The median is not sensitive to pertubations in the tails of the distribution.
3The expectation is sensitive to pertubations in the tails of the distribution.
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can be seen easily in Figure 2.1(b). Another way of viewing this is that 64% of workers earn less than the
mean wage of $23.90, suggesting that it is incorrect to describe the mean $23.90 as a “typical” wage rate.

In this context it is useful to transform the data by taking the natural logarithm4. Figure 2.1(c) shows
the density of log hourly wages log(wage) for the same population. The density of log wages is much less
skewed and fat-tailed than the density of the level of wages, so its mean

E
[
log(wage)

]= 2.95

is a much better (more robust) measure5 of central tendency of the distribution. For this reason, wage
regressions typically use log wages as a dependent variable rather than the level of wages.

Another useful way to summarize the probability distribution F (u) is in terms of its quantiles. For
any α ∈ (0,1), the αth quantile of the continuous6 distribution F is the real number qα which satisfies
F

(
qα

)=α. The quantile function qα, viewed as a function ofα, is the inverse of the distribution function
F. The most commonly used quantile is the median, that is, q0.5 = m. We sometimes refer to quantiles by
the percentile representation ofα and in this case they are called percentiles. E.g. the median is the 50th

percentile.

2.3 Conditional Expectation

We saw in Figure 2.1(c) the density of log wages. Is this distribution the same for all workers, or
does the wage distribution vary across subpopulations? To answer this question, we can compare wage
distributions for different groups – for example, men and women. The plot in Figure 2.2(a) displays the
densities of log wages for U.S. men and women. We can see that the two wage densities take similar
shapes but the density for men is somewhat shifted to the right.

0 1 2 3 4 5 6

MenWomen

(a) Women and Men

1.8 3.2 4.6

white men
white women
black men
black women

(b) By Gender and Race

Figure 2.2: Log Wage Density by Gender and Race

4Throughout the text, we will use log(y) or log y to denote the natural logarithm of y.
5More precisely, the geometric mean exp

(
E
[
logW

])= $19.11 is a robust measure of central tendency.
6If F is not continuous the definition is qα = inf{u : F (u) ≥α}
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The values 3.05 and 2.81 are the mean log wages in the subpopulations of men and women workers.
They are called the conditional means (or conditional expectations) of log wages given gender. We can
write their specific values as

E
[
log(wage) | gender = man

]= 3.05

E
[
log(wage) | gender = woman

]= 2.81.

We call these means conditional as they are conditioning on a fixed value of the variable gender.
While you might not think of a person’s gender as a random variable, it is random from the viewpoint of
econometric analysis. If you randomly select an individual, the gender of the individual is unknown and
thus random. (In the population of U.S. workers, the probability that a worker is a woman happens to be
43%.) In observational data, it is most appropriate to view all measurements as random variables, and
the means of subpopulations are then conditional means.

It is important to mention at this point that we in no way attribute causality or interpretation to the
difference in the conditional expectation of log wages between men and women. There are multiple
potential explanations.

As the two densities in Figure 2.2 appear similar, a hasty inference might be that there is not a mean-
ingful difference between the wage distributions of men and women. Before jumping to this conclusion
let us examine the differences in the distributions more carefully. As we mentioned above, the primary
difference between the two densities appears to be their means. This difference equals

E
[
log(wage) | gender = man

]−E[
log(wage) | gender = woman

]= 3.05−2.81

= 0.24. (2.1)

A difference in expected log wages of 0.24 is often interpreted as an average 24% difference between the
wages of men and women, which is quite substantial. (For a more complete explanation see Section 2.4.)

Consider further splitting the male and female subpopulations by race, dividing the population into
whites, Blacks, and other races. We display the log wage density functions of four of these groups in
Figure 2.2(b). Again we see that the primary difference between the four density functions is their central
tendency.

Focusing on the means of these distributions, Table 2.1 reports the mean log wage for each of the six
sub-populations.

Table 2.1: Mean Log Wages by Gender and Race

men women
white 3.07 2.82
Black 2.86 2.73
other 3.03 2.86

Once again we stress that we in no way attribute causality or interpretation to the differences across
the entries of the table. The reason why we use these particular sub-populations to illustrate condi-
tional expectation is because differences in economic outcomes between gender and racial groups in the
United States (and elsewhere) are widely discussed; part of the role of social science is to carefully doc-
ument such patterns, and part of its role is to craft models and explanations. Conditional expectations
(by themselves) can help in the documentation and description; conditional expectations by themselves
are neither a model nor an explanation.

The entries in Table 2.1 are the conditional means of log(wage) given gender and race. For example

E
[
log(wage) | gender = man, race = white

]= 3.07
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and
E
[
log(wage) | gender = woman, race = Black

]= 2.73.

One benefit of focusing on conditional means is that they reduce complicated distributions to a sin-
gle summary measure, and thereby facilitate comparisons across groups. Because of this simplifying
property, conditional means are the primary interest of regression analysis and are a major focus in
econometrics.

Table 2.1 allows us to easily calculate average wage differences between groups. For example, we can
see that the wage gap between men and women continues after disaggregation by race, as the average
gap between white men and white women is 25%, and that between Black men and Black women is 13%.
We also can see that there is a race gap, as the average wages of Blacks are substantially less than the other
race categories. In particular, the average wage gap between white men and Black men is 21%, and that
between white women and Black women is 9%.

2.4 Logs and Percentages

In this section we want to motivate and clarify the use of the logarithm in regression analysis by mak-
ing two observations. First, when applied to numbers the difference of logarithms approximately equals
the percentage difference. Second, when applied to averages the difference in logarithms approximately
equals the percentage difference in the geometric mean. We now explain these ideas and the nature of
the approximations involved.

Take two positive numbers a and b. The percentage difference between a and b is

p = 100

(
a −b

b

)
.

Rewriting
a

b
= 1+ p

100
.

Taking natural logarithms,

log a − logb = log
(
1+ p

100

)
. (2.2)

A useful approximation for small x is
log(1+x) ' x. (2.3)

This can be derived from the infinite series expansion of log(1+x) :

log(1+x) = x − x2

2
+ x3

3
− x4

4
+·· · = x +O(x2).

The symbol O(x2) means that the remainder is bounded by Ax2 as x → 0 for some A <∞. Numerically,
the approximation log(1+x) ' x is within 0.001 for |x| ≤ 0.1. The approximation error increases with |x|.

Applying (2.3) to (2.2) and multiplying by 100 we find

p ' 100
(
log a)− logb

)
.

This shows that 100 multiplied by the difference in logarithms is approximately the percentage differ-
ence. Numerically, the approximation error is less than 0.1 percentage points for |c| ≤ 10.

Now consider the difference in the expectation of log transformed random variables. Take two ran-
dom variables X1, X2 > 0. It will be useful to define their geometric means θ1 = exp

(
E
[
log X1

])
and

θ2 = exp
(
E
[
log X2

])
. The difference in the expectation of the log transforms (multiplied by 100) is

100
(
E
[
log X2

]−E[
log X1

])= 100
(
logθ2 − logθ1

)' p
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the percentage difference between θ2 and θ1. In words, the difference between the average of the log
transformed variables is (approximately) the percentage difference in the geometric means.

The reason why this latter observation is important is because many econometric equations take the
semi-log form

E
[
logY | group = 1

]=µ1

E
[
logY | group = 2

]=µ2

and considerable attention is given to the difference µ1 −µ2. For example, in the previous section we
compared the average log wages for men and women and found that the difference is 0.24. In that sec-
tion we stated that this difference is often interpreted as the average percentage difference. This is not
quite right, but is not quite wrong either. What the above calculation shows is that this difference is
approximately the percentage difference in the geometric mean. So µ1 −µ2 is an average percentage
difference, where “average” refers to geometric rather than arithmetic mean.

To compare different measures of percentage difference see Table 2.2. In the first two columns we
report average wages for men and women in the CPS population using four “averages”: arithmetic mean,
median, geometric mean, and mean log. For both groups the mean is higher than the median and geo-
metric mean, and the latter two are similar to one another. This is a common feature of skewed distribu-
tions such as the wage distribution. The third column reports the percentage difference between the first
two columns (using men’s wages as the base). For example, the first entry of 34% states that the mean
wage for men is 34% higher than the mean wage for women. The next entries show that the median and
geometric mean for men is 26% higher than those for women. The final entry in this column is 100 times
the simple difference between the mean log wage, which is 24%. As shown above, the difference in the
mean of the log transformation is approximately the percentage difference in the geometric mean, and
this approximation is excellent for differences under 10%.

Let’s summarize this analysis. It is common to take logarithms of variables and make comparisons
between conditional means. We have shown that these differences are measures of the percentage dif-
ference in the geometric mean. Thus the common description that the difference between expected log
transforms (such as the 0.24 difference between those for men and women’s wages) is an approximate
percentage difference (e.g. a 24% difference in men’s wages relative to women’s) is correct, so long as we
realize that we are implicitly comparing geometric means.

In other words: In practice when we transform our data by taking logarithms (as is common in eco-
nomics) and then compare means (including regression coefficients) we are computing approximate
percentage differences in the geometric mean.

Table 2.2: Average Wages and Percentage Differences

men women % Difference
Arithmetic Mean $26.80 $20.00 34%
Median $21.14 $16.83 26%
Geometric Mean $21.03 $16.64 26%
Mean log Wage 3.05 2.81 24%∗
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2.5 Conditional Expectation Function

An important determinant of wages is education. In many empirical studies economists measure
educational attainment by the number of years7 of schooling. We will write this variable as education.

The conditional expectation of log(wage) given gender, race, and education is a single number for
each category. For example

E
[
log(wage) | gender = man, race = white, education = 12

]= 2.84.

We display in Figure 2.3 the conditional expectations of log(wage) for white men and white women as
a function of education. The plot is quite revealing. We see that the conditional expectation is increasing
in years of education, but at a different rate for schooling levels above and below nine years. Another
striking feature of Figure 2.3 is that the gap between men and women is roughly constant for all education
levels. As the variables are measured in logs this implies a constant average percentage gap between men
and women regardless of educational attainment.
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Figure 2.3: Expected Log Wage as a Function of Years of Education

In many cases it is convenient to simplify the notation by writing variables using single charac-
ters, typically Y , X and/or Z . It is conventional in econometrics to denote the dependent variable (e.g.
log(wage)) by the letter Y , a conditioning variable (such as gender) by the letter X , and multiple condi-
tioning variables (such as race, education and gender) by the subscripted letters X1, X2, ..., Xk .

Conditional expectations can be written with the generic notation

E [Y | X1 = x1, X2 = x2, ..., Xk = xk ] = m(x1, x2, ..., xk ).

We call this the conditional expectation function (CEF). The CEF is a function of (x1, x2, ..., xk ) as it varies
with the variables. For example, the conditional expectation of Y = log(wage) given (X1, X2) = (g ender,
race) is given by the six entries of Table 2.1.

7Here, education is defined as years of schooling beyond kindergarten. A high school graduate has education=12, a college
graduate has education=16, a Master’s degree has education=18, and a professional degree (medical, law or PhD) has educa-
tion=20.
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For greater compactness we typically write the conditioning variables as a vector in Rk :

X =


X1

X2
...

Xk

 . (2.4)

Given this notation, the CEF can be compactly written as

E [Y | X = x] = m (x) .

The CEF m(x) = E [Y | X = x] is a function of x ∈ Rk . It says: “When X takes the value x then the
average value of Y is m(x).” Sometimes it is useful to view the CEF as a function of the random variable
X . In this case we evaluate the function m(x) at X , and write m(X ) or E [Y | X ]. This is random as it is a
function of the random variable X .

2.6 Continuous Variables

In the previous sections we implicitly assumed that the conditioning variables are discrete. However,
many conditioning variables are continuous. In this section, we take up this case and assume that the
variables (Y , X ) are continuously distributed with a joint density function f (y, x).

As an example, take Y = log(wage) and X = experience, the latter the number of years of potential
labor market experience8. The contours of their joint density are plotted on the left side of Figure 2.4 for
the population of white men with 12 years of education.
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Figure 2.4: White Men with High School Degree

Given the joint density f (y, x) the variable x has the marginal density

fX (x) =
∫ ∞

−∞
f (y, x)d y.

8As there is no direct measure for experience, we instead define experience as age−education−6
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For any x such that fX (x) > 0 the conditional density of Y given X is defined as

fY |X
(
y | x

)= f (y, x)

fX (x)
. (2.5)

The conditional density is a renormalized slice of the joint density f (y, x) holding x fixed. The slice is
renormalized (divided by fX (x) so that it integrates to one) and is thus a density. We can visualize this
by slicing the joint density function at a specific value of x parallel with the y-axis. For example, take
the density contours on the left side of Figure 2.4 and slice through the contour plot at a specific value
of experience, and then renormalize the slice so that it is a proper density. This gives us the conditional
density of log(wage) for white men with 12 years of education and this level of experience. We do this
for four levels of experience (5, 10, 25, and 40 years), and plot these densities on the right side of Figure
2.4. We can see that the distribution of wages shifts to the right and becomes more diffuse as experi-
ence increases from 5 to 10 years, and from 10 to 25 years, but there is little change from 25 to 40 years
experience.

The CEF of Y given X = x is the expectation of the conditional density (2.5)

m (x) = E [Y | X = x] =
∫ ∞

−∞
y fY |X

(
y | x

)
d y. (2.6)

Intuitively, m (x) is the expectation of Y for the idealized subpopulation where the conditioning variables
are fixed at x. When X is continuously distributed this subpopulation is infinitely small.

This definition (2.6) is appropriate when the conditional density (2.5) is well defined. However, The-
orem 2.13 in Section 2.31 will show that m(x) can be defined for any random variables (Y , X ) so long as
E |Y | <∞.

In Figure 2.4 the CEF of log(wage) given experience is plotted as the solid line. We can see that the
CEF is a smooth but nonlinear function. The CEF is initially increasing in experience, flattens out around
experience = 30, and then decreases for high levels of experience.

2.7 Law of Iterated Expectations

An extremely useful tool from probability theory is the law of iterated expectations. An important
special case is the known as the Simple Law.

Theorem 2.1 Simple Law of Iterated Expectations
If E |Y | <∞ then for any random vector X ,

E [E [Y | X ]] = E [Y ] .

This states that the expectation of the conditional expectation is the unconditional expectation. In
other words the average of the conditional averages is the unconditional average. For discrete X

E [E [Y | X ]] =
∞∑

j=1
E
[
Y | X = x j

]
P

[
X = x j

]
.

For continuous X

E [E [Y | X ]] =
∫
Rk
E [Y | X = x] fX (x)d x.
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Going back to our investigation of average log wages for men and women, the simple law states that

E
[
log(wage) | gender = man

]
P

[
gender = man

]
+E[

log(wage) | gender = woman
]
P

[
gender = woman

]
= E[

log(wage)
]

.

Or numerically,
3.05×0.57+2.81×0.43 = 2.95.

The general law of iterated expectations allows two sets of conditioning variables.

Theorem 2.2 Law of Iterated Expectations
If E |Y | <∞ then for any random vectors X1 and X2,

E [E [Y | X1, X2] | X1] = E [Y | X1] .

Notice the way the law is applied. The inner expectation conditions on X1 and X2, while the outer
expectation conditions only on X1. The iterated expectation yields the simple answer E [Y | X1] , the ex-
pectation conditional on X1 alone. Sometimes we phrase this as: “The smaller information set wins.”

As an example

E
[
log(wage) | gender = man, race = white

]
P

[
race = white | gender = man

]
+E[

log(wage) | gender = man, race = Black
]
P

[
race = Black | gender = man

]
+E[

log(wage) | gender = man, race = other
]
P

[
race = other | gender = man

]
= E[

log(wage) | gender = man
]

or numerically
3.07×0.84+2.86×0.08+3.03×0.08 = 3.05.

A property of conditional expectations is that when you condition on a random vector X you can
effectively treat it as if it is constant. For example, E [X | X ] = X and E

[
g (X ) | X

]= g (X ) for any function
g (·). The general property is known as the Conditioning Theorem.

Theorem 2.3 Conditioning Theorem
If E |Y | <∞ then

E
[
g (X )Y | X

]= g (X )E [Y | X ] . (2.7)

If in addition E
∣∣g (X )

∣∣<∞ then

E
[
g (X )Y

]= E[
g (X )E [Y | X ]

]
. (2.8)

The proofs of Theorems 2.1, 2.2 and 2.3 are given in Section 2.33.
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2.8 CEF Error

The CEF error e is defined as the difference between Y and the CEF evaluated at X :

e = Y −m(X ).

By construction, this yields the formula
Y = m(X )+e. (2.9)

In (2.9) it is useful to understand that the error e is derived from the joint distribution of (Y , X ), and
so its properties are derived from this construction.

Many authors in econometrics denote the CEF error using the Greek letter ε. I do not follow this con-
vention since the error e is a random variable similar to Y and X , and it is typical to use Latin characters
for random variables.

A key property of the CEF error is that it has a conditional mean of zero. To see this, by the linearity
of expectations, the definition m(X ) = E [Y | X ] and the Conditioning Theorem

E [e | X ] = E [(Y −m(X )) | X ]

= E [Y | X ]−E [m(X ) | X ]

= m(X )−m(X ) = 0.

This fact can be combined with the law of iterated expectations to show that the unconditional mean
is also zero.

E [e] = E [E [e | X ]] = E [0] = 0.

We state this and some other results formally.

Theorem 2.4 Properties of the CEF error
If E |Y | <∞ then

1. E [e | X ] = 0.

2. E [e] = 0.

3. If E |Y |r <∞ for r ≥ 1 then E |e|r <∞.

4. For any function h (x) such that E |h (X )e| <∞ then E [h (X )e] = 0.

The proof of the third result is deferred to Section 2.33. The fourth result, whose proof is left to
Exercise 2.3, implies that e is uncorrelated with any function of the regressors.

The equations

Y = m(X )+e

E [e | X ] = 0

together imply that m(X ) is the CEF of Y given X . It is important to understand that this is not a restric-
tion. These equations hold true by definition.

The condition E [e | X ] = 0 is implied by the definition of e as the difference between Y and the CEF
m (X ) . The equation E [e | X ] = 0 is sometimes called a conditional mean restriction, since the condi-
tional mean of the error e is restricted to equal zero. The property is also sometimes called mean inde-
pendence, for the conditional mean of e is 0 and thus independent of X . However, it does not imply that
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the distribution of e is independent of X . Sometimes the assumption “e is independent of X ” is added as
a convenient simplification, but it is not generic feature of the conditional mean. Typically and generally,
e and X are jointly dependent even though the conditional mean of e is zero.

As an example, the contours of the joint density of e and experience are plotted in Figure 2.5 for the
same population as Figure 2.4. Notice that the shape of the conditional distribution varies with the level
of experience.

Labor Market Experience (Years)

e
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−
1.
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0
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1.
0

Figure 2.5: Joint Density of Error e and experience for White Men with High School Education

As a simple example of a case where X and e are mean independent yet dependent let e = X u where
X and u are independent N(0,1). Then conditional on X the error e has the distribution N(0, X 2). Thus
E [e | X ] = 0 and e is mean independent of X , yet e is not fully independent of X . Mean independence
does not imply full independence.

2.9 Intercept-Only Model

A special case of the regression model is when there are no regressors X . In this case m(X ) = E [Y ] =µ,
the unconditional mean of Y . We can still write an equation for Y in the regression format:

Y =µ+e

E [e] = 0.

This is useful for it unifies the notation.

2.10 Regression Variance

An important measure of the dispersion about the CEF function is the unconditional variance of the
CEF error e. We write this as

σ2 = var[e] = E[
(e −E [e])2]= E[

e2] .

Theorem 2.4.3 implies the following simple but useful result.



CHAPTER 2. CONDITIONAL EXPECTATION AND PROJECTION 26

Theorem 2.5 If E
[
Y 2

]<∞ then σ2 <∞.

We can call σ2 the regression variance or the variance of the regression error. The magnitude of
σ2 measures the amount of variation in Y which is not “explained” or accounted for in the conditional
expectation E [Y | X ] .

The regression variance depends on the regressors X . Consider two regressions

Y = E [Y | X1]+e1

Y = E [Y | X1, X2]+e2.

We write the two errors distinctly as e1 and e2 as they are different – changing the conditioning informa-
tion changes the conditional expectation and therefore the regression error as well.

In our discussion of iterated expectations we have seen that by increasing the conditioning set the
conditional expectation reveals greater detail about the distribution of Y . What is the implication for the
regression error?

It turns out that there is a simple relationship. We can think of the conditional expectation E [Y | X ]
as the “explained portion” of Y . The remainder e = Y −E [Y | X ] is the “unexplained portion”. The sim-
ple relationship we now derive shows that the variance of this unexplained portion decreases when we
condition on more variables. This relationship is monotonic in the sense that increasing the amount of
information always decreases the variance of the unexplained portion.

Theorem 2.6 If E
[
Y 2

]<∞ then

var[Y ] ≥ var[Y −E [Y | X1]] ≥ var[Y −E [Y | X1, X2]] .

Theorem 2.6 says that the variance of the difference between Y and its conditional expectation
(weakly) decreases whenever an additional variable is added to the conditioning information.

The proof of Theorem 2.6 is given in Section 2.33.

2.11 Best Predictor

Suppose that given a random vector X we want to predict or forecast Y . We can write any predictor as
a function g (X ) of X . The (ex-post) prediction error is the realized difference Y −g (X ). A non-stochastic
measure of the magnitude of the prediction error is the expectation of its square

E
[(

Y − g (X )
)2

]
. (2.10)

We can define the best predictor as the function g (X ) which minimizes (2.10). What function is the
best predictor? It turns out that the answer is the CEF m(X ). This holds regardless of the joint distribution
of (Y , X ).
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To see this, note that the mean squared error of a predictor g (X ) is

E
[(

Y − g (X )
)2

]
= E

[(
e +m (X )− g (X )

)2
]

= E[
e2]+2E

[
e
(
m (X )− g (X )

)]+E[(
m (X )− g (X )

)2
]

= E[
e2]+E[(

m (X )− g (X )
)2

]
≥ E[

e2]
= E[

(Y −m (X ))2]
where the first equality makes the substitution Y = m(X )+ e and the third equality uses Theorem 2.4.4.
The right-hand-side after the third equality is minimized by setting g (X ) = m (X ), yielding the inequality
in the fourth line. The minimum is finite under the assumption E

[
Y 2

]<∞ as shown by Theorem 2.5.
We state this formally in the following result.

Theorem 2.7 Conditional Expectation as Best Predictor
If E

[
Y 2

]<∞, then for any predictor g (X ),

E
[(

Y − g (X )
)2

]
≥ E[

(Y −m (X ))2]
where m (X ) = E [Y | X ].

It may be helpful to consider this result in the context of the intercept-only model

Y =µ+e

E [e] = 0.

Theorem 2.7 shows that the best predictor for Y (in the class of constants) is the unconditional mean
µ= E [Y ] in the sense that the mean minimizes the mean squared prediction error.

2.12 Conditional Variance

While the conditional mean is a good measure of the location of a conditional distribution it does
not provide information about the spread of the distribution. A common measure of the dispersion is
the conditional variance. We first give the general definition of the conditional variance of a random
variable W .

Definition 2.1 If E
[
W 2

]<∞, the conditional variance of W given X = x is

σ2(x) = var[W | X = x] = E[
(W −E [W | X = x])2 | X = x

]
.

The conditional variance treated as a random variable is var[W | X ] =σ2(X ).
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The conditional variance is distinct from the unconditional variance var[W ]. The difference is that
the conditional variance is a function of the conditioning variables. Notice that the conditional variance
is the conditional second moment, centered around the conditional first moment.

Given this definition we define the conditional variance of the regression error.

Definition 2.2 If E
[
e2

]<∞, the conditional variance of the regression error e
given X = x is

σ2(x) = var[e | X = x] = E[
e2 | X = x

]
.

The conditional variance of e treated as a random variable is var[e | X ] =σ2(X ).

Again, the conditional varianceσ2(x) is distinct from the unconditional varianceσ2. The conditional
variance is a function of the regressors, the unconditional variance is not. Generally,σ2 (x) is a non-trivial
function of x and can take any form subject to the restriction that it is non-negative. One way to think
about σ2(x) is that it is the conditional mean of e2 given X . Notice as well that σ2(x) = var[Y | X = x] so
it is equivalently the conditional variance of the dependent variable.

The variance of Y is in a different unit of measurement than Y . To convert the variance to the same
unit of measure we define the conditional standard deviation as its square root σ(x) =

√
σ2(x).

As an example of how the conditional variance depends on observables, compare the conditional
log wage densities for men and women displayed in Figure 2.2. The difference between the densities is
not purely a location shift but is also a difference in spread. Specifically, we can see that the density for
men’s log wages is somewhat more spread out than that for women, while the density for women’s wages
is somewhat more peaked. Indeed, the conditional standard deviation for men’s wages is 3.05 and that
for women is 2.81. So while men have higher average wages they are also somewhat more dispersed.

The unconditional variance is related to the conditional variance by the following identity.

Theorem 2.8 If E
[

X 2
]<∞ then

var[X ] = E [var[X |W ]]+var[E [X |W ]] .

See Theorem 4.14 of Introduction to Econometrics. Theorem 2.8 decomposes the unconditional vari-
ance into what are sometimes called the “within group variance” and the “across group variance”. For
example, if X is education level, then the first term is the expected variance of the conditional mean by
education level. The second term is the variance after controlling for education.

The regression error has a conditional mean of zero, so its unconditional error variance equals the
expected conditional variance, or equivalently can be found by the law of iterated expectations

σ2 = E[
e2]= E[

E
[
e2 | X

]]= E[
σ2(X )

]
.

That is, the unconditional error variance is the average conditional variance.
Given the conditional variance we can define a rescaled error

u = e

σ(X )
. (2.11)
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We can calculate that since σ(X ) is a function of X

E [u | X ] = E
[

e

σ(X )

∣∣∣∣ X

]
= 1

σ(X )
E [e | X ] = 0

and

var[u | X ] = E[
u2 | X

]= E[
e2

σ2(X )

∣∣∣∣ X

]
= 1

σ2(X )
E
[
e2 | X

]= σ2(X )

σ2(X )
= 1.

Thus u has a conditional mean of zero and a conditional variance of 1.
Notice that (2.11) can be rewritten as

e =σ(X )u.

and substituting this for e in the CEF equation (2.9), we find that

Y = m(X )+σ(X )u.

This is an alternative (mean-variance) representation of the CEF equation.
Many econometric studies focus on the conditional mean m(x) and either ignore the conditional

variance σ2(x), treat it as a constant σ2(x) = σ2, or treat it as a nuisance parameter (a parameter not of
primary interest). This is appropriate when the primary variation in the conditional distribution is in the
mean but can be short-sighted in other cases. Dispersion is relevant to many economic topics, includ-
ing income and wealth distribution, economic inequality, and price dispersion. Conditional dispersion
(variance) can be a fruitful subject for investigation.

The perverse consequences of a narrow-minded focus on the mean is parodied in a classic joke:

An economist was standing with one foot in a bucket of boiling water
and the other foot in a bucket of ice. When asked how he felt, he replied,
“On average I feel just fine.”

Clearly, the economist in question ignored variance!

2.13 Homoskedasticity and Heteroskedasticity

An important special case obtains when the conditional variance σ2(x) is a constant and indepen-
dent of x. This is called homoskedasticity.

Definition 2.3 The error is homoskedastic if σ2(x) = σ2 does not de-
pend on x.

In the general case where σ2(x) depends on x we say that the error e is heteroskedastic.

Definition 2.4 The error is heteroskedastic if σ2(x) depends on x.
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It is helpful to understand that the concepts homoskedasticity and heteroskedasticity concern the
conditional variance, not the unconditional variance. By definition, the unconditional variance σ2 is a
constant and independent of the regressors X . So when we talk about the variance as a function of the
regressors we are talking about the conditional variance σ2(x).

Some older or introductory textbooks describe heteroskedasticity as the case where “the variance of e
varies across observations”. This is a poor and confusing definition. It is more constructive to understand
that heteroskedasticity means that the conditional variance σ2 (x) depends on observables.

Older textbooks also tend to describe homoskedasticity as a component of a correct regression spec-
ification and describe heteroskedasticity as an exception or deviance. This description has influenced
many generations of economists but it is unfortunately backwards. The correct view is that heteroskedas-
ticity is generic and “standard”, while homoskedasticity is unusual and exceptional. The default in em-
pirical work should be to assume that the errors are heteroskedastic, not the converse.

In apparent contradiction to the above statement we will still frequently impose the homoskedastic-
ity assumption when making theoretical investigations into the properties of estimation and inference
methods. The reason is that in many cases homoskedasticity greatly simplifies the theoretical calcula-
tions and it is therefore quite advantageous for teaching and learning. It should always be remembered,
however, that homoskedasticity is never imposed because it is believed to be a correct feature of an em-
pirical model but rather because of its simplicity.

Heteroskedastic or Heteroscedastic?

The spelling of the words homoskedastic and heteroskedastic have been
somewhat controversial. Early econometrics textbooks were split, with
some using a “c” as in heteroscedastic and some “k” as in heteroskedastic.
McCulloch (1985) pointed out that the word is derived from Greek roots.
oµoιoς means “same”. ετερo means “other” or “different”. σκεδαννυµι
means “to scatter”. Since the proper transliteration of the Greek letter κ
in σκεδαννυµι is “k”, this implies that the correct English spelling of the
two words is with a “k” as in homoskedastic and heteroskedastic.

2.14 Regression Derivative

One way to interpret the CEF m(x) = E [Y | X = x] is in terms of how marginal changes in the regres-
sors x imply changes in the conditional mean of the response variable Y . It is typical to consider marginal
changes in a single regressor, say X1, holding the remainder fixed. When a regressor X1 is continuously
distributed, we define the marginal effect of a change in X1, holding the variables X2, ..., Xk fixed, as the
partial derivative of the CEF

∂

∂x1
m(x1, ..., xk ).

When X1 is discrete we define the marginal effect as a discrete difference. For example, if x1 is binary,
then the marginal effect of X1 on the CEF is

m(1, x2, ..., xk )−m(0, x2, ..., xk ).
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We can unify the continuous and discrete cases with the notation

∇1m(x) =


∂

∂x1
m(x1, ..., xk ), if X1 is continuous

m(1, x2, ..., xk )−m(0, x2, ..., xk ), if X1 is binary.

Collecting the k effects into one k ×1 vector, we define the regression derivative with respect to X :

∇m(x) =


∇1m(x)
∇2m(x)

...
∇k m(x)

 .

When all elements of X are continuous, then we have the simplification ∇m(x) = ∂

∂x
m(x), the vector of

partial derivatives.
There are two important points to remember concerning our definition of the regression derivative.
First, the effect of each variable is calculated holding the other variables constant. This is the ceteris

paribus concept commonly used in economics. But in the case of a regression derivative, the condi-
tional mean does not literally hold all else constant. It only holds constant the variables included in the
conditional mean. This means that the regression derivative depends on which regressors are included.
For example, in a regression of wages on education, experience, race and gender, the regression deriva-
tive with respect to education shows the marginal effect of education on mean wages, holding constant
experience, race and gender. But it does not hold constant an individual’s unobservable characteristics
(such as ability), nor variables not included in the regression (such as the quality of education).

Second, the regression derivative is the change in the conditional expectation of Y , not the change in
the actual value of Y for an individual. It is tempting to think of the regression derivative as the change
in the actual value of Y , but this is not a correct interpretation. The regression derivative ∇m(x) is the
change in the actual value of Y only if the error e is unaffected by the change in the regressor X . We
return to a discussion of causal effects in Section 2.30.

2.15 Linear CEF

An important special case is when the CEF m (x) = E [Y | X = x] is linear in x. In this case we can write
the mean equation as

m(x) = x1β1 +x2β2 +·· ·+xkβk +βk+1.

Notationally it is convenient to write this as a simple function of the vector x. An easy way to do so is to
augment the regressor vector X by listing the number “1” as an element. We call this the “constant” and
the corresponding coefficient is called the “intercept”. Equivalently, specify that the final element9 of the
vector x is xk = 1. Thus (2.4) has been redefined as the k ×1 vector

X =


X1

X2
...

Xk−1

1

 . (2.12)

9The order doesn’t matter. It could be any element.
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With this redefinition, the CEF is

m(x) = x1β1 +x2β2 +·· ·+βk = x ′β (2.13)

where

β=

 β1
...
βk


is a k × 1 coefficient vector. This is the linear CEF model. It is also often called the linear regression
model, or the regression of Y on X .

In the linear CEF model the regression derivative is simply the coefficient vector. That is ∇m(x) = β.
This is one of the appealing features of the linear CEF model. The coefficients have simple and natural
interpretations as the marginal effects of changing one variable, holding the others constant.

Linear CEF Model

Y = X ′β+e

E [e | X ] = 0

If in addition the error is homoskedastic we call this the homoskedastic linear CEF model.

Homoskedastic Linear CEF Model

Y = X ′β+e

E [e | X ] = 0

E
[
e2 | X

]=σ2

2.16 Linear CEF with Nonlinear Effects

The linear CEF model of the previous section is less restrictive than it might appear, as we can include
as regressors nonlinear transformations of the original variables. In this sense, the linear CEF framework
is flexible and can capture many nonlinear effects.

For example, suppose we have two scalar variables X1 and X2. The CEF could take the quadratic form

m(x1, x2) = x1β1 +x2β2 +x2
1β3 +x2

2β4 +x1x2β5 +β6. (2.14)

This equation is quadratic in the regressors (x1, x2) yet linear in the coefficients β = (β1, ...,β6)′. We still
call (2.14) a linear CEF because it is a linear function of the coefficients. At the same time, it has nonlinear
effects because it is nonlinear in the underlying variables x1 and x2. The key is to understand that (2.14)
is quadratic in the variables (x1, x2) yet linear in the coefficients β.
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To simplify the expression we define the transformations x3 = x2
1 , x4 = x2

2 , x5 = x1x2, and x6 = 1, and
redefine the regressor vector as x = (x1, ..., x6)′. With this redefinition, m(x1, x2) = x ′βwhich is linear in β.
For most econometric purposes (estimation and inference on β) the linearity in β is all that is important.

An exception is in the analysis of regression derivatives. In nonlinear equations such as (2.14) the re-
gression derivative should be defined with respect to the original variables not with respect to the trans-
formed variables. Thus

∂

∂x1
m(x1, x2) =β1 +2x1β3 +x2β5

∂

∂x2
m(x1, x2) =β2 +2x2β4 +x1β5.

We see that in the model (2.14), the regression derivatives are not a simple coefficient, but are functions
of several coefficients plus the levels of (x1,x2). Consequently it is difficult to interpret the coefficients
individually. It is more useful to interpret them as a group.

We typically call β5 the interaction effect. Notice that it appears in both regression derivative equa-
tions and has a symmetric interpretation in each. If β5 > 0 then the regression derivative with respect to
x1 is increasing in the level of x2 (and the regression derivative with respect to x2 is increasing in the level
of x1), while if β5 < 0 the reverse is true.

2.17 Linear CEF with Dummy Variables

When all regressors take a finite set of values it turns out the CEF can be written as a linear function
of regressors.

This simplest example is a binary variable which takes only two distinct values. For example, in
traditional data sets the variable gender takes only the values man and woman (or male and female).
Binary variables are extremely common in econometric applications and are alternatively called dummy
variables or indicator variables.

Consider the simple case of a single binary regressor. In this case the conditional mean can only take
two distinct values. For example,

E
[
Y | gender

]=


µ0 if gender = man

µ1 if gender = woman.

To facilitate a mathematical treatment we record dummy variables with the values {0,1}. For example

X1 =
{

0 if gender = man
1 if gender = woman.

(2.15)

Given this notation we write the conditional mean as a linear function of the dummy variable X1.
Thus E [Y | X1] = β1X1 +β2 where β1 = µ1 −µ0 and β2 = µ0. In this simple regression equation the in-
tercept β2 is equal to the conditional mean of Y for the X1 = 0 subpopulation (men) and the slope β1 is
equal to the difference in the conditional means between the two subpopulations.

Alternatively, we could have defined X1 as

X1 =
{

1 if gender = man
0 if gender = woman.

(2.16)

In this case, the regression intercept is the mean for women (rather than for men) and the regression
slope has switched signs. The two regressions are equivalent but the interpretation of the coefficients
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has changed. Therefore it is always important to understand the precise definitions of the variables, and
illuminating labels are helpful. For example, labelling X1 as “gender” does not help distinguish between
definitions (2.15) and (2.16). Instead, it is better to label X1 as “women” or “female” if definition (2.15) is
used, or as “men” or “male” if (2.16) is used.

Now suppose we have two dummy variables X1 and X2. For example, X2 = 1 if the person is married,
else X2 = 0. The conditional mean given X1 and X2 takes at most four possible values:

E [Y | X1, X2] =


µ00 if X1 = 0 and X2 = 0 (unmarried men)
µ01 if X1 = 0 and X2 = 1 (married men)
µ10 if X1 = 1 and X2 = 0 (unmarried women)
µ11 if X1 = 1 and X2 = 1 (married women).

In this case we can write the conditional mean as a linear function of X , X2 and their product X1X2 :

E [Y | X1, X2] =β1X1 +β2X2 +β3X1X2 +β4

where β1 =µ10 −µ00, β2 =µ01 −µ00, β3 =µ11 −µ10 −µ01 +µ00, and β4 =µ00.
We can view the coefficient β1 as the effect of gender on expected log wages for unmarried wage

earners, the coefficient β2 as the effect of marriage on expected log wages for men wage earners, and the
coefficient β3 as the difference between the effects of marriage on expected log wages among women
and among men. Alternatively, it can also be interpreted as the difference between the effects of gender
on expected log wages among married and non-married wage earners. Both interpretations are equally
valid. We often describe β3 as measuring the interaction between the two dummy variables, or the
interaction effect, and describe β3 = 0 as the case when the interaction effect is zero.

In this setting we can see that the CEF is linear in the three variables (X1, X2, X1X2). To put the model
in the framework of Section 2.15 we define the regressor X3 = X1X2 and the regressor vector as

X =


X1

X2

X3

1

 .

So even though we started with only 2 dummy variables, the number of regressors (including the inter-
cept) is 4.

If there are 3 dummy variables X1, X2, X3, then E [Y | X1, X2, X3] takes at most 23 = 8 distinct values
and can be written as the linear function

E [Y | X1, X2, X3] =β1X1 +β2X2 +β3X3 +β4X1X2 +β5X1X3 +β6X2X3 +β7X 1X2X3 +β8

which has eight regressors including the intercept.
In general, if there are p dummy variables X1, ..., Xp then the CEF E

[
Y | X1, X2, ..., Xp

]
takes at most 2p

distinct values and can be written as a linear function of the 2p regressors including X1, X2, ..., Xp and all
cross-products. A linear regression model which includes all 2p binary interactions is called a saturated
dummy variable regression model. It is a complete model of the conditional mean. In contrast, a model
with no interactions equals

E
[
Y | X1, X2, ..., Xp

]=β1X1 +β2X2 +·· ·+βp Xp +βp .

This has p +1 coefficients instead of 2p .
We started this section by saying that the conditional mean is linear whenever all regressors take

only a finite number of possible values. How can we see this? Take a categorical variable, such as race.
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For example, we earlier divided race into three categories. We can record categorical variables using
numbers to indicate each category, for example

X3 =


1 if white
2 if Black
3 if other.

When doing so, the values of X3 have no meaning in terms of magnitude, they simply indicate the rele-
vant category.

When the regressor is categorical the conditional mean of Y given X3 takes a distinct value for each
possibility:

E [Y | X3] =


µ1 if X3 = 1
µ2 if X3 = 2
µ3 if X3 = 3.

This is not a linear function of X3 itself, but it can be made a linear function by constructing dummy
variables for two of the three categories. For example

X4 =
{

1 if Black
0 if not Black

X5 =
{

1 if other
0 if not other.

In this case, the categorical variable X3 is equivalent to the pair of dummy variables (X4, X5). The explicit
relationship is

X3 =


1 if X4 = 0 and X5 = 0
2 if X4 = 1 and X5 = 0
3 if X4 = 0 and X5 = 1.

Given these transformations, we can write the conditional mean of Y as a linear function of X4 and X5

E [Y | X3] = E [Y | X4, X5] =β1X4 +β2X5 +β3.

We can write the CEF as either E [Y | X3] or E [Y | X4, X5] (they are equivalent), but it is only linear as a
function of X4 and X5.

This setting is similar to the case of two dummy variables, with the difference that we have not in-
cluded the interaction term X4X5. This is because the event {X4 = 1 and X5 = 1} is empty by construction,
so X4X5 = 0 by definition.

2.18 Best Linear Predictor

While the conditional mean m(X ) = E [Y | X ] is the best predictor of Y among all functions of X ,
its functional form is typically unknown. In particular, the linear CEF model is empirically unlikely to
be accurate unless X is discrete and low-dimensional so all interactions are included. Consequently, in
most cases it is more realistic to view the linear specification (2.13) as an approximation. In this section
we derive a specific approximation with a simple interpretation.

Theorem 2.7 showed that the conditional mean m (X ) is the best predictor in the sense that it has the
lowest mean squared error among all predictors. By extension, we can define an approximation to the
CEF by the linear function with the lowest mean squared error among all linear predictors.

For this derivation we require the following regularity condition.
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Assumption 2.1

1. E
[
Y 2

]<∞.

2. E‖X ‖2 <∞.

3. Q X X = E[
X X ′] is positive definite.

In Assumption 2.1.2 we use ‖x‖ = (
x ′x

)1/2 to denote the Euclidean length of the vector x.
The first two parts of Assumption 2.1 imply that the variables Y and X have finite means, variances,

and covariances. The third part of the assumption is more technical, and its role will become apparent
shortly. It is equivalent to imposing that the columns of the matrix Q X X = E[

X X ′] are linearly indepen-
dent, or that the matrix is invertible.

A linear predictor for Y is a function X ′β for some β ∈Rk . The mean squared prediction error is

S(β) = E
[(

Y −X ′β
)2

]
. (2.17)

The best linear predictor of Y given X , written P [Y | X ] , is found by selecting the β which minimizes
S(β).

Definition 2.5 The Best Linear Predictor of Y given X is

P [Y | X ] = X ′β

where β minimizes the mean squared prediction error

S(β) = E
[(

Y −X ′β
)2

]
.

The minimizer
β= argmin

b∈Rk

S(b) (2.18)

is called the Linear Projection Coefficient.

We now calculate an explicit expression for its value. The mean squared prediction error (2.17) can
be written out as a quadratic function of β :

S(β) = E[
Y 2]−2β′E [X Y ]+β′E

[
X X ′]β. (2.19)

The quadratic structure of S(β) means that we can solve explicitly for the minimizer. The first-order
condition for minimization (from Appendix A.20) is

0 = ∂

∂β
S(β) =−2E [X Y ]+2E

[
X X ′]β. (2.20)

Rewriting (2.20) as
2E [X Y ] = 2E

[
X X ′]β
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and dividing by 2, this equation takes the form

Q X Y =Q X Xβ (2.21)

where Q X Y = E [X Y ] is k ×1 and Q X X = E
[

X X ′] is k ×k. The solution is found by inverting the matrix
Q X X , and is written

β=Q−1
X X Q X Y

or
β= (

E
[

X X ′])−1
E [X Y ] . (2.22)

It is worth taking the time to understand the notation involved in the expression (2.22). Q X X is a k×k ma-
trix and Q X Y is a k×1 column vector. Therefore, alternative expressions such as E[X Y ]

E[X X ′] or E [X Y ]
(
E
[

X X ′])−1

are incoherent and incorrect. We also can now see the role of Assumption 2.1.3. It is equivalent to as-
suming that Q X X has an inverse Q−1

X X which is necessary for the solution to the normal equations (2.21)
to be unique or equivalently for (2.22) to be uniquely defined. In the absence of Assumption 2.1.3 there
could be multiple solutions to the equation (2.21).

We now have an explicit expression for the best linear predictor:

P [Y | X ] = X ′ (E[
X X ′])−1

E [X Y ] .

This expression is also referred to as the linear projection of Y on X .
The projection error is

e = Y −X ′β. (2.23)

This equals the error (2.9) from the regression equation when (and only when) the conditional mean is
linear in X , otherwise they are distinct.

Rewriting, we obtain a decomposition of Y into linear predictor and error

Y = X ′β+e. (2.24)

In general, we call equation (2.24) or X ′β the best linear predictor of Y given X or the linear projection of
Y on X . Equation (2.24) is also often called the regression of Y on X but this can sometimes be confusing
as economists use the term “regression” in many contexts. (Recall that we said in Section 2.15 that the
linear CEF model is also called the linear regression model.)

An important property of the projection error e is

E [X e] = 0. (2.25)

To see this, using the definitions (2.23) and (2.22) and the matrix properties A A−1 = I and I a = a,

E [X e] = E[
X

(
Y −X ′β

)]
= E [X Y ]−E[

X X ′](
E
[

X X ′])−1
E [X Y ]

= 0 (2.26)

as claimed.
Equation (2.25) is a set of k equations, one for each regressor. In other words, (2.25) is equivalent to

E
[

X j e
]= 0 (2.27)
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for j = 1, ...,k. As in (2.12), the regressor vector X typically contains a constant, e.g. Xk = 1. In this case
(2.27) for j = k is the same as

E [e] = 0. (2.28)

Thus the projection error has a mean of zero when the regressor vector contains a constant. (When X
does not have a constant (2.28) is not guaranteed. As it is desirable for e to have a zero mean this is a
good reason to always include a constant in any regression model.)

It is also useful to observe that since cov(X j ,e) = E
[

X j e
]− E[

X j
]
E [e] , then (2.27)-(2.28) together

imply that the variables X j and e are uncorrelated.
This completes the derivation of the model. We summarize some of the most important properties.

Theorem 2.9 Properties of Linear Projection Model
Under Assumption 2.1,

1. The moments E
[

X X ′] and E [X Y ] exist with finite elements.

2. The linear projection coefficient (2.18) exists, is unique, and equals

β= (
E
[

X X ′])−1
E [X Y ] .

3. The best linear predictor of y given x is

P (Y | X ) = X ′ (E[
X X ′])−1

E [X Y ] .

4. The projection error e = Y −X ′β exists. It satisfies E
[
e2

]<∞ and E [X e] = 0.

5. If X contains an constant, then E [e] = 0.

6. If E |Y |r <∞ and E‖X ‖r <∞ for r ≥ 2 then E |e|r <∞.

A complete proof of Theorem 2.9 is given in Section 2.33.
It is useful to reflect on the generality of Theorem 2.9. The only restriction is Assumption 2.1. Thus

for any random variables (Y , X ) with finite variances we can define a linear equation (2.24) with the
properties listed in Theorem 2.9. Stronger assumptions (such as the linear CEF model) are not necessary.
In this sense the linear model (2.24) exists quite generally. However, it is important not to misinterpret
the generality of this statement. The linear equation (2.24) is defined as the best linear predictor. It is not
necessarily a conditional mean, nor a parameter of a structural or causal economic model.

Linear Projection Model

Y = X ′β+e

E [X e] = 0

β= (
E
[

X X ′])−1
E [X Y ]
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Invertibility and Identification

The linear projection coefficient β = (
E
[

X X ′])−1
E [X Y ] exists and is

unique as long as the k ×k matrix Q X X = E[
X X ′] is invertible. The matrix Q X X

is often called the design matrix as in experimental settings the researcher is
able to control Q X X by manipulating the distribution of the regressors X .

Observe that for any non-zero α ∈Rk ,

α′Q X Xα= E[
α′X X ′α

]= E[(
α′X

)2
]
≥ 0

so Q X X by construction is positive semi-definite, conventionally written as
Q X X ≥ 0. The assumption that it is positive definite means that this is a strict

inequality, E
[(
α′X

)2
]
> 0. This is conventionally written as Q X X > 0. This

condition means that there is no non-zero vector α such that α′X = 0 iden-
tically. Positive definite matrices are invertible. Thus when Q X X > 0 then
β = (

E
[

X X ′])−1
E [X Y ] exists and is uniquely defined. In other words, if we

can exclude the possibility that a linear function of X is degenerate, then β is
uniquely defined.

Theorem 2.5 shows that the linear projection coefficient β is identified
(uniquely determined) under Assumption 2.1. The key is invertibility of Q X X .
Otherwise, there is no unique solution to the equation

Q X Xβ=Q X Y . (2.29)

When Q X X is not invertible there are multiple solutions to (2.29). In this case
the coefficient β is not identified as it does not have a unique value.
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Minimization

The mean squared prediction error (2.19) is a function with vector argu-
ment of the form

f (x) = a −2b′x +x ′C x

where C > 0. For any function of this form, the unique minimizer is

x =C−1b. (2.30)

To see that this is the unique minimizer we present two proofs. The first uses
matrix calculus. From Appendix A.20

∂

∂x

(
b′x

)= b (2.31)

∂

∂x

(
x ′C x

)= 2C x (2.32)

∂2

∂x∂x ′
(
x ′C x

)= 2C . (2.33)

Using (2.31) and (2.32), we find

∂

∂x
f (x) =−2b +2C x.

The first-order condition for minimization sets this derivative equal to zero.
Thus the solution satisfies −2b +2C x = 0. Solving for x we find (2.30). Using
(2.33) we also find

∂2

∂x∂x ′ f (x) = 2C > 0

which is the second-order condition for minimization. This shows that (2.30)
is the unique minimizer of f (x).

Our second proof is algebraic. Re-write f (x) as

f (x) = (
a −b′C−1b

)+ (
x −C−1b

)′
C

(
x −C−1b

)
.

The first term does not depend on x so does not affect the minimizer. The
second term is a quadratic form in a positive definite matrix. This means that
for any non-zero α, α′Cα > 0. Thus for x 6= C−1b, the second-term is strictly
positive, yet for x = C−1b this term equals zero. It is therefore minimized at
x =C−1b as claimed.

2.19 Illustrations of Best Linear Predictor

We illustrate the best linear predictor (projection) using three log wage equations introduced in ear-
lier sections.

For our first example, we consider a model with the two dummy variables for gender and race similar
to Table 2.1. As we learned in Section 2.17, the entries in this table can be equivalently expressed by a
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linear CEF. For simplicity, let’s consider the CEF of log(wage) as a function of Black and female.

E
[
log(wage) | Black, female

]=−0.20Black−0.24female+0.10Black× female+3.06. (2.34)

This is a CEF as the variables are binary and all interactions are included.
Now consider a simpler model omitting the interaction effect. This is the linear projection on the

variables Black and female

P
[
log(wage) | Black, female

]=−0.15Black−0.23female+3.06. (2.35)

What is the difference? The full CEF (2.34) shows that the race gap is differentiated by gender: it is 20%
for Black men (relative to non-Black men) and 10% for Black women (relative to non-Black women).
The projection model (2.35) simplifies this analysis, calculating an average 15% wage gap for Black wage
earners, ignoring the role of gender. Notice that this is despite the fact that gender is included in (2.35).
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Figure 2.6: Projections of log(wage) onto education and experience

For our second example we consider the CEF of log wages as a function of years of education for
white men which was illustrated in Figure 2.3 and is repeated in Figure 2.6(a). Superimposed on the
figure are two projections. The first (given by the dashed line) is the linear projection of log wages on
years of education

P
[
log(wage) | education

]= 0.11education+1.5.

This simple equation indicates an average 11% increase in wages for every year of education. An in-
spection of the Figure shows that this approximation works well for education≥ 9, but under-predicts
for individuals with lower levels of education. To correct this imbalance we use a linear spline equation
which allows different rates of return above and below 9 years of education:

P
[
log(wage) | education, (education−9)×1 {education > 9}

]
= 0.02education+0.10× (education−9)×1 {education > 9}+2.3.

This equation is displayed in Figure 2.6(a) using the solid line, and appears to fit much better. It indicates
a 2% increase in mean wages for every year of education below 9, and a 12% increase in mean wages for
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every year of education above 9. It is still an approximation to the conditional mean but it appears to be
fairly reasonable.

For our third example we take the CEF of log wages as a function of years of experience for white men
with 12 years of education, which was illustrated in Figure 2.4 and is repeated as the solid line in Figure
2.6(b). Superimposed on the figure are two projections. The first (given by the dot-dashed line) is the
linear projection on experience

P
[
log(wage) | experience

]= 0.011experience+2.5

and the second (given by the dashed line) is the linear projection on experience and its square

P
[
log(wage) | experience

]= 0.046experience−0.0007experience2 +2.3.

It is fairly clear from an examination of Figure 2.6(b) that the first linear projection is a poor approxima-
tion. It over-predicts wages for young and old workers, and under-predicts for the rest. Most importantly,
it misses the strong downturn in expected wages for older wage-earners. The second projection fits much
better. We can call this equation a quadratic projection since the function is quadratic in experience.

2.20 Linear Predictor Error Variance

As in the CEF model, we define the error variance as σ2 = E
[
e2

]
. Setting QY Y = E

[
Y 2

]
and QY X =

E
[
Y X ′] we can write σ2 as

σ2 = E
[(

Y −X ′β
)2

]
= E[

Y 2]−2E
[
Y X ′]β+β′E

[
X X ′]β

=QY Y −2QY X Q−1
X X Q X Y +QY X Q−1

X X Q X X Q−1
X X Q X Y

=QY Y −QY X Q−1
X X Q X Y

def= QY Y ·X . (2.36)

One useful feature of this formula is that it shows that QY Y ·X =QY Y −QY X Q−1
X X Q X Y equals the variance

of the error from the linear projection of Y on X .

2.21 Regression Coefficients

Sometimes it is useful to separate the constant from the other regressors and write the linear projec-
tion equation in the format

Y = X ′β+α+e (2.37)

where α is the intercept and X does not contain a constant.
Taking expectations of this equation, we find

E [Y ] = E[
X ′β

]+E [α]+E [e]

or µY = µ′
Xβ+α where µY = E [Y ] and µX = E [X ] , since E [e] = 0 from (2.28). (While X does not contain

a constant, the equation does so (2.28) still applies.) Rearranging, we find α=µY −µ′
Xβ. Subtracting this

equation from (2.37) we find
Y −µY = (

X −µX
)′
β+e, (2.38)



CHAPTER 2. CONDITIONAL EXPECTATION AND PROJECTION 43

a linear equation between the centered variables Y −µY and X −µX . (They are centered at their means so
are mean-zero random variables.) Because X −µX is uncorrelated with e, (2.38) is also a linear projection.
Thus by the formula for the linear projection model,

β=
(
E
[(

X −µX
)(

X −µX
)′])−1

E
[(

X −µX
)(

y −µY
)]

= var[X ]−1 cov(X ,Y )

a function only of the covariances10 of X and Y .

Theorem 2.10 In the linear projection model Y = X ′β+α+e,

α=µY −µ′
Xβ (2.39)

and
β= var[X ]−1 cov(X ,Y ) . (2.40)

2.22 Regression Sub-Vectors

Let the regressors be partitioned as

X =
(

X1

X2

)
. (2.41)

We can write the projection of Y on X as

Y = X ′β+e

= X ′
1β1 +X ′

2β2 +e (2.42)

E [X e] = 0.

In this section we derive formulae for the sub-vectors β1 and β2.
Partition Q X X conformably with X

Q X X =
[

Q11 Q12

Q21 Q22

]
=

[
E
[

X1X ′
1

]
E
[

X1X ′
2

]
E
[

X2X ′
1

]
E
[

X2X ′
2

] ]
and similarly

Q X Y =
[

Q1Y

Q2Y

]
=

[
E [X1Y ]
E [X2Y ]

]
.

By the partitioned matrix inversion formula (A.3)

Q−1
X X =

[
Q11 Q12

Q21 Q22

]−1
def=

[
Q11 Q12

Q21 Q22

]
=

[
Q−1

11·2 −Q−1
11·2Q12Q−1

22
−Q−1

22·1Q21Q−1
11 Q−1

22·1

]
(2.43)

10The covariance matrix between vectors X and Z is cov(X , Z ) = E
[
(X −E [X ]) (Z −E [Z ])′

]
. The covariance matrix of the

vector X is var[X ] = cov(X , X ) = E[
(X −E [X ]) (X −E [X ])′

]
.
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where Q11·2
def= Q11 −Q12Q−1

22 Q21 and Q22·1
def= Q22 −Q21Q−1

11 Q12. Thus

β=
(
β1

β2

)
=

[
Q−1

11·2 −Q−1
11·2Q12Q−1

22
−Q−1

22·1Q21Q−1
11 Q−1

22·1

][
Q1Y

Q2Y

]
=

(
Q−1

11·2
(
Q1y −Q12Q−1

22 Q2Y
)

Q−1
22·1

(
Q2y −Q21Q−1

11 Q1Y
) )

=
(

Q−1
11·2Q1Y ·2

Q−1
22·1Q2Y ·1

)
.

We have shown that β1 =Q−1
11·2Q1Y ·2 and β2 =Q−1

22·1Q2Y ·1.

2.23 Coefficient Decomposition

In the previous section we derived formulae for the coefficient sub-vectors β1 and β2. We now use
these formulae to give a useful interpretation of the coefficients in terms of an iterated projection.

Take equation (2.42) for the case dim(X1) = 1 so that β1 ∈R.

Y = X1β1 +X ′
2β2 +e. (2.44)

Now consider the projection of X1 on X2 :

X1 = X ′
2γ2 +u1

E [X2u1] = 0.

From (2.22) and (2.36), γ2 =Q−1
22 Q21 and E

[
u2

1

]=Q11·2 =Q11 −Q12Q−1
22 Q21. We can also calculate that

E [u1Y ] = E[(
X1 −γ′2X2

)
Y

]= E [X1Y ]−γ′2E [X2Y ] =Q1Y −Q12Q−1
22 Q2Y =Q1Y ·2.

We have found that

β1 =Q−1
11·2Q1Y ·2 =

E [u1Y ]

E
[
u2

1

]
the coefficient from the simple regression of Y on u1.

What this means is that in the multivariate projection equation (2.44), the coefficient β1 equals the
projection coefficient from a regression of Y on u1, the error from a projection of X1 on the other regres-
sors X2. The error u1 can be thought of as the component of X1 which is not linearly explained by the
other regressors. Thus the coefficient β1 equals the linear effect of X1 on Y after stripping out the effects
of the other variables.

There was nothing special in the choice of the variable X1. This derivation applies symmetrically to
all coefficients in a linear projection. Each coefficient equals the simple regression of Y on the error from
a projection of that regressor on all the other regressors. Each coefficient equals the linear effect of that
variable on Y after linearly controlling for all the other regressors.
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2.24 Omitted Variable Bias

Again, let the regressors be partitioned as in (2.41). Consider the projection of Y on X1 only. Perhaps
this is done because the variables X2 are not observed. This is the equation

Y = X ′
1γ1 +u (2.45)

E [X1u] = 0.

Notice that we have written the coefficient as γ1 rather than β1 and the error as u rather than e. This is
because (2.45) is different than (2.42). Goldberger (1991) introduced the catchy labels long regression
for (2.42) and short regression for (2.45) to emphasize the distinction.

Typically, β1 6= γ1, except in special cases. To see this, we calculate

γ1 =
(
E
[

X1X ′
1

])−1
E [X1Y ]

= (
E
[

X1X ′
1

])−1
E
[

X1
(
X ′

1β1 +X ′
2β2 +e

)]
=β1 +

(
E
[

X1X ′
1

])−1
E
[

X1X ′
2

]
β2

=β1 +Γ12β2

where Γ12 = Q−1
11 Q12 is the coefficient matrix from a projection of X2 on X1 where we use the notation

from Section 2.22.
Observe that γ1 = β1 +Γ12β2 6= β1 unless Γ12 = 0 or β2 = 0. Thus the short and long regressions have

different coefficients. They are the same only under one of two conditions. First, if the projection of X2

on X1 yields a set of zero coefficients (they are uncorrelated), or second, if the coefficient on X2 in (2.42)
is zero. The difference Γ12β2 between γ1 and β1 is known as omitted variable bias. It is the consequence
of omission of a relevant correlated variable.

To avoid omitted variables bias the standard advice is to include all potentially relevant variables in
estimated models. By construction, the general model will be free of such bias. Unfortunately in many
cases it is not feasible to completely follow this advice as many desired variables are not observed. In this
case, the possibility of omitted variables bias should be acknowledged and discussed in the course of an
empirical investigation.

For example, suppose Y is log wages, X1 is education, and X2 is intellectual ability. It seems reason-
able to suppose that education and intellectual ability are positively correlated (highly able individuals
attain higher levels of education) which means Γ12 > 0. It also seems reasonable to suppose that con-
ditional on education, individuals with higher intelligence will earn higher wages on average, so that
β2 > 0. This implies that Γ12β2 > 0 and γ1 =β1+Γ12β2 >β1. Therefore, it seems reasonable to expect that
in a regression of wages on education with ability omitted, the coefficient on education is higher than
in a regression where ability is included. In other words, in this context the omitted variable biases the
regression coefficient upwards. It is possible, for example, that β1 = 0 so that education has no direct
effect on wages yet γ1 = Γ12β2 > 0 meaning that the regression coefficient on education alone is positive,
but is a consequence of the unmodeled correlation between education and intellectual ability.

Unfortunately the above simple characterization of omitted variable bias does not immediately carry
over to more complicated settings, as discovered by Luca, Magnus, and Peracchi (2018). For example,
suppose we compare three nested projections

Y = X ′
1γ1 +u1

Y = X ′
1δ1 +X ′

2δ2 +u2

Y = X ′
1β1 +X ′

2β2 +X ′
3β3 +e.
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We can call them the short, medium, and long regressions. Suppose that the parameter of interest isβ1 in
the long regression. We are interested in the consequences of omitting X3 when estimating the medium
regression, and of omitting both X2 and X3 when estimating the short regression. In particular we are
interested in the question: Is it better to estimate the short or medium regression, given that both omit
X3? Intuition suggests that the medium regression should be “less biased” but it is worth investigating in
greater detail. By similar calculations to those above, we find that

γ1 =β1 +Γ12β2 +Γ13β3

δ1 =β1 +Γ13·2β3

where Γ13·2 =Q−1
11·2Q13·2 using the notation from Section 2.22.

We see that the bias in the short regression coefficient is Γ12β2 +Γ13β3 which depends on both β2

and β3, while that for the medium regression coefficient is Γ13·2β3 which only depends on β3. So the bias
for the medium regression is less complicated and intuitively seems more likely to be smaller than that
of the short regression. However it is impossible to strictly rank the two. It is quite possible that γ1 is
less biased than δ1. Thus as a general rule it is strictly impossible to state that estimation of the medium
regression will be less biased than estimation of the short regression.

2.25 Best Linear Approximation

There are alternative ways we could construct a linear approximation X ′β to the conditional mean
m(X ). In this section we show that one alternative approach turns out to yield the same answer as the
best linear predictor.

We start by defining the mean-square approximation error of X ′β to m(X ) as the expected squared
difference between X ′β and the conditional mean m(X )

d(β) = E
[(

m(X )−X ′β
)2

]
.

The function d(β) is a measure of the deviation of X ′β from m(X ). If the two functions are identical then
d(β) = 0, otherwise d(β) > 0. We can also view the mean-square difference d(β) as a density-weighted
average of the function

(
m(X )−X ′β

)2 since

d(β) =
∫
Rk

(
m(x)−x ′β

)2 fX (x)d x

where fX (x) is the marginal density of X .
We can then define the best linear approximation to the conditional m(X ) as the function X ′β ob-

tained by selecting β to minimize d(β) :

β= argmin
b∈Rk

d(b). (2.46)

Similar to the best linear predictor we are measuring accuracy by expected squared error. The difference
is that the best linear predictor (2.18) selects β to minimize the expected squared prediction error, while
the best linear approximation (2.46) selects β to minimize the expected squared approximation error.

Despite the different definitions, it turns out that the best linear predictor and the best linear approx-
imation are identical. By the same steps as in (2.18) plus an application of conditional expectations we
can find that

β= (
E
[

X X ′])−1
E [X m(X )] (2.47)

= (
E
[

X X ′])−1
E [X Y ] (2.48)

(see Exercise 2.19). Thus (2.46) equals (2.18). We conclude that the definition (2.46) can be viewed as an
alternative motivation for the linear projection coefficient.
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2.26 Regression to the Mean

The term regression originated in an influential paper by Francis Galton (1886) where he examined
the joint distribution of the stature (height) of parents and children. Effectively, he was estimating the
conditional mean of children’s height given their parent’s height. Galton discovered that this conditional
mean was approximately linear with a slope of 2/3. This implies that on average a child’s height is more
mediocre (average) than his or her parent’s height. Galton called this phenomenon regression to the
mean, and the label regression has stuck to this day to describe most conditional relationships.

One of Galton’s fundamental insights was to recognize that if the marginal distributions of Y and X
are the same (e.g. the heights of children and parents in a stable environment) then the regression slope
in a linear projection is always less than one.

To be more precise, take the simple linear projection

Y = Xβ+α+e (2.49)

where Y equals the height of the child and X equals the height of the parent. Assume that Y and X have
the same mean so that µY = µX = µ. Then from (2.39) α= (

1−β)
µ so we can write the linear projection

(2.49) as
P (Y | X ) = (

1−β)
µ+Xβ.

This shows that the projected height of the child is a weighted average of the population average height
µ and the parent’s height X with the weight equal to β. When the height distribution is stable across
generations so that var[Y ] = var[X ] , then this slope is the simple correlation of Y and X . Using (2.40)

β= cov(X ,Y )

var[X ]
= corr(X ,Y ).

By the Cauchy-Schwarz inequality (B.32), −1 ≤ corr(X ,Y ) ≤ 1, with corr(X ,Y ) = 1 only in the degenerate
case Y = X . Thus if we exclude degeneracy, β is strictly less than 1.

This means that on average a child’s height is more mediocre (closer to the population average) than
the parent’s.

A common error – known as the regression fallacy – is to infer from β < 1 that the population is
converging meaning that its variance is declining towards zero. This is a fallacy because we derived the
implication β < 1 under the assumption of constant means and variances. So certainly β < 1 does not
imply that the variance Y is less than than the variance of X .

Another way of seeing this is to examine the conditions for convergence in the context of equation
(2.49). Since X and e are uncorrelated, it follows that

var[Y ] =β2 var[X ]+var[e].

Then var[Y ] < var[X ] if and only if

β2 < 1− var[e]

var[X ]

which is not implied by the simple condition
∣∣β∣∣< 1.

The regression fallacy arises in related empirical situations. Suppose you sort families into groups by
the heights of the parents, and then plot the average heights of each subsequent generation over time.
If the population is stable, the regression property implies that the plots lines will converge – children’s
height will be more average than their parents. The regression fallacy is to incorrectly conclude that the
population is converging. A message to be learned from this example is that such plots are misleading
for inferences about convergence.
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The regression fallacy is subtle. It is easy for intelligent economists to succumb to its temptation. A
famous example is The Triumph of Mediocrity in Business by Horace Secrist published in 1933. In this
book, Secrist carefully and with great detail documented that in a sample of department stores over 1920-
1930, when he divided the stores into groups based on 1920-1921 profits, and plotted the average profits
of these groups for the subsequent 10 years, he found clear and persuasive evidence for convergence
“toward mediocrity”. Of course, there was no discovery – regression to the mean is a necessary feature of
stable distributions.

2.27 Reverse Regression

Galton noticed another interesting feature of the bivariate distribution. There is nothing special
about a regression of Y on X . We can also regress X on Y . (In his heredity example this is the best linear
predictor of the height of parents given the height of their children.) This regression takes the form

X = Y β∗+α∗+e∗. (2.50)

This is sometimes called the reverse regression. In this equation, the coefficientsα∗, β∗ and error e∗ are
defined by linear projection. In a stable population we find that

β∗ = corr(X ,Y ) =β

α∗ = (
1−β)

µ=α
which are exactly the same as in the projection of Y on X ! The intercept and slope have exactly the same
values in the forward and reverse projections! [This equality is not particularly imporant; it is an artifact
of the assumption that X and Y have the same variances.]

While this algebraic discovery is quite simple, it is counter-intuitive. Instead, a common yet mistaken
guess for the form of the reverse regression is to take the equation (2.49), divide through by β and rewrite
to find the equation

X = Y
1

β
− α

β
− 1

β
e (2.51)

suggesting that the projection of X on Y should have a slope coefficient of 1/β instead ofβ, and intercept
of −α/β rather than α. What went wrong? Equation (2.51) is perfectly valid because it is a simple ma-
nipulation of the valid equation (2.49). The trouble is that (2.51) is neither a CEF nor a linear projection.
Inverting a projection (or CEF) does not yield a projection (or CEF). Instead, (2.50) is a valid projection,
not (2.51).

In any event, Galton’s finding was that when the variables are standardized the slope in both projec-
tions (Y on X , and X on Y ) equals the correlation and both equations exhibit regression to the mean. It
is not a causal relation, but a natural feature of all joint distributions.

2.28 Limitations of the Best Linear Projection

Let’s compare the linear projection and linear CEF models.
From Theorem 2.4.4 we know that the CEF error has the property E [X e] = 0. Thus a linear CEF is

the best linear projection. However, the converse is not true as the projection error does not necessarily
satisfy E [e | X ] = 0. Furthermore, the linear projection may be a poor approximation to the CEF.

To see these points in a simple example, suppose that the true process is Y = X +X 2 with X ∼ N(0,1).
In this case the true CEF is m(x) = x+x2 and there is no error. Now consider the linear projection of Y on



CHAPTER 2. CONDITIONAL EXPECTATION AND PROJECTION 49

X and a constant, namely the model Y =βX +α+e. Since X ∼ N(0,1) then X and X 2 are uncorrelated and
the linear projection takes the form P [Y | X ] = X +1. This is quite different from the true CEF m(X ) =
X + X 2. The projection error equals e = X 2 −1 which is a deterministic function of X yet is uncorrelated
with X . We see in this example that a projection error need not be a CEF error and a linear projection
can be a poor approximation to the CEF.

0 1 2 3 4 5 6

0
2

4
6

8

Conditional Mean
Linear Projection, Group 1
Linear Projection, Group 2

Figure 2.7: Conditional Mean and Two Linear Projections

Another defect of linear projection is that it is sensitive to the marginal distribution of the regressors
when the conditional mean is nonlinear. We illustrate the issue in Figure 2.7 for a constructed11 joint dis-
tribution of Y and X . The solid line is the nonlinear CEF of Y given X . The data are divided in two groups
– Group 1 and Group 2 – which have different marginal distributions for the regressor X , and Group 1 has
a lower mean value of X than Group 2. The separate linear projections of Y on X for these two groups
are displayed in the figure by the dashed lines. These two projections are distinct approximations to the
CEF. A defect with linear projection is that it leads to the incorrect conclusion that the effect of X on Y is
different for individuals in the two groups. This conclusion is incorrect because in fact there is no differ-
ence in the conditional mean function. The apparent difference is a by-product of linear approximations
to a nonlinear mean combined with different marginal distributions for the conditioning variables.

2.29 Random Coefficient Model

A model which is notationally similar to but conceptually distinct from the linear CEF model is the
linear random coefficient model. It takes the form Y = X ′η where the individual-specific coefficient η
is random and independent of X . For example, if X is years of schooling and Y is log wages, then η

is the individual-specific returns to schooling. If a person obtains an extra year of schooling, η is the
actual change in their wage. The random coefficient model allows the returns to schooling to vary in the
population. Some individuals might have a high return to education (a high η) and others a low return,
possibly 0, or even negative.

11The X in Group 1 are N(2,1) and those in Group 2 are N(4,1), and the conditional distribution of Y given X is N(m(X ),1)
where m(x) = 2x −x2/6.
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In the linear CEF model the regressor coefficient equals the regression derivative – the change in
the conditional mean due to a change in the regressors, β = ∇m(X ). This is not the effect on a given
individual, it is the effect on the population average. In contrast, in the random coefficient model the
random vector η=∇(

X ′η
)

is the true causal effect – the change in the response variable Y itself due to a
change in the regressors.

It is interesting, however, to discover that the linear random coefficient model implies a linear CEF. To
see this, letβ= E[

η
]

andΣ= var
[
η
]

denote the mean and covariance matrix of η and then decompose the
random coefficient as η=β+u where u is distributed independently of X with mean zero and covariance
matrix Σ. Then we can write

E [Y | X ] = X ′E
[
η | X

]= X ′E
[
η
]= X ′β

so the CEF is linear in X , and the coefficient β equals the mean of the random coefficient η.
We can thus write the equation as a linear CEF Y = X ′β+e where e = X ′u and u = η−β. The error is

conditionally mean zero: E [e | X ] = 0. Furthermore

var[e | X ] = X ′ var
[
η
]

X = X ′ΣX

so the error is conditionally heteroskedastic with its variance a quadratic function of X .

Theorem 2.11 In the linear random coefficient model Y = X ′η with η inde-
pendent of X , E‖X ‖2 <∞, and E

∥∥η∥∥2 <∞, then

E [Y | X ] = X ′β
var[Y | X ] = X ′ΣX

where β= E[
η
]

and Σ= var
[
η
]

.

2.30 Causal Effects

So far we have avoided the concept of causality, yet often the underlying goal of an econometric anal-
ysis is to measure a causal relationship between variables. It is often of great interest to understand the
causes and effects of decisions, actions, and policies. For example, we may be interested in the effect
of class sizes on test scores, police expenditures on crime rates, climate change on economic activity,
years of schooling on wages, institutional structure on growth, the effectiveness of rewards on behavior,
the consequences of medical procedures for health outcomes, or any variety of possible causal relation-
ships. In each case the goal is to understand what is the actual effect on the outcome due to a change in
an input. We are not just interested in the conditional mean or linear projection, we would like to know
the actual change.

Two inherent barriers are: (1) the causal effect is typically specific to an individual; and (2) the causal
effect is typically unobserved.

Consider the effect of schooling on wages. The causal effect is the actual difference a person would
receive in wages if we could change their level of education holding all else constant. This is specific to
each individual as their employment outcomes in these two distinct situations are individual. The causal
effect is unobserved because the most we can observe is their actual level of education and their actual
wage, but not the counterfactual wage if their education had been different.
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To be concrete suppose that there are two individuals, Jennifer and George, and both have the possi-
bility of being high-school graduates or college graduates, and both would have received different wages
given their choices. For example, suppose that Jennifer would have earned $10 an hour as a high-school
graduate and $20 an hour as a college graduate while George would have earned $8 as a high-school
graduate and $12 as a college graduate. In this example the causal effect of schooling is $10 a hour for
Jennifer and $4 an hour for George. The causal effects are specific to the individual and neither causal
effect is observed.

Rubin (1974) developed the potential outcomes framework (also known as the Rubin causal model)
to clarify the issues. Let Y be a scalar outcome (for example, wages) and D be a binary treatment (for
example, college attendence). The specification of treatment as binary is not essential but simplifies the
notation. A flexible model describing the impact of the treatment on the outcome is

Y = h (D,U ) (2.52)

where U is an `× 1 unobserved random factor and h is a functional relationship. It is also common
to use the simplified notation Y (0) = h (0,U ) and Y (1) = h (1,U ) for the potential outcomes associated
with non-treatment and treatment, respectively. The notation implicitly holds U fixed. The potential
outcomes are specific to each individual as they depend on U . For example, if Y is an individual’s wage,
the unobservables U could include characteristics such as the individuals’s abilities, skills, work ethic,
interpersonal connections, and preferences, all of which potentially influence their wage. In our example
these factors are summarized by the labels “Jennifer” and “George”.

Rubin described the effect as causal when we vary D while holding U constant. In our example this
means changing an individual’s education while holding constant their other attributes.

Definition 2.6 In the model (2.52) the causal effect of D on Y is

C (U ) = Y (1)−Y (0) = h (1,U )−h (0,U ) , (2.53)

the change in Y due to treatment while holding U constant.

It may be helpful to understand that (2.53) is a definition and does not necessarily describe causal-
ity in a fundamental or experimental sense. Perhaps it would be more appropriate to label (2.53) as a
structural effect (the effect within the structural model).

The causal effect of treatment C (U ) defined in (2.53) is heterogeneous and random as the potential
outcomes Y (0) and Y (1) vary across individuals. We do not observe both Y (0) and Y (1) for a given
individual but rather only the realized value

Y =


Y (0) if D = 0

Y (1) if D = 1.

Consequently the causal effect C (U ) is unobserved.
Rubin’s goal was to learn features of the distribution of C (U ) including its expected value which he

called the average causal effect. He defined it as follows.
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Definition 2.7 In the model (2.52) the average causal effect of D on Y is

ACE = E [C (U )] =
∫
R`

C (u) f (u)du

where f (u) is the density of U .

The ACE is the population average of the causal effect. Extending our Jennifer & George example,
suppose that half of the population are like Jennifer and the other half are like George. Then the average
causal effect of college on wages is (10+4)/2 = $7 an hour.

To estimate the ACE a reasonable starting place is to compare average Y for treated and untreated
individuals. In our example this is the difference between the average wage among college graduates
and high school graduates. This is the same as the coefficient in a regression of the outcome Y on the
treatment D . Does this equal the ACE?

The answer depends on the relationship between treatment D and the unobserved component U . If
D is randomly assigned as in an experiment then D and U are independent and the regression coefficient
equals the ACE. However, if D and U are dependent then the regression coefficient and ACE are differ-
ent. To see this, observe that the difference between the average outcomes of the treated and untreated
populations are

E [Y | D = 1]−E [Y | D = 0] =
∫
R`

h(1,u) f (u | D = 1)du −
∫
R`

h(1,u) f (u | D = 0)du

where f (u | D) is the conditional density of U given D . If U is independent of D then f (u | D) = f (u) and
the above expression equals

∫
R` (h(1,u)−h(0,u)) f (u)du = ACE. However, if U and D are dependent this

equality fails.
To illustrate, let’s return to our example of Jennifer and George. Suppose that all high school students

take an aptitude test. If a student gets a high (H) score they go to college with probability 3/4, and if a
student gets a low (L) score they go to college with probability 1/4. Suppose further that Jennifer gets an
aptitude score of H with probability 3/4, while George gets a score of H with probability 1/4. Given this
situation, 62.5% of Jennifer’s will go to college12 while 37.5% of George’s will go to college13.

An econometrician who randomly samples 32 individuals and collects data on educational attain-
ment and wages will find the wage distribution displayed in Table 2.3.

Our econometrician finds that the average wage among high school graduates is $8.75 while the av-
erage wage among college graduates is $17.00. The difference of $8.25 is the econometrician’s regression
coefficient for the effect of college on wages. But $8.25 overstates the true ACE of $7. The reason is that
college attendence is determined by an aptitude test which is correlated with an individual’s causal ef-
fect. Jennifer has both a high causal effect and is more likely to attend college, so the observed difference
in wages overstates the causal effect of college.

12P
[
college | Jennifer

]=P[
college | H

]
P

[
H | Jennifer

]+P[
college | L

]
P

[
L | Jennifer

]= (3/4)2 + (1/4)2.
13P

[
college | George

]=P[
college | H

]
P

[
H | George

]+P[
college | L

]
P

[
L | George

]= (3/4)(1/4)+ (1/4)(3/4).

Table 2.3: Example Distribution

$8 $10 $12 $20 Mean
High-School Graduate 10 6 0 0 $8.75
College Graduate 0 0 6 10 $17.00
Difference $8.25
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Our first lesson from this analysis is that we need to be cautious about interpreting regression coeffi-
cients as causal effects. Unless the regressors (e.g. education attainment) can be interpreted as randomly
assigned it is inappropriate to interpret the regression coefficients causally.

Our second lesson will be that a causal interpretation can be obtained if we condition on a sufficiently
rich set of covariates. We now explore this issue.

Suppose that the observables include a set of covariates X in addition to the outcome Y and treat-
ment D . We extend the potential outcomes model (2.52) to include X :

Y = h (D, X ,U ) . (2.54)

We also extend the definition of a causal effect to allow conditioning on X .

Definition 2.8 In the model (2.54) the causal effect of D on Y is

C (X ,U ) = h (1, X ,U )−h (0, X ,U ) ,

the change in Y due to treatment holding X and U constant.
The conditional average causal effect of D on Y conditional on X = x is

ACE(x) = E [C (X ,U ) | X = x] =
∫
R`

C (x,u) f (u | x)du

where f (u | x) is the conditional density of U given X .
The unconditional average causal effect of D on Y is

ACE = E [C (X ,U )] =
∫

ACE(x) f (x)d x

where f (x) is the density of X .

The conditional average causal effect ACE(x) is the ACE for the sub-population with characteristics
X = x. Given observations on (Y ,D, X ) we want to measure the causal effect of D on Y , and are interested
if this can be obtained by a regression of Y on (D, X ). We would like to interpret the coefficient on D as
a causal effect. Is this appropriate?

Our previous analysis showed that a causal interpretation obtains when U is independent of the
regressors. While this is sufficient it is stronger than necessary. Instead, the following is sufficient.

Definition 2.9 Conditional Independence Assumption (CIA). Conditional on
X the random variables D and U are statistically independent.

The CIA implies that the conditional density of U given (D, X ) only depends on X , thus f (u | D, X ) =
f (u | X ). This implies that the regression of Y on (D, X ) equals

m(d , x) = E [Y | D = d , X = x]

= E [h (d , x,U ) | D = d , X = x]

=
∫

h (d , x,u) f (u | x)du.
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Under the CIA the treatment effect measured by the regression is

∇m(d , x) = m(1, x)−m(0, x)

=
∫

h (1, x,u) f (u | x)du −
∫

h (0, x,u) f (u | x)du

=
∫

C (x,u) f (u | x)du

= ACE(x). (2.55)

This is the conditional ACE. Thus under the CIA the regression coefficient equals the ACE.
We deduce that the regression of Y on (D, X ) reveals the causal impact of treatment when the CIA

holds. This means that regression analysis can be interpreted causally when we can make the case that
the regressors X are sufficient to control for factors which are correlated with treatment.

Theorem 2.12 In the structural model (2.54), the Conditional Independence
Assumption implies ∇m(d , x) = ACE(x), that the regression derivative with re-
spect to treatment equals the conditional ACE.

This is a fascinating result. It shows that whenever the unobservable is independent of the treatment
variable after conditioning on appropriate regressors, the regression derivative equals the conditional
causal effect. This means the CEF has causal economic meaning, giving strong justification to estimation
of the CEF.

It is important to understand the critical role of the CIA. If CIA fails then the equality (2.55) of the
regression derivative and the ACE fails. The CIA states that conditional on X the variables U and D are
independent. This means that treatment D is not affected by the unobserved individual factors U and is
effectively random. It is a strong assumption. In the wage/education example it means that education is
not selected by individuals based on their unobserved characteristics.

However, it is also helpful to understand that the CIA is weaker than full independence of U from the
regressors (D, X ). What is required is only that U and D are independent after conditioning on X . If X is
sufficiently rich this may not be restrictive.

Returning to our example, we require a variable X which breaks the dependence between D and U .
In our example this variable is the aptitude test score, since the decision to attend college was based on
the test score. It follows that educational attainment and type are independent once we condition on the
test score.

To see this, observe that if a student’s test score is H the probability they go to college (D = 1) is 3/4
for both Jennifers and Georges. Similarly, if their test score is L the probability they go to college is 1/4
for both types. This means that college attendence is independent of type, conditional on the aptitude
test score.

The conditional ACE depends on the test score. Among students who receive a high test score, 3/4
are Jennifer’s and 1/4 are George’s. Thus the conditional ACE for students with a score of H is (3/4)×10+
(1/4)× 4 = $8.50. Among students who receive a low test score, 1/4 are Jennifer’s and 3/4 are George’s.
Thus the ACE for students with a score of L is (1/4)×10+ (3/4)×4 = $5.50. The unconditional ACE is the
average, ACE = (8.50+5.50)/2 = $7, since 50% of students each receive scores of H and L.

Theorem 2.12 shows that the conditional ACE is revealed by a regression which includes test scores.
To see this in the wage distribution, suppose that the econometrician collects data on the aptitude test
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Table 2.4: Example Distribution 2

$8 $10 $12 $20 Mean
High-School Graduate + High Test Score 1 3 0 0 $9.50
College Graduate + High Test Score 0 0 3 9 $18.00
High-School Graduate + Low Test Score 9 3 0 0 $8.50
College Graduate + Low Test Score 0 0 3 1 $14.00

score as well as education and wages. Given a random sample of 32 individuals we would expect to find
the wage distribution in Table 2.4.

Define a dummy highscore to indicate students who received a high test score. The regression of
wages on college attendance and test scores with their interaction is

E
[
wage | college,highscore

]= 1.00highscore+5.50college+3.00highscore× college+8.50. (2.56)

The coefficient on college, $5.50, is the regression derivative of college attendance for those with low test
scores, and the sum of this coefficient with the interaction coefficient $3.00 equals $8.50 which is the
regression derivative for college attendance for those with high test scores. $5.50 and $8.50 equal the
conditional causal effects as calculated above.

This shows that from the regression (2.56) an econometrician will find that the effect of college on
wages is $8.50 for those with high test scores and $5.50 for those with low test scores with an average
effect of $7 (since 50% of students receive high and low test scores). This is the true average causal effect
of college on wages. Thus the regression coefficient on college in (2.56) can be interpreted causally, while
a regression omitting the aptitude test score does not reveal the causal effect of education.

To summarize our findings, we have shown how it is possible that a simple regression will give a false
measurement of a causal effect, but a more careful regression can reveal the true causal effect. The key
is to condition on a suitably rich set of covariates such that the remaining unobserved factors affecting
the outcome are independent of the treatment variable.

2.31 Existence and Uniqueness of the Conditional Expectation*

In Sections 2.3 and 2.6 we defined the conditional expectation when the conditioning variables X are
discrete and when the variables (Y , X ) have a joint density. We have explored these cases because these
are the situations where the conditional mean is easiest to describe and understand. However, the con-
ditional mean exists quite generally without appealing to the properties of either discrete or continuous
random variables.

To justify this claim we now present a deep result from probability theory. What it says is that the
conditional mean exists for all joint distributions (Y , X ) for which Y has a finite mean.
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Theorem 2.13 Existence of the Conditional Expectation
If E |Y | <∞ then there exists a function m(x) such that for all sets X for which
P [X ∈X ] is defined,

E [1 {X ∈X }Y ] = E [1 {X ∈X }m(X )] . (2.57)

The function m(X ) is almost everywhere unique, in the sense that if h(x) sat-
isfies (2.57), then there is a set S such that P [S] = 1 and m(x) = h(x) for
x ∈ S. The function m(x) is called the conditional expectation and is written
m(x) = E [Y | X = x] .

See, for example, Ash (1972), Theorem 6.3.3.

The conditional expectation m(x) defined by (2.57) specializes to (2.6) when (Y , X ) have a joint den-
sity. The usefulness of definition (2.57) is that Theorem 2.13 shows that the conditional mean m(X ) exists
for all finite-mean distributions. This definition allows Y to be discrete or continuous, for X to be scalar
or vector-valued, and for the components of X to be discrete or continuously distributed.

You may have noticed that Theorem 2.13 applies only to sets X for whichP [X ∈X ] is defined. This is
a technical issue –measurability – which we largely side-step in this textbook. Formal probability theory
only applies to sets which are measurable – for which probabilities are defined – as it turns out that not all
sets satisfy measurability. This is not a practical concern for applications, so we defer such distinctions
for formal theoretical treatments.

2.32 Identification*

A critical and important issue in structural econometric modeling is identification, meaning that a
parameter is uniquely determined by the distribution of the observed variables. It is relatively straight-
forward in the context of the unconditional and conditional mean, but it is worthwhile to introduce and
explore the concept at this point for clarity.

Let F denote the distribution of the observed data, for example the distribution of the pair (Y , X ). Let
F be a collection of distributions F. Let θ be a parameter of interest (for example, the expectation E [Y ]).

Definition 2.10 A parameter θ ∈ R is identified on F if for all F ∈F , there is a
uniquely determined value of θ.

Equivalently, θ is identified if we can write it as a mapping θ = g (F ) on the set F . The restriction to the
set F is important. Most parameters are identified only on a strict subset of the space of all distributions.

Take, for example, the mean µ= E [Y ] . It is uniquely determined if E |Y | <∞, so µ is identified for the
set F = {F : E |Y | <∞}.

Next, consider the conditional expectation. Theorem 2.13 demonstrates that E |Y | <∞ is a sufficient
condition for identification.

Theorem 2.14 Identification of the Conditional Expectation
If E |Y | < ∞, the conditional expectation m(x) = E [Y | X = x] is identified al-
most everywhere.
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It might seem as if identification is a general property for parameters so long as we exclude degener-
ate cases. This is true for moments of observed data, but not necessarily for more complicated models.
As a case in point, consider the context of censoring. Let Y be a random variable with distribution F.
Instead of observing Y , we observe Y ∗ defined by the censoring rule

Y ∗ =
{

Y if Y ≤ τ
τ if Y > τ.

That is, Y ∗ is capped at the value τ. A common example is income surveys, where income responses are
“top-coded” meaning that incomes above the top code τ are recorded as the top code. The observed
variable Y ∗ has distribution

F∗(u) =
{

F (u) for u ≤ τ
1 for u ≥ τ.

We are interested in features of the distribution F not the censored distribution F∗. For example, we are
interested in the mean wage µ= E [Y ] . The difficulty is that we cannot calculate µ from F∗ except in the
trivial case where there is no censoring P [Y ≥ τ] = 0. Thus the mean µ is not generically identified from
the censored distribution.

A typical solution to the identification problem is to assume a parametric distribution. For example,
let F be the set of normal distributions Y ∼ N(µ,σ2). It is possible to show that the parameters (µ,σ2) are
identified for all F ∈ F . That is, if we know that the uncensored distribution is normal we can uniquely
determine the parameters from the censored distribution. This is often called parametric identification
as identification is restricted to a parametric class of distributions. In modern econometrics this is gen-
erally viewed as a second-best solution as identification has been achieved only through the use of an
arbitrary and unverifiable parametric assumption.

A pessimistic conclusion might be that it is impossible to identify parameters of interest from cen-
sored data without parametric assumptions. Interestingly, this pessimism is unwarranted. It turns out
that we can identify the quantiles qα of F for α ≤ P [Y ≤ τ] . For example, if 20% of the distribution is
censored we can identify all quantiles for α ∈ (0,0.8). This is often called nonparametric identification
as the parameters are identified without restriction to a parametric class.

What we have learned from this little exercise is that in the context of censored data moments can
only be parametrically identified while non-censored quantiles are nonparametrically identified. Part of
the message is that a study of identification can help focus attention on what can be learned from the
data distributions available.

2.33 Technical Proofs*

Proof of Theorem 2.1 For convenience, assume that the variables have a joint density f
(
y, x

)
. Since

E [Y | X ] is a function of the random vector X only, to calculate its expectation we integrate with respect
to the density fX (x) of X , that is

E [E [Y | X ]] =
∫
Rk
E [Y | X ] fX (x)d x.

Substituting in (2.6) and noting that fY |X
(
y | x

)
fX (x) = f

(
y, x

)
, we find that the above expression equals∫

Rk

(∫
R

y fY |X
(
y | x

)
d y

)
fX (x)d x =

∫
Rk

∫
R

y f
(
y, x

)
d yd x = E [Y ]

the unconditional expectation of Y . ■
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Proof of Theorem 2.2 Again assume that the variables have a joint density. It is useful to observe that

f
(
y | x1, x2

)
f (x2 | x1) = f

(
y, x1, x2

)
f (x1, x2)

f (x1, x2)

f (x1)
= f

(
y, x2 | x1

)
, (2.58)

the density of (Y , X2) given X1. Here, we have abused notation and used a single symbol f to denote the
various unconditional and conditional densities to reduce notational clutter.

Note that

E [Y | X1 = x1, X2 = x2] =
∫
R

y f
(
y | x1, x2

)
d y. (2.59)

Integrating (2.59) with respect to the conditional density of X2 given X1, and applying (2.58) we find that

E [E [Y | X1, X2] | X1 = x1] =
∫
Rk2

E [Y | X1 = x1, X2 = x2] f (x2 | x1)d x2

=
∫
Rk2

(∫
R

y f
(
y | x1, x2

)
d y

)
f (x2 | x1)d x2

=
∫
Rk2

∫
R

y f
(
y | x1, x2

)
f (x2 | x1)d yd x2

=
∫
Rk2

∫
R

y f
(
y, x2 | x1

)
d yd x2

= E [Y | X1 = x1] .

This implies E [E [Y | X1, X2] | X1] = E [Y | X1] as stated. ■

Proof of Theorem 2.3

E
[
g (X )Y | X = x

]= ∫
R

g (x) y fY |X
(
y | x

)
d y = g (x)

∫
R

y fY |X
(
y | x

)
d y = g (x)E [Y | X = x]

This implies E
[
g (X )Y | X

] = g (X )E [Y | X ] which is (2.7). Equation (2.8) follows by applying the simple
law of iterated expectations (Theorem 2.1) to (2.7). ■

Proof of Theorem 2.4 Applying Minkowski’s inequality (B.34) to e = Y −m(X ),(
E |e|r )1/r = (

E |Y −m(X )|r )1/r ≤ (
E |Y |r )1/r + (

E |m(X )|r )1/r <∞,

where the two parts on the right-hand-side are finite since E |Y |r <∞ by assumption and E |m(X )|r <∞
by the conditional expectation inequality (B.29). The fact that (E |e|r )1/r <∞ implies E |e|r <∞. ■

Proof of Theorem 2.6 The assumption that E
[
Y 2

] <∞ implies that all the conditional expectations be-
low exist.

Using the law of iterated expectations (Theorem 2.2) E [Y | X1] = E (E [Y | X1, X2] | X1) and the condi-
tional Jensen’s inequality (B.28),

(E [Y | X1])2 = (E (E [Y | X1, X2] | X1))2 ≤ E[
(E [Y | X1, X2])2 | X1

]
.

Taking unconditional expectations, this implies

E
[
(E [Y | X1])2]≤ E[

(E [Y | X1, X2])2] .

Similarly,
(E [Y ])2 ≤ E[

(E [Y | X1])2]≤ E[
(E [Y | X1, X2])2] . (2.60)
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The variables Y , E [Y | X1] and E [Y | X1, X2] all have the same expectation E [Y ] , so the inequality
(2.60) implies that the variances are ranked monotonically:

0 ≤ var(E [Y | X1]) ≤ var(E [Y | X1, X2]) . (2.61)

Define e = Y −E [Y | X ] and u = E [Y | X ]−µ so that we have the decomposition Y −µ= e +u. Notice
E [e | X ] = 0 and u is a function of X . Thus by the conditioning theorem (Theorem 2.3), E [eu] = 0 so e and
u are uncorrelated. It follows that

var[Y ] = var[e]+var[u] = var[Y −E [Y | X ]]+var[E [Y | X ]] . (2.62)

The monotonicity of the variances of the conditional mean (2.61) applied to the variance decomposition
(2.62) implies the reverse monotonicity of the variances of the differences, completing the proof. ■

Proof of Theorem 2.9 For part 1, by the expectation inequality (B.30), (A.17) and Assumption 2.1,∥∥E[
X X ′]∥∥≤ E∥∥X X ′∥∥= E‖X ‖2 <∞.

Similarly, using the expectation inequality (B.30), the Cauchy-Schwarz inequality (B.32) and Assumption
2.1,

‖E [X Y ]‖ ≤ E‖X Y ‖ ≤ (
E‖X ‖2)1/2 (

E
[
Y 2])1/2 <∞.

Thus the moments E [X Y ] and E
[

X X ′] are finite and well defined.

For part 2, the coefficient β = (
E
[

X X ′])−1
E [X Y ] is well defined since

(
E
[

X X ′])−1 exists under As-
sumption 2.1.

Part 3 follows from Definition 2.5 and part 2.
For part 4, first note that

E
[
e2]= E[(

Y −X ′β
)2

]
= E[

Y 2]−2E
[
Y X ′]β+β′E

[
X X ′]β

= E[
Y 2]−E[

Y X ′](
E
[

X X ′])−1
E [X Y ]

≤ E[
Y 2]<∞.

The first inequality holds because E
[
Y X ′](

E
[

X X ′])−1
E [X Y ] is a quadratic form and therefore necessar-

ily non-negative. Second, by the expectation inequality (B.30), the Cauchy-Schwarz inequality (B.32) and
Assumption 2.1,

‖E [X e]‖ ≤ E‖X e‖ = (
E‖X ‖2)1/2 (

E
[
e2])1/2 <∞.

It follows that the expectation E [X e] is finite, and is zero by the calculation (2.26).
For part 6, applying Minkowski’s inequality (B.34) to e = Y −X ′β,(

E |e|r )1/r = (
E
∣∣Y −X ′β

∣∣r )1/r

≤ (
E |Y |r )1/r + (

E
∣∣X ′β

∣∣r )1/r

≤ (
E |Y |r )1/r + (

E‖X ‖r )1/r ∥∥β∥∥<∞,

the final inequality by assumption. ■
_____________________________________________________________________________________________
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2.34 Exercises

Exercise 2.1 Find E [E [E [Y | X1, X2, X3] | X1, X2] | X1] .

Exercise 2.2 If E [Y | X ] = a +bX , find E [Y X ] as a function of moments of X .

Exercise 2.3 Prove Theorem 2.4.4 using the law of iterated expectations.

Exercise 2.4 Suppose that the random variables Y and X only take the values 0 and 1, and have the
following joint probability distribution

X = 0 X = 1
Y = 0 .1 .2
Y = 1 .4 .3

Find E [Y | X ] , E
[
Y 2 | X

]
and var[Y | X ] for X = 0 and X = 1.

Exercise 2.5 Show that σ2(X ) is the best predictor of e2 given X :

(a) Write down the mean-squared error of a predictor h(X ) for e2.

(b) What does it mean to be predicting e2?

(c) Show that σ2(X ) minimizes the mean-squared error and is thus the best predictor.

Exercise 2.6 Use Y = m(X )+e to show that var[Y ] = var[m(X )]+σ2.

Exercise 2.7 Show that the conditional variance can be written as σ2(X ) = E[
Y 2 | X

]− (E [Y | X ])2.

Exercise 2.8 Suppose that Y is discrete-valued, taking values only on the non-negative integers, and the
conditional distribution of Y given X = x is Poisson:

P
[
Y = j | X = x

]= exp
(−x ′β

)(
x ′β

) j

j !
, j = 0,1,2, ...

Compute E [Y | X ] and var[Y | X ] . Does this justify a linear regression model of the form Y = X ′β+e?

Hint: If P
[
Y = j

]= exp(−λ)λ j

j !
then E [Y ] =λ and var[Y ] =λ.

Exercise 2.9 Suppose you have two regressors: X1 is binary (takes values 0 and 1) and X2 is categorical
with 3 categories (A,B ,C ). Write E [Y | X1, X2] as a linear regression.

Exercise 2.10 True or False. If Y = Xβ+e, X ∈R, and E [e | X ] = 0, then E
[

X 2e
]= 0.

Exercise 2.11 True or False. If Y = Xβ+e, X ∈R, and E [X e] = 0, then E
[

X 2e
]= 0.

Exercise 2.12 True or False. If Y = X ′β+e and E [e | X ] = 0, then e is independent of X .

Exercise 2.13 True or False. If Y = X ′β+e and E [X e] = 0, then E [e | X ] = 0.

Exercise 2.14 True or False. If Y = X ′β+e, E [e | X ] = 0, and E
[
e2 | X

]=σ2, then e is independent of X .
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Exercise 2.15 Consider the intercept-only model Y = α+ e with α the best linear predictor. Show that
α= E [Y ] .

Exercise 2.16 Let X and Y have the joint density f
(
x, y

) = 3
2

(
x2 + y2

)
on 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Compute

the coefficients of the best linear predictor Y =α+βX +e. Compute the conditional expectation m(x) =
E [Y | X = x] . Are the best linear predictor and conditional expectation different?

Exercise 2.17 Let X be a random variable with µ= E [X ] and σ2 = var[X ]. Define

g
(
x,µ,σ2)= (

x −µ(
x −µ)2 −σ2

)
.

Show that E
[
g (X ,m, s)

]= 0 if and only if m =µ and s =σ2.

Exercise 2.18 Suppose that X = (1, X2, X3) where X3 =α1 +α2X2 is a linear function of X2.

(a) Show that Q X X = E[
X X ′] is not invertible.

(b) Use a linear transformation of X to find an expression for the best linear predictor of Y given X .
(Be explicit, do not just use the generalized inverse formula.)

Exercise 2.19 Show (2.47)-(2.48), namely that for

d(β) = E
[(

m(X )−X ′β
)2

]
then

β= argmin
b∈Rk

d(b) = (
E
[

X X ′])−1
E [X m(X )] = (

E
[

X X ′])−1
E [X Y ] .

Hint: To show E [X m(X )] = E [X Y ] use the law of iterated expectations.

Exercise 2.20 Verify that (2.57) holds with m(X ) defined in (2.6) when (Y , X ) have a joint density f (y, x).

Exercise 2.21 Consider the short and long projections

Y = Xγ1 +e

Y = Xβ1 +X 2β2 +u

(a) Under what condition does γ1 =β1?

(b) Take the long projection is Y = Xθ1 +X 3θ2 + v . Is there a condition under which γ1 = θ1?

Exercise 2.22 Take the homoskedastic model

Y = X ′
1β1 +X ′

2β2 +e

E [e | X1, X2] = 0

E
[
e2 | X1, X2

]=σ2

E [X2 | X1] = ΓX1.

Assume Γ 6= 0. Suppose the parameter β1 is of interest. We know that the exclusion of X2 creates omited
variable bias in the projection coefficient on X2. It also changes the equation error. Our question is: what
is the effect on the homoskedasticity property of the induced equation error? Does the exclusion of X2

induce heteroskedasticity or not? Be specific.



Chapter 3

The Algebra of Least Squares

3.1 Introduction

In this chapter we introduce the popular least squares estimator. Most of the discussion will be alge-
braic, with questions of distribution and inference deferred to later chapters.

3.2 Samples

In Section 2.18 we derived and discussed the best linear predictor of Y given X for a pair of random
variables (Y , X ) ∈R×Rk and called this the linear projection model. We are now interested in estimating
the parameters of this model, in particular the projection coefficient

β= (
E
[

X X ′])−1
E [X Y ] . (3.1)

We can estimate β from samples which include joint measurements of (Y , X ) . For example, suppos-
ing we are interested in estimating a wage equation, we would use a dataset with observations on wages
(or weekly earnings), education, experience (or age), and demographic characteristics (gender, race, lo-
cation). One possible dataset is the Current Population Survey (CPS), a survey of U.S. households which
includes questions on employment, income, education, and demographic characteristics.

Notationally we wish to distinguish observations (realizations) from the underlying random vari-
ables. The random variables are (Y , X ). The observations are (Yi , Xi ). From the vantage of the researcher
the latter are numbers. From the vantage of statistical theory we view them as realizations of random
variables. For individual observations we append a subscript i which runs from 1 to n, thus the i th ob-
servation is (Yi , Xi ). The number n is the sample size. The dataset or sample is {(Yi , Xi ) : i = 1, ...,n}.

From the viewpoint of empirical analysis a dataset is an array of numbers. It is typically organized
as a table where each column is a variable and each row is an observation. For empirical analysis the
dataset is fixed in the sense that they are numbers presented to the researcher. For statistical analysis we
view the dataset as random, or more precisely as a realization of a random process.

The individual observations could be draws from a common (homogeneous) distribution or could
be draws from heterogeneous distributions. The simplest approach is to assume homogeneity – that the
observations are realizations from an identical underlying population F.

Assumption 3.1 The variables {(Y1, X1), ..., (Yi , Xi ), ..., (Yn , Xn)} are identically dis-
tributed; they are draws from a common distribution F .

62
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This assumption does not need to be viewed as literally true. Rather it is a useful modeling device so
that parameters such as β are well defined. This assumption should be interpreted as how we view an
observation a priori, before we actually observe it. If I tell you that we have a sample with n = 59 obser-
vations set in no particular order, then it makes sense to view two observations, say 17 and 58, as draws
from the same distribution. We have no reason to expect anything special about either observation.

In econometric theory we refer to the underlying common distribution F as the population. Some
authors prefer the label the data-generating-process (DGP). You can think of it as a theoretical con-
cept or an infinitely-large potential population. In contrast, we refer to the observations available to us
{(Yi , Xi ) : i = 1, ...,n} as the sample or dataset. In some contexts the dataset consists of all potential ob-
servations, for example administrative tax records may contain every single taxpayer in a political unit.
Even in this case we view the observations as if they are random draws from an underlying infinitely-large
population as this will allow us to apply the tools of statistical theory.

The linear projection model applies to the random variables (Y , X ). This is the probability model
described in Section 2.18. The model is

Y = X ′β+e (3.2)

where the linear projection coefficient β is defined as

β= argmin
b∈Rk

S(b), (3.3)

the minimizer of the expected squared error

S(β) = E
[(

Y −X ′β
)2

]
. (3.4)

The coefficient has the explicit solution (3.1).

3.3 Moment Estimators

We want to estimate the coefficient β defined in (3.1) from the sample of observations. Notice that
β is written as a function of certain population expectations. In this context an appropriate estimator is
the same function of the sample moments. Let’s explain this in detail.

To start, suppose that we are interested in the population mean µ of a random variable Y with distri-
bution function F

µ= E [Y ] =
∫ ∞

−∞
ydF (y). (3.5)

The expectation µ is a function of the distribution F . To estimate µ given n random variables Yi from F
a natural estimator is the sample mean

µ̂= Y = 1

n

n∑
i=1

Yi .

Notice that we have written this using two pieces of notation. The notation Y with the bar on top is
conventional for a sample mean. The notation µ̂ with the hat “^” is conventional in econometrics to
denote an estimator of the parameter µ. In this case Y is the estimator of µ, so µ̂ and Y are the same. The
sample mean Y can be viewed as the natural analog of the population mean (3.5) because Y equals the
expectation (3.5) with respect to the empirical distribution – the discrete distribution which puts weight
1/n on each observation Yi . There are other justifications for Y as an estimator for µ. We will defer these
discussions for now. Suffice it to say that it is the conventional estimator.
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Now suppose that we are interested in a set of population expectations of possibly nonlinear func-
tions of a random vector Y , say µ= E [h(Y )]. For example, we may be interested in the first two moments
of Y , E [Y ] and E

[
Y 2

]
. In this case the natural estimator is the vector of sample means,

µ̂= 1

n

n∑
i=1

h(Yi ).

We call µ̂ the moment estimator for µ. For example, if h(y) = (y, y2)′ then µ̂1 = n−1 ∑n
i=1 Yi and µ̂2 =

n−1 ∑n
i=1 Y 2

i .
Now suppose that we are interested in a nonlinear function of a set of moments. For example, con-

sider the variance of Y
σ2 = var[Y ] = E[

Y 2]− (E [Y ])2 .

In general, many parameters of interest can be written as a function of moments of Y . Notationally,
β= g (µ) and µ= E [h(Y )]. Here, Y are the random variables, h(Y ) are functions (transformations) of the
random variables, and µ is the expectation of these functions. β is the parameter of interest, and is the
(nonlinear) function g (·) of these expectations.

In this context a natural estimator of β is obtained by replacing µ with µ̂. Thus β̂ = g
(
µ̂
)
. The esti-

mator β̂ is often called a plug-in estimator. We also call β̂ a moment, or moment-based, estimator of β
since it is a natural extension of the moment estimator µ̂.

Take the example of the variance σ2 = var[Y ]. Its moment estimator is

σ̂2 = µ̂2 − µ̂2
1 =

1

n

n∑
i=1

Y 2
i −

(
1

n

n∑
i=1

Yi

)2

.

This is not the only possible estimator for σ2 (there is also the well-known bias-corrected estimator) but
σ̂2 is a straightforward and simple choice.

3.4 Least Squares Estimator

The linear projection coefficient β is defined in (3.3) as the minimizer of the expected squared error
S(β) defined in (3.4). For given β, the expected squared error is the expectation of the squared error(
Y −X ′β

)2 . The moment estimator of S(β) is the sample average:

Ŝ(β) = 1

n

n∑
i=1

(
Yi −X ′

iβ
)2 = 1

n
SSE(β) (3.6)

where

SSE(β) =
n∑

i=1

(
Yi −X ′

iβ
)2

is called the sum of squared errors function.
Since Ŝ(β) is a sample average we can interpret it as an estimator of the expected squared error S(β).

Examining Ŝ(β) as a function of β is informative about how S(β) varies with β. Since the projection coef-
ficient minimizes S(β) an analog estimator minimizes (3.6).

We define the estimator β̂ as the minimizer of Ŝ(β).
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Definition 3.1 The least squares estimator is β̂ = argmin
β∈Rk

Ŝ(β)

where Ŝ(β) = 1

n

n∑
i=1

(
Yi −X ′

iβ
)2.

As Ŝ(β) is a scale multiple of SSE(β) we may equivalently define β̂ as the minimizer of SSE(β). Hence
β̂ is commonly called the least squares (LS) estimator of β. The estimator is also commonly refered to
as the ordinary least squares (OLS) estimator. For the origin of this label see the historical discussion on
Adrien-Marie Legendre below. Here, as is common in econometrics, we put a hat “^” over the parameter
β to indicate that β̂ is a sample estimator of β. This is a helpful convention. Just by seeing the symbol
β̂ we can immediately interpret it as an estimator (because of the hat) of the parameter β. Sometimes
when we want to be explicit about the estimation method, we will write β̂ols to signify that it is the OLS
estimator. It is also common to see the notation β̂n , where the subscript “n” indicates that the estimator
depends on the sample size n.

It is important to understand the distinction between population parameters such as β and sample
estimators such as β̂. The population parameter β is a non-random feature of the population while the
sample estimator β̂ is a random feature of a random sample. β is fixed, while β̂ varies across samples.

3.5 Solving for Least Squares with One Regressor

For simplicity, we start by considering the case k = 1 so that there is a scalar regressor X and a scalar
coefficient β. To illustrate, Figure 3.1(a) displays a scatter plot1 of 20 pairs (Yi , Xi ).

The sum of squared errors SSE(β) is a function of β. Given β we calculate the “error” Yi − Xiβ by
taking the vertical distance between Yi and Xiβ. This can be seen in Figure 3.1(a) by the vertical lines
which connect the observations to the straight line. These vertical lines are the errors Yi −Xiβ. The sum
of squared errors is the sum of the 20 squared lengths.

The sum of squared errors is the function

SSE(β) =
n∑

i=1

(
Yi −Xiβ

)2 =
(

n∑
i=1

Y 2
i

)
−2β

(
n∑

i=1
Xi Yi

)
+β2

(
n∑

i=1
X 2

i

)
.

This is a quadratic function of β. The sum of squared error function is displayed in Figure 3.1(b) over the
range [2,4]. The coefficient β ranges along the x-axis. The sum of squared errors SSE(β) as a function of
β is displayed on the y-axis.

The OLS estimator β̂ minimizes this function. From elementary algebra we know that the minimizer
of the quadratic function a −2bx + cx2 is x = b/c. Thus the minimizer of SSE(β) is

β̂=
∑n

i=1 Xi Yi∑n
i=1 X 2

i

. (3.7)

For example, the minimizer of the sum of squared error function displayed in Figure 3.1(b) is β̂ = 3.07,
and is marked on the x-axis.

The intercept-only model is the special case Xi = 1. In this case we find

β̂=
∑n

i=1 1Yi∑n
i=1 12 = 1

n

n∑
i=1

Yi = Y , (3.8)

1The observations were generated by simulation as X ∼U [0,1] and Y ∼ N[3X ,1].
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Figure 3.1: Regression With One Regressor

the sample mean of Yi . Here, as is common, we put a bar “−” over Y to indicate that the quantity is a
sample mean. This shows that the OLS estimator in the intercept-only model is the sample mean.

Technically, the estimator β̂ in (3.7) only exists if the denominator is non-zero. Since it is a sum of
squares it is necessarily non-negative. Thus β̂ exists if

∑n
i=1 X 2

i > 0.

3.6 Solving for Least Squares with Multiple Regressors

We now consider the case with k > 1 so that the coefficient β ∈Rk is a vector.
To illustrate, Figure 3.2(a) displays a scatter plot of 100 triples (Yi , X1i , X2i ). The regression function

x ′β= x1β1 +x2β2 is a 2-dimensional surface and is shown as the plane in Figure 3.2(a).
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Figure 3.2: Regression with Two Variables

The sum of squared errors SSE(β) is a function of the vector β. For any β the error Yi − X ′
iβ is the
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vertical distance between Yi and X ′
iβ. This can be seen in Figure 3.2(a) by the vertical lines which connect

the observations to the plane. As in the single regressor case these vertical lines are the errors ei = Yi −
X ′

iβ. The sum of squared errors is the sum of the 100 squared lengths.
The sum of squared errors can be written as

SSE(β) =
n∑

i=1
Y 2

i −2β′ n∑
i=1

Xi Yi +β′ n∑
i=1

Xi X ′
iβ.

As in the single regressor case this is a quadratic function in β. The difference is that in the multiple
regressor case this is a vector-valued quadratic function. To visualize the sum of squared errors function
Figure 3.2(b) displays SSE(β). Another way to visualize a 3-dimensional surface is by a contour plot.
A contour plot of the same SSE(β) function is shown in Figure 3.2(c). The contour lines are points in
the (β1,β2) space where SSE(β) takes the same value. The contour lines are elliptical since SSE(β) is
quadratic.

The least squares estimator β̂ minimizes SSE(β). A simple way to find the minimum is by solving the
first-order conditions. The latter are

0 = ∂

∂β
SSE(β̂) =−2

n∑
i=1

Xi Yi +2
n∑

i=1
Xi X ′

i β̂. (3.9)

We have written this using a single expression, but it is actually a system of k equations with k unknowns
(the elements of β̂).

The solution for β̂ may be found by solving the system of k equations in (3.9). We can write this
solution compactly using matrix algebra. Dividing (3.9) by 2 we obtain

n∑
i=1

Xi X ′
i β̂=

n∑
i=1

Xi Yi . (3.10)

This is a system of equations of the form Ab = c where A is k ×k and b and c are k ×1. The solution is
b = A−1c , and can be obtained by pre-multiplying Ab = c by A−1 and using the matrix inverse property
A−1 A = I k . Applied to (3.10) we find an explicit formula for the least squares estimator

β̂=
(

n∑
i=1

Xi X ′
i

)−1 (
n∑

i=1
Xi Yi

)
. (3.11)

This is the natural estimator of the best linear projection coefficient β defined in (3.3), and could also be
called the linear projection estimator.

Recall that we claimed that β̂ in (3.11) is the minimizer of SSE(β), and found it by solving the first-
order conditions. To be complete we should verify the second-order conditions. We calculate that

∂2

∂β∂β′ SSE(β) = 2
n∑

i=1
Xi X ′

i > 0

which is a positive definite matrix. This shows that the second-order condition for minimization is sat-
isfied so β̂ is indeed the unique minimizer of SSE(β).

Returning to the example sum of squared errors function SSE(β) displayed in Figure 3.2(b), the least
squares estimator β̂ is the the pair (β̂1, β̂2) which minimize this function; visually it is the low spot in the
3-dimensional graph, and is marked in Figure 3.2(c) as the center point of the contour plots.

Returning to equation (3.11), suppose that k = 1. In this case Xi is scalar so Xi X ′
i = X 2

i . Then (3.11)
simplifies to the expression (3.7) previously derived. The expression (3.11) is a notationally simple gen-
eralization but requires a careful attention to vector and matrix manipulations.
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Alternatively, equation (3.1) writes the projection coefficient β as an explicit function of the popula-
tion moments Q X Y and Q X X . Their moment estimators are the sample moments

Q̂ X Y = 1

n

n∑
i=1

Xi Yi

Q̂ X X = 1

n

n∑
i=1

Xi X ′
i .

The moment estimator of β replaces the population moments in (3.1) with the sample moments:

β̂= Q̂
−1
X X Q̂ X Y

=
(

1

n

n∑
i=1

Xi X ′
i

)−1 (
1

n

n∑
i=1

Xi Yi

)

=
(

n∑
i=1

Xi X ′
i

)−1 (
n∑

i=1
Xi Yi

)

which is identical with (3.11).
Technically, the estimator β̂ is unique and equals (3.11) only if the inverted matrix is actually invert-

ible, which holds if (and only if) this matrix is positive definite. This excludes the case that Xi contains
redundant regressors. This will be discussed further in Section 3.24.

Theorem 3.1 If
∑n

i=1 Xi X ′
i > 0, the least squares estimator is unique and equals

β̂=
(

n∑
i=1

Xi X ′
i

)−1 (
n∑

i=1
Xi Yi

)
.

Adrien-Marie Legendre

The method of least squares was first published in 1805 by the French mathe-
matician Adrien-Marie Legendre (1752-1833). Legendre proposed least squares
as a solution to the algebraic problem of solving a system of equations when the
number of equations exceeded the number of unknowns. This was a vexing and
common problem in astronomical measurement. As viewed by Legendre, (3.2) is
a set of n equations with k unknowns. As the equations cannot be solved exactly,
Legendre’s goal was to select β to make the set of errors as small as possible. He
proposed the sum of squared error criterion and derived the algebraic solution
presented above. As he noted, the first-order conditions (3.9) is a system of k
equations with k unknowns which can be solved by “ordinary” methods. Hence
the method became known as Ordinary Least Squares and to this day we still
use the abbreviation OLS to refer to Legendre’s estimation method.
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3.7 Illustration

We illustrate the least squares estimator in practice with the data set used to calculate the estimates
reported in Chapter 2. This is the March 2009 Current Population Survey, which has extensive informa-
tion on the U.S. population. This data set is described in more detail in Section 3.22. For this illustration
we use the sub-sample of married (spouse present) Black female wage earners with 12 years potential
work experience. This sub-sample has 20 observations2.

In Table 3.1 we display the observations for reference. Each row is an individual observation which
are the data for an individual person. The columns correspond to the variables (measurements) for the
individuals. The second column is the reported wage (total annual earnings divided by hours worked).
The third column is the natural logarithm of the wage. The fourth column is years of education. The
fifth and six columns are further transformations, specifically the square of education and the product of
education and log(wage). The bottom row are the sums of the elements in that column.

Table 3.1: Observations From CPS Data Set

Observation wage log(wage) education education2 education×log(wage)
1 37.93 3.64 18 324 65.44
2 40.87 3.71 18 324 66.79
3 14.18 2.65 13 169 34.48
4 16.83 2.82 16 256 45.17
5 33.17 3.50 16 256 56.03
6 29.81 3.39 18 324 61.11
7 54.62 4.00 16 256 64.00
8 43.08 3.76 18 324 67.73
9 14.42 2.67 12 144 32.03

10 14.90 2.70 16 256 43.23
11 21.63 3.07 18 324 55.44
12 11.09 2.41 16 256 38.50
13 10.00 2.30 13 169 29.93
14 31.73 3.46 14 196 48.40
15 11.06 2.40 12 144 28.84
16 18.75 2.93 16 256 46.90
17 27.35 3.31 14 196 46.32
18 24.04 3.18 16 256 50.76
19 36.06 3.59 18 324 64.53
20 23.08 3.14 16 256 50.22

Sum 515 62.64 314 5010 995.86

Putting the variables into the standard regression notation, let Yi be log(wage) and Xi be years of
education and an intercept. Then from the column sums in Table 3.1 we have

n∑
i=1

Xi Yi =
(

995.86
62.64

)
and

n∑
i=1

Xi X ′
i =

(
5010 314
314 20

)
.

2This sample was selected specifically so that it has a small number of observations, facilitating exposition.
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Taking the inverse we obtain (
n∑

i=1
Xi X ′

i

)−1

=
(

0.0125 −0.196
−0.196 3.124

)
.

Thus by matrix multiplication

β̂=
(

0.0125 −0.196
−0.196 3.124

)(
995.86
62.64

)
=

(
0.155
0.698

)
.

In practice the regression estimates β̂ are computed by computer software without the user taking
the explicit steps listed above. However, it is useful to understand that the least squares estimator can be
calculated by simple algebraic operations. If your data is in a spreadsheet similar to Table 3.1, then the
listed transformations (logarithm, squares, cross-products, column sums) can be computed by spread-
sheet operations. β̂ could then be calculated by matrix inversion and multiplication. Once again, this is
rarely done by applied economists since computer software is available to ease the process.

We often write the estimated equation using the format

álog(wage) = 0.155 education+0.698. (3.12)

An interpretation of the estimated equation is that each year of education is associated with a 16% in-
crease in mean wages.

Equation (3.12) is called a bivariate regression as there are two variables. It is also called a simple
regression as there is a single regressor. A multiple regression has two or more regressors and allows a
more detailed investigation. Let’s take an example similar to (3.12) but include all levels of experience.
This time we use the sub-sample of single (never married) Asian men which has 268 observations. In-
cluding as regressors years of potential work experience (experience) and its square (experience2/100)
(we divide by 100 to simplify reporting) we obtain the estimates

álog(wage) = 0.143 education+0.036 experience−0.071 experience2/100+0.575. (3.13)

These estimates suggest a 14% increase in mean wages per year of education holding experience con-
stant.

3.8 Least Squares Residuals

As a by-product of estimation we define the fitted value Ŷi = X ′
i β̂ and the residual

êi = Yi − Ŷi = Yi −X ′
i β̂. (3.14)

Sometimes Ŷi is called the predicted value but this is a misleading label. The fitted value Ŷi is a function
of the entire sample including Yi , and thus cannot be interpreted as a valid prediction of Yi . It is thus
more accurate to describe Ŷi as a fitted rather than a predicted value.

Note that Yi = Ŷi + êi and
Yi = X ′

i β̂+ êi . (3.15)

We make a distinction between the error ei and the residual êi . The error ei is unobservable while the
residual êi is an estimator. These two variables are frequently mislabeled which can cause confusion.

Equation (3.9) implies that
n∑

i=1
Xi êi = 0. (3.16)
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To see this by a direct calculation, using (3.14) and (3.11),

n∑
i=1

Xi êi =
n∑

i=1
Xi

(
Yi −X ′

i β̂
)

=
n∑

i=1
Xi Yi −

n∑
i=1

Xi X ′
i β̂

=
n∑

i=1
Xi Yi −

n∑
i=1

Xi X ′
i

(
n∑

i=1
Xi X ′

i

)−1 (
n∑

i=1
Xi Yi

)

=
n∑

i=1
Xi Yi −

n∑
i=1

Xi Yi = 0.

When Xi contains a constant an implication of (3.16) is

1

n

n∑
i=1

êi = 0. (3.17)

Thus the residuals have a sample mean of zero and the sample correlation between the regressors and
the residual is zero. These are algebraic results and hold true for all linear regression estimates.

3.9 Demeaned Regressors

Sometimes it is useful to separate the constant from the other regressors and write the linear projec-
tion equation in the format

Yi = X ′
iβ+α+ei

where α is the intercept and Xi does not contain a constant. The least squares estimates and residuals
can be written as Yi = X ′

i β̂+ α̂+ êi .
In this case (3.16) can be written as the equation system

n∑
i=1

(
Yi −X ′

i β̂− α̂)= 0

n∑
i=1

Xi
(
Yi −X ′

i β̂− α̂)= 0.

The first equation implies
α̂= Y −X

′
β̂.

Subtracting from the second we obtain

n∑
i=1

Xi

((
Yi −Y

)
−

(
Xi −X

)′
β̂
)
= 0.

Solving for β̂ we find

β̂=
(

n∑
i=1

Xi

(
Xi −X

)′)−1 (
n∑

i=1
Xi

(
Yi −Y

))

=
(

n∑
i=1

(
Xi −X

)(
Xi −X

)′)−1 (
n∑

i=1

(
Xi −X

)(
Yi −Y

))
. (3.18)

Thus the OLS estimator for the slope coefficients is OLS with demeaned data and no intercept.
The representation (3.18) is known as the demeaned formula for the least squares estimator.
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3.10 Model in Matrix Notation

For many purposes, including computation, it is convenient to write the model and statistics in ma-
trix notation. The n linear equations Yi = X ′

iβ+ ei make a system of n equations. We can stack these n
equations together as

Y1 = X ′
1β+e1

Y2 = X ′
2β+e2

...

Yn = X ′
nβ+en .

Define

Y =


Y1

Y2
...

Yn

 , X =


X ′

1
X ′

2
...

X ′
n

 , e =


e1

e2
...

en

 .

Observe that Y and e are n × 1 vectors and X is an n × k matrix. The system of n equations can be
compactly written in the single equation

Y = Xβ+e. (3.19)

Sample sums can be written in matrix notation. For example

n∑
i=1

Xi X ′
i = X ′X

n∑
i=1

Xi Yi = X ′Y .

Therefore the least squares estimator can be written as

β̂= (
X ′X

)−1 (
X ′Y

)
.

The matrix version of (3.15) and estimated version of (3.19) is

Y = X β̂+ ê.

Equivalently the residual vector is
ê = Y −X β̂.

Using the residual vector we can write (3.16) as

X ′ê = 0.

It can also be useful to write the sum of squared error criterion as

SSE
(
β
)= (

Y −Xβ
)′ (Y −Xβ

)
.

Using matrix notation we have simple expressions for most estimators. This is particularly conve-
nient for computer programming as most languages allow matrix notation and manipulation.
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Theorem 3.2 Important Matrix Expressions

β̂= (
X ′X

)−1 (
X ′Y

)
ê = Y −X β̂

X ′ê = 0.

Early Use of Matrices

The earliest known treatment of the use of matrix methods to
solve simultaneous systems is found in Chapter 8 of the Chinese
text The Nine Chapters on the Mathematical Art, written by sev-
eral generations of scholars from the 10th to 2nd century BCE.

3.11 Projection Matrix

Define the matrix
P = X

(
X ′X

)−1 X ′.

Observe that
P X = X

(
X ′X

)−1 X ′X = X .

This is a property of a projection matrix. More generally, for any matrix Z which can be written as
Z = XΓ for some matrix Γ (we say that Z lies in the range space of X ), then

P Z = P XΓ= X
(

X ′X
)−1 X ′XΓ= XΓ= Z .

As an important example, if we partition the matrix X into two matrices X 1 and X 2 so that X =
[X 1 X 2] then P X 1 = X 1. (See Exercise 3.7.)

The projection matrix P has the algebraic property that it is idempotent: P P = P . See Theorem 3.3.2
below. For the general properties of projection matrices see Section A.11.

The matrix P creates the fitted values in a least squares regression:

P Y = X
(

X ′X
)−1 X ′Y = X β̂= Ŷ .

Because of this property P is also known as the hat matrix.
A special example of a projection matrix occurs when X = 1n is an n-vector of ones. Then

P = 1n
(
1′

n1n
)−1 1′

n = 1

n
1n1′

n .

Note that in this case
P Y = 1n

(
1′

n1n
)−1 1′

nY = 1nY

creates an n-vector whose elements are the sample mean Y .
The projection matrix P appears frequently in algebraic manipulations in least squares regression.

The matrix has the following important properties.
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Theorem 3.3 The projection matrix P = X
(

X ′X
)−1 X ′ for any n ×k X with n ≥

k has the following algebraic properties.

1. P is symmetric (P ′ = P ).

2. P is idempotent (P P = P ).

3. trP = k.

4. The eigenvalues of P are 1 and 0. There are k eigenvalues equalling 1 and
n −k equalling 0.

5. rank(P ) = k.

We close this section by proving the claims in Theorem 3.3. Part 1 holds since

P ′ =
(

X
(

X ′X
)−1 X ′

)′
= (

X ′)′ ((X ′X
)−1

)′
(X )′

= X
((

X ′X
)′)−1

X ′

= X
(
(X )′

(
X ′)′)−1

X ′ = P .

To establish part 2, the fact that P X = X implies that

P P = P X
(

X ′X
)−1 X ′ = X

(
X ′X

)−1 X ′ = P

as claimed. For part 3,

trP = tr
(

X
(

X ′X
)−1 X ′

)
= tr

((
X ′X

)−1 X ′X
)
= tr(I k ) = k.

See Appendix A.5 for definition and properties of the trace operator.
For part 4, it is shown in Appendix A.11 that the eigenvalues λi of an idempotent matrix are all 1

and 0. Since trP equals the sum of the n eigenvalues and trP = k by part 3, it follows that there are k
eigenvalues equalling 1 and the remainder n −k equalling 0.

For part 5, observe that P is positive semi-definite since its eigenvalues are all non-negative. By
Theorem A.4.5 its rank equals the number of positive eigenvalues, which is k as claimed.

3.12 Annihilator Matrix

Define
M = I n −P = I n −X

(
X ′X

)−1 X ′

where I n is the n ×n identity matrix. Note that

M X = (I n −P ) X = X −P X = X −X = 0. (3.21)

Thus M and X are orthogonal. We call M the annihilator matrix due to the property that for any matrix
Z in the range space of X then

M Z = Z −P Z = 0.
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For example, M X 1 = 0 for any subcomponent X 1 of X , and MP = 0 (see Exercise 3.7).
The annihilator matrix M has similar properties with P , including that M is symmetric (M ′ = M) and

idempotent (M M = M). It is thus a projection matrix. Similarly to Theorem 3.3.3 we can calculate

tr M = n −k. (3.22)

(See Exercise 3.9.) One implication is that the rank of M is n −k.
While P creates fitted values, M creates least squares residuals:

MY = Y −P Y = Y −X β̂= ê. (3.23)

As discussed in the previous section, a special example of a projection matrix occurs when X = 1n is
an n-vector of ones, so that P = 1n

(
1′

n1n
)−1 1′

n . The associated annihilator matrix is

M = I n −P = I n −1n
(
1′

n1n
)−1 1′

n .

While P creates a vector of sample means, M creates demeaned values:

MY = Y −1nY .

For simplicity we will often write the right-hand-side as Y −Y . The i th element is Yi −Y , the demeaned
value of Yi .

We can also use (3.23) to write an alternative expression for the residual vector. Substituting Y =
Xβ+e into ê = MY and using M X = 0 we find

ê = MY = M
(

Xβ+e
)= Me (3.24)

which is free of dependence on the regression coefficient β.

3.13 Estimation of Error Variance

The error variance σ2 = E[
e2

]
is a moment, so a natural estimator is a moment estimator. If ei were

observed we would estimate σ2 by

σ̃2 = 1

n

n∑
i=1

e2
i . (3.25)

However, this is infeasible as ei is not observed. In this case it is common to take a two-step approach to
estimation. The residuals êi are calculated in the first step, and then we substitute êi for ei in expression
(3.25) to obtain the feasible estimator

σ̂2 = 1

n

n∑
i=1

ê2
i . (3.26)

In matrix notation, we can write (3.25) and (3.26) as σ̃2 = n−1e ′e and

σ̂2 = n−1ê ′ê. (3.27)

Recall the expressions ê = MY = Me from (3.23) and (3.24). Applied to (3.27) we find

σ̂2 = n−1ê ′ê = n−1e ′M Me = n−1e ′Me (3.28)

the third equality since M M = M .
An interesting implication is that

σ̃2 − σ̂2 = n−1e ′e −n−1e ′Me = n−1e ′Pe ≥ 0.

The final inequality holds because P is positive semi-definite and e ′Pe is a quadratic form. This shows
that the feasible estimator σ̂2 is numerically smaller than the idealized estimator (3.25).
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3.14 Analysis of Variance

Another way of writing (3.23) is
Y = P Y +MY = Ŷ + ê. (3.29)

This decomposition is orthogonal, that is

Ŷ
′
ê = (P Y )′ (MY ) = Y ′P MY = 0. (3.30)

It follows that
Y ′Y = Ŷ

′
Ŷ +2Ŷ

′
ê + ê ′ê = Ŷ

′
Ŷ + ê ′ê

or
n∑

i=1
Y 2

i =
n∑

i=1
Ŷ 2

i +
n∑

i=1
ê2

i .

Subtracting Y from both sides of (3.29) we obtain

Y −1nY = Ŷ −1nY + ê.

This decomposition is also orthogonal when X contains a constant, as(
Ŷ −1nY

)′
ê = Ŷ

′
ê −Y 1′

n ê = 0

under (3.17). It follows that(
Y −1nY

)′ (
Y −1nY

)
=

(
Ŷ −1nY

)′ (
Ŷ −1nY

)
+ ê ′ê

or
n∑

i=1

(
Yi −Y

)2 =
n∑

i=1

(
Ŷi −Y

)2 +
n∑

i=1
ê2

i .

This is commonly called the analysis-of-variance formula for least squares regression.
A commonly reported statistic is the coefficient of determination or R-squared:

R2 =
∑n

i=1

(
Ŷi −Y

)2

∑n
i=1

(
Yi −Y

)2 = 1−
∑n

i=1 ê2
i∑n

i=1

(
Yi −Y

)2 .

It is often described as “the fraction of the sample variance of Y which is explained by the least squares
fit”. R2 is a crude measure of regression fit. We have better measures of fit, but these require a statistical
(not just algebraic) analysis and we will return to these issues later. One deficiency with R2 is that it in-
creases when regressors are added to a regression (see Exercise 3.16) so the “fit” can be always increased
by increasing the number of regressors.

The coefficient of determination was introduced by Wright (1921).

3.15 Projections

One way to visualize least squares fitting is as a projection operation.
Write the regressor matrix as X = [X 1 X 2 ... X k ] where X j is the j th column of X . The range space

R(X ) of X is the space consisting of all linear combinations of the columns X 1,X 2,...,X k . R(X ) is a k
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dimensional surface contained in Rn . If k = 2 then R(X ) is a plane. The operator P = X
(

X ′X
)−1 X ′

projects vectors onto R(X ). The fitted values Ŷ = P Y are the projection of Y onto R(X ).
To visualize examine Figure 3.3. This displays the case n = 3 and k = 2. Displayed are three vectors

Y , X 1, and X 2, which are each elements of R3. The plane created by X 1 and X 2 is the range space R(X ).
Regression fitted values are linear combinations of X 1 and X 2 and so lie on this plane. The fitted value
Ŷ is the vector on this plane closest to Y . The residual ê = Y − Ŷ is the difference between the two. The
angle between the vectors Ŷ and ê is 90◦, and therefore they are orthogonal as shown.
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ê
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Ŷ
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ê
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Ŷ
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ê
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Ŷ
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ê
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Ŷ
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Figure 3.3: Projection of Y onto X 1 and X 2

3.16 Regression Components

Partition X = [X 1 X 2] and β= (β1,β2). The regression model can be written as

Y = X 1β1 +X 2β2 +e. (3.31)

The OLS estimator of β= (β′
1,β′

2)′ is obtained by regression of Y on X = [X 1 X 2] and can be written as

Y = X β̂+ ê = X 1β̂1 +X 2β̂2 + ê. (3.32)

We are interested in algebraic expressions for β̂1 and β̂2.
Let’s first focus on β̂1. The least squares estimator by definition is found by the joint minimization(

β̂1, β̂2
)= argmin

β1,β2

SSE
(
β1,β2

)
(3.33)

where
SSE

(
β1,β2

)= (
Y −X 1β1 −X 2β2

)′ (Y −X 1β1 −X 2β2
)

.

An equivalent expression for β̂1 can be obtained by concentration (nested minimization). The solution
(3.33) can be written as

β̂1 = argmin
β1

(
min
β2

SSE
(
β1,β2

))
. (3.34)
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The inner expression minβ2 SSE
(
β1,β2

)
minimizes over β2 while holding β1 fixed. It is the lowest pos-

sible sum of squared errors given β1. The outer minimization argminβ1
finds the coefficient β1 which

minimizes the “lowest possible sum of squared errors given β1”. This means that β̂1 as defined in (3.33)
and (3.34) are algebraically identical.

Examine the inner minimization problem in (3.34). This is simply the least squares regression of
Y −X 1β1 on X 2. This has solution

argmin
β2

SSE
(
β1,β2

)= (
X ′

2X 2
)−1 (

X ′
2

(
Y −X 1β1

))
with residuals

Y −X 1β1 −X 2
(

X ′
2X 2

)−1 (
X ′

2

(
Y −X 1β1

))= (
M 2Y −M 2X 1β1

)
= M 2

(
Y −X 1β1

)
where

M 2 = I n −X 2
(

X ′
2X 2

)−1 X ′
2 (3.35)

is the annihilator matrix for X 2. This means that the inner minimization problem (3.34) has minimized
value

min
β2

SSE
(
β1,β2

)= (
Y −X 1β1

)′ M 2M 2
(
Y −X 1β1

)
= (

Y −X 1β1
)′ M 2

(
Y −X 1β1

)
where the second equality holds since M 2 is idempotent. Substituting this into (3.34) we find

β̂1 = argmin
β1

(
Y −X 1β1

)′ M 2
(
Y −X 1β1

)
= (

X ′
1M 2X 1

)−1 (
X ′

1M 2Y
)

.

By a similar argument we find
β̂2 =

(
X ′

2M 1X 2
)−1 (

X ′
2M 1Y

)
where

M 1 = I n −X 1
(

X ′
1X 1

)−1 X ′
1 (3.36)

is the annihilator matrix for X 1.

Theorem 3.4 The least squares estimator
(
β̂1, β̂2

)
for (3.32) has the algebraic

solution

β̂1 =
(

X ′
1M 2X 1

)−1 (
X ′

1M 2Y
)

(3.37)

β̂2 =
(

X ′
2M 1X 2

)−1 (
X ′

2M 1Y
)

(3.38)

where M 1 and M 2 are defined in (3.36) and (3.35), respectively.
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3.17 Regression Components (Alternative Derivation)*

An alternative proof of Theorem 3.4 uses an algebraic argument based on the population calculations
from Section 2.22. Since this is a classic derivation we present it here for completeness.

Partition Q̂ X X as

Q̂ X X =
 Q̂11 Q̂12

Q̂21 Q̂22

=


1

n
X ′

1X 1
1

n
X ′

1X 2

1

n
X ′

2X 1
1

n
X ′

2X 2


and similarly Q̂ X Y as

Q̂ X Y =
 Q̂1Y

Q̂2Y

=


1

n
X ′

1Y

1

n
X ′

2Y

 .

By the partitioned matrix inversion formula (A.3)

Q̂
−1
X X =

 Q̂11 Q̂12

Q̂21 Q̂22

−1

def=

 Q̂
11

Q̂
12

Q̂
21

Q̂
22

=

 Q̂
−1
11·2 −Q̂

−1
11·2Q̂12Q̂

−1
22

−Q̂
−1
22·1Q̂21Q̂

−1
11 Q̂

−1
22·1

 (3.39)

where Q̂11·2 = Q̂11 −Q̂12Q̂
−1
22 Q̂21 and Q̂22·1 = Q̂22 −Q̂21Q̂

−1
11 Q̂12. Thus

β̂=
(
β̂1

β̂2

)

=
[

Q̂
−1
11·2 −Q̂

−1
11·2Q̂12Q̂

−1
22

−Q̂
−1
22·1Q̂21Q̂

−1
11 Q̂

−1
22·1

][
Q̂1Y

Q̂2Y

]

=
(

Q̂
−1
11·2Q̂1Y ·2

Q̂
−1
22·1Q̂2Y ·1

)
.

Now

Q̂11·2 = Q̂11 −Q̂12Q̂
−1
22 Q̂21

= 1

n
X ′

1X 1 − 1

n
X ′

1X 2

(
1

n
X ′

2X 2

)−1 1

n
X ′

2X 1

= 1

n
X ′

1M 2X 1

and

Q̂1y ·2 = Q̂1Y −Q̂12Q̂
−1
22 Q̂2Y

= 1

n
X ′

1Y − 1

n
X ′

1X 2

(
1

n
X ′

2X 2

)−1 1

n
X ′

2Y

= 1

n
X ′

1M 2Y .

Equation (3.38) follows.

Similarly to the calculation for Q̂11·2 and Q̂1Y ·2 you can show that Q̂2Y ·1 = 1

n
X ′

2M 1Y and Q̂22·1 =
1

n
X ′

2M 1X 2. This establishes (3.37). Together, this is Theorem 3.4.



CHAPTER 3. THE ALGEBRA OF LEAST SQUARES 80

3.18 Residual Regression

As first recognized by Frisch and Waugh (1933) and extended by Lovell (1963), expressions (3.37)
and (3.38) can be used to show that the least squares estimators β̂1 and β̂2 can be found by a two-step
regression procedure.

Take (3.38). Since M 1 is idempotent, M 1 = M 1M 1 and thus

β̂2 =
(

X ′
2M 1X 2

)−1 (
X ′

2M 1Y
)

= (
X ′

2M 1M 1X 2
)−1 (

X ′
2M 1M 1Y

)
=

(
X̃

′
2X̃ 2

)−1 (
X̃

′
2ẽ1

)
where X̃ 2 = M 1X 2 and ẽ1 = M 1Y .

Thus the coefficient estimator β̂2 is algebraically equal to the least squares regression of ẽ1 on X̃ 2. No-
tice that these two are Y and X 2, respectively, premultiplied by M 1. But we know that pre-multiplication
by M 1 creates least squares residuals. Therefore ẽ1 is simply the least squares residual from a regression
of Y on X 1, and the columns of X̃ 2 are the least squares residuals from the regressions of the columns of
X 2 on X 1.

We have proven the following theorem.

Theorem 3.5 Frisch-Waugh-Lovell (FWL)
In the model (3.31), the OLS estimator of β2 and the OLS residuals ê may be
computed by either the OLS regression (3.32) or via the following algorithm:

1. Regress Y on X 1, obtain residuals ẽ1;

2. Regress X 2 on X 1, obtain residuals X̃ 2;

3. Regress ẽ1 on X̃ 2, obtain OLS estimates β̂2 and residuals ê.

In some contexts (such as panel data models, to be introduced in Chapter 17), the FWL theorem can
be used to greatly speed computation.

The FWL theorem is a direct analog of the coefficient representation obtained in Section 2.23. The
result obtained in that section concerned the population projection coefficients; the result obtained here
concern the least squares estimators. The key message is the same. In the least squares regression (3.32)
the estimated coefficient β̂2 algebraically equals the regression of Y on the regressors X 2 after the regres-
sors X 1 have been linearly projected out. Similarly, the coefficient estimate β̂1 algebraically equals the
regression of Y on the regressors X 1 after the regressors X 2 have been linearly projected out. This result
can be insightful when interpreting regression coefficients.

A common application of the FWL theorem is the demeaning formula for regression obtained in
(3.18). Partition X = [X 1 X 2] where X 1 = 1n is a vector of ones and X 2 is a matrix of observed regressors.
In this case M 1 = I n −1n

(
1′

n1n
)−1 1′

n . Observe that X̃ 2 = M 1X 2 = X 2 − X 2 and M 1Y = Y −Y are the
“demeaned” variables. The FWL theorem says that β̂2 is the OLS estimate from a regression of Yi −Y on
X2i −X 2 :

β̂2 =
(

n∑
i=1

(
X2i −X 2

)(
X2i −X 2

)′)−1 (
n∑

i=1

(
X2i −X 2

)(
Yi −Y

))
.

This is (3.18).
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Ragnar Frisch
Ragnar Frisch (1895-1973) was co-winner with Jan Tinbergen of the first No-
bel Memorial Prize in Economic Sciences in 1969 for their work in developing
and applying dynamic models for the analysis of economic problems. Frisch
made a number of foundational contributions to modern economics beyond the
Frisch-Waugh-Lovell Theorem, including formalizing consumer theory, produc-
tion theory, and business cycle theory.

3.19 Leverage Values

The leverage values for the regressor matrix X are the diagonal elements of the projection matrix
P = X

(
X ′X

)−1 X ′ . There are n leverage values, and are typically written as hi i for i = 1, ...,n. Since

P =


X ′

1
X ′

2
...

X ′
n

(
X ′X

)−1 (
X1 X2 · · · Xn

)

they are
hi i = X ′

i

(
X ′X

)−1 Xi . (3.40)

The leverage value hi i is a normalized length of the observed regressor vector Xi . They appear fre-
quently in the algebraic and statistical analysis of least squares regression, including leave-one-out re-
gression, influential observations, robust covariance matrix estimation, and cross-validation.

A few properties of the leverage values are now listed.

Theorem 3.6

1. 0 ≤ hi i ≤ 1.

2. hi i ≥ 1/n if X includes an intercept.

3.
∑n

i=1 hi i = k.

We prove Theorem 3.6 below.
The leverage value hi i measures how unusual the i th observation Xi is relative to the other observa-

tions in the sample. A large hi i occurs when Xi is quite different from the other sample values. A measure
of overall unusualness is the maximum leverage value

h = max
1≤i≤n

hi i . (3.41)

It is common to say that a regression design is balanced when the leverage values are all roughly
equal to one another. From Theorem 3.6.3 we deduce that complete balance occurs when hi i = h = k/n.
An example of complete balance is when the regressors are all orthogonal dummy variables, each of
which have equal occurrance of 0’s and 1’s.
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A regression design is unbalanced if some leverage values are highly unequal from the others. The
most extreme case is h = 1. An example where this occurs is when there is a dummy regressor which
takes the value 1 for only one observation in the sample.

The maximal leverage value (3.41) will change depending on the choice of regressors. For example,
consider equation (3.13), the wage regression for single Asian men which has n = 268 observations. This
regression has h = 0.33. If the squared experience regressor is omitted the leverage drops to h = 0.10. If a
cubic in experience is added it increases to h = 0.76. And if a fourth and fifth power are added it increases
to h = 0.99.

Some inference procedures (such as robust covariance matrix estimation and cross-validation) are
sensitive to high leverage values. We will return to these issues later.

We now prove Theorem 3.6. For part 1 let si be an n×1 unit vector with a 1 in the i th place and zeros
elsewhere so that hi i = s′i P si . Then applying the Quadratic Inequality (B.18) and Theorem 3.3.4,

hi i = s′i P si ≤ s′i siλmax (P ) = 1

as claimed.
For part 2 partition Xi = (1, Z ′

i )′. Without loss of generality we can replace Zi with the demeaned

values Z∗
i = Zi −Z . Then since Z∗

i and the intercept are orthgonal

hi i = (1, Z∗′
i )

[
n 0
0 Z ∗′Z ∗

]−1 (
1

Z∗
i

)
= 1

n
+Z∗′

i

(
Z ∗′Z ∗)−1 Z∗

i ≥ 1

n
.

For part 3,
∑n

i=1 hi i = trP = k where the second equality is Theorem 3.3.3.

3.20 Leave-One-Out Regression

There are a number of statistical procedures – residual analysis, jackknife variance estimation, cross-
validation, two-step estimation, hold-out sample evaluation – which make use of estimators constructed
on sub-samples. Of particular importance is the case where we exclude a single observation and then
repeat this for all observations. This is called leave-one-out (LOO) regression.

Specifically, the leave-one-out estimator of the regression coefficient β is the least squares estimator
constructed using the full sample excluding a single observation i . This can be written as

β̂(−i ) =
(∑

j 6=i
X j X ′

j

)−1 (∑
j 6=i

X j Y j

)
= (

X ′X −Xi X ′
i

)−1 (
X ′Y −Xi Yi

)
=

(
X ′

(−i )X (−i )

)−1
X ′

(−i )Y (−i ). (3.42)

Here, X (−i ) and Y (−i ) are the data matrices omitting the i th row. The notation β̂(−i ) or β̂−i is commonly
used to denote an estimator with the i th observation omitted. There is a leave-one-out estimator for
each observation, i = 1, ...,n, so we have n such estimators.

The leave-one-out predicted value for Yi is Ỹi = X ′
i β̂(−i ). This is the predicted value obtained by

estimating β on the sample without observation i and then using the covariate vector Xi to predict Yi .
Notice that Ỹi is an authentic prediction as Yi is not used to construct Ỹi . This is in contrast to the fitted
values Ŷi which are functions of Yi .
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The leave-one-out residual, prediction error, or prediction residual is ẽi = Yi − Ỹi . The prediction
errors may be used as estimators of the errors instead of the residuals. The prediction errors are better
estimators than the residuals since the former are based on authentic predictions.

The leave-one-out formula (3.42) gives the unfortunate impression that the leave-one-out coeffi-
cients and errors are computationally cumbersome, requiring n separate regressions. In the context of
linear regression this is fortunately not the case. There are simple linear expressions for β̂(−i ) and ẽi .

Theorem 3.7 The leave-one-out estimator and prediction error equal

β̂(−i ) = β̂− (
X ′X

)−1 Xi ẽi (3.43)

and
ẽi = (1−hi i )−1 êi (3.44)

where hi i are the leverage values as defined in (3.40).

We prove Theorem 3.7 at the end of the section.
Equation (3.43) shows that the leave-one-out coefficients can be calculated by a simple linear op-

eration and do not need to be calculated using n separate regressions. Another interesting feature of
equation (3.44) is that the prediction errors ẽi are a simple scaling of the least squares residuals êi with
the scaling dependent on the leverage values hi i . If hi i is small then ẽi ' êi . However if hi i is large then ẽi

can be quite different from êi . Thus the difference between the residuals and predicted values depends
on the leverage values, that is, how unusual is Xi .

To write (3.44) in vector notation, define

M∗ = (
I n −diag{h11, ..,hnn}

)−1

= diag{(1−h11)−1 , .., (1−hnn)−1}.

Then (3.44) is equivalent to
ẽ = M∗ê. (3.45)

One use of the prediction errors is to estimate the out-of-sample mean squared error:

σ̃2 = 1

n

n∑
i=1

ẽ2
i =

1

n

n∑
i=1

(1−hi i )−2 ê2
i . (3.46)

This is known as the sample mean squared prediction error. Its square root σ̃ =
p
σ̃2 is the prediction

standard error.
We complete the section with a proof of Theorem 3.7. The leave-one-out estimator (3.42) can be

written as
β̂(−i ) =

(
X ′X −Xi X ′

i

)−1 (
X ′Y −Xi Yi

)
. (3.47)

Multiply (3.47) by
(

X ′X
)−1 (

X ′X −Xi X ′
i

)
. We obtain

β̂(−i ) −
(

X ′X
)−1 Xi X ′

i β̂(−i ) =
(

X ′X
)−1 (

X ′Y −Xi Yi
)= β̂− (

X ′X
)−1 Xi Yi .

Rewriting
β̂(−i ) = β̂− (

X ′X
)−1 Xi

(
Yi −X ′

i β̂(−i )
)= β̂− (

X ′X
)−1 Xi ẽi

which is (3.43). Premultiplying this expression by X ′
i and using definition (3.40) we obtain

X ′
i β̂(−i ) = X ′

i β̂−X ′
i

(
X ′X

)−1 Xi ẽi = X ′
i β̂−hi i ẽi .

Using the definitions for êi and ẽi we obtain ẽi = êi +hi i ẽi . Re-writing we obtain (3.44).
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3.21 Influential Observations

Another use of the leave-one-out estimator is to investigate the impact of influential observations,
sometimes called outliers. We say that observation i is influential if its omission from the sample induces
a substantial change in a parameter estimate of interest.

For illustration consider Figure 3.4 which shows a scatter plot of realizations (Yi , Xi ). The 25 observa-
tions shown with the open circles are generated by Xi ∼U [1,10] and Yi ∼ N(Xi ,4). The 26th observation
shown with the filled circle is X26 = 9, Y26 = 0. (Imagine that Y26 = 0 was incorrectly recorded due to a
mistaken key entry.) The figure shows both the least squares fitted line from the full sample and that
obtained after deletion of the 26th observation from the sample. In this example we can see how the 26th

observation (the “outlier”) greatly tilts the least squares fitted line towards the 26th observation. In fact,
the slope coefficient decreases from 0.97 (which is close to the true value of 1.00) to 0.56, which is sub-
stantially reduced. Neither Y26 nor X26 are unusual values relative to their marginal distributions so this
outlier would not have been detected from examination of the marginal distributions of the data. The
change in the slope coefficient of −0.41 is meaningful and should raise concern to an applied economist.
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Figure 3.4: Impact of an Influential Observation on the Least-Squares Estimator

From (3.43) we know that
β̂− β̂(−i ) =

(
X ′X

)−1 Xi ẽi . (3.48)

By direct calculation of this quantity for each observation i , we can directly discover if a specific obser-
vation i is influential for a coefficient estimate of interest.

For a general assessment, we can focus on the predicted values. The difference between the full-
sample and leave-one-out predicted values is

Ŷi − Ỹi = X ′
i β̂−X ′

i β̂(−i ) = X ′
i

(
X ′X

)−1 Xi ẽi = hi i ẽi

which is a simple function of the leverage values hi i and prediction errors ẽi . Observation i is influential
for the predicted value if |hi i ẽi | is large, which requires that both hi i and |ẽi | are large.

One way to think about this is that a large leverage value hi i gives the potential for observation i to
be influential. A large hi i means that observation i is unusual in the sense that the regressor Xi is far
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from its sample mean. We call an observation with large hi i a leverage point. A leverage point is not
necessarily influential as the latter also requires that the prediction error ẽi is large.

To determine if any individual observations are influential in this sense several diagnostics have been
proposed (some names include DFITS, Cook’s Distance, and Welsch Distance). Unfortunately, from a
statistical perspective it is difficult to recommend these diagnostics for applications as they are not based
on statistical theory. Probably the most relevant measure is the change in the coefficient estimates given
in (3.48). The ratio of these changes to the coefficient’s standard error is called its DFBETA, and is a
postestimation diagnostic available in Stata. While there is no magic threshold, the concern is whether
or not an individual observation meaningfully changes an estimated coefficient of interest. A simple
diagnostic for influential observations is to calculate

Influence = max
1≤i≤n

∣∣Ŷi − Ỹi
∣∣= max

1≤i≤n
|hi i ẽi | .

This is the largest (absolute) change in the predicted value due to a single observation. If this diagnostic
is large relative to the distribution of Y it may indicate that that observation is influential.

If an observation is determined to be influential what should be done? As a common cause of influ-
ential observations is data error, the influential observations should be examined for evidence that the
observation was mis-recorded. Perhaps the observation falls outside of permitted ranges, or some ob-
servables are inconsistent (for example, a person is listed as having a job but receives earnings of $0). If it
is determined that an observation is incorrectly recorded, then the observation is typically deleted from
the sample. This process is often called “cleaning the data”. The decisions made in this process involve a
fair amount of individual judgment. [When this is done the proper practice is to retain the source data in
its original form and create a program file which executes all cleaning operations (for example deletion
of individual observations). The cleaned data file can be saved at this point, and then used for the subse-
quent statistical analysis. The point of retaining the source data and a specific program file which cleans
the data is twofold: so that all decisions are documented, and so that modifications can be made in re-
visions and future research.] It is also possible that an observation is correctly measured, but unusual
and influential. In this case it is unclear how to proceed. Some researchers will try to alter the specifi-
cation to properly model the influential observation. Other researchers will delete the observation from
the sample. The motivation for this choice is to prevent the results from being skewed or determined
by individual observations. This latter practice is viewed skeptically by many researchers who believe it
reduces the integrity of reported empirical results.

For an empirical illustration consider the log wage regression (3.13) for single Asian men. This regres-
sion, which has 268 observations, has Influence = 0.29. This means that the most influential observation,
when deleted, changes the predicted (fitted) value of the dependent variable log(wage) by 0.29, or equiv-
alently the average wage by 29%. This is a meaningful change and suggests further investigation. We
examine the influential observation, and find that its leverage hi i is 0.33. It is a moderately large leverage
value, meaning that the regressor Xi is somewhat unusual. Examining further, we find that this indi-
vidual is 65 years old with 8 years education, so that his potential work experience is 51 years. This is
the highest experience in the subsample – the next highest is 41 years. The large leverage is due to his
unusual characteristics (very low education and very high experience) within this sample. Essentially,
regression (3.13) is attempting to estimate the conditional mean at experience= 51 with only one obser-
vation. It is not surprising that this observation determines the fit and is thus influential. A reasonable
conclusion is the regression function can only be estimated over a smaller range of experience. We re-
strict the sample to individuals with less than 45 years experience, re-estimate, and obtain the following
estimates.

álog(wage) = 0.144 education+0.043 experience−0.095 experience2/100+0.531. (3.49)
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For this regression, we calculate that Influence = 0.11, which is greatly reduced relative to the regression
(3.13). Comparing (3.49) with (3.13), the slope coefficient for education is essentially unchanged, but the
coefficients on experience and its square have slightly increased.

By eliminating the influential observation equation (3.49) can be viewed as a more robust estimate
of the conditional mean for most levels of experience. Whether to report (3.13) or (3.49) in an application
is largely a matter of judgment.

3.22 CPS Data Set

In this section we describe the data set used in the empirical illustrations.
The Current Population Survey (CPS) is a monthly survey of about 57,000 U.S. households conducted

by the Bureau of the Census of the Bureau of Labor Statistics. The CPS is the primary source of informa-
tion on the labor force characteristics of the U.S. population. The survey covers employment, earnings,
educational attainment, income, poverty, health insurance coverage, job experience, voting and registra-
tion, computer usage, veteran status, and other variables. Details can be found at www.census.gov/cps
and dataferrett.census.gov.

From the March 2009 survey we extracted the individuals with non-allocated variables who were full-
time employed (defined as those who had worked at least 36 hours per week for at least 48 weeks the past
year), and excluded those in the military. This sample has 50,742 individuals. We extracted 14 variables
from the CPS on these individuals and created the data set cps09mar. This data set, and all others used
in this textbook, are available at http://www.ssc.wisc.edu/~bhansen/econometrics/.

3.23 Numerical Computation

Modern econometric estimation involves large samples and many covariates. Consequently, calcu-
lation of even simple statistics such as the least squares estimator requires a large number (millions) of
arithmetic operations. In practice most economists don’t need to think much about this as it is done
swiftly and effortlessly on personal computers. Nevertheless it is useful to understand the underlying
calculation methods as choices can occasionally make substantive differences.

While today nearly all statistical computations are made using statistical software running on elec-
tronic computers, this was not always the case. In the nineteenth and early twentieth centures “com-
puter” was a job label for workers who made computations by hand. Computers were employed by as-
tronomers and statistical laboratories. This fascinating job (and the fact that most computers employed
in laboratories were women) has entered popular culture. For example the lives of several computers
who worked for the early U.S. space program is described in the book and popular movie Hidden Fig-
ures, a fictional computer/astronaut is the protagonist of the novel The Calculating Stars, and the life of
computer/astronomer Henrietta Swan Leavitt is dramatized in the play Silent Sky.

Until programmable electronic computers became available in the 1960s economics graduate stu-
dents were routinely employed as computers. Sample sizes were considerably smaller than those seen
today, but still the effort required to calculate by hand a regression with even n = 100 observations and
k = 5 variables is considerable! If you are a current graduate student you should feel fortunate that the
profession has moved on from the era of human computers! (Now research assistants do more elevated
tasks such as writing Stata and MATLAB code.)

To obtain the least squares estimate β̂= (
X ′X

)−1 (
X ′Y

)
we need to either invert X ′X or solve a system

of equations. To be specific, let A = X ′X and c = X ′Y so that the least squares estimate can be written as
either the solution to

Aβ̂= c (3.50)
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or as
β̂= A−1c . (3.51)

The equations (3.50) and (3.51) are algebraically identical but they suggest two distinct numerical ap-
proaches to obtain β̂. (3.50) suggests solving a system of k equations. (3.51) suggests finding A−1 and
then multiplying by c . While the two expressions are algebraically identical the implied numerical ap-
proaches are different.

In a nutshell, solving the system of equations (3.50) is numerically preferred to the matrix inversion
problem (3.51). Directly solving (3.50) is faster and produces a solution with a higher degree of numerical
accuracy. Thus (3.50) is generally recommended over (3.51). However, in most practical applications the
choice will not make any practical difference. Contexts where the choice may make a difference is when
the matrix A is ill-conditioned (to be discussed in Section 3.24) or of extremely high dimension.

Numerical methods to solve the system of equations (3.50) and calculate A−1 are discussed in Sec-
tions A.18 and A.19, respectively.

Statistical packages use a variety of matrix methods to solve (3.50). Stata uses the sweep algorithm
which is a variant of the Gauss-Jordan algorithm discussed in Section A.18. (For the sweep algorithm see
Goodnight (1979).) In R, solve(A,b) uses the QR decomposition. In MATLAB, A\b uses the Cholesky
decomposition when A is positive definite and the QR decomposition otherwise.

3.24 Collinearity Errors

For the least squares estimator to be uniquely defined the regressors cannot be linearly dependent.
However, it is quite easy to attempt to calculate a regression with linearly dependent regressors. This can
occur for many reasons, including the following.

1. Including the same regressor twice.

2. Including regressors which are a linear combination of one another, such as education, experience
and age in the CPS data set example (recall, experience is defined as age-education-6).

3. Including a dummy variable and its square.

4. Estimating a regression on a sub-sample for which a dummy variable is either all zeros or all ones.

5. Including a dummy variable interaction which yields all zeros.

6. Including more regressors than observations.

In any of the above cases the regressors are linearly dependent so X ′X is singular and the least
squares estimator is not unique. If you attempt to estimate the regression, you are likely to encounter an
error message. (A possible exception is MATLAB using “A\b”, as discussed below.) The message may be
that “system is exactly singular”, “system is computationally singular”, a variable is “omitted because of
collinearity”, or a coefficient is listed as “NA”. In some cases (such as estimation in R using explicit matrix
computation or MATLAB using the regress command) the program will stop execution. In other cases
the program will continue to run. In Stata (and in the lm package in R), a regression will be reported but
one or more variables will be omitted.

If any of these warnings or error messages appear, the correct response is to stop and examine the
regression coding and data. Did you make an unintended mistake? Have you included a linearly de-
pendent regressor? Are you estimating on a subsample for which the variables (in particular dummy
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variables) have no variation? If you can determine that one of these scenarios caused the error, the so-
lution is immediately apparent. You need to respecify your model (either sample or regressors) so that
the redundancy is eliminated. All empirical researchers encounter this error in the course of empirical
work. You should not, however, simply accept output if the package has selected variables for omission.
It is the researcher’s job to understand the underlying cause and enact a suitable remedy.

There is also a possibility that the statistical package will not detect and report the matrix singularity.
If you compute in MATLAB using explicit matrix operations and use the recommended A\b command to
compute the least squares estimator MATLAB may return a numerical solution without an error message
even when the regressors are algebraically dependent. It is therefore recommended that you perform a
numerical check for matrix singularity when using explicit matrix operations in MATLAB.

How can we numerically check if a matrix A is singular? A standard diagnostic is the reciprocal
condition number

C = λmin (A)

λmax (A)
.

If C = 0 then A is singular. If C = 1 then A is perfectly balanced. If C is extremely small we say that A
is ill-conditioned. The reciprocal condition number can be calculated in MATLAB or R by the rcond

command. Unfortunately, there is no accepted tolerance for how small C should be before regarding
A as numerically singular, in part since rcond(A) can return a positive (but small) result even if A is
algebraically singular. However, in double precision (which is typically used for computation) numerical
accuracy is bounded by 2−52 ' 2e-16, suggesting the minimum bound C ≥ 2e-16.

Checking for numerical singularity is complicated by the fact that low values of C can also be caused
by unbalanced or highly correlated regressors.

To illustrate, consider a wage regression using the sample from (3.13) on powers of experience X
from 1 through k (e.g. X , X 2, X 3, ..., X k ). We calculated the reciprocal condition number C for each k,
and found that C is decreasing as k increases, indicating increasing ill-conditioning. Indeed, for k =
5, we find C = 6e-17, which is lower than double precision accuracy. This means that a regression on
(X , X 2, X 3, X 4, X 5) is ill-conditioned. The regressor matrix, however, is not singular. The low value of C is
not due to algebraic singularity but rather is due to a lack of balance and high collinearity.

Ill-conditioned regressors have the potential problem that the numerical results (the reported coef-
ficient estimates) will be inaccurate. It may not be a concern in most applications as this only occurs in
extreme cases. Nevertheless, we should try and avoid ill-conditioned regressions whenever possible.

There are strategies which can reduce or even eliminate ill-conditioning. Often it is sufficient to
rescale the regressors. A simple rescaling which often works for non-negative regressors is to divide each
by its sample mean, thus replace X j i with X j i /X j . In the above example with the powers of experience,
this means replacing X 2

i with X 2
i /

(
n−1 ∑n

i=1 X 2
i

)
, etc. Doing so dramatically reduces the ill-conditioning.

With this scaling, regressions for k ≤ 11 satisfy C ≥ 1e-15. Another rescaling specific to a regression with
powers is to first rescale the regressor to lie in [−1,1] before taking powers. With this scaling, regressions
for k ≤ 16 satisfy C ≥ 1e-15. A simpler scaling option is to rescale the regressor to lie in [0,1] before taking
powers. With this scaling, regressions for k ≤ 9 satisfy C ≥ 1e-15. This is often sufficient for applications.

Ill-conditioning can often be completely eliminated by orthogonalization of the regressors. This is
achieved by sequentially regressing each variable (each column in X ) on the preceeding variables (each
preceeding column), taking the residual, and then rescaling to have a unit variance. This will produce
regressors which algebraically satisfy X ′X = nI n and have a condition number of C = 1. If we apply this
method to the above example, we obtain a condition number close to 1 for k ≤ 20.

What this shows is that when a regression has a small condition number it is important to examine
the specification carefully. It is possible that the regressors are linearly dependent in which case one or
more regressors will need to be omitted. It is also possible that the regressors are badly scaled in which
case it may be useful to rescale some of the regressors. It is also possible that the variables are highly
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collinear in which case a possible solution is orthogonalization. These choices should be made by the
researcher not by an automated software program.

3.25 Programming

Most packages allow both interactive programming (where you enter commands one-by-one) and
batch programming (where you run a pre-written sequence of commands from a file). Interactive pro-
gramming can be useful for exploratory analysis but eventually all work should be executed in batch
mode. This is the best way to control and document your work.

Batch programs are text files where each line executes a single command. For Stata, this file needs to
have the filename extension “.do”, and for MATLAB “.m”. For R there is no specific naming requirements,
though it is typical to use the extension “.r”. When writing batch files it is useful to include comments for
documentation and readability. To execute a program file you type a command within the program.

Stata: do chapter3 executes the file chapter3.do
MATLAB: run chapter3 executes the file chapter3.m
R: source(�chapter3.r�) or source(`chapter3.r') executes the file chapter3.r
There are similarities and differences between the commands used in these packages. For example:

1. Different symbols are used to create comments. * in Stata, # in R, and % in MATLAB.

2. MATLAB uses the symbol ; to separate lines. Stata and R use a hard return.

3. Stata uses ln() to compute natural logarithms. R and MATLAB use log().

4. The symbol = is used to define a variable. R prefers <-. Double equality == is used to test equality.

We now illustrate programming files for Stata, R, and MATLAB, which execute a portion of the em-
pirical illustrations from Sections 3.7 and 3.21. For the R and MATLAB code we illustrate using explicit
matrix operations. Alternatively, R and MATLAB have built-in functions which implement least squares
regression without the need for explicit matrix operations. In R the standard function is lm. In MATLAB
the standard function is regress. The advantage of using explicit matrix operations as shown below is
that you know exactly what computations are done and it is easier to go “out of the box” to execute new
procedures. The advantage of using built-in functions is that coding is simplified and you are much less
likely to make a coding error.
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Stata do File

* Clear memory and load the data
clear
use cps09mar.dta
* Generate transformations
gen wage = ln(earnings/(hours*week))
gen experience = age - education - 6
gen exp2 = (experience^2)/100
* Create indicator for subsamples
gen mbf = (race == 2) & (marital <= 2) & (female == 1)
gen mbf12 = (mbf == 1) & (experience == 12)
gen sam = (race == 4) & (marital == 7) & (female == 0)
* Regressions
reg wage education if mbf12 == 1
reg wage education experience exp2 if sam == 1
* Leverage and influence
predict leverage, hat
predict e, residual
gen d=e*leverage/(1-leverage)
summarize d if sam ==1
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R Program File

# Load the data and create subsamples
dat <- read.table("cps09mar.txt")
experience <- dat[,1]-dat[,4]-6
mbf <- (dat[,11]==2)&(dat[,12]<=2)&(dat[,2]==1)&(experience==12)
sam <- (dat[,11]==4)&(dat[,12]==7)&(dat[,2]==0)
dat1 <- dat[mbf,]
dat2 <- dat[sam,]
# First regression
y <- as.matrix(log(dat1[,5]/(dat1[,6]*dat1[,7])))
x <- cbind(dat1[,4],matrix(1,nrow(dat1),1))
xx <- t(x)%*%x
xy <- t(x)%*%y
beta <- solve(xx,xy)
print(beta)
# Second regression
y <- as.matrix(log(dat2[,5]/(dat2[,6]*dat2[,7])))
experience <- dat2[,1]-dat2[,4]-6
exp2 <- (experience^2)/100
x <- cbind(dat2[,4],experience,exp2,matrix(1,nrow(dat2),1))
xx <- t(x)%*%x
xy <- t(x)%*%y
beta <- solve(xx,xy)
print(beta)
# Create leverage and influence
e <- y-x%*%beta
xxi <- solve(xx)
leverage <- rowSums(x*(x%*%xxi))
r <- e/(1-leverage)
d <- leverage*e/(1-leverage)
print(max(abs(d)))
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MATLAB Program File

% Load the data and create subsamples
dat = load cps09mar.txt;
# An alternative to load the data from an excel file is
# dat = xlsread(’cps09mar.xlsx’);
experience = dat(:,1)-dat(:,4)-6;
mbf = (dat(:,11)==2)&(dat(:,12)<=2)&(dat(:,2)==1)&(experience==12);
sam = (dat(:,11)==4)&(dat(:,12)==7)&(dat(:,2)==0);
dat1 = dat(mbf,:);
dat2 = dat(sam,:);
% First regression
y = log(dat1(:,5)./(dat1(:,6).*dat1(:,7)));
x = [dat1(:,4),ones(length(dat1),1)];
xx = x’*x
xy = x’*y
beta = xx\xy;
display(beta);
% Second regression
y = log(dat2(:,5)./(dat2(:,6).*dat2(:,7)));
experience = dat2(:,1)-dat2(:,4)-6;
exp2 = (experience.^2)/100;
x = [dat2(:,4),experience,exp2,ones(length(dat2),1)];
xx = x’*x
xy = x’*y
beta = xx\xy;display(beta);
% Create leverage and influence
e = y-x*beta;
xxi = inv(xx)
leverage = sum((x.*(x*xxi))’)’;
d = leverage.*e./(1-leverage);
influence = max(abs(d));
display(influence);

_____________________________________________________________________________________________

3.26 Exercises

Exercise 3.1 Let Y be a random variable with µ= E [Y ] and σ2 = var[Y ]. Define

g
(
y,µ,σ2)= (

y −µ(
y −µ)2 −σ2

)
.

Let (µ̂, σ̂2) be the values such that g n(µ̂, σ̂2) = 0 where g n(m, s) = n−1 ∑n
i=1 g

(
yi ,m, s

)
. Show that µ̂ and σ̂2

are the sample mean and variance.

Exercise 3.2 Consider the OLS regression of the n ×1 vector Y on the n ×k matrix X . Consider an al-
ternative set of regressors Z = XC , where C is a k ×k non-singular matrix. Thus, each column of Z is a
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mixture of some of the columns of X . Compare the OLS estimates and residuals from the regression of Y
on X to the OLS estimates from the regression of Y on Z .

Exercise 3.3 Using matrix algebra, show X ′ê = 0.

Exercise 3.4 Let ê be the OLS residual from a regression of Y on X = [X 1 X 2]. Find X ′
2ê.

Exercise 3.5 Let ê be the OLS residual from a regression of Y on X . Find the OLS coefficient from a
regression of ê on X .

Exercise 3.6 Let Ŷ = X (X ′X )−1X ′Y . Find the OLS coefficient from a regression of Ŷ on X .

Exercise 3.7 Show that if X = [X 1 X 2] then P X 1 = X 1 and M X 1 = 0.

Exercise 3.8 Show that M is idempotent: M M = M .

Exercise 3.9 Show that tr M = n −k.

Exercise 3.10 Show that if X = [X 1 X 2] and X ′
1X 2 = 0 then P = P 1 +P 2.

Exercise 3.11 Show that when X contains a constant, n−1 ∑n
i=1 Ŷi = Y .

Exercise 3.12 A dummy variable takes on only the values 0 and 1. It is used for categorical variables. Let
D1 and D2 be vectors of 1’s and 0’s, with the i th element of D1 equaling 1 and that of D2 equaling 0 if the
person is a man, and the reverse if the person is a woman. Suppose that there are n1 men and n2 women
in the sample. Consider fitting the following three equations by OLS

Y =µ+D1α1 +D2α2 +e (3.52)

Y = D1α1 +D2α2 +e (3.53)

Y =µ+D1φ+e (3.54)

Can all three equations (3.52), (3.53), and (3.54) be estimated by OLS? Explain if not.

(a) Compare regressions (3.53) and (3.54). Is one more general than the other? Explain the relationship
between the parameters in (3.53) and (3.54).

(b) Compute 1′
nD1 and 1′

nD2, where 1n is an n ×1 vector of ones.

Exercise 3.13 Let D1 and D2 be defined as in the previous exercise.

(a) In the OLS regression
Y = D1γ̂1 +D2γ̂2 + û,

show that γ̂1 is the sample mean of the dependent variable among the men of the sample (Y 1),
and that γ̂2 is the sample mean among the women (Y 2).

(b) Let X (n ×k) be an additional matrix of regressors. Describe in words the transformations

Y ∗ = Y −D1Y 1 −D2Y 2

X ∗ = X −D1X
′
1 −D2X

′
2

where X 1 and X 2 are the k ×1 means of the regressors for men and women, respectively.
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(c) Compare β̃ from the OLS regression
Y ∗ = X ∗β̃+ ẽ

with β̂ from the OLS regression

Y = D1α̂1 +D2α̂2 +X β̂+ ê.

Exercise 3.14 Let β̂n = (
X ′

n X n
)−1 X ′

nY n denote the OLS estimate when Y n is n×1 and X n is n×k. A new
observation (Yn+1, Xn+1) becomes available. Prove that the OLS estimate computed using this additional
observation is

β̂n+1 = β̂n + 1

1+X ′
n+1

(
X ′

n X n
)−1 Xn+1

(
X ′

n X n
)−1 Xn+1

(
Yn+1 −X ′

n+1β̂n
)

.

Exercise 3.15 Prove that R2 is the square of the sample correlation between Y and Ŷ .

Exercise 3.16 Consider two least squares regressions

Y = X 1β̃1 + ẽ

and
Y = X 1β̂1 +X 2β̂2 + ê.

Let R2
1 and R2

2 be the R-squared from the two regressions. Show that R2
2 ≥ R2

1 . Is there a case (explain)
when there is equality R2

2 = R2
1?

Exercise 3.17 For σ̃2 defined in (3.46), show that σ̃2 ≥ σ̂2. Is equality possible?

Exercise 3.18 For which observations will β̂(−i ) = β̂?

Exercise 3.19 For the intercept-only model Yi =β+ei , show that the leave-one-out prediction error is

ẽi =
( n

n −1

)(
Yi −Y

)
.

Exercise 3.20 Define the leave-one-out estimator of σ2,

σ̂2
(−i ) =

1

n −1

∑
j 6=i

(
Y j −X ′

j β̂(−i )

)2
.

This is the estimator obtained from the sample with observation i omitted. Show that

σ̂2
(−i ) =

n

n −1
σ̂2 − ê2

i

(n −1)(1−hi i )
.

Exercise 3.21 Consider the least squares regression estimators

Yi = X1i β̂1 +X2i β̂2 + êi

and the “one regressor at a time” regression estimators

Yi = X1i β̃1 + ẽ1i , Yi = X2i β̃2 + ẽ2i

Under what condition does β̃1 = β̂1 and β̃2 = β̂2?



CHAPTER 3. THE ALGEBRA OF LEAST SQUARES 95

Exercise 3.22 You estimate a least squares regression

Yi = X ′
1i β̃1 + ũi

and then regress the residuals on another set of regressors

ũi = X ′
2i β̃2 + ẽi

Does this second regression give you the same estimated coefficients as from estimation of a least squares
regression on both set of regressors?

Yi = X ′
1i β̂1 +X ′

2i β̂2 + êi

In other words, is it true that β̃2 = β̂2? Explain your reasoning.

Exercise 3.23 The data matrix is (Y , X ) with X = [X 1, X 2] , and consider the transformed regressor matrix
Z = [X 1, X 2 −X 1] . Suppose you do a least squares regression of Y on X , and a least squares regression of
Y on Z . Let σ̂2 and σ̃2 denote the residual variance estimates from the two regressions. Give a formula
relating σ̂2 and σ̃2? (Explain your reasoning.)

Exercise 3.24 Use the cps09mardata set described in Section 3.22 and available on the textbook website.
Take the sub-sample used for equation (3.49) (see Section 3.25) for data construction)

(a) Estimate equation (3.49) and compute the equation R2 and sum of squared errors.

(b) Re-estimate the slope on education using the residual regression approach. Regress log(wage) on
experience and its square, regress education on experience and its square, and the residuals on the
residuals. Report the estimates from this final regression, along with the equation R2 and sum of
squared errors. Does the slope coefficient equal the value in (3.49)? Explain.

(c) Are the R2 and sum-of-squared errors from parts (a) and (b) equal? Explain.

Exercise 3.25 Estimate equation (3.49) as in part (a) of the previous question. Let êi be the OLS resid-
ual, Ŷi the predicted value from the regression, X1i be education and X2i be experience. Numerically
calculate the following:

(a)
∑n

i=1 êi

(b)
∑n

i=1 X1i êi

(c)
∑n

i=1 X2i êi

(d)
∑n

i=1 X 2
1i êi

(e)
∑n

i=1 X 2
2i êi

(f)
∑n

i=1 Ŷi êi

(g)
∑n

i=1 ê2
i

Are these calculations consistent with the theoretical properties of OLS? Explain.

Exercise 3.26 Use the cps09mar data set.
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(a) Estimate a log wage regression for the subsample of white male Hispanics. In addition to educa-
tion, experience, and its square, include a set of binary variables for regions and marital status. For
regions, create dummy variables for Northeast, South and West so that Midwest is the excluded
group. For marital status, create variables for married, widowed or divorced, and separated, so that
single (never married) is the excluded group.

(b) Repeat using a different econometric package. Compare your results. Do they agree?



Chapter 4

Least Squares Regression

4.1 Introduction

In this chapter we investigate some finite-sample properties of the least squares estimator in the
linear regression model. In particular we calculate the finite-sample mean and covariance matrix and
propose standard errors for the coefficient estimators.

4.2 Random Sampling

Assumption 3.1 specified that the observations have identical distributions. To derive the finite-
sample properties of the estimators we will need to additionally specify the dependence structure across
the observations.

The simplest context is when the observations are mutually independent in which case we say that
they are independent and identically distributed or i.i.d. It is also common to describe i.i.d. observa-
tions as a random sample. Traditionally, random sampling has been the default assumption in cross-
section (e.g. survey) contexts. It is quite convenient as i.i.d. sampling leads to straightforward expres-
sions for estimation variance. The assumption seems appropriate (meaning that it should be approx-
imately valid) when samples are small and relatively dispersed. That is, if you randomly sample 1000
people from a large country such as the United States it seems reasonable to model their responses as
mutually independent.

Assumption 4.1 The random variables {(Y1, X1), ..., (Yi , Xi ), ..., (Yn , Xn)} are inde-
pendent and identically distributed.

For most of this chapter we will use Assumption 4.1 to derive properties of the OLS estimator.
Assumption 4.1 means that if you take any two individuals i 6= j in a sample, the values (Yi , Xi ) are in-

dependent of the values (Y j , X j ) yet have the same distribution. Independence means that the decisions
and choices of individual i do not affect the decisions of individual j and conversely.

This assumption may be violated if individuals in the sample are connected in some way, for example
if they are neighbors, members of the same village, classmates at a school, or even firms within a spe-
cific industry. In this case it seems plausible that decisions may be inter-connected and thus mutually
dependent rather than independent. Allowing for such interactions complicates inference and requires
specialized treatment. A currently popular approach which allows for mutual dependence is known as

97
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clustered dependence which assumes that that observations are grouped into “clusters” (for example,
schools). We will discuss clustering in more detail in Section 4.23.

4.3 Sample Mean

We start with the simplest setting of the intercept-only model

Y =µ+e

E [e] = 0.

which is equivalent to the regression model with k = 1 and Xi = 1. In the intercept model µ = E [Y ] is
the expectation of Yi . (See Exercise 2.15.) The least squares estimator µ̂= Y equals the sample mean as
shown in equation (3.8).

We now calculate the expectation and variance of the estimator Y . Since the sample mean is a linear
function of the observations its expectation is simple to calculate

E
[

Y
]
= E

[
1

n

n∑
i=1

Yi

]
= 1

n

n∑
i=1

E [Yi ] =µ.

This shows that the expected value of the least squares estimator (the sample mean) equals the projec-
tion coefficient (the population expectation). An estimator with the property that its expectation equals
the parameter it is estimating is called unbiased.

Definition 4.1 An estimator θ̂ for θ is unbiased if E
[
θ̂
]= θ.

We next calculate the variance of the estimator Y under Assumption 4.1. Making the substitution
Yi =µ+ei we find

Y −µ= 1

n

n∑
i=1

ei .

Then

var
[

Y
]
= E

[(
Y −µ

)2
]

= E
[(

1

n

n∑
i=1

ei

)(
1

n

n∑
j=1

e j

)]

= 1

n2

n∑
i=1

n∑
j=1

E
[
ei e j

]
= 1

n2

n∑
i=1

σ2

= 1

n
σ2.

The second-to-last inequality is because E
[
ei e j

] = σ2 for i = j yet E
[
ei e j

] = 0 for i 6= j due to indepen-
dence.

We have shown that var
[

Y
]
= 1

nσ
2. This is the familiar formula for the variance of the sample mean.
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4.4 Linear Regression Model

We now consider the linear regression model. Throughout this chapter we maintain the following.

Assumption 4.2 Linear Regression Model
The variables (Y , X ) satisfy the linear regression equation

Y = X ′β+e (4.1)

E [e | X ] = 0. (4.2)

The variables have finite second moments

E
[
Y 2]<∞,

E‖X ‖2 <∞,

and an invertible design matrix

Q X X = E[
X X ′]> 0.

We will consider both the general case of heteroskedastic regression where the conditional variance
E
[
e2 | X

]=σ2(X ) is unrestricted, and the specialized case of homoskedastic regression where the condi-
tional variance is constant. In the latter case we add the following assumption.

Assumption 4.3 Homoskedastic Linear Regression Model
In addition to Assumption 4.2

E
[
e2 | X

]=σ2(X ) =σ2 (4.3)

is independent of X .

4.5 Expectation of Least Squares Estimator

In this section we show that the OLS estimator is unbiased in the linear regression model. This cal-
culation can be done using either summation notation or matrix notation. We will use both.

First take summation notation. Observe that under (4.1)-(4.2)

E [Yi | X1, ..., Xn] = E [Yi | Xi ] = X ′
iβ. (4.4)

The first equality states that the conditional expectation of Yi given {X1, ..., Xn} only depends on Xi since
the observations are independent across i . The second equality is the assumption of a linear conditional
expectation.
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Using definition (3.11), the conditioning theorem (Theorem 2.3), the linearity of expectations, (4.4),
and properties of the matrix inverse,

E
[
β̂ | X1, ..., Xn

]= E[(
n∑

i=1
Xi X ′

i

)−1 (
n∑

i=1
Xi Yi

)∣∣∣∣∣ X1, ..., Xn

]

=
(

n∑
i=1

Xi X ′
i

)−1

E

[(
n∑

i=1
Xi Yi

)∣∣∣∣∣ X1, ..., Xn

]

=
(

n∑
i=1

Xi X ′
i

)−1 n∑
i=1

E [Xi Yi | X1, ..., Xn]

=
(

n∑
i=1

Xi X ′
i

)−1 n∑
i=1

XiE [Yi | Xi ]

=
(

n∑
i=1

Xi X ′
i

)−1 n∑
i=1

Xi X ′
iβ

=β.

Now let’s show the same result using matrix notation. (4.4) implies

E [Y | X ] =


...

E [Yi | X ]
...

=


...

X ′
iβ
...

= Xβ. (4.5)

Similarly

E [e | X ] =


...

E [ei | X ]
...

=


...

E [ei | Xi ]
...

= 0.

Using β̂= (
X ′X

)−1 (
X ′Y

)
, the conditioning theorem, the linearity of expectations, (4.5), and the prop-

erties of the matrix inverse,

E
[
β̂ | X

]= E[(
X ′X

)−1 X ′Y | X
]

= (
X ′X

)−1 X ′E [Y | X ]

= (
X ′X

)−1 X ′Xβ
=β.

At the risk of belaboring the derivation, another way to calculate the same result is as follows. Insert
Y = Xβ+e into the formula for β̂ to obtain

β̂= (
X ′X

)−1 (
X ′ (Xβ+e

))
= (

X ′X
)−1 X ′Xβ+ (

X ′X
)−1 (

X ′e
)

=β+ (
X ′X

)−1 X ′e. (4.6)

This is a useful linear decomposition of the estimator β̂ into the true parameter β and the stochastic
component

(
X ′X

)−1 X ′e. Once again, we can calculate that

E
[
β̂−β | X

]= E[(
X ′X

)−1 X ′e | X
]

= (
X ′X

)−1 X ′E [e | X ] = 0.
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Regardless of the method we have shown that E
[
β̂ | X

]=β. We have shown the following theorem.

Theorem 4.1 Expectation of Least Squares Estimator
In the linear regression model (Assumption 4.2) with i.i.d. sampling
(Assumption 4.1)

E
[
β̂ | X

]=β. (4.7)

Equation (4.7) says that the estimator β̂ is unbiased for β, conditional on X . This means that the
conditional distribution of β̂ is centered at β. By “conditional on X ” this means that the distribution is
unbiased (centered at β) for any realization of the regressor matrix X . In conditional models we simply
refer to this as saying “β̂ is unbiased for β”.

It is worth mentioning that Theorem 4.1, and all finite sample results in this chapter, make the im-
plicit assumption that X ′X is full rank with probability one.

4.6 Variance of Least Squares Estimator

In this section we calculate the conditional variance of the OLS estimator.
For any r ×1 random vector Z define the r × r covariance matrix

var[Z ] = E[
(Z −E [Z ]) (Z −E [Z ])′

]= E[
Z Z ′]− (E [Z ]) (E [Z ])′

and for any pair (Z , X ) define the conditional covariance matrix

var[Z | X ] = E[
(Z −E [Z | X ]) (Z −E [Z | X ])′ | X

]
.

We define V β̂

def= var
[
β̂ | X

]
as the conditional covariance matrix of the regression coefficient estimators.

We now derive its form.
The conditional covariance matrix of the n ×1 regression error e is the n ×n matrix

var[e | X ] = E[
ee ′ | X

] def= D .

The i th diagonal element of D is
E
[
e2

i | X
]= E[

e2
i | Xi

]=σ2
i

while the i j th off-diagonal element of D is

E
[
ei e j | X

]= E (ei | Xi )E
[
e j | X j

]= 0

where the first equality uses independence of the observations (Assumption 4.1) and the second is (4.2).
Thus D is a diagonal matrix with i th diagonal element σ2

i :

D = diag
(
σ2

1, ...,σ2
n

)=

σ2

1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...
0 0 · · · σ2

n

 . (4.8)
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In the special case of the linear homoskedastic regression model (4.3), then E
[
e2

i | Xi
] = σ2

i = σ2 and we
have the simplification D = I nσ

2. In general, however, D need not necessarily take this simplified form.
For any n × r matrix A = A(X ),

var
[

A′Y | X
]= var

[
A′e | X

]= A′D A. (4.9)

In particular, we can write β̂= A′Y where A = X
(

X ′X
)−1 and thus

V β̂ = var
[
β̂ | X

]= A′D A = (
X ′X

)−1 X ′D X
(

X ′X
)−1 .

It is useful to note that

X ′D X =
n∑

i=1
Xi X ′

iσ
2
i ,

a weighted version of X ′X .
In the special case of the linear homoskedastic regression model, D = I nσ

2, so X ′D X = X ′Xσ2, and
the covariance matrix simplifies to V β̂ =

(
X ′X

)−1
σ2.

Theorem 4.2 Variance of Least Squares Estimator
In the linear regression model (Assumption 4.2) with i.i.d. sampling (Assump-
tion 4.1)

V β̂ = var
[
β̂ | X

]= (
X ′X

)−1 (
X ′D X

)(
X ′X

)−1 (4.10)

where D is defined in (4.8). If in addition the error is homoskedastic (Assump-
tion 4.3) then (4.10) simplifies to V β̂ =σ2

(
X ′X

)−1.

4.7 Unconditional Moments

The previous sections derived the form of the conditional mean and variance of the least squares
estimator where we conditioned on the regressor matrix X . What about the unconditional mean and
variance?

Indeed, it is not obvious if β̂ has a finite mean or variance. Take the case of a single dummy variable
regressor Di with no intercept. Assume P [Di = 1] = p < 1. Then

β̂=
∑n

i=1 Di Yi∑n
i=1 Di

is well defined if
∑n

i=1 Di > 0. However, P
[∑n

i=1 Di = 0
]= (

1−p
)n > 0. This means that with positive (but

small) probability β̂ does not exist. Consequently β̂ has no finite moments! We ignore this complication
in practice but it does pose a conundrum for theory. This existence problem arises whenever there are
discrete regressors.

This dilemma is avoided when the regressors have continuous distributions. A clean statement was
obtained by Kinal (1980) under the assumption of normal regressors and errors.
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Theorem 4.3 Kinal (1980)
In the linear regression model with i.i.d. sampling, if in addition (X ,e) have a
joint normal distribution then for any r , E

∥∥β̂∥∥r <∞ if and only if r < n −k +1.

This shows that when the errors and regressors are normally distributed that the least squares esti-
mator possesses all moments up to n−k which includes all moments of practical interest. The normality
assumption is not critical for this result. What is key is the assumption that the regressors are continu-
ously distributed.

The law of iterated expectations (Theorem 2.1) combined with Theorems 4.1 and 4.3 allow us to
deduce that the least squares estimator is unconditionally unbiased. Under the normality assumption
Theorem 4.3 allows us to apply the law of iterated expectations, and thus using Theorems 4.1 we deduce
that if n > k

E
[
β̂
]= E[

E
[
β̂ | X

]]=β.

Hence β̂ is unconditionally unbiased as asserted.

Furthermore, if n −k > 1 then E
∥∥β̂∥∥2 <∞ and β̂ has a finite unconditional variance. Using Theorem

2.8 we can calculate explicitly that

var
[
β̂
]= E[

var
[
β̂ | X

]]+var
[
E
[
β̂ | X

]]= E[(
X ′X

)−1 (
X ′D X

)(
X ′X

)−1
]

the second equality since E
[
β̂ | X

]=β has zero variance. In the homoskedastic case this simplifies to

var
[
β̂
]=σ2E

[(
X ′X

)−1
]

.

In both cases the expectation cannot pass through the matrix inverse since this is a nonlinear function.
Thus there is not a simple expression for the unconditional variance, other than stating that is it the
mean of the conditional variance.

4.8 Gauss-Markov Theorem

Consider the class of estimators of β which are linear functions of the vector Y and thus can be
written as β̃ = A′Y where A is an n × k function of X . As noted before, the least squares estimator is
the special case obtained by setting A = X (X ′X )−1. What is the best choice of A? The Gauss-Markov
theorem1 which we now present says that the least squares estimator is the best choice among linear
unbiased estimators when the errors are homoskedastic, in the sense that the least squares estimator
has the smallest variance among all unbiased linear estimators.

To see this, since E [Y | X ] = Xβ then for any linear estimator β̃= A′Y we have

E
[
β̃ | X

]= A′E [Y | X ] = A′Xβ,

so β̃ is unbiased if (and only if) A′X = I k . Furthermore, we saw in (4.9) that

var
[
β̃ | X

]= var
[

A′Y | X
]= A′D A = A′Aσ2

the last equality using the homoskedasticity assumption D = I nσ
2 . The “best” unbiased linear estimator

is obtained by finding the matrix A0 satisfying A′
0X = I k such that A′

0 A0 is minimized in the positive

1Named after the mathematicians Carl Friedrich Gauss and Andrey Markov.
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definite sense, which means that for any other matrix A satisfying A′X = I k then A′A − A′
0 A0 is positive

semi-definite.

Theorem 4.4 Gauss-Markov
In the homoskedastic linear regression model (Assumption 4.3) with i.i.d. sam-
pling (Assumption 4.1), if β̃ is a linear unbiased estimator of β then

var
[
β̃ | X

]≥σ2 (
X ′X

)−1 .

The Gauss-Markov theorem provides a lower bound on the covariance matrix of unbiased linear es-
timators under the assumption of homoskedasticity. It says that no unbiased linear estimator can have
a variance matrix smaller (in the positive definite sense) than σ2

(
X ′X

)−1. Since the variance of the OLS
estimator is exactly equal to this bound this means that the OLS estimator is efficient in the class of
linear unbiased estimators. This gives rise to the description of OLS as BLUE, standing for “best linear
unbiased estimator”. This is an efficiency justification for the least squares estimator. The justification is
limited because the class of models is restricted to homoskedastic regressions and the class of potential
estimators is restricted to linear unbiased estimators. This latter restriction is particularly unsatisfactory
as there is no sensible motivation for focusing on linear estimators.

We complete this section with a proof of the Gauss-Markov theorem.
Let A be any n ×k function of X such that A′X = I k . The estimator A′Y is unbiased for β and has

variance A′Aσ2. Since the least squares estimator is unbiased and has variance
(

X ′X
)−1

σ2, it is sufficient
to show that the difference in the two variance matrices is positive semi-definite, or

C = A′A − (
X ′X

)−1 ≥ 0. (4.11)

Note that X ′C = 0. We calculate that

A′A − (
X ′X

)−1 =
(
C +X

(
X ′X

)−1
)′ (

C +X
(

X ′X
)−1

)
− (

X ′X
)−1

=C ′C +C ′X
(

X ′X
)−1 + (

X ′X
)−1 X ′C

+ (
X ′X

)−1 X ′X
(

X ′X
)−1 − (

X ′X
)−1

=C ′C ≥ 0.

The final inequality states that the matrix C ′C is positive semi-definite which is a property of quadratic
forms (see Appendix A.10). We have shown (4.11) as requred.

4.9 Modern Gauss-Markov Theorem

In this section we establish an improved version of the Gauss-Markov Theorem. What is important
about this result is that it removes the restriction to linear estimators.

Theorem 4.5 Modern Gauss-Markov
In the linear regression model with i.i.d. sampling, if E

[
β̃ | X

]=β and Assump-

tion 4.3 holds then var
[
β̃ | X

]≥σ2
(

X ′X
)−1 .
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The proof of Theorem 4.5 is technically advanced so we leave it to Section 4.26. It is a generalization of
Theorem 11.1 from Introduction to Econometrics for the best unbiased estimation of the mean. Theorem
4.5 is different from both classical Gauss-Markov and Cramér-Rao efficiency results in that it does not
restrict attention to linear estimators (as in the Gauss-Markov Theorem) nor restrict sampling to normal
variables (as in the Cramér-Rao Theorem). Theorem 4.7 dominates both these classical results as the
latter hold as special cases.

The interpretation of Theorem 4.5 is similar to Theorem 4.4. Theorem 4.5 shows that the covariance
matrix σ2

(
X ′X

)−1 is the best possible among all unbiased estimators.

4.10 Generalized Least Squares

Take the linear regression model in matrix format

Y = Xβ+e. (4.12)

Consider a generalized situation where the observation errors are possibly correlated and/or heteroskedas-
tic. Specifically, suppose that

E [e | X ] = 0 (4.13)

var[e | X ] =Ω (4.14)

for some n×n covariance matrixΩ, possibly a function of X . This includes the i.i.d. sampling framework
whereΩ= D as defined in (4.8) but allows for non-diagonal covariance matrices as well. As a covariance
matrix,Ω is necessarily symmetric and positive semi-definite.

Under these assumptions, by arguments similar to the previous sectiond we can calculate the mean
and variance of the OLS estimator:

E
[
β̂ | X

]=β (4.15)

var
[
β̂ | X

]= (
X ′X

)−1 (
X ′ΩX

)(
X ′X

)−1 (4.16)

(see Exercise 4.5).
We have an analog of the Gauss-Markov Theorem.

Theorem 4.6 Generalized Gauss-Markov
In the linear regression model (Assumption 4.2) andΩ> 0, if β̃ is a linear unbi-
ased estimator of β then

var
[
β̃ | X

]≥ (
X ′Ω−1X

)−1
.

We leave the proof for Exercise 4.6.
The theorem provides a lower bound on the covariance matrix of unbiased linear estimators. The

bound is different from the variance matrix of the OLS estimator as stated in (4.16) except when Ω =
I nσ

2. In the i.i.d. sampling case the variance lower bound is
(

X ′D−1X
)−1

sinceΩ= D . The fact that the
variance bound is different (and lower) than the least squares variance suggests that we can improve on
the OLS estimator.

This is indeed the case when Ω is known up to scale. That is, suppose that Ω = c2Σ where c2 > 0 is
real and Σ is n×n and known. Take the linear model (4.12) and pre-multiply by Σ−1/2. This produces the
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equation Ỹ = X̃β+ ẽ where Ỹ = Σ−1/2Y , X̃ = Σ−1/2X , and ẽ = Σ−1/2e. Consider OLS estimation of β in
this equation.

β̃gls =
(

X̃
′
X̃

)−1
X̃

′
Ỹ

=
((
Σ−1/2X

)′ (
Σ−1/2X

))−1 (
Σ−1/2X

)′ (
Σ−1/2Y

)
= (

X ′Σ−1X
)−1

X ′Σ−1Y . (4.17)

This is called the Generalized Least Squares (GLS) estimator of β and was introduced by Aitken (1935).
You can calculate that

E
[
β̃gls | X

]=β (4.18)

var
[
β̃gls | X

]= (
X ′Ω−1X

)−1
. (4.19)

This shows that the GLS estimator is unbiased and has a covariance matrix which equals the lower bound
from Theorem 4.6. This shows that the lower bound is sharp when Σ is known. GLS is thus efficient in
the class of linear unbiased estimators.

In the linear regression model with independent observations and known conditional variances, so
thatΩ=Σ= D = diag

(
σ2

1, ...,σ2
n

)
, the GLS estimator takes the form

β̃gls =
(

X ′D−1X
)−1

X ′D−1Y

=
(

n∑
i=1

σ−2
i Xi X ′

i

)−1 (
n∑

i=1
σ−2

i Xi Yi

)
.

The assumptionΩ> 0 in this case reduces to σ2
i > 0 for i = 1, ...n.

In practice, the covariance matrixΩ is unknown so the GLS estimator as presented here is not feasi-
ble. However, the form of the GLS estimator motivates feasible versions, effectively by replacing Ω with
an estimator. We do not pursue this here as it is not common in current applied econometric practice.

4.11 Modern Generalized Gauss Markov Theorem

In this section we establish a version of the Generalized Gauss-Markov Theorem which does not
require linear estimators.

Theorem 4.7 Modern Generalized Gauss-Markov
In the linear regression model with i.i.d. sampling, if E

[
β̃ | X

] = β then

var
[
β̃ | X

]≥ (
X ′D−1X

)−1
.

The proof of Theorem 4.7 is technically advanced so we leave it to Section 4.26.
The interpretation of Theorem 4.7 is similar to Theorem 4.6 under i.i.d. sampling. Theorem 4.7 shows

that the GLS covariance matrix
(

X ′D−1X
)−1

is the best possible among all unbiased estimators.
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4.12 Residuals

What are some properties of the residuals êi = Yi −X ′
i β̂ and prediction errors ẽi = Yi −X ′

i β̂(−i ) in the
context of the linear regression model?

Recall from (3.24) that we can write the residuals in vector notation as ê = Me where M = I n −
X

(
X ′X

)−1 X ′ is the orthogonal projection matrix. Using the properties of conditional expectation

E [ê | X ] = E [Me | X ] = ME [e | X ] = 0

and
var[ê | X ] = var[Me | X ] = M var[e | X ] M = MD M (4.20)

where D is defined in (4.8).
We can simplify this expression under the assumption of conditional homoskedasticity

E
[
e2 | X

]=σ2.

In this case (4.20) simplifies to
var[ê | X ] = Mσ2. (4.21)

In particular, for a single observation i we can find the variance of êi by taking the i th diagonal element
of (4.21). Since the i th diagonal element of M is 1−hi i as defined in (3.40) we obtain

var[êi | X ] = E[
ê2

i | X
]= (1−hi i )σ2. (4.22)

As this variance is a function of hi i and hence Xi the residuals êi are heteroskedastic even if the errors ei

are homoskedastic. Notice as well that (4.22) implies ê2
i is a biased estimator of σ2.

Similarly, recall from (3.45) that the prediction errors ẽi = (1−hi i )−1 êi can be written in vector nota-
tion as ẽ = M∗ê where M∗ is a diagonal matrix with i th diagonal element (1−hi i )−1 . Thus ẽ = M∗Me.
We can calculate that

E [ẽ | X ] = M∗ME [e | X ] = 0

and
var[ẽ | X ] = M∗M var[e | X ] M M∗ = M∗MD M M∗

which simplifies under homoskedasticity to

var[ẽ | X ] = M∗M M M∗σ2 = M∗M M∗σ2.

The variance of the i th prediction error is then

var[ẽi | X ] = E[
ẽ2

i | X
]

= (1−hi i )−1 (1−hi i ) (1−hi i )−1σ2

= (1−hi i )−1σ2.

A residual with constant conditional variance can be obtained by rescaling. The standardized resid-
uals are

e i = (1−hi i )−1/2 êi , (4.23)

and in vector notation
e = (

e1, ...,en
)′ = M∗1/2Me. (4.24)
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From the above calculations, under homoskedasticity,

var
[
e | X

]= M∗1/2M M∗1/2σ2

and
var

[
e i | X

]= E[
e2

i | X
]=σ2

and thus these standardized residuals have the same bias and variance as the original errors when the
latter are homoskedastic.

4.13 Estimation of Error Variance

The error variance σ2 = E[
e2

]
can be a parameter of interest even in a heteroskedastic regression or

a projection model. σ2 measures the variation in the “unexplained” part of the regression. Its method of
moments estimator (MME) is the sample average of the squared residuals:

σ̂2 = 1

n

n∑
i=1

ê2
i .

In the linear regression model we can calculate the mean of σ̂2. From (3.28) and the properties of the
trace operator observe that

σ̂2 = 1

n
e ′Me = 1

n
tr

(
e ′Me

)= 1

n
tr

(
Mee ′) .

Then

E
[
σ̂2 | X

]= 1

n
tr

(
E
[

Mee ′ | X
])

= 1

n
tr

(
ME

[
ee ′ | X

])
= 1

n
tr(MD) (4.25)

= 1

n

n∑
i=1

(1−hi i )σ2
i .

The final equality holds since the trace is the sum of the diagonal elements of MD , and since D is diago-
nal the diagonal elements of MD are the product of the diagonal elements of M and D which are 1−hi i

and σ2
i , respectively.

Adding the assumption of conditional homoskedasticity E
[
e2 | X

]=σ2 so that D = I nσ
2, then (4.25)

simplifies to

E
[
σ̂2 | X

]= 1

n
tr

(
Mσ2)=σ2

(
n −k

n

)
the final equality by (3.22). This calculation shows that σ̂2 is biased towards zero. The order of the bias
depends on k/n, the ratio of the number of estimated coefficients to the sample size.

Another way to see this is to use (4.22). Note that

E
[
σ̂2 | X

]= 1

n

n∑
i=1

E
[
ê2

i | X
]= 1

n

n∑
i=1

(1−hi i )σ2 =
(

n −k

n

)
σ2

the last equality using Theorem 3.6.
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Since the bias takes a scale form a classic method to obtain an unbiased estimator is by rescaling.
Define

s2 = 1

n −k

n∑
i=1

ê2
i . (4.26)

By the above calculation E
[
s2 | X

] = σ2 and E
[
s2

] = σ2. Hence the estimator s2 is unbiased for σ2. Con-
sequently, s2 is known as the “bias-corrected estimator” for σ2 and in empirical practice s2 is the most
widely used estimator for σ2.

Interestingly, this is not the only method to construct an unbiased estimator for σ2. An estimator
constructed with the standardized residuals e i from (4.23) is

σ2 = 1

n

n∑
i=1

e2
i =

1

n

n∑
i=1

(1−hi i )−1 ê2
i .

You can show (see Exercise 4.9) that
E
[
σ2 | X

]=σ2 (4.27)

and thus σ2 is unbiased for σ2 (in the homoskedastic linear regression model).
When k/n is small the estimators σ̂2, s2 and σ2 are likely to be similar to one another. However, if

k/n is large then s2 and σ2 are generally preferred to σ̂2. Consequently it is best to use one of the bias-
corrected variance estimators in applications.

4.14 Mean-Square Forecast Error

One use of an estimated regression is to predict out-of-sample. Consider an out-of-sample realiza-
tion (Yn+1, Xn+1) where Xn+1 is observed but not Yn+1. Given the coefficient estimator β̂ the standard
point estimator of E [Yn+1 | Xn+1] = X ′

n+1β is Ỹn+1 = X ′
n+1β̂. The forecast error is the difference between

the actual value Yn+1 and the point forecast Ỹn+1. This is the forecast error ẽn+1 = Yn+1−Ỹn+1. The mean-
squared forecast error (MSFE) is its expected squared value MSFEn = E

[
ẽ2

n+1

]
. In the linear regression

model ẽn+1 = en+1 −X ′
n+1

(
β̂−β)

so

MSFEn = E[
e2

n+1

]−2E
[
en+1X ′

n+1

(
β̂−β)]+E[

X ′
n+1

(
β̂−β)(

β̂−β)′
Xn+1

]
. (4.28)

The first term in (4.28) is σ2. The second term in (4.28) is zero since en+1X ′
n+1 is independent of β̂−β

and both are mean zero. Using the properties of the trace operator the third term in (4.28) is

tr
(
E
[

Xn+1X ′
n+1

]
E
[(
β̂−β)(

β̂−β)′])
= tr

(
E
[

Xn+1X ′
n+1

]
E
[
E
[(
β̂−β)(

β̂−β)′ | X
]])

= tr
(
E
[

Xn+1X ′
n+1

]
E
[

V β̂

])
= E

[
tr

((
Xn+1X ′

n+1

)
V β̂

)]
= E

[
X ′

n+1V β̂Xn+1

]
(4.29)

where we use the fact that Xn+1 is independent of β̂, the definition V β̂ = E
[(
β̂−β)(

β̂−β)′ | X
]

, and the

fact that Xn+1 is independent of V β̂. Thus

MSFEn =σ2 +E
[

X ′
n+1V β̂Xn+1

]
.
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Under conditional homoskedasticity this simplifies to

MSFEn =σ2
(
1+E

[
X ′

n+1

(
X ′X

)−1 Xn+1

])
.

A simple estimator for the MSFE is obtained by averaging the squared prediction errors (3.46)

σ̃2 = 1

n

n∑
i=1

ẽ2
i

where ẽi = Yi −X ′
i β̂(−i ) = êi (1−hi i )−1. Indeed, we can calculate that

E
[
σ̃2]= E[

ẽ2
i

]
= E

[(
ei −X ′

i

(
β̂(−i ) −β

))2
]

=σ2 +E
[

X ′
i

(
β̂(−i ) −β

)(
β̂(−i ) −β

)′
Xi

]
.

By a similar calculation as in (4.29) we find

E
[
σ̃2]=σ2 +E

[
X ′

i V β̂(−i )
Xi

]
= MSFEn−1.

This is the MSFE based on a sample of size n − 1 rather than size n. The difference arises because the
in-sample prediction errors ẽi for i ≤ n are calculated using an effective sample size of n −1, while the
out-of sample prediction error ẽn+1 is calculated from a sample with the full n observations. Unless n is
very small we should expect MSFEn−1 (the MSFE based on n−1 observations) to be close to MSFEn (the
MSFE based on n observations). Thus σ̃2 is a reasonable estimator for MSFEn .

Theorem 4.8 MSFE
In the linear regression model (Assumption 4.2) and i.i.d. sampling (Assump-
tion 4.1)

MSFEn = E[
ẽ2

n+1

]=σ2 +E
[

X ′
n+1V β̂Xn+1

]
where V β̂ = var

[
β̂ | X

]
. Furthermore, σ̃2 defined in (3.46) is an unbiased esti-

mator of MSFEn−1, since E
[
σ̃2

]= MSFEn−1.

4.15 Covariance Matrix Estimation Under Homoskedasticity

For inference we need an estimator of the covariance matrix V β̂ of the least squares estimator. In this
section we consider the homoskedastic regression model (Assumption 4.3).

Under homoskedasticity the covariance matrix takes the simple form

V 0
β̂
= (

X ′X
)−1

σ2

which is known up to the scale σ2. In Section 4.13 we discussed three estimators of σ2. The most com-
monly used choice is s2 leading to the classic covariance matrix estimator

V̂
0
β̂ =

(
X ′X

)−1 s2. (4.30)
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Since s2 is conditionally unbiased forσ2 it is simple to calculate that V̂
0
β̂ is conditionally unbiased for

V β̂ under the assumption of homoskedasticity:

E
[

V̂
0
β̂ | X

]
= (

X ′X
)−1

E
[
s2 | X

]= (
X ′X

)−1
σ2 =V β̂.

This was the dominant covariance matrix estimator in applied econometrics for many years and
is still the default method in most regression packages. For example, Stata uses the covariance matrix
estimator (4.30) by default in linear regression unless an alternative is specified.

If the estimator (4.30) is used but the regression error is heteroskedastic it is possible for V̂
0
β̂ to be

quite biased for the correct covariance matrix V β̂ = (
X ′X

)−1 (
X ′D X

)(
X ′X

)−1 . For example, suppose

k = 1 and σ2
i = X 2

i with E [X ] = 0. The ratio of the true variance of the least squares estimator to the
expectation of the variance estimator is

V β̂

E
[

V̂
0
β̂ | X

] =
∑n

i=1 X 4
i

σ2 ∑n
i=1 X 2

i

' E
[

X 4
](

E
[

X 2
])2

def= κ.

(Notice that we use the fact thatσ2
i = X 2

i impliesσ2 = E[
σ2

i

]= E[
X 2

]
.) The constant κ is the standardized

fourth moment (or kurtosis) of the regressor X and can be any number greater than one. For example, if
X ∼ N

(
0,σ2

)
then κ = 3, so the true variance V β̂ is three times larger than the expected homoskedastic

estimator V̂
0
β̂. But κ can be much larger. Take, for example, the variable wage in the CPS data set. It

satisfies κ = 30 so that if the conditional variance equals σ2
i = X 2

i then the true variance V β̂ is 30 times

larger than the expected homoskedastic estimator V̂
0
β̂. While this is an extreme case the point is that the

classic covariance matrix estimator (4.30) may be quite biased when the homoskedasticity assumption
fails.

4.16 Covariance Matrix Estimation Under Heteroskedasticity

In the previous section we showed that that the classic covariance matrix estimator can be highly
biased if homoskedasticity fails. In this section we show how to construct covariance matrix estimators
which do not require homoskedasticity.

Recall that the general form for the covariance matrix is

V β̂ =
(

X ′X
)−1 (

X ′D X
)(

X ′X
)−1 .

with D defined in (4.8). This depends on the unknown matrix D which we can write as

D = diag
(
σ2

1, ...,σ2
n

)= E[
ee ′ | X

]= E[
D̃ | X

]
where D̃ = diag

(
e2

1, ...,e2
n

)
. Thus D̃ is a conditionally unbiased estimator for D . If the squared errors e2

i
were observable, we could construct an unbiased estimator for V β̂ as

V̂
ideal
β̂ = (

X ′X
)−1 (

X ′D̃ X
)(

X ′X
)−1

= (
X ′X

)−1

(
n∑

i=1
Xi X ′

i e2
i

)(
X ′X

)−1 .



CHAPTER 4. LEAST SQUARES REGRESSION 112

Indeed,

E
[

V̂
ideal
β̂ | X

]
= (

X ′X
)−1

(
n∑

i=1
Xi X ′

iE
[
e2

i | X
])(

X ′X
)−1

= (
X ′X

)−1

(
n∑

i=1
Xi X ′

iσ
2
i

)(
X ′X

)−1

= (
X ′X

)−1 (
X ′D X

)(
X ′X

)−1 =V β̂

verifying that V̂
ideal
β̂ is unbiased for V β̂.

Since the errors e2
i are unobserved V̂

ideal
β̂ is not a feasible estimator. However, we can replace e2

i with

the squared residuals ê2
i . Making this substitution we obtain the estimator

V̂
HC0
β̂ = (

X ′X
)−1

(
n∑

i=1
Xi X ′

i ê2
i

)(
X ′X

)−1 . (4.31)

The label “HC” refers to “heteroskedasticity-consistent”. The label “HC0” refers to this being the baseline
heteroskedasticity-consistent covariance matrix estimator.

We know, however, that ê2
i is biased towards zero (recall equation (4.22)). To estimate the varianceσ2

the unbiased estimator s2 scales the moment estimator σ̂2 by n/(n −k) . Making the same adjustment
we obtain the estimator

V̂
HC1
β̂ =

( n

n −k

)(
X ′X

)−1

(
n∑

i=1
Xi X ′

i ê2
i

)(
X ′X

)−1 . (4.32)

While the scaling by n/(n −k) is ad hoc, HC1 is often recommended over the unscaled HC0 estimator.
Alternatively, we could use the standardized residuals e i or the prediction errors ẽi , yielding the

“HC2” and “HC3” estimators

V̂
HC2
β̂ = (

X ′X
)−1

(
n∑

i=1
Xi X ′

i e2
i

)(
X ′X

)−1

= (
X ′X

)−1

(
n∑

i=1
(1−hi i )−1 Xi X ′

i ê2
i

)(
X ′X

)−1 (4.33)

and

V̂
HC3
β̂ = (

X ′X
)−1

(
n∑

i=1
Xi X ′

i ẽ2
i

)(
X ′X

)−1

= (
X ′X

)−1

(
n∑

i=1
(1−hi i )−2 Xi X ′

i ê2
i

)(
X ′X

)−1 . (4.34)

The four estimators HC0, HC1, HC2 and HC3 are collectively called robust, heteroskedasticity-
consistent, or heteroskedasticity-robust covariance matrix estimators. The HC0 estimator was first
developed by Eicker (1963) and introduced to econometrics by White (1980) and is sometimes called
the Eicker-White or White covariance matrix estimator. The degree-of-freedom adjustment in HC1 was
recommended by Hinkley (1977) and is the default robust covariance matrix estimator implemented in
Stata. It is implement by the “, r” option. In current applied econometric practice this is the most pop-
ular covariance matrix estimator. The HC2 estimator was introduced by Horn, Horn and Duncan (1975)
and is implemented using the vce(hc2) option in Stata. The HC3 estimator was derived by MacKinnon
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and White (1985) from the jackknife principle (see Section 10.3), and by Andrews (1991a) based on the
principle of leave-one-out cross-validation, and is implemented using the vce(hc3) option in Stata.

Since (1−hi i )−2 > (1−hi i )−1 > 1 it is straightforward to show that

V̂
HC0
β̂ < V̂

HC2
β̂ < V̂

HC3
β̂ . (4.35)

(See Exercise 4.10.) The inequality A < B when applied to matrices means that the matrix B−A is positive
definite.

In general, the bias of the covariance matrix estimators is complicated but simplify under the as-
sumption of homoskedasticity (4.3). For example, using (4.22),

E
[

V̂
HC0
β̂ | X

]
= (

X ′X
)−1

(
n∑

i=1
Xi X ′

iE
[
ê2

i | X
])(

X ′X
)−1

= (
X ′X

)−1

(
n∑

i=1
Xi X ′

i (1−hi i )σ2

)(
X ′X

)−1

= (
X ′X

)−1
σ2 − (

X ′X
)−1

(
n∑

i=1
Xi X ′

i hi i

)(
X ′X

)−1
σ2

< (
X ′X

)−1
σ2 =V β̂.

This calculation shows that V̂
HC0
β̂ is biased towards zero.

By a similar calculation (again under homoskedasticity) we can calculate that the HC2 estimator is
unbiased

E
[

V̂
HC2
β̂ | X

]
= (

X ′X
)−1

σ2. (4.36)

(See Exercise 4.11.)
It might seem rather odd to compare the bias of heteroskedasticity-robust estimators under the as-

sumption of homoskedasticity but it does give us a baseline for comparison.
Another interesting calculation shows that in general (that is, without assuming homoskedasticity)

the HC3 estimator is biased away from zero. Indeed, using the definition of the prediction errors (3.44)

ẽi = Yi −X ′
i β̂(−i ) = ei −X ′

i

(
β̂(−i ) −β

)
so

ẽ2
i = e2

i −2X ′
i

(
β̂(−i ) −β

)
ei +

(
X ′

i

(
β̂(−i ) −β

))2
.

Note that ei and β̂(−i ) are functions of non-overlapping observations and are thus independent. Hence
E
[(
β̂(−i ) −β

)
ei | X

]= 0 and

E
[
ẽ2

i | X
]= E[

e2
i | X

]−2X ′
iE

[(
β̂(−i ) −β

)
ei | X

]+E[(
X ′

i

(
β̂(−i ) −β

))2 | X
]

=σ2
i +E

[(
X ′

i

(
β̂(−i ) −β

))2 | X
]

≥σ2
i .

It follows that

E
[

V̂
HC3
β̂ | X

]
= (

X ′X
)−1

(
n∑

i=1
Xi X ′

iE
[
ẽ2

i | X
])(

X ′X
)−1

≥ (
X ′X

)−1

(
n∑

i=1
Xi X ′

iσ
2
i

)(
X ′X

)−1 =V β̂.
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This means that the HC3 estimator is conservative in the sense that it is weakly larger (in expectation)
than the correct variance for any realization of X .

We have introduced five covariance matrix estimators, including the homoskedastic estimator V̂
0
β̂

and the four HC estimators. Which should you use? The classic estimator V̂
0
β̂ is typically a poor choice

as it is only valid under the unlikely homoskedasticity restriction. For this reason it is not typically used
in contemporary econometric research. Unfortunately, standard regression packages set their default

choice as V̂
0
β̂ so users must intentionally select a robust covariance matrix estimator.

Of the four robust estimators HC1 is the most commonly used as it is the default robust covariance
matrix option in Stata. However, HC2 and HC3 are preferred. HC2 is unbiased (under homoskedasticity)
and HC3 is conservative for any X . In most applications HC1, HC2 and HC3 will be similar so this choice
will not matter. The context where the estimators can differ substantially is when the sample has a large
leverage value hi i for at least one observation. You can see this by comparing the formulas (4.32), (4.33)
and (4.34) and noting that the only difference is the scaling by the leverage values hi i . If there is an
observation with hi i close to one, then (1−hi i )−1 and (1−hi i )−2 will be large, giving this observation
much greater weight in the covariance matrix formula.

Halbert L. White

Hal White (1950-2012) of the United States was an influential econometrician of
recent years. His 1980 paper on heteroskedasticity-consistent covariance matrix
estimation is one of the most cited papers in economics. His research was cen-
tral to the movement to view econometric models as approximations, and to the
drive for increased mathematical rigor in the discipline. In addition to being a
highly prolific and influential scholar, he also co-founded the economic consult-
ing firm Bates White.

4.17 Standard Errors

A variance estimator such as V̂ β̂ is an estimator of the variance of the distribution of β̂. A more
easily interpretable measure of spread is its square root – the standard deviation. This is so important
when discussing the distribution of parameter estimators we have a special name for estimates of their
standard deviation.

Definition 4.2 A standard error s(β̂) for a real-valued estimator β̂ is an esti-
mator of the standard deviation of the distribution of β̂.

When β is a vector with estimator β̂ and covariance matrix estimator V̂ β̂, standard errors for individ-

ual elements are the square roots of the diagonal elements of V̂ β̂. That is,

s(β̂ j ) =
√

V̂ β̂ j
=

√[
V̂ β̂

]
j j

.
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When the classical covariance matrix estimator (4.30) is used the standard error takes the simple form

s(β̂ j ) = s

√[(
X ′X

)−1
]

j j
. (4.37)

As we discussed in the previous section there are multiple possible covariance matrix estimators so
standard errors are not unique. It is therefore important to understand what formula and method is used
by an author when studying their work. It is also important to understand that a particular standard error
may be relevant under one set of model assumptions but not under another set of assumptions.

To illustrate, we return to the log wage regression (3.12) of Section 3.7. We calculate that s2 = 0.160.
Therefore the homoskedastic covariance matrix estimate is

V̂
0
β̂ =

(
5010 314
314 20

)−1

0.160 =
(

0.002 −0.031
−0.031 0.499

)
.

We also calculate that
n∑

i=1
(1−hi i )−1 Xi X ′

i ê2
i =

(
763.26 48.513
48.513 3.1078

)
.

Therefore the HC2 covariance matrix estimate is

V̂
HC2
β̂ =

(
5010 314
314 20

)−1 (
763.26 48.513
48.513 3.1078

)(
5010 314
314 20

)−1

=
(

0.001 −0.015
−0.015 0.243

)
. (4.38)

The standard errors are the square roots of the diagonal elements of these matrices. A conventional
format to write the estimated equation with standard errors is

álog(wage) = 0.155
(0.031)

education+ 0.698
(0.493)

. (4.39)

Alternatively, standard errors could be calculated using the other formulae. We report the different
standard errors in the following table.

Table 4.1: Standard Errors

Education Intercept
Homoskedastic (4.30) 0.045 0.707
HC0 (4.31) 0.029 0.461
HC1 (4.32) 0.030 0.486
HC2 (4.33) 0.031 0.493
HC3 (4.34) 0.033 0.527

The homoskedastic standard errors are noticeably different (larger in this case) than the others. The
robust standard errors are reasonably close to one another though the HC3 standard errors are larger
than the others.
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4.18 Estimation with Sparse Dummy Variables

The heteroskedasticity-robust covariance matrix estimators can be quite imprecise in some contexts.
One is in the presence of sparse dummy variables – when a dummy variable only takes the value 1 or 0
for very few observations. In these contexts one component of the covariance matrix is estimated on just
those few observations and will be imprecise. This is effectively hidden from the user.

To see the problem, let D be a dummy variable (takes on the values 1 and 0) and consider the dummy
variable regression

Y =β1D +β2 +e. (4.40)

The number of observations for which Di = 1 is n1 = ∑n
i=1 Di . The number of observations for which

Di = 0 is n2 = n −n1. We say the design is sparse if n1 or n2 is small.
To simplify our analysis, we take the extreme case n1 = 1. The ideas extend to the case of n1 > 1 but

small, though with less dramatic effects.
In the regression model (4.40) we can calculate that the true covariance matrix of the least squares

estimator for the coefficients under the simplifying assumption of conditional homoskedasticity is

V β̂ =σ2 (
X ′X

)−1 =σ2
(

1 1
1 n

)−1

= σ2

n −1

(
n −1
−1 1

)
.

In particular, the variance of the estimator for the coefficient on the dummy variable is

Vβ̂1
=σ2 n

n −1
.

Essentially, the coefficient β1 is estimated from a single observation so its variance is roughly unaffected
by sample size. An important message is that certain coefficient estimators in the presence of sparse
dummy variables will be imprecise, regardless of the sample size. A large sample alone is not sufficient
to ensure precise estimation.

Now let’s examine the standard HC1 covariance matrix estimator (4.32). The regression has perfect
fit for the observation for which Di = 1 so the corresponding residual is êi = 0. It follows that Di êi = 0 for
all i (either Di = 0 or êi = 0). Hence

n∑
i=1

Xi X ′
i ê2

i =
(

0 0
0

∑n
i=1 ê2

i

)
=

(
0 0
0 (n −2)s2

)

where s2 = (n −2)−1 ∑n
i=1 ê2

i is the bias-corrected estimator of σ2. Together we find that

V̂
HC1
β̂ =

( n

n −2

) 1

(n −1)2

(
n −1
−1 1

)(
0 0
0 (n −2)s2

)(
n −1
−1 1

)
= s2 n

(n −1)2

(
1 −1
−1 1

)
.

In particular, the estimator for Vβ̂1
is

V̂ HC1
β̂1

= s2 n

(n −1)2 .

It has expectation

E
[

V̂ HC1
β̂1

]
=σ2 n

(n −1)2 =
Vβ̂1

n −1
<<Vβ̂1

.
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The variance estimator V̂ HC1
β̂1

is extremely biased for Vβ̂1
. It is too small by a multiple of n! The reported

variance – and standard error – is misleadingly small. The variance estimate erroneously mis-states the
precision of β̂1.

The fact that V̂ HC1
β̂1

is biased is unlikely to be noticed by an applied researcher. Nothing in the reported

output will alert a researcher to the problem.
Another way to see the issue is to consider the estimator θ̂ = β̂1 + β̂2 for the sum of the coefficients

θ =β1 +β2. This estimator has true variance σ2. The variance estimator, however is V̂
HC1
θ̂ = 0! (It equals

the sum of the four elements in V̂
HC1
β̂ ). Clearly, the estimator “0” is biased for the true value σ2.

Another insight is to examine the leverage values. The (single) observation with Di = 1 has

hi i = 1

n −1

(
1 1

)( n −1
−1 1

)(
1
1

)
= 1.

This is an extreme leverage value.
A possible solution is to replace the biased covariance matrix estimator V̂ HC1

β̂1
with the unbiased esti-

mator V̂ HC2
β̂1

(unbiased under homoskedasticity) or the conservative estimator V̂ HC3
β̂1

. Neither approach

can be done in the extreme sparse case n1 = 1 (for V̂ HC2
β̂1

and V̂ HC3
β̂1

cannot be calculated if hi i = 1 for

any observation) but applies otherwise. When hi i = 1 for an observation then V̂ HC2
β̂1

and V̂ HC3
β̂1

cannot be

calculated. In this case unbiased covariance matrix estimation appears to be impossible.
It is unclear if there is a best practice to avoid this situation. Once possibility is to calculate the

maximum leverage value. If it is very large calculate the standard errors using several methods to see if
variation occurs.

4.19 Computation

We illustrate methods to compute standard errors for equation (3.13) extending the code of Section
3.25.

Stata do File (continued)

* Homoskedastic formula (4.30):
reg wage education experience exp2 if (mnwf == 1)
* HC1 formula (4.32):
reg wage education experience exp2 if (mnwf == 1), r
* HC2 formula (4.33):
reg wage education experience exp2 if (mnwf == 1), vce(hc2)
* HC3 formula (4.34):
reg wage education experience exp2 if (mnwf == 1), vce(hc3)
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R Program File (continued)

n <- nrow(y)
k <- ncol(x)
a <- n/(n-k)
sig2 <- (t(e) %*% e)/(n-k)
u1 <- x*(e%*%matrix(1,1,k))
u2 <- x*((e/sqrt(1-leverage))%*%matrix(1,1,k))
u3 <- x*((e/(1-leverage))%*%matrix(1,1,k))
xx <- solve(t(x)%*%x)
v0 <- xx*sig2
v1 <- xx %*% (t(u1)%*%u1) %*% xx
v1a <- a * xx %*% (t(u1)%*%u1) %*% xx
v2 <- xx %*% (t(u2)%*%u2) %*% xx
v3 <- xx %*% (t(u3)%*%u3) %*% xx
s0 <- sqrt(diag(v0)) # Homoskedastic formula
s1 <- sqrt(diag(v1)) # HC0
s1a <- sqrt(diag(v1a)) # HC1
s2 <- sqrt(diag(v2)) # HC2
s3 <- sqrt(diag(v3)) # HC3

MATLAB Program File (continued)

[n,k]=size(x);
a=n/(n-k);
sig2=(e’*e)/(n-k);
u1=x.*(e*ones(1,k));u2=x.*((e./sqrt(1-leverage))*ones(1,k));u3=x.*((e./(1-
leverage))*ones(1,k));xx=inv(x’*x);
v0=xx*sig2;
v1=xx*(u1’*u1)*xx;
v1a=a*xx*(u1’*u1)*xx;
v2=xx*(u2’*u2)*xx;
v3=xx*(u3’*u3)*xx;
s0=sqrt(diag(v0)); # Homoskedastic formula
s1=sqrt(diag(v1)); # HC0 formula
s1a=sqrt(diag(v1a)); # HC1 formula
s2=sqrt(diag(v2)); # HC2 formula
s3=sqrt(diag(v3)); # HC3 formula
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4.20 Measures of Fit

As we described in the previous chapter a commonly reported measure of regression fit is the regres-
sion R2 defined as

R2 = 1−
∑n

i=1 ê2
i∑n

i=1

(
Yi −Y

)2 = 1− σ̂2

σ̂2
Y

.

where σ̂2
Y = n−1 ∑n

i=1

(
Yi −Y

)2
. R2 is an estimator of the population parameter

ρ2 = var
[

X ′β
]

var[Y ]
= 1− σ2

σ2
Y

.

However, σ̂2 and σ̂2
Y are biased. Theil (1961) proposed replacing these by the unbiased versions s2

and σ̃2
Y = (n −1)−1 ∑n

i=1

(
Yi −Y

)2
yielding what is known as R-bar-squared or adjusted R-squared:

R
2 = 1− s2

σ̃2
Y

= 1− (n −1)−1 ∑n
i=1 ê2

i

(n −k)−1 ∑n
i=1

(
Yi −Y

)2 .

While R
2

is an improvement on R2 a much better improvement is

R̃2 = 1−
∑n

i=1 ẽ2
i∑n

i=1

(
Yi −Y

)2 = 1− σ̃2

σ̂2
Y

where ẽi are the prediction errors (3.44) and σ̃2 is the MSPE from (3.46). As described in Section (4.14)
σ̃2 is a good estimator of the out-of-sample mean-squared forecast error so R̃2 is a good estimator of the
percentage of the forecast variance which is explained by the regression forecast. In this sense R̃2 is a
good measure of fit.

One problem with R2 which is partially corrected by R
2

and fully corrected by R̃2 is that R2 necessarily
increases when regressors are added to a regression model. This occurs because R2 is a negative function

of the sum of squared residuals which cannot increase when a regressor is added. In contrast, R
2

and
R̃2 are non-monotonic in the number of regressors. R̃2 can even be negative, which occurs when an
estimated model predicts worse than a constant-only model.

In the statistical literature the MSPE σ̃2 is known as the leave-one-out cross validation criterion
and is popular for model comparison and selection, especially in high-dimensional and non-parametric
contexts. It is equivalent to use R̃2 or σ̃2 to compare and select models. Models with high R̃2 (or low σ̃2)
are better models in terms of expected out of sample squared error. In contrast, R2 cannot be used for

model selection as it necessarily increases when regressors are added to a regression model. R
2

is also an
inappropriate choice for model selection (it tends to select models with too many parameters) though

a justification of this assertion requires a study of the theory of model selection. Unfortunately, R
2

is
routinely used by some economists, possibly as a hold-over from previous generations.

In summary, it is recommended to omit R2 and R
2

. If a measure of fit is desired, report R̃2 or σ̃2.

Henri Theil

Henri Theil (1924-2000) of the Netherlands invented R
2

and two-stage least
squares, both of which are routinely seen in applied econometrics. He also wrote
an early influential advanced textbook on econometrics (Theil, 1971).
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4.21 Empirical Example

We again return to our wage equation but use a much larger sample of all individuals with at least 12
years of education. For regressors we include years of education, potential work experience, experience
squared, and dummy variable indicators for the following: female, female union member, male union
member, married female2, married male, formerly married female3, formerly married male, Hispanic,
Black, American Indian, Asian, and mixed race4 . The available sample is 46,943 so the parameter esti-
mates are quite precise and reported in Table 4.2. For standard errors we use the unbiased HC2 formula.

Table 4.2 displays the parameter estimates in a standard tabular format. Parameter estimates and
standard errors are reported for all coefficients. In addition to the coefficient estimates the table also
reports the estimated error standard deviation and the sample size. These are useful summary measures
of fit which aid readers.

Table 4.2: OLS Estimates of Linear Equation for log(wage)

β̂ s(β̂)
Education 0.117 0.001
Experience 0.033 0.001
Experience2/100 -0.056 0.002
Female -0.098 0.011
Female Union Member 0.023 0.020
Male Union Member 0.095 0.020
Married Female 0.016 0.010
Married Male 0.211 0.010
Formerly Married Female -0.006 0.012
Formerly Married Male 0.083 0.015
Hispanic -0.108 0.008
Black -0.096 0.008
American Indian -0.137 0.027
Asian -0.038 0.013
Mixed Race -0.041 0.021
Intercept 0.909 0.021
σ̂ 0.565
Sample Size 46,943

Standard errors are heteroskedasticity-consistent (Horn-Horn-Duncan formula).

As a general rule it is advisable to always report standard errors along with parameter estimates. This
allows readers to assess the precision of the parameter estimates, and as we will discuss in later chapters,
form confidence intervals and t-tests for individual coefficients if desired.

The results in Table 4.2 confirm our earlier findings that the return to a year of education is approxi-
mately 12%, the return to experience is concave, single women earn approximately 10% less then single
men, and Blacks earn about 10% less than whites. In addition, we see that Hispanics earn about 11% less
than whites, American Indians 14% less, and Asians and Mixed races about 4% less. We also see there

2Defining “married” as marital code 1, 2, or 3.
3Defining “formerly married” as marital code 4, 5, or 6.
4Race code 6 or higher.
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are wage premiums for men who are members of a labor union (about 10%), married (about 21%) or
formerly married (about 8%), but no similar premiums are apparent for women.

4.22 Multicollinearity

As discussed in Section 3.24, if X ′X is singular then
(

X ′X
)−1 and β̂ are not defined. This situation

is called strict multicollinearity as the columns of X are linearly dependent, i.e., there is some α 6= 0
such that Xα= 0. Most commonly this arises when sets of regressors are included which are identically
related. In Section 3.24 we discussed possible causes of strict multicollinearity and discussed the related
problem of ill-conditioning which can cause numerical inaccuracies in severe cases.

A related common situation is near multicollinearity which is often called “multicollinearity” for
brevity. This is the situation when the regressors are highly correlated. An implication of near multi-
collinearity is that individual coefficient estimates will be imprecise. This is not necessarily a problem
for econometric analysis if the reported standard errors are accurate. However, robust standard errors
can be sensitive to large leverage values which can occur under near multicollinearity. This leads to the
undesirable situation where the coefficient estimates are imprecise yet the standard errors are mislead-
ingly small.

We can see the impact of near multicollinearity on precision in a simple homoskedastic linear regres-
sion model with two regressors

Y = X1β1 +X2β2 +e,

and
1

n
X ′X =

(
1 ρ

ρ 1

)
.

In this case

var
[
β̂ | X

]= σ2

n

(
1 ρ

ρ 1

)−1

= σ2

n
(
1−ρ2

) (
1 −ρ
−ρ 1

)
.

The correlation ρ indexes collinearity since as ρ approaches 1 the matrix becomes singular. We can see
the effect of collinearity on precision by observing that the variance of a coefficient estimateσ2

[
n

(
1−ρ2

)]−1

approaches infinity as ρ approaches 1. Thus the more “collinear” are the regressors the worse the preci-
sion of the individual coefficient estimates.

Arthur S. Goldberger

Art Goldberger (1930-2009) was one of the most distinguished members of the
Department of Economics at the University of Wisconsin. His Ph.D. thesis devel-
oped a pioneering macroeconometric forecasting model (the Klein-Goldberger
model). Most of his remaining career focused on microeconometric issues. He
was the leading pioneer of what has been called the Wisconsin Tradition of em-
pirical work – a combination of formal econometric theory with a careful critical
analysis of empirical work. Goldberger wrote a series of highly regarded and in-
fluential graduate econometric textbooks, including Econometric Theory (1964),
Topics in Regression Analysis (1968), and A Course in Econometrics (1991).
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What is happening is that when the regressors are highly dependent it is statistically difficult to dis-
entangle the impact of β1 from that of β2. As a consequence the precision of individual estimates are
reduced.

Many early-generation textbooks overemphasized multicollinearity. An amusing parody of these
texts appeared in Chapter 23.3 of Goldberger’s A Course in Econometrics (1991), part of which is reprinted
below. To understand his basic point you should notice how the estimation varianceσ2

[
n

(
1−ρ2

)]−1
de-

pends equally and symmetrically on the correlation ρ and the sample size n. Goldberger was pointing
out that the only statistical implication of multicollinearity in the homoskedastic model is a lack of preci-
sion. Small sample sizes have the exact same implication. (What both Goldberger and these other early
texts missed, however, is that multicollinearity increases the bias of robust standard errors as discussed
in Section 4.18.)

Micronumerosity by Arthur S. Goldberger
A Course in Econometrics (1991), Chapter 23.3

Econometrics texts devote many pages to the problem of multicollinearity in multiple regression,
but they say little about the closely analogous problem of small sample size in estimating a univari-
ate mean. Perhaps that imbalance is attributable to the lack of an exotic polysyllabic name for “small
sample size.” If so, we can remove that impediment by introducing the term micronumerosity.

1. Micronumerosity

The extreme case, “exact micronumerosity,” arises when n = 0, in which case the sample estimate
of µ is not unique. (Technically, there is a violation of the rank condition n > 0 : the matrix 0
is singular.) The extreme case is easy enough to recognize. “Near micronumerosity” is more
subtle, and yet very serious. It arises when the rank condition n > 0 is barely satisfied. Near
micronumerosity is very prevalent in empirical economics.

2. Consequences of micronumerosity

The consequences of micronumerosity are serious. Precision of estimation is reduced. There are
two aspects of this reduction: estimates of µ may have large errors, and not only that, but Vȳ will
be large.

Investigators will sometimes be led to accept the hypothesis µ = 0 because ȳ/σ̂ȳ is small, even
though the true situation may be not that µ= 0 but simply that the sample data have not enabled
us to pick µ up.

3. Testing for micronumerosity

Tests for the presence of micronumerosity require the judicious use of various fingers. Some
researchers prefer a single finger, others use their toes, still others let their thumbs rule.

A generally reliable guide may be obtained by counting the number of observations. Most of the
time in econometric analysis, when n is close to zero, it is also far from infinity.

4. Remedies for micronumerosity

If micronumerosity proves serious in the sense that the estimate of µ has an unsatisfactorily low
degree of precision, we are in the statistical position of not being able to make bricks without
straw.
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4.23 Clustered Sampling

In Section 4.2 we briefly mentioned clustered sampling as an alternative to the assumption of ran-
dom sampling. We now introduce the framework in more detail and extend the primary results of this
chapter to encompass clustered dependence.

It might be easiest to understand the idea of clusters by considering a concrete example. Duflo,
Dupas and Kremer (2011) investigate the impact of tracking (assigning students based on initial test
score) on educational attainment in a randomized experiment. An extract of their data set is available
on the textbook webpage in the file DDK2011.

In 2005, 140 primary schools in Kenya received funding to hire an extra first grade teacher to reduce
class sizes. In half of the schools (selected randomly) students were assigned to classrooms based on
an initial test score (“tracking”); in the remaining schools the students were randomly assigned to class-
rooms. For their analysis the authors restricted attention to the 121 schools which initially had a single
first-grade class.

The key regression5 in the paper is

TestScorei g =−0.071+0.138Trackingg +ei g (4.41)

where TestScorei g is the standardized test score (normalized to have mean 0 and variance 1) of student i
in school g , and Trackingg is a dummy equal to 1 if school g was tracking. The OLS estimates indicate
that schools which tracked the students had an overall increase in test scores by about 0.14 standard
deviations, which is meaningful. More general versions of this regression are estimated, many of which
take the form

TestScorei g =α+γTrackingg +X ′
i gβ+ei g (4.42)

where Xi g is a set of controls specific to the student (including age, gender, and initial test score).
A difficulty with applying the classical regression framework is that student achievement is likely

correlated within a given school. Student achievement may be affected by local demographics, individ-
ual teachers, and classmates, all of which imply dependence. These concerns, however, do not suggest
that achievement will be correlated across schools, so it seems reasonable to model achievement across
schools as mutually independent. We call such dependence clustered.

In clustering contexts it is convenient to double index the observations as (Yi g , Xi g ) where g = 1, ...,G
indexes the cluster and i = 1, ...,ng indexes the individual within the g th cluster. The number of ob-
servations per cluster ng may vary across clusters. The number of clusters is G . The total number of
observations is n = ∑G

g=1 ng . In the Kenyan schooling example the number of clusters (schools) in the
estimation sample is G = 121, the number of students per school varies from 19 to 62, and the total
number of observations is n = 5795.

While it is typical to write the observations using the double index notation (Yi g , Xi g ) it is also useful
to use cluster-level notation. Let Y g = (Y1g , ...,Yng g )′ and X g = (X1g , ..., Xng g )′ denote the ng ×1 vector of

dependent variables and ng ×k matrix of regressors for the g th cluster. A linear regression model can be
written by individual as

Yi g = X ′
i gβ+ei g

and using cluster notation as
Y g = X gβ+eg (4.43)

where eg = (e1g , ...,eng g )′ is a ng × 1 error vector. We can also stack the observations into full sample
matrices and write the model as

Y = Xβ+e.

5Table 2, column (1). Duflo, Dupas and Kremer (2011) report a coefficient estimate of 0.139, perhaps due to a slightly different
calculation to standardize the test score.
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Using this notation we can write the sums over the observations using the double sum
∑G

g=1
∑ng

i=1.
This is the sum across clusters of the sum across observations within each cluster. The OLS estimator
can be written as

β̂=
(

G∑
g=1

ng∑
i=1

Xi g X ′
i g

)−1 (
G∑

g=1

ng∑
i=1

Xi g Yi g

)

=
(

G∑
g=1

X ′
g X g

)−1 (
G∑

g=1
X ′

g Y g

)
(4.44)

= (
X ′X

)−1 (
X ′Y

)
.

The residuals are êi g = Yi g −X ′
i g β̂ in individual level notation and êg = Y g −X g β̂ in cluster level notation.

The standard clustering assumption is that the clusters are known to the researcher and that the
observations are independent across clusters.

Assumption 4.4 The clusters (Y g , X g ) are mutually independent across clusters g .

In our example clusters are schools. In other common applications cluster dependence has been
assumed within individual classrooms, families, villages, regions, and within larger units such as indus-
tries and states. This choice is up to the researcher though the justification will depend on the context,
the nature of the data, and will reflect information and assumptions on the dependence structure across
observations.

The model is a linear regression under the assumption

E
[
eg | X g

]= 0. (4.45)

This is the same as assuming that the individual errors are conditionally mean zero

E
[
ei g | X g

]= 0

or that the conditional mean of Y g given X g is linear. As in the independent case equation (4.45) means
that the linear regression model is correctly specified. In the clustered regression model this requires
that all interaction effects within clusters have been accounted for in the specification of the individual
regressors Xi g .

In the regression (4.41) the conditional mean is necessarily linear and satisfies (4.45) since the regres-
sor Trackingg is a dummy variable at the cluster level. In the regression (4.42) with individual controls,
(4.45) requires that the achievement of any student is unaffected by the individual controls (e.g. age,
gender and initial test score) of other students within the same school.

Given (4.45) we can calculate the mean of the OLS estimator. Substituting (4.43) into (4.44) we find

β̂−β=
(

G∑
g=1

X ′
g X g

)−1 (
G∑

g=1
X ′

g eg

)
.
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The mean of β̂−β conditioning on all the regressors is

E
[
β̂−β | X

]= (
G∑

g=1
X ′

g X g

)−1 (
G∑

g=1
X ′

gE
[
eg | X

])

=
(

G∑
g=1

X ′
g X g

)−1 (
G∑

g=1
X ′

gE
[
eg | X g

])
= 0.

The first equality holds by linearity, the second by Assumption 4.4, and the third by (4.45).
This shows that OLS is unbiased under clustering if the conditional mean is linear.

Theorem 4.9 In the clustered linear regression model (Assumption 4.4
and (4.45)) E

[
β̂ | X

]=β.

Now consider the covariance matrix of β̂. Let Σg = E
[

eg e ′
g | X g

]
denote the ng ×ng conditional co-

variance matrix of the errors within the g th cluster. Since the observations are independent across clus-
ters,

var

[(
G∑

g=1
X ′

g eg

)∣∣∣∣∣ X

]
=

G∑
g=1

var
[

X ′
g eg | X g

]
=

G∑
g=1

X ′
gE

[
eg e ′

g | X g

]
X g

=
G∑

g=1
X ′

gΣg X g

def= Ωn . (4.46)

It follows that
V β̂ = var

[
β̂ | X

]= (
X ′X

)−1
Ωn

(
X ′X

)−1 . (4.47)

This differs from the formula in the independent case due to the correlation between observations
within clusters. The magnitude of the difference depends on the degree of correlation between observa-
tions within clusters and the number of observations within clusters. To see this, suppose that all clusters

have the same number of observations ng = N , E
[

e2
i g | X g

]
= σ2, E

[
ei g e`g | X g

] = σ2ρ for i 6= `, and the

regressors Xi g do not vary within a cluster. In this case the exact variance of the OLS estimator equals6

(after some calculations)
V β̂ =

(
X ′X

)−1
σ2 (

1+ρ (N −1)
)

. (4.48)

If ρ > 0 the exact variance is appropriately a multiple ρN of the conventional formula. In the Kenyan
school example the average cluster size is 48. If ρ = 0.25 this means the exact variance exceeds the con-
ventional formula by a factor of about twelve. In this case the correct standard errors (the square root of
the variance) are a multiple of about three times the conventional formula. This is a substantial differ-
ence and should not be neglected.

6This formula is due to Moulton (1990).
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Arellano (1987) proposed a cluster-robust covariance matrix estimator which is an extension of the
White estimator. Recall that the insight of the White covariance estimator is that the squared error
e2

i is unbiased for E
[
e2

i | Xi
] = σ2

i . Similarly with cluster dependence the matrix eg e ′
g is unbiased for

E
[

eg e ′
g | X g

]
=Σg . This means that an unbiased estimator for (4.46) is Ω̃n =∑G

g=1 X ′
g eg e ′

g X g . This is not

feasible, but we can replace the unknown errors by the OLS residuals to obtain Arellano’s estimator

Ω̂n =
G∑

g=1
X ′

g êg ê ′
g X g

=
G∑

g=1

ng∑
i=1

ng∑
`=1

Xi g X ′
`g êi g ê`g

=
G∑

g=1

(
ng∑

i=1
Xi g êi g

)(
ng∑
`=1

X`g ê`g

)′
. (4.49)

The three expressions in (4.49) give three equivalent formulae which could be used to calculate Ω̂n . The
final expression writes Ω̂n in terms of the cluster sums

∑ng

`=1 X`g ê`g which is the basis for our example R
and MATLAB codes shown below.

Given the expressions (4.46)-(4.47) a natural cluster covariance matrix estimator takes the form

V̂ β̂ = an
(

X ′X
)−1

Ω̂n
(

X ′X
)−1 (4.50)

where an is a possible finite-sample adjustment. The Stata cluster command uses

an =
(

n −1

n −k

)(
G

G −1

)
. (4.51)

The factor G/(G−1) was derived by Chris Hansen (2007) in the context of equal-sized clusters to improve
performance when the number of clusters G is small. The factor (n−1)/(n−k) is an ad hoc generalization
which nests the adjustment used in (4.32) since G = n implies the simplification an = n/(n −k).

Alternative cluster-robust covariance matrix estimators can be constructed using cluster-level pre-
diction errors such as ẽg = Y g −X g β̂(−g ) where β̂(−g ) is the least squares estimator omitting cluster g . As
in Section 3.20, we can show that

ẽg =
(

I ng −X g
(

X ′X
)−1 X ′

g

)−1
êg (4.52)

and
β̂(−g ) = β̂− (

X ′X
)−1 X ′

g ẽg . (4.53)

We then have the robust covariance matrix estimator

V̂
CR3
β̂ = (

X ′X
)−1

(
G∑

g=1
X ′

g ẽg ẽ ′
g X g

)(
X ′X

)−1 . (4.54)

The label “CR” refers to “cluster-robust” and “CR3” refers to the analogous formula for the HC3 estimator.
Similarly to the heteroskedastic-robust case you can show that CR3 is a conservative estimator for

V β̂ in the sense that the conditional expectation of V̂
CR3
β̂ exceeds V β̂. This covariance matrix estimator

may be more cumbersome to implement, however, as the cluster-level prediction errors (4.52) cannot be
calculated in a simple linear operation and appear to require a loop (across clusters) to calculate.

To illustrate in the context of the Kenyan schooling example we present the regression of student test
scores on the school-level tracking dummy with two standard errors displayed. The first (in parenthesis)
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is the conventional robust standard error. The second [in square brackets] is the clustered standard error
from (4.50)-(4.4) where clustering is at the level of the school.

TestScorei g =− 0.071
(0.019)
[0.054]

+ 0.138
(0.026)
[0.078]

Trackingg +ei g . (4.55)

We can see that the cluster-robust standard errors are roughly three times the conventional robust
standard errors. Consequently, confidence intervals for the coefficients are greatly affected by the choice.

For illustration, we list here the commands needed to produce the regression results with clustered
standard errors in Stata, R, and MATLAB.

Stata do File

* Load data:
use "DDK2011.dta"
* Standard the test score variable to have mean zero and unit variance:
egen testscore = std(totalscore)
* Regression with standard errors clustered at the school level:
reg testscore tracking, cluster(schoolid)

You can see that clustered standard errors are simple to calculate in Stata.

R Program File

# Load the data and create variables
data <- read.table("DDK2011.txt",header=TRUE,sep="\ t")
y <- scale(as.matrix(data$totalscore))
n <- nrow(y)
x <- cbind(as.matrix(data$tracking),matrix(1,n,1))
schoolid <- as.matrix(data$schoolid)
k <- ncol(x)
xx <- t(x)%*%x
invx <- solve(xx)
beta <- solve(xx,t(x)%*%y)
xe <- x*rep(y-x%*%beta,times=k)
# Clustered robust standard error
xe_sum <- rowsum(xe,schoolid)
G <- nrow(xe_sum)
omega <- t(xe_sum)%*%xe_sum
scale <- G/(G-1)*(n-1)/(n-k)
V_clustered <- scale*invx%*%omega%*%invx
se_clustered <- sqrt(diag(V_clustered))
print(beta)
print(se_clustered)
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Programming clustered standard errors in R is also relatively easy due to the convenient rowsum com-
mand which sums variables within clusters.

MATLAB Program File

% Load the data and create variables
data = xlsread(’DDK2011.xlsx’);
schoolid = data(:,2);
tracking = data(:,7);
totalscore = data(:,62);
y = (totalscore - mean(totalscore))./std(totalscore);
x = [tracking,ones(size(y,1),1)];
[n,k] = size(x);
xx = x’*x;
invx = inv(xx);
beta = xx\(x’*y)
e = y - x*beta;
% Clustered robust standard error
[schools,~,schoolidx] = unique(schoolid);
G = size(schools,1);
cluster_sums = zeros(G,k);
for j = 1:k
cluster_sums(:,j) = accumarray(schoolidx,x(:,j).*e);
end
omega = cluster_sums’*cluster_sums;
scale = G/(G-1)*(n-1)/(n-k);
V_clustered = scale*invx*omega*invx;
se_clustered = sqrt(diag(V_clustered));
display(beta);
display(se_clustered);

Here we see that programming clustered standard errors in MATLAB is less convenient than the other
packages but still can be executed with just a few lines of code. This example uses the accumarray

command which is similar to the rowsum command in R but only can be applied to vectors (hence the
loop across the regressors) and works best if the clusterid variable are indices (which is why the original
schoolid variable is transformed into indices in schoolidx. Application of these commands requires care
and attention.

4.24 Inference with Clustered Samples

In this section we give some cautionary remarks and general advice about cluster-robust inference
in econometric practice. There has been remarkably little theoretical research about the properties of
cluster-robust methods – until quite recently – so these remarks may become dated rather quickly.

In many respects cluster-robust inference should be viewed similarly to heteroskedaticity-robust in-
ference where a “cluster” in the cluster-robust case is interpreted similarly to an “observation” in the
heteroskedasticity-robust case. In particular, the effective sample size should be viewed as the number
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of clusters not the “sample size” n. This is because the cluster-robust covariance matrix estimator ef-
fectively treats each cluster as a single observation and estimates the covariance matrix based on the
variation across cluster means. Hence if there are only G = 50 clusters inference should be viewed as
(at best) similar to heteroskedasticity-robust inference with n = 50 observations. This is a bit unsettling
when the number of regressors is large (say k = 20) for then the covariance matrix will be estimated
imprecisely.

Furthermore, most cluster-robust theory (for example, the work of Chris Hansen (2007)) assumes
that the clusters are homogeneous including the assumption that the cluster sizes are all identical. This
turns out to be a very important simplication. When this is violated – when, for example, cluster sizes are
highly heterogeneous – the regression should be viewed as roughly equivalent to the heteroskedastic case
with an extremely high degree of heteroskedasticity. Cluster sums have variances which are proportional
to the cluster sizes so if the latter is heterogeneous so will be the variances of the cluster sums. This
also has a large effect on finite sample inference. When clusters are heterogeneous then cluster-robust
inference is similar to heteroskedasticity-robust inference with highly heteroskedastic observations.

Put together, if the number of clusters G is small and the number of observations per cluster is highly
varied then we should interpret inferential statements with a great degree of caution. Unfortunately,
small G with heterogeneous cluster sizes is commonplace. Many empirical studies on U.S. data cluster
at the “state” level meaning that there are 50 or 51 clusters (the District of Columbia is typically treated
as a state). The number of observations vary considerably across states since the populations are highly
unequal. Thus when you read empirical papers with individual-level data but clustered at the “state”
level you should be cautious and recognize that this is equivalent to inference with a small number of
extremely heterogeneous observations.

A further complication occurs when we are interested in treatment as in the tracking example given
in the previous section. In many cases (including Duflo, Dupas and Kremer (2011)) the interest is in the
effect of a treatment applied at the cluster level (e.g., schools). In many cases (not, however, Duflo, Dupas
and Kremer (2011)), the number of treated clusters is small relative to the total number of clusters; in an
extreme case there is just a single treated cluster. Based on the reasoning given above these applications
should be interpreted as equivalent to heteroskedasticity-robust inference with a sparse dummy variable
as discussed in Section 4.18. As discussed there, standard error estimates can be erroneously small.
In the extreme of a single treated cluster (in the example, if only a single school was tracked) then the
estimated coefficient on tracking will be very imprecisely estimated yet will have a misleadingly small
cluster standard error. In general, reported standard errors will greatly understate the imprecision of
parameter estimates.

4.25 At What Level to Cluster?

A practical question which arises in the context of cluster-robust inference is “At what level should
we cluster?” In some examples you could cluster at a very fine level, such as families or classrooms, or
at higher levels of aggregation, such as neighborhoods, schools, towns, counties, or states. What is the
correct level at which to cluster? Rules of thumb have been advocated by practitioners but at present
there is little formal analysis to provide useful guidance. What do we know?

First, suppose cluster dependence is ignored or imposed at too fine a level (e.g. clustering by house-
holds instead of villages). Then variance estimators will be biased as they will omit covariance terms. As
correlation is typically positive, this suggests that standard errors will be too small giving rise to spurious
indications of significance and precision.

Second, suppose cluster dependence is imposed at too aggregate a measure (e.g. clustering by states
rather than villages). This does not cause bias. But the variance estimators will contain many extra
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components so the precision of the covariance matrix estimator will be poor. This means that reported
standard errors will be imprecise – more random – than if clustering had been less aggregate.

These considerations show that there is a trade-off between bias and variance in the estimation of the
covariance matrix by cluster-robust methods. It is not at all clear – based on current theory – what to do.
I state this emphatically. We really do not know what is the “correct” level at which to do cluster-robust
inference. This is a very interesting question and should certainly be explored by econometric research.

One challenge is that in empirical practice many people have observed: “Clustering is important.
Standard errors change a lot whether or not we cluster. Therefore we should only report clustered stan-
dard errors.” The flaw in this reasoning is that we do not know why in a specific empirical example the
standard errors change under clustering. One possibility is that clustering reduces bias and thus is more
accurate. The other possibility is that clustering adds sampling noise and is thus less accurate. In reality
it is likely that both factors are present.

In any event a researcher should be aware of the number of clusters used in the reported calculations
and should treat the number of clusters as the effective sample size for assessing inference. If the number
of clusters is, say, G = 20, this should be treated as a very small sample.

To illustrate the thought experiment consider the empirical example of Duflo, Dupas and Kremer
(2011). They reported standard errors clustered at the school level and the application uses 111 schools.
Thus G = 111 is the effective sample size. The number of observations (students) ranges from 19 to 62,
which is reasonably homogeneous. This seems like a well balanced application of clustered variance
estimation. However, one could imagine clustering at a different level of aggregation. We might consider
clustering at a less aggregate level such as the classroom level, but this cannot be done in this particular
application as there was only one classroom per school. Clustering at a more aggregate level could be
done in this application at the level of the “zone”. However, there are only 9 zones. Thus if we cluster by
zone, G = 9 is the effective sample size which would lead to imprecise standard errors. In this particular
example clustering at the school level (as done by the authors) is indeed the prudent choice.

4.26 Technical Proofs*

Proof of Theorems 4.5 and 4.7 Theorem 4.5 is a special case so we focus on Theorem 4.7.
Let F be the class of distributions on (Y , X ) which satisfy the linear regression model with finite

conditional variance. Let β0 be the true value of the regression coefficient. Let f (e | x) denote the true
conditional density (or probability mass function in the discrete case) of the regression error e = Y −X ′β0.

For some 0 < c <∞ define
σ2

c (x) = E[
e21 {|e| ≤ c} | X = x

]
.

Notice that as c →∞, σ2
c (x) → σ2(x). Pick c sufficiently large so that σ2

c (Xi ) > 0 for all 1 ≤ i ≤ n which is
feasible since σ2(Xi ) > 0 for all 1 ≤ i ≤ n. Set δ= min1≤i≤nσ

2
c (Xi ) and M = max1≤i≤n ‖Xi‖.

Define the function
ψc (e) = e1 {|e| ≤ c}−E [e1 {|e| ≤ c} | X ] . (4.56)

Notice that it satisfies
∣∣ψc (e)

∣∣≤ 2c, E
[
ψc (e) | X

]= 0, and E
[
eψc (e) | X

]=σ2(X ).
Define the parametric conditional model for e

fc
(
e | x,β

)= f (e | x)

(
1+

(
β−β0

)′ xψc (e)

σ2
c (x)

)

where the parameter β takes values in the set

Bc =
{
β ∈Rm :

∥∥β−β0
∥∥≤ δ

2cM

}



CHAPTER 4. LEAST SQUARES REGRESSION 131

and the regressor X takes values in the set {‖X ‖ ≤ M }. This model implies that Y has the parametric
density fc

(
y −x ′β0 | x,β

)
.

The bounds imply that ∣∣∣∣∣
(
β−β0

)′ Xψc (e)

σ2
c (X )

∣∣∣∣∣≤
∥∥β−β0

∥∥‖X ‖ ∣∣ψc (e)
∣∣

δ
< 1.

This implies that fc
(
e | x,β

)
has the same support as f (e | x) and satisfies the bounds 0 ≤ fc

(
e | x,β

) ≤
2 f (e | x). We calculate that∫

fc
(
e | x,β

)
de =

∫
f (e | x)de +

∫
f (e | x)

(
β−β0

)′ xψc (e)

σ2
c (x)

de

= 1+
(
β−β0

)′ x

σ2
c (x)

E
[
ψc (e) | X = x

]
= 1 (4.57)

the last equality since E
[
ψc (e) | X = x

]= 0. Together, these facts imply that fc
(
e | x,β

)
and fc

(
y −x ′β0 | x,β

)
are valid conditional density functions.

Let Ec [· | X = x] denote expectation under the conditional density fc
(
e | x,β

)
. The conditional ex-

pectation of Y in this model is

Ec [Y | X = x] =
∫

y fc
(
y −x ′β0 | x,β

)
d y

= x ′β0 +
∫

e f (e | x)de +
(
β−β0

)′ x

σ2
c (x)

∫
ψc (e)e f (e | x)de

= x ′β. (4.58)

Thus the conditional mean is linear in x and β corresponds to the regression coefficient.
The bound fc

(
e | x,β

) ≤ 2 f (e | x) means that any moment which is finite under f (e | x) is also finite
under fc

(
e | x,β

)
. This implies that

Ec
[
e2 | X = x

]≤ 2E
[
e2 | X = x

]= 2σ2(x) <∞

so the model fc
(
e | x,β

)
has a finite second conditional moment. We deduce that

fc
(
y −x ′β0 | x,β

) ∈F .

When β = β0, fc
(
y −x ′β0 | x,β0

) = f
(
y −x ′β0 | x

)
equals the true conditional density of Y . Thus

fc
(
y −x ′β0 | x,β

)
is a correctly specified model with true parameter value β=β0.

The score of the model at the true value β=β0 is

S = ∂

∂β
log fc

(
y −x ′β0 | x,β

)∣∣∣∣
β=β0

= xψc (e)

σ2
c (x)+ (

β−β0
)′ xψc (e)

∣∣∣∣∣
β=β0

= xψc (e)

σ2
c (x)

.
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The information matrix for the i th observation is

I (Xi ) = var[Si | Xi ] = var

[
Xiψc (ei )

σ2
c (Xi )

∣∣∣∣ Xi

]
= Xi X ′

i

v2
c (Xi )

σ4
c (Xi )

where

v2
c (X ) = var

[
ψc (e)

∣∣ X
]

≤ E[
e21 {|e| ≤ c} | X

]
=σ2

c (X ). (4.59)

The information matrix for the full sample is

Ic =
n∑

i=1
I (Xi )

=
n∑

i=1
Xi X ′

i

v2
c (Xi )

σ4
c (Xi )

≤
n∑

i=1
Xi X ′

i
1

σ2
c (Xi )

= X ′D−1
c X (4.60)

where the inequality is (4.59) and Dc = diag
{
σ2

c (X1), ...,σ2
c (Xn)

}
.

By assumption the estimator β̃ is unbiased for β for all F ∈ F . Since fc
(
y −x ′β0 | x,β

) ∈ F this
means that β̃ is unbiased for β in the model fc

(
y −x ′β0 | x,β

)
. The model fc

(
y −x ′β0 | x,β

)
is correctly-

specified, the support of Y does not depend on β, Ic > 0, and the true value β0 lies in the interior of the
parameter space Bc . The conditions for the Cramér-Rao Theorem (e.g. Theorem 10.6 of Introduction to
Econometrics) are thus satisfied, which states that

var
[
β̃ | X

]≥I−1
c ≥ (

X ′D−1
c X

)−1

where the second inequality is (4.60). Since this holds for all c

var
[
β̃ | X

]≥ limsup
c→∞

(
X ′D−1

c X
)−1 = (

X ′D−1X
)−1

.

This is the statement of Theorem 4.7. Theorem 4.5 obtains as the special case D = I nσ
2 so the bound

simplifies to σ2
(

X ′X
)−1. ■

_____________________________________________________________________________________________

4.27 Exercises

Exercise 4.1 For some integer k, set µk = E[Y k ].

(a) Construct an estimator µ̂k for µk .

(b) Show that µ̂k is unbiased for µk .

(c) Calculate the variance of µ̂k , say var
[
µ̂k

]
. What assumption is needed for var

[
µ̂k

]
to be finite?

(d) Propose an estimator of var
[
µ̂k

]
.
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Exercise 4.2 Calculate E

[(
Y −µ

)3
]

, the skewness of Y . Under what condition is it zero?

Exercise 4.3 Explain the difference between Y and µ. Explain the difference between n−1 ∑n
i=1 Xi X ′

i and
E
[

Xi X ′
i

]
.

Exercise 4.4 True or False. If Y = X ′β+ e, X ∈ R, E [e | X ] = 0, and êi is the OLS residual from the regres-
sion of Yi on Xi , then

∑n
i=1 X 2

i êi = 0.

Exercise 4.5 Prove (4.15) and (4.16)

Exercise 4.6 Prove Theorem 4.6.

Exercise 4.7 Let β̃ be the GLS estimator (4.17) under the assumptions (4.13) and (4.14). Assume that
Ω= c2Σwith Σ known and c2 unknown. Define the residual vector ẽ = Y −X β̃, and an estimator for c2

c̃2 = 1

n −k
ẽ ′Σ−1ẽ.

(a) Show (4.18).

(b) Show (4.19).

(c) Prove that ẽ = M 1e, where M 1 = I −X
(

X ′Σ−1X
)−1

X ′Σ−1.

(d) Prove that M ′
1Σ

−1M 1 =Σ−1 −Σ−1X
(

X ′Σ−1X
)−1

X ′Σ−1.

(e) Find E
[
c̃2 | X

]
.

(f) Is c̃2 a reasonable estimator for c2?

Exercise 4.8 Let (Yi , Xi ) be a random sample with E [Y | X ] = X ′β. Consider the Weighted Least Squares
(WLS) estimator β̃wls =

(
X ′W X

)−1 (
X ′W Y

)
where W = diag(w1, ..., wn) and wi = X −2

j i , where X j i is one
of the Xi .

(a) In which contexts would β̃wls be a good estimator?

(b) Using your intuition, in which situations do you expect β̃wls to perform better than OLS?

Exercise 4.9 Show (4.27) in the homoskedastic regression model.

Exercise 4.10 Prove (4.35).

Exercise 4.11 Show (4.36) in the homoskedastic regression model.

Exercise 4.12 Let µ = E [Y ] , σ2 = E
[(

Y −µ)2
]

and µ3 = E
[(

Y −µ)3
]

and consider the sample mean Y =
1
n

∑n
i=1 Yi . Find E

[(
Y −µ

)3
]

as a function of µ, σ2, µ3 and n.

Exercise 4.13 Take the simple regression model Y = Xβ+ e, X ∈ R, E [e | X ] = 0. Define σ2
i = E

[
e2

i | Xi
]

and µ3i = E
[
e3

i | Xi
]

and consider the OLS coefficient β̂. Find E
[(
β̂−β)3 | X

]
.
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Exercise 4.14 Take a regression model Y = Xβ+ e with E [e | X ] = 0 and i.i.d. observations (Yi , Xi ) and
scalar X . The parameter of interest is θ =β2. Consider the OLS estimators β̂ and θ̂ = β̂2.

(a) Find E
[
θ̂ | X

]
using our knowledge of E

[
β̂ | X

]
and Vβ̂ = var

[
β̂ | X

]
. Is θ̂ biased for θ?

(b) Suggest an (approximate) biased-corrected estimator θ̂∗ using an estimator V̂β̂ for Vβ̂.

(c) For θ̂∗ to be potentially unbiased, which estimator of Vβ̂ is most appropriate?

Under which conditions is θ̂∗ unbiased?

Exercise 4.15 Consider an i.i.d. sample {Yi , Xi } i = 1, ...,n where X is k×1. Assume the linear conditional
expectation model Y = X ′β+ e with E [e | X ] = 0. Assume that n−1X ′X = I k (orthonormal regressors).
Consider the OLS estimator β̂.

(a) Find V β̂ = var
[
β̂
]

(b) In general, are β̂ j and β̂` for j 6= ` correlated or uncorrelated?

(c) Find a sufficient condition so that β̂ j and β̂` for j 6= ` are uncorrelated.

Exercise 4.16 Take the linear homoskedastic CEF

Y ∗ = X ′β+e (4.61)

E [e | X ] = 0

E
[
e2 | X

]=σ2

and suppose that Y ∗ is measured with error. Instead of Y ∗, we observe Y = Y ∗+u where u is measure-
ment error. Suppose that e and u are independent and

E [u | X ] = 0

E
[
u2 | X

]=σ2
u(X )

(a) Derive an equation for Y as a function of X . Be explicit to write the error term as a function of the
structural errors e and u. What is the effect of this measurement error on the model (4.61)?

(b) Describe the effect of this measurement error on OLS estimation of β in the feasible regression of
the observed Y on X .

(c) Describe the effect (if any) of this measurement error on standard error calculation for β̂.

Exercise 4.17 Suppose that for the random variables (Y , X ) with X > 0 an economic model implies

E [Y | X ] = (
γ+θX

)1/2 . (4.62)

A friend suggests that you estimate γ and θ by the linear regression of Y 2 on X , that is, to estimate the
equation

Y 2 =α+βX +e. (4.63)

(a) Investigate your friend’s suggestion. Define u = Y − (
γ+θX

)1/2 . Show that E [u | X ] = 0 is implied
by (4.62).
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(b) Use Y = (
γ+θX

)1/2 +u to calculate E
[
Y 2 | X

]
. What does this tell you about the implied equation

(4.63)?

(c) Can you recover either γ and/or θ from estimation of (4.63)? Are additional assumptions required?

(d) Is this a reasonable suggestion?

Exercise 4.18 Take the model

Y = X ′
1β1 +X ′

2β2 +e

E [e | X ] = 0

E
[
e2 | X

]=σ2

where X = (X1, X2), with X1 k1×1 and X2 k2×1. Consider the short regression Yi = X ′
1i β̂1+ êi and define

the error variance estimator s2 = (n −k1)−1 ∑n
i=1 ê2

i . Find E
[
s2 | X

]
.

Exercise 4.19 Let Y be n ×1, X be n ×k, and X ∗ = XC where C is k ×k and full-rank. Let β̂ be the least
squares estimator from the regression of Y on X , and let V̂ be the estimate of its asymptotic covariance
matrix. Let β̂∗ and V̂

∗
be those from the regression of Y on X ∗. Derive an expression for V̂

∗
as a function

of V̂ .

Exercise 4.20 Take the model in vector notation

Y = Xβ+e

E [e | X ] = 0

E
[
ee ′ | X

]=Ω.

Assume for simplicity that Ω is known. Consider the OLS and GLS estimators β̂ = (
X ′X

)−1 (
X ′Y

)
and

β̃= (
X ′Ω−1X

)−1 (
X ′Ω−1Y

)
. Compute the (conditional) covariance between β̂ and β̃ :

E
[(
β̂−β)(

β̃−β)′ | X
]

Find the (conditional) covariance matrix for β̂− β̃ :

E
[(
β̂− β̃)(

β̂−β)′ | X
]

.

Exercise 4.21 The model is

Yi = X ′
iβ+ei

E [ei | Xi ] = 0

E
[
e2

i | Xi
]=σ2

i

Ω= diag{σ2
1, ...,σ2

n}.

The parameter β is estimated by OLS β̂= (
X ′X

)−1 X ′Y and GLS β̃= (
X ′Ω−1X

)−1
X ′Ω−1Y . Let ê = Y −X β̂

and ẽ = Y − X β̃ denote the residuals. Let R̂2 = 1− ê ′ê/(Y ∗′Y ∗) and R̃2 = 1− ẽ ′ẽ/(Y ∗′Y ∗) denote the
equation R2 where Y ∗ = Y −Y . If the error ei is truly heteroskedastic will R̂2 or R̃2 be smaller?

Exercise 4.22 An economist friend tells you that the assumption that the observations (Yi , Xi ) are i.i.d.
implies that the regression Y = X ′β+e is homoskedastic. Do you agree with your friend? How would you
explain your position?
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Exercise 4.23 Take the linear regression model with E [Y | X ] = Xβ. Define the ridge regression estimator

β̂= (
X ′X + I kλ

)−1 X ′Y

where λ> 0 is a fixed constant. Find E
[
β̂ | X

]
. Is β̂ biased for β?

Exercise 4.24 Continue the empirical analysis in Exercise 3.24.

(a) Calculate standard errors using the homoskedasticity formula and using the four covariance ma-
trices from Section 4.16.

(b) Repeat in your second programming language. Are they identical?

Exercise 4.25 Continue the empirical analysis in Exercise 3.26. Calculate standard errors using the HC3
method. Repeat in your second programming language. Are they identical?

Exercise 4.26 Extend the empirical analysis reported in Section 4.23 using the DDK2011 dataset on the
textbook website.. Do a regression of standardized test score (totalscore normalized to have zero mean
and variance 1) on tracking, age, gender, being assigned to the contract teacher, and student’s percentile
in the initial distribution. (The sample size will be smaller as some observations have missing vari-
ables.) Calculate standard errors using both the conventional robust formula, and clustering based on
the school.

(a) Compare the two sets of standard errors. Which standard error changes the most by clustering?
Which changes the least?

(b) How does the coefficient on tracking change by inclusion of the individual controls (in compari-
son to the results from (4.55))?



Chapter 5

Normal Regression

5.1 Introduction

This chapter introduces the normal regression model, which is a special case of the linear regression
model. It is important as normality allows precise distributional characterizations and sharp inferences.
It also provides a baseline for comparison with alternative inference methods, such as asymptotic ap-
proximations and the bootstrap.

The normal regression model is a fully parametric setting where maximum likelihood estimation
is appropriate. Therefore in this chapter we introduce likelihood methods. The method of maximum
likelihood is a powerful statistical method for parametric models (such as the normal regression model)
and is widely used in econometric practice.

We start the chapter with a review of the definition and properties of the normal distribution. For
detail and mathematical proofs see Chapter 5 of Introduction to Econometrics.

5.2 The Normal Distribution

We say that a random variable Z has the standard normal distribution, or Gaussian, written Z ∼
N(0,1) , if it has the density

φ(x) = 1p
2π

exp

(
−x2

2

)
, −∞< x <∞.

The standard normal density is typically written with the symbolφ(x) and the corresponding distribution
function by Φ(x). Plots of the standard normal density function φ(z) and distribution function Φ(x) are
displayed in Figure 5.1.

137
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(a) Normal Density
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(b) Normal Distribution

Figure 5.1: Standard Normal Density and Distribution

Theorem 5.1 If Z ∼ N(0,1) then

1. All integer moments of Z are finite.

2. All odd moments of Z equal 0.

3. For any positive integer m

E
[

Z 2m]= (2m −1)!! = (2m −1)× (2m −3)×·· ·×1.

4. For any r > 0

E |Z |r = 2r /2

p
π
Γ

(
r +1

2

)
where Γ(t ) = ∫ ∞

0 ut−1e−udu is the gamma function.

If Z ∼ N(0,1) and X = µ+σZ for µ ∈ R and σ ≥ 0 then X has the univariate normal distribution,
written X ∼ N

(
µ,σ2

)
. By change-of-variables X has the density

f (x) = 1p
2πσ2

exp

(
−

(
x −µ)2

2σ2

)
, −∞< x <∞.

The mean and variance of X are µ and σ2, respectively.
The normal distribution and its relatives (the chi-square, student t, F, non-central chi-square and F)

are frequently used for inference to calculate critical values and p-values. This involves evaluating the
normal cdf Φ(x) and its inverse. Since the cdf Φ(x) is not available in closed form statistical textbooks
have traditionally provided tables for this purpose. Such tables are not used currently as these calcula-
tions are embedded in modern statistical software. For convenience, we list the appropriate commands
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in MATLAB, R, and Stata to compute the cumulative distribution function of commonly used statistical
distributions.

Numerical Cumulative Distribution Function
To calculate P(Z ≤ x) for given x

MATLAB R Stata
N(0,1) normcdf(x) pnorm(x) normal(x)

χ2
r chi2cdf(x,r) pchisq(x,r) chi2(r,x)

tr tcdf(x,r) pt(x,r) 1-ttail(r,x)

Fr,k fcdf(x,r,k) pf(x,r,k) F(r,k,x)

χ2
r (d) ncx2cdf(x,r,d) pchisq(x,r,d) nchi2(r,d,x)

Fr,k (d) ncfcdf(x,r,k,d) pf(x,r,k,d) 1-nFtail(r,k,d,x)

Here we list the appropriate commands to compute the inverse probabilities (quantiles) of the same
distributions.

Numerical Quantile Function
To calculate x which solves p =P(Z ≤ x) for given p

MATLAB R Stata
N(0,1) norminv(p) qnorm(p) invnormal(p)

χ2
r chi2inv(p,r) qchisq(p,r) invchi2(r,p)

tr tinv(p,r) qt(p,r) invttail(r,1-p)

Fr,k finv(p,r,k) qf(p,r,k) invF(r,k,p)

χ2
r (d) ncx2inv(p,r,d) qchisq(p,r,d) invnchi2(r,d,p)

Fr,k (d) ncfinv(p,r,k,d) qf(p,r,k,d) invnFtail(r,k,d,1-p)

5.3 Multivariate Normal Distribution

We say that the k-vector Z has a multivariate standard normal distribution, written Z ∼ N(0, I k ) , if
it has the joint density

f (x) = 1

(2π)k/2
exp

(
−x ′x

2

)
, x ∈Rk .

The mean and covariance matrix of Z are 0 and I k , respectively. The multivariate joint density factors
into the product of univariate normal densities, so the elements of Z are mutually independent standard
normals.

If Z ∼ N(0, I k ) and X = µ+B Z then the k-vector X has a multivariate normal distribution, written
X ∼ N

(
µ,Σ

)
where Σ= B B ′ ≥ 0. If Σ> 0 then by change-of-variables X has the joint density function

f (x) = 1

(2π)k/2 det(Σ)1/2
exp

(
−

(
x −µ)′

Σ−1
(
x −µ)

2

)
, x ∈Rk .
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The mean and covariance matrix of X are µ and Σ, respectively. By setting k = 1 you can check that the
multivariate normal simplifies to the univariate normal.

An important property of normal random vectors is that affine functions are multivariate normal.

Theorem 5.2 If X ∼ N
(
µ,Σ

)
and Y = a +B X , then Y ∼ N

(
a +Bµ,BΣB ′) .

One simple implication of Theorem 5.2 is that if X is multivariate normal then each component of X
is univariate normal.

Another useful property of the multivariate normal distribution is that uncorrelatedness is the same
as independence. That is, if a vector is multivariate normal, subsets of variables are independent if and
only if they are uncorrelated.

Theorem 5.3 Properties of the Multivariate Normal Distribution

1. The mean and covariance matrix of X ∼ N
(
µ,Σ

)
are E [X ] = µ and

var[X ] =Σ.

2. If (X ,Y ) are multivariate normal, X and Y are uncorrelated if and only if
they are independent.

3. If X ∼ N
(
µ,Σ

)
and Y = a +B X , then Y ∼ N

(
a +Bµ,BΣB ′) .

4. If X ∼ N(0, I k ) then X ′X ∼χ2
k , chi-square with k degrees of freedom.

5. If X ∼ N(0,Σ) with Σ> 0 then X ′Σ−1X ∼χ2
k where k = dim(X ) .

6. If X ∼ N(µ,Σ) with Σ> 0, r × r , then X ′Σ−1X ∼χ2
r (λ) where λ=µ′Σ−1µ.

7. If Z ∼ N(0,1) and Q ∼ χ2
k are independent then Z /

√
Q/k ∼ tk , student t

with k degrees of freedom.

8. If (Y,X ) are multivariate normal(
Y
X

)
∼ N

((
µY

µX

)
,

(
ΣY Y ΣY X

ΣX Y ΣX X

))
with ΣY Y > 0 and ΣX X > 0 then the conditional distributions are

Y | X ∼ N
(
µY +ΣY XΣ

−1
X X

(
X −µX

)
,ΣY Y −ΣY XΣ

−1
X XΣX Y

)
X | Y ∼ N

(
µX +ΣX Y Σ

−1
Y Y

(
Y −µY

)
,ΣX X −ΣX Y Σ

−1
Y Y ΣY X

)
.
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5.4 Joint Normality and Linear Regression

Suppose the variables (Y , X ) are jointly normally distributed. Consider the best linear predictor of Y
given X

Y = X ′β+α+e.

By the properties of the best linear predictor, E [X e] = 0 and E [e] = 0, so X and e are uncorrelated. Since
(e, X ) is an affine transformation of the normal vector (Y , X ) it follows that (e, X ) is jointly normal (Theo-
rem 5.2). Since (e, X ) is jointly normal and uncorrelated they are independent (Theorem 5.3). Indepen-
dence implies that

E [e | X ] = E [e] = 0

and
E
[
e2 | X

]= E[
e2]=σ2

which are properties of a homoskedastic linear CEF.
We have shown that when (Y , X ) are jointly normally distributed they satisfy a normal linear CEF

Y = X ′β+α+e

where
e ∼ N(0,σ2)

is independent of X . This result can also be deduced from Theorem 5.3.7.
This is a classical motivation for the linear regression model.

5.5 Normal Regression Model

The normal regression model is the linear regression model with an independent normal error

Y = X ′β+e (5.1)

e ∼ N(0,σ2).

As we learned in Section 5.4 the normal regression model holds when (Y , X ) are jointly normally dis-
tributed. Normal regression, however, does not require joint normality. All that is required is that the
conditional distribution of Y given X is normal (the marginal distribution of X is unrestricted). In this
sense the normal regression model is broader than joint normality. Notice that for notational conve-
nience we have written (5.1) so that X contains the intercept.

Normal regression is a parametric model where likelihood methods can be used for estimation, test-
ing, and distribution theory. The likelihood is the name for the joint probability density of the data,
evaluated at the observed sample, and viewed as a function of the parameters. The maximum likelihood
estimator is the value which maximizes this likelihood function. Let us now derive the likelihood of the
normal regression model.

First, observe that model (5.1) is equivalent to the statement that the conditional density of Y given
X takes the form

f
(
y | x

)= 1(
2πσ2

)1/2
exp

(
− 1

2σ2

(
y −x ′β

)2
)

.
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Under the assumption that the observations are mutually independent this implies that the conditional
density of (Y1, ...,Yn) given (X1, ..., Xn) is

f
(
y1, ..., yn | x1, ..., xn

)= n∏
i=1

f
(
yi | xi

)
=

n∏
i=1

1(
2πσ2

)1/2
exp

(
− 1

2σ2

(
yi −x ′

iβ
)2

)

= 1(
2πσ2

)n/2
exp

(
− 1

2σ2

n∑
i=1

(
yi −x ′

iβ
)2

)
def= Ln(β,σ2).

This is called the likelihood function when evaluated at the sample data.
For convenience it is typical to work with the natural logarithm

logLn(β,σ2) =−n

2
log(2πσ2)− 1

2σ2

n∑
i=1

(
Yi −X ′

iβ
)2 def= `n(β,σ2) (5.2)

which is called the log-likelihood function.
The maximum likelihood estimator (MLE) (β̂mle, σ̂2

mle) is the value which maximizes the log-likelihood.
We can write the maximization problem as

(β̂mle, σ̂2
mle) = argmax

β∈Rk , σ2>0
`n(β,σ2). (5.3)

In most applications of maximum likelihood the MLE must be found by numerical methods. However
in the case of the normal regression model we can find an explicit expression for β̂mle and σ̂2

mle.

The maximizers (β̂mle, σ̂2
mle) of (5.3) jointly solve the first-order conditions (FOC)

0 = ∂

∂β
`n(β,σ2)

∣∣∣∣
β=β̂mle,σ2=σ̂2

mle

= 1

σ̂2
mle

n∑
i=1

Xi
(
Yi −X ′

i β̂mle
)

(5.4)

0 = ∂

∂σ2`n(β,σ2)

∣∣∣∣
β=β̂mle,σ2=σ̂2

mle

=− n

2σ̂2
mle

+ 1

2σ̂4
mle

n∑
i=1

(
Yi −X ′

i β̂mle
)2

. (5.5)

The first FOC (5.4) is proportional to the first-order conditions for the least squares minimization prob-
lem of Section 3.6. It follows that the MLE satisfies

β̂mle =
(

n∑
i=1

Xi X ′
i

)−1 (
n∑

i=1
Xi Yi

)
= β̂ols.

That is, the MLE for β is algebraically identical to the OLS estimator.
Solving the second FOC (5.5) for σ̂2

mle we find

σ̂2
mle =

1

n

n∑
i=1

(
Yi −X ′

i β̂mle
)2 = 1

n

n∑
i=1

(
Yi −X ′

i β̂ols
)2 = 1

n

n∑
i=1

ê2
i = σ̂2

ols.

Thus the MLE for σ2 is identical to the OLS/moment estimator from (3.26).
Since the OLS estimator and MLE under normality are equivalent, β̂ is described by some authors as

the maximum likelihood estimator, and by other authors as the least squares estimator. It is important
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to remember, however, that β̂ is only the MLE when the error e has a known normal distribution and not
otherwise.

Plugging the estimators into (5.2) we obtain the maximized log-likelihood

`n
(
β̂mle, σ̂2

mle

)=−n

2
log

(
2πσ̂2

mle

)− n

2
. (5.6)

The log-likelihood is typically reported as a measure of fit.
It may seem surprising that the MLE β̂mle is numerically equal to the OLS estimator despite emerging

from quite different motivations. It is not completely accidental. The least squares estimator minimizes
a particular sample loss function – the sum of squared error criterion – and most loss functions are equiv-
alent to the likelihood of a specific parametric distribution, in this case the normal regression model. In
this sense it is not surprising that the least squares estimator can be motivated as either the minimizer
of a sample loss function or as the maximizer of a likelihood function.

Carl Friedrich Gauss

The mathematician Carl Friedrich Gauss (1777-1855) proposed the normal re-
gression model, and derived the least squares estimator as the maximum like-
lihood estimator for this model. He claimed to have discovered the method in
1795 at the age of eighteen but did not publish the result until 1809. Interest
in Gauss’s approach was reinforced by Laplace’s simultaneous discovery of the
central limit theorem, which provided a justification for viewing random distur-
bances as approximately normal.

5.6 Distribution of OLS Coefficient Vector

In the normal linear regression model we can derive exact sampling distributions for the OLS/MLE
estimator, residuals, and variance estimator. In this section we derive the distribution of the OLS coeffi-
cient estimator.

The normality assumption e | X ∼ N
(
0,σ2

)
combined with independence of the observations has the

multivariate implication
e | X ∼ N

(
0, I nσ

2) .

That is, the error vector e is independent of X and is normally distributed.
Recall that the OLS estimator satisfies

β̂−β= (
X ′X

)−1 X ′e

which is a linear function of e. Since linear functions of normals are also normal (Theorem 5.2) this
implies that conditional on X ,

β̂−β | X ∼ (
X ′X

)−1 X ′N
(
0, I nσ

2)
∼ N

(
0,σ2 (

X ′X
)−1 X ′X

(
X ′X

)−1
)

= N
(
0,σ2 (

X ′X
)−1

)
.

This shows that under the assumption of normal errors the OLS estimator has an exact normal dis-
tribution.
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Theorem 5.4 In the normal regression model,

β̂ | X ∼ N
(
β,σ2 (

X ′X
)−1

)
.

Theorems 5.2 and 5.4 imply that any affine function of the OLS estimator is also normally distributed
including individual components. Letting β j and β̂ j denote the j th elements of β and β̂, we have

β̂ j | X ∼ N

(
β j ,σ2

[(
X ′X

)−1
]

j j

)
. (5.7)

Theorem 5.4 is a statement about the conditional distribution. What about the unconditional distri-
bution? In Section 4.7 we presented Kinal’s theorem about the existence of moments for the joint normal
regression model. We re-state the result here.

Theorem 5.5 Kinal (1980) If (Y , X ) are jointly normal, then for any r , E
∥∥β̂∥∥r <

∞ if and only if r < n −k +1.

5.7 Distribution of OLS Residual Vector

Consider the OLS residual vector. Recall from (3.24) that ê = Me where M = I n − X
(

X ′X
)−1 X ′. This

shows that ê is linear in e. So conditional on X

ê = Me | X ∼ N
(
0,σ2M M

)= N
(
0,σ2M

)
the final equality since M is idempotent (see Section 3.12). This shows that the residual vector has an
exact normal distribution.

Furthermore, it is useful to find the joint distribution of β̂ and ê. This is easiest done by writing the
two as a stacked linear function of the error e. Indeed,(

β̂−β
ê

)
=

( (
X ′X

)−1 X ′e
Me

)
=

( (
X ′X

)−1 X ′

M

)
e

which is a linear function of e. The vector thus has a joint normal distribution with covariance matrix(
σ2

(
X ′X

)−1 0
0 σ2M

)
.

The off-diagonal block is zero because X ′M = 0 from (3.21). Since this is zero it follows that β̂ and ê are
statistically independent (Theorem 5.3.2).

Theorem 5.6 In the normal regression model, ê | X ∼ N
(
0,σ2M

)
and is inde-

pendent of β̂.

The fact that β̂ and ê are independent implies that β̂ is independent of any function of the residual
vector including individual residuals êi and the variance estimators s2 and σ̂2.
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5.8 Distribution of Variance Estimator

Next, consider the variance estimator s2 from (4.26). Using (3.28) it satisfies (n −k) s2 = ê ′ê = e ′Me.
The spectral decomposition of M (equation (A.4)) is M = HΛH ′ where H ′H = I n and Λ is diagonal with
the eigenvalues of M on the diagonal. Since M is idempotent with rank n −k (see Section 3.12) it has
n −k eigenvalues equalling 1 and k eigenvalues equalling 0, so

Λ=
[

I n−k 0
0 0k

]
.

Let u = H ′e ∼ N
(
0, I nσ

2
)

(see Exercise 5.2) and partition u = (
u′

1,u′
2

)′ where u1 ∼ N
(
0, I n−kσ

2
)
. Then

(n −k) s2 = e ′Me

= e ′H
[

I n−k 0
0 0

]
H ′e

= u′
[

I n−k 0
0 0

]
u

= u′
1u1

∼σ2χ2
n−k .

We see that in the normal regression model the exact distribution of s2 is a scaled chi-square.
Since ê is independent of β̂ it follows that s2 is independent of β̂ as well.

Theorem 5.7 In the normal regression model,

(n −k) s2

σ2 ∼χ2
n−k

and is independent of β̂.

5.9 t-statistic

An alternative way of writing (5.7) is

β̂ j −β j√
σ2

[(
X ′X

)−1
]

j j

∼ N(0,1) .

This is sometimes called a standardized statistic as the distribution is the standard normal.
Now take the standardized statistic and replace the unknown variance σ2 with its estimator s2. We

call this a t-ratio or t-statistic

T = β̂ j −β j√
s2

[(
X ′X

)−1
]

j j

= β̂ j −β j

s(β̂ j )
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where s(β̂ j ) is the classical (homoskedastic) standard error for β̂ j from (4.37). We will sometimes write
the t-statistic as T (β j ) to explicitly indicate its dependence on the parameter value β j , and sometimes
will simplify notation and write the t-statistic as T when the dependence is clear from the context.

With algebraic re-scaling we can write the t-statistic as the ratio of the standardized statistic and the
square root of the scaled variance estimator. Since the distributions of these two components are normal
and chi-square, respectively, and independent, we deduce that the t-statistic has the distribution

T = β̂ j −β j√
σ2

[(
X ′X

)−1
]

j j

/√
(n −k)s2

σ2

/
(n −k)

∼ N(0,1)√
χ2

n−k

/
(n −k)

∼ tn−k

a student t distribution with n −k degrees of freedom.
This derivation shows that the t-ratio has a sampling distribution which depends only on the quantity

n−k. The distribution does not depend on any other features of the data. In this context, we say that the
distribution of the t-ratio is pivotal, meaning that it does not depend on unknowns.

The trick behind this result is scaling the centered coefficient by its standard error, and recognizing
that each depends on the unknown σ only through scale. Thus the ratio of the two does not depend on
σ. This trick (scaling to eliminate dependence on unknowns) is known as studentization.

Theorem 5.8 In the normal regression model, T ∼ tn−k .

An important caveat about Theorem 5.8 is that it only applies to the t-statistic constructed with the
homoskedastic (old-fashioned) standard error. It does not apply to a t-statistic constructed with any
of the robust standard errors. In fact, the robust t-statistics can have finite sample distributions which
deviate considerably from tn−k even when the regression errors are independent N(0,σ2). Thus the dis-
tributional result in Theorem 5.8 and the use of the t distribution in finite samples is only exact when
applied to classical t-statistics under the normality assumption.

5.10 Confidence Intervals for Regression Coefficients

The OLS estimator β̂ is a point estimator for a coefficient β. A broader concept is a set or interval
estimator which takes the form Ĉ = [L̂,Û ]. The goal of an interval estimator Ĉ is to contain the true
value, e.g. β ∈ Ĉ , with high probability.

The interval estimator Ĉ is a function of the data and hence is random.
An interval estimator Ĉ is called a 1−α confidence interval whenP

[
β ∈ Ĉ

]= 1−α for a selected value
of α. The value 1−α is called the coverage probability. Typical choices for the coverage probability 1−α
are 0.95 or 0.90.

The probability calculation P
[
β ∈ Ĉ

]
is easily mis-interpreted as treating β as random and Ĉ as fixed.

(The probability that β is in Ĉ .) This is not the appropriate interpretation. Instead, the correct inter-
pretation is that the probability P

[
β ∈ Ĉ

]
treats the point β as fixed and the set Ĉ as random. It is the

probability that the random set Ĉ covers (or contains) the fixed true coefficient β.
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There is not a unique method to construct confidence intervals. For example, one simple (yet silly)
interval is

Ĉ =
{

R with probability 1−α{
β̂
}

with probability α.

If β̂ has a continuous distribution, then by construction P
[
β ∈ Ĉ

]= 1−α, so this confidence interval has
perfect coverage. However, Ĉ is uninformative about β̂ and is therefore not useful.

Instead, a good choice for a confidence interval for the regression coefficient β is obtained by adding
and subtracting from the estimator β̂ a fixed multiple of its standard error:

Ĉ = [
β̂− c × s(β̂), β̂+ c × s(β̂)

]
(5.8)

where c > 0 is a pre-specified constant. This confidence interval is symmetric about the point estimator
β̂ and its length is proportional to the standard error s(β̂).

Equivalently, Ĉ is the set of parameter values forβ such that the t-statistic T (β) is smaller (in absolute
value) than c, that is

Ĉ = {
β :

∣∣T (β)
∣∣≤ c

}={
β : −c ≤ β̂−β

s(β̂)
≤ c

}
.

The coverage probability of this confidence interval is

P
[
β ∈ Ĉ

]=P[∣∣T (β)
∣∣≤ c

]
=P[−c ≤ T (β) ≤ c

]
. (5.9)

Since the t-statistic T (β) has the tn−k distribution (5.9) equals F (c)−F (−c), where F (u) is the student t
distribution function with n−k degrees of freedom. Since F (−c) = 1−F (c) (see Exercise 5.8) we can write
(5.9) as

P
[
β ∈ Ĉ

]= 2F (c)−1.

This is the coverage probability of the interval Ĉ , and only depends on the constant c.
As we mentioned before, a confidence interval has the coverage probability 1−α. This requires se-

lecting the constant c so that F (c) = 1−α/2. This holds if c equals the 1−α/2 quantile of the tn−k distri-
bution. As there is no closed form expression for these quantiles we compute their values numerically.
For example, by tinv(1-alpha/2,n-k) in MATLAB. With this choice the confidence interval (5.8) has
exact coverage probability 1−α. By default, Stata reports 95% confidence intervals Ĉ for each estimated
regression coefficient using the same formula.

Theorem 5.9 In the normal regression model, (5.8) with c = F−1(1−α/2) has
coverage probability P

[
β ∈ Ĉ

]= 1−α.

When the degree of freedom is large the distinction between the student t and the normal distribu-
tion is negligible. In particular, for n −k ≥ 61 we have c ≤ 2.00 for a 95% interval. Using this value we
obtain the most commonly used confidence interval in applied econometric practice:

Ĉ = [
β̂−2s(β̂), β̂+2s(β̂)

]
. (5.10)

This is a useful rule-of-thumb. This 95% confidence interval Ĉ is simple to compute and can be easily
calculated from coefficient estimates and standard errors.
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Theorem 5.10 In the normal regression model, if n − k ≥ 61 then (5.10) has
coverage probability P

[
β ∈ Ĉ

]≥ 0.95.

Confidence intervals are a simple yet effective tool to assess estimation uncertainty. When reading
a set of empirical results look at the estimated coefficient estimates and the standard errors. For a pa-
rameter of interest compute the confidence interval Ĉ and consider the meaning of the spread of the
suggested values. If the range of values in the confidence interval are too wide to learn about β then do
not jump to a conclusion about β based on the point estimate alone.

5.11 Confidence Intervals for Error Variance

We can also construct a confidence interval for the regression error variance σ2 using the sampling
distribution of s2 from Theorem 5.7. This states that in the normal regression model

(n −k) s2

σ2 ∼χ2
n−k . (5.11)

Let F (u) denote the χ2
n−k distribution function and for some α set c1 = F−1(α/2) and c2 = F−1(1−α/2)

(the α/2 and 1−α/2 quantiles of the χ2
n−k distribution). Equation (5.11) implies that

P

[
c1 ≤ (n −k) s2

σ2 ≤ c2

]
= F (c2)−F (c1) = 1−α.

Rewriting the inequalities we find

P

[
(n −k) s2

c2
≤σ2 ≤ (n −k) s2

c1

]
= 1−α.

This shows that an exact 1−α confidence interval for σ2 is

Ĉ =
[

(n −k) s2

c2
,

(n −k) s2

c1

]
. (5.12)

Theorem 5.11 In the normal regression model (5.12) has coverage probability
P

[
σ2 ∈ Ĉ

]= 1−α.

The confidence interval (5.12) for σ2 is asymmetric about the point estimate s2 due to the latter’s
asymmetric sampling distribution.
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5.12 t Test

A typical goal in an econometric exercise is to assess whether or not a coefficient β equals a specific
value β0. Often the specific value to be tested is β0 = 0 but this is not essential. This is called hypothesis
testing, a subject which will be explored in detail in Chapter 9. In this section and the following we give
a short introduction specific to the normal regression model.

For simplicity write the coefficient to be tested as β. The null hypothesis is

H0 :β=β0. (5.13)

This states that the hypothesis is that the true value of β equals the hypothesized value β0.
The alternative hypothesis is the complement of H0, and is written as

H1 :β 6=β0.

This states that the true value of β does not equal the hypothesized value.
We are interested in testing H0 against H1. The method is to design a statistic which is informative

aboutH1. If the observed value of the statistic is consistent with random variation under the assumption
that H0 is true, then we deduce that there is no evidence against H0 and consequently do not reject H0.
However, if the statistic takes a value which is unlikely to occur under the assumption that H0 is true,
then we deduce that there is evidence againstH0 and consequently we rejectH0 in favor ofH1. The main
steps are to design a test statistic and to characterize its sampling distribution.

The standard statistic to test H0 against H1 is the absolute value of the t-statistic

|T | =
∣∣∣∣∣ β̂−β0

s(β̂)

∣∣∣∣∣ . (5.14)

If H0 is true then we expect |T | to be small, but if H1 is true then we would expect |T | to be large. Hence
the standard rule is to reject H0 in favor of H1 for large values of the t-statistic |T | and otherwise fail to
reject H0. Thus the hypothesis test takes the form

Reject H0 if |T | > c.

The constant c which appears in the statement of the test is called the critical value. Its value is
selected to control the probability of false rejections. When the null hypothesis is true T has an exact
tn−k distribution in the normal regression model. Thus for a given value of c the probability of false
rejection is

P
[
Reject H0 |H0

]=P [|T | > c |H0]

=P [T > c |H0]+P [T <−c |H0]

= 1−F (c)+F (−c)

= 2(1−F (c))

where F (u) is the tn−k distribution function. This is the probability of false rejection and is decreasing
in the critical value c. We select the value c so that this probability equals a pre-selected value called the
significance level which is typically written as α. It is conventional to set α = 0.05, though this is not a
hard rule. We then select c so that F (c) = 1−α/2, which means that c is the 1−α/2 quantile (inverse
CDF) of the tn−k distribution, the same as used for confidence intervals. With this choice the decision
rule “Reject H0 if |T | > c” has a significance level (false rejection probability) of α.
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Theorem 5.12 In the normal regression model if the null hypothesis (5.13) is
true, then for |T | defined in (5.14) T ∼ tn−k . If c is set so that P [|tn−k | ≥ c] =
α then the test “Reject H0 in favor of H1 if |T | > c” has significance level α.

To report the result of a hypothesis test we need to pre-determine the significance level α in order to
calculate the critical value c. This can be inconvenient and arbitrary. A simplification is to report what
is known as the p-value of the test. In general, when a test takes the form “Reject H0 if S > c” and S has
null distribution G(u) then the p-value of the test is p = 1−G(S). A test with significance level α can
be restated as “Reject H0 if p < α”. It is sufficient to report the p-value p and we can interpret the value
of p as indexing the test’s strength of rejection of the null hypothesis. Thus a p-value of 0.07 might be
interpreted as “nearly significant”, 0.05 as “borderline significant”, and 0.001 as “highly significant”. In
the context of the normal regression model the p-value of a t-statistic |T | is p = 2(1−Fn−k (|T |)) where
Fn−k is the tn−k CDF. For example, in MATLAB the calculation is 2*(1-tcdf(abs(t),n-k)). In Stata,
the default is that for any estimated regression, t-statistics for each estimated coefficient are reported
along with their p-values calculated using this same formula. These t-statistics test the hypotheses that
each coefficient is zero.

A p-value reports the strength of evidence against H0 but is not itself a probability. A common mis-
understanding is that the p-value is the “probability that the null hypothesis is true”. This is an incorrect
interpretation. It is a statistic, is random, and is a measure of the evidence against H0. Nothing more.

5.13 Likelihood Ratio Test

In the previous section we described the t-test as the standard method to test a hypothesis on a
single coefficient in a regression. In many contexts, however, we want to simultaneously assess a set of
coefficients. In the normal regression model, this can be done by an F test which can be derived from
the likelihood ratio test.

Partition the regressors as X = (X ′
1, X ′

2) and similarly partition the coefficient vector as β = (β′
1,β′

2)′.
The regression model can be written as

Y = X ′
1β1 +X ′

2β2 +e. (5.15)

Let k = dim(X ), k1 = dim(X1), and q = dim(X2), so that k = k1 + q . Partition the variables so that the
hypothesis is that the second set of coefficients are zero, or

H0 :β2 = 0. (5.16)

IfH0 is true then the regressors X2 can be omitted from the regression. In this case we can write (5.15) as

Y = X ′
1β1 +e. (5.17)

We call (5.17) the null model. The alternative hypothesis is that at least one element of β2 is non-zero
and is written as H1 :β2 6= 0.

When models are estimated by maximum likelihood a well-accepted testing procedure is to reject
H0 in favor of H1 for large values of the Likelihood Ratio – the ratio of the maximized likelihood function
under H1 and H0, respectively. We now construct this statistic in the normal regression model. Recall
from (5.6) that the maximized log-likelihood equals

`n
(
β̂, σ̂2)=−n

2
log

(
2πσ̂2)− n

2
.



CHAPTER 5. NORMAL REGRESSION 151

We similarly calculate the maximized log-likelihood for the constrained model (5.17). By the same steps
for derivation of the unconstrained MLE we find that the MLE for (5.17) is OLS of Y on X1. We can write
this estimator as

β̃1 =
(

X ′
1X 1

)−1 X ′
1Y

with residual ẽi = Yi − X ′
1i β̃1 and error variance estimate σ̃2 = 1

n

∑n
i=1 ẽ2

i . We use tildes “~” rather than
hats “^” above the constrained estimates to distinguish them from the unconstrained estimates. You can
calculate similar to (5.6) that the maximized constrained log-likelihood is

`n
(
β̃1, σ̃2)=−n

2
log

(
2πσ̃2)− n

2
.

A classic testing procedure is to reject H0 for large values of the ratio of the maximized likelihoods.
Equivalently the test rejects H0 for large values of twice the difference in the log-likelihood functions.
(Multiplying the likelihood difference by two turns out to be a useful scaling.) This equals

LR = 2
(
`n

(
β̂, σ̂2)−`n

(
β̃1, σ̃2))

= 2
((
−n

2
log

(
2πσ̂2)− n

2

)
−

(
−n

2
log

(
2πσ̃2)− n

2

))
= n log

(
σ̃2

σ̂2

)
. (5.18)

The likelihood ratio test rejects H0 for large values of LR, or equivalently (see Exercise 5.10) for large
values of

F =
(
σ̃2 − σ̂2

)
/q

σ̂2/(n −k)
. (5.19)

This is known as the F statistic for the test of hypothesis H0 against H1.
To develop an appropriate critical value we need the null distribution of F. Recall from (3.28) that

nσ̂2 = e ′Me where M = I n −P with P = X
(

X ′X
)−1 X ′. Similarly, under H0, nσ̃2 = e ′M 1e where M =

I n −P 1 with P 1 = X 1
(

X ′
1X 1

)−1 X ′
1. You can calculate that M 1 −M = P −P 1 is idempotent with rank q .

Furthermore, (M 1 −M) M = 0. It follows that e ′ (M 1 −M)e ∼χ2
q and is independent of e ′Me. Hence

F = e ′ (M 1 −M)e/q

e ′Me/(n −k)
∼

χ2
q /q

χ2
n−k /(n −k)

∼ Fq,n−k

an exact F distribution with degrees of freedom q and n −k, respectively. Thus under H0, the F statistic
has an exact F distribution.

The critical values are selected from the upper tail of the F distribution. For a given significance level
α (typically α = 0.05) we select the critical value c so that P

[
Fq,n−k ≥ c

] = α. For example, in MATLAB
the expression is finv(1-α,q,n-k). The test rejects H0 in favor of H1 if F > c and does not reject H0

otherwise. The p-value of the test is p = 1−Gq,n−k (F ) where Gq,n−k (u) is the Fq,n−k distribution function.
In MATLAB, the p-value is computed as 1-fcdf(f,q,n-k). It is equivalent to reject H0 if F > c or p <α.

In Stata, the command to test multiple coefficients takes the form ‘test X1 X2’ where X1 and X2
are the names of the variables whose coefficients are tested. Stata then reports the F statistic for the
hypothesis that the coefficients are jointly zero along with the p-value calculated using the F distribution.

Theorem 5.13 In the normal regression model if the null hypothesis (5.16) is
true then for F defined in (5.19) F ∼ Fq,n−k . If c is set so that P

[
Fq,n−k ≥ c

]=α
then the test “Reject H0 in favor of H1 if F > c” has significance level α.
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Theorem 5.13 justifies the F test in the normal regression model with critical values from the F dis-
tribution.

5.14 Information Bound for Normal Regression

This section requires a familiarity with the theory of the Cramér-Rao Lower Bound. See Chapter 10
of Introduction to Econometrics.

The likelihood scores for the normal regression model are

∂

∂β
`n(β,σ2) = 1

σ2

n∑
i=1

Xi
(
Yi −X ′

iβ
)= 1

σ2

n∑
i=1

Xi ei

and
∂

∂σ2`n(β,σ2) =− n

2σ2 + 1

2σ4

n∑
i=1

(
Yi −X ′

iβ
)2 = 1

2σ4

n∑
i=1

(
e2

i −σ2) .

It follows that the information matrix is

I = var

[
∂
∂β`(β,σ2)
∂
∂σ2`(β,σ2)

∣∣∣∣∣ X

]
=

 1
σ2 X ′X 0

0
2σ4

n

 (5.20)

(see Exercise 5.11). The Cramér-Rao Lower Bound is

I−1 =
 σ2

(
X ′X

)−1 0

0
2σ4

n

 .

This shows that the lower bound for estimation of β is σ2
(

X ′X
)−1 and the lower bound for σ2 is 2σ4/n.

Since in the homoskedastic linear regression model the OLS estimator is unbiased and has variance
σ2

(
X ′X

)−1 it follows that the OLS coefficient estimator β̂ is Cramér-Rao efficient in the normal regres-
sion model. Cramér-Rao efficiency means that no unbiased estimator has a lower covariance matrix.
This expands on the Gauss-Markov theorem which stated that no linear unbiased estimator has a lower
variance matrix in the homoskedastic regression model. Notice that that the results are complementary.
Gauss-Markov efficiency concerns a more narrow class of estimators (linear) but allows a broader model
class (linear homoskedastic rather than normal regression). The Cramér-Rao efficiency result is more
powerful in that it does not restrict the class of estimators (beyond unbiasedness) but is more restrictive
in the class of models allowed (normal regression). However, the result is not as powerful as the Mod-
ern Gauss-Markov Theorem (Theorem 4.7) as the latter does not require the observations to be normally
distributed.

The unbiased variance estimator s2 of σ2 has variance 2σ4/(n −k) (see Exercise 5.12) which is larger
than the Cramér-Rao lower bound 2σ4/n. Thus in contrast to the coefficient estimator, the variance
estimator is not Cramér-Rao efficient.
_____________________________________________________________________________________________

5.15 Exercises

Exercise 5.1 Show that if Q ∼χ2
r , then E [Q] = r and var[Q] = 2r.

Hint: Use the representation Q =∑n
i=1 Z 2

i with Zi independent N(0,1) .
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Exercise 5.2 Show that if e ∼ N
(
0, I nσ

2
)

and H ′H = I n then u = H ′e ∼ N
(
0, I nσ

2
)

.

Exercise 5.3 Show that if e ∼ N(0,Σ) and Σ= A A′ then u = A−1e ∼ N(0, I n) .

Exercise 5.4 Show that argmaxθ∈Θ`n(θ) = argmaxθ∈ΘLn(θ).

Exercise 5.5 For the regression in-sample predicted values Ŷi show that Ŷi | X ∼ N
(
X ′

iβ,σ2hi i
)

where
hi i are the leverage values (3.40).

Exercise 5.6 In the normal regression model show that the leave-one out prediction errors ẽi and the
standardized residuals e i are independent of β̂ , conditional on X .

Hint: Use (3.45) and (4.24).

Exercise 5.7 In the normal regression model show that the robust covariance matrices V̂
HC0
β̂ , V̂

HC1
β̂ ,

V̂
HC2
β̂ , and V̂

HC3
β̂ are independent of the OLS estimator β̂, conditional on X .

Exercise 5.8 Let F (u) be the distribution function of a random variable X whose density is symmetric
about zero. (This includes the standard normal and the student t .) Show that F (−u) = 1−F (u).

Exercise 5.9 Let Ĉβ = [L,U ] be a 1−α confidence interval forβ, and consider the transformation θ = g (β)
where g (·) is monotonically increasing. Consider the confidence interval Ĉθ = [g (L), g (U )] for θ. Show
that P

[
θ ∈ Ĉθ

]=P[
β ∈ Ĉβ

]
. Use this result to develop a confidence interval for σ.

Exercise 5.10 Show that the test “Reject H0 if LR ≥ c1” for LR defined in (5.18), and the test “Reject H0 if
F ≥ c2” for F defined in (5.19), yield the same decisions if c2 = (

exp(c1/n)−1
)

(n −k)/q . Does this mean
that the two tests are equivalent?

Exercise 5.11 Show (5.20).

Exercise 5.12 In the normal regression model let s2 be the unbiased estimator of the error variance σ2

from (4.26).

(a) Show that var
[
s2

]= 2σ4/(n −k).

(b) Show that var
[
s2

]
is strictly larger than the Cramér-Rao Lower Bound for σ2.
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Chapter 6

A Review of Large Sample Asymptotics

6.1 Introduction

The most widely-used tool in sampling theory is large sample asymptotics. By “asymptotics” we
mean approximating a finite-sample sampling distribution by taking its limit as the sample size diverges
to infinity. In this chapter we provide a brief review of the main results of large sample asymptotics. It
is meant as a reference, not as a teaching guide. Asymptotic theory is covered in detail in Chapters 7-9
of Introduction to Econometrics. If you have not previous studied asymptotic theory in detail you should
study these chapters before proceeding.

6.2 Modes of Convergence

Definition 6.1 A sequence of random vectors Zn ∈ Rk converges in probabil-
ity to Z as n →∞, denoted Zn −→

p
Z or alternatively plimn→∞ Zn = Z , if for all

δ> 0,
lim

n→∞P [‖Zn −Z‖ ≤ δ] = 1. (6.1)

We call Z the probability limit (or plim) of Zn .

The above definition treats random variables and random vectors simultaneously using the vector
norm. It is useful to know that for a random vector, (6.1) holds if and only if each element in the vector
converges in probability to its limit.

Definition 6.2 Let Zn be a sequence of random vectors with distributions
Fn(u) = P [Zn ≤ u] . We say that Zn converges in distribution to Z as n → ∞,
denoted Zn −→

d
Z , if for all u at which F (u) = P [Z ≤ u] is continuous, Fn(u) →

F (u) as n →∞. We refer to Z and its distribution F (u) as the asymptotic dis-
tribution, large sample distribution, or limit distribution of Zn .
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6.3 Weak Law of Large Numbers

Theorem 6.1 Weak Law of Large Numbers (WLLN)
If Yi ∈Rk are i.i.d. and E‖Y ‖ <∞, then as n →∞,

Y = 1

n

n∑
i=1

Yi −→
p
E [Y ] .

The WLLN shows that the sample mean Y converges in probability to the true population expecta-
tion µ. The result applies to any transformation of a random vector with a finite mean.

Theorem 6.2 If Yi ∈ Rk are i.i.d., h(y) : Rk → Rq , and E‖h (Y )‖ < ∞, then µ̂ =
1
n

∑n
i=1 h (Yi ) −→

p
µ= E [h (Y )] as n →∞.

An estimator which converges in probability to the population value is called consistent.

Definition 6.3 An estimator θ̂ of θ is consistent if θ̂ −→
p
θ as n →∞.

6.4 Central Limit Theorem

Theorem 6.3 Multivariate Lindeberg-Lévy Central Limit Theorem (CLT). If
Yi ∈Rk are i.i.d. and E‖Y ‖2 <∞, then as n →∞

p
n

(
Y −µ

)
−→

d
N(0,V )

where µ= E [Y ] and V = E
[(

Y −µ)(
Y −µ)′] .

The central limit theorem shows that the distribution of the sample mean is approximately normal
in large samples. For some applications it may be useful to notice that Theorem 6.3 does not impose any
restrictions on V other than that the elements are finite. Therefore this result allows for the possibility of
singular V .

The following two generalizations allow for heterogeneous random variables.
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Theorem 6.4 Multivariate Lindeberg CLT. Suppose that for all n, Yni ∈Rk , i =
1, ...,rn , are independent but not necessarily identically distributed with expec-
tations E [Yni ] = 0 and variance matrices V ni = E

[
Yni Y ′

ni

]
. Set V n = ∑n

i=1 V ni .

Suppose ν2
n =λmin(V n) > 0 and for all ε> 0

lim
n→∞

1

ν2
n

rn∑
i=1

E
[‖Yni‖21

{‖Yni‖2 ≥ εν2
n

}]= 0. (6.2)

Then as n →∞
V

−1/2
n

rn∑
i=1

Yni −→
d

N(0, I k ) .

Theorem 6.5 Suppose Yni ∈ Rk are independent but not necessarily identi-
cally distributed with expectations E [Yni ] = 0 and variance matrices V ni =
E
[
Yni Y ′

ni

]
. Suppose

1

n

n∑
i=1

V ni →V > 0

and for some δ> 0
sup
n,i

E‖Yni‖2+δ <∞. (6.3)

Then as n →∞ p
n Y −→

d
N(0,V ) .

6.5 Continuous Mapping Theorem and Delta Method

Continuous functions are limit-preserving. There are two forms of the continuous mapping theorem,
for convergence in probability and convergence in distribution.

Theorem 6.6 Continuous Mapping Theorem (CMT). Let Zn ∈ Rk and g (u) :
Rk → Rq . If Zn −→

p
c as n →∞ and g (u) is continuous at c then g (Zn) −→

p
g (c)

as n →∞.

Theorem 6.7 Continuous Mapping Theorem. If Zn −→
d

Z as n → ∞ and g :

Rm → Rk has the set of discontinuity points Dg such that P
[

Z ∈ Dg
] = 0, then

g (Zn) −→
d

g (Z ) as n →∞.
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Differentiable functions of asymptotically normal random estimators are asymptotically normal.

Theorem 6.8 Delta Method. Let µ ∈Rk and g (u) :Rk →Rq . If
p

n
(
µ̂−µ)−→

d
ξ,

where g (u) is continuously differentiable in a neighborhood of µ, then as n →
∞ p

n
(
g

(
µ̂
)− g (µ)

)−→
d

G ′ξ (6.4)

where G(u) = ∂
∂u g (u)′ and G =G(µ). In particular, if ξ∼ N(0,V ) then as n →∞

p
n

(
g

(
µ̂
)− g (µ)

)−→
d

N
(
0,G ′V G

)
. (6.5)

6.6 Smooth Function Model

The smooth function model is θ = g
(
µ
)

where µ= E [h (Y )] and g
(
µ
)

is smooth in a suitable sense.
The parameter θ = g

(
µ
)

is not a population moment so it does not have a direct moment esti-
mator. Instead, it is common to use a plug-in estimator formed by replacing the unknown µ with its
point estimator µ̂ and then “plugging” this into the expression for θ. The first step is the sample mean
µ̂= n−1 ∑n

i=1 h (Yi ). The second step is the transformation θ̂ = g
(
θ̂
)
. The hat “^” indicates that θ̂ is a sam-

ple estimator of θ. The smooth function model includes a broad class of estimators including sample
variances and the least squares estimator.

Theorem 6.9 If Yi ∈ Rm are i.i.d., h(u) : Rm → Rk , E‖h (Y )‖ < ∞, and g (u) :
Rk →Rq is continuous at µ, then θ̂ −→

p
θ as n →∞.

Theorem 6.10 If Yi ∈ Rm are i.i.d., h(u) : Rm → Rk , E‖h (Y )‖2 <∞, g (u) : Rk →
Rq , and G (u) = ∂

∂u
g (u)′ is continuous in a neighborhood of µ, then as n →∞

p
n

(
θ̂−θ)−→

d
N(0,V θ)

where V θ =G ′V G , V = E
[(

h (Y )−µ)(
h (Y )−µ)′], and G =G

(
µ
)

.

Theorem 6.9 establishes the consistency of θ̂ for θ and Theorem 6.10 establishes its asymptotic nor-
mality. It is instructive to compare the conditions. Consistency requires that h (Y ) has a finite expecta-
tion; asymptotic normality requires that h (Y ) has a finite variance. Consistency requires that g (u) be
continuous; asymptotic normality requires that g (u) is continuously differentiable.
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6.7 Best Unbiased Estimation

This section presents an efficiency bound for estimation of the mean. The result is are finite-sample
rather than asymptotic, but is convenient to introduce at this point since the bound is identical to the
asymptotic variance.

Theorem 6.11 Suppose Yi are i.i.d., µ = E [h (Y )], and E‖h (Y )‖2 < ∞. If µ̃ is

unbiased for µ then var
[
µ̃
]≥ n−1V where V = E

[(
h (Y )−µ)(

h (Y )−µ)′] .

For details and a proof see Section 11.6 of Introduction to Econometrics. Theorem 6.11 is an analog of
the Cramér-Rao lower bound for semiparametric estimation. The result shows that the asymptotic vari-
ance from Theorems 6.3 is the best possible in any finite sample among unbiased estimators. Theorem
6.11 is sharp, since the sample mean has the finite sample variance n−1V .

6.8 Stochastic Order Symbols

It is convenient to have simple symbols for random variables and vectors which converge in prob-
ability to zero or are stochastically bounded. In this section we introduce some of the most common
notation.

Let Zn and an , n = 1,2, ... be sequences of random variables and constants. The notation

Zn = op (1)

(“small oh-P-one”) means that Zn −→
p

0 as n →∞. We also write

Zn = op (an)

if a−1
n Zn = op (1).
Similarly, the notation Zn = Op (1) (“big oh-P-one”) means that Zn is bounded in probability. Pre-

cisely, for any ε> 0 there is a constant Mε <∞ such that

limsup
n→∞

P [|Zn | > Mε] ≤ ε.

Furthermore, we write
Zn =Op (an)

if a−1
n Zn =Op (1).
Op (1) is weaker than op (1) in the sense that Zn = op (1) implies Zn =Op (1) but not the reverse. How-

ever, if Zn =Op (an) then Zn = op (bn) for any bn such that an/bn → 0.
A random sequence with a bounded moment is stochastically bounded.
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Theorem 6.12 If Zn is a random vector which satisfies

E‖Zn‖δ =O (an)

for some sequence an and δ> 0, then

Zn =Op (a1/δ
n ).

Similarly, E‖Zn‖δ = o (an) implies Zn = op (a1/δ
n ).

There are many simple rules for manipulating op (1) and Op (1) sequences which can be deduced
from the continuous mapping theorem. For example,

op (1)+op (1) = op (1)

op (1)+Op (1) =Op (1)

Op (1)+Op (1) =Op (1)

op (1)op (1) = op (1)

op (1)Op (1) = op (1)

Op (1)Op (1) =Op (1).

6.9 Convergence of Moments

We give a sufficient condition for the existence of the mean of the asymptotic distribution, define
uniform integrability, provide a primitive condition for uniform integrability, and show that uniform
integrability is the key condition under which E [Zn] converges to E [Z ].

Theorem 6.13 If Zn −→
d

Z and E‖Zn‖ ≤C then E‖Z‖ ≤C .

Definition 6.4 The random vector Zn is uniformly integrable as n →∞ if

lim
M→∞

limsup
n→∞

E [‖Zn‖1 {‖Zn‖ > M }] = 0.

Theorem 6.14 If for some δ> 0, E‖Zn‖1+δ ≤C <∞, then Zn is uniformly inte-
grable.
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Theorem 6.15 If Zn −→
d

Z and Zn is uniformly integrable then E [Zn] −→ E [Z ] .

6.10 Uniform Stochastic Bounds

Theorem 6.16 If |Yi |r is uniformly integrable, then as n →∞

n−1/r max
1≤i≤n

|Yi | −→
p

0. (6.6)

Equation (6.6) implies that if Y has r finite moments then the largest observation will diverge at a
rate slower than n1/r . The higher the moments, the slower the rate of divergence.



Chapter 7

Asymptotic Theory for Least Squares

7.1 Introduction

It turns out that the asymptotic theory of least squares estimation applies equally to the projection
model and the linear CEF model. Therefore the results in this chapter will be stated for the broader
projection model described in Section 2.18. Recall that the model is Y = X ′β+e with the linear projection
coefficient β= (

E
[

X X ′])−1
E [X Y ] .

Maintained assumptions in this chapter will be random sampling (Assumption 1.2) and finite second
moments (Assumption 2.1). We restate these here for clarity.

Assumption 7.1

1. The variables (Yi , Xi ), i = 1, ...,n, are i.i.d.

2. E
[
Y 2

]<∞.

3. E‖X ‖2 <∞.

4. Q X X = E[
X X ′] is positive definite.

The distributional results will require a strengthening of these assumptions to finite fourth moments.
We discuss the specific conditions in Section 7.3.

7.2 Consistency of Least Squares Estimator

In this section we use the weak law of large numbers (WLLN, Theorem 6.1 and Theorem 6.2) and con-
tinuous mapping theorem (CMT, Theorem 6.6) to show that the least squares estimator β̂ is consistent
for the projection coefficient β.

This derivation is based on three key components. First, the OLS estimator can be written as a con-
tinuous function of a set of sample moments. Second, the WLLN shows that sample moments converge
in probability to population moments. And third, the CMT states that continuous functions preserve
convergence in probability. We now explain each step in brief and then in greater detail.
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First, observe that the OLS estimator

β̂=
(

1

n

n∑
i=1

Xi X ′
i

)−1 (
1

n

n∑
i=1

Xi Yi

)
= Q̂

−1
X X Q̂ X Y

is a function of the sample moments Q̂ X X = 1
n

∑n
i=1 Xi X ′

i and Q̂ X Y = 1
n

∑n
i=1 Xi Yi .

Second, by an application of the WLLN these sample moments converge in probability to their pop-
ulation expectations. Specifically, the fact that (Yi , Xi ) are mutually i.i.d. implies that any function of
(Yi , Xi ) is i.i.d., including Xi X ′

i and Xi Yi . These variables also have finite expectations under Assump-
tion 7.1. Under these conditions, the WLLN (Theorem 6.2) implies that as n →∞,

Q̂ X X = 1

n

n∑
i=1

Xi X ′
i −→p E

[
X X ′]=Q X X (7.1)

and

Q̂ X Y = 1

n

n∑
i=1

Xi Yi −→
p
E [X Y ] =Q X Y .

Third, the CMT (Theorem 6.6) allows us to combine these equations to show that β̂ converges in
probability to β. Specifically, as n →∞,

β̂= Q̂
−1
X X Q̂ X Y −→

p
Q−1

X X Q X Y =β. (7.2)

We have shown that β̂ −→
p

β as n → ∞. In words, the OLS estimator converges in probability to the

projection coefficient vector β as the sample size n gets large.
To fully understand the application of the CMT we walk through it in detail. We can write

β̂= g
(
Q̂ X X ,Q̂ X Y

)
where g (A,b) = A−1b is a function of A and b. The function g (A,b) is a continuous function of A and b
at all values of the arguments such that A−1 exists. Assumption 7.1 specifies that Q X X is positive definite,
which means that Q−1

X X exists. Thus g (A,b) is continuous at A =Q X X . This justifies the application of
the CMT in (7.2).

For a slightly different demonstration of (7.2) recall that (4.6) implies that

β̂−β= Q̂
−1
X X Q̂ X e (7.3)

where

Q̂ X e =
1

n

n∑
i=1

Xi ei .

The WLLN and (2.25) imply
Q̂ X e −→p E [X e] = 0.

Therefore
β̂−β= Q̂

−1
X X Q̂ X e −→p Q−1

X X 0 = 0

which is the same as β̂−→
p
β.
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Theorem 7.1 Consistency of Least Squares. Under Assumption 7.1, Q̂ X X −→
p

Q X X , Q̂ X Y −→
p

Q X Y , Q̂
−1
X X −→

p
Q−1

X X , Q̂ X e −→p 0, and β̂−→
p
β as n →∞.

Theorem 7.1 states that the OLS estimator β̂ converges in probability to β as n increases and thus β̂
is consistent for β. In the stochastic order notation, Theorem 7.1 can be equivalently written as

β̂=β+op (1). (7.4)

To illustrate the effect of sample size on the least squares estimator consider the least squares regres-
sion

log(wage) =β1education+β2experience+β3experience2 +β4 +e.

We use the sample of 24,344 white men from the March 2009 CPS. We randomly sorted the observations
and sequentially estimated the model by least squares starting with the first 5 observations and contin-
uing until the full sample is used. The sequence of estimates are displayed in Figure 7.1. You can see
how the least squares estimate changes with the sample size. As the number of observations increases it
settles down to the full-sample estimate β̂1 = 0.114.

Number of Observations

β̂ 1

5000 10000 15000 20000

0.
11

0
0.

11
5

0.
12

0
0.

12
5

Figure 7.1: The Least-Squares Estimator β̂1 as a Function of Sample Size n

7.3 Asymptotic Normality

We started this chapter discussing the need for an approximation to the distribution of the OLS esti-
mator β̂. In Section 7.2 we showed that β̂ converges in probability to β. Consistency is a good first step,
but in itself does not describe the distribution of the estimator. In this section we derive an approxima-
tion typically called the asymptotic distribution.
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The derivation starts by writing the estimator as a function of sample moments. One of the moments
must be written as a sum of zero-mean random vectors and normalized so that the central limit theorem
can be applied. The steps are as follows.

Take equation (7.3) and multiply it by
p

n. This yields the expression

p
n

(
β̂−β)= (

1

n

n∑
i=1

Xi X ′
i

)−1 (
1p
n

n∑
i=1

Xi ei

)
. (7.5)

This shows that the normalized and centered estimator
p

n
(
β̂−β)

is a function of the sample average
n−1 ∑n

i=1 Xi X ′
i and the normalized sample average n−1/2 ∑n

i=1 Xi ei .
The random pairs (Yi , Xi ) are i.i.d., meaning that they are independent across i and identically dis-

tributed. Any function of (Yi , Xi ) is also i.i.d. This includes ei = Yi −X ′
iβ and the product Xi ei . The latter

is mean-zero (E [X e] = 0) and has k ×k covariance matrix

Ω= E[
(X e) (X e)′

]= E[
X X ′e2] .

We show below that Ω has finite elements under a strengthening of Assumption 7.1. Since Xi ei is i.i.d.,
mean zero, and finite variance, the central limit theorem (Theorem 6.3) implies

1p
n

n∑
i=1

Xi ei −→
d

N(0,Ω) .

We state the required conditions here.

Assumption 7.2

1. The variables (Yi , X i ), i = 1, ...,n, are i.i.d..

2. E
[
Y 4

]<∞.

3. E‖X ‖4 <∞.

4. Q X X = E[
X X ′] is positive definite.

Assumption 7.2 implies that Ω<∞. To see this, take the j`th element ofΩ, E
[

X j X`e2
]
. First, Theo-

rem 2.9.6 shows that E
[
e4

] <∞. By the expectation inequality (B.30) the j`th element of Ω is bounded
by ∣∣E[

X j X`e2]∣∣≤ E ∣∣X j X`e2
∣∣= E[∣∣X j

∣∣ |X`|e2] .

By two applications of the Cauchy-Schwarz inequality (B.32) this is smaller than(
E
[

X 2
j X 2

`

])1/2 (
E
[
e4])1/2 ≤

(
E
[

X 4
j

])1/4 (
E
[

X 4
`

])1/4 (
E
[
e4])1/2 <∞

where the finiteness holds under Assumption 7.2.2 and 7.2.3. ThusΩ<∞.
An alternative way to show that the elements of Ω are finite is by using a matrix norm ‖·‖ (See Ap-

pendix A.23). Then by the expectation inequality, the Cauchy-Schwarz inequality, Assumption 7.2.3, and
E
[
e4

]<∞,

‖Ω‖ ≤ E∥∥X X ′e2
∥∥= E[‖X ‖2 e2]≤ (

E‖X ‖4)1/2 (
E
[
e4])1/2 <∞.
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This is a more compact argument (often described as more elegant) but such manipulations should not
be done without understanding the notation and the applicability of each step of the argument.

Regardless, the finiteness of the covariance matrix means that we can then apply the multivariate
CLT (Theorem 6.3).

Theorem 7.2 Assumption 7.2 implies that

Ω<∞ (7.6)

and
1p
n

n∑
i=1

Xi ei −→
d

N(0,Ω) (7.7)

as n →∞.

Putting together (7.1), (7.5), and (7.7),

p
n

(
β̂−β)−→

d
Q−1

X X N(0,Ω) = N
(
0,Q−1

X XΩQ−1
X X

)
as n →∞. The final equality follows from the property that linear combinations of normal vectors are
also normal (Theorem 5.2).

We have derived the asymptotic normal approximation to the distribution of the least squares esti-
mator.

Theorem 7.3 Asymptotic Normality of Least Squares Estimator
Under Assumption 7.2, as n →∞

p
n

(
β̂−β)−→

d
N

(
0,V β

)
where Q X X = E[

X X ′] ,Ω= E[
X X ′e2

]
, and

V β =Q−1
X XΩQ−1

X X . (7.8)

In the stochastic order notation, Theorem 7.3 implies that β̂ = β+Op (n−1/2) which is stronger than
(7.4).

The matrix V β = Q−1
X XΩQ−1

X X is the variance of the asymptotic distribution of
p

n
(
β̂−β)

. Conse-
quently, V β is often referred to as the asymptotic covariance matrix of β̂. The expression V β =Q−1

X XΩQ−1
X X

is called a sandwich form as the matrixΩ is sandwiched between two copies of Q−1
X X .

It is useful to compare the variance of the asymptotic distribution given in (7.8) and the finite-sample
conditional variance in the CEF model as given in (4.10):

V β̂ = var
[
β̂ | X

]= (
X ′X

)−1 (
X ′D X

)(
X ′X

)−1 . (7.9)
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Notice that V β̂ is the exact conditional variance of β̂ and V β is the asymptotic variance of
p

n
(
β̂−β)

.
Thus V β should be (roughly) n times as large as V β̂, or V β ≈ nV β̂. Indeed, multiplying (7.9) by n and
distributing we find

nV β̂ =
(

1

n
X ′X

)−1 (
1

n
X ′D X

)(
1

n
X ′X

)−1

which looks like an estimator of V β. Indeed, as n → ∞, nV β̂ −→
p

V β. The expression V β̂ is useful for

practical inference (such as computation of standard errors and tests) since it is the variance of the es-
timator β̂ , while V β is useful for asymptotic theory as it is well defined in the limit as n goes to infinity.
We will make use of both symbols and it will be advisable to adhere to this convention.

There is a special case whereΩ and V β simplify. Suppose that

cov(X X ′,e2) = 0. (7.10)

Condition (7.10) holds in the homoskedastic linear regression model but is somewhat broader. Under
(7.10) the asymptotic variance formulae simplify as

Ω= E[
X X ′]E[

e2]=Q X Xσ
2

V β =Q−1
X XΩQ−1

X X =Q−1
X Xσ

2 ≡V 0
β. (7.11)

In (7.11) we define V 0
β
=Q−1

X Xσ
2 whether (7.10) is true or false. When (7.10) is true then V β = V 0

β
, other-

wise V β 6=V 0
β

. We call V 0
β

the homoskedastic asymptotic covariance matrix.
Theorem 7.3 states that the sampling distribution of the least squares estimator, after rescaling, is

approximately normal when the sample size n is sufficiently large. This holds true for all joint distribu-
tions of (Y , X ) which satisfy the conditions of Assumption 7.2. Consequently, asymptotic normality is
routinely used to approximate the finite sample distribution of

p
n

(
β̂−β)

.
A difficulty is that for any fixed n the sampling distribution of β̂ can be arbitrarily far from the normal

distribution. The normal approximation improves as n increases, but how large should n be in order for
the approximation to be useful? Unfortunately, there is no simple answer to this reasonable question.
The trouble is that no matter how large is the sample size the normal approximation is arbitrarily poor for
some data distribution satisfying the assumptions. We illustrate this problem using a simulation. Let Y =
β1X +β2+e where X is N(0,1) and e is independent of X with the Double Pareto density f (e) = α

2 |e|−α−1 ,
|e| ≥ 1. Ifα> 2 the error e has zero mean and varianceα/(α−2). Asα approaches 2, however, its variance

diverges to infinity. In this context the normalized least squares slope estimator
√

n α−2
α

(
β̂1 −β1

)
has

the N(0,1) asymptotic distribution for any α > 2. In Figure 7.2(a) we display the finite sample densities

of the normalized estimator
√

n α−2
α

(
β̂1 −β1

)
, setting n = 100 and varying the parameter α. For α =

3.0 the density is very close to the N(0,1) density. As α diminishes the density changes significantly,
concentrating most of the probability mass around zero.

Another example is shown in Figure 7.2(b). Here the model is Y =β+e where

e = ur −E [ur ](
E
[
u2r

]− (E [ur ])2
)1/2

(7.12)

and u ∼ N(0,1). We show the sampling distribution of
p

n
(
β̂−β)

for n = 100, varying r = 1, 4, 6 and 8. As
r increases, the sampling distribution becomes highly skewed and non-normal. The lesson from Figure
7.2 is that the N(0,1) asymptotic approximation is never guaranteed to be accurate.
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(a) Double Pareto Error
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(b) Error Process (7.12)

Figure 7.2: Density of Normalized OLS Estimator

7.4 Joint Distribution

Theorem 7.3 gives the joint asymptotic distribution of the coefficient estimators. We can use the
result to study the covariance between the coefficient estimators. For simplicity, take the case of two
regressors, no intercept, and homoskedastic error. Assume the regressors are mean zero, variance one,
with correlation ρ. Then using the formula for inversion of a 2×2 matrix,

V 0
β =σ2Q−1

X X = σ2

1−ρ2

[
1 −ρ
−ρ 1

]
.

Thus if X1 and X2 are positively correlated (ρ > 0) then β̂1 and β̂2 are negatively correlated (and vice-
versa).

For illustration, Figure 7.3(a) displays the probability contours of the joint asymptotic distribution of
β̂1 −β1 and β̂2 −β2 when β1 = β2 = 0 and ρ = 0.5. The coefficient estimators are negatively correlated
since the regressors are positively correlated. This means that if β̂1 is unusually negative, it is likely that
β̂2 is unusually positive, or conversely. It is also unlikely that we will observe both β̂1 and β̂2 unusually
large and of the same sign.

This finding that the correlation of the regressors is of opposite sign of the correlation of the coeffi-
cient estimates is sensitive to the assumption of homoskedasticity. If the errors are heteroskedastic then
this relationship is not guaranteed.

This can be seen through a simple constructed example. Suppose that X1 and X2 only take the
values {−1,+1}, symmetrically, with P [X1 = X2 = 1] = P [X1 = X2 =−1] = 3/8, and P [X1 = 1, X2 =−1] =
P [X1 =−1, X2 = 1] = 1/8. You can check that the regressors are mean zero, unit variance and correlation
0.5, which is identical with the setting displayed in Figure 7.3(a).

Now suppose that the error is heteroskedastic. Specifically, suppose that E
[
e2 | X1 = X2

] = 5

4
and
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(b) Heteroskedastic Case

Figure 7.3: Contours of Joint Distribution of (β̂1, β̂2)

E
[
e2 | X1 6= X2

]= 1

4
. You can check that E

[
e2

]= 1, E
[

X 2
1 e2

]= E[
X 2

2 e2
]= 1 and E

[
X1X2e2

i

]= 7

8
. Therefore

V β =Q−1
X XΩQ−1

X X

= 9

16

 1 −1

2
−1

2
1


 1

7

8
7

8
1


 1 −1

2
−1

2
1



= 4

3

 1
1

4
1

4
1

 .

Thus the coefficient estimators β̂1 and β̂2 are positively correlated (their correlation is 1/4.) The joint
probability contours of their asymptotic distribution is displayed in Figure 7.3(b). We can see how the
two estimators are positively associated.

What we found through this example is that in the presence of heteroskedasticity there is no simple
relationship between the correlation of the regressors and the correlation of the parameter estimators.

We can extend the above analysis to study the covariance between coefficient sub-vectors. For ex-
ample, partitioning X ′ = (

X ′
1, X ′

2

)
and β′ = (

β′
1,β′

2

)
, we can write the general model as

Y = X ′
1β1 +X ′

2β2 +e

and the coefficient estimates as β̂′ = (
β̂′

1, β̂′
2

)
. Make the partitions

Q X X =
[

Q11 Q12

Q21 Q22

]
, Ω=

[
Ω11 Ω12

Ω21 Ω22

]
.

From (2.43)

Q−1
X X =

[
Q−1

11·2 −Q−1
11·2Q12Q−1

22
−Q−1

22·1Q21Q−1
11 Q−1

22·1

]
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where Q11·2 =Q11 −Q12Q−1
22 Q21 and Q22·1 =Q22 −Q21Q−1

11 Q12. Thus when the error is homoskedastic

cov
(
β̂1, β̂2

)=−σ2Q−1
11·2Q12Q−1

22

which is a matrix generalization of the two-regressor case.
In general you can show that (Exercise 7.5)

V β =
[

V 11 V 12

V 21 V 22

]
(7.13)

where

V 11 =Q−1
11·2

(
Ω11 −Q12Q−1

22Ω21 −Ω12Q−1
22 Q21 +Q12Q−1

22Ω22Q−1
22 Q21

)
Q−1

11·2 (7.14)

V 21 =Q−1
22·1

(
Ω21 −Q21Q−1

11Ω11 −Ω22Q−1
22 Q21 +Q21Q−1

11Ω12Q−1
22 Q21

)
Q−1

11·2 (7.15)

V 22 =Q−1
22·1

(
Ω22 −Q21Q−1

11Ω12 −Ω21Q−1
11 Q12 +Q21Q−1

11Ω11Q−1
11 Q12

)
Q−1

22·1. (7.16)

Unfortunately, these expressions are not easily interpretable.

7.5 Consistency of Error Variance Estimators

Using the methods of Section 7.2 we can show that the estimators σ̂2 = 1
n

∑n
i=1 ê2

i and s2 = 1
n−k

∑n
i=1 ê2

i
are consistent for σ2.

The trick is to write the residual êi as equal to the error ei plus a deviation

êi = Yi −X ′
i β̂= ei −X ′

i

(
β̂−β)

.

Thus the squared residual equals the squared error plus a deviation

ê2
i = e2

i −2ei X ′
i

(
β̂−β)+ (

β̂−β)′
Xi X ′

i

(
β̂−β)

. (7.17)

So when we take the average of the squared residuals we obtain the average of the squared errors, plus
two terms which are (hopefully) asymptotically negligible.

σ̂2 = 1

n

n∑
i=1

e2
i −2

(
1

n

n∑
i=1

ei X ′
i

)(
β̂−β)+ (

β̂−β)′ ( 1

n

n∑
i=1

Xi X ′
i

)(
β̂−β)

. (7.18)

Indeed, the WLLN shows that

1

n

n∑
i=1

e2
i −→p σ2

1

n

n∑
i=1

ei X ′
i −→p E

[
e X ′]= 0

1

n

n∑
i=1

Xi X ′
i −→p E

[
X X ′]=Q X X .

Theorem 7.1 shows that β̂−→
p
β. Hence (7.18) converges in probability to σ2 as desired.

Finally, since n/(n −k) → 1 as n →∞ it follows that s2 = ( n
n−k

)
σ̂2 −→

p
σ2. Thus both estimators are

consistent.

Theorem 7.4 Under Assumption 7.1, σ̂2 −→
p
σ2 and s2 −→

p
σ2 as n →∞.
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7.6 Homoskedastic Covariance Matrix Estimation

Theorem 7.3 shows that
p

n
(
β̂−β)

is asymptotically normal with asymptotic covariance matrix V β.
For asymptotic inference (confidence intervals and tests) we need a consistent estimator of V β. Under
homoskedasticity V β simplifies to V 0

β
= Q−1

X Xσ
2 and in this section we consider the simplified problem

of estimating V 0
β

.

The standard moment estimator of Q X X is Q̂ X X defined in (7.1) and thus an estimator for Q−1
X X is

Q̂
−1
X X . The standard estimator of σ2 is the unbiased estimator s2 defined in (4.26). Thus a natural plug-in

estimator for V 0
β
=Q−1

X Xσ
2 is V̂

0
β = Q̂

−1
X X s2.

Consistency of V̂
0
β for V 0

β
follows from consistency of the moment estimators Q̂ X X and s2 and an

application of the continuous mapping theorem. Specifically, Theorem 7.1 established Q̂ X X −→
p

Q X X ,

and Theorem 7.4 established s2 −→
p
σ2. The function V 0

β
=Q−1

X Xσ
2 is a continuous function of Q X X and

σ2 so long as Q X X > 0, which holds true under Assumption 7.1.4. It follows by the CMT that

V̂
0
β = Q̂

−1
X X s2 −→

p
Q−1

X Xσ
2 =V 0

β

so that V̂
0
β is consistent for V 0

β
.

Theorem 7.5 Under Assumption 7.1, V̂
0
β −→p V 0

β
as n →∞.

It is instructive to notice that Theorem 7.5 does not require the assumption of homoskedasticity. That

is, V̂
0
β is consistent for V 0

β
regardless if the regression is homoskedastic or heteroskedastic. However,

V 0
β
= V β = avar

[
β̂
]

only under homoskedasticity. Thus, in the general case V̂
0
β is consistent for a well-

defined but non-useful object.

7.7 Heteroskedastic Covariance Matrix Estimation

Theorems 7.3 established that the asymptotic covariance matrix of
p

n
(
β̂−β)

is V β = Q−1
X XΩQ−1

X X .
We now consider estimation of this covariance matrix without imposing homoskedasticity. The standard
approach is to use a plug-in estimator which replaces the unknowns with sample moments.

As described in the previous section a natural estimator for Q−1
X X is Q̂

−1
X X where Q̂ X X defined in (7.1).

The moment estimator forΩ is

Ω̂= 1

n

n∑
i=1

Xi X ′
i ê2

i ,

leading to the plug-in covariance matrix estimator

V̂
HC0
β = Q̂

−1
X X Ω̂Q̂

−1
X X . (7.19)

You can check that V̂
HC0
β = nV̂

HC0
β̂ where V̂

HC0
β̂ is the HC0 covariance matrix estimator from (4.31).

As shown in Theorem 7.1, Q̂
−1
X X −→

p
Q−1

X X , so we just need to verify the consistency of Ω̂. The key is to

replace the squared residual ê2
i with the squared error e2

i , and then show that the difference is asymptot-
ically negligible.
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Specifically, observe that

Ω̂= 1

n

n∑
i=1

Xi X ′
i ê2

i

= 1

n

n∑
i=1

Xi X ′
i e2

i +
1

n

n∑
i=1

Xi X ′
i

(
ê2

i −e2
i

)
.

The first term is an average of the i.i.d. random variables Xi X ′
i e2

i , and therefore by the WLLN converges
in probability to its expectation, namely,

1

n

n∑
i=1

Xi X ′
i e2

i −→p E
[

X X ′e2]=Ω.

Technically, this requires thatΩ has finite elements, which was shown in (7.6).
To establish that Ω̂ is consistent forΩ it remains to show that

1

n

n∑
i=1

Xi X ′
i

(
ê2

i −e2
i

)−→
p

0. (7.20)

There are multiple ways to do this. A reasonable straightforward yet slightly tedious derivation is to start
by applying the triangle inequality (B.16) using a matrix norm:∥∥∥∥∥ 1

n

n∑
i=1

Xi X ′
i

(
ê2

i −e2
i

)∥∥∥∥∥≤ 1

n

n∑
i=1

∥∥Xi X ′
i

(
ê2

i −e2
i

)∥∥
= 1

n

n∑
i=1

‖Xi‖2
∣∣ê2

i −e2
i

∣∣ . (7.21)

Then recalling the expression for the squared residual (7.17), apply the triangle inequality (B.1) and then
the Schwarz inequality (B.12) twice∣∣ê2

i −e2
i

∣∣≤ 2
∣∣ei X ′

i

(
β̂−β)∣∣+ (

β̂−β)′
Xi X ′

i

(
β̂−β)

= 2 |ei |
∣∣X ′

i

(
β̂−β)∣∣+ ∣∣∣(β̂−β)′

Xi

∣∣∣2

≤ 2 |ei |‖Xi‖
∥∥β̂−β∥∥+‖Xi‖2

∥∥β̂−β∥∥2
. (7.22)

Combining (7.21) and (7.22), we find∥∥∥∥∥ 1

n

n∑
i=1

Xi X ′
i

(
ê2

i −e2
i

)∥∥∥∥∥≤ 2

(
1

n

n∑
i=1

‖Xi‖3 |ei |
)∥∥β̂−β∥∥+(

1

n

n∑
i=1

‖Xi‖4

)∥∥β̂−β∥∥2

= op (1). (7.23)

The expression is op (1) because
∥∥β̂−β∥∥ −→

p
0 and both averages in parenthesis are averages of random

variables with finite expectation under Assumption 7.2 (and are thus Op (1)). Indeed, by Hölder’s inequal-
ity (B.31)

E
[‖X ‖3 |e|]≤ (

E
[(‖X ‖3)4/3

])3/4 (
E
[
e4])1/4 = (

E‖X ‖4)3/4 (
E
[
e4])1/4 <∞.

We have established (7.20) as desired.

Theorem 7.6 Under Assumption 7.2, as n →∞, Ω̂−→
p
Ω and V̂

HC0
β −→

p
V β.

For an alternative proof of this result, see Section 7.20.
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7.8 Summary of Covariance Matrix Notation

The notation we have introduced may be somewhat confusing so it is helpful to write it down in one
place.

The exact variance of β̂ (under the assumptions of the linear regression model) and the asymptotic
variance of

p
n

(
β̂−β)

(under the more general assumptions of the linear projection model) are

V β̂ = var
[
β̂ | X

]= (
X ′X

)−1 (
X ′D X

)(
X ′X

)−1

V β = avar
[p

n
(
β̂−β)]=Q−1

X XΩQ−1
X X .

The HC0 estimators of these two covariance matrices are

V̂
HC0
β̂ = (

X ′X
)−1

(
n∑

i=1
Xi X ′

i ê2
i

)(
X ′X

)−1

V̂
HC0
β = Q̂

−1
X X Ω̂Q̂

−1
X X

and satisfy the simple relationship V̂
HC0
β = nV̂

HC0
β̂ .

Similarly, under the assumption of homoskedasticity the exact and asymptotic variances simplify to

V 0
β̂
= (

X ′X
)−1

σ2

V 0
β =Q−1

X Xσ
2.

Their standard estimators are

V̂
0
β̂ =

(
X ′X

)−1 s2

V̂
0
β = Q̂

−1
X X s2

which also satisfy the relationship V̂
0
β = nV̂

0
β̂.

The exact formula and estimators are useful when constructing test statistics and standard errors.
However, for theoretical purposes the asymptotic formula (variances and their estimates) are more use-
ful as these retain non-generate limits as the sample sizes diverge. That is why both sets of notation are
useful.

7.9 Alternative Covariance Matrix Estimators*

In Section 7.7 we introduced V̂
HC0
β as an estimator of V β. V̂

HC0
β is a scaled version of V̂

HC0
β̂ from

Section 4.16, where we also introduced the alternative HC1, HC2 and HC3 heteroskedasticity-robust
covariance matrix estimators. We now discuss the consistency properties of these estimators.

To do so we introduce their scaled versions, e.g. V̂
HC1
β = nV̂

HC1
β̂ , V̂

HC2
β = nV̂

HC2
β̂ , and V̂

HC3
β = nV̂

HC3
β̂ .

These are (alternative) estimators of the asymptotic covariance matrix V β.

First, consider V̂
HC1
β . Notice that V̂

HC1
β = nV̂

HC1
β̂ = n

n−k V̂
HC0
β where V̂

HC0
β was defined in (7.19) and

shown consistent for V β in Theorem 7.6. If k is fixed as n →∞, then n
n−k → 1 and thus

V̂
HC1
β = (1+o(1))V̂

HC0
β −→

p
V β.

Thus V̂
HC1
β is consistent for V β.
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The alternative estimators V̂
HC2
β and V̂

HC3
β take the form (7.19) but with Ω̂ replaced by

Ω̃= 1

n

n∑
i=1

(1−hi i )−2 Xi X ′
i ê2

i

and

Ω= 1

n

n∑
i=1

(1−hi i )−1 Xi X ′
i ê2

i ,

respectively. To show that these estimators also consistent for V β given Ω̂ −→
p
Ω it is sufficient to show

that the differences Ω̃− Ω̂ andΩ− Ω̂ converge in probability to zero as n →∞.
The trick is the fact that the leverage values are asymptotically negligible:

h∗
n = max

1≤i≤n
hi i = op (1). (7.24)

(See Theorem 7.17 in Section 7.21.) Then using the triangle inequality (B.16)∥∥∥Ω− Ω̂
∥∥∥≤ 1

n

n∑
i=1

∥∥Xi X ′
i

∥∥ ê2
i

∣∣(1−hi i )−1 −1
∣∣

≤
(

1

n

n∑
i=1

‖Xi‖2 ê2
i

)∣∣∣(1−h∗
n

)−1 −1
∣∣∣ .

The sum in parenthesis can be shown to be Op (1) under Assumption 7.2 by the same argument as in in
the proof of Theorem 7.6. (In fact, it can be shown to converge in probability to E

[‖X ‖2 e2
]

.) The term in
absolute values is op (1) by (7.24). Thus the product is op (1) which means thatΩ= Ω̂+op (1) −→

p
Ω.

Similarly,

∥∥Ω̃− Ω̂∥∥≤ 1

n

n∑
i=1

∥∥Xi X ′
i

∥∥ ê2
i

∣∣(1−hi i )−2 −1
∣∣

≤
(

1

n

n∑
i=1

‖Xi‖2 ê2
i

)∣∣∣(1−h∗
n

)−2 −1
∣∣∣

= op (1).

Theorem 7.7 Under Assumption 7.2, as n → ∞, Ω̃ −→
p
Ω, Ω −→

p
Ω, V̂

HC1
β −→

p

V β, V̂
HC2
β −→

p
V β, and V̂

HC3
β −→

p
V β.

Theorem 7.7 shows that the alternative covariance matrix estimators are also consistent for the asymp-
totic covariance matrix.

To simplify notation, for the remainder of the chapter we will use the notation V̂ β and V̂ β̂ to refer
to any of the heteroskedasticity-consistent covariance matrix estimators HC0, HC1, HC2 and HC3, since
they all have the same asymptotic limits.
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7.10 Functions of Parameters

In most serious applications a researcher is actually interested in a specific transformation of the
coefficient vector β= (β1, ...,βk ). For example, the researcher may be interested in a single coefficient β j

or a ratio β j /βl . More generally, interest may focus on a quantity such as consumer surplus which could
be a complicated function of the coefficients. In any of these cases we can write the parameter of interest
θ as a function of the coefficients, e.g. θ = r (β) for some function r :Rk →Rq . The estimate of θ is

θ̂ = r (β̂).

By the continuous mapping theorem (Theorem 6.6) and the fact β̂ −→
p

β we can deduce that θ̂ is

consistent for θ if the function r (·) is continuous.

Theorem 7.8 Under Assumption 7.1, if r (β) is continuous at the true value of
β then as n →∞, θ̂ −→

p
θ.

Furthermore, if the transformation is sufficiently smooth, by the Delta Method (Theorem 6.8) we can
show that θ̂ is asymptotically normal.

Assumption 7.3 r (β) :Rk →Rq is continuously differentiable at the true value
of β and R = ∂

∂βr (β)′ has rank q.

Theorem 7.9 Asymptotic Distribution of Functions of Parameters
Under Assumptions 7.2 and 7.3, as n →∞,

p
n

(
θ̂−θ)−→

d
N(0,V θ) (7.25)

where V θ = R ′V βR .

In many cases the function r (β) is linear:

r (β) = R ′β

for some k ×q matrix R . In particular if R is a “selector matrix”

R =
(

I
0

)
then we can partition β= (β′

1,β′
2)′ so that R ′β=β1. Then

V θ =
(

I 0
)

V β

(
I
0

)
=V 11,



CHAPTER 7. ASYMPTOTIC THEORY FOR LEAST SQUARES 176

the upper-left sub-matrix of V 11 given in (7.14). In this case (7.25) states that
p

n
(
β̂1 −β1

)−→
d

N(0,V 11) .

That is, subsets of β̂ are approximately normal with variances given by the conformable subcomponents
of V .

To illustrate the case of a nonlinear transformation take the example θ =β j /βl for j 6= l . Then

R = ∂

∂β
r (β) =



∂
∂β1

(
β j /βl

)
...

∂
∂β j

(
β j /βl

)
...

∂
∂β`

(
β j /βl

)
...

∂
∂βk

(
β j /βl

)


=



0
...

1/βl
...

−β j /β2
l

...
0


(7.26)

so
V θ =V j j /β2

l +V l lβ
2
j /β4

l −2V j lβ j /β3
l

where V ab denotes the abth element of V β.
For inference we need an estimator of the asymptotic covariance matrix V θ = R ′V βR . For this it is

typical to use the plug-in estimator

R̂ = ∂

∂β
r (β̂)′. (7.27)

The derivative in (7.27) may be calculated analytically or numerically. By analytically, we mean working
out for the formula for the derivative and replacing the unknowns by point estimates. For example, if θ =
β j /βl then ∂

∂βr (β) is (7.26). However in some cases the function r (β) may be extremely complicated and
a formula for the analytic derivative may not be easily available. In this case numerical differentiation
may be preferable. Let δl = (0 · · · 1 · · · 0)′ be the unit vector with the “1” in the l th place. The j l th element
of a numerical derivative R̂ is

R̂ j l =
r j (β̂+δlε)− r j (β̂)

ε

for some small ε.
The estimator of V θ is

V̂ θ = R̂
′
V̂ βR̂ . (7.28)

Alternatively, the homoskedastic covariance matrix estimator could be used leading to a homoskedastic
covariance matrix estimator for θ.

V̂
0
θ = R̂

′
V̂

0
βR̂ = R̂

′
Q̂

−1
X X R̂ s2. (7.29)

Given (7.27), (7.28) and (7.29) are simple to calculate using matrix operations.
As the primary justification for V̂ θ is the asymptotic approximation (7.25), V̂ θ is often called an

asymptotic covariance matrix estimator.
The estimator V̂ θ is consistent for V θ under the conditions of Theorem 7.9 since V̂ β −→

p
V β by The-

orem 7.6 and

R̂ = ∂

∂β
r (β̂)′ −→

p

∂

∂β
r (β)′ = R

since β̂−→
p
β and the function ∂

∂βr (β)′ is continuous in β.
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Theorem 7.10 Under Assumptions 7.2 and 7.3, as n →∞, V̂ θ −→p V θ.

Theorem 7.10 shows that V̂ θ is consistent for V θ and thus may be used for asymptotic inference. In
practice we may set

V̂ θ̂ = R̂
′
V̂ β̂R̂ = n−1R̂

′
V̂ βR̂ (7.30)

as an estimator of the variance of θ̂.

7.11 Asymptotic Standard Errors

As described in Section 4.17 a standard error is an estimator of the standard deviation of the distri-
bution of an estimator. Thus if V̂ β̂ is an estimator of the covariance matrix of β̂ then standard errors are
the square roots of the diagonal elements of this matrix. These take the form

s(β̂ j ) =
√

V̂ β̂ j
=

√[
V̂ β̂

]
j j

.

Standard errors for θ̂ are constructed similarly. Supposing that θ = h(β) is real-valued then the standard
error for θ̂ is the square root of (7.30)

s(θ̂) =
√

R̂
′
V̂ β̂R̂ =

√
n−1R̂

′
V̂ βR̂ .

When the justification is based on asymptotic theory we call s(β̂ j ) or s(θ̂) an asymptotic standard error
for β̂ j or θ̂. When reporting your results it is good practice to report standard errors for each reported
estimate and this includes functions and transformations of your parameter estimates. This helps users
of the work (including yourself) assess the estimation precision.

We illustrate using the log wage regression

log(wage) =β1 education+β2 experience+β3 experience2/100+β4 +e.

Consider the following three parameters of interest.

1. Percentage return to education:
θ1 = 100β1

(100 times the partial derivative of the conditional expectation of log(wage) with respect to educa-
tion.)

2. Percentage return to experience for individuals with 10 years of experience:

θ2 = 100β2 +20β3

(100 times the partial derivative of the conditional expectation of log wages with respect to experi-
ence, evaluated at experience= 10.)
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3. Experience level which maximizes expected log wages:

θ3 =−50β2/β3

(The level of experience at which the partial derivative of the conditional expectation of log(wage)
with respect to experience equals 0.)

The 4×1 vector R for these three parameters is

R =


100

0
0
0

 ,


0

100
20
0

 ,


0

−50/β3

50β2/β2
3

0

 ,

respectively.
We use the subsample of married Black women (all experience levels) which has 982 observations.

The point estimates and standard errors are

álog(wage) = 0.118
(0.008)

education+ 0.016
(0.006)

experience− 0.022
(0.012)

experience2/100+ 0.947
(0.157)

. (7.31)

The standard errors are the square roots of the HC2 covariance matrix estimate

V β̂ =


0.632 0.131 −0.143 −11.1
0.131 0.390 −0.731 −6.25
−0.143 −0.731 1.48 9.43
−11.1 −6.25 9.43 246

×10−4. (7.32)

We calculate that
θ̂1 = 100β̂1 = 100×0.118 = 11.8

s(θ̂1) =
√

1002 ×0.632×10−4 = 0.8

θ̂2 = 100β̂2 +20β̂3 = 100×0.016−20×0.022 = 1.16

s(θ̂2) =
√(

100 20
)( 0.390 −0.731

−0.731 1.48

)(
100
20

)
×10−4 = 0.55

θ̂3 =−50β̂2/β̂3 = 50×0.016/0.022 = 35.2

s(θ̂3) =
√( −50/β̂3 50β̂2/β̂2

3

)( 0.390 −0.731
−0.731 1.48

)( −50/β̂3

50β̂2/β̂2
3

)
×10−4 = 7.0.

The calculations show that the estimate of the percentage return to education (for married Black
women) is 12% per year with a standard error of 0.8. The estimate of the percentage return to experience
for those with 10 years of experience is 1.2% per year with a standard error of 0.6. The estimate of the
experience level which maximizes expected log wages is 35 years with a standard error of 7.

In Stata the nlcom command can be used after estimation to perform the same calculations. To illus-
trate, after estimation of (7.31) use the commands given below. In each case, Stata reports the coefficient
estimate, asymptotic standard error, and 95% confidence interval.
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Stata Commands

nlcom 100*_b[education]
nlcom 100*_b[experience]+20*_b[exp2]
nlcom -50*_b[experience]/_b[exp2]

7.12 t-statistic

Let θ = r (β) :Rk →R be a parameter of interest, θ̂ its estimator, and s(θ̂) its asymptotic standard error.
Consider the statistic

T (θ) = θ̂−θ
s(θ̂)

. (7.33)

Different writers have called (7.33) a t-statistic, a t-ratio, a z-statistic or a studentized statistic, some-
times using the different labels to distinguish between finite-sample and asymptotic inference. As the
statistics themselves are always (7.33) we won’t make this distinction and will simply refer to T (θ) as a
t-statistic or a t-ratio. We also often suppress the parameter dependence, writing it as T. The t-statistic is
a function of the estimator, its standard error, and the parameter.

By Theorems 7.9 and 7.10,
p

n
(
θ̂−θ)−→

d
N(0,Vθ) and V̂θ −→p Vθ. Thus

T (θ) = θ̂−θ
s(θ̂)

=
p

n
(
θ̂−θ)√
V̂θ

−→
d

N(0,Vθ)√
Vθ

= Z ∼ N(0,1) .

The last equality is the property that affine functions of normal variables are normal (Theorem 5.2).
This calculation requires that Vθ > 0, otherwise the continuous mapping theorem cannot be em-

ployed. In practice this is an innocuous requirement as it only excludes degenerate sampling distribu-
tions. Formally we add the following assumption.

Assumption 7.4 V θ = R ′V βR > 0.

Assumption 7.4 states that V θ is positive definite. Since R is full rank under Assumption 7.3 a suffi-
cient condition is that V β > 0. Since Q X X > 0 a sufficient condition isΩ> 0. Thus Assumption 7.4 could
be replaced by the assumptionΩ> 0. Assumption 7.4 is weaker so this is what we use.

Thus the asymptotic distribution of the t-ratio T (θ) is standard normal. Since this distribution does
not depend on the parameters we say that T (θ) is asymptotically pivotal. In finite samples T (θ) is not
necessarily pivotal but the property means that the dependence on unknowns diminishes as n increases.
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It is also useful to consider the distribution of the absolute t-ratio |T (θ)| . Since T (θ) −→
d

Z the con-

tinuous mapping theorem yields |T (θ)| −→
d

|Z | . Letting Φ(u) = P [Z ≤ u] denote the standard normal

distribution function we calculate that the distribution of |Z | is

P [|Z | ≤ u] =P [−u ≤ Z ≤ u]

=P [Z ≤ u]−P [Z <−u]

=Φ(u)−Φ(−u)

= 2Φ(u)−1. (7.34)

Theorem 7.11 Under Assumptions 7.2, 7.3, and 7.4, T (θ) −→
d

Z ∼ N(0,1) and

|T (θ)| −→
d

|Z | .

The asymptotic normality of Theorem 7.11 is used to justify confidence intervals and tests for the
parameters.

7.13 Confidence Intervals

The estimator θ̂ is a point estimator for θ meaning that θ̂ is a single value in Rq . A broader concept
is a set estimator Ĉ which is a collection of values in Rq . When the parameter θ is real-valued then it is
common to focus on sets of the form Ĉ = [L̂,Û ] which is called an interval estimator for θ.

An interval estimate Ĉ is a function of the data and hence is random. The coverage probability of the
interval Ĉ = [L̂,Û ] is P

[
θ ∈ Ĉ

]
. The randomness comes from Ĉ as the parameter θ is treated as fixed. In

Section 5.10 we introduced confidence intervals for the normal regression model which used the finite
sample distribution of the t-statistic. When we are outside the normal regression model we cannot rely
on the exact normal distribution theory but instead use asymptotic approximations. A benefit is that we
can construct confidence intervals for general parameters of interest θ not just regression coefficients.

An interval estimator Ĉ is called a confidence interval when the goal is to set the coverage prob-
ability to equal a pre-specified target such as 90% or 95%. Ĉ is called a 1 −α confidence interval if
infθPθ

[
θ ∈ Ĉ

]= 1−α.
When θ̂ is asymptotically normal with standard error s(θ̂) the conventional confidence interval for θ

takes the form
Ĉ = [

θ̂− c × s(θ̂), θ̂+ c × s(θ̂)
]

(7.35)

where c equals the 1−α quantile of the distribution of |X |. Using (7.34) we calculate that c is equivalently
the 1−α/2 quantile of the standard normal distribution. Thus, c solves

2Φ(c)−1 = 1−α.

This can be computed by, for example, norminv(1-α/2) in MATLAB. The confidence interval (7.35) is
symmetric about the point estimator θ̂ and its length is proportional to the standard error s(θ̂).

Equivalently, (7.35) is the set of parameter values for θ such that the t-statistic T (θ) is smaller (in
absolute value) than c, that is

Ĉ = {θ : |T (θ)| ≤ c} =
{
θ : −c ≤ θ̂−θ

s(θ̂)
≤ c

}
.



CHAPTER 7. ASYMPTOTIC THEORY FOR LEAST SQUARES 181

The coverage probability of this confidence interval is

P
[
θ ∈ Ĉ

]=P [|T (θ)| ≤ c] →P [|Z | ≤ c] = 1−α
where the limit is taken as n →∞, and holds since T (θ) is asymptotically |X | by Theorem 7.11. We call
the limit the asymptotic coverage probability and call Ĉ an asymptotic 1−α% confidence interval for
θ. Since the t-ratio is asymptotically pivotal the asymptotic coverage probability is independent of the
parameter θ.

It is useful to contrast the confidence interval (7.35) with (5.8) for the normal regression model. They
are similar but there are differences. The normal regression interval (5.8) only applies to regression co-
efficients β not to functions θ of the coefficients. The normal interval (5.8) also is constructed with the
homoskedastic standard error, while (7.35) can be constructed with a heteroskedastic-robust standard
error. Furthermore, the constants c in (5.8) are calculated using the student t distribution, while c in
(7.35) are calculated using the normal distribution. The difference between the student t and normal
values are typically small in practice (since sample sizes are large in typical economic applications).
However, since the student t values are larger it results in slightly larger confidence intervals which is
reasonable. (A practical rule of thumb is that if the sample sizes are sufficiently small that it makes a
difference then neither (5.8) nor (7.35) should be trusted.) Despite these differences the coincidence of
the intervals means that inference on regression coefficients is generally robust to using either the exact
normal sampling assumption or the asymptotic large sample approximation, at least in large samples.

Stata by default reports 95% confidence intervals for each coefficient where the critical values c are
calculated using the tn−k distribution. This is done for all standard error methods even though it is only
exact for homoskedastic standard errors and under normality.

The standard coverage probability for confidence intervals is 95%, leading to the choice c = 1.96 for
the constant in (7.35). Rounding 1.96 to 2, we obtain the most commonly used confidence interval in
applied econometric practice

Ĉ = [
θ̂−2s(θ̂), θ̂+2s(θ̂)

]
.

This is a useful rule-of thumb. This asymptotic 95% confidence interval Ĉ is simple to compute and
can be roughly calculated from tables of coefficient estimates and standard errors. (Technically, it is an
asymptotic 95.4% interval due to the substitution of 2.0 for 1.96 but this distinction is overly precise.)

Theorem 7.12 Under Assumptions 7.2, 7.3 and 7.4, for Ĉ defined in (7.35) with
c =Φ−1(1−α/2), P

[
θ ∈ Ĉ

]→ 1−α. For c = 1.96, P
[
θ ∈ Ĉ

]→ 0.95.

Confidence intervals are a simple yet effective tool to assess estimation uncertainty. When reading
a set of empirical results look at the estimated coefficient estimates and the standard errors. For a pa-
rameter of interest compute the confidence interval Ĉ and consider the meaning of the spread of the
suggested values. If the range of values in the confidence interval are too wide to learn about θ then do
not jump to a conclusion about θ based on the point estimate alone.

For illustration, consider the three examples presented in Section 7.11 based on the log wage regres-
sion for married Black women.

Percentage return to education. A 95% asymptotic confidence interval is 11.8± 1.96× 0.8 = [10.2,
13.3].

Percentage return to experience for individuals with 10 years experience. A 90% asymptotic confi-
dence interval is 1.1±1.645×0.4 = [0.5, 1.8].

Experience level which maximizes expected log wages. An 80% asymptotic confidence interval is
35±1.28×7 = [26, 44].
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7.14 Regression Intervals

In the linear regression model the conditional expectation of Y given X = x is

m(x) = E [Y | X = x] = x ′β.

In some cases we want to estimate m(x) at a particular point x. Notice that this is a linear function of

β. Letting r (β) = x ′β and θ = r (β) we see that m̂(x) = θ̂ = x ′β̂ and R = x so s(θ̂) =
√

x ′V̂ β̂x. Thus an

asymptotic 95% confidence interval for m(x) is[
x ′β̂±1.96

√
x ′V̂ β̂x

]
.

It is interesting to observe that if this is viewed as a function of x the width of the confidence interval is
dependent on x.

To illustrate we return to the log wage regression (3.12) of Section 3.7. The estimated regression
equation is álog(wage) = x ′β̂= 0.155x +0.698

where x =education. The covariance matrix estimate from (4.38) is

V̂ β̂ =
(

0.001 −0.015
−0.015 0.243

)
.

Thus the 95% confidence interval for the regression is

0.155x +0.698±1.96
√

0.001x2 −0.030x +0.243.

The estimated regression and 95% intervals are shown in Figure 7.4(a). Notice that the confidence
bands take a hyperbolic shape. This means that the regression line is less precisely estimated for large
and small values of education.
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Figure 7.4: Wage on Education Regression Intervals
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Plots of the estimated regression line and confidence intervals are especially useful when the regres-
sion includes nonlinear terms. To illustrate consider the log wage regression (7.31) which includes expe-
rience and its square and covariance matrix estimate (7.32). We are interested in plotting the regression
estimate and regression intervals as a function of experience. Since the regression also includes educa-
tion, to plot the estimates in a simple graph wefix education at a specific value. We select education=12.
This only affects the level of the estimated regression since education enters without an interaction. De-
fine the points of evaluation

z(x) =


12
x

x2/100
1


where x =experience.

The 95% regression interval for education=12 as a function of x =experience is

0.118×12 +0.016 x −0.022 x2/100+0.947

±1.96

√√√√√√√√z(x)′


0.632 0.131 −0.143 −11.1
0.131 0.390 −0.731 −6.25
−0.143 −0.731 1.48 9.43
−11.1 −6.25 9.43 246

z(x)×10−4

= 0.016 x − .00022 x2 +2.36

±0.0196
√

70.608−9.356 x +0.54428 x2 −0.01462 x3 +0.000148 x4.

The estimated regression and 95% intervals are shown in Figure 7.4(b). The regression interval widens
greatly for small and large values of experience indicating considerable uncertainty about the effect of
experience on mean wages for this population. The confidence bands take a more complicated shape
than in Figure 7.4(a) due to the nonlinear specification.

7.15 Forecast Intervals

Suppose we are given a value of the regressor vector Xn+1 for an individual outside the sample and
we want to forecast (guess) Yn+1 for this individual. This is equivalent to forecasting Yn+1 given Xn+1 = x
which will generally be a function of x. A reasonable forecasting rule is the conditional expectation m(x)
as it is the mean-square minimizing forecast. A point forecast is the estimated conditional expectation
m̂(x) = x ′β̂. We would also like a measure of uncertainty for the forecast.

The forecast error is ên+1 = Yn+1 − m̂(x) = en+1 − x ′ (β̂−β)
. As the out-of-sample error en+1 is inde-

pendent of the in-sample estimator β̂ this has conditional variance

E
[
ê2

n+1 | Xn+1 = x
]= E[

e2
n+1 −2x ′ (β̂−β)

en+1 +x ′ (β̂−β)(
β̂−β)′

x | Xn+1 = x
]

= E[
e2

n+1 | Xn+1 = x
]+x ′E

[(
β̂−β)(

β̂−β)′]
x

=σ2(x)+x ′V β̂x (7.36)

Under homoskedasticity E
[
e2

n+1 | Xn+1
] = σ2. In this case a simple estimator of (7.36) is σ̂2 + x ′V β̂x so a

standard error for the forecast is ŝ(x) =
√
σ̂2 +x ′V β̂x. Notice that this is different from the standard error

for the conditional expectation.
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The conventional 95% forecast interval for Yn+1 uses a normal approximation and equals
[
x ′β̂±2ŝ(x)

]
.

It is difficult, however, to fully justify this choice. It would be correct if we have a normal approximation
to the ratio

en+1 −x ′ (β̂−β)
ŝ(x)

.

The difficulty is that the equation error en+1 is generally non-normal and asymptotic theory cannot be
applied to a single observation. The only special exception is the case where en+1 has the exact distribu-
tion N(0,σ2) which is generally invalid.

An accurate forecast interval would use the conditional distribution of en+1 given Xn+1 = x, which is
more challenging to estimate. Due to this difficulty many applied forecasters use the simple approximate
interval

[
x ′β̂±2ŝ(x)

]
despite the lack of a convincing justification.

7.16 Wald Statistic

Let θ = r (β) : Rk → Rq be any parameter vector of interest, θ̂ its estimator, and V̂ θ̂ its covariance
matrix estimator. Consider the quadratic form

W (θ) = (
θ̂−θ)′

V̂
−1
θ̂

(
θ̂−θ)= n

(
θ̂−θ)′

V̂
−1
θ

(
θ̂−θ)

. (7.37)

where V̂ θ = nV̂ θ̂. When q = 1, then W (θ) = T (θ)2 is the square of the t-ratio. When q > 1, W (θ) is typically
called a Wald statistic as it was proposed by Wald (1943). We are interested in its sampling distribution.

The asymptotic distribution of W (θ) is simple to derive given Theorem 7.9 and Theorem 7.10. They
show that

p
n

(
θ̂−θ)−→

d
Z ∼ N(0,V θ) and V̂ θ −→p V θ. It follows that

W (θ) =p
n

(
θ̂−θ)′

V̂
−1
θ

p
n

(
θ̂−θ)−→

d
Z ′V −1

θ Z

a quadratic in the normal random vector Z . As shown in Theorem 5.3.5 the distribution of this quadratic
form is χ2

q , a chi-square random variable with q degrees of freedom.

Theorem 7.13 Under Assumptions 7.2, 7.3 and 7.4, as n →∞, W (θ) −→
d
χ2

q .

Theorem 7.13 is used to justify multivariate confidence regions and multivariate hypothesis tests.

7.17 Homoskedastic Wald Statistic

Under the conditional homoskedasticity assumption E
[
e2 | X

]=σ2 we can construct the Wald statis-

tic using the homoskedastic covariance matrix estimator V̂
0
θ defined in (7.29). This yields a homoskedas-

tic Wald statistic

W 0(θ) = (
θ̂−θ)′ (

V̂
0
θ̂

)−1 (
θ̂−θ)= n

(
θ̂−θ)′ (

V̂
0
θ

)−1 (
θ̂−θ)

. (7.38)

Under the additional assumption of conditional homoskedasticity it has the same asymptotic distri-
bution as W (θ).
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Theorem 7.14 Under Assumptions 7.2, 7.3, and E
[
e2 | X

] = σ2 > 0, as n →∞,
W 0(θ) −→

d
χ2

q .

7.18 Confidence Regions

A confidence region Ĉ is a set estimator for θ ∈ Rq when q > 1. A confidence region Ĉ is a set in Rq

intended to cover the true parameter value with a pre-selected probability 1−α. Thus an ideal confidence
region has the coverage probability P

[
θ ∈ Ĉ

]= 1−α. In practice it is typically not possible to construct a
region with exact coverage but we can calculate its asymptotic coverage.

When the parameter estimator satisfies the conditions of Theorem 7.13 a good choice for a confi-
dence region is the ellipse

Ĉ = {θ : W (θ) ≤ c1−α}

with c1−α the 1−α quantile of the χ2
q distribution. (Thus Fq (c1−α) = 1−α.) It can be computed by, for

example, chi2inv(1-α,q)in MATLAB.
Theorem 7.13 implies

P
[
θ ∈ Ĉ

]→P
[
χ2

q ≤ c1−α
]
= 1−α

which shows that Ĉ has asymptotic coverage 1−α.
To illustrate the construction of a confidence region, consider the estimated regression (7.31) of

álog(wage) =β1 education+β2 experience+β3 experience2/100+β4.

Suppose that the two parameters of interest are the percentage return to education θ1 = 100β1 and the
percentage return to experience for individuals with 10 years experience θ2 = 100β2 +20β3. These two
parameters are a linear transformation of the regression parameters with point estimates

θ̂ =
(

100 0 0 0
0 100 20 0

)
β̂=

(
11.8
1.2

)
,

and have the covariance matrix estimate

V̂ θ̂ =
(

0 100 0 0
0 0 100 20

)
V̂ β̂


0 0

100 0
0 100
0 20

=
(

0.632 0.103
0.103 0.157

)

with inverse

V̂
−1
θ̂ =

(
1.77 −1.16
−1.16 7.13

)
.

Thus the Wald statistic is

W (θ) = (
θ̂−θ)′

V̂
−1
θ̂

(
θ̂−θ)

=
(

11.8−θ1

1.2−θ2

)′ (
1.77 −1.16
−1.16 7.13

)(
11.8−θ1

1.2−θ2

)
= 1.77(11.8−θ1)2 −2.32(11.8−θ1) (1.2−θ2)+7.13(1.2−θ2)2 .
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The 90% quantile of the χ2
2 distribution is 4.605 (we use the χ2

2 distribution as the dimension of θ is
two) so an asymptotic 90% confidence region for the two parameters is the interior of the ellipse W (θ) =
4.605 which is displayed in Figure 7.5. Since the estimated correlation of the two coefficient estimates is
modest (about 0.3) the region is modestly elliptical.

●

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Return to Education (%)

R
et

ur
n 

to
 E

xp
er

ie
nc

e 
(%

)

10 11 12 13 14

● β̂

Figure 7.5: Confidence Region for Return to Experience and Return to Education

7.19 Edgeworth Expansion*

Theorem 7.11 showed that the t-ratio T (θ) is asymptotically normal. In practice this means that
we use the normal distribution to approximate the finite sample distribution of T . How good is this
approximation? Some insight into the accuracy of the normal approximation can be obtained by an
Edgeworth expansion which is a higher-order approximation to the distribution of T . The following
result is an application of Theorem 9.11 of Introduction to Econometrics.

Theorem 7.15 Under Assumptions 7.2, 7.3, Ω > 0, E‖e‖16 < ∞, E‖X ‖16 <
∞, g

(
β
)

has five continuous derivatives in a neighborhood of β, and
E
[
exp

(
t
(‖e‖4 +‖X ‖4

))]≤ B < 1, as n →∞

P [T (θ) ≤ x] =Φ(x)+n−1/2p1(x)φ(x)+n−1p2(x)φ(x)+o
(
n−1)

uniformly in x, where p1(x) is an even polynomial of order 2 and p2(x) is an
odd polynomial of degree 5 with coefficients depending on the moments of e
and X up to order 16.

Theorem 7.15 shows that the finite sample distribution of the t-ratio can be approximated up to
o(n−1) by the sum of three terms, the first being the standard normal distribution, the second a O

(
n−1/2

)
adjustment, and the third a O

(
n−1

)
adjustment.
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Consider a one-sided confidence interval Ĉ = [
θ̂− z1−αs(θ̂),∞)

where z1−α is the 1−αth quantile of
Z ∼ N(0,1), thusΦ(z1−α)−1−α. Then

P
[
θ ∈ Ĉ

]=P [T (θ) ≤ z1−α]

=Φ(z1−α)+n−1/2p1(z1−α)φ(z1−α)+O
(
n−1)

= 1−α+O
(
n−1/2) .

This means that the actual coverage is within O
(
n−1/2

)
of the desired 1−α level.

Now consider a two-sided interval Ĉ = [
θ̂− z1−α/2s(θ̂), θ̂+ z1−α/2s(θ̂)

]
. It has coverage

P
[
θ ∈ Ĉ

]=P [|T (θ)| ≤ z1−α/2]

= 2Φ(z1−α/2)−1+n−12p2(z1−α/2)φ(z1−α/2)+o
(
n−1)

= 1−α+O
(
n−1) .

This means that the actual coverage is within O
(
n−1

)
of the desired 1−α level. The accuracy is better

than the one-sided interval because the O
(
n−1/2

)
term in the Edgeworth expansion has offsetting effects

in the two tails of the distribution.

7.20 Uniformly Consistent Residuals*

It seems natural to view the residuals êi as estimators of the unknown errors ei . Are they consistent?
In this section we develop a convergence result.

We can write the residual as
êi = Yi −X ′

i β̂= ei −X ′
i

(
β̂−β)

. (7.39)

Since β̂−β−→
p

0 it seems reasonable to guess that êi will be close to ei if n is large.

We can bound the difference in (7.39) using the Schwarz inequality (B.12) to find

|êi −ei | =
∣∣X ′

i

(
β̂−β)∣∣≤ ‖Xi‖

∥∥β̂−β∥∥ . (7.40)

To bound (7.40) we can use
∥∥β̂−β∥∥ = Op

(
n−1/2

)
from Theorem 7.3 but we also need to bound the

random variable ‖Xi‖. If the regressor is bounded, that is, ‖Xi‖ ≤ B < ∞, then |êi −ei | ≤ B
∥∥β̂−β∥∥ =

Op
(
n−1/2

)
. However if the regressor does not have bounded support then we have to be more careful.

The key is Theorem 6.16 which shows that E‖X ‖r <∞ implies Xi = op
(
n1/r

)
uniformly in i , or

n−1/r max
1≤i≤n

‖Xi‖ −→
p

0.

Applied to (7.40) we obtain

max
1≤i≤n

|êi −ei | ≤ max
1≤i≤n

‖Xi‖
∥∥β̂−β∥∥= op

(
n−1/2+1/r )

.

We have shown the following.

Theorem 7.16 Under Assumption 7.2 and E‖X ‖r <∞, then

max
1≤i≤n

|êi −ei | = op
(
n−1/2+1/r )

. (7.41)
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The rate of convergence in (7.41) depends on r. Assumption 7.2 requires r ≥ 4 so the rate of conver-
gence is at least op

(
n−1/4

)
. As r increases the rate improves.

We mentioned in Section 7.7 that there are multiple ways to prove the consistency of the covariance
matrix estimator Ω̂. We now show that Theorem 7.16 provides one simple method to establish (7.23) and
thus Theorem 7.6. Let qn = max1≤i≤n |êi −ei | = op

(
n−1/4

)
. Since ê2

i −e2
i = 2ei (êi −ei )+ (êi −ei )2, then

∥∥∥∥∥ 1

n

n∑
i=1

Xi X ′
i

(
ê2

i −e2
i

)∥∥∥∥∥≤ 1

n

n∑
i=1

∥∥Xi X ′
i

∥∥∣∣ê2
i −e2

i

∣∣
≤ 2

n

n∑
i=1

‖Xi‖2 |ei | |êi −ei |+ 1

n

n∑
i=1

‖Xi‖2 |êi −ei |2

≤ 2

n

n∑
i=1

‖Xi‖2 |ei |qn + 1

n

n∑
i=1

‖Xi‖2 q2
n

≤ op
(
n−1/4) .

7.21 Asymptotic Leverage*

Recall the definition of leverage from (3.40) hi i = X ′
i

(
X ′X

)−1 Xi . These are the diagonal elements of
the projection matrix P and appear in the formula for leave-one-out prediction errors and HC2 and HC3
covariance matrix estimators. We can show that under i.i.d. sampling the leverage values are uniformly
asymptotically small.

Let λmin(A) and λmax(A) denote the smallest and largest eigenvalues of a symmetric square matrix A
and note that λmax(A−1) = (λmin(A))−1 .

Since 1
n X ′X −→

p
Q X X > 0, by the CMT λmin

( 1
n X ′X

) −→
p
λmin

(
Q X X

) > 0. (The latter is positive since

Q X X is positive definite and thus all its eigenvalues are positive.) Then by the Quadratic Inequality (B.18)

hi i = X ′
i

(
X ′X

)−1 Xi

≤λmax

((
X ′X

)−1
)(

X ′
i Xi

)
=

(
λmin

(
1

n
X ′X

))−1 1

n
‖Xi‖2

≤ (
λmin

(
Q X X

)+op (1)
)−1 1

n
max

1≤i≤n
‖Xi‖2 . (7.42)

Theorem 6.16 shows that E‖X ‖r < ∞ implies max
1≤i≤n

‖Xi‖2 =
(

max
1≤i≤n

‖Xi‖
)2

= op
(
n2/r

)
and thus (7.42) is

op
(
n2/r−1

)
.

Theorem 7.17 If Xi is i.i.d., Q X X > 0, and E‖X ‖r < ∞ for some r ≥ 2, then
max

1≤i≤n
hi i = op

(
n2/r−1

)
.

For any r ≥ 2 then hi i = op (1) (uniformly in i ≤ n). Larger r implies a stronger rate of convergence.
For example r = 4 implies hi i = op

(
n−1/2

)
.
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Theorem (7.17) implies that under random sampling with finite variances and large samples no indi-
vidual observation should have a large leverage value. Consequently individual observations should not
be influential unless one of these conditions is violated.
_____________________________________________________________________________________________

7.22 Exercises

Exercise 7.1 Take the model Y = X ′
1β1+X ′

2β2+e with E [X e] = 0. Suppose thatβ1 is estimated by regress-
ing Y on X1 only. Find the probability limit of this estimator. In general, is it consistent for β1? If not,
under what conditions is this estimator consistent for β1?

Exercise 7.2 Take the model Y = X ′β+e with E [X e] = 0. Define the ridge regression estimator

β̂=
(

n∑
i=1

Xi X ′
i +λI k

)−1 (
n∑

i=1
Xi Yi

)
(7.43)

here λ> 0 is a fixed constant. Find the probability limit of β̂ as n →∞. Is β̂ consistent for β?

Exercise 7.3 For the ridge regression estimator (7.43), set λ= cn where c > 0 is fixed as n →∞. Find the
probability limit of β̂ as n →∞.

Exercise 7.4 Verify some of the calculations reported in Section 7.4. Specifically, suppose that X1 and X2

only take the values {−1,+1}, symmetrically, with

P [X1 = X2 = 1] =P [X1 = X2 =−1] = 3/8

P [X1 = 1, X2 =−1] =P [X1 =−1, X2i = 1] = 1/8

E
[
e2

i | X1 = X2
]= 5

4

E
[
e2

i | X1 6= X2
]= 1

4
.

Verify the following:

(a) E [X1] = 0

(b) E
[

X 2
1

]= 1

(c) E [X1X2] = 1

2

(d) E
[
e2

]= 1

(e) E
[

X 2
1 e2

]= 1

(f) E
[

X1X2e2
]= 7

8
.

Exercise 7.5 Show (7.13)-(7.16).
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Exercise 7.6 The model is

Y = X ′β+e

E [X e] = 0

Ω= E[
X X ′e2] .

Find the method of moments estimators (β̂,Ω̂) for
(
β,Ω

)
.

Exercise 7.7 Of the variables (Y ∗,Y , X ) only the pair (Y , X ) are observed. In this case we say that Y ∗ is a
latent variable. Suppose

Y ∗ = X ′β+e

E [X e] = 0

Y = Y ∗+u

where u is a measurement error satisfying

E [X u] = 0

E
[
Y ∗u

]= 0.

Let β̂ denote the OLS coefficient from the regression of Y on X .

(a) Is β the coefficient from the linear projection of Y on X ?

(b) Is β̂ consistent for β as n →∞?

(c) Find the asymptotic distribution of
p

n
(
β̂−β)

as n →∞.

Exercise 7.8 Find the asymptotic distribution of
p

n
(
σ̂2 −σ2

)
as n →∞.

Exercise 7.9 The model is Y = Xβ+e with E [e | X ] = 0 and X ∈R. Consider the two estimators

β̂=
∑n

i=1 Xi Yi∑n
i=1 X 2

i

β̃= 1

n

n∑
i=1

Yi

Xi
.

(a) Under the stated assumptions are both estimators consistent for β?

(b) Are there conditions under which either estimator is efficient?

Exercise 7.10 In the homoskedastic regression model Y = X ′β+ e with E [e | x] = 0 and E
[
e2 | X

] = σ2

suppose β̂ is the OLS estimator of βwith covariance matrix estimator V̂ β̂ based on a sample of size n. Let

σ̂2 be the estimator of σ2. You wish to forecast an out-of-sample value of Yn+1 given that Xn+1 = x. Thus
the available information is the sample, the estimates (β̂,V̂ β̂, σ̂2), the residuals êi , and the out-of-sample
value of the regressors Xn+1.

(a) Find a point forecast of Yn+1.

(b) Find an estimator of the variance of this forecast.



CHAPTER 7. ASYMPTOTIC THEORY FOR LEAST SQUARES 191

Exercise 7.11 Take a regression model with i.i.d. observations (Yi , Xi ) with X ∈R

Y = Xβ+e

E [e | X ] = 0

Ω= E[
X 2e2] .

Let β̂ be the OLS estimator of β with residuals êi = Yi −Xi β̂. Consider the estimators ofΩ

Ω̃= 1

n

n∑
i=1

X 2
i e2

i

Ω̂= 1

n

n∑
i=1

X 2
i ê2

i .

(a) Find the asymptotic distribution of
p

n
(
Ω̃−Ω)

as n →∞.

(b) Find the asymptotic distribution of
p

n
(
Ω̂−Ω)

as n →∞.

(c) How do you use the regression assumption E [ei | Xi ] = 0 in your answer to (b)?

Exercise 7.12 Consider the model

Y =α+βX +e

E [e] = 0

E [X e] = 0

with both Y and X scalar. Assuming α> 0 and β< 0 suppose the parameter of interest is the area under
the regression curve (e.g. consumer surplus), which is A =−α2/2β.

Let θ̂ = (α̂, β̂)′ be the least squares estimators of θ = (α,β)′ so that
p

n
(
θ̂−θ) →d N (0,V θ) and let V̂ θ

be a standard estimator for V θ.

(a) Given the above, describe an estimator of A.

(b) Construct an asymptotic 1−η confidence interval for A.

Exercise 7.13 Consider an i.i.d. sample {Yi , Xi } i = 1, ...,n where Y and X are scalar. Consider the reverse
projection model X = Y γ+u with E [Y u] = 0 and define the parameter of interest as θ = 1/γ.

(a) Propose an estimator γ̂ of γ.

(b) Propose an estimator θ̂ of θ.

(c) Find the asymptotic distribution of θ̂.

(d) Find an asymptotic standard error for θ̂.

Exercise 7.14 Take the model

Y = X1β1 +X2β2 +e

E [X e] = 0

with both β1 ∈R and β2 ∈R, and define the parameter θ =β1β2.
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(a) What is the appropriate estimator θ̂ for θ?

(b) Find the asymptotic distribution of θ̂ under standard regularity conditions.

(c) Show how to calculate an asymptotic 95% confidence interval for θ.

Exercise 7.15 Take the linear model Y = Xβ+e with E [e | X ] = 0 and X ∈R. Consider the estimator

β̂=
∑n

i=1 X 3
i Yi∑n

i=1 X 4
i

.

Find the asymptotic distribution of
p

n
(
β̂−β)

as n →∞.

Exercise 7.16 From an i.i.d. sample (Yi , Xi ) of size n you randomly take half the observations. You esti-
mate a least squares regression of Y on X using only this sub-sample. Is the estimated slope coefficient
β̂ consistent for the population projection coefficient? Explain your reasoning.

Exercise 7.17 An economist reports a set of parameter estimates, including the coefficient estimates
β̂1 = 1.0, β̂2 = 0.8, and standard errors s(β̂1) = 0.07 and s(β̂2) = 0.07. The author writes “The estimates
show that β1 is larger than β2.”

(a) Write down the formula for an asymptotic 95% confidence interval for θ = β1 −β2, expressed as a
function of β̂1, β̂2, s(β̂1), s(β̂2) and ρ̂, where ρ̂ is the estimated correlation between β̂1 and β̂2.

(b) Can ρ̂ be calculated from the reported information?

(c) Is the author correct? Does the reported information support the author’s claim?

Exercise 7.18 Suppose an economic model suggests

m(x) = E [Y | X = x] =β0 +β1x +β2x2

where X ∈R. You have a random sample (Yi , Xi ), i = 1, ...,n.

(a) Describe how to estimate m(x) at a given value x.

(b) Describe (be specific) an appropriate confidence interval for m(x).

Exercise 7.19 Take the model Y = X ′β+e with E [X e] = 0 and suppose you have observations i = 1, ...,2n.
(The number of observations is 2n.) You randomly split the sample in half, (each has n observations),
calculate β̂1 by least squares on the first sample, and β̂2 by least squares on the second sample. What is
the asymptotic distribution of

p
n

(
β̂1 − β̂2

)
?

Exercise 7.20 The variables {Yi , Xi ,Wi } are a random sample. The parameter β is estimated by minimiz-
ing the criterion function

S(β) =
n∑

i=1
Wi

(
Yi −X ′

iβ
)2

That is β̂= argminβS(β).

(a) Find an explicit expression for β̂.
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(b) What population parameter β is β̂ estimating? Be explicit about any assumptions you need to
impose. Do not make more assumptions than necessary.

(c) Find the probability limit for β̂ as n →∞.

(d) Find the asymptotic distribution of
p

n
(
β̂−β)

as n →∞.

Exercise 7.21 Take the model

Y = X ′β+e

E [e | X ] = 0

E
[
e2 | X

]= Z ′γ

where Z is a (vector) function of X . The sample is i = 1, ...,n with i.i.d. observations. Assume that Z ′γ> 0
for all Z . Suppose you want to forecast Yn+1 given Xn+1 = x and Zn+1 = z for an out-of-sample observa-
tion n +1. Describe how you would construct a point forecast and a forecast interval for Yn+1.

Exercise 7.22 Take the model

Y = X ′β+e

E [e | X ] = 0

Z = X ′βγ+u

E [u | X ] = 0

where X is a k vector and Z is scalar. Your goal is to estimate the scalar parameter γ. You use a two-step
estimator:

• Estimate β̂ by least squares of Y on X .

• Estimate γ̂ by least squares of Z on X ′β̂.

(a) Show that γ̂ is consistent for γ.

(b) Find the asymptotic distribution of γ̂ when γ= 0.

Exercise 7.23 The model is Y = X +e with E [e | X ] = 0 and X ∈R. Consider the estimator

β̃= 1

n

n∑
i=1

Yi

Xi
.

Find conditions under which β̃ is consistent for β as n →∞.

Exercise 7.24 The parameter β is defined in the model Y = X ∗β+ e where e is independent of X ∗ ≥ 0,
E [e] = 0, E

[
e2

]=σ2. The observables are (Y , X ) where X = X ∗v and v > 0 is random scale measurement
error, independent of X ∗ and e. Consider the least squares estimator β̂ for β.

(a) Find the plim of β̂ expressed in terms of β and moments of (X , v,e).

(b) Can you find a non-trivial condition under which β̂ is consistent for β? (By non-trivial we mean
something other than v = 1.)
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Exercise 7.25 Take the projection model Y = X ′β+ e with E [X e] = 0. For a positive function w(x) let
Wi = w(Xi ). Consider the estimator

β̃=
(

n∑
i=1

Wi Xi X ′
i

)−1 (
n∑

i=1
Wi Xi Yi

)
.

Find the probability limit (as n →∞) of β̃. Do you need to add an assumption? Is β̃ consistent for β̃? If
not, under what assumption is β̃ consistent for β?

Exercise 7.26 Take the regression model

Y = X ′β+e

E [e | X ] = 0

E
[
e2 | X = x

]=σ2(x)

with X ∈Rk . Assume that P [e = 0] = 0. Consider the infeasible estimator

β̃=
(

n∑
i=1

e−2
i Xi X ′

i

)−1 (
n∑

i=1
e−2

i Xi Yi

)
.

This is a WLS estimator using the weights e−2
i .

(a) Find the asymptotic distribution of β̃.

(b) Contrast your result with the asymptotic distribution of infeasible GLS.

Exercise 7.27 The model is Y = X ′β+e with E [e | X ] = 0. An econometrician is worried about the impact
of some unusually large values of the regressors. The model is thus estimated on the subsample for which
|Xi | ≤ c for some fixed c. Let β̃ denote the OLS estimator on this subsample. It equals

β̃=
(

n∑
i=1

Xi X ′
i1 {|Xi | ≤ c}

)−1 (
n∑

i=1
Xi Yi1 {|Xi | ≤ c}

)
.

(a) Show that β̃−→
p
β.

(b) Find the asymptotic distribution of
p

n
(
β̃−β)

.

Exercise 7.28 As in Exercise 3.26, use the cps09mar dataset and the subsample of white male Hispanics.
Estimate the regression

álog(wage) =β1 education+β2 experience+β3 experience2/100+β4.

(a) Report the coefficient estimates and robust standard errors.

(b) Let θ be the ratio of the return to one year of education to the return to one year of experience for
experience= 10. Write θ as a function of the regression coefficients and variables. Compute θ̂ from
the estimated model.

(c) Write out the formula for the asymptotic standard error for θ̂ as a function of the covariance matrix
for β̂. Compute s(θ̂) from the estimated model.
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(d) Construct a 90% asymptotic confidence interval for θ from the estimated model.

(e) Compute the regression function at education= 12 and experience= 20. Compute a 95% confidence
interval for the regression function at this point.

(f) Consider an out-of-sample individual with 16 years of education and 5 years experience. Construct
an 80% forecast interval for their log wage and wage. [To obtain the forecast interval for the wage,
apply the exponential function to both endpoints.]



Chapter 8

Restricted Estimation

8.1 Introduction

In the linear projection model

Y = X ′β+e

E [X e] = 0

a common task is to impose a constraint on the coefficient vector β. For example, partitioning X ′ =(
X ′

1, X ′
2

)
and β′ = (

β′
1,β′

2

)
a typical constraint is an exclusion restriction of the form β2 = 0. In this case

the constrained model is

Y = X ′
1β1 +e

E [X e] = 0.

At first glance this appears the same as the linear projection model but there is one important difference:
the error e is uncorrelated with the entire regressor vector X ′ = (

X ′
1, X ′

2

)
not just the included regressor

X1.
In general, a set of q linear constraints on β takes the form

R ′β= c (8.1)

where R is k × q, rank(R) = q < k, and c is q × 1. The assumption that R is full rank means that the
constraints are linearly independent (there are no redundant or contradictory constraints). We define
the restricted parameter space B as the set of values of β which satisfy (8.1), that is

B = {
β : R ′β= c

}
.

Sometimes we will call (8.1) a constraint and sometimes a restriction. They are the same thing.
Similarly sometimes we will call estimators which satisfy (8.1) constrained estimators and sometimes
restricted estimators. They mean the same thing.

The constraint β2 = 0 discussed above is a special case of the constraint (8.1) with

R =
(

0
I k2

)
, (8.2)

a selector matrix, and c = 0.

196
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Another common restriction is that a set of coefficients sum to a known constant, i.e. β1 +β2 = 1.
For example, this constraint arises in a constant-return-to-scale production function. Other common
restrictions include the equality of coefficients β1 =β2, and equal and offsetting coefficients β1 =−β2.

A typical reason to impose a constraint is that we believe (or have information) that the constraint
is true. By imposing the constraint we hope to improve estimation efficiency. The goal is to obtain
consistent estimates with reduced variance relative to the unconstrained estimator.

The questions then arise: How should we estimate the coefficient vector β imposing the linear re-
striction (8.1)? If we impose such constraints what is the sampling distribution of the resulting estimator?
How should we calculate standard errors? These are the questions explored in this chapter.

8.2 Constrained Least Squares

An intuitively appealing method to estimate a constrained linear projection is to minimize the least
squares criterion subject to the constraint R ′β= c .

The constrained least squares estimator is

β̃cls = argmin
R ′β=c

SSE(β) (8.3)

where

SSE(β) =
n∑

i=1

(
Yi −X ′

iβ
)2 = Y ′Y −2Y ′Xβ+β′X ′Xβ. (8.4)

The estimator β̃cls minimizes the sum of squared errors over all β such that β ∈ B , or equivalently such
that the restriction (8.1) holds. We call β̃cls the constrained least squares (CLS) estimator. We follow
the convention of using a tilde “~” rather than a hat “^” to indicate that β̃cls is a restricted estimator in
contrast to the unrestricted least squares estimator β̂ and write it as β̃cls to be clear that the estimation
method is CLS.

One method to find the solution to (8.3) uses the technique of Lagrange multipliers. The problem
(8.3) is equivalent to finding the critical points of the Lagrangian

L (β,λ) = 1

2
SSE(β)+λ′ (R ′β−c

)
(8.5)

over (β,λ) where λ is an s × 1 vector of Lagrange multipliers. The solution is a saddlepoint. The La-
grangian is minimized over βwhile maximized over λ. The first-order conditions for the solution of (8.5)
are

∂

∂β
L (β̃cls, λ̃cls) =−X ′Y +X ′X β̃cls +Rλ̃cls = 0 (8.6)

and
∂

∂λ
L (β̃cls, λ̃cls) = R ′β̃−c = 0. (8.7)

Premultiplying (8.6) by R ′ (X ′X
)−1 we obtain

−R ′β̂+R ′β̃cls +R ′ (X ′X
)−1 Rλ̃cls = 0

where β̂= (
X ′X

)−1 X ′Y is the unrestricted least squares estimator. Imposing R ′β̃cls−c = 0 from (8.7) and
solving for λ̃cls we find

λ̃cls =
[

R ′ (X ′X
)−1 R

]−1 (
R ′β̂−c

)
.
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Notice that
(

X ′X
)−1 > 0 and R full rank imply that R ′ (X ′X

)−1 R > 0 and is hence invertible. (See Section
A.10.)

Substituting this expression into (8.6) and solving for β̃cls we find the solution to the constrained
minimization problem (8.3)

β̃cls = β̂ols −
(

X ′X
)−1 R

[
R ′ (X ′X

)−1 R
]−1 (

R ′β̂ols −c
)

. (8.8)

(See Exercise 8.5 to verify that (8.8) satisfies (8.1).)
This is a general formula for the CLS estimator. It also can be written as

β̃cls = β̂ols −Q̂
−1
X X R

(
R ′Q̂−1

X X R
)−1 (

R ′β̂ols −c
)

. (8.9)

The CLS residuals are ẽi = Yi −X ′
i β̃cls and are written in vector notation as ẽ.

To illustrate we generated a random sample of 100 observations for the variables (Y , X1, X2) and cal-
culated the sum of squared errors function for the regression of Y on X1 and X2. Figure 8.1 displays
contour plots of the sum of squared errors function. The center of the contour plots is the least squares
minimizer β̂ols = (0.33,0.26)′. Suppose it is desired to estimate the coefficients subject to the constraint
β1 +β2 = 1. This constraint is displayed in the figure by the straight line. The constrained least squares
estimator is the point on this straight line which yields the smallest sum of squared errors. This is the
point which intersects with the lowest contour plot. The solution is the point where a contour plot is
tangent to the constraint line and is marked as β̃cls = (0.52,0.48)′.

β1

β 2
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● β̂ols

●
β~cls

Figure 8.1: Imposing a Constraint on the Least Squares Criterion

In Stata constrained least squares is implemented using the cnsreg command.

8.3 Exclusion Restriction

While (8.8) is a general formula for CLS, in most cases the estimator can be found by applying least
squares to a reparameterized equation. To illustrate let us return to the first example presented at the
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beginning of the chapter – a simple exclusion restriction. Recall that the unconstrained model is

Y = X ′
1β1 +X ′

2β2 +e, (8.10)

the exclusion restriction is β2 = 0, and the constrained equation is

Y = X ′
1β1 +e. (8.11)

In this setting the CLS estimator is OLS of Y on X1. (See Exercise 8.1.) We can write this as

β̃1 =
(

n∑
i=1

X1i X ′
1i

)−1 (
n∑

i=1
X1i Yi

)
. (8.12)

The CLS estimator of the entire vector β′ = (
β′

1,β′
2

)
is

β̃=
(
β̃1

0

)
. (8.13)

It is not immediately obvious but (8.8) and (8.13) are algebraically identical. To see this the first compo-
nent of (8.8) with (8.2) is

β̃1 =
(

I k2 0
)[
β̂−Q̂

−1
X X

(
0

I k2

)[(
0 I k2

)
Q̂

−1
X X

(
0

I k2

)]−1 (
0 I k2

)
β̂

]
.

Using (3.39) this equals

β̃1 = β̂1 −Q̂
12

(
Q̂

22
)−1

β̂2

= β̂1 +Q̂
−1
11·2Q̂12Q̂

−1
22 Q̂22·1β̂2

= Q̂
−1
11·2

(
Q̂1Y −Q̂12Q̂

−1
22 Q̂2Y

)
+Q̂

−1
11·2Q̂12Q̂

−1
22 Q̂22·1Q̂

−1
22·1

(
Q̂2y −Q̂21Q̂

−1
11 Q̂1Y

)
= Q̂

−1
11·2

(
Q̂1Y −Q̂12Q̂

−1
22 Q̂21Q̂

−1
11 Q̂1Y

)
= Q̂

−1
11·2

(
Q̂11 −Q̂12Q̂

−1
22 Q̂21

)
Q̂

−1
11 Q̂1Y

= Q̂
−1
11 Q̂1Y

which is (8.13) as originally claimed.

8.4 Finite Sample Properties

In this section we explore some of the properties of the CLS estimator in the linear regression model

Y = X ′β+e (8.14)

E [e | X ] = 0. (8.15)

First, it is useful to write the estimator and the residuals as linear functions of the error vector. These
are algebraic relationships and do not rely on the linear regression assumptions.
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Theorem 8.1 The CLS estimator satisfies

1. R ′β̂−c = R ′ (X ′X
)−1 X ′e

2. β̃cls −β=
((

X ′X
)−1 X ′− AX ′

)
e

3. ẽ = (
I −P +X AX ′)e

4. I n −P +X AX ′ is symmetric and idempotent

5. tr
(

I n −P +X AX ′)= n −k +q

where P = X
(

X ′X
)−1 X ′ and A = (

X ′X
)−1 R

(
R ′ (X ′X

)−1 R
)−1

R ′ (X ′X
)−1.

For a proof see Exercise 8.6.
Given the linearity of Theorem 8.1.2 it is not hard to show that the CLS estimator is unbiased for β.

Theorem 8.2 In the linear regression model (8.14)-(8.15) under (8.1),
E
[
β̃cls | X

]=β.

For a proof see Exercise 8.7.
We can also calculate the covariance matrix of β̃cls. First, for simplicity take the case of conditional

homoskedasticity.

Theorem 8.3 In the homoskedastic linear regression model (8.14)-(8.15) with
E
[
e2 | X

]=σ2, under (8.1),

V 0
β̃
= var

[
β̃cls | X

]
=

((
X ′X

)−1 − (
X ′X

)−1 R
(
R ′ (X ′X

)−1 R
)−1

R ′ (X ′X
)−1

)
σ2.

For a proof see Exercise 8.8.
We use the V 0

β̃
notation to emphasize that this is the covariance matrix under the assumption of

conditional homoskedasticity.
For inference we need an estimate of V 0

β̃
. A natural estimator is

V̂
0
β̃ =

((
X ′X

)−1 − (
X ′X

)−1 R
(
R ′ (X ′X

)−1 R
)−1

R ′ (X ′X
)−1

)
s2

cls

where

s2
cls =

1

n −k +q

n∑
i=1

ẽ2
i (8.16)
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is a biased-corrected estimator of σ2. Standard errors for the components of β are then found by taking
the squares roots of the diagonal elements of V̂ β̃, for example

s(β̂ j ) =
√[

V̂
0
β̃

]
j j

.

The estimator (8.16) has the property that it is unbiased for σ2 under conditional homoskedasticity.
To see this, using the properties of Theorem 8.1,(

n −k +q
)

s2
cls = ẽ ′ẽ

= e ′ (I n −P +X AX ′)(I n −P +X AX ′)e

= e ′ (I n −P +X AX ′)e. (8.17)

We defer the remainder of the proof to Exercise 8.9.

Theorem 8.4 In the homoskedastic linear regression model (8.14)-(8.15) with

E
[
e2 | X

]=σ2, under (8.1), E
[
s2

cls | X
]=σ2 and E

[
V̂

0
β̃ | X

]
=V 0

β̃
.

Now consider the distributional properties in the normal regression model Y = X ′β+ e with e ∼
N(0,σ2). By the linearity of Theorem 8.1.2, conditional on X , β̃cls −β is normal. Given Theorems 8.2 and

8.3 we deduce that β̃cls ∼ N
(
β,V 0

β̃

)
.

Similarly, from Exericise 8.1 we know ẽ = (
I n −P +X AX ′)e is linear in e so is also conditionally nor-

mal. Furthermore, since
(

I n −P +X AX ′)(X
(

X ′X
)−1 −X A

)
= 0, ẽ and β̃cls are uncorrelated and thus

independent. Thus s2
cls and β̃cls are independent.

From (8.17) and the fact that I n −P +X AX ′ is idempotent with rank n −k +q it follows that

s2
cls ∼σ2χ2

n−k+q /
(
n −k +q

)
.

It follows that the t-statistic has the exact distribution

T = β̂ j −β j

s(β̂ j )
∼ N(0,1)√

χ2
n−k+q

/
(n −k +q)

∼ tn−k+q

a student t distribution with n −k +q degrees of freedom.
The relevance of this calculation is that the “degrees of freedom” for CLS regression equal n −k + q

rather than n −k as in OLS. Essentially the model has k − q free parameters instead of k. Another way
of thinking about this is that estimation of a model with k coefficients and q restrictions is equivalent to
estimation with k −q coefficients.

We summarize the properties of the normal regression model.
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Theorem 8.5 In the normal linear regression model (8.14)-(8.15) with con-
straint (8.1),

β̃cls ∼ N
(
β,V 0

β̃

)
(
n −k +q

)
s2

cls

σ2 ∼χ2
n−k+q

T ∼ tn−k+q .

An interesting relationship is that in the homoskedastic regression model

cov
(
β̂ols − β̃cls, β̃cls | X

)= E[(
β̂ols − β̃cls

)(
β̃cls −β

)′ | X
]

= E
[

AX ′ee ′
(

X
(

X ′X
)−1 −X A

)
| X

]
= AX ′

(
X

(
X ′X

)−1 −X A
)
σ2 = 0.

This means that β̂ols− β̃cls and β̃cls are conditionally uncorrelated and hence independent. A corollary is

cov
(
β̂ols, β̃cls | X

)= var
[
β̃cls | X

]
.

A second corollary is

var
[
β̂ols − β̃cls | X

]= var
[
β̂ols | X

]−var
[
β̃cls | X

]
(8.18)

= (
X ′X

)−1 R
(
R ′ (X ′X

)−1 R
)−1

R ′ (X ′X
)−1

σ2.

This also shows that the difference between the CLS and OLS variances matrices equals

var
[
β̂ols | X

]−var
[
β̃cls | X

]= (
X ′X

)−1 R
(
R ′ (X ′X

)−1 R
)−1

R ′ (X ′X
)−1

σ2 ≥ 0

the final equality meaning positive semi-definite. It follows that var
[
β̂ols | X

] ≥ var
[
β̃cls | X

]
in the posi-

tive definite sense, and thus CLS is more efficient than OLS. Both estimators are unbiased (in the linear
regression model) and CLS has a lower covariance matrix (in the linear homoskedastic regression model).

The relationship (8.18) is rather interesting and will appear again. The expression says that the vari-
ance of the difference between the estimators is equal to the difference between the variances. This is
rather special. It occurs generically when we are comparing an efficient and an inefficient estimator. We
call (8.18) the Hausman Equality as it was first pointed out in econometrics by Hausman (1978).

8.5 Minimum Distance

The previous section explored the finite sample distribution theory under the assumptions of the
linear regression model, homoskedastic regression model, and normal regression model. We now return
to the general projection model where we do not impose linearity, homoskedasticity, nor normality. We
are interested in the question: Can we do better than CLS in this setting?

A minimum distance estimator tries to find a parameter value satisfying the constraint which is as
close as possible to the unconstrained estimator. Let β̂ be the unconstrained least squares estimator, and
for some k ×k positive definite weight matrix Ŵ > 0 define the quadratic criterion function

J
(
β
)= n

(
β̂−β)′

Ŵ
(
β̂−β)

. (8.19)
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This is a (squared) weighted Euclidean distance between β̂ and β. J
(
β
)

is small if β is close to β̂, and is
minimized at zero only if β= β̂. A minimum distance estimator β̃md for βminimizes J

(
β
)

subject to the
constraint (8.1), that is,

β̃md = argmin
R ′β=c

J
(
β
)

.

The CLS estimator is the special case when Ŵ = Q̂ X X and we write this criterion function as

J 0 (
β
)= n

(
β̂−β)′

Q̂ X X
(
β̂−β)

. (8.20)

To see the equality of CLS and minimum distance rewrite the least squares criterion as follows. Substitute
the unconstrained least squares fitted equation Yi = X ′

i β̂+ êi into SSE(β) to obtain

SSE(β) =
n∑

i=1

(
Yi −X ′

iβ
)2

=
n∑

i=1

(
X ′

i β̂+ êi −X ′
iβ

)2

=
n∑

i=1
ê2

i +
(
β̂−β)′ ( n∑

i=1
Xi X ′

i

)(
β̂−β)

= nσ̂2 + J 0 (
β
)

(8.21)

where the third equality uses the fact that
∑n

i=1 Xi êi = 0, and the last line uses
∑n

i=1 Xi X ′
i = nQ̂ X X . The ex-

pression (8.21) only depends onβ through J 0
(
β
)

. Thus minimization of SSE(β) and J 0
(
β
)

are equivalent,
and hence β̃md = β̃cls when Ŵ = Q̂ X X .

We can solve for β̃md explicitly by the method of Lagrange multipliers. The Lagrangian is

L (β,λ) = 1

2
J
(
β,Ŵ

)+λ′ (R ′β−c
)

.

The solution to the pair of first order conditions is

λ̃md = n
(
R ′Ŵ −1

R
)−1 (

R ′β̂−c
)

(8.22)

β̃md = β̂−Ŵ
−1

R
(
R ′Ŵ −1

R
)−1 (

R ′β̂−c
)

. (8.23)

(See Exercise 8.10.) Comparing (8.23) with (8.9) we can see that β̃md specializes to β̃cls when we set
Ŵ = Q̂ X X .

An obvious question is which weight matrix Ŵ is best. We will address this question after we derive
the asymptotic distribution for a general weight matrix.

8.6 Asymptotic Distribution

We first show that the class of minimum distance estimators are consistent for the population pa-
rameters when the constraints are valid.

Assumption 8.1 R ′β= c where R is k ×q with rank(R) = q.
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Assumption 8.2 Ŵ −→
p

W > 0.

Theorem 8.6 Consistency
Under Assumptions 7.1, 8.1, and 8.2, β̃md −→

p
β as n →∞.

For a proof see Exercise 8.11.
Theorem 8.6 shows that consistency holds for any weight matrix with a positive definite limit so

includes the CLS estimator.
Similarly, the constrained estimators are asymptotically normally distributed.

Theorem 8.7 Asymptotic Normality
Under Assumptions 7.2, 8.1, and 8.2,

p
n

(
β̃md −β

)−→
d

N
(
0,V β(W )

)
as n →∞, where

V β(W ) =V β−W −1R
(
R ′W −1R

)−1
R ′V β

−V βR
(
R ′W −1R

)−1
R ′W −1

+W −1R
(
R ′W −1R

)−1
R ′V βR

(
R ′W −1R

)−1
R ′W −1 (8.24)

and V β =Q−1
X XΩQ−1

X X .

For a proof see Exercise 8.12.
Theorem 8.7 shows that the minimum distance estimator is asymptotically normal for all positive

definite weight matrices. The asymptotic variance depends on W . The theorem includes the CLS esti-
mator as a special case by setting W =Q X X .

Theorem 8.8 Asymptotic Distribution of CLS Estimator
Under Assumptions 7.2 and 8.1, as n →∞

p
n

(
β̃cls −β

)−→
d

N(0,V cls)

where

V cls =V β−Q−1
X X R

(
R ′Q−1

X X R
)−1

R ′V β

−V βR
(
R ′Q−1

X X R
)−1

R ′Q−1
X X

+Q−1
X X R

(
R ′Q−1

X X R
)−1

R ′V βR
(
R ′Q−1

X X R
)−1

R ′Q−1
X X .
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For a proof see Exercise 8.13.

8.7 Variance Estimation and Standard Errors

Earlier we introduced the covariance matrix estimator under the assumption of conditional homoskedas-
ticity. We now introduce an estimator which does not impose homoskedasticity.

The asymptotic covariance matrix V cls may be estimated by replacing V β with a consistent estima-
tor such as V̂ β. A more efficient estimator can be obtained by using the restricted coefficient estimator
which we now show. Given the constrained least squares squares residuals ẽi = Yi − X ′

i β̃cls we can esti-
mate the matrixΩ= E[

X X ′e2
]

by

Ω̃= 1

n −k +q

n∑
i=1

Xi X ′
i ẽ2

i .

Notice that we have used an adjusted degrees of freedom. This is an ad hoc adjustment designed to
mimic that used for estimation of the error variance σ2. The moment estimator of V β is

Ṽ β = Q̂
−1
X X Ω̃Q̂

−1
X X

and that for V cls is

Ṽ cls = Ṽ β−Q̂
−1
X X R

(
R ′Q̂−1

X X R
)−1

R ′Ṽ β

− Ṽ βR
(
R ′Q̂−1

X X R
)−1

R ′Q̂−1
x x

+Q̂
−1
X X R

(
R ′Q̂−1

X X R
)−1

R ′Ṽ βR
(
R ′Q̂−1

X X R
)−1

R ′Q̂−1
X X .

We can calculate standard errors for any linear combination h′β̃cls such that h does not lie in the
range space of R . A standard error for h′β̃ is

s
(
h′β̃cls

)= (
n−1h′Ṽ clsh

)1/2
.

8.8 Efficient Minimum Distance Estimator

Theorem 8.7 shows that minimum distance estimators, which include CLS as a special case, are
asymptotically normal with an asymptotic covariance matrix which depends on the weight matrix W .
The asymptotically optimal weight matrix is the one which minimizes the asymptotic variance V β(W ).
This turns out to be W =V −1

β
as is shown in Theorem 8.9 below. Since V −1

β
is unknown this weight matrix

cannot be used for a feasible estimator but we can replace V −1
β

with a consistent estimator V̂
−1
β and the

asymptotic distribution (and efficiency) are unchanged. We call the minimum distance estimator with

Ŵ = V̂
−1
β the efficient minimum distance estimator and takes the form

β̃emd = β̂− V̂ βR
(
R ′V̂ βR

)−1 (
R ′β̂−c

)
. (8.25)

The asymptotic distribution of (8.25) can be deduced from Theorem 8.7. (See Exercises 8.14 and 8.15,
and the proof in Section 8.16.)
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Theorem 8.9 Efficient Minimum Distance Estimator
Under Assumptions 7.2 and 8.1,

p
n

(
β̃emd −β

)−→
d

N
(
0,V β,emd

)
as n →∞, where

V β,emd =V β−V βR
(
R ′V βR

)−1 R ′V β. (8.26)

Since
V β,emd ≤V β (8.27)

the estimator (8.25) has lower asymptotic variance than the unrestricted esti-
mator. Furthermore, for any W ,

V β,emd ≤V β(W ) (8.28)

so (8.25) is asymptotically efficient in the class of minimum distance estima-
tors.

Theorem 8.9 shows that the minimum distance estimator with the smallest asymptotic variance is
(8.25). One implication is that the constrained least squares estimator is generally inefficient. The inter-
esting exception is the case of conditional homoskedasticity in which case the optimal weight matrix is

W =
(
V 0
β

)−1
so in this case CLS is an efficient minimum distance estimator. Otherwise when the error

is conditionally heteroskedastic there are asymptotic efficiency gains by using minimum distance rather
than least squares.

The fact that CLS is generally inefficient is counter-intuitive and requires some reflection to under-
stand. Standard intuition suggests to apply the same estimation method (least squares) to the uncon-
strained and constrained models and this is the common empirical practice. But Theorem 8.9 shows that
this is inefficient. Why? The reason is that the least squares estimator does not make use of the regressor
X2. It ignores the information E [X2e] = 0. This information is relevant when the error is heteroskedastic
and the excluded regressors are correlated with the included regressors.

Inequality (8.27) shows that the efficient minimum distance estimator β̃emd has a smaller asymptotic
variance than the unrestricted least squares estimator β̂. This means that efficient estimation is attained
by imposing correct restrictions when we use the minimum distance method.

8.9 Exclusion Restriction Revisited

We return to the example of estimation with a simple exclusion restriction. The model is

Y = X ′
1β1 +X ′

2β2 +e

with the exclusion restriction β2 = 0. We have introduced three estimators of β1. The first is uncon-

strained least squares applied to (8.10) which can be written as β̂1 = Q̂
−1
11·2Q̂1Y ·2. From Theorem 7.25

and equation (7.14) its asymptotic variance is

avar
[
β̂1

]=Q−1
11·2

(
Ω11 −Q12Q−1

22Ω21 −Ω12Q−1
22 Q21 +Q12Q−1

22Ω22Q−1
22 Q21

)
Q−1

11·2.
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The second estimator of β1 is CLS, which can be written as β̃1 = Q̂
−1
11 Q̂1Y . Its asymptotic variance can

be deduced from Theorem 8.8, but it is simpler to apply the CLT directly to show that

avar
[
β̃1

]=Q−1
11Ω11Q−1

11 . (8.29)

The third estimator of β1 is efficient minimum distance. Applying (8.25), it equals

β1 = β̂1 − V̂ 12V̂
−1
22 β̂2 (8.30)

where we have partitioned

V̂ β =
[

V̂ 11 V̂ 12

V̂ 21 V̂ 22

]
.

From Theorem 8.9 its asymptotic variance is

avar
[
β1

]
=V 11 −V 12V −1

22 V 21. (8.31)

See Exercise 8.16 to verify equations (8.29), (8.30), and (8.31).
In general the three estimators are different and they have different asymptotic variances. It is in-

structive to compare the variances to assess whether or not the constrained estimator is more efficient
than the unconstrained estimator.

First, assume conditional homoskedasticity. In this case the two covariance matrices simplify to
avar

[
β̂1

] = σ2Q−1
11·2 and avar

[
β̃1

] = σ2Q−1
11 . If Q12 = 0 (so X1 and X2 are uncorrelated) then these two

variance matrices are equal and the two estimators have equal asymptotic efficiency. Otherwise, since
Q12Q−1

22 Q21 ≥ 0, then Q11 ≥Q11 −Q12Q−1
22 Q21 and consequently

Q−1
11σ

2 ≤ (
Q11 −Q12Q−1

22 Q21
)−1

σ2.

This means that under conditional homoskedasticity β̃1 has a lower asymptotic covariance matrix than
β̂1. Therefore in this context constrained least squares is more efficient than unconstrained least squares.
This is consistent with our intuition that imposing a correct restriction (excluding an irrelevant regressor)
improves estimation efficiency.

However, in the general case of conditional heteroskedasticity this ranking is not guaranteed. In fact
what is really amazing is that the variance ranking can be reversed. The CLS estimator can have a larger
asymptotic variance than the unconstrained least squares estimator.

To see this let’s use the simple heteroskedastic example from Section 7.4. In that example, Q11 =
Q22 = 1, Q12 = 1

2
,Ω11 =Ω22 = 1, andΩ12 = 7

8
. We can calculate (see Exercise 8.17) that Q11·2 = 3

4
and

avar
[
β̂1

]= 2

3
(8.32)

avar
[
β̃1

]= 1 (8.33)

avar
[
β1

]
= 5

8
. (8.34)

Thus the CLS estimator β̃1 has a larger variance than the unrestricted least squares estimator β̂1! The
minimum distance estimator has the smallest variance of the three, as expected.

What we have found is that when the estimation method is least squares, deleting the irrelevant
variable X2 can actually increase estimation variance, or equivalently, adding an irrelevant variable can
decrease the estimation variance.
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To repeat this unexpected finding, we have shown that it is possible for least squares applied to the
short regression (8.11) to be less efficient for estimation of β1 than least squares applied to the long
regression (8.10) even though the constraint β2 = 0 is valid! This result is strongly counter-intuitive. It
seems to contradict our initial motivation for pursuing constrained estimation – to improve estimation
efficiency.

It turns out that a more refined answer is appropriate. Constrained estimation is desirable but not
necessarily CLS. While least squares is asymptotically efficient for estimation of the unconstrained pro-
jection model it is not an efficient estimator of the constrained projection model.

8.10 Variance and Standard Error Estimation

We have discussed covariance matrix estimation for CLS but not yet for the EMD estimator.
The asymptotic covariance matrix (8.26) may be estimated by replacing V β with a consistent estima-

tor. It is best to construct the variance estimate using β̃emd. The EMD residuals are ẽi = Yi − X ′
i β̃emd.

Using these we can estimate the matrixΩ= E[
X X ′e2

]
by

Ω̃= 1

n −k +q

n∑
i=1

Xi X ′
i ẽ2

i .

Following the formula for CLS we recommend an adjusted degrees of freedom. Given Ω̃ the moment

estimator of V β is Ṽ β = Q̂
−1
X X Ω̃Q̂

−1
X X . Given this, we construct the variance estimator

Ṽ β,emd = Ṽ β− Ṽ βR
(
R ′Ṽ βR

)−1
R ′Ṽ β. (8.35)

A standard error for h′β̃ is then

s
(
h′β̃

)= (
n−1h′Ṽ β,emdh

)1/2
. (8.36)

8.11 Hausman Equality

Form (8.25) we have

p
n

(
β̂ols − β̃emd

)= V̂ βR
(
R ′V̂ βR

)−1p
n

(
R ′β̂ols −c

)
−→

d
N

(
0,V βR

(
R ′V βR

)−1 R ′V β

)
.

It follows that the asymptotic variances of the estimators satisfy the relationship

avar
[
β̂ols − β̃emd

]= avar
[
β̂ols

]−avar
[
β̃emd

]
. (8.37)

We call (8.37) the Hausman Equality: the asymptotic variance of the difference between an efficient and
another estimator is the difference in the asymptotic variances.

8.12 Example: Mankiw, Romer and Weil (1992)

We illustrate the methods by replicating some of the estimates reported in a well-known paper by
Mankiw, Romer, and Weil (1992). The paper investigates the implications of the Solow growth model
using cross-country regressions. A key equation in their paper regresses the change between 1960 and
1985 in log GDP per capita on (1) log GDP in 1960, (2) the log of the ratio of aggregate investment to
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Table 8.1: Estimates of Solow Growth Model

β̂ols β̂cls β̂emd

logGDP1960 −0.29
(0.05)

−0.30
(0.05)

−0.30
(0.05)

log I
GDP 0.52

(0.11)
0.50

(0.09)
0.46

(0.08)

log
(
n + g +δ) −0.51

(0.24)
−0.74
(0.08)

−0.71
(0.07)

log(School) 0.23
(0.07)

0.24
(0.07)

0.25
(0.06)

Intercept 3.02
(0.74)

2.46
(0.44)

2.48
(0.44)

Standard errors are heteroskedasticity-consistent

GDP, (3) the log of the sum of the population growth rate n, the technological growth rate g , and the rate
of depreciation δ, and (4) the log of the percentage of the working-age population that is in secondary
school (School), the latter a proxy for human-capital accumulation.

The data is available on the textbook webpage in the file MRW1992.
The sample is 98 non-oil-producing countries and the data was reported in the published paper.

As g and δ were unknown the authors set g +δ = 0.05. We report least squares estimates in the first
column of Table 8.1. The estimates are consistent with the Solow theory due to the positive coefficients
on investment and human capital and negative coefficient for population growth. The estimates are
also consistent with the convergence hypothesis (that income levels tend towards a common mean over
time) as the coefficient on intial GDP is negative.

The authors show that in the Solow model the 2nd , 3r d and 4th coefficients sum to zero. They rees-
timated the equation imposing this constraint. We present constrained least squares estimates in the
second column of Table 8.1 and efficient minimum distance estimates in the third column. Most of the
coefficients and standard errors only exhibit small changes by imposing the constraint. The one excep-
tion is the coefficient on log population growth which increases in magnitude and its standard error
decreases substantially. The differences between the CLS and EMD estimates are modest.

We now present Stata, R and MATLAB code which implements these estimates.
You may notice that the Stata code has a section which uses the Mata matrix programming language.

This is used because Stata does not implement the efficient minimum distance estimator, so needs to be
separately programmed. As illustrated here, the Mata language allows a Stata user to implement methods
using commands which are quite similar to MATLAB.
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Stata do File

use "MRW1992.dta", clear
gen lndY = log(Y85)-log(Y60)
gen lnY60 = log(Y60)
gen lnI = log(invest/100)
gen lnG = log(pop_growth/100+0.05)
gen lnS = log(school/100)
* Unrestricted regression
reg lndY lnY60 lnI lnG lnS if N==1, r
* Store result for efficient minimum distance
mat b = e(b)’
scalar k = e(rank)
mat V = e(V)
* Constrained regression
constraint define 1 lnI+lnG+lnS=0
cnsreg lndY lnY60 lnI lnG lnS if N==1, constraints(1) r
* Efficient minimum distance
mata{

data = st_data(.,("lnY60","lnI","lnG","lnS","lndY","N"))
data_select = select(data,data[.,6]:==1)
y = data_select[.,5]
n = rows(y)
x = (data_select[.,1..4],J(n,1,1))
k = cols(x)
invx = invsym(x’*x)
b_ols = st_matrix("b")
V_ols = st_matrix("V")
R = (0 \ 1 \ 1 \ 1 \ 0)
b_emd = b_ols-V_ols*R*invsym(R’*V_ols*R)*R’*b_ols
e_emd = J(1,k,y-x*b_emd)
xe_emd = x:*e_emd
xe_emd’*xe_emd
V2 = (n/(n-k+1))*invx*(xe_emd’*xe_emd)*invx
V_emd = V2 - V2*R*invsym(R’*V2*R)*R’*V2
se_emd = diagonal(sqrt(V_emd))
st_matrix("b_emd",b_emd)
st_matrix("se_emd",se_emd)}

mat list b_emd
mat list se_emd
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R Program File

data <- read.table("MRW1992.txt",header=TRUE)
N <- matrix(data$N,ncol=1)
lndY <- matrix(log(data$Y85)-log(data$Y60),ncol=1)
lnY60 <- matrix(log(data$Y60),ncol=1)
lnI <- matrix(log(data$invest/100),ncol=1)
lnG <- matrix(log(data$pop_growth/100+0.05),ncol=1)
lnS <- matrix(log(data$school/100),ncol=1)
xx <- as.matrix(cbind(lnY60,lnI,lnG,lnS,matrix(1,nrow(lndY),1)))
x <- xx[N==1,]
y <- lndY[N==1]
n <- nrow(x)
k <- ncol(x)
# Unrestricted regression
invx <-solve(t(x)%*%x)
b_ols <- solve((t(x)%*%x),(t(x)%*%y))
e_ols <- rep((y-x%*%beta_ols),times=k)
xe_ols <- x*e_ols
V_ols <- (n/(n-k))*invx%*%(t(xe_ols)%*%xe_ols)%*%invx
se_ols <- sqrt(diag(V_ols))
print(beta_ols)
print(se_ols)
# Constrained regression
R <- c(0,1,1,1,0)
iR <- invx%*%R%*%solve(t(R)%*%invx%*%R)%*%t(R)
b_cls <- b_ols - iR%*%b_ols
e_cls <- rep((y-x%*%b_cls),times=k)
xe_cls <- x*e_cls
V_tilde <- (n/(n-k+1))*invx%*%(t(xe_cls)%*%xe_cls)%*%invx
V_cls <- V_tilde - iR%*%V_tilde - V_tilde%*%t(iR) +iR%*%V_tilde%*%t(iR)
print(b_cls)print(se_cls)
# Efficient minimum distance
Vr <- V_ols%*%R%*%solve(t(R)%*%V_ols%*%R)%*%t(R)
b_emd <- b_ols - Vr%*%b_ols
e_emd <- rep((y-x%*%b_emd),times=k)
xe_emd <- x*e_emd
V2 <- (n/(n-k+1))*invx%*%(t(xe_emd)%*%xe_emd)%*%invx
V_emd <- V2 - V2%*%R%*%solve(t(R)%*%V2%*%R)%*%t(R)%*%V2
se_emd <- sqrt(diag(V_emd))
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MATLAB Program File

data = xlsread(’MRW1992.xlsx’);
N = data(:,1);
Y60 = data(:,4);
Y85 = data(:,5);
pop_growth = data(:,7);
invest = data(:,8);
school = data(:,9);
lndY = log(Y85)-log(Y60);
lnY60 = log(Y60);
lnI = log(invest/100);
lnG = log(pop_growth/100+0.05);
lnS = log(school/100);
xx = [lnY60,lnI,lnG,lnS,ones(size(lndY,1),1)];
x = xx(N==1,:);
y = lndY(N==1);
[n,k] = size(x);
% Unrestricted regression
invx = inv(x’*x);
beta_ols = (x’*x)\(x’*y);
e_ols = repmat((y-x*beta_ols),1,k);
xe_ols = x.*e_ols;
V_ols = (n/(n-k))*invx*(xe_ols’*xe_ols)*invx;
se_ols = sqrt(diag(V_ols));
display(beta_ols);
display(se_ols);
% Constrained regression
R = [0;1;1;1;0];
iR = invx*R*inv(R’*invx*R)*R’;
beta_cls = beta_ols - iR*beta_ols;
e_cls = repmat((y-x*beta_cls),1,k);
xe_cls = x.*e_cls;
V_tilde = (n/(n-k+1))*invx*(xe_cls’*xe_cls)*invx;
V_cls = V_tilde - iR*V_tilde - V_tilde*(iR’) + iR*V_tilde*(iR’);
se_cls = sqrt(diag(V_cls));
display(beta_cls);display(se_cls);
% Efficient minimum distance
beta_emd = beta_ols-V_ols*R*inv(R’*V_ols*R)*R’*beta_ols;
e_emd = repmat((y-x*beta_emd),1,k);
xe_emd = x.*e_emd;
V2 = (n/(n-k+1))*invx*(xe_emd’*xe_emd)*invx;
V_emd = V2 - V2*R*inv(R’*V2*R)*R’*V2;
se_emd = sqrt(diag(V_emd));
display(beta_emd);
display(se_emd);



CHAPTER 8. RESTRICTED ESTIMATION 213

8.13 Misspecification

What are the consequences for a constrained estimator β̃ if the constraint (8.1) is incorrect? To be
specific suppose that the truth is

R ′β= c∗

where c∗ is not necessarily equal to c .
This situation is a generalization of the analysis of “omitted variable bias” from Section 2.24 where

we found that the short regression (e.g. (8.12)) is estimating a different projection coefficient than the
long regression (e.g. (8.10)).

One answer is to apply formula (8.23) to find that

β̃md −→
p
β∗

md =β−W −1R
(
R ′W −1R

)−1 (
c∗−c

)
. (8.38)

The second term, W −1R
(
R ′W −1R

)−1
(c∗−c), shows that imposing an incorrect constraint leads to in-

consistency – an asymptotic bias. We can call the limiting value β∗
md the minimum-distance projection

coefficient or the pseudo-true value implied by the restriction.
However, we can say more.
For example, we can describe some characteristics of the approximating projections. The CLS esti-

mator projection coefficient has the representation

β∗
cls = argmin

R ′β=c
E
[(

Y −X ′β
)2

]
,

the best linear predictor subject to the constraint (8.1). The minimum distance estimator converges in
probability to

β∗
md = argmin

R ′β=c

(
β−β0

)′W
(
β−β0

)
where β0 is the true coefficient. That is, β∗

md is the coefficient vector satisfying (8.1) closest to the true
value in the weighted Euclidean norm. These calculations show that the constrained estimators are still
reasonable in the sense that they produce good approximations to the true coefficient conditional on
being required to satisfy the constraint.

We can also show that β̃md has an asymptotic normal distribution. The trick is to define the pseudo-
true value

β∗
n =β−Ŵ

−1
R

(
R ′Ŵ −1

R
)−1 (

c∗−c
)

. (8.39)

(Note that (8.38) and (8.39) are different!) Then

p
n

(
β̃md −β∗

n

)=p
n

(
β̂−β)−Ŵ

−1
R

(
R ′Ŵ −1

R
)−1p

n
(
R ′β̂−c∗)

=
(

I k −Ŵ
−1

R
(
R ′Ŵ −1

R
)−1

R ′
)p

n
(
β̂−β)

−→
d

(
I k −W −1R

(
R ′W −1R

)−1
R ′

)
N

(
0,V β

)
= N

(
0,V β(W )

)
. (8.40)

In particular p
n

(
β̃emd −β∗

n

)−→
d

N
(
0,V ∗

β

)
.

This means that even when the constraint (8.1) is misspecified the conventional covariance matrix es-
timator (8.35) and standard errors (8.36) are appropriate measures of the sampling variance though the
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distributions are centered at the pseudo-true values (projections) β∗
n rather than β. The fact that the

estimators are biased is an unavoidable consequence of misspecification.
An alternative approach to the asymptotic distribution theory under misspecification uses the con-

cept of local alternatives. It is a technical device which might seem a bit artificial but it is a powerful
method to derive useful distributional approximations in a wide variety of contexts. The idea is to index
the true coefficient βn by n via the relationship

R ′βn = c +δn−1/2. (8.41)

for some δ ∈ Rq . Equation (8.41) specifies that βn violates (8.1) and thus the constraint is misspecified.
However, the constraint is “close” to correct as the difference R ′βn − c = δn−1/2 is “small” in the sense
that it decreases with the sample size n. We call (8.41) local misspecification.

The asymptotic theory is derived as n →∞ under the sequence of probability distributions with the
coefficients βn . The way to think about this is that the true value of the parameter is βn and it is “close”
to satisfying (8.1). The reason why the deviation is proportional to n−1/2 is because this is the only choice
under which the localizing parameter δ appears in the asymptotic distribution but does not dominate it.
The best way to see this is to work through the asymptotic approximation.

Since βn is the true coefficient value, then Y = X ′βn +e and we have the standard representation for
the unconstrained estimator, namely

p
n

(
β̂−βn

)= (
1

n

n∑
i=1

Xi X ′
i

)−1 (
1p
n

n∑
i=1

Xi ei

)
−→

d
N

(
0,V β

)
. (8.42)

There is no difference under fixed (classical) or local asymptotics since the right-hand-side is indepen-
dent of the coefficient βn .

A difference arises for the constrained estimator. Using (8.41), c = R ′βn −δn−1/2 so

R ′β̂−c = R ′ (β̂−βn
)+δn−1/2

and

β̃md = β̂−Ŵ
−1

R
(
R ′Ŵ −1

R
)−1 (

R ′β̂−c
)

= β̂−Ŵ
−1

R
(
R ′Ŵ −1

R
)−1

R ′ (β̂−βn
)+Ŵ

−1
R

(
R ′Ŵ −1

R
)−1

δn−1/2.

It follows that
p

n
(
β̃md −βn

)= (
I k −Ŵ

−1
R

(
R ′Ŵ −1

R
)−1

R ′
)p

n
(
β̂−βn

)+Ŵ
−1

R
(
R ′Ŵ −1

R
)−1

δ.

The first term is asymptotically normal (from 8.42)). The second term converges in probability to a con-
stant. This is because the n−1/2 local scaling in (8.41) is exactly balanced by the

p
n scaling of the estima-

tor. No alternative rate would have produced this result.
Consequently we find that the asymptotic distribution equals

p
n

(
β̃md −βn

)−→
d

N
(
0,V β

)+W −1R
(
R ′W −1R

)−1
δ= N

(
δ∗,V β(W )

)
(8.43)

where δ∗ =W −1R
(
R ′W −1R

)−1
δ.

The asymptotic distribution (8.43) is an approximation of the sampling distribution of the restricted
estimator under misspecification. The distribution (8.43) contains an asymptotic bias component δ∗.
The approximation is not fundamentally different from (8.40) – they both have the same asymptotic
variances and both reflect the bias due to misspecification. The difference is that (8.40) puts the bias on
the left-side of the convergence arrow while (8.43) has the bias on the right-side. There is no substantive
difference between the two. However, (8.43) is more convenient for some purposes such as the analysis
of the power of tests as we will explore in the next chapter.
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8.14 Nonlinear Constraints

In some cases it is desirable to impose nonlinear constraints on the parameter vector β. They can be
written as

r (β) = 0 (8.44)

where r :Rk →Rq . This includes the linear constraints (8.1) as a special case. An example of (8.44) which
cannot be written as (8.1) is β1β2 = 1, which is (8.44) with r (β) =β1β2 −1.

The constrained least squares and minimum distance estimators of β subject to (8.44) solve the min-
imization problems

β̃cls = argmin
r (β)=0

SSE(β) (8.45)

β̃md = argmin
r (β)=0

J
(
β
)

(8.46)

where SSE(β) and J
(
β
)

are defined in (8.4) and (8.19), respectively. The solutions solve the Lagrangians

L (β,λ) = 1

2
SSE(β)+λ′r (β)

or

L (β,λ) = 1

2
J
(
β
)+λ′r (β) (8.47)

over (β,λ).
Computationally there is no general closed-form solution so they must be found numerically. Algo-

rithms to numerically solve (8.45) and (8.46) are known as constrained optimization methods and are
available in programming languages including MATLAB, GAUSS and R. See Chapter 12 of Introduction
to Econometrics.

Assumption 8.3

1. r (β) = 0.

2. r (β) is continuously differentiable at the true β.

3. rank(R) = q, where R = ∂

∂β
r (β)′.

The asymptotic distribution is a simple generalization of the case of a linear constraint but the proof
is more delicate.
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Theorem 8.10 Under Assumptions 7.2, 8.2, and 8.3, for β̃ = β̃md and β̃ = β̃cls

defined in (8.45) and (8.46),

p
n

(
β̃−β)−→

d
N

(
0,V β(W )

)
as n →∞ where V β(W ) is defined in (8.24). For β̃cls, W = Q X X and V β(W ) =
V cls as defined in Theorem 8.8. V β(W ) is minimized with W = V −1

β
in which

case the asymptotic variance is

V ∗
β =V β−V βR

(
R ′V βR

)−1 R ′V β.

The asymptotic covariance matrix for the efficient minimum distance estimator can be estimated by

V̂
∗
β = V̂ β− V̂ βR̂

(
R̂

′
V̂ βR̂

)−1
R̂

′
V̂ β

where

R̂ = ∂

∂β
r (β̃md)′. (8.48)

Standard errors for the elements of β̃md are the square roots of the diagonal elements of V̂
∗
β̃ = n−1V̂

∗
β.

8.15 Inequality Restrictions

Inequality constraints on the parameter vector β take the form

r (β) ≥ 0 (8.49)

for some function r :Rk →Rq . The most common example is a non-negative constraint β1 ≥ 0.
The constrained least squares and minimum distance estimators can be written as

β̃cls = argmin
r (β)≥0

SSE(β) (8.50)

and
β̃md = argmin

r (β)≥0
J
(
β
)

. (8.51)

Except in special cases the constrained estimators do not have simple algebraic solutions. An impor-
tant exception is when there is a single non-negativity constraint, e.g. β1 ≥ 0 with q = 1. In this case the
constrained estimator can be found by the following approach. Compute the uncontrained estimator β̂.
If β̂1 ≥ 0 then β̃= β̂. Otherwise if β̂1 < 0 then impose β1 = 0 (eliminate the regressor X1) and re-estimate.
This method yields the constrained least squares estimator. While this method works when there is a
single non-negativity constraint, it does not immediately generalize to other contexts.

The computation problems (8.50) and (8.51) are examples of quadratic programming. Quick com-
puter algorithms are available in programming languages including MATLAB, GAUSS and R.

Inference on inequality-constrained estimators is unfortunately quite challenging. The conventional
asymptotic theory gives rise to the following dichotomy. If the true parameter satisfies the strict in-
equality r (β) > 0 then asymptotically the estimator is not subject to the constraint and the inequality-
constrained estimator has an asymptotic distribution equal to the unconstrained case. However if the
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true parameter is on the boundary, e.g., r (β) = 0, then the estimator has a truncated structure. This is
easiest to see in the one-dimensional case. If we have an estimator β̂ which satisfies

p
n

(
β̂−β) −→

d
Z =

N
(
0,Vβ

)
and β = 0, then the constrained estimator β̃ = max[β̂,0] will have the asymptotic distributionp

nβ̃−→
d

max[Z ,0], a “half-normal” distribution.

8.16 Technical Proofs*

Proof of Theorem 8.9, equation (8.28) Let R⊥ be a full rank k × (
k −q

)
matrix satisfying R ′

⊥V βR = 0 and
then set C = [R ,R⊥] which is full rank and invertible. Then we can calculate that

C ′V ∗
βC =

[
R ′V ∗

β
R R ′V ∗

βR⊥
R ′

⊥V ∗
β

R R ′
⊥V ∗

β
R⊥

]
=

[
0 0
0 R ′

⊥V βR⊥

]
and

C ′V β(W )C

=
[

R ′V ∗
β

(W )R R ′V ∗
β(W )R⊥

R ′
⊥V ∗

β
(W )R R ′

⊥V ∗
β

(W )R⊥

]

=
[

0 0

0 R ′
⊥V βR⊥+R ′

⊥W R
(
R ′W R

)−1R ′V βR
(
R ′W R

)−1 R ′W R⊥

]
.

Thus

C ′
(
V β(W )−V ∗

β

)
C

=C ′V β(W )C −C ′V ∗
βC

=
[

0 0

0 R ′
⊥W R

(
R ′W R

)−1 R ′V βR
(
R ′W R

)−1 R ′W R⊥

]
≥ 0

Since C is invertible it follows that V β(W )−V ∗
β
≥ 0 which is (8.28). ■

Proof of Theorem 8.10 We show the result for the minimum distance estimator β̃ = β̃md as the proof
for the constrained least squares estimator is similar. For simplicity we assume that the constrained
estimator is consistent β̃ −→

p
β. This can be shown with more effort, but requires a deeper treatment

than appropriate for this textbook.
For each element r j (β) of the q-vector r (β), by the mean value theorem there exists a β∗

j on the line

segment joining β̃ and β such that

r j (β̃) = r j (β)+ ∂

∂β
r j (β∗

j )′
(
β̃−β)

. (8.52)

Let R∗
n be the k ×q matrix

R∗ =
[

∂

∂β
r1(β∗

1 )
∂

∂β
r2(β∗

2 ) · · · ∂

∂β
rq (β∗

q )
]

.
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Since β̃−→
p
β it follows that β∗

j −→p β, and by the CMT, R∗ −→
p

R . Stacking the (8.52), we obtain

r (β̃) = r (β)+R∗′ (β̃−β)
.

Since r
(
β̃
)= 0 by construction and r (β) = 0 by Assumption 8.1 this implies

0 = R∗′ (β̃−β)
. (8.53)

The first-order condition for (8.47) is Ŵ
(
β̂− β̃)= R̂λ̃ where R̂ is defined in (8.48). Premultiplying by

R∗′Ŵ −1
, inverting, and using (8.53), we find

λ̃=
(
R∗′Ŵ −1

R̂
)−1

R∗′ (β̂− β̃)= (
R∗′Ŵ −1

R̂
)−1

R∗′ (β̂−β)
.

Thus

β̃−β=
(

I k −Ŵ
−1

R̂
(
R∗′

n Ŵ
−1

R̂
)−1

R∗′
n

)(
β̂−β)

. (8.54)

From Theorem 7.3 and Theorem 7.6 we find

p
n

(
β̃−β)= (

I k −Ŵ
−1

R̂
(
R∗′

n Ŵ
−1

R̃
)−1

R∗′
n

)p
n

(
β̂−β)

−→
d

(
I k −W −1R

(
R ′W −1R

)−1
R ′

)
N

(
0,V β

)
= N

(
0,V β(W )

)
.

■

_____________________________________________________________________________________________

8.17 Exercises

Exercise 8.1 In the model Y = X ′
1β1+X ′

2β2+e, show directly from definition (8.3) that the CLS estimator
of β= (β1,β2) subject to the constraint that β2 = 0 is the OLS regression of Y on X1.

Exercise 8.2 In the model Y = X ′
1β1+X ′

2β2+e, show directly from definition (8.3) that the CLS estimator
of β= (β1,β2) subject to the constraint β1 = c (where c is some given vector) is OLS of Y −X ′

1c on X2.

Exercise 8.3 In the model Y = X ′
1β1 + X ′

2β2 + e, with β1 and β2 each k × 1, find the CLS estimator of
β= (β1,β2) subject to the constraint that β1 =−β2.

Exercise 8.4 In the linear projection model Y =α+X ′β+e consider the restriction β= 0.

(a) Find the CLS estimator of α under the restriction β= 0.

(b) Find an expression for the efficient minimum distance estimator of α under the restriction β= 0.

Exercise 8.5 Verify that for β̃cls defined in (8.8) that R ′β̃cls = c .

Exercise 8.6 Prove Theorem 8.1.

Exercise 8.7 Prove Theorem 8.2, that is, E
[
β̃cls | X

] = β, under the assumptions of the linear regression
regression model and (8.1). (Hint: Use Theorem 8.1.)
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Exercise 8.8 Prove Theorem 8.3.

Exercise 8.9 Prove Theorem 8.4. That is, show E
[
s2

cls | X
]=σ2 under the assumptions of the homoskedas-

tic regression model and (8.1).

Exercise 8.10 Verify (8.22), (8.23), and that the minimum distance estimator β̃md with Ŵ = Q̂ X X equals
the CLS estimator.

Exercise 8.11 Prove Theorem 8.6.

Exercise 8.12 Prove Theorem 8.7.

Exercise 8.13 Prove Theorem 8.8. (Hint: Use that CLS is a special case of Theorem 8.7.)

Exercise 8.14 Verify that (8.26) is V β(W ) with W =V −1
β

.

Exercise 8.15 Prove (8.27). Hint: Use (8.26).

Exercise 8.16 Verify (8.29), (8.30) and (8.31).

Exercise 8.17 Verify (8.32), (8.33), and (8.34).

Exercise 8.18 Suppose you have two independent samples each with n observations which satisfy the
models Y1 = X ′

1β1+e1 with E [X1e1] = 0 and Y2 = X ′
2β2+e2 with E [X2e2] = 0 whereβ1 andβ2 are both k×1.

You estimateβ1 andβ2 by OLS on each sample, with consistent asymptotic covariance matrix estimators
V̂ β1 and V̂ β2 . Consider efficient minimum distance estimation under the restriction β1 =β2.

(a) Find the estimator β̃ of β=β1 =β2.

(b) Find the asymptotic distribution of β̃.

(c) How would you approach the problem if the sample sizes are different, say n1 and n2?

Exercise 8.19 Use the cps09mar dataset and the subsample of white male Hispanics.

(a) Estimate the regression

álog(wage) =β1 education+β2 experience+β3 experience2/100+β4married1

+β5married2 +β6married3 +β7widowed+β8divorced+β9separated+β10

where married1, married2, and married3 are the first three marital codes listed in Section 3.22.

(b) Estimate the equation by CLS imposing the constraints β4 = β7 and β8 = β9. Report the estimates
and standard errors.

(c) Estimate the equation using efficient minimum distance imposing the same constraints. Report
the estimates and standard errors.

(d) Under what constraint on the coefficients is the wage equation non-decreasing in experience for
experience up to 50?

(e) Estimate the equation imposing β4 =β7, β8 =β9, and the inequality from part (d).
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Exercise 8.20 Take the model

Y = m(X )+e

m(x) =β0 +β1x +β2x2 +·· ·+βp xp

E
[

X j e
]
= 0, j = 0, ..., p

g (x) = d

d x
m(x)

with i.i.d. observations (Yi , Xi ), i = 1, ...,n. The order of the polynomial p is known.

(a) How should we interpret the function m(x) given the projection assumption? How should we in-
terpret g (x)? (Briefly)

(b) Describe an estimator ĝ (x) of g (x).

(c) Find the asymptotic distribution of
p

n
(
ĝ (x)− g (x)

)
as n →∞.

(d) Show how to construct an asymptotic 95% confidence interval for g (x) (for a single x).

(e) Assume p = 2. Describe how to estimate g (x) imposing the constraint that m(x) is concave.

(f) Assume p = 2. Describe how to estimate g (x) imposing the constraint that m(u) is increasing on
the region u ∈ [xL , xU ].

Exercise 8.21 Take the linear model with restrictions Y = X ′β+ e with E [X e] = 0 and R ′β= c . Consider
three estimators for β:

• β̂ the unconstrained least squares estimator

• β̃ the constrained least squares estimator

• β the constrained efficient minimum distance estimator

For the three estimator define the residuals êi = Yi − X ′
i β̂, ẽi = Yi − X ′

i β̃, e i = Yi − X ′
iβ, and variance

estimators σ̂2 = n−1 ∑n
i=1 ê2

i , σ̃2 = n−1 ∑n
i=1 ẽ2

i , and σ2 = n−1 ∑n
i=1 e2

i .

(a) As β is the most efficient estimator and β̂ the least, do you expect σ2 < σ̃2 < σ̂2 in large samples?

(b) Consider the statistic

Tn = σ̂−2
n∑

i=1
(êi − ẽi )2 .

Find the asymptotic distribution for Tn when R ′β= c is true.

(c) Does the result of the previous question simplify when the error ei is homoskedastic?

Exercise 8.22 Take the linear model Y = X1β1+X2β2+e with E [X e] = 0. Consider the restriction
β1

β2
= 2.

(a) Find an explicit expression for the CLS estimator β̃ = (β̃1, β̃2) of β = (β1,β2) under the restriction.
Your answer should be specific to the restriction. It should not be a generic formula for an abstract
general restriction.

(b) Derive the asymptotic distribution of β̃1 under the assumption that the restriction is true.



Chapter 9

Hypothesis Testing

In Chapter 5 we briefly introduced hypothesis testing in the context of the normal regression model.
In this chapter we explore hypothesis testing in greater detail with a particular emphasis on asymptotic
inference. For more detail on the foundations see Chapter 13 of Introduction to Econometrics.

9.1 Hypotheses

In Chapter 8 we discussed estimation subject to restrictions, including linear restrictions (8.1), non-
linear restrictions (8.44), and inequality restrictions (8.49). In this chapter we discuss tests of such re-
strictions.

Hypothesis tests attempt to assess whether there is evidence contrary to a proposed restriction. Let
θ = r (β) be a q ×1 parameter of interest where r : Rk →Θ ⊂ Rq is some transformation. For example, θ
may be a single coefficient, e.g. θ = β j , the difference between two coefficients, e.g. θ = β j −β`, or the
ratio of two coefficients, e.g. θ =β j /β`.

A point hypothesis concerning θ is a proposed restriction such as

θ = θ0 (9.1)

where θ0 is a hypothesized (known) value.
More generally, letting β ∈ B ⊂ Rk be the parameter space, a hypothesis is a restriction β ∈ B0 where

B0 is a proper subset of B . This specializes to (9.1) by setting B0 =
{
β ∈ B : r (β) = θ0

}
.

In this chapter we will focus exclusively on point hypotheses of the form (9.1) as they are the most
common and relatively simple to handle.

The hypothesis to be tested is called the null hypothesis.

Definition 9.1 The null hypothesis H0 is the restriction θ = θ0 or β ∈ B0.

We often write the null hypothesis as H0 : θ = θ0 or H0 : r (β) = θ0.
The complement of the null hypothesis (the collection of parameter values which do not satisfy the

null hypothesis) is called the alternative hypothesis.

Definition 9.2 The alternative hypothesis H1 is the set {θ ∈Θ : θ 6= θ0} or{
β ∈ B :β ∉ B0

}
.

221
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We often write the alternative hypothesis as H1 : θ 6= θ0 or H1 : r (β) 6= θ0. For simplicity, we often refer
to the hypotheses as “the null” and “the alternative”. Figure 9.1(a) illustrates the division of the parameter
space into null and alternative hypotheses.

H0

H1

(a) Null and Alternative Hypotheses

T < c

T > c

S0

S1

(b) Acceptance and Rejection Regions

Figure 9.1: Hypothesis Testing

In hypothesis testing, we assume that there is a true (but unknown) value of θ and this value either
satisfies H0 or does not satisfy H0. The goal of hypothesis testing is to assess whether or not H0 is true by
asking if H0 is consistent with the observed data.

To be specific, take our example of wage determination and consider the question: Does union mem-
bership affect wages? We can turn this into a hypothesis test by specifying the null as the restriction that
a coefficient on union membership is zero in a wage regression. Consider, for example, the estimates
reported in Table 4.1. The coefficient for “Male Union Member” is 0.095 (a wage premium of 9.5%) and
the coefficient for “Female Union Member” is 0.022 (a wage premium of 2.2%). These are estimates,
not the true values. The question is: Are the true coefficients zero? To answer this question the testing
method asks the question: Are the observed estimates compatible with the hypothesis, in the sense that
the deviation from the hypothesis can be reasonably explained by stochastic variation? Or are the ob-
served estimates incompatible with the hypothesis, in the sense that that the observed estimates would
be highly unlikely if the hypothesis were true?

9.2 Acceptance and Rejection

A hypothesis test either accepts the null hypothesis or rejects the null hypothesis in favor of the alter-
native hypothesis. We can describe these two decisions as “Accept H0” and “Reject H0”. In the example
given in the previous section the decision is either to accept the hypothesis that union membership does
not affect wages, or to reject the hypothesis in favor of the alternative that union membership does affect
wages.

The decision is based on the data and so is a mapping from the sample space to the decision set.
This splits the sample space into two regions S0 and S1 such that if the observed sample falls into S0 we
accept H0, while if the sample falls into S1 we reject H0. The set S0 is called the acceptance region and
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the set S1 the rejection or critical region.
It is convenient to express this mapping as a real-valued function called a test statistic

T = T ((Y1, X1) , ..., (Yn , Xn))

relative to a critical value c. The hypothesis test then consists of the decision rule:

1. Accept H0 if T ≤ c.

2. Reject H0 if T > c.

Figure 9.1(b) illustrates the division of the sample space into acceptance and rejection regions.
A test statistic T should be designed so that small values are likely when H0 is true and large values

are likely when H1 is true. There is a well developed statistical theory concerning the design of optimal
tests. We will not review that theory here, but instead refer the reader to Lehmann and Romano (2005).
In this chapter we will summarize the main approaches to the design of test statistics.

The most commonly used test statistic is the absolute value of the t-statistic

T = |T (θ0)| (9.2)

where

T (θ) = θ̂−θ
s(θ̂)

(9.3)

is the t-statistic from (7.33), θ̂ is a point estimator, and s(θ̂) its standard error. T is an appropriate statistic
when testing hypotheses on individual coefficients or real-valued parameters θ = h(β) and θ0 is the hy-
pothesized value. Quite typically θ0 = 0, as interest focuses on whether or not a coefficient equals zero,
but this is not the only possibility. For example, interest may focus on whether an elasticity θ equals 1, in
which case we may wish to test H0 : θ = 1.

9.3 Type I Error

A false rejection of the null hypothesis H0 (rejecting H0 when H0 is true) is called a Type I error. The
probability of a Type I error is called the size of the test.

P
[
Reject H0 |H0 true

]=P [T > c |H0 true] . (9.4)

The uniform size of the test is the supremum of (9.4) across all data distributions which satisfy H0. A
primary goal of test construction is to limit the incidence of Type I error by bounding the size of the test.

For the reasons discussed in Chapter 7, in typical econometric models the exact sampling distribu-
tions of estimators and test statistics are unknown and hence we cannot explicitly calculate (9.4). In-
stead, we typically rely on asymptotic approximations. Suppose that the test statistic has an asymptotic
distribution under H0. That is, when H0 is true

T −→
d
ξ (9.5)

as n →∞ for some continuously-distributed random variable ξ. This is not a substantive restriction as
most conventional econometric tests satisfy (9.5). Let G(u) = P [ξ≤ u] denote the distribution of ξ. We
call ξ (or G) the asymptotic null distribution.

It is desirable to design test statistics T whose asymptotic null distribution G is known and does not
depend on unknown parameters. In this case we say that T is asymptotically pivotal.
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For example, if the test statistic equals the absolute t-statistic from (9.2), then we know from Theorem
7.11 that if θ = θ0 (that is, the null hypothesis holds), then T −→

d
|Z | as n →∞ where Z ∼ N(0,1). This

means that G(u) = P [|Z| ≤ u] = 2Φ(u)−1, the distribution of the absolute value of the standard normal
as shown in (7.34). This distribution does not depend on unknowns and is pivotal.

We define the asymptotic size of the test as the asymptotic probability of a Type I error:

lim
n→∞P [T > c |H0 true] =P [ξ> c] = 1−G(c).

We see that the asymptotic size of the test is a simple function of the asymptotic null distribution G and
the critical value c. For example, the asymptotic size of a test based on the absolute t-statistic with critical
value c is 2(1−Φ(c)) .

In the dominant approach to hypothesis testing the researcher pre-selects a significance level α ∈
(0,1) and then selects c so the asymptotic size is no larger than α. When the asymptotic null distribu-
tion G is pivotal we accomplish this by setting c equal to the 1−α quantile of the distribution G . (If
the distribution G is not pivotal more complicated methods must be used.) We call c the asymptotic
critical value because it has been selected from the asymptotic null distribution. For example, since
2(1−Φ(1.96)) = 0.05 it follows that the 5% asymptotic critical value for the absolute t-statistic is c = 1.96.
Calculation of normal critical values is done numerically in statistical software. For example, in MATLAB
the command is norminv(1-α/2).

9.4 t tests

As we mentioned earlier, the most common test of the one-dimensional hypothesis H0 : θ = θ0 ∈ R
against the alternative H1 : θ 6= θ0 is the absolute value of the t-statistic (9.3). We now formally state its
asymptotic null distribution, which is a simple application of Theorem 7.11.

Theorem 9.1 Under Assumptions 7.2, 7.3, and H0 : θ = θ0 ∈ R, T (θ0) −→
d

Z ∼
N(0,1). For c satisfying α = 2(1−Φ(c)), P [|T (θ0)| > c |H0] → α, and the test
“Reject H0 if |T (θ0)| > c” has asymptotic size α.

Theorem 9.1 shows that asymptotic critical values can be taken from the normal distribution. As in
our discussion of asymptotic confidence intervals (Section 7.13) the critical value could alternatively be
taken from the student t distribution, which would be the exact test in the normal regression model (Sec-
tion 5.12). Indeed, t critical values are the default in packages such as Stata. Since the critical values from
the student t distribution are (slightly) larger than those from the normal distribution, student t critical
values slightly decrease the rejection probability of the test. In practical applications the difference is
typically unimportant unless the sample size is quite small (in which case the asymptotic approximation
should be questioned as well).

The alternative hypothesis θ 6= θ0 is sometimes called a “two-sided” alternative. In contrast, some-
times we are interested in testing for one-sided alternatives such as H1 : θ > θ0 or H1 : θ < θ0. Tests of
θ = θ0 against θ > θ0 or θ < θ0 are based on the signed t-statistic T = T (θ0). The hypothesis θ = θ0 is
rejected in favor of θ > θ0 if T > c where c satisfies α = 1−Φ(c). Negative values of T are not taken as
evidence against H0, as point estimates θ̂ less than θ0 do not point to θ > θ0. Since the critical values are
taken from the single tail of the normal distribution they are smaller than for two-sided tests. Specifically,
the asymptotic 5% critical value is c = 1.645. Thus, we reject θ = θ0 in favor of θ > θ0 if T > 1.645.
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Conversely, tests of θ = θ0 against θ < θ0 rejectH0 for negative t-statistics, e.g. if T <−c. Large positive
values of T are not evidence for H1 : θ < θ0. An asymptotic 5% test rejects if T <−1.645.

There seems to be an ambiguity. Should we use the two-sided critical value 1.96 or the one-sided
critical value 1.645? The answer is that in most cases the two-sided critical value is appropriate. We
should use the one-sided critical values only when the parameter space is known to satisfy a one-sided
restriction such as θ ≥ θ0. This is when the test of θ = θ0 against θ > θ0 makes sense. If the restriction
θ ≥ θ0 is not known a priori then imposing this restriction to test θ = θ0 against θ > θ0 does not makes
sense. Since linear regression coefficients typically do not have a priori sign restrictions, the standard
convention is to use two-sided critical values.

This may seem contrary to the way testing is presented in statistical textbooks which often focus on
one-sided alternative hypotheses. The latter focus is primarily for pedagogy as the one-sided theoretical
problem is cleaner and easier to understand.

9.5 Type II Error and Power

A false acceptance of the null hypothesis H0 (accepting H0 when H1 is true) is called a Type II error.
The rejection probability under the alternative hypothesis is called the power of the test, and equals 1
minus the probability of a Type II error:

π(θ) =P[
Reject H0 |H1 true

]=P [T > c |H1 true] .

We call π(θ) the power function and is written as a function of θ to indicate its dependence on the true
value of the parameter θ.

In the dominant approach to hypothesis testing the goal of test construction is to have high power
subject to the constraint that the size of the test is lower than the pre-specified significance level. Gen-
erally, the power of a test depends on the true value of the parameter θ, and for a well-behaved test the
power is increasing both as θ moves away from the null hypothesis θ0 and as the sample size n increases.

Given the two possible states of the world (H0 or H1) and the two possible decisions (Accept H0 or
Reject H0) there are four possible pairings of states and decisions as is depicted in Table 9.1.

Table 9.1: Hypothesis Testing Decisions

Accept H0 Reject H0

H0 true Correct Decision Type I Error
H1 true Type II Error Correct Decision

Given a test statistic T , increasing the critical value c increases the acceptance region S0 while de-
creasing the rejection region S1. This decreases the likelihood of a Type I error (decreases the size) but
increases the likelihood of a Type II error (decreases the power). Thus the choice of c involves a trade-off
between size and the power. This is why the significance levelα of the test cannot be set arbitrarily small.
Otherwise the test will not have meaningful power.

It is important to consider the power of a test when interpreting hypothesis tests as an overly narrow
focus on size can lead to poor decisions. For example, it is easy to design a test which has perfect size
yet has trivial power. Specifically, for any hypothesis we can use the following test: Generate a random
variable U ∼ U [0,1] and reject H0 if U < α. This test has exact size of α. Yet the test also has power
precisely equal to α. When the power of a test equals the size we say that the test has trivial power.
Nothing is learned from such a test.
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9.6 Statistical Significance

Testing requires a pre-selected choice of significance level α yet there is no objective scientific basis
for choice of α. Nevertheless, the common practice is to set α = 0.05 (5%). Alternative common values
are α= 0.10 (10%) and α= 0.01 (1%). These choices are somewhat the by-product of traditional tables of
critical values and statistical software.

The informal reasoning behind the 5% critical value is to ensure that Type I errors should be rela-
tively unlikely – that the decision “Reject H0” has scientific strength – yet the test retains power against
reasonable alternatives. The decision “Reject H0” means that the evidence is inconsistent with the null
hypothesis in the sense that it is relatively unlikely (1 in 20) that data generated by the null hypothesis
would yield the observed test result.

In contrast, the decision “Accept H0” is not a strong statement. It does not mean that the evidence
supportsH0 only that there is insufficient evidence to rejectH0. Because of this it is more accurate to use
the label “Do not Reject H0” instead of “Accept H0”.

When a test rejectsH0 at the 5% significance level it is common to say that the statistic is statistically
significant and if the test accepts H0 it is common to say that the statistic is not statistically significant
or that it is statistically insignificant. It is helpful to remember that this is simply a compact way of
saying “Using the statistic T the hypothesis H0 can [cannot] be rejected at the asymptotic 5% level.”
Furthermore, when the null hypothesis H0 : θ = 0 is rejected it is common to say that the coefficient θ is
statistically significant, because the test has rejected the hypothesis that the coefficient is equal to zero.

Let us return to the example about the union wage premium as measured in Table 4.1. The absolute
t-statistic for the coefficient on “Male Union Member” is 0.095/0.020 = 4.7, which is greater than the 5%
asymptotic critical value of 1.96. Therefore we reject the hypothesis that union membership does not
affect wages for men. In this case we can say that union membership is statistically significant for men.
However, the absolute t-statistic for the coefficient on “Female Union Member” is 0.023/0.020 = 1.2,
which is less than 1.96 and therefore we do not reject the hypothesis that union membership does not
affect wages for women. In this case we find that membership for women is not statistically significant.

When a test accepts a null hypothesis (when a test is not statistically significant) a common misin-
terpretation is that this is evidence that the null hypothesis is true. This is incorrect. Failure to reject is
by itself not evidence. Without an analysis of power we do not know the likelihood of making a Type II
error and thus are uncertain. In our wage example it would be a mistake to write that “the regression
finds that female union membership has no effect on wages”. This is an incorrect and most unfortunate
interpretation. The test has failed to reject the hypothesis that the coefficient is zero but that does not
mean that the coefficient is actually zero.

When a test rejects a null hypothesis (when a test is statistically significant) it is strong evidence
against the hypothesis (since if the hypothesis were true then rejection is an unlikely event). Rejection
should be taken as evidence against the null hypothesis. However, we can never conclude that the null
hypothesis is indeed false as we cannot exclude the possibility that we are making a Type I error.

Perhaps more importantly, there is an important distinction between statistical and economic sig-
nificance. If we correctly reject the hypothesis H0 : θ = 0 it means that the true value of θ is non-zero.
This includes the possibility that θ may be non-zero but close to zero in magnitude. This only makes
sense if we interpret the parameters in the context of their relevant models. In our wage regression ex-
ample we might consider wage effects of 1% magnitude or less as being “close to zero”. In a log wage
regression this corresponds to a dummy variable with a coefficient less than 0.01. If the standard error
is sufficiently small (less than 0.005) then a coefficient estimate of 0.01 will be statistically significant but
not economically significant. This occurs frequently in applications with very large sample sizes where
standard errors can be quite small.

The solution is to focus whenever possible on confidence intervals and the economic meaning of the
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coefficients. For example, if the coefficient estimate is 0.005 with a standard error of 0.002 then a 95%
confidence interval would be [0.001, 0.009] indicating that the true effect is likely between 0% and 1%,
and hence is slightly positive but small. This is much more informative than the misleading statement
“the effect is statistically positive”.

9.7 P-Values

Continuing with the wage regression estimates reported in Table 4.1, consider another question:
Does marriage status affect wages? To test the hypothesis that marriage status has no effect on wages,
we examine the t-statistics for the coefficients on “Married Male” and “Married Female” in Table 4.1,
which are 0.211/0.010 = 22 and 0.016/0.010 = 1.7, respectively. The first exceeds the asymptotic 5% criti-
cal value of 1.96 so we reject the hypothesis for men. The second is smaller than 1.96 so we fail to reject
the hypothesis for women. Taking a second look at the statistics we see that the statistic for men (22)
is exceptionally high and that for women (1.7) is only slightly below the critical value. Suppose that the
t-statistic for women were slightly increased to 2.0. This is larger than the critical value so would lead to
the decision “Reject H0” rather than “Accept H0”. Should we really be making a different decision if the
t-statistic is 2.0 rather than 1.7? The difference in values is small, shouldn’t the difference in the decision
be also small? Thinking through these examples it seems unsatisfactory to simply report “Accept H0” or
“Reject H0”. These two decisions do not summarize the evidence. Instead, the magnitude of the statistic
T suggests a “degree of evidence” against H0. How can we take this into account?

The answer is to report what is known as the asymptotic p-value

p = 1−G(T ).

Since the distribution function G is monotonically increasing, the p-value is a monotonically decreasing
function of T and is an equivalent test statistic. Instead of rejectingH0 at the significance level α if T > c,
we can rejectH0 if p <α. Thus it is sufficient to report p, and let the reader decide. In practice, the p-value
is calculated numerically. For example, in MATLAB the command is 2*(1-normalcdf(abs(t))).

It is instructive to interpret p as the marginal significance level: the smallest value ofα for which the
test T “rejects” the null hypothesis. That is, p = 0.11 means that T rejects H0 for all significance levels
greater than 0.11, but fails to reject H0 for significance levels less than 0.11.

Furthermore, the asymptotic p-value has a very convenient asymptotic null distribution. Since T −→
d

ξ under H0, then p = 1−G(T ) −→
d

1−G(ξ), which has the distribution

P [1−G(ξ) ≤ u] =P [1−u ≤G(ξ)]

= 1−P[
ξ≤G−1(1−u)

]
= 1−G

(
G−1(1−u)

)
= 1− (1−u)

= u,

which is the uniform distribution on [0,1]. (This calculation assumes that G(u) is strictly increasing
which is true for conventional asymptotic distributions such as the normal.) Thus p −→

d
U[0,1]. This

means that the “unusualness” of p is easier to interpret than the “unusualness” of T.
An important caveat is that the p-value p should not be interpreted as the probability that either

hypothesis is true. A common mis-interpretation is that p is the probability “that the null hypothesis
is true.” This is incorrect. Rather, p is the marginal significance level – a measure of the strength of
information against the null hypothesis.
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For a t-statistic the p-value can be calculated either using the normal distribution or the student t
distribution, the latter presented in Section 5.12. p-values calculated using the student t will be slightly
larger, though the difference is small when the sample size is large.

Returning to our empirical example, for the test that the coefficient on “Married Male” is zero the p-
value is 0.000. This means that it would be nearly impossible to observe a t-statistic as large as 22 when
the true value of the coefficient is zero. When presented with such evidence we can say that we “strongly
reject” the null hypothesis, that the test is “highly significant”, or that “the test rejects at any conventional
critical value”. In contrast, the p-value for the coefficient on “Married Female” is 0.094. In this context it
is typical to say that the test is “close to significant”, meaning that the p-value is larger than 0.05, but not
too much larger.

A related but inferior empirical practice is to append asterisks (*) to coefficient estimates or test statis-
tics to indicate the level of significance. A common practice to to append a single asterisk (*) for an esti-
mate or test statistic which exceeds the 10% critical value (i.e., is significant at the 10% level), append a
double asterisk (**) for a test which exceeds the 5% critical value, and append a triple asterisk (***) for a
test which exceeds the 1% critical value. Such a practice can be better than a table of raw test statistics
as the asterisks permit a quick interpretation of significance. On the other hand, asterisks are inferior to
p-values, which are also easy and quick to interpret. The goal is essentially the same; it is wiser to report
p-values whenever possible and avoid the use of asterisks.

Our recommendation is that the best empirical practice is to compute and report the asymptotic p-
value p rather than simply the test statistic T , the binary decision Accept/Reject, or appending asterisks.
The p-value is a simple statistic, easy to interpret, and contains more information than the other choices.

We now summarize the main features of hypothesis testing.

1. Select a significance level α.

2. Select a test statistic T with asymptotic distribution T −→
d
ξ under H0.

3. Set the asymptotic critical value c so that 1−G(c) =α, where G is the distribution function of ξ.

4. Calculate the asymptotic p-value p = 1−G(T ).

5. Reject H0 if T > c, or equivalently p <α.

6. Accept H0 if T ≤ c, or equivalently p ≥α.

7. Report p to summarize the evidence concerning H0 versus H1.

9.8 t-ratios and the Abuse of Testing

In Section 4.21 we argued that a good applied practice is to report coefficient estimates θ̂ and stan-
dard errors s(θ̂) for all coefficients of interest in estimated models. With θ̂ and s(θ̂) the reader can easily
construct confidence intervals [θ̂±2s(θ̂)] and t-statistics

(
θ̂−θ0

)
/s(θ̂) for hypotheses of interest.

Some applied papers (especially older ones) report t-ratios T = θ̂/s(θ̂) instead of standard errors.
This is poor econometric practice. While the same information is being reported (you can back out
standard errors by division, e.g. s(θ̂) = θ̂/T ), standard errors are generally more helpful to readers than
t-ratios. Standard errors help the reader focus on the estimation precision and confidence intervals,
while t-ratios focus attention on statistical significance. While statistical significance is important, it
is less important that the parameter estimates themselves and their confidence intervals. The focus
should be on the meaning of the parameter estimates, their magnitudes, and their interpretation, not on
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listing which variables have significant (e.g. non-zero) coefficients. In many modern applications sample
sizes are very large so standard errors can be very small. Consequently t-ratios can be large even if the
coefficient estimates are economically small. In such contexts it may not be interesting to announce
“The coefficient is non-zero!” Instead, what is interesting to announce is that “The coefficient estimate
is economically interesting!”

In particular, some applied papers report coefficient estimates and t-ratios and limit their discussion
of the results to describing which variables are “significant” (meaning that their t-ratios exceed 2) and
the signs of the coefficient estimates. This is very poor empirical work and should be studiously avoided.
It is also a recipe for banishment of your work to lower tier economics journals.

Fundamentally, the common t-ratio is a test for the hypothesis that a coefficient equals zero. This
should be reported and discussed when this is an interesting economic hypothesis of interest. But if this
is not the case it is distracting.

One problem is that standard packages, such as Stata, by default report t-statistics and p-values for
every estimated coefficient. While this can be useful (as a user doesn’t need to explicitly ask to test a
desired coefficient) it can be misleading as it may unintentionally suggest that the entire list of t-statistics
and p-values are important. Instead, a user should focus on tests of scientifically motivated hypotheses.

In general, when a coefficient θ is of interest it is constructive to focus on the point estimate, its
standard error, and its confidence interval. The point estimate gives our “best guess” for the value. The
standard error is a measure of precision. The confidence interval gives us the range of values consistent
with the data. If the standard error is large then the point estimate is not a good summary about θ. The
endpoints of the confidence interval describe the bounds on the likely possibilities. If the confidence
interval embraces too broad a set of values for θ then the dataset is not sufficiently informative to render
useful inferences about θ. On the other hand if the confidence interval is tight then the data have pro-
duced an accurate estimate and the focus should be on the value and interpretation of this estimate. In
contrast, the statement “the t-ratio is highly significant” has little interpretive value.

The above discussion requires that the researcher knows what the coefficient θ means (in terms of
the economic problem) and can interpret values and magnitudes, not just signs. This is critical for good
applied econometric practice.

For example, consider the question about the effect of marriage status on mean log wages. We had
found that the effect is “highly significant” for men and “close to significant” for women. Now, let’s con-
struct asymptotic 95% confidence intervals for the coefficients. The one for men is [0.19, 0.23] and that
for women is [−0.00, 0.03]. This shows that average wages for married men are about 19-23% higher than
for unmarried men, which is substantial, while the difference for women is about 0-3%, which is small.
These magnitudes are more informative than the results of the hypothesis tests.

9.9 Wald Tests

The t-test is appropriate when the null hypothesis is a real-valued restriction. More generally there
may be multiple restrictions on the coefficient vector β. Suppose that we have q > 1 restrictions which
can be written in the form (9.1). It is natural to estimate θ = r (β) by the plug-in estimator θ̂ = r

(
β̂
)

. To
test H0 : θ = θ0 against H1 : θ 6= θ0 one approach is to measure the magnitude of the discrepancy θ̂−θ0.
As this is a vector there is more than one measure of its length. One simple measure is the weighted
quadratic form known as the Wald statistic. This is (7.37) evaluated at the null hypothesis

W =W (θ0) = (
θ̂−θ0

)′
V̂

−1
θ̂

(
θ̂−θ0

)
(9.6)
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where V̂ θ̂ = R̂
′
V̂ β̂R̂ is an estimator of V θ̂ and R̂ = ∂

∂β
r (β̂)′. Notice that we can write W alternatively as

W = n
(
θ̂−θ0

)′
V̂

−1
θ

(
θ̂−θ0

)
using the asymptotic variance estimator V̂ θ, or we can write it directly as a function of β̂ as

W = (
r (β̂)−θ0

)′ (
R̂

′
V̂ β̂R̂

)−1 (
r (β̂)−θ0

)
.

Also, when r (β) = R ′β is a linear function of β, then the Wald statistic simplifies to

W = (
R ′β̂−θ0

)′ (
R ′V̂ β̂R

)−1 (
R ′β̂−θ0

)
.

The Wald statistic W is a weighted Euclidean measure of the length of the vector θ̂−θ0. When q = 1
then W = T 2, the square of the t-statistic, so hypothesis tests based on W and |T | are equivalent. The
Wald statistic (9.6) is a generalization of the t-statistic to the case of multiple restrictions. As the Wald
statistic is symmetric in the argument θ̂−θ0 it treats positive and negative alternatives symmetrically.
Thus the inherent alternative is always two-sided.

As shown in Theorem 7.13, when β satisfies r (β) = θ0 then W −→
d
χ2

q , a chi-square random variable

with q degrees of freedom. Let Gq (u) denote the χ2
q distribution function. For a given significance levelα

the asymptotic critical value c satisfies α= 1−Gq (c). For example, the 5% critical values for q = 1, q = 2,
and q = 3 are 3.84, 5.99, and 7.82, respectively, and in general the level α critical value can be calculated
in MATLAB as chi2inv(1-α,q). An asymptotic test rejects H0 in favor of H1 if W > c. As with t-tests, it
is conventional to describe a Wald test as “significant” if W exceeds the 5% asymptotic critical value.

Theorem 9.2 Under Assumptions 7.2, 7.3, 7.4, andH0 : θ = θ0 ∈Rq , then W −→
d

χ2
q . For c satisfying α = 1−Gq (c), P (W > c |H0) −→ α so the test “Reject H0 if

W > c” has asymptotic size α.

Notice that the asymptotic distribution in Theorem 9.2 depends solely on q , the number of restric-
tions being tested. It does not depend on k, the number of parameters estimated.

The asymptotic p-value for W is p = 1−Gq (W ), and this is particularly useful when testing multiple
restrictions. For example, if you write that a Wald test on eight restrictions (q = 8) has the value W =
11.2 it is difficult for a reader to assess the magnitude of this statistic unless they have quick access to a
statistical table or software. Instead, if you write that the p-value is p = 0.19 (as is the case for W = 11.2
and q = 8) then it is simple for a reader to interpret its magnitude as “insignificant”. To calculate the
asymptotic p-value for a Wald statistic in MATLAB use the command 1-chi2cdf(w,q).

Some packages (including Stata) and papers report F versions of Wald statistics. For any Wald statis-
tic W which tests a q-dimensional restriction, the F version of the test is

F =W /q.

When F is reported, it is conventional to use Fq,n−k critical values and p-values rather than χ2
q values.

The connection between Wald and F statistics is demonstrated in Section 9.14 where we show that when
Wald statistics are calculated using a homoskedastic covariance matrix then F = W /q is identicial to
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the F statistic of (5.19). While there is no formal justification to using the Fq,n−k distribution for non-
homoskedastic covariance matrices, the Fq,n−k distribution provides continuity with the exact distribu-
tion theory under normality and is a bit more conservative than the χ2

q distribution. (Furthermore, the
difference is small when n −k is moderately large.)

To implement a test of zero restrictions in Stata an easy method is to use the command test X1 X2

where X1 and X2 are the names of the variables whose coefficients are hypothesized to equal zero. The F
version of the Wald statistic is reported using the covariance matrix calculated by the method specified
in the regression command. A p-value is reported, calculated using the Fq,n−k distribution.

To illustrate, consider the empirical results presented in Table 4.1. The hypothesis “Union mem-
bership does not affect wages” is the joint restriction that both coefficients on “Male Union Member”
and “Female Union Member” are zero. We calculate the Wald statistic for this joint hypothesis and find
W = 23 (or F = 12.5) with a p-value of p = 0.000. Thus we reject the null hypothesis in favor of the al-
ternative that at least one of the coefficients is non-zero. This does not mean that both coefficients are
non-zero, just that one of the two is non-zero. Therefore examining both the joint Wald statistic and the
individual t-statistics is useful for interpretation.

As a second example from the same regression, take the hypothesis that married status has no effect
on mean wages for women. This is the joint restriction that the coefficients on “Married Female” and
“Formerly Married Female” are zero. The Wald statistic for this hypothesis is W = 6.4 (F = 3.2) with a
p-value of 0.04. Such a p-value is typically called “marginally significant” in the sense that it is slightly
smaller than 0.05.

The Wald statistic was proposed by Wald (1943).

Abraham Wald

The Hungarian mathematician/statistician/econometrician Abraham Wald
(1902-1950) developed an optimality property for the Wald test in terms of
weighted average power. He also developed the field of sequential testing, the
design of experiments, and one of the first instrumental variable estimators.

9.10 Homoskedastic Wald Tests

If the error is known to be homoskedastic then it is appropriate to use the homoskedastic Wald statis-
tic (7.38) which replaces V̂ θ̂ with the homoskedastic estimator V̂

0
θ̂. This statistic equals

W 0 = (
θ̂−θ0

)′ (
V̂

0
θ̂

)−1 (
θ̂−θ0

)
= (

r (β̂)−θ0
)′ (

R ′ (X ′X
)−1 R̂

)−1 (
r (β̂)−θ0

)
/s2.

In the case of linear hypotheses H0 : R ′β= θ0 we can write this as

W 0 = (
R ′β̂−θ0

)′ (
R ′ (X ′X

)−1 R
)−1 (

R ′β̂−θ0
)

/s2. (9.7)

We call W 0 a homoskedastic Wald statistic as it is appropriate when the errors are conditionally ho-
moskedastic.

When q = 1 then W 0 = T 2, the square of the t-statistic where the latter is computed with a ho-
moskedastic standard error.
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Theorem 9.3 Under Assumptions 7.2 and 7.3, E
[
e2 | X

] = σ2 > 0, and H0 : θ =
θ0 ∈Rq , then W 0 −→

d
χ2

q . For c satisfying α= 1−Gq (c), P
[
W 0 > c |H0

]−→α so

the test “Reject H0 if W 0 > c” has asymptotic size α.

9.11 Criterion-Based Tests

The Wald statistic is based on the length of the vector θ̂−θ0: the discrepancy between the estimator
θ̂ = r (β̂) and the hypothesized value θ0. An alternative class of tests is based on the discrepancy between
the criterion function minimized with and without the restriction.

Criterion-based testing applies when we have a criterion function, say J (β) with β ∈ B , which is min-
imized for estimation, and the goal is to test H0 : β ∈ B0 versus H1 : β ∉ B0 where B0 ⊂ β. Minimizing the
criterion function over B and B0 we obtain the unrestricted and restricted estimators

β̂= argmin
β∈B

J
(
β
)

β̃= argmin
β∈B0

J
(
β
)

.

The criterion-based statistic for H0 versus H1 is proportional to

J = min
β∈B0

J
(
β
)−min

β∈B
J
(
β
)= J (β̃)− J (β̂).

The criterion-based statistic J is sometimes called a distance statistic, a minimum-distance statistic,
or a likelihood-ratio-like statistic.

Since B0 is a subset of B , J (β̃) ≥ J (β̂) and thus J ≥ 0. The statistic J measures the cost on the criterion
of imposing the null restriction β ∈ B0.

9.12 Minimum Distance Tests

The minimum distance test is based on the minimum distance criterion (8.19)

J
(
β
)= n

(
β̂−β)′

Ŵ
(
β̂−β)

(9.8)

with β̂ the unrestricted least squares estimator. The restricted estimator β̃md minimizes (9.8) subject to
β ∈ B0. Observing that J (β̂) = 0, the minimum distance statistic simplifies to

J = J (β̃md) = n
(
β̂− β̃md

)′
Ŵ

(
β̂− β̃md

)
. (9.9)

The efficient minimum distance estimator β̃emd is obtained by setting Ŵ = V̂
−1
β in (9.8) and (9.9).

The efficient minimum distance statistic for H0 :β ∈ B0 is therefore

J∗ = n
(
β̂− β̃emd

)′
V̂

−1
β

(
β̂− β̃emd

)
. (9.10)

Consider the class of linear hypotheses H0 : R ′β = θ0. In this case we know from (8.25) that the effi-
cient minimum distance estimator β̃emd subject to the constraint R ′β= θ0 is

β̃emd = β̂− V̂ βR
(
R ′V̂ βR

)−1 (
R ′β̂−θ0

)
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and thus
β̂− β̃emd = V̂ βR

(
R ′V̂ βR

)−1 (
R ′β̂−θ0

)
.

Substituting into (9.10) we find

J∗ = n
(
R ′β̂−θ0

)′ (
R ′V̂ βR

)−1
R ′V̂ βV̂

−1
β V̂ βR

(
R ′V̂ βR

)−1 (
R ′β̂−θ0

)
= n

(
R ′β̂−θ0

)′ (
R ′V̂ βR

)−1 (
R ′β̂−θ0

)
=W,

which is the Wald statistic (9.6).
Thus for linear hypotheses H0 : R ′β = θ0, the efficient minimum distance statistic J∗ is identical to

the Wald statistic (9.6). For nonlinear hypotheses, however, the Wald and minimum distance statistics
are different.

Newey and West (1987a) established the asymptotic null distribution of J∗.

Theorem 9.4 Under Assumptions 7.2, 7.3, 7.4, and H0 : θ = θ0 ∈Rq , J∗ −→
d
χ2

q .

Testing using the minimum distance statistic J∗ is similar to testing using the Wald statistic W . Criti-
cal values and p-values are computed using the χ2

q distribution. H0 is rejected in favor ofH1 if J∗ exceeds
the level α critical value, which can be calculated in MATLAB as chi2inv(1-α,q). The asymptotic p-
value is p = 1−Gq (J∗). In MATLAB, use the command 1-chi2cdf(J,q).

We now demonstrate Theorem 9.4. The conditions of Theorem 8.10 hold, since H0 implies Assump-
tion 8.1. From (8.54) with Ŵ = V̂ β, we see that

p
n

(
β̂− β̃emd

)= V̂ βR̂
(
R∗′

n V̂ βR̂
)−1

R∗′
n
p

n
(
β̂−β)

−→
d

V βR
(
R ′V βR

)−1 R ′N(0,V β) =V βR Z

where Z ∼ N(0,
(
R ′V βR

)−1). Thus

J∗ = n
(
β̂− β̃emd

)′
V̂

−1
β

(
β̂− β̃emd

)−→
d

Z ′R ′V βV −1
β V βR Z = Z ′ (R ′V βR

)
Z =χ2

q

as claimed.

9.13 Minimum Distance Tests Under Homoskedasticity

If we set Ŵ = Q̂ X X /s2 in (9.8) we obtain the criterion (8.20)

J 0 (
β
)= n

(
β̂−β)′

Q̂ X X
(
β̂−β)

/s2.

A minimum distance statistic for H0 :β ∈ B0 is

J 0 = min
β∈B0

J 0 (
β
)

.
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Equation (8.21) showed that SSE(β) = nσ̂2 + s2 J 0
(
β
)
. So the minimizers of SSE(β) and J 0

(
β
)

are
identical. Thus the constrained minimizer of J 0

(
β
)

is constrained least squares

β̃cls = argmin
β∈B0

J 0 (
β
)= argmin

β∈B0

SSE(β) (9.11)

and therefore
J 0

n = J 0
n(β̃cls) = n

(
β̂− β̃cls

)′
Q̂ X X

(
β̂− β̃cls

)
/s2.

In the special case of linear hypothesesH0 : R ′β= θ0, the constrained least squares estimator subject
to R ′β= θ0 has the solution (8.9)

β̃cls = β̂−Q̂
−1
X X R

(
R ′Q̂−1

X X R
)−1 (

R ′β̂−θ0
)

and solving we find

J 0 = n
(
R ′β̂−θ0

)′ (
R ′Q̂−1

X X R
)−1 (

R ′β̂−θ0
)

/s2 =W 0.

This is the homoskedastic Wald statistic (9.7). Thus for testing linear hypotheses, homoskedastic mini-
mum distance and Wald statistics agree.

For nonlinear hypotheses they disagree, but have the same null asymptotic distribution.

Theorem 9.5 Under Assumptions 7.2 and 7.3, E
[
e2 | X

] = σ2 > 0, and H0 : θ =
θ0 ∈Rq , then J 0 −→

d
χ2

q .

9.14 F Tests

In Section 5.13 we introduced the F test for exclusion restrictions in the normal regression model. In
this section we generalize this test to a broader set of restrictions. Let B0 ⊂Rk be a constrained parameter
space which imposes q restrictions on β.

Let β̂ols be the unrestricted least squares estimator and let σ̂2 = n−1 ∑n
i=1

(
Yi −X ′

i β̂ols
)2

be the associ-

ated estimator ofσ2. Let β̃cls be the CLS estimator (9.11) satisfying β̃cls ∈ B0 and letσ2 = n−1 ∑n
i=1

(
Yi −X ′

i β̃cls
)2

be the associated estimator of σ2. The F statistic for testing H0 :β ∈ B0 is

F =
(
σ̃2 − σ̂2

)
/q

σ̂2/(n −k)
. (9.12)

We can alternatively write

F = SSE(β̃cls)−SSE(β̂ols)

qs2 (9.13)

where SSE(β) =∑n
i=1

(
Yi −X ′

iβ
)2 is the sum-of-squared errors.

This shows that F is a criterion-based statistic. Using (8.21) we can also write F = J 0/q , so the F statis-
tic is identical to the homoskedastic minimum distance statistic divided by the number of restrictions
q.

As we discussed in the previous section, in the special case of linear hypotheses H0 : R ′β = θ0, J 0 =
W 0. It follows that in this case F = W 0/q . Thus for linear restrictions the F statistic equals the ho-
moskedastic Wald statistic divided by q. It follows that they are equivalent tests for H0 against H1.
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Theorem 9.6 For tests of linear hypotheses H0 : R ′β = θ0 ∈ Rq , the F statistic
equals F = W 0/q where W 0 is the homoskedastic Wald statistic. Thus under
7.2, E

[
e2 | X

]=σ2 > 0, and H0 : θ = θ0, then F −→
d
χ2

q /q .

When using an F statistic it is conventional to use the Fq,n−k distribution for critical values and p-
values. Critical values are given in MATLAB by finv(1-α,q,n-k) and p-values by 1-fcdf(F,q,n-k).
Alternatively, the χ2

q /q distribution can be used, using chi2inv(1-α,q)/q and 1-chi2cdf(F*q,q), re-
spectively. Using the Fq,n−k distribution is a prudent small sample adjustment which yields exact an-
swers if the errors are normal and otherwise slightly increasing the critical values and p-values relative
to the asymptotic approximation. Once again, if the sample size is small enough that the choice makes a
difference then probably we shouldn’t be trusting the asymptotic approximation anyway!

An elegant feature about (9.12) or (9.13) is that they are directly computable from the standard output
from two simple OLS regressions, as the sum of squared errors (or regression variance) is a typical printed
output from statistical packages and is often reported in applied tables. Thus F can be calculated by hand
from standard reported statistics even if you don’t have the original data (or if you are sitting in a seminar
and listening to a presentation!).

If you are presented with an F statistic (or a Wald statistic, as you can just divide by q) but don’t have
access to critical values, a useful rule of thumb is to know that for large n the 5% asymptotic critical value
is decreasing as q increases and is less than 2 for q ≥ 7.

A word of warning: In many statistical packages when an OLS regression is estimated an “F -statistic”
is automatically reported even though no hypothesis test was requested. What the package is reporting
is an F statistic of the hypothesis that all slope coefficients1 are zero. This was a popular statistic in the
early days of econometric reporting when sample sizes were very small and researchers wanted to know
if there was “any explanatory power” to their regression. This is rarely an issue today as sample sizes are
typically sufficiently large that this F statistic is nearly always highly significant. While there are special
cases where this F statistic is useful these cases are not typical. As a general rule there is no reason to
report this F statistic.

9.15 Hausman Tests

Hausman (1978) introduced a general idea about how to test a hypothesisH0. If you have two estima-
tors, one which is efficient under H0 but inconsistent under H1, and another which is consistent under
H1, then construct a test as a quadratic form in the differences of the estimators. In the case of testing a
hypothesis H0 : r (β) = θ0 let β̂ols denote the unconstrained least squares estimator and let β̃emd denote
the efficient minimum distance estimator which imposes r (β) = θ0. Both estimators are consistent un-
der H0 but β̃emd is asymptotically efficient. Under H1, β̂ols is consistent for β but β̃emd is inconsistent.
The difference has the asymptotic distribution

p
n

(
β̂ols − β̃emd

)−→
d

N
(
0,V βR

(
R ′V βR

)−1 R ′V β

)
.

Let A− denote the Moore-Penrose generalized inverse. The Hausman statistic for H0 is

H = (
β̂ols − β̃emd

)′�avar
(
β̂ols − β̃emd

)− (
β̂ols − β̃emd

)
= n

(
β̂ols − β̃emd

)′ (
V̂ βR̂

(
R̂

′
V̂ βR̂

)−1
R̂

′
V̂ β

)− (
β̂ols − β̃emd

)
.

1All coefficients except the intercept.
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The matrix V̂
1/2
β R̂

(
R̂

′
V̂ βR̂

)−1
R̂

′
V̂

1/2
β idempotent so its generalized inverse is itself. (See Section A.11.) It

follows that (
V̂ βR̂

(
R̂

′
V̂ βR̂

)−1
R̂

′
V̂ β

)−
= V̂

−1/2
β

(
V̂

1/2
β R̂

(
R̂

′
V̂ βR̂

)−1
R̂

′
V̂

1/2
β

)−
V̂

−1/2
β

= V̂
−1/2
β V̂

1/2
β R̂

(
R̂

′
V̂ βR̂

)−1
R̂

′
V̂

1/2
β V̂

−1/2
β

= R̂
(
R̂

′
V̂ βR̂

)−1
R̂

′
.

Thus the Hausman statistic is

H = n
(
β̂ols − β̃emd

)′
R̂

(
R̂

′
V̂ βR̂

)−1
R̂

′ (
β̂ols − β̃emd

)
.

In the context of linear restrictions, R̂ = R and R ′β̃= θ0 so the statistic takes the form

H = n
(
R ′β̂ols −θ0

)′
R̂

(
R ′V̂ βR

)−1 (
R ′β̂ols −θ0

)
,

which is precisely the Wald statistic. With nonlinear restrictions W and H can differ.
In either case we see that that the asymptotic null distribution of the Hausman statistic H is χ2

q , so

the appropriate test is to reject H0 in favor of H1 if H > c where c is a critical value taken from the χ2
q

distribution.

Theorem 9.7 For general hypotheses the Hausman test statistic is

H = n
(
β̂ols − β̃emd

)′
R̂

(
R̂

′
V̂ βR̂

)−1
R̂

′ (
β̂ols − β̃emd

)
.

Under Assumptions 7.2, 7.3, 7.4, and H0 : r (β) = θ0 ∈Rq , H −→
d
χ2

q .

9.16 Score Tests

Score tests are traditionally derived in likelihood analysis but can more generally be constructed from
first-order conditions evaluated at restricted estimates. We focus on the likelihood derivation.

Given the log likelihood function `n(β,σ2), a restriction H0 : r
(
β
) = θ0, and restricted estimators β̃

and σ̃2, the score statistic for H0 is defined as

S =
(
∂

∂β
`n(β̃, σ̃2)

)′ (
− ∂2

∂β∂β′`n(β̃, σ̃2)

)−1 (
∂

∂β
`n(β̃, σ̃2)

)
.

The idea is that if the restriction is true then the restricted estimators should be close to the maximum
of the log-likelihood where the derivative is zero. However if the restriction is false then the restricted
estimators should be distant from the maximum and the derivative should be large. Hence small values
of S are expected under H0 and large values under H1. Tests of H0 reject for large values of S.

We explore the score statistic in the context of the normal regression model and linear hypotheses
r
(
β
)= R ′β. Recall that in the normal regression log-likelihood function is

`n(β,σ2) =−n

2
log(2πσ2)− 1

2σ2

n∑
i=1

(
Yi −X ′

iβ
)2 .
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The constrained MLE under linear hypotheses is constrained least squares

β̃= β̂− (
X ′X

)−1 R
[

R ′ (X ′X
)−1 R

]−1 (
R ′β̂−c

)
ẽi = Yi −X ′

i β̃

σ̃2 = 1

n

n∑
i=1

ẽ2
i .

We can calculate that the derivative and Hessian are

∂

∂β
`n(β̃, σ̃2) = 1

σ̃2

n∑
i=1

Xi
(
Yi −X ′

i β̃
)= 1

σ̃2 X ′ẽ

− ∂2

∂β∂β′`n(β̃, σ̃2) = 1

σ̃2

n∑
i=1

Xi X ′
i =

1

σ̃2 X ′X .

Since ẽ = Y −X β̃ we can further calculate that

∂

∂β
`n(β̃, σ̃2) = 1

σ̃2

(
X ′X

)((
X ′X

)−1 X ′Y − (
X ′X

)−1 X ′X β̃
)

= 1

σ̃2

(
X ′X

)(
β̂− β̃)

= 1

σ̃2 R
[

R ′ (X ′X
)−1 R

]−1 (
R ′β̂−c

)
.

Together we find that

S = (
R ′β̂−c

)′ (
R ′ (X ′X

)−1 R
)−1 (

R ′β̂−c
)

/σ̃2.

This is identical to the homoskedastic Wald statistic with s2 replaced by σ̃2. We can also write S as a
monotonic transformation of the F statistic, since

S = n

(
σ̃2 − σ̂2

)
σ̃2 = n

(
1− σ̂2

σ̃2

)
= n

(
1− 1

1+ q
n−k F

)
.

The test “Reject H0 for large values of S” is identical to the test “Reject H0 for large values of F ” so they
are identical tests. Since for the normal regression model the exact distribution of F is known, it is better
to use the F statistic with F p-values.

In more complicated settings a potential advantage of score tests is that they are calculated using the
restricted parameter estimates β̃ rather than the unrestricted estimates β̂. Thus when β̃ is relatively easy
to calculate there can be a preference for score statistics. This is not a concern for linear restrictions.

More generally, score and score-like statistics can be constructed from first-order conditions evalu-
ated at restricted parameter estimates. Also, when test statistics are constructed using covariance ma-
trix estimators which are calculated using restricted parameter estimates (e.g. restricted residuals) then
these are often described as score tests.

An example of the latter is the Wald-type statistic

W = (
r (β̂)−θ0

)′ (
R̂

′
Ṽ β̂R̂

)−1 (
r (β̂)−θ0

)
where the covariance matrix estimate Ṽ β̂ is calculated using the restricted residuals ẽi = Yi − X ′

i β̃. This
may be a good choice when β and θ are high-dimensional as in this context there may be worry that the
estimator V̂ β̂ is imprecise.
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9.17 Problems with Tests of Nonlinear Hypotheses

While the t and Wald tests work well when the hypothesis is a linear restriction on β, they can work
quite poorly when the restrictions are nonlinear. This can be seen by a simple example introduced by
Lafontaine and White (1986). Take the model Y ∼ N(β,σ2) and consider the hypothesis H0 : β= 1. Let β̂
and σ̂2 be the sample mean and variance of Y . The standard Wald statistic to test H0 is

W = n

(
β̂−1

)2

σ̂2 .

Now notice that H0 is equivalent to the hypothesis H0(s) : βs = 1 for any positive integer s. Letting
r (β) =βs , and noting R = sβs−1, we find that the Wald statistic to test H0(s) is

Ws = n

(
β̂s −1

)2

σ̂2s2β̂2s−2
.

While the hypothesis βs = 1 is unaffected by the choice of s, the statistic Ws varies with s. This is an
unfortunate feature of the Wald statistic.

To demonstrate this effect, we have plotted in Figure 9.2 the Wald statistic Ws as a function of s, set-
ting n/σ̂2 = 10. The increasing solid line is for the case β̂ = 0.8. The decreasing dashed line is for the
case β̂ = 1.6. It is easy to see that in each case there are values of s for which the test statistic is signifi-
cant relative to asymptotic critical values, while there are other values of s for which the test statistic is
insignificant. This is distressing since the choice of s is arbitrary and irrelevant to the actual hypothesis.
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Figure 9.2: Wald Statistic as a Function of s

Our first-order asymptotic theory is not useful to help pick s, as Ws −→
d
χ2

1 under H0 for any s. This

is a context where Monte Carlo simulation can be quite useful as a tool to study and compare the exact
distributions of statistical procedures in finite samples. The method uses random simulation to create
artificial datasets to which we apply the statistical tools of interest. This produces random draws from
the statistic’s sampling distribution. Through repetition features of this distribution can be calculated.



CHAPTER 9. HYPOTHESIS TESTING 239

In the present context of the Wald statistic, one feature of importance is the Type I error of the test
using the asymptotic 5% critical value 3.84 – the probability of a false rejection, P

[
Ws > 3.84 |β= 1

]
.

Given the simplicity of the model this probability depends only on s, n, and σ2. In Table 9.2 we report
the results of a Monte Carlo simulation where we vary these three parameters. The value of s is varied
from 1 to 10, n is varied among 20, 100 and 500, and σ is varied among 1 and 3. The table reports the
simulation estimate of the Type I error probability from 50,000 random samples. Each row of the table
corresponds to a different value of s – and thus corresponds to a particular choice of test statistic. The
second through seventh columns contain the Type I error probabilities for different combinations of n
and σ. These probabilities are calculated as the percentage of the 50,000 simulated Wald statistics Ws

which are larger than 3.84. The null hypothesis βs = 1 is true so these probabilities are Type I error.
To interpret the table remember that the ideal Type I error probability is 5% (.05) with deviations indi-

cating distortion. Type I error rates between 3% and 8% are considered reasonable. Error rates above 10%
are considered excessive. Rates above 20% are unacceptable. When comparing statistical procedures we
compare the rates row by row, looking for tests for which rejection rates are close to 5% and rarely fall
outside of the 3%-8% range. For this particular example the only test which meets this criterion is the
conventional W =W1 test. Any other s leads to a test with unacceptable Type I error probabilities.

Table 9.2: Type I Error Probability of Asymptotic 5% W (s) Test

s σ= 1 σ= 3
n = 20 n = 100 n = 500 n = 20 n = 100 n = 500

1 0.05 0.05 0.05 0.05 0.05 0.05
2 0.07 0.06 0.05 0.14 0.08 0.06
3 0.09 0.06 0.05 0.21 0.12 0.07
4 0.12 0.07 0.05 0.25 0.15 0.08
5 0.14 0.08 0.06 0.27 0.18 0.10
6 0.16 0.09 0.06 0.30 0.20 0.12
7 0.18 0.10 0.06 0.32 0.22 0.13
8 0.20 0.12 0.07 0.33 0.24 0.14
9 0.21 0.13 0.07 0.34 0.25 0.16

10 0.23 0.14 0.08 0.35 0.26 0.17

Rejection frequencies from 50,000 simulated random samples.

In Table 9.2 you can also see the impact of variation in sample size. In each case the Type I error
probability improves towards 5% as the sample size n increases. There is, however, no magic choice of
n for which all tests perform uniformly well. Test performance deteriorates as s increases which is not
surprising given the dependence of Ws on s as shown in Figure 9.2.

In this example it is not surprising that the choice s = 1 yields the best test statistic. Other choices
are arbitrary and would not be used in practice. While this is clear in this particular example, in other
examples natural choices are not obvious and the best choices may be counter-intuitive.

This point can be illustrated through an example based on Gregory and Veall (1985). Take the model

Y =β0 +X1β1 +X2β2 +e (9.14)

E [X e] = 0

and the hypothesis H0 : β1

β2
= θ0 where θ0 is a known constant. Equivalently, define θ = β1/β2 so the

hypothesis can be stated as H0 : θ = θ0.
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Let β̂ = (β̂0, β̂1, β̂2) be the least squares estimator of (9.14), let V̂ β̂ be an estimator of the covariance

matrix for β̂ and set θ̂ = β̂1/β̂2. Define

R̂1 =



0

1

β̂2

− β̂1

β̂2
2


so that the standard error for θ̂ is s(θ̂) =

(
R̂

′
1V̂ β̂R̂1

)1/2
. In this case a t-statistic for H0 is

T1 =

(
β̂1

β̂2
−θ0

)
s(θ̂)

.

An alternative statistic can be constructed through reformulating the null hypothesis as

H0 :β1 −θ0β2 = 0.

A t-statistic based on this formulation of the hypothesis is

T2 = β̂1 −θ0β̂2(
R ′

2V̂ β̂R2

)1/2

where

R2 =
 0

1
−θ0

 .

To compare T1 and T2 we perform another simple Monte Carlo simulation. We let X1 and X2 be
mutually independent N(0,1) variables, e be an independent N(0,σ2) draw with σ = 3, and normalize
β0 = 0 and β1 = 1. This leaves β2 as a free parameter along with sample size n. We vary β2 among 0.1,
0.25, 0.50, 0.75, and 1.0 and n among 100 and 500.

Table 9.3: Type I Error Probability of Asymptotic 5% t-tests

β2 n = 100 n = 500
P (T <−1.645) P (T > 1.645) P (T <−1.645) P (T > 1.645)
T1 T2 T1 T2 T1 T2 T1 T2

0.10 0.47 0.05 0.00 0.05 0.28 0.05 0.00 0.05
0.25 0.27 0.05 0.00 0.05 0.16 0.05 0.00 0.05
0.50 0.14 0.05 0.00 0.05 0.12 0.05 0.00 0.05
0.75 0.03 0.05 0.00 0.05 0.08 0.05 0.01 0.05
1.00 0.00 0.05 0.00 0.05 0.03 0.05 0.03 0.05

Rejection frequencies from 50,000 simulated random samples.

The one-sided Type I error probabilities P [T <−1.645] and P [T > 1.645] are calculated from 50,000
simulated samples. The results are presented in Table 9.3. Ideally, the entries in the table should be
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0.05. However, the rejection rates for the T1 statistic diverge greatly from this value, especially for small
values of β2. The left tail probabilities P [T1 <−1.645] greatly exceed 5%, while the right tail probabilities
P [T1 > 1.645] are close to zero in most cases. In contrast, the rejection rates for the linear T2 statistic are
invariant to the value of β2 and equal 5% for both sample sizes. The implication of Table 9.3 is that the
two t-ratios have dramatically different sampling behavior.

The common message from both examples is that Wald statistics are sensitive to the algebraic for-
mulation of the null hypothesis.

A simple solution is to use the minimum distance statistic J which equals W with r = 1 in the first
example, and |T2| in the second example. The minimum distance statistic is invariant to the algebraic
formulation of the null hypothesis so is immune to this problem. Whenever possible, the Wald statistic
should not be used to test nonlinear hypotheses.

Theoretical investigations of these issues include Park and Phillips (1988) and Dufour (1997).

9.18 Monte Carlo Simulation

In Section 9.17 we introduced the method of Monte Carlo simulation to illustrate the small sample
problems with tests of nonlinear hypotheses. In this section we describe the method in more detail.

Recall, our data consist of observations (Yi , Xi ) which are random draws from a population distribu-
tion F. Let θ be a parameter and let T = T ((Y1, X1) , ..., (Yn , Xn) ,θ) be a statistic of interest, for example an
estimator θ̂ or a t-statistic (θ̂−θ)/s(θ̂). The exact distribution of T is

G(u,F ) =P [T ≤ u | F ] .

While the asymptotic distribution of T might be known, the exact (finite sample) distribution G is gen-
erally unknown.

Monte Carlo simulation uses numerical simulation to compute G(u,F ) for selected choices of F. This
is useful to investigate the performance of the statistic T in reasonable situations and sample sizes.
The basic idea is that for any given F the distribution function G(u,F ) can be calculated numerically
through simulation. The name Monte Carlo derives from the famous Mediterranean gambling resort
where games of chance are played.

The method of Monte Carlo is simple to describe. The researcher chooses F (the distribution of the
pseudo data) and the sample size n. A “true” value of θ is implied by this choice, or equivalently the value
θ is selected directly by the researcher which implies restrictions on F .

Then the following experiment is conducted by computer simulation:

1. n independent random pairs
(
Y ∗

i , X ∗
i

)
, i = 1, ...,n, are drawn from the distribution F using the

computer’s random number generator.

2. The statistic T = T
((

Y ∗
1 , X ∗

1

)
, ...,

(
Y ∗

n , X ∗
n

)
,θ

)
is calculated on this pseudo data.

For step 1, computer packages have built-in random number procedures including U[0,1] and N(0,1).
From these most random variables can be constructed. (For example, a chi-square can be generated by
sums of squares of normals.)

For step 2, it is important that the statistic be evaluated at the “true” value of θ corresponding to the
choice of F.

The above experiment creates one random draw T from the distribution G(u,F ). This is one ob-
servation from an unknown distribution. Clearly, from one observation very little can be said. So the
researcher repeats the experiment B times where B is a large number. Typically, we set B ≥ 1000. We will
discuss this choice later.
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Notationally, let the bth experiment result in the draw Tb , b = 1, ...,B. These results are stored. After
all B experiments have been calculated these results constitute a random sample of size B from the
distribution of G(u,F ) =P [Tb ≤ u] =P [T ≤ u | F ] .

From a random sample we can estimate any feature of interest using (typically) a method of moments
estimator. We now describe some specific examples.

Suppose we are interested in the bias, mean-squared error (MSE), and/or variance of the distribution
of θ̂−θ. We then set T = θ̂−θ, run the above experiment, and calculate

b̂ias
[
θ̂
]= 1

B

B∑
b=1

Tb = 1

B

B∑
b=1

θ̂b −θ

m̂se
[
θ̂
]= 1

B

B∑
b=1

(Tb)2 = 1

B

B∑
b=1

(
θ̂b −θ

)2

v̂ar
[
θ̂
]= m̂se

[
θ̂
]− (

b̂ias
[
θ̂
])2

Suppose we are interested in the Type I error associated with an asymptotic 5% two-sided t-test. We
would then set T = ∣∣θ̂−θ∣∣/s(θ̂) and calculate

P̂ = 1

B

B∑
b=1

1 {Tb ≥ 1.96} , (9.15)

the percentage of the simulated t-ratios which exceed the asymptotic 5% critical value.
Suppose we are interested in the 5% and 95% quantile of T = θ̂ or T = (

θ̂−θ)
/s(θ̂). We then compute

the 5% and 95% sample quantiles of the sample {Tb}. For details on quantile estimation see Section 11.13
of Introduction to Econometrics.

The typical purpose of a Monte Carlo simulation is to investigate the performance of a statistical
procedure in realistic settings. Generally, the performance will depend on n and F. In many cases an
estimator or test may perform wonderfully for some values and poorly for others. It is therefore useful to
conduct a variety of experiments for a selection of choices of n and F.

As discussed above the researcher must select the number of experiments B. Often this is called the
number of replications. Quite simply, a larger B results in more precise estimates of the features of
interest of G but requires more computational time. In practice, therefore, the choice of B is often guided
by the computational demands of the statistical procedure. Since the results of a Monte Carlo experiment
are estimates computed from a random sample of size B it is straightforward to calculate standard errors
for any quantity of interest. If the standard error is too large to make a reliable inference then B will have
to be increased.

In particular, it is simple to make inferences about rejection probabilities from statistical tests, such
as the percentage estimate reported in (9.15). The random variable1 {Tb ≥ 1.96} is i.i.d. Bernoulli, equalling
1 with probability p = E [1 {Tb ≥ 1.96}] . The average (9.15) is therefore an unbiased estimator of p with

standard error s
(
p̂

) = √
p

(
1−p

)
/B . As p is unknown, this may be approximated by replacing p with

p̂ or with an hypothesized value. For example, if we are assessing an asymptotic 5% test, then we can
set s

(
p̂

)=p
(.05)(.95)/B ' .22/

p
B . Hence, standard errors for B = 100, 1000, and 5000, are, respectively,

s
(
p̂

)= .022, .007, and .003.
Most papers in econometric methods and some empirical papers include the results of Monte Carlo

simulations to illustrate the performance of their methods. When extending existing results it is good
practice to start by replicating existing (published) results. This is not exactly possible in the case of
simulation results as they are inherently random. For example suppose a paper investigates a statistical
test and reports a simulated rejection probability of 0.07 based on a simulation with B = 100 replications.
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Suppose you attempt to replicate this result and find a rejection probability of 0.03 (again using B = 100
simulation replications). Should you conclude that you have failed in your attempt? Absolutely not!
Under the hypothesis that both simulations are identical you have two independent estimates, p̂1 = 0.07
and p̂2 = 0.03, of a common probability p. The asymptotic (as B →∞) distribution of their difference isp

B
(
p̂1 − p̂2

) −→
d

N(0,2p(1−p)), so a standard error for p̂1 − p̂2 = 0.04 is ŝ = √
2p(1−p)/B ' 0.03, using

the estimate p = (p̂1 + p̂2)/2. Since the t-ratio 0.04/0.03 = 1.3 is not statistically significant it is incorrect
to reject the null hypothesis that the two simulations are identical. The difference between the results
p̂1 = 0.07 and p̂2 = 0.03 is consistent with random variation.

What should be done? The first mistake was to copy the previous paper’s choice of B = 100. Instead,
suppose you set B = 10,000 and now obtain p̂2 = 0.04. Then p̂1 − p̂2 = 0.03 and a standard error is ŝ =√

p(1−p) (1/100+1/10000) ' 0.02. Still we cannot reject the hypothesis that the two simulations are
different. Even though the estimates (0.07 and 0.04) appear to be quite different, the difficulty is that the
original simulation used a very small number of replications (B = 100) so the reported estimate is quite
imprecise. In this case it is appropriate to conclude that your results “replicate” the previous study as
there is no statistical evidence to reject the hypothesis that they are equivalent.

Most journals have policies requiring authors to make available their data sets and computer pro-
grams required for empirical results. Most do not have similar policies regarding simulations. Never-
theless, it is good professional practice to make your simulations available. The best practice is to post
your simulation code on your webpage. This invites others to build on and use your results, leading to
possible collaboration, citation, and/or advancement.

9.19 Confidence Intervals by Test Inversion

There is a close relationship between hypothesis tests and confidence intervals. We observed in Sec-
tion 7.13 that the standard 95% asymptotic confidence interval for a parameter θ is

Ĉ = [
θ̂−1.96× s(θ̂), θ̂+1.96× s(θ̂)

]= {θ : |T (θ)| ≤ 1.96} . (9.16)

That is, we can describe Ĉ as “The point estimate plus or minus 2 standard errors” or “The set of param-
eter values not rejected by a two-sided t-test.” The second definition, known as test statistic inversion,
is a general method for finding confidence intervals, and typically produces confidence intervals with
excellent properties.

Given a test statistic T (θ) and critical value c, the acceptance region “Accept if T (θ) ≤ c” is identical
to the confidence interval Ĉ = {θ : T (θ) ≤ c}. Since the regions are identical the probability of coverage
P

[
θ ∈ Ĉ

]
equals the probability of correct acceptance P

[
Accept | θ]

which is exactly 1 minus the Type I
error probability. Thus inverting a test with good Type I error probabilities yields a confidence interval
with good coverage probabilities.

Now suppose that the parameter of interest θ = r (β) is a nonlinear function of the coefficient vector
β. In this case the standard confidence interval for θ is the set Ĉ as in (9.16) where θ̂ = r (β̂) is the point

estimator and s(θ̂) =
√

R̂
′
V̂ β̂R̂ is the delta method standard error. This confidence interval is inverting

the t-test based on the nonlinear hypothesis r (β) = θ. The trouble is that in Section 9.17 we learned that
there is no unique t-statistic for tests of nonlinear hypotheses and that the choice of parameterization
matters greatly.

For example, if θ = β1/β2 then the coverage probability of the standard interval (9.16) is 1 minus the
probability of the Type I error, which as shown in Table 8.2 can be far from the nominal 5%.

In this example a good solution is the same as discussed in Section 9.17 – to rewrite the hypothesis as
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a linear restriction. The hypothesis θ =β1/β2 is the same as θβ2 =β1. The t-statistic for this restriction is

T (θ) = β̂1 − β̂2θ(
R ′V̂ β̂R

)1/2

where

R =
(

1
−θ

)
and V̂ β̂ is the covariance matrix for (β̂1 β̂2). A 95% confidence interval for θ =β1/β2 is the set of values of
θ such that |T (θ)| ≤ 1.96. Since T (θ) is a nonlinear function of θ one method to find the confidence set is
grid search over θ.

For example, in the wage equation

log(wage) =β1experience+β2experience2/100+·· ·
the highest expected wage occurs at experience= −50β1/β2. From Table 4.1 we have the point estimate
θ̂ = 29.8 and we can calculate the standard error s(θ̂) = 0.022 for a 95% confidence interval [29.8, 29.9].
However, if we instead invert the linear form of the test we umerically find the interval [29.1, 30.6] which
is much larger. From the evidence presented in Section 9.17 we know the first interval can be quite
inaccurate and the second interval is greatly preferred.

9.20 Multiple Tests and Bonferroni Corrections

In most applications economists examine a large number of estimates, test statistics, and p-values.
What does it mean (or does it mean anything) if one statistic appears to be “significant” after examining
a large number of statistics? This is known as the problem of multiple testing or multiple comparisons.

To be specific, suppose we examine a set of k coefficients, standard errors and t-ratios, and consider
the “significance” of each statistic. Based on conventional reasoning, for each coefficient we would reject
the hypothesis that the coefficient is zero with asymptotic size α if the absolute t-statistic exceeds the
1−α critical value of the normal distribution, or equivalently if the p-value for the t-statistic is smaller
than α. If we observe that one of the k statistics is “significant” based on this criterion, that means that
one of the p-values is smaller than α, or equivalently, that the smallest p-value is smaller than α. We
can then rephrase the question: Under the joint hypothesis that a set of k hypotheses are all true, what
is the probability that the smallest p-value is smaller than α? In general, we cannot provide a precise
answer to this quesion, but the Bonferroni correction bounds this probability by αk. The Bonferroni
method furthermore suggests that if we want the familywise error probability (the probability that one
of the tests falsely rejects) to be bounded belowα, then an appropriate rule is to reject only if the smallest
p-value is smaller than α/k. Equivalently, the Bonferroni familywise p-value is k min j≤k p j .

Formally, suppose we have k hypotheses H j , j = 1, ...,k. For each we have a test and associated p-
value p j with the property that when H j is true limn→∞P

[
p j <α

]=α. We then observe that among the
k tests, one of the k is “significant” if min j≤k p j <α. This event can be written as{

min
j≤k

p j <α
}
=

k⋃
j=1

{
p j <α

}
.

Boole’s inequality states that for any k events A j , P

[
k⋃

j=1
A j

]
≤

k∑
j=1
P [Ak ]. Thus

P

[
min
j≤k

p j <α
]
≤

k∑
j=1

P
[
p j <α

]→ kα
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as stated. This demonstates that the familywise rejection probability is at most k times the individual
rejection probability.

Furthermore,

P

[
min
j≤k

p j < α

k

]
≤

k∑
j=1

P
[

p j < α

k

]
→α.

This demonstrates that the familywise rejection probability can be controlled (bounded below α) if each
individual test is subjected to the stricter standard that a p-value must be smaller than α/k to be labeled
as “significant”.

To illustrate, suppose we have two coefficient estimates with individual p-values 0.04 and 0.15. Based
on a conventional 5% level the standard individual tests would suggest that the first coefficient estimate
is “significant” but not the second. A Bonferroni 5% test, however, does not reject as it would require
that the smallest p-value be smaller than 0.025, which is not the case in this example. Alternatively, the
Bonferroni familywise p-value is 0.04×2 = 0.08, which is not significant at the 5% level.

In contrast, if the two p-values were 0.01 and 0.15, then the Bonferroni familywise p-value would be
0.01×2 = 0.02, which is significant at the 5% level.

9.21 Power and Test Consistency

The power of a test is the probability of rejecting H0 when H1 is true.

For simplicity suppose that Yi is i.i.d. N(θ,σ2) withσ2 known, consider the t-statistic T (θ) =p
n

(
Y −θ

)
/σ,

and tests of H0 : θ = 0 against H1 : θ > 0. We reject H0 if T = T (0) > c. Note that

T = T (θ)+p
nθ/σ

and T (θ) has an exact N(0,1) distribution. This is because T (θ) is centered at the true mean θ, while the
test statistic T (0) is centered at the (false) hypothesized mean of 0.

The power of the test is

P [T > c | θ] =P[
Z+p

nθ/σ> c
]= 1−Φ(

c −p
nθ/σ

)
.

This function is monotonically increasing in µ and n, and decreasing in σ and c.
Notice that for any c and θ 6= 0 the power increases to 1 as n → ∞. This means that for θ ∈ H1 the

test will reject H0 with probability approaching 1 as the sample size gets large. We call this property test
consistency.

Definition 9.3 A test of H0 : θ ∈ Θ0 is consistent against fixed alternatives if
for all θ ∈Θ1, P

[
Reject H0 | θ

]→ 1 as n →∞.

For tests of the form “Reject H0 if T > c”, a sufficient condition for test consistency is that the T
diverges to positive infinity with probability one for all θ ∈Θ1.

Definition 9.4 We say that T −→
p

∞ as n →∞ if for all M <∞, P [T ≤ M ] → 0

as n → ∞. Similarly, we say that T −→
p

−∞ as n → ∞ if for all M < ∞,

P [T ≥−M ] → 0 as n →∞.



CHAPTER 9. HYPOTHESIS TESTING 246

In general, t-tests and Wald tests are consistent against fixed alternatives. Take a t-statistic for a test

of H0 : θ = θ0, T = (
θ̂−θ0

)
/s(θ̂) where θ0 is a known value and s(θ̂) =

√
n−1V̂θ . Note that

T = θ̂−θ
s(θ̂)

+
p

n (θ−θ0)√
V̂θ

.

The first term on the right-hand-side converges in distribution to N(0,1). The second term on the right-
hand-side equals zero if θ = θ0, converges in probability to +∞ if θ > θ0, and converges in probability
to −∞ if θ < θ0. Thus the two-sided t-test is consistent against H1 : θ 6= θ0, and one-sided t-tests are
consistent against the alternatives for which they are designed.

Theorem 9.8 Under Assumptions 7.2, 7.3, and 7.4, for θ = r (β) 6= θ0 and q = 1,
then |T | −→

p
∞. For any c <∞ the test “RejectH0 if |T | > c” is consistent against

fixed alternatives.

The Wald statistic for H0 : θ = r (β) = θ0 against H1 : θ 6= θ0 is W = n
(
θ̂−θ0

)′
V̂

−1
θ

(
θ̂−θ0

)
. Under H1,

θ̂ −→
p
θ 6= θ0. Thus

(
θ̂−θ0

)′
V̂

−1
θ

(
θ̂−θ0

) −→
p

(θ−θ0)′V −1
θ

(θ−θ0) > 0. Hence under H1, W −→
p

∞. Again,

this implies that Wald tests are consistent.

Theorem 9.9 Under Assumptions 7.2, 7.3, and 7.4, for θ = r (β) 6= θ0, then
W −→

p
∞. For any c < ∞ the test “Reject H0 if W > c” is consistent against

fixed alternatives.

9.22 Asymptotic Local Power

Consistency is a good property for a test but is does not provided a tool to calculate test power. To
approximate the power function we need a distributional approximation.

The standard asymptotic method for power analysis uses what are called local alternatives. This is
similar to our analysis of restriction estimation under misspecification (Section 8.13). The technique is
to index the parameter by sample size so that the asymptotic distribution of the statistic is continuous
in a localizing parameter. In this section we consider t-tests on real-valued parameters and in the next
section Wald tests. Specifically, we consider parameter vectors βn which are indexed by sample size n
and satisfy the real-valued relationship

θn = r (βn) = θ0 +n−1/2h (9.17)

where the scalar h is called a localizing parameter. We index βn and θn by sample size to indicate their
dependence on n. The way to think of (9.17) is that the true value of the parameters are βn and θn . The
parameter θn is close to the hypothesized value θ0, with deviation n−1/2h.

The specification (9.17) states that for any fixed h, θn approaches θ0 as n gets large. Thus θn is “close”
or “local” to θ0. The concept of a localizing sequence (9.17) might seem odd since in the actual world the
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sample size cannot mechanically affect the value of the parameter. Thus (9.17) should not be interpreted
literally. Instead, it should be interpreted as a technical device which allows the asymptotic distribution
to be continuous in the alternative hypothesis.

To evaluate the asymptotic distribution of the test statistic we start by examining the scaled estima-
tor centered at the hypothesized value θ0. Breaking it into a term centered at the true value θn and a
remainder we find p

n
(
θ̂−θ0

)=p
n

(
θ̂−θn

)+p
n (θn −θ0) =p

n
(
θ̂−θn

)+h

where the second equality is (9.17). The first term is asymptotically normal:

p
n

(
θ̂−θn

)−→
d

√
VθZ

where Z ∼ N(0,1). Therefore p
n

(
θ̂−θ0

)−→
d

√
VθZ +h ∼ N(h,Vθ).

This asymptotic distribution depends continuously on the localizing parameter h.
Applied to the t statistic we find

T = θ̂−θ0

s(θ̂)
−→

d

√
VθZ +h√

Vθ
∼ Z +δ (9.18)

where δ= h/
√

Vθ. This generalizes Theorem 9.1 (which assumesH0 is true) to allow for local alternatives
of the form (9.17).

Consider a t-test of H0 against the one-sided alternative H1 : θ > θ0 which rejects H0 for T > c where
Φ(c) = 1−α. The asymptotic local power of this test is the limit (as the sample size diverges) of the
rejection probability under the local alternative (9.17)

lim
n→∞P

[
Reject H0

]= lim
n→∞P [T > c]

=P [Z +δ> c]

= 1−Φ (c −δ)

=Φ (δ− c)

def= π(δ).

We call π(δ) the asymptotic local power function.
In Figure 9.3(a) we plot the local power functionπ(δ) as a function of δ ∈ [−1,4] for tests of asymptotic

size α = 0.10, α = 0.05, and α = 0.01. δ = 0 corresponds to the null hypothesis so π(δ) = α. The power
functions are monotonically increasing in δ. Note that the power is lower than α for δ < 0 due to the
one-sided nature of the test.

We can see that the three power functions are ranked by α so that the test with α = 0.10 has higher
power than the test with α= 0.01. This is the inherent trade-off between size and power. Decreasing size
induces a decrease in power, and conversely.

The coefficient δ can be interpreted as the parameter deviation measured as a multiple of the stan-

dard error s(θ̂). To see this, recall that s(θ̂) = n−1/2
√

V̂θ ' n−1/2
√

Vθ and then note that

δ= h√
Vθ

' n−1/2h

s(θ̂)
= θn −θ0

s(θ̂)
.

Thus δ approximately equals the deviation θn−θ0 expressed as multiples of the standard error s(θ̂). Thus
as we examine Figure 9.3(a) we can interpret the power function at δ = 1 (e.g. 26% for a 5% size test) as
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Figure 9.3: Asymptotic Local Power Function

the power when the parameter θn is one standard error above the hypothesized value. For example, from
Table 4.1 the standard error for the coefficient on “Married Female” is 0.010. Thus, in this example δ= 1
corresponds to θn = 0.010 or an 1.0% wage premium for married females. Our calculations show that the
asymptotic power of a one-sided 5% test against this alternative is about 26%.

The difference between power functions can be measured either vertically or horizontally. For exam-
ple, in Figure 9.3(a) there is a vertical dash-dotted line at δ= 1, showing that the asymptotic local power
function π(δ) equals 39% for α = 0.10, equals 26% for α = 0.05, and equals 9% for α = 0.01. This is the
difference in power across tests of differing size, holding fixed the parameter in the alternative.

A horizontal comparison can also be illuminating. To illustrate, in Figure 9.3(a) there is a horizontal
dash-dotted line at 50% power. 50% power is a useful benchmark as it is the point where the test has equal
odds of rejection and acceptance. The dotted line crosses the three power curves at δ = 1.29 (α = 0.10),
δ = 1.65 (α = 0.05), and δ = 2.33 (α = 0.01). This means that the parameter θ must be at least 1.65
standard errors above the hypothesized value for a one-sided 5% test to have 50% (approximate) power.

The ratio of these values (e.g. 1.65/1.29 = 1.28 for the asymptotic 5% versus 10% tests) measures the
relative parameter magnitude needed to achieve the same power. (Thus, for a 5% size test to achieve 50%
power, the parameter must be 28% larger than for a 10% size test.) Even more interesting, the square of
this ratio (e.g. (1.65/1.29)2 = 1.64) is the increase in sample size needed to achieve the same power under
fixed parameters. That is, to achieve 50% power, a 5% size test needs 64% more observations than a
10% size test. This interpretation follows by the following informal argument. By definition and (9.17)
δ= h/

√
Vθ =

p
n (θn −θ0)/

√
Vθ. Thus holding θ and Vθ fixed, δ2 is proportional to n.

The analysis of a two-sided t test is similar. (9.18) implies that

T =
∣∣∣∣∣ θ̂−θ0

s(θ̂)

∣∣∣∣∣−→d |Z +δ|

and thus the local power of a two-sided t test is

lim
n→∞P

[
Reject H0

]= lim
n→∞P [T > c] =P [|Z +δ| > c] =Φ (δ− c)+Φ (−δ− c)
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which is monotonically increasing in |δ|.

Theorem 9.10 Under Assumptions 7.2, 7.3, 7.4, and θn = r (βn) = r0 +n−1/2h,
then

T (θ0) = θ̂−θ0

s(θ̂)
−→

d
Z +δ

where Z ∼ N(0,1) and δ= h/
√

Vθ. For c such thatΦ(c) = 1−α,

P [T (θ0) > c] −→Φ (δ− c) .

Furthermore, for c such thatΦ(c) = 1−α/2,

P [|T (θ0)| > c] −→Φ (δ− c)+Φ (−δ− c) .

9.23 Asymptotic Local Power, Vector Case

In this section we extend the local power analysis of the previous section to the case of vector-valued
alternatives. We generalize (9.17) to vector-valued θn . The local parameterization is

θn = r (βn) = θ0 +n−1/2h (9.19)

where h is q ×1.
Under (9.19), p

n
(
θ̂−θ0

)=p
n

(
θ̂−θn

)+h −→
d

Zh ∼ N(h,V θ),

a normal random vector with mean h and covariance matrix V θ.
Applied to the Wald statistic we find

W = n
(
θ̂−θ0

)′
V̂

−1
θ

(
θ̂−θ0

)−→
d

Z ′
hV −1

θ Zh ∼χ2
q (λ) (9.20)

where λ= h′V −1h. χ2
q (λ) is a non-central chi-square random variable with non-centrality parameter λ.

(Theorem 5.3.6.)
The convergence (9.20) shows that under the local alternatives (9.19), W −→

d
χ2

q (λ). This generalizes

the null asymptotic distribution which obtains as the special case λ= 0. We can use this result to obtain
a continuous asymptotic approximation to the power function. For any significance level α > 0 set the

asymptotic critical value c so that P
[
χ2

q > c
]
=α. Then as n →∞,

P [W > c] −→P
[
χ2

q (λ) > c
]

def= π(λ).

The asymptotic local power function π(λ) depends only on α, q , and λ.

Theorem 9.11 Under Assumptions 7.2, 7.3, 7.4, and θn = r (βn) = θ0 +n−1/2h,

then W −→
d
χ2

q (λ) where λ= h′V −1
θ

h. Furthermore, for c such that P
[
χ2

q > c
]
=

α, P [W > c] −→P
[
χ2

q (λ) > c
]

.
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Figure 9.3(b) plots π(λ) as a function of λ for q = 1, q = 2, and q = 3, and α = 0.05. The asymptotic
power functions are monotonically increasing in λ and asymptote to one.

Figure 9.3(b) also shows the power loss for fixed non-centrality parameter λ as the dimensionality of
the test increases. The power curves shift to the right as q increases, resulting in a decrease in power.
This is illustrated by the dash-dotted line at 50% power. The dash-dotted line crosses the three power
curves at λ = 3.85 (q = 1), λ = 4.96 (q = 2), and λ = 5.77 (q = 3). The ratio of these λ values correspond
to the relative sample sizes needed to obtain the same power. Thus increasing the dimension of the test
from q = 1 to q = 2 requires a 28% increase in sample size, or an increase from q = 1 to q = 3 requires a
50% increase in sample size, to obtain a test with 50% power.
_____________________________________________________________________________________________

9.24 Exercises

Exercise 9.1 Prove that if an additional regressor X k+1 is added to X , Theil’s adjusted R
2

increases if and
only if |Tk+1| > 1, where Tk+1 = β̂k+1/s(β̂k+1) is the t-ratio for β̂k+1 and

s(β̂k+1) = (
s2[(X ′X )−1]k+1,k+1

)1/2

is the homoskedasticity-formula standard error.

Exercise 9.2 You have two independent samples (Y1i , X1i ) and (Y2i , X2i ) both with sample sizes n which
satisfy Y1 = X1β1 + e1 and Y2 = X2β2 + e2, where E [X1e1] = 0 and E [X2e2] = 0. Let β̂1 and β̂2 be the OLS
estimators of β1 ∈Rk and β2 ∈Rk .

(a) Find the asymptotic distribution of
p

n
((
β̂2 − β̂1

)− (
β2 −β1

))
as n →∞.

(b) Find an appropriate test statistic for H0 :β2 =β1.

(c) Find the asymptotic distribution of this statistic under H0.

Exercise 9.3 Let T be a t-statistic for H0 : θ = 0 versus H1 : θ 6= 0. Since |T | →d |Z | under H0, someone
suggests the test “Reject H0 if |T | < c1 or |T | > c2, where c1 is the α/2 quantile of |Z | and c2 is the 1−α/2
quantile of |Z |.

(a) Show that the asymptotic size of the test is α.

(b) Is this a good test of H0 versus H1? Why or why not?

Exercise 9.4 Let W be a Wald statistic for H0 : θ = 0 versus H1 : θ 6= 0, where θ is q ×1. Since W −→
d
χ2

q

under H0, someone suggests the test “Reject H0 if W < c1 or W > c2, where c1 is the α/2 quantile of χ2
q

and c2 is the 1−α/2 quantile of χ2
q .

(a) Show that the asymptotic size of the test is α.

(b) Is this a good test of H0 versus H1? Why or why not?

Exercise 9.5 Take the linear model Y = X ′
1β1 + X ′

2β2 + e with E [X e] = 0 where both X1 and X2 are q ×1.
Show how to test the hypotheses H0 :β1 =β2 against H1 :β1 6=β2.
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Exercise 9.6 Suppose a researcher wants to know which of a set of 20 regressors has an effect on a vari-
able testscore. He regresses testscore on the 20 regressors and reports the results. One of the 20 regressors
(studytime) has a large t-ratio (about 2.5), while the other t-ratios are insignificant (smaller than 2 in ab-
solute value). He argues that the data show that studytime is the key predictor for testscore. Do you agree
with this conclusion? Is there a deficiency in his reasoning?

Exercise 9.7 Take the model Y = Xβ1+X 2β2+e with E [e | X ] = 0 where Y is wages (dollars per hour) and
X is age. Describe how you would test the hypothesis that the expected wage for a 40-year-old worker is
$20 an hour.

Exercise 9.8 You want to test H0 : β2 = 0 against H1 : β2 6= 0 in the model Y = X ′
1β1 + X ′

2β2 + e with
E [X e] = 0. You read a paper which estimates the model

Y = X ′
1γ̂1 + (X2 −X1)′ γ̂2 +u

and reports a test of H0 : γ2 = 0 against H1 : γ2 6= 0. Is this related to the test you wanted to conduct?

Exercise 9.9 Suppose a researcher uses one dataset to test a specific hypothesis H0 against H1 and finds
that he can reject H0. A second researcher gathers a similar but independent dataset, uses similar meth-
ods and finds that she cannot reject H0. How should we (as interested professionals) interpret these
mixed results?

Exercise 9.10 In Exercise 7.8 you showed that
p

n
(
σ̂2 −σ2

) −→
d

N(0,V ) as n →∞ for some V . Let V̂ be

an estimator of V .

(a) Using this result construct a t-statistic for H0 :σ2 = 1 against H1 :σ2 6= 1.

(b) Using the Delta Method find the asymptotic distribution of
p

n (σ̂−σ).

(c) Use the previous result to construct a t-statistic for H0 :σ= 1 against H1 :σ 6= 1.

(d) Are the null hypotheses in (a) and (c) the same or are they different? Are the tests in (a) and (c) the
same or are they different? If they are different, describe a context in which the two tests would
give contradictory results.

Exercise 9.11 Consider a regression such as Table 4.1 where both experience and its square are included.
A researcher wants to test the hypothesis that experience does not affect mean wages and does this by
computing the t-statistic for experience. Is this the correct approach? If not, what is the appropriate
testing method?

Exercise 9.12 A researcher estimates a regression and computes a test of H0 against H1 and finds a p-
value of p = 0.08, or “not significant”. She says “I need more data. If I had a larger sample the test will
have more power and then the test will reject.” Is this interpretation correct?

Exercise 9.13 A common view is that “If the sample size is large enough, any hypothesis will be rejected.”
What does this mean? Interpret and comment.

Exercise 9.14 Take the model Y = X ′β+e with E [X e] = 0 and parameter of interest θ = R ′β with R k ×1.
Let β̂ be the least squares estimator and V̂ β̂ its variance estimator.
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(a) Write down Ĉ , the 95% asymptotic confidence interval for θ, in terms of β̂, V̂ β̂, R , and z = 1.96 (the
97.5% quantile of N(0,1)).

(b) Show that the decision “Reject H0 if θ0 ∉ Ĉ ” is an asymptotic 5% test of H0 : θ = θ0.

Exercise 9.15 You are at a seminar where a colleague presents a simulation study of a test of a hypothesis
H0 with nominal size 5%. Based on B = 100 simulation replications under H0 the estimated size is 7%.
Your colleague says: “Unfortunately the test over-rejects.”

(a) Do you agree or disagree with your colleague? Explain. Hint: Use an asymptotic (large B) approxi-
mation.

(b) Suppose the number of simulation replications were B = 1000 yet the estimated size is still 7%.
Does your answer change?

Exercise 9.16 Consider two alternative regression models

Y = X ′
1β1 +e1 (9.21)

E [X1e1] = 0

Y = X ′
2β2 +e2 (9.22)

E [X2e2] = 0

where X1 and X2 have at least some different regressors. (For example, (9.21) is a wage regression on
geographic variables and (2) is a wage regression on personal appearance measurements.) You want to
know if model (9.21) or model (9.22) fits the data better. Define σ2

1 = E[
e2

1

]
and σ2

2 = E[
e2

2

]
. You decide

that the model with the smaller variance fit (e.g., model (9.21) fits better ifσ2
1 <σ2

2.) You decide to test for
this by testing the hypothesis of equal fit H0 : σ2

1 = σ2
2 against the alternative of unequal fit H1 : σ2

1 6= σ2
2.

For simplicity, suppose that e1i and e2i are observed.

(a) Construct an estimator θ̂ of θ =σ2
1 −σ2

2.

(b) Find the asymptotic distribution of
p

n
(
θ̂−θ)

as n →∞.

(c) Find an estimator of the asymptotic variance of θ̂.

(d) Propose a test of asymptotic size α of H0 against H1.

(e) Suppose the test accepts H0. Briefly, what is your interpretation?

Exercise 9.17 You have two regressors X1 and X2 and estimate a regression with all quadratic terms
included

Y =α+β1X1 +β2X2 +β3X 2
1 +β4X 2

2 +β5X1X2 +e.

One of your advisors asks: Can we exclude the variable X2 from this regression?
How do you translate this question into a statistical test? When answering these questions, be spe-

cific, not general.

(a) What is the relevant null and alternative hypotheses?

(b) What is an appropriate test statistic?
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(c) What is the appropriate asymptotic distribution for the statistic?

(d) What is the rule for acceptance/rejection of the null hypothesis?

Exercise 9.18 The observed data is {Yi , Xi , Zi } ∈R×Rk×R`, k > 1 and `> 1, i = 1, ...,n. An econometrician
first estimates Yi = X ′

i β̂+ êi by least squares. The econometrician next regresses the residual êi on Zi ,
which can be written as êi = Z ′

i γ̃+ ũi .

(a) Define the population parameter γ being estimated in this second regression.

(b) Find the probability limit for γ̃.

(c) Suppose the econometrician constructs a Wald statistic W for H0 : γ = 0 from the second regres-
sion, ignoring the two-stage estimation process. Write down the formula for W .

(d) Assume E
[

Z X ′]= 0. Find the asymptotic distribution for W under H0 : γ= 0.

(e) If E
[

Z X ′] 6= 0 will your answer to (d) change?

Exercise 9.19 An economist estimates Y = X ′
1β1 + X2β2 + e by least squares and tests the hypothesis

H0 : β2 = 0 against H1 : β2 6= 0. Assume β1 ∈ Rk and β2 ∈ R. She obtains a Wald statistic W = 0.34. The
sample size is n = 500.

(a) What is the correct degrees of freedom for the χ2 distribution to evaluate the significance of the
Wald statistic?

(b) The Wald statistic W is very small. Indeed, is it less than the 1% quantile of the appropriate χ2

distribution? If so, should you reject H0? Explain your reasoning.

Exercise 9.20 You are reading a paper, and it reports the results from two nested OLS regressions:

Yi = X ′
1i β̃1 + ẽi

Yi = X ′
1i β̂1 +X ′

2i β̂2 + êi .

Some summary statistics are reported:

Short Regression Long Regression
R2 = .20 R2 = .26∑n

i=1 ẽ2
i = 106

∑n
i=1 ê2

i = 100
# of coefficients=5 # of coefficients=8
n = 50 n = 50

You are curious if the estimate β̂2 is statistically different from the zero vector. Is there a way to determine
an answer from this information? Do you have to make any assumptions (beyond the standard regularity
conditions) to justify your answer?

Exercise 9.21 Take the model Y = X1β1 +X2β2 +X3β3 +X4β4 +e with E [X e] = 0. Describe how to test

H0 :
β1

β2
= β3

β4

against

H1 :
β1

β2
6= β3

β4
.
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Exercise 9.22 You have a random sample from the model Y = Xβ1 + X 2β2 + e with E [e | X ] = 0 where Y
is wages (dollars per hour) and X is age. Describe how you would test the hypothesis that the expected
wage for a 40-year-old worker is $20 an hour.

Exercise 9.23 Let T be a test statistic such that under H0, T −→
d

χ2
3. Since P

[
χ2

3 > 7.815
] = 0.05, an

asymptotic 5% test of H0 rejects when T > 7.815. An econometrician is interested in the Type I error
of this test when n = 100 and the data structure is well specified. She performs the following Monte Carlo
experiment.

• B = 200 samples of size n = 100 are generated from a distribution satisfying H0.

• On each sample, the test statistic Tb is calculated.

• She calculates p̂ = B−1 ∑B
b=11 {Tb > 7.815} = 0.070.

• The econometrician concludes that the test T is oversized in this context – it rejects too frequently
under H0.

Is her conclusion correct, incorrect, or incomplete? Be specific in your answer.

Exercise 9.24 Do a Monte Carlo simulation. Take the model Y = α+ Xβ+ e with E [X e] = 0 where the
parameter of interest is θ = exp(β). Your data generating process (DGP) for the simulation is: X is U [0,1],
e ∼ N(0,1) is independent of X , and n = 50. Set α = 0 and β = 1. Generate B = 1000 independent sam-
ples with α. On each, estimate the regression by least squares, calculate the covariance matrix using a
standard (heteroskedasticity-robust) formula, and similarly estimate θ and its standard error. For each
replication, store β̂, θ̂, Tβ =

(
β̂−β)

/s
(
β̂
)
, and Tθ =

(
θ̂−θ)

/s
(
θ̂
)
.

(a) Does the value ofαmatter? Explain why the described statistics are invariant toα and thus setting
α= 0 is irrelevant.

(b) From the 1000 replications estimate E
[
β̂
]

and E
[
θ̂
]
. Discuss if you see evidence if either estimator

is biased or unbiased.

(c) From the 1000 replications estimate P
[
Tβ > 1.645

]
and P [Tθ > 1.645]. What does asymptotic the-

ory predict these probabilities should be in large samples? What do your simulation results indi-
cate?

Exercise 9.25 The data set Invest1993 on the textbook website contains data on 1962 U.S. firms ex-
tracted from Compustat, assembled by Bronwyn Hall, and used in Hall and Hall (1993).

The variables we use in this exercise are in the table below. The flow variables are annual sums. The
stock variables are beginning of year.

year year of the observation
I inva Investment to Capital Ratio
Q vala Total Market Value to Asset Ratio (Tobin’s Q)
C cfa Cash Flow to Asset Ratio
D debta Long Term Debt to Asset Ratio

(a) Extract the sub-sample of observations for 1987. There should be 1028 observations. Estimate a
linear regression of I (investment to capital ratio) on the other variables. Calculate appropriate
standard errors.
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(b) Calculate asymptotic confidence intervals for the coefficients.

(c) This regression is related to Tobin’s q theory of investment, which suggests that investment should
be predicted solely by Q (Tobin’s Q). This theory predicts that the coefficient on Q should be pos-
itive and the others should be zero. Test the joint hypothesis that the coefficients on cash flow
(C ) and debt (D) are zero. Test the hypothesis that the coefficient on Q is zero. Are the results
consistent with the predictions of the theory?

(d) Now try a nonlinear (quadratic) specification. Regress I on Q, C , D, Q2, C 2, D2, Q×C , Q×D, C ×D.
Test the joint hypothesis that the six interaction and quadratic coefficients are zero.

Exercise 9.26 In a paper in 1963, Marc Nerlove analyzed a cost function for 145 American electric com-
panies. Nerlov was interested in estimating a cost function: C = f (Q,PL,PF,PK ) where the variables are
listed in the table below. His data set Nerlove1963 is on the textbook website.

C Total Cost
Q Output
PL Unit price of labor
PK Unit price of capital
PF Unit price of fuel

(a) First, estimate an unrestricted Cobb-Douglass specification

logC =β1 +β2 logQ +β3 logPL+β4 logPK +β5 logPF +e. (9.23)

Report parameter estimates and standard errors.

(b) What is the economic meaning of the restriction H0 :β3 +β4 +β5 = 1?

(c) Estimate (9.23) by constrained least squares imposing β3 +β4 +β5 = 1. Report your parameter
estimates and standard errors.

(d) Estimate (9.23) by efficient minimum distance imposing β3 +β4 +β5 = 1. Report your parameter
estimates and standard errors.

(e) Test H0 :β3 +β4 +β5 = 1 using a Wald statistic.

(f) Test H0 :β3 +β4 +β5 = 1 using a minimum distance statistic.

Exercise 9.27 In Section 8.12 we reported estimates from Mankiw, Romer and Weil (1992). We reported
estimation both by unrestricted least squares and by constrained estimation, imposing the constraint
that three coefficients (2nd , 3r d and 4th coefficients) sum to zero as implied by the Solow growth theory.
Using the same dataset MRW1992 estimate the unrestricted model and test the hypothesis that the three
coefficients sum to zero.

Exercise 9.28 Using the cps09mar dataset and the subsample of non-Hispanic Black individuals (race
code = 2) test the hypothesis that marriage status does not affect mean wages.

(a) Take the regression reported in Table 4.1. Which variables will need to be omitted to estimate a
regression for this subsample?
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(b) Express the hypothesis “marriage status does not affect mean wages” as a restriction on the coeffi-
cients. How many restrictions is this?

(c) Find the Wald (or F) statistic for this hypothesis. What is the appropriate distribution for the test
statistic? Calculate the p-value of the test.

(d) What do you conclude?

Exercise 9.29 Using the cps09mar dataset and the subsample of non-Hispanic Black individuals (race
code = 2) and white individuals (race code = 1) test the hypothesis that the returns to education is com-
mon across groups.

(a) Allow the return to education to vary across the four groups (white male, white female, Black male,
Black female) by interacting dummy variables with education. Estimate an appropriate version of
the regression reported in Table 4.1.

(b) Find the Wald (or F) statistic for this hypothessis. What is the appropriate distribution for the test
statistic? Calculate the p-value of the test.

(c) What do you conclude?



Chapter 10

Resampling Methods

10.1 Introduction

So far in this textbook we have discussed two approaches to inference: exact and asymptotic. Both
have their strengths and weaknesses. Exact theory provides a useful benchmark but is based on the
unrealistic and stringent assumption of the homoskedastic normal regression model. Asymptotic theory
provides a more flexible distribution theory but is explicitly an approximation with uncertain accuracy
in practice.

In this chapter we introduce a set of alternative inference methods which are based around the con-
cept of resampling – which means using sampling information extracted from the empirical distribution
of the data. These are powerful methods, widely applicable, and often more accurate than exact meth-
ods and asymptotic approximations. Two disadvantages, however, are (1) resampling methods typically
require more computation power; and (2) the theory is considerably more challenging. A consequence
of the computation requirement is that most empirical researchers use asymptotic approximations for
routine calculations while resampling approximations are used for final reporting.

We will discuss two categories of resampling methods used in statistical and econometric practice:
jackknife and bootstrap. Most of our attention will be given to the bootstrap as it is the most commonly
used resampling method in econometric practice.

The jackknife is the distribution obtained from the n leave-one-out estimators (see Section 3.20).
The jackknife is most commonly used for variance estimation.

The bootstrap is the distribution obtained by estimation on samples created by i.i.d. sampling with
replacement from the dataset. (There are other variants of bootstrap sampling, including parametric
sampling and residual sampling.) The bootstrap is commonly used for variance estimation, confidence
interval construction, and hypothesis testing.

There is a third category of resampling methods known as sub-sampling which we will not cover in
this textbook. Sub-sampling is the distribution obtained by estimation on sub-samples (sampling with-
out replacement) of the dataset. Sub-sampling can be used for most of same purposes as the bootstrap.
See the excellent monograph by Politis, Romano and Wolf (1999).

10.2 Example

To motivate our discussion we focus on the application presented in Section 3.7, which is a bivariate
regression applied to the CPS subsample of married Black female wage earners with 12 years potential
work experience and displayed in Table 3.1. The regression equation is

log(wage) =β1education+β2 +e.

257
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The estimates as reported in (4.39) are

log(wage) = 0.155
(0.031)

education+ 0.698
(0.493)

+ ê

σ̂2 = 0.144
(0.043)

n = 20.

We focus on four estimates constructed from this regression. The first two are the coefficient esti-
mates β̂1 and β̂2. The third is the variance estimate σ̂2. The fourth is an estimate of the expected level of
wages for an individual with 16 years of education (a college graduate), which turns out to be a nonlinear
function of the parameters. Under the simplifying assumption that the error e is independent of the level
of education and normally distributed we find that the expected level of wages is

µ= E[
wage | education = 16

]
= E[

exp
(
16β1 +β2 +e

)]
= exp

(
16β1 +β2

)
E
[
exp(e)

]
= exp

(
16β1 +β2 +σ2/2

)
.

The final equality is E
[
exp(e)

]= exp
(
σ2/2

)
which can be obtained from the normal moment generating

function. The parameter µ is a nonlinear function of the coefficients. The natural estimator of µ replaces
the unknowns by the point estimators. Thus

µ̂= exp
(
16β̂1 + β̂2 + σ̂2/2

)= 25.80
(2.29)

The standard error for µ̂ can be found by extending Exercise 7.8 to find the joint asymptotic distribution
of σ̂2 and the slope estimates, and then applying the delta method.

We are interested in calculating standard errors and confidence intervals for the four estimates de-
scribed above.

10.3 Jackknife Estimation of Variance

The jackknife estimates moments of estimators using the distribution of the leave-one-out estima-
tors. The jackknife estimators of bias and variance were introduced by Quenouille (1949) and Tukey
(1958), respectively. The idea was expanded further in the monographs of Efron (1982) and Shao and Tu
(1995).

Let θ̂ be any estimator of a vector-valued parameter θ which is a function of a random sample of size
n. Let V θ̂ = var

[
θ̂
]

be the variance of θ̂. Define the leave-one-out estimators θ̂(−i ) which are computed

using the formula for θ̂ except that observation i is deleted. Tukey’s jackknife estimator for V θ̂ is defined
as a scale of the sample variance of the leave-one-out estimators:

V̂
jack

θ̂
= n −1

n

n∑
i=1

(
θ̂(−i ) −θ

)(
θ̂(−i ) −θ

)′
(10.1)
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where θ is the sample mean of the leave-one-out estimators θ = n−1 ∑n
i=1 θ̂(−i ). For scalar estimators θ̂

the jackknife standard error is the square root of (10.1): sjack

θ̂
=

√
V̂

jack

θ̂
.

A convenient feature of the jackknife estimator V̂
jack

θ̂
is that the formula (10.1) is quite general and

does not require any technical (exact or asymptotic) calculations. A downside is that can require n sepa-
rate estimations, which in some cases can be computationally costly.

In most cases V̂
jack

θ̂
will be similar to a robust asymptotic covariance matrix estimator. The main at-

tractions of the jackknife estimator are that it can be used when an explicit asymptotic variance formula
is not available and that it can be used as a check on the reliability of an asymptotic formula.

The formula (10.1) is not immediately intuitive so may benefit from some motivation. We start by
examining the sample mean Y = 1

n

∑n
i=1 Yi for Y ∈Rm . The leave-one-out estimator is

Y (−i ) = 1

n −1

∑
j 6=i

Y j = n

n −1
Y − 1

n −1
Yi . (10.2)

The sample mean of the leave-one-out estimators is

1

n

n∑
i=1

Y (−i ) = n

n −1
Y − 1

n −1
Y = Y .

The difference is

Y (−i ) −Y = 1

n −1

(
Y −Yi

)
.

The jackknife estimate of variance (10.1) is then

V̂
jack

Y
= n −1

n

n∑
i=1

(
1

n −1

)2 (
Y −Yi

)(
Y −Yi

)′
= 1

n

(
1

n −1

) n∑
i=1

(
Y −Yi

)(
Y −Yi

)′
. (10.3)

This is identical to the conventional estimator for the variance of Y . Indeed, Tukey proposed the (n−1)/n

scaling in (10.1) so that V̂
jack

Y
precisely equals the conventional estimator.

We next examine the case of least squares regression coefficient estimator. Recall from (3.43) that the
leave-one-out OLS estimator equals

β̂(−i ) = β̂− (
X ′X

)−1 Xi ẽi (10.4)

where ẽi = (1−hi i )−1 êi and hi i = X ′
i

(
X ′X

)−1 Xi . The sample mean of the leave-one-out estimators is

β= β̂− (
X ′X

)−1
µ̃ where µ̃= n−1 ∑n

i=1 Xi ẽi . Thus β̂(−i ) −β=−(
X ′X

)−1 (
Xi ẽi − µ̃

)
. The jackknife estimate

of variance for β̂ is

V̂
jack

β̂
= n −1

n

n∑
i=1

(
β̂(−i ) −β

)(
β̂(−i ) −β

)′
= n −1

n

(
X ′X

)−1

(
n∑

i=1
Xi X ′

i ẽ2
i −nµ̃µ̃′

)(
X ′X

)−1

= n −1

n
V̂

HC3
β̂ − (n −1)

(
X ′X

)−1
µ̃µ̃′ (X ′X

)−1 (10.5)
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where V̂
HC3
β̂ is the HC3 covariance estimator (4.34) based on prediction errors. The second term in (10.5)

is typically quite small since µ̃ is typically small in magnitude. Thus V̂
jack

β̂
' V̂

HC3
β̂ . Indeed the HC3

estimator was originally motivated as a simplification of the jackknife estimator. This shows that for
regression coefficients the jackknife estimator of variance is similar to a conventional robust estimator.
This is accomplished without the user “knowing” the form of the asymptotic covariance matrix. This is
further confirmation that the jackknife is making a reasonable calculation.

Third, we examine the jackknife estimator for a function θ̂ = r (β̂) of a least squares estimator. The
leave-one-out estimator of θ is

θ̂(−i ) = r (β̂(−i ))

= r
(
β̂− (

X ′X
)−1 Xi ẽi

)
' θ̂− R̂

′ (
X ′X

)−1 Xi ẽi .

The second equality is (10.4). The final approximation is obtained by a mean-value expansion, using
r (β̂) = θ̂ and setting R̂ = (

∂/∂β
)

r (β̂)′. This approximation holds in large samples since β̂(−i ) are uniformly
consistent for β. The jackknife variance estimator for θ̂ thus equals

V̂
jack

θ̂
= n −1

n

n∑
i=1

(
θ̂(−i ) −θ

)(
θ̂(−i ) −θ

)′
' n −1

n
R̂

′ (
X ′X

)−1

(
n∑

i=1
Xi X ′

i ẽ2
i −nµ̃µ̃′

)(
X ′X

)−1 R̂

= R̂
′
V̂

jack

β̂
R̂

' R̂
′
Ṽ β̂R̂ .

The final line equals a delta-method estimator for the variance of θ̂ constructed with the covariance
estimator (4.34). This shows that the jackknife estimator of variance for θ̂ is approximately an asymptotic
delta-method estimator. While this is an asymptotic approximation, it again shows that the jackknife
produces an estimator which is asymptotically similar to one produced by asymptotic methods. This
is despite the fact that the jackknife estimator is calculated without reference to asymptotic theory and
does not require calculation of the derivatives of r (β).

This argument extends directly to any “smooth function” estimator. Most of the estimators discussed

so far in this textbook take the form θ̂ = g
(
W

)
where W = n−1 ∑n

i=1 Wi and Wi is some vector-valued

function of the data. For any such estimator θ̂ the leave-one-out estimator equals θ̂(−i ) = g
(
W (−i )

)
and

its jackknife estimator of variance is (10.1). Using (10.2) and a mean-value expansion we have the large-
sample approximation

θ̂(−i ) = g
(
W (−i )

)
= g

(
n

n −1
W − 1

n −1
Wi

)
' g

(
W

)
− 1

n −1
G

(
W

)′
Wi

where G (x) = (∂/∂x) g (x)′. Thus

θ̂(−i ) −θ '− 1

n −1
G

(
W

)′ (
Wi −W

)
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and the jackknife estimator of the variance of θ̂ approximately equals

V̂
jack

θ̂
= n −1

n

n∑
i=1

(
θ̂(−i ) − θ̂(·)

)(
θ̂(−i ) − θ̂(·)

)′
' n −1

n
G

(
W

)′ ( 1

(n −1)2

n∑
i=1

(
Wi −W

)(
Wi −W

)′)
G

(
W

)
=G

(
W

)′
V̂

jack

W
G

(
W

)
where V̂

jack

W
as defined in (10.3) is the conventional (and jackknife) estimator for the variance of W . Thus

V̂
jack

θ̂
is approximately the delta-method estimator. Once again, we see that the jackknife estimator au-

tomatically calculates what is effectively the delta-method variance estimator, but without requiring the
user to explicitly calculate the derivative of g (x).

10.4 Example

We illustrate by reporting the asymptotic and jackknife standard errors for the four parameter esti-
mates given earlier. In Table 10.1 we report the actual values of the leave-one-out estimates for each of
the twenty observations in the sample. The jackknife standard errors are calculated as the scaled square
roots of the sample variances of these leave-one-out estimates and are reported in the second-to-last
row. For comparison the asymptotic standard errors are reported in the final row.

For all estimates the jackknife and asymptotic standard errors are quite similar. This reinforces the
credibility of both standard error estimates. The largest differences arise for β̂2 and µ̂, whose jackknife
standard errors are about 5% larger than the asymptotic standard errors.

The take-away from our presentation is that the jackknife is a simple and flexible method for vari-
ance and standard error calculation. Circumventing technical asymptotic and exact calculations, the
jackknife produces estimates which in many cases are similar to asymptotic delta-method counterparts.
The jackknife is especially appealing in cases where asymptotic standard errors are not available or are
difficult to calculate. They can also be used as a double-check on the reasonability of asymptotic delta-
method calculations.

In Stata, jackknife standard errors for coefficient estimates in many models are simply obtained
by the vce(jackknife) option. For nonlinear functions of the coefficients or other estimators the
jackknife command can be combined with any other command to obtain jackknife standard errors.

To illustrate, below we list the Stata commands which will calculate the jackknife standard errors
listed above. The first line is least squares estimation with standard errors calculated by the jackknife.
The second line calculates the error variance estimate σ̂2 with a jackknife standard error. The third line
does the same for the estimate µ̂.

Stata Commands

reg wage education if mbf12 == 1, vce(jackknife)
jackknife (e(rss)/e(N)): reg wage education if mbf12 == 1
jackknife exp(16*_b[education]+_b[_cons]+e(rss)/e(N)/2): ///

reg wage education if mbf12 == 1
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Table 10.1: Leave-one-out Estimators and Jackknife Standard Errors

Observation β̂1(−i ) β̂2(−i ) σ̂2
(−i ) µ̂(−i )

1 0.150 0.764 0.150 25.63
2 0.148 0.798 0.149 25.48
3 0.153 0.739 0.151 25.97
4 0.156 0.695 0.144 26.31
5 0.154 0.701 0.146 25.38
6 0.158 0.655 0.151 26.05
7 0.152 0.705 0.114 24.32
8 0.146 0.822 0.147 25.37
9 0.162 0.588 0.151 25.75

10 0.157 0.693 0.139 26.40
11 0.168 0.510 0.141 26.40
12 0.158 0.691 0.118 26.48
13 0.139 0.974 0.141 26.56
14 0.169 0.451 0.131 26.26
15 0.146 0.852 0.150 24.93
16 0.156 0.696 0.148 26.06
17 0.165 0.513 0.140 25.22
18 0.155 0.698 0.151 25.90
19 0.152 0.742 0.151 25.73
20 0.155 0.697 0.151 25.95

sjack 0.032 0.514 0.046 2.39
sasy 0.031 0.493 0.043 2.29

10.5 Jackknife for Clustered Observations

In Section 4.23 we introduced the clustered regression model, cluster-robust variance estimators,
and cluster-robust standard errors. Jackknife variance estimation can also be used for clustered samples
but with some natural modifications. Recall that the least squares estimator in the clustered sample
context can be written as

β̂=
(

G∑
g=1

X ′
g X g

)−1 (
G∑

g=1
X ′

g Y g

)
where g = 1, ...,G indexes the cluster. Instead of leave-one-out estimators, it is natural to use delete-
cluster estimators, which delete one cluster at a time. They take the form (4.53):

β̂(−g ) = β̂− (
X ′X

)−1 X ′
g ẽg

where

ẽg =
(

I ng −X g
(

X ′X
)−1 X ′

g

)−1
êg

êg = Y g −X g β̂.
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The delete-cluster jackknife estimator of the variance of β̂ is

V̂
jack

β̂
= G −1

G

G∑
g=1

(
β̂(−g ) −β

)(
β̂(−g ) −β

)′
β= 1

G

G∑
g=1

β̂(−g ).

We can also call V̂
jack

β̂
a cluster-robust jackknife estimator of variance.

Using the same approximations as the previous section we can show that the delete-cluster jackknife
estimator is asymptotically equivalent to the cluster-robust covariance matrix estimator (4.54) calculated
with the delete-cluster prediction errors. This verifies that the delete-cluster jackknife is the appropriate
jackknife approach for clustered dependence.

For parameters which are functions θ̂ = r (β̂) of the least squares estimator, the delete-cluster jack-
knife estimator of the variance of θ̂ is

V̂
jack

θ̂
= G −1

G

G∑
g=1

(
θ̂(−g ) −θ

)(
θ̂(−g ) −θ

)′
θ̂(−i ) = r (β̂(−g ))

θ = 1

G

G∑
g=1

θ̂(−g ).

Using a mean-value expansion we can show that this estimator is asymptotically equivalent to the delta-
method cluster-robust covariance matrix estimator for θ̂. This shows that the jackknife estimator is ap-
propriate for covariance matrix estimation.

As in the context of i.i.d. samples, one advantage of the jackknife covariance matrix estimators is that
they do not require the user to make a technical calculation of the asymptotic distribution. A downside
is an increase in computation cost, as G separate regressions are effectively estimated.

In Stata, jackknife standard errors for coefficient estimates with clustered observations are obtained
by using the options cluster(id) vce(jackknife) where id denotes the cluster variable.

10.6 The Bootstrap Algorithm

The bootstrap is a powerful approach to inference and is due to the pioneering work of Efron (1979).
There are many textbook and monograph treatments of the bootstrap, including Efron (1982), Hall (1992),
Efron and Tibshirani (1993), Shao and Tu (1995), and Davison and Hinkley (1997). Reviews for econome-
tricians are provided by Hall (1994) and Horowitz (2001)

There are several ways to describe or define the bootstrap and there are several forms of the boot-
strap. We start in this section by describing the basic nonparametric bootstrap algorithm. In subsequent
sections we give more formal definitions of the bootstrap as well as theoretical justifications.

Briefly, the bootstrap distribution is obtained by estimation on independent samples created by i.i.d.
sampling (sampling with replacement) from the original dataset.

To understand this it is useful to start with the concept of sampling with replacement from the
dataset. To continue the empirical example used earlier in the chapter we focus on the dataset dis-
played in Table 3.1, which has n = 20 observations. Sampling from this distribution means randomly
selecting one row from this table. Mathematically this is the same as randomly selecting an integer from
the set {1,2, ...,20}. To illustrate, MATLAB has a random integer generator (the function randi). Using
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the random number seed of 13 (an arbitrary choice) we obtain the random draw 16. This means that we
draw observation number 16 from Table 3.1. Examining the table we can see that this is an individual
with wage $18.75 and education of 16 years. We repeat by drawing another random integer on the set
{1,2, ...,20} and this time obtain 5. This means we take observation 5 from Table 3.1, which is an indi-
vidual with wage $33.17 and education of 16 years. We continue until we have n = 20 such draws. This
random set of observations are {16, 5, 17, 20, 20, 10, 13, 16, 13, 15, 1, 6, 2, 18, 8, 14, 6, 7, 1, 8}. We call this
the bootstrap sample.

Notice that the observations 1, 6, 8, 13, 16, 20 each appear twice in the bootstrap sample, and the
observations 3, 4, 9, 11, 12, 19 do not appear at all. That is okay. In fact, it is necessary for the bootstrap to
work. This is because we are drawing with replacement. (If we instead made draws without replacement
then the constructed dataset would have exactly the same observations as in Table 3.1, only in different
order.) We can also ask the question “What is the probability that an individual observation will appear
at least once in the bootstrap sample?” The answer is

P
[
Observation in Bootstrap Sample

]= 1−
(
1− 1

n

)n

(10.6)

→ 1−e−1 ' 0.632.

The limit holds as n → ∞. The approximation 0.632 is excellent even for small n. For example, when
n = 20 the probability (10.6) is 0.641. These calculations show that an individual observation is in the
bootstrap sample with probability near 2/3.

Once again, the bootstrap sample is the constructed dataset with the 20 observations drawn ran-
domly from the original sample. Notationally, we write the i th bootstrap observation as

(
Y ∗

i , X ∗
i

)
and the

bootstrap sample as {
(
Y ∗

1 , X ∗
1

)
, ...,

(
Y ∗

n , X ∗
n

)
}. In our present example with Y denoting the log wage the

bootstrap sample is

{
(
Y ∗

1 , X ∗
1

)
, ...,

(
Y ∗

n , X ∗
n

)
} = {(2.93,16) , (3.50,16) ..., (3.76,18)}.

The bootstrap estimate β̂∗ is obtained by applying the least squares estimation formula to the boot-
strap sample. Thus we regress Y ∗ on X ∗. The other bootstrap estimates, in our example σ̂2∗ and
µ̂∗, are obtained by applying their estimation formulae to the bootstrap sample as well. Writing θ̂∗ =(
β̂∗

1 , β̂∗
2 , σ̂∗2, µ̂∗)′

we have the bootstrap estimate of the parameter vector θ = (
β1,β2,σ2,µ

)′
. In our ex-

ample (the bootstrap sample described above) θ̂∗ = (0.195,0.113,0.107,26.7)′. This is one draw from the
bootstrap distribution of the estimates.

The estimate θ̂∗ as described is one random draw from the distribution of estimates obtained by
i.i.d. sampling from the original data. With one draw we can say relatively little. But we can repeat this
exercise to obtain multiple draws from this bootstrap distribution. To distinguish between these draws
we index the bootstrap samples by b = 1, ...,B , and write the bootstrap estimates as θ̂∗b or θ̂∗(b).

To continue our illustration we draw 20 more random integers {19, 5, 7, 19, 1, 2, 13, 18, 1, 15, 17, 2,
14, 11, 10, 20, 1, 5, 15, 7} and construct a second bootstrap sample. On this sample we again estimate the
parameters and obtain θ̂∗(2) = (0.175,0.52,0.124,29.3)′. This is a second random draw from the distribu-
tion of θ̂∗. We repeat this B times, storing the parameter estimates θ̂∗(b). We have thus created a new
dataset of bootstrap draws

{
θ̂∗(b) : b = 1, ...,B

}
. By construction the draws are independent across b and

identically distributed.
The number of bootstrap draws, B , is often called the “number of bootstrap replications”. Typical

choices for B are 1000, 5000, and 10,000. We discuss selecting B later, but roughly speaking, larger B
results in a more precise estimate at an increased computation cost. For our application we set B =
10,000.
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To illustrate, Figure 13.1 displays the densities of the distributions of the bootstrap estimates β̂∗
1 and

µ̂∗ across 10,000 draws. The dashed lines show the point estimate. You can notice that the density for β̂∗
1

is slightly skewed to the left.
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Figure 10.1: Bootstrap Distributions of β̂∗
1 and µ̂∗

10.7 Bootstrap Variance and Standard Errors

Given the bootstrap draws we can estimate features of the bootstrap distribution. The bootstrap
estimator of variance of an estimator θ̂ is the sample variance across the bootstrap draws θ̂∗(b). It equals

V̂
boot
θ̂ = 1

B −1

B∑
b=1

(
θ̂∗(b)−θ∗

)(
θ̂∗(b)−θ∗

)′
(10.7)

θ
∗ = 1

B

B∑
b=1

θ̂∗(b).

For a scalar estimator θ̂ the bootstrap standard error is the square root of the bootstrap estimator of
variance:

sboot
θ̂

=
√

V̂
boot
θ̂ .

This is a very simple statistic to calculate and is the most common use of the bootstrap in applied econo-
metric practice. A caveat (discussed in more detail in Section 10.15) is that in many cases it is better to
use a trimmed estimator.

Standard errors are conventionally reported to convey the precision of the estimator. They are also
commonly used to construct confidence intervals. Bootstrap standard errors can be used for this pur-
pose. The normal-approximation bootstrap confidence interval is

C nb =
[
θ̂− z1−α/2sboot

θ̂
, θ̂+ z1−α/2sboot

θ̂

]
where z1−α/2 is the 1−α/2 quantile of the N(0,1) distribution. This interval C nb is identical in format
to an asymptotic confidence interval, but with the bootstrap standard error replacing the asymptotic
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standard error. C nb is the default confidence interval reported by Stata when the bootstrap has been used
to calculate standard errors. However, the normal-approximation interval is in general a poor choice for
confidence interval construction as it relies on the normal approximation to the t-ratio which can be
inaccurate in finite samples. There are other methods – such as the bias-corrected percentile method
to be discussed in Section 10.17 – which are just as simple to compute but have better performance.
In general, bootstrap standard errors should be used as estimates of precision rather than as tools to
construct confidence intervals.

Since B is finite, all bootstrap statistics, such as V̂
boot
θ̂ , are estimates and hence random. Their values

will vary across different choices for B and simulation runs (depending on how the simulation seed is
set). Thus you should not expect to obtain the exact same bootstrap standard errors as other researchers
when replicating their results. They should be similar (up to simulation sampling error) but not precisely
the same.

In Table 10.2 we report the four parameter estimates introduced in Section 10.2 along with asymp-
totic, jackknife and bootstrap standard errors. We also report four bootstrap confidence intervals which
will be introduced in subsequent sections.

For these four estimators we can see that the bootstrap standard errors are quite similar to the asymp-
totic and jackknife standard errors. The most noticable difference arises for β̂2, where the bootstrap
standard error is about 10% larger than the asymptotic standard error.

Table 10.2: Comparison of Methods

β̂1 β̂2 σ̂2 µ̂

Estimate 0.155 0.698 0.144 25.80
Asymptotic s.e. (0.031) (0.493) (0.043) (2.29)
Jackknife s.e. (0.032) (0.514) (0.046) (2.39)
Bootstrap s.e. (0.034) (0.548) (0.041) (2.38)
95% Percentile Interval [0.08, 0.21] [−0.27, 1.91] [0.06, 0.22] [21.4, 30.7]
95% BC Percentile Interval [0.08, 0.21] [−0.25, 1.93] [0.09, 0.28] [22.0, 31.5]
95% BCa Percentile Interval [0.08, 0.21] [−0.25, 1.93] [0.09, 0.28] [22.0, 31.5]
95% Percentile-t Interval [0.09, 0.21] [−0.20, 1.81] [0.08, 0.34] [21.6, 32.2]

In Stata, bootstrap standard errors for coefficient estimates in many models are obtained by the
vce(bootstrap, reps(#)) option, where # is the number of bootstrap replications. For nonlinear
functions of the coefficients or other estimators the bootstrap command can be combined with any
other command to obtain bootstrap standard errors. Synonyms for bootstrap are bstrap and bs.

To illustrate, below we list the Stata commands which will calculate1 the bootstrap standard errors
listed above.

Stata Commands

reg wage education if mbf12 == 1, vce(bootstrap, reps(10000))
bs (e(rss)/e(N)), reps(10000): reg wage education if mbf12 == 1
bs (exp(16*_b[education]+_b[_cons]+e(rss)/e(N)/2)), reps(10000): ///

reg wage education if mbf12 == 1

1They will not precisely replicate the standard errors since those in Table 10.2 were produced in Matlab which uses a different
random number sequence.
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10.8 Percentile Interval

The second most common use of bootstrap methods is for confidence intervals. There are multiple
bootstrap methods to form confidence intervals. A popular and simple method is called the percentile
interval. It is based on the quantiles of the bootstrap distribution.

In Section 10.6 we described the bootstrap algorithm which creates an i.i.d. sample of bootstrap
estimates

{
θ̂∗1 , θ̂∗2 , ..., θ̂∗B

}
corresponding to an estimator θ̂ of a parameter θ. We focus on the case of a

scalar parameter θ.
For any 0 <α< 1 we can calculate the empirical quantile q∗

α of these bootstrap estimates. This is the
number such that nα bootstrap estimates are smaller than q∗

α, and is typically calculated by taking the
nαth order statistic of the θ̂∗b . See Section 11.13 of Introduction to Econometrics for a precise discussion
of empirical quantiles and common quantile estimators.

The percentile bootstrap 100(1−α)% confidence interval is

C pc = [
q∗
α/2, q∗

1−α/2

]
. (10.8)

For example, if B = 1000, α= 0.05, and the empirical quantile estimator is used, then C pc =
[
θ̂∗(25), θ̂

∗
(975)

]
.

To illustrate, the 0.025 and 0.975 quantiles of the bootstrap distributions of β̂∗
1 and µ̂∗ are indicated

in Figure 13.1 by the arrows. The intervals between the arrows are the 95% percentile intervals.
The percentile interval has the convenience that it does not require calculation of a standard error.

This is particularly convenient in contexts where asymptotic standard error calculation is complicated,
burdensome, or unknown. C pc is a simple by-product of the bootstrap algorithm and does not require
meaningful computational cost above that required to calculate the bootstrap standard error.

The percentile interval has the useful property that it is transformation-respecting. Take a mono-
tone parameter transformation m(θ). The percentile interval for m(θ) is simply the percentile interval
for θ mapped by m(θ). That is, if

[
q∗
α/2, q∗

1−α/2

]
is the percentile interval for θ, then

[
m

(
q∗
α/2

)
,m

(
q∗

1−α/2

)]
is the percentile interval for m(θ). This property follows directly from the equivariance property of sam-
ple quantiles. Many confidence-interval methods, such as the delta-method asymptotic interval and the
normal-approximation interval C nb, do not share this property.

To illustrate the usefulness of the transformation-respecting property consider the variance σ2. In
some cases it is useful to report the variance σ2 and in other cases it is useful to report the standard
deviation σ. Thus we may be interested in confidence intervals for σ2 or σ. To illustrate, the asymp-
totic 95% normal confidence interval for σ2 which we calculate from Table 13.2 is [0.060,0.228]. Taking
square roots we obtain an interval for σ of [0.244,0.477]. Alternatively, the delta method standard error
for σ̂ = 0.379 is 0.057, leading to an asymptotic 95% confidence interval for σ of [0.265,0.493] which is
different. This shows that the delta method is not transformation-respecting. In contrast, the 95% per-
centile interval forσ2 is [0.062, 0.220] and that forσ is [0.249, 0.469] which is identical to the square roots
of the interval for σ2.

The bootstrap percentile intervals for the four estimators are reported in Table 13.2.
In Stata, percentile confidence intervals can be obtained by using the command estat bootstrap,

percentile or the command estat bootstrap, all after an estimation command which calculates
standard errors via the bootstrap.

10.9 The Bootstrap Distribution

For applications it is often sufficient if one understands the bootstrap as an algorithm. However, for
theory it is more useful to view the bootstrap as a specific estimator of the sampling distribution. For this
it is useful to introduce some additional notation.
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The key is that the distribution of any estimator or statistic is determined by the distribution of the
data. While the latter is unknown it can be estimated by the empirical distribution of the data. This is
what the bootstrap does.

To fix notation, let F denote the distribution of an individual observation W . (In regression, W is the
pair (Y , X ).) Let Gn(u,F ) denote the distribution of an estimator θ̂. That is,

Gn(u,F ) =P[
θ̂ ≤ u | F

]
.

We write the distribution Gn as a function of n and F since they (generally) affect the distribution of
θ̂. We are interested in the distribution Gn . For example, we want to know its variance to calculate a
standard error or its quantiles to calculate a percentile interval.

In principle, if we knew the distribution F we should be able to determine the distribution Gn . In
practice there are two barriers to implementation. The first barrier is that the calculation of Gn(u,F )
is generally infeasible except in certain special cases such as the normal regression model. The second
barrier is that in general we do not know F .

The bootstrap simultaneously circumvents these two barriers by two clever ideas. First, the bootstrap
proposes estimation of F by the empirical distribution function (EDF) Fn , which is the simplest nonpara-
metric estimator of the joint distribution of the observations. The EDF is Fn(x) = n−1 ∑n

i=11 {Xi ≤ x} . (See
Section 11.2 of Introduction to Econometrics for details and properties.) Replacing F with Fn we obtain
the idealized bootstrap estimator of the distribution of θ̂

G∗
n(u) =Gn(u,Fn). (10.9)

The bootstrap’s second clever idea is to estimate G∗
n by simulation. This is the bootstrap algorithm de-

scribed in the previous sections. The essential idea is that simulation from Fn is sampling with replace-
ment from the original data, which is computationally simple. Applying the estimation formula for θ̂
we obtain i.i.d. draws from the distribution G∗

n(u). By making a large number B of such draws we can
estimate any feature of G∗

n of interest. The bootstrap combines these two ideas: (1) estimate Gn(u,F ) by
Gn(u,Fn); (2) estimate Gn(u,Fn) by simulation. These ideas are intertwined. Only by considering these
steps together do we obtain a feasible method.

The way to think about the connection between Gn and G∗
n is as follows. Gn is the distribution of the

estimator θ̂ obtained when the observations are sampled i.i.d. from the population distribution F . G∗
n

is the distribution of the same statistic, denoted θ̂∗, obtained when the observations are sampled i.i.d.
from the empirical distribution Fn . It is useful to conceptualize the “universe” which separately generates
the dataset and the bootstrap sample. The “sampling universe” is the population distribution F . In this
universe the true parameter is θ. The “bootstrap universe” is the empircal distribution Fn . When drawing
from the bootstrap universe we are treating Fn as if it is the true distribution. Thus anything which is true
about Fn should be treated as true in the bootstrap universe. In the bootstrap universe the “true” value
of the parameter θ is the value determined by the EDF Fn . In most cases this is the estimate θ̂. It is the
true value of the coefficient when the true distribution is Fn .

We now carefully explain the connection with the bootstrap algorithm as previously described.
First, observe that sampling with replacement from the sample {Y1, ...,Yn} is identical to sampling

from the EDF Fn . This is because the EDF is the probability distribution which puts probability mass
1/n on each observation. Thus sampling from Fn means sampling an observation with probability 1/n,
which is sampling with replacement.

Second, observe that the bootstrap estimator θ̂∗ described here is identical to the bootstrap algo-
rithm described in Section 10.6. That is, θ̂∗ is the random vector generated by applying the estimator
formula θ̂ to samples obtained by random sampling from Fn .
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Third, observe that the distribution of these bootstrap estimators is the bootstrap distribution (10.9).
This is a precise equality. That is, the bootstrap algorithm generates i.i.d. samples from Fn , and when the
estimators are applied we obtain random variables θ̂∗ with the distribution G∗

n .
Fourth, observe that the bootstrap statistics described earlier – bootstrap variance, standard error,

and quantiles – are estimators of the corresponding features of the bootstrap distribution G∗
n .

This discussion is meant to carefully describe why the notation G∗
n(u) is useful to help understand the

properties of the bootstrap algorithm. Since Fn is the natural nonparametric estimator of the unknown
distribution F , G∗

n(u) =Gn(u,Fn) is the natural plug-in estimator of the unknown Gn(u,F ). Furthermore,
since Fn is uniformly consistent for F by the Glivenko-Cantelli Lemma (Theorem 18.8 in Introduction to
Econometrics) we also can expect G∗

n(u) to be consistent for Gn(u). Making this precise is a bit challeng-
ing since Fn and Gn are functions. In the next several sections we develop an asymptotic distribution
theory for the bootstrap distribution based on extending asymptotic theory to the case of conditional
distributions.

10.10 The Distribution of the Bootstrap Observations

Let Y ∗ be a random draw from the sample {Y1, ...,Yn}. What is the distribution of Y ∗?
Since we are fixing the observations, the correct question is: What is the conditional distribution of

Y ∗, conditional on the observed data? The empirical distribution function Fn summarizes the informa-
tion in the sample, so equivalently we are talking about the distribution conditional on Fn . Consequently
we will write the bootstrap probability function and expectation as

P∗ [
Y ∗ ≤ x

]=P[
Y ∗ ≤ x | Fn

]
E∗

[
Y ∗]= E[

Y ∗ | Fn
]

.

Notationally, the starred distribution and expectation are conditional given the data.
The (conditional) distribution of Y ∗ is the empirical distribution function Fn , which is a discrete

distribution with mass points 1/n on each observation Yi . Thus even if the original data come from a
continuous distribution, the bootstrap data distribution is discrete.

The (conditional) mean and variance of Y ∗ are calculated from the EDF, and equal the sample mean
and variance of the data. The mean is

E∗
[
Y ∗]= n∑

i=1
YiP

∗ [
Y ∗ = Yi

]= n∑
i=1

Yi
1

n
= Y (10.10)

and the variance is

var∗
[
Y ∗]= E∗ [

Y ∗Y ∗′]− (
E∗

[
Y ∗])(

E∗
[
Y ∗])′

=
n∑

i=1
Yi Y ′

i P
∗ [

Y ∗ = Yi
]−Y Y

′

=
n∑

i=1
Yi Y ′

i
1

n
−Y Y

′

= Σ̂. (10.11)

To summarize, the conditional distribution of Y ∗, given Fn , is the discrete distribution on {Y1, ...,Yn} with
mean Y and covariance matrix Σ̂.

We can extend this analysis to any integer moment r . Assume Y is scalar. The r th moment of Y ∗ is

µ∗′
r = E∗ [

Y ∗r ]= n∑
i=1

Y r
i P

∗ [
Y ∗ = Yi

]= 1

n

n∑
i=1

Y r
i = µ̂′

r ,
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the r th sample moment. The r th central moment of Y ∗ is

µ∗
r = E∗

[(
Y ∗−Y

)r ]
= 1

n

n∑
i=1

(
Yi −Y

)r = µ̂r ,

the r th central sample moment. Similarly, the r th cumulant of Y ∗ is κ∗r = κ̂r , the r th sample cumulant.

10.11 The Distribution of the Bootstrap Sample Mean

The bootstrap sample mean is

Y
∗ = 1

n

n∑
i=1

Y ∗
i .

We can calculate its (conditional) mean and variance. The mean is

E∗
[

Y
∗]

= E∗
[

1

n

n∑
i=1

Y ∗
i

]
= 1

n

n∑
i=1

E∗
[
Y ∗

i

]= 1

n

n∑
i=1

Y = Y . (10.12)

using (10.10). Thus the bootstrap sample mean Y
∗

has a distribution centered at the sample mean Y .
This is because the bootstrap observations Y ∗

i are drawn from the bootstrap universe, which treats the

EDF as the truth, and the mean of the latter distribution is Y .
The (conditional) variance of the bootstrap sample mean is

var∗
[

Y
∗]

= var∗
[

1

n

n∑
i=1

Y ∗
i

]
= 1

n2

n∑
i=1

var∗
[
Y ∗

i

]= 1

n2

n∑
i=1
Σ̂= 1

n
Σ̂ (10.13)

using (10.11). In the scalar case, var∗
[

Y
∗]

= σ̂2/n. This shows that the bootstrap variance of Y
∗

is pre-

cisely described by the sample variance of the original observations. Again, this is because the bootstrap
observations Y ∗

i are drawn from the bootstrap universe.
We can extend this to any integer moment r . Assume Y is scalar. Define the normalized bootstrap

sample mean Z∗
n = p

n
(
Y

∗−Y
)
. Using expressions from Section 6.17 of Introduction to Econometrics,

the 3r d through 6th conditional moments of Z∗
n are

E∗
[

Z∗3
n

]= κ̂3/n1/2

E∗
[

Z∗4
n

]= κ̂4/n +3κ̂2
2 (10.14)

E∗
[

Z∗5
n

]= κ̂5/n3/2 +10κ̂3κ̂2/n1/2

E∗
[

Z∗6
n

]= κ̂6/n2 + (
15κ̂4κ2 +10κ̂2

3

)
/n +15κ̂3

2

where κ̂r is the r th sample cumulant. Similar expressions can be derived for higher moments. The
moments (10.14) are exact, not approximations.

10.12 Bootstrap Asymptotics

The bootstrap mean Y
∗

is a sample average over n i.i.d. random variables, so we might expect it to
converge in probability to its expectation. Indeed, this is the case, but we have to be a bit careful since
the bootstrap mean has a conditional distribution (given the data) so we need to define convergence in
probability for conditional distributions.
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Definition 10.1 We say that a random vector Z∗
n converges in bootstrap prob-

ability to Z as n →∞, denoted Z∗
n −→

p∗ Z , if for all ε> 0

P∗ [∥∥Z∗
n −Z

∥∥> ε]−→
p

0.

To understand this definition recall that conventional convergence in probability Zn −→
p

Z means

that for a sufficiently large sample size n, the probability is high that Zn is arbitrarily close to its limit
Z . In contrast, Definition 10.1 says Z∗

n −→
p∗ Z means that for a sufficiently large n, the probability is high

that the conditional probability that Z∗
n is close to its limit Z is high. Note that there are two uses of

probability – both unconditional and conditional.
Our label “convergence in bootstrap probability” is a bit unusual. The label used in much of the

statistical literature is “convergence in probability, in probability” but that seems like a mouthful. That
literature more often focuses on the related concept of “convergence in probability, almost surely” which
holds if we replace the “−→

p
” convergence with almost sure convergence. We do not use this concept in

this chapter as it is an unnecessary complication.
While we have stated Definition 10.1 for the specific conditional probability distribution P∗, the idea

is more general and can be used for any conditional distribution and any sequence of random vectors.
The following may seem obvious but it is useful to state for clarity. Its proof is given in Section 10.31.

Theorem 10.1 If Zn −→
p

Z as n →∞ then Zn −→
p∗ Z .

Given Definition 10.1, we can establish a law of large numbers for the bootstrap sample mean.

Theorem 10.2 Bootstrap WLLN. If Yi are independent and uniformly inte-
grable then Y

∗−Y −→
p∗ 0 and Y

∗ −→
p∗ µ= E [Y ] as n →∞.

The proof (presented in Section 10.31) is somewhat different from the classical case as it is based on
the Marcinkiewicz WLLN (Theorem 10.20, presented in Section 10.31).

Notice that the conditions for the bootstrap WLLN are the same for the conventional WLLN. Notice
as well that we state two related but slightly different results. The first is that the difference between the
bootstrap sample mean Y

∗
and the sample mean Y diminishes as the sample size diverges. The second

result is that the bootstrap sample mean converges to the population mean µ. The latter is not surprising
(since the sample mean Y converges in probability to µ) but it is constructive to be precise since we are
dealing with a new convergence concept.

Theorem 10.3 Bootstrap Continuous Mapping Theorem. If Z∗
n −→

p∗ c as n →
∞ and g (·) is continuous at c, then g (Z∗

n ) −→
p∗ g (c) as n →∞.
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The proof is essentially identical to that of Theorem 6.6 so is omitted.
We next would like to show that the bootstrap sample mean is asymptotically normally distributed,

but for that we need a definition of convergence for conditional distributions.

Definition 10.2 Let Z∗
n be a sequence of random vectors with conditional dis-

tributions G∗
n(x) = P∗ [

Z∗
n ≤ x

]
. We say that Z∗

n converges in bootstrap distri-
bution to Z as n →∞, denoted Z∗

n −→
d∗ Z , if for all x at which G(x) = P [Z ≤ x]

is continuous, G∗
n(x) −→

p
G(x) as n →∞.

The difference with the conventional definition is that Definition 10.2 treats the conditional distribu-
tion as random. An alternative label for Definition 10.2 is “convergence in distribution, in probability”.

We now state a CLT for the bootstrap sample mean, with a proof given in Section 10.31.

Theorem 10.4 Bootstrap CLT. If Yi are i.i.d., E‖Y ‖2 <∞, and Σ = var[Y ] > 0,

then as n →∞,
p

n
(
Y

∗−Y
)
−→
d∗ N(0,Σ).

Theorem 10.4 shows that the normalized bootstrap sample mean has the same asymptotic distribu-
tion as the sample mean. Thus the bootstrap distribution is asymptotically the same as the sampling
distribution. A notable difference, however, is that the bootstrap sample mean is normalized by center-
ing at the sample mean, not at the population mean. This is because Y is the true mean in the bootstrap
universe.

We next state the distributional form of the continuous mapping theorem for bootstrap distributions
and the Bootstrap Delta Method.

Theorem 10.5 Bootstrap Continuous Mapping Theorem
If Z∗

n −→
d∗ Z as n →∞ and g : Rm → Rk has the set of discontinuity points Dg

such that P∗ [
Z∗ ∈ Dg

]= 0, then g (Z∗
n ) −→

d∗ g (Z ) as n →∞.

Theorem 10.6 Bootstrap Delta Method:
If µ̂−→

p
µ,

p
n

(
µ̂∗− µ̂)−→

d∗ ξ, and g (u) is continuously differentiable in a neigh-

borhood of µ, then as n →∞
p

n
(
g

(
µ̂∗)− g (µ̂)

)−→
d∗ G ′ξ

where G(x) = ∂
∂x g (x)′ and G =G(µ). In particular, if ξ∼ N(0,V ) then as n →∞

p
n

(
g

(
µ̂∗)− g (µ̂)

)−→
d∗ N

(
0,G ′V G

)
.
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For a proof, see Exercise 10.7.
We state an analog of Theorem 6.10, which presented the asymptotic distribution for general smooth

functions of sample means, which covers most econometric estimators.

Theorem 10.7 Under the assumptions of Theorem 6.10, that is, if Yi is i.i.d.,

µ = E [h (Y )], θ = g
(
µ
)

, E‖h (Y )‖2 < ∞, and G (x) = ∂

∂x
g (x)′ is continuous in

a neighborhood of µ, for θ̂ = g
(
µ̂
)

with µ̂ = 1
n

∑n
i=1 h (Yi ) and θ̂∗ = g

(
µ̂∗)

with
µ̂∗ = 1

n

∑n
i=1 h

(
Y ∗

i

)
, as n →∞

p
n

(
θ̂∗− θ̂)−→

d∗ N(0,V θ)

where V θ =G ′V G , V = E
[(

h (Y )−µ)(
h (Y )−µ)′] and G =G

(
µ
)

.

For a proof, see Exercise 10.8.
Theorem 10.7 shows that the asymptotic distribution of the bootstrap estimator θ̂∗ is identical to

that of the sample estimator θ̂. This means that we can learn the distribution of θ̂ from the bootstrap
distribution, and hence perform asymptotically correct inference.

For some bootstrap applications we use bootstrap estimates of variance. The plug-in estimator of V θ

is V̂ θ = Ĝ
′
V̂ Ĝ where Ĝ =G

(
µ̂
)

and

V̂ = 1

n

n∑
i=1

(
h (Yi )− µ̂)(

h (Yi )− µ̂)′ .

The bootstrap version is

V̂
∗
θ = Ĝ

∗′
V̂

∗
Ĝ

∗

Ĝ
∗ =G

(
µ̂∗)

V̂
∗ = 1

n

n∑
i=1

(
h

(
Y ∗

i

)− µ̂∗)(
h

(
Y ∗

i

)− µ̂∗)′ .

Application of the bootstrap WLLN and bootstrap CMT show that V̂
∗
θ is consistent for V θ.

Theorem 10.8 Under the assumptions of Theorem 10.7, V̂
∗
θ −→p∗ V θ as n →∞.

For a proof, see Exercise 10.9.

10.13 Consistency of the Bootstrap Estimate of Variance

Recall the definition (10.7) of the bootstrap estimator of variance V̂
boot
θ̂ of an estimator θ̂. In this

section we explore conditions under which V̂
boot
θ̂ is consistent for the asymptotic variance of θ̂.
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To do so it is useful to focus on a normalized version of the estimator so that the asymptotic variance
is not degenerate. Suppose that for some sequence an we have

Zn = an
(
θ̂−θ)−→

d
ξ (10.15)

and
Z∗

n = an
(
θ̂∗− θ̂)−→

d∗ ξ (10.16)

for some limit distribution ξ. That is, for some normalization, both θ̂ and θ̂∗ have the same asymptotic
distribution. This is quite general as it includes the smooth function model. The conventional boot-
strap estimator of the variance of Zn is the sample variance of the bootstrap draws

{
Z∗

n (b) : b = 1, ...,B
}
.

This equals the estimator (10.7) multiplied by a2
n . Thus it is equivalent (up to scale) whether we discuss

estimating the variance of θ̂ or Zn .
The bootstrap estimator of variance of Zn is

V̂
boot,B
θ = 1

B −1

B∑
b=1

(
Z∗

n (b)−Z∗
n

)(
Z∗

n (b)−Z∗
n

)′
Z
∗
n = 1

B

B∑
b=1

Z∗
n (b).

Notice that we index the estimator by the number of bootstrap replications B .
Since Z∗

n converges in bootstrap distribution to the same asymptotic distribution as Zn , it seems rea-
sonable to guess that the variance of Z∗

n will converge to that of ξ. However, convergence in distribution
is not sufficient for convergence in moments. For the variance to converge it is also necessary for the
sequence Z∗

n to be uniformly square integrable.

Theorem 10.9 If (10.15) and (10.16) hold for some sequence an and
∥∥Z∗

n

∥∥2 is
uniformly integrable, then as B →∞

V̂
boot,B
θ −→

p∗ V̂
boot
θ = var

[
Z∗

n

]
,

and as n →∞
V̂

boot
θ −→

p∗ V θ = var[ξ] .

This raises the question: Is the normalized sequence Zn uniformly integrable? We spend the remain-
der of this section exploring this question and turn in the next section to trimmed variance estimators
which do not require uniform integrability.

This condition is reasonably straightforward to verify for the case of a scalar sample mean with a

finite variance. That is, suppose Z∗
n = p

n
(
Y

∗−Y
)

and E
[
Y 2

] < ∞. In (10.14) we calculated the exact

fourth central moment of Z∗
n :

E∗
[

Z∗4
n

]= κ̂4

n
+3σ̂4 = µ̂4 −3σ̂4

n
+3σ̂4
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where σ̂2 = n−1 ∑n
i=1

(
Yi −Y

)2
and µ̂4 = n−1 ∑n

i=1

(
Yi −Y

)4
. The assumption E

[
Y 2

] < ∞ implies that

E
[
σ̂2

] = O(1) so σ̂2 = Op (1). Furthermore, n−1µ̂4 = n−2 ∑n
i=1

(
Yi −Y

)4 = op (1) by the Marcinkiewicz

WLLN (Theorem 10.20). It follows that

E∗
[

Z∗4
n

]= n2E∗
[(

Y
∗−Y

)4
]
=Op (1). (10.17)

Theorem 6.14 shows that this implies that Z∗2
n is uniformly integrable. Thus if Y has a finite variance

the normalized bootstrap sample mean is uniformly square integrable and the bootstrap estimate of
variance is consistent by Theorem 10.9.

Now consider the smooth function model of Theorem 10.7. We can establish the following result.

Theorem 10.10 In the smooth function model of Theorem 10.7, if for some
p ≥ 1 the p th-order derivatives of g (x) are bounded, then Z∗

n = p
n

(
θ̂∗− θ̂)

is
uniformly square integrable and the bootstrap estimator of variance is consis-
tent as in Theorem 10.9.

For a proof see Section 10.31.
This shows that the bootstrap estimate of variance is consistent for a reasonably broad class of esti-

mators. The class of functions g (x) covered by this result includes all p th-order polynomials.

10.14 Trimmed Estimator of Bootstrap Variance

Theorem 10.10 showed that the bootstrap estimator of variance is consistent for smooth functions
with a bounded p th order derivative. This is a fairly broad class but excludes many important applica-
tions. An example is θ = µ1/µ2 where µ1 = E [Y1] and µ2 = E [Y2]. This function does not have a bounded
derivative (unless µ2 is bounded away from zero) so is not covered by Theorem 10.10.

This is more than a technical issue. When (Y1,Y2) are jointly normally distributed then it is known
that θ̂ = Y 1/Y 2 does not possess a finite variance. Consequently we cannot expect the bootstrap estima-
tor of variance to perform well. (It is attempting to estimate the variance of θ̂, which is infinity.)

In these cases it is preferred to use a trimmed estimator of bootstrap variance. Let τn → ∞ be a
sequence of positive trimming numbers satisfying τn =O

(
en/8

)
. Define the trimmed statistic

Z∗∗
n = Z∗

n1
{∥∥Z∗

n

∥∥≤ τn
}

.

The trimmed bootstrap estimator of variance is

V̂
boot,B,τ
θ = 1

B −1

B∑
b=1

(
Z∗∗

n (b)−Z∗∗
n

)(
Z∗∗

n (b)−Z∗∗
n

)′
Z∗∗

n = 1

B

B∑
b=1

Z∗∗
n (b).

We first examine the behavior of V̂
boot,B
θ as the number of bootstrap replications B grows to infinity.

It is a sample variance of independent bounded random vectors. Thus by the bootstrap WLLN (Theorem

10.2) V̂
boot,B,τ
θ converges in bootstrap probability to the variance of Z∗∗

n .
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Theorem 10.11 As B →∞, V̂
boot,B,τ
θ −→

p∗ V̂
boot,τ
θ = var

[
Z∗∗

n

]
.

We next examine the behavior of the bootstrap estimator V̂
boot,τ
θ as n grows to infinity. We focus

on the smooth function model of Theorem 10.7, which showed that Z∗
n =p

n
(
θ̂∗− θ̂) −→

d∗ Z ∼ N(0,V θ).

Since the trimming is asymptotically negligible, it follows that Z∗∗
n −→

d∗ Z . If we can show that Z∗∗
n is

uniformly square integrable, Theorem 10.9 will show that var
[

Z∗∗
n

] → var[Z ] = V θ as n → ∞. This is
shown in the following result, whose proof is presented in Section 10.31.

Theorem 10.12 Under the assumptions of Theorem 10.7, V̂
boot,τ
θ −→

p∗ V θ.

Theorems 10.11 and 10.12 show that the trimmed bootstrap estimator of variance is consistent for
the asymptotic variance in the smooth function model, which includes most econometric estimators.
This justifies bootstrap standard errors as consistent estimators for the asymptotic distribution.

An important caveat is that these results critically rely on the trimmed variance estimator. This is a
critical caveat as conventional statistical packages (e.g. Stata) calculate bootstrap standard errors using
the untrimmed estimator (10.7). Thus there is no guarantee that the reported standard errors are con-
sistent. The untrimmed variance estimator works in the context of Theorem 10.10 and whenever the
bootstrap statistic is uniformly square integrable, but not necessarily in general applications.

In practice, it may be difficult to know how to select the trimming sequence τn . The rule τn =O
(
en/8

)
does not provide practical guidance. Instead, it may be useful to think about trimming in terms of per-
centages of the bootstrap draws. Thus we can set τn so that a given small percentage γn is trimmed. For
theoretical interpretation we would set γn → 0 as n →∞. In practice we might set γn = 1%.

10.15 Unreliability of Untrimmed Bootstrap Standard Errors

In the previous section we presented a trimmed bootstrap variance estimator which should be used
to form bootstrap standard errors for nonlinear estimators. Otherwise, the untrimmed estimator is po-
tentially unreliable.

This is an unfortunate situation, because reporting of bootstrap standard errors is commonplace in
contemporary applied econometric practice, and standard applications (including Stata) use the untrimmed
estimator.

To illustrate the seriousness of the problem we use the simple wage regression (7.31) which we repeat
here. This is the subsample of married Black women with 982 observations. The point estimates and
standard errors are

álog(wage) = 0.118
(0.008)

education+ 0.016
(0.006)

experience− 0.022
(0.012)

experience2/100+ 0.947
(0.157)

.

We are interested in the experience level which maximizes expected log wages θ3 =−50β2/β3. The point
estimate and standard errors calculated with different methods are reported in Table 10.3 below.
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The point estimate of the experience level with maximum earnings is θ̂3 = 35. The asymptotic and
jackknife standard errors are about 7. The bootstrap standard error, however, is 825! Confused by this
unusual value we rerun the bootstrap and obtain a standard error of 544. Each was computed with 10,000
bootstrap replications. The fact that the two bootstrap standard errors are considerably different when
recomputed (with different starting seeds) is indicative of moment failure. When there is an enormous
discrepancy like this between the asymptotic and bootstrap standard error, and between bootstrap runs,
it is a signal that there may be moment failure and consequently bootstrap standard errors are unreliable.

A trimmed bootstrap with τ= 25 (set to slightly exceed three asymptotic standard errors) produces a
more reasonable standard error of 10.

One message from this application is that when different methods produce very different standard
errors we should be cautious about trusting any single method. The large discrepancies indicate poor
asymptotic approximations, rendering all methods inaccurate. Another message is to be cautious about
reporting conventional bootstrap standard errors. Trimmed versions are preferred, especially for non-
linear functions of estimated coefficients.

Table 10.3: Experience Level Which Maximizes Expected log Wages

Estimate 35.2
Asymptotic s.e. (7.0)
Jackknife s.e. (7.0)
Bootstrap s.e. (standard) (825)
Bootstrap s.e. (repeat) (544)
Bootstrap s.e. (trimmed) (10.1)

10.16 Consistency of the Percentile Interval

Recall the percentile interval (10.8). We now provide conditions under which it has asymptotically
correct coverage.

Theorem 10.13 Assume that for some sequence an

an
(
θ̂−θ)−→

d
ξ (10.18)

and
an

(
θ̂∗− θ̂)−→

d∗ ξ (10.19)

where ξ is continuously distributed and symmetric about zero. Then
P

[
θ ∈C pc

]→ 1−α as n →∞.

The assumptions (10.18)-(10.19) hold for the smooth function model of Theorem 10.7, so this result
incorporates many applications. The beauty of Theorem 10.13 is that the simple confidence interval
C pc – which does not require technical calculation of asymptotic standard errors – has asymptotically
valid coverage for any estimator which falls in the smooth function class, as well as any other estimator
satisfying the convergence results (10.18)-(10.19) with ξ symmetrically distributed. The conditions are
weaker than those required for consistent bootstrap variance estimation (and normal-approximation
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confidence intervals) because it is not necessary to verify that θ̂∗ is uniformly integrable, nor necessary
to employ trimming.

The proof of Theorem 10.7 is not difficult. The convergence assumption (10.19) implies that the αth

quantile of an
(
θ̂∗− θ̂)

, which is an
(
q∗
α− θ̂

)
by quantile equivariance, converges in probability to the αth

quantile of ξ, which we can denote as qα. Thus

an
(
q∗
α− θ̂

)−→
p

qα. (10.20)

Let H(x) = P [ξ≤ x] be the distribution function of ξ. The assumption of symmetry implies H(−x) =
1−H(x). Then the percentile interval has coverage

P
[
θ ∈C pc]=P[

q∗
α/2 ≤ θ ≤ q∗

1−α/2

]
=P[−an

(
q∗
α/2 − θ̂

)≥ an
(
θ̂−θ)≥−an

(
q∗

1−α/2 − θ̂
)]

→P
[−qα/2 ≥ ξ≥−q1−α/2

]
= H

(−qα/2

)−H
(−q1−α/2

)
= H

(
q1−α/2

)−H
(
qα/2

)
= 1−α.

The convergence holds by (10.18) and (10.20). The following equality uses the definition of H , the next-
to-last is the symmetry of H , and the final equality is the definition of qα. This establishes Theorem
10.13.

Theorem 10.13 seems quite general, but it critically rests on the assumption that the asymptotic
distribution ξ is symmetrically distributed about zero. This may seem innocuous since conventional
asymptotic distributions are normal and hence symmetric, but it deserves further scrutiny. It is not
merely a technical assumption – an examination of the steps in the preceeding argument isolate quite
clearly that if the symmetry assumption is violated then the asymptotic coverage will not be 1−α. While
Theorem 10.13 does show that the percentile interval is asymptotically valid for a conventional asymp-
totically normal estimator, the reliance on symmetry in the argument suggests that the percentile method
will work poorly when the finite sample distribution is asymmetric. This turns out to be the case and
leads us to consider alternative methods in the following sections.

It is also worthwhile to investigate a finite sample justification for the percentile interval based on a
heuristic analogy due to Efron.

Assume that there exists an unknown but strictly increasing transformation ψ(θ) such that ψ(θ̂)−
ψ(θ) has a pivotal distribution H(u) (does not vary with θ) which is symmetric about zero. For example,
if θ̂ ∼ N(θ,σ2) we can set ψ(θ) = θ/σ. Alternatively, if θ̂ = exp

(
µ̂
)

and µ̂∼ N(µ,σ2) then we can set ψ(θ) =
log(θ)/σ.

To assess the coverage of the percentile interval, observe that since the distribution H is pivotal the
bootstrap distribution ψ(θ̂∗)−ψ(θ̂) also has distribution H(u). Let qα be the αth quantile of the distri-
bution H . Since q∗

α is the αth quantile of the distribution of θ̂∗ andψ(θ̂∗)−ψ(θ̂) is a monotonic transfor-
mation of θ̂∗, by the quantile equivariance property we deduce that qα+ψ(θ̂) =ψ(q∗

α). The percentile
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interval has coverage

P
[
θ ∈C pc]=P[

q∗
α/2 ≤ θ ≤ q∗

1−α/2

]
=P[

ψ(q∗
α/2) ≤ψ (θ) ≤ψ(q∗

1−α/2)
]

=P[
ψ(θ̂)−ψ(q∗

α/2) ≥ψ(θ̂)−ψ (θ) ≥ψ(
θ̂
)−ψ(q∗

1−α/2)
]

=P[−qα/2 ≥ψ(θ̂)−ψ (θ) ≥−q1−α/2

]
= H

(−qα/2

)−H
(−q1−α/2

)
= H

(
q1−α/2

)−H
(
qα/2

)
= 1−α.

The second equality applies the monotonic transformation ψ(u) to all elements. The fourth uses the
relationship qα+ψ(θ̂) =ψ(q∗

α). The fifth uses the defintion of H . The sixth uses the symmetry property
of H , and the final is by the definition of qα as the αth quantile of H .

This calculation shows that under these assumptions the percentile interval has exact coverage 1−α.
The nice thing about this argument is the introduction of the unknown transformation ψ(u) for which
the percentile interval automatically adapts. The unpleasant feature is the assumption of symmetry.
Similar to the asymptotic argument the calculation strongly relies on the symmetry of the distribution
H(x). Without symmetry the coverage will be incorrect.

Intuitively, we expect that when the assumptions are approximately true then the percentile interval
will have approximately correct coverage. Thus so long as there is a transformationψ(u) such thatψ(θ̂)−
ψ(θ) is approximately pivotal and symmetric about zero, then the percentile interval should work well.

This argument has the following application. Suppose that the parameter of interest is θ = exp(µ)
where µ = E [Y ] and suppose Y has a pivotal symmetric distribution about µ. Then even though θ̂ =
exp(Y ) does not have a symmetric distribution, the percentile interval applied to θ̂ will have the correct
coverage, because the monotonic transformation log

(
θ̂
)

has a pivotal symmetric distribution.

10.17 Bias-Corrected Percentile Interval

The accuracy of the percentile interval depends critically upon the assumption that the sampling
distribution is approximately symmetrically distributed. This excludes finite sample bias, for an esti-
mator which is biased cannot be symmetrically distributed. Many contexts in which we want to apply
bootstrap methods (rather than asymptotic) are when the parameter of interest is a nonlinear function
of the model parameters, and nonlinearity typically induces estimation bias. Consequently it is difficult
to expect the percentile method to generally have accurate coverage.

To reduce the bias problem Efron (1982) introduced the bias-corrected (BC) percentile interval.
The justification is heuristic but there is considerable evidence that the bias-corrected method is an
important improvement on the percentile interval.

The construction is based on the assumption is that there is a an unknown but strictly increasing
transformation ψ(θ) and unknown constant z0 such that

Z =ψ(θ̂)−ψ(θ)+ z0 ∼ N(0,1). (10.21)

(The assumption that Z is normal is not critical. It could be replaced by any known symmetric and
invertible distribution.) Let Φ(x) denote the normal distribution function, Φ−1(p) its quantile function,
and zα =Φ−1(α) the normal critical values. Then the BC interval can be constructed from the bootstrap
estimators θ̂∗b and bootstrap quantiles q∗

α as follows. Set

p∗ = 1

B

B∑
b=1

1
{
θ̂∗b ≤ θ̂}

(10.22)
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and
z∗

0 =Φ−1(p∗). (10.23)

p∗ is a measure of median bias, and z0 is p∗ transformed into normal units. If the bias of θ̂ is zero then
p∗ = 0.5 and z∗

0 = 0. If θ̂ is upwards biased then p∗ < 0.5 and z∗
0 < 0. Conversely if θ̂ is dowward biased

then p∗ > 0.5 and z∗
0 > 0. Define for any α an adjusted version

x(α) =Φ(zα+2z0). (10.24)

If z0 = 0 then x(α) =α. If z0 > 0 then x(α) >α, and conversely when x(α) < 0. The BC interval is

C bc = [
q∗

x(α/2), q∗
x(1−α/2)

]
. (10.25)

Essentially, rather than going from the 2.5% to 97.5% quantile, the BC interval uses adjusted quantiles,
with the degree of adjustment depending on the extent of the bias.

The construction of the BC interval is not intuitive. We now show that assumption (10.21) implies
that the BC interval has exact coverage. (10.21) implies that

P
[
ψ(θ̂)−ψ(θ)+ z0 ≤ x

]=Φ(x).

Since the distribution is pivotal the result carries over to the bootstrap distribution

P∗ [
ψ(θ̂∗)−ψ(θ̂)+ z0 ≤ x

]=Φ(x). (10.26)

Evaluating (10.26) at x = z0 we find P∗ [
ψ(θ̂∗)−ψ(θ̂) ≤ 0

] =Φ(z0) which implies P∗ [
θ̂∗ ≤ θ̂] =Φ(z0). In-

verting, we obtain
z0 =Φ−1 (

P∗ [
θ̂∗ ≤ θ̂])

(10.27)

which is the probability limit of (10.23) as B →∞. Thus the unknown z0 is recoved by (10.23), and we
can treat z0 as if it were known.

From (10.26) we deduce that

x(α) =Φ(zα+2z0)

=P∗ [
ψ(θ̂∗)−ψ(θ̂) ≤ zα+ z0)

]
=P∗ [

θ̂∗ ≤ψ−1 (
ψ(θ̂)+ z0 + zα

)]
.

This equation shows that ψ−1
(
ψ(θ̂)+ z0 + zα

)
equals the x(α)th bootstrap quantile. That is, q∗

x(α) =
ψ−1

(
ψ(θ̂)+ z0 + zα

)
. Hence we can write (10.25) as

C bc = [
ψ−1 (

ψ(θ̂)+ z0 + zα/2
)

,ψ−1 (
ψ(θ̂)+ z0 + z1−α/2

)]
.

It has coverage probability

P
[
θ ∈C bc

]
=P[

ψ−1 (
ψ(θ̂)+ z0 + zα/2

)≤ θ ≤ψ−1 (
ψ(θ̂)+ z0 + z1−α/2

)]
=P[

ψ(θ̂)+ z0 + zα/2 ≤ψ(θ) ≤ψ(θ̂)+ z0 + z1−α/2
]

=P[−zα/2 ≥ψ(θ̂)−ψ(θ)+ z0 ≥−z1−α/2
]

=P [z1−α/2 ≥ Z ≥ zα/2]

=Φ (z1−α/2)−Φ (zα/2)

= 1−α.
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The second equality applies the transformationψ(θ). The fourth equality uses the model (10.21) and the
fact zα =−z1−α. This shows that the BC interval (10.25) has exact coverage under the assumption (10.21).

Furthermore, under the assumptions of Theorem 10.13, the BC interval has asymptotic coverage
probability 1−α, since the bias correction is asymptotically negligible.

An important property of the BC percentile interval is that it is transformation-respecting (like the
percentile interval). To see this, observe that p∗ is invariant to transformations since it is a probability,
and thus z∗

0 and x(α) are invariant. Since the interval is constructed from the x(α/2) and x(1−α/2)
quantiles, the quantile equivariance property shows that the interval is transformation-respecting.

The bootstrap BC percentile intervals for the four estimators are reported in Table 13.2. They are
generally similar to the percentile intervals, though the intervals for σ2 and µ are somewhat shifted to
the right.

In Stata, BC percentile confidence intervals can be obtained by using the command estat bootstrap

after an estimation command which calculates standard errors via the bootstrap.

10.18 BCa Percentile Interval

A further improvement on the BC interval was made by Efron (1987) to account for the skewness in
the sampling distribution, which can be modeled by specifying that the variance of the estimator de-
pends on the parameter. The resulting bootstrap accelerated bias-corrected percentile interval (BCa)
has improved performance on the BC interval, but requires a bit more computation and is less intuitive
to understand.

The construction is a generalization of that for the BC intervals. The assumption is that there is an
unknown but strictly increasing transformation ψ(θ) and unknown constants a and z0 such that

Z = ψ(θ̂)−ψ(θ)

1+aψ(θ)
+ z0 ∼ N(0,1). (10.28)

(As before, the assumption that Z is normal could be replaced by any known symmetric and invertible
distribution.)

The constant z0 is estimated by (10.23) just as for the BC interval. There are several possible estima-
tors of a. Efron’s suggestion is a scaled jackknife estimator of the skewness of θ̂:

â =
∑n

i=1

(
θ− θ̂(−i )

)3

6

(∑n
i=1

(
θ− θ̂(−i )

)2
)3/2

θ = 1

n

n∑
i=1

θ̂(−i ).

The jackknife estimator of â makes the BCa interval more computationally costly than other intervals.
Define for any α the adjusted version

x(α) =Φ
(

z0 + zα+ z0

1−a (zα+ z0)

)
.

The BCa percentile interval is
C bca = [

q∗
x(α/2), q∗

x(1−α/2)

]
.

Note that x(α) simplifies to (10.24) and C bca simplies to C bc when a = 0. While C bc improves on C pc by
correcting the median bias, C bca makes a further correction for skewness.
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The BCa interval is only well-defined for values of α such that a (zα+ z0) < 1. (Or equivalently, if
α<Φ(

a−1 − z0
)

for a > 0 and α>Φ(
a−1 − z0

)
for a < 0.)

The BCa interval, like the BC and percentile intervals, is transformation-respecting. Thus if
[

q∗
x(α/2), q∗

x(1−α/2)

]
is the BCa interval for θ, then

[
m

(
q∗

x(α/2)

)
,m

(
q∗

x(1−α/2)

)]
is the BCα interval for φ = m(θ) when m(θ) is

monotone.
We now give a justification for the BCa interval. The most difficult feature to understand is the esti-

mator â for a. This involves higher-order approximations which are too advanced for our treatment, so
we instead refer readers to Chapter 4.1.4 of Shao and Tu (1995) and simply assume that a is known.

We now show that assumption (10.28) with a known implies that C bca has exact coverage. The argu-
ment is essentially the same as that given in the previous section. Assumption (10.28) implies that the
bootstrap distribution satisfies

P∗
[
ψ(θ̂∗)−ψ(θ̂)

1+aψ(θ̂)
+ z0 ≤ x

]
=Φ(x). (10.29)

Evaluating at x = z0 and inverting we obtain (10.27) which is the same as for the BC interval. Thus the
estimator (10.23) is consistent as B →∞ and we can treat z0 as if it were known.

From (10.29) we deduce that

x(α) =P∗
[
ψ(θ̂∗)−ψ(θ̂)

1+aψ(θ̂)
≤ zα+ z0

1−a (zα+ z0)

]

=P∗
[
θ̂∗ ≤ψ−1

(
ψ(θ̂)+ zα+ z0

1−a (zα+ z0)

)]
.

This shows that ψ−1
(
ψ(θ̂)+zα+z0

1−a(zα+z0)

)
equals the x(α)th bootstrap quantile. Hence we can write C bca as

C bca =
[
ψ−1

(
ψ(θ̂)+ zα/2 + z0

1−a (zα/2 + z0)

)
, ψ−1

(
ψ(θ̂)+ z1−α/2 + z0

1−a (z1−α/2 + z0)

)]
.

It has coverage probability

P
[
θ ∈C bca

]
=P

[
ψ−1

(
ψ(θ̂)+ zα/2 + z0

1−a (zα/2 + z0)

)
≤ θ ≤ψ−1

(
ψ(θ̂)+ z1−α/2 + z0

1−a (z1−α/2 + z0)

)]

=P
[
ψ(θ̂)+ zα/2 + z0

1−a (zα/2 + z0)
≤ψ(θ) ≤ ψ(θ̂)+ z1−α/2 + z0

1−a (z1−α/2 + z0)

]

=P
[
−zα/2 ≥ ψ(θ̂)−ψ(θ)

1+aψ(θ)
+ z0 ≥−z1−α/2

]
=P [z1−α/2 ≥ Z ≥ zα/2]

= 1−α.

The second equality applies the transformationψ(θ). The fourth equality uses the model (10.28) and the
fact zα =−z1−α. This shows that the BCa interval C bca has exact coverage under the assumption (10.28)
with a known.

The bootstrap BCa percentile intervals for the four estimators are reported in Table 13.2. They are
generally similar to the BC intervals, though the intervals for σ2 and µ are slightly shifted to the right.

In Stata, BCa intervals can be obtained by using the command estat bootstrap, bca or the com-
mand estat bootstrap, all after an estimation command which calculates standard errors via the
bootstrap using the bca option.
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10.19 Percentile-t Interval

In many cases we can obtain improvement in accuracy by bootstrapping a studentized statistic such
as a t-ratio. Let θ̂ be an estimator of a scalar parameter θ and s(θ̂) a standard error. The sample t-ratio is

T = θ̂−θ
s(θ̂)

.

The bootstrap t-ratio is

T ∗ = θ̂∗− θ̂
s(θ̂∗)

where s(θ̂∗) is the standard error calculated on the bootstrap sample. Notice that the bootstrap t-ratio is
centered at the parameter estimator θ̂. This is because θ̂ is the “true value” in the bootstrap universe.

The percentile-t interval is formed using the distribution of T ∗. This can be calculated via the boot-
strap algorithm. On each bootstrap sample the estimator θ̂∗ and its standard error s(θ̂∗) are calculated,
and the t-ratio T ∗ = (

θ̂∗− θ̂)
/s(θ̂∗) calculated and stored. This is repeated B times. The αth quantile q∗

α

is estimated by the αth empirical quantile (or any quantile estimator) from the B bootstrap draws of T ∗.
The bootstrap percentile-t confidence interval is defined as

C pt = [
θ̂− s(θ̂)q∗

1−α/2, θ̂− s(θ̂)q∗
α/2

]
.

The form may appear unusual when compared with the percentile interval. The left endpoint is deter-
mined by the upper quantile of the distribution of T ∗, and the right endpoint is determined by the lower
quantile. As we show below, this construction is important for the interval to have correct coverage when
the distribution is not symmetric.

When the estimator is asymptotically normal and the standard error a reliable estimator of the stan-
dard deviation of the distribution we would expect the t-ratio T to be roughly approximated by the nor-
mal distribution. In this case we would expect q∗

0.975 ≈−q∗
0.025 ≈ 2. Departures from this baseline occur

as the distribution becomes skewed or fat-tailed. If the bootstrap quantiles depart substantially from
this baseline it is evidence of substantial departure from normality. (It may also indicate a programming
error, so in these cases it is wise to triple-check!)

The percentile-t has the following advantages. First, when the standard error s(θ̂) is reasonably reli-
able, the percentile-t bootstrap makes use of the information in the standard error, thereby reducing the
role of the bootstrap. This can improve the precision of the method relative to other methods. Second, as
we show later, the percentile-t intervals achieve higher-order accuracy than the percentile and BC per-
centile intervals. Third, the percentile-t intervals correspond to the set of parameter values “not rejected”
by one-sided t-tests using bootstrap critical values (bootstrap tests are presented in Section 10.21).

The percentile-t interval has the following disadvantages. First, they may be infeasible when stan-
dard error formula are unknown. Second, they may be practically infeasible when standard error calcu-
lations are computationally costly (since the standard error calculation needs to be performed on each
bootstrap sample). Third, the percentile-t may be unreliable if the standard errors s(θ̂) are unreliable and
thus add more noise than clarity. Fourth, the percentile-t interval is not translation preserving, unlike the
percentile, BC percentile, and BCa percentile intervals.

It is typical to calculate percentile-t intervals with t-ratios constructed with conventional asymptotic
standard errors. But this is not the only possible implementation. The percentile-t interval can be con-
structed with any data-dependent measure of scale. For example, if θ̂ is a two-step estimator for which it
is unclear how to construct a correct asymptotic standard error, but we know how to calculate a standard
error s(θ̂) appropriate for the second step alone, then s(θ̂) can be used for a percentile-t-type interval as
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described above. It will not possess the higher-order accuracy properties of the following section, but it
will satisfy the conditions for first-order validity.

Furthermore, percentile-t intervals can be constructed using bootstrap standard errors. That is, the
statistics T and T ∗ can be computed using bootstrap standard errors sboot

θ̂
. This is computationally costly

as it requires what we call a “nested bootstrap”. Specifically, for each bootstrap replication, a random
sample is drawn, the bootstrap estimate θ̂∗ computed, and then B additional bootstrap sub-samples
drawn from the bootstrap sample to compute the bootstrap standard error for the bootstrap estimate
θ̂∗. Effectively B 2 bootstrap samples are drawn and estimated, which increases the computational re-
quirement by an order of magnitude.

We now describe the distribution theory for first-order validity of the percentile-t bootstrap.

First, consider the smooth function model, where θ̂ = g
(
µ̂
)

and s(θ̂) =
√

1
n Ĝ

′
V̂ Ĝ with bootstrap

analogs θ̂∗ = g
(
µ̂∗)

and s(θ̂∗) =
√

1
n Ĝ

∗′
V̂

∗
Ĝ

∗
. From Theorems 6.10, 10.7, and 10.8

T =
p

n
(
θ̂−θ)√

Ĝ
′
V̂ Ĝ

−→
d

Z

and

T ∗ =
p

n
(
θ̂∗− θ̂)√

Ĝ
∗′

V̂
∗

Ĝ
∗ −→

d∗ Z

where Z ∼ N(0,1). This shows that the sample and bootstrap t-ratios have the same asymptotic distribu-
tion.

This motivates considering the broader situation where the sample and bootstrap t-ratios have the
same asymptotic distribution but not necessarily normal. Thus assume that

T −→
d
ξ (10.30)

T ∗ −→
d∗ ξ (10.31)

for some continuous distribution ξ. (10.31) implies that the quantiles of T ∗ converge in probability to
those of ξ, that is q∗

α −→
p

qα where qα is the αth quantile of ξ. This and (10.30) imply

P
[
θ ∈C pt]=P[

θ̂− s(θ̂)q∗
1−α/2 ≤ θ ≤ θ̂− s(θ̂)q∗

α/2

]
=P[

q∗
α/2 ≤ T ≤ q∗

1−α/2

]
→P

[
qα/2 ≤ ξ≤ q1−α/2

]
= 1−α.

Thus the percentile-t is asymptotically valid.

Theorem 10.14 If (10.30) and (10.31) hold where ξ is continuously distributed,
then P

[
θ ∈C pt

]→ 1−α as n →∞.

The bootstrap percentile-t intervals for the four estimators are reported in Table 13.2. They are simi-
lar but somewhat different from the percentile-type intervals, and generally wider. The largest difference
arises with the interval for σ2 which is noticably wider than the other intervals.
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10.20 Percentile-t Asymptotic Refinement

This section uses the theory of Edgeworth and Cornish-Fisher expansions introduced in Chapter
9.8-9.10 of Introduction to Econometrics. This theory will not be familiar to most students. If you are
interested the following refinement theory it is advisable to start by reading these sections of Introduction
to Econometrics.

The percentile-t interval can be viewed as the intersection of two one-sided confidence intervals.
In our discussion of Edgeworth expansions for the coverage probability of one-sided asymptotic confi-
dence intervals (following Theorem 7.15 in the context of functions of regression coefficients) we found
that one-sided asymptotic confidence intervals have accuracy to order O

(
n−1/2

)
. We now show that the

percentile-t interval has improved accuracy.
Theorem 9.13 of Introduction to Econometrics showed that the Cornish-Fisher expansion for the

quantile qα of a t-ratio T in the smooth function model takes the form

qα = zα+n−1/2p11(zα)+O
(
n−1)

where p11 (x) is an even polynomial of order 2 with coefficients depending on the moments up to order
8. The bootstrap quantile q∗

α has a similar Cornish-Fisher expansion

q∗
α = zα+n−1/2p∗

11(zα)+Op
(
n−1)

where p∗
11 (x) is the same as p11(x) except that the population moments are replaced by the correspond-

ing sample moments. Sample moments are estimated at the rate n−1/2. Thus we can replace p∗
11 with

p11 without affecting the order of this expansion:

q∗
α = zα+n−1/2p11(zα)+Op

(
n−1)= qα+Op

(
n−1) .

This shows that the bootstrap quantiles q∗
α of the studentized t-ratio are within Op

(
n−1

)
of the exact

quantiles qα.
By the Edgeworth expansion Delta method (Theorem 9.12 of Introduction to Econometrics), T and

T + (qα−q∗
α) = T +Op

(
n−1

)
have the same Edgeworth expansion to order O(n−1). Thus

P
[
T ≤ q∗

α

]=P[
T + (qα−q∗

α) ≤ qα
]

=P[
T ≤ qα

]+O(n−1)

=α+O(n−1).

Thus the coverage of the percentile-t interval is

P
[
θ ∈C pt]=P[

q∗
α/2 ≤ T ≤ q∗

1−α/2

]
=P[

qα/2 ≤ T ≤ q1−α/2
]+O(n−1)

= 1−α+O(n−1).

This is an improved rate of convergence relative to the one-sided asymptotic confidence interval.

Theorem 10.15 Under the assumptions of Theorem 9.11 of Introduction to
Econometrics, P

[
θ ∈C pt

]= 1−α+O(n−1).
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The following definition of the accuracy of a confidence interval is useful.

Definition 10.3 A confidence set C for θ is k th-order accurate if

P [θ ∈C ] = 1−α+O
(
n−k/2

)
.

Examining our results we find that one-sided asymptotic confidence intervals are first-order accu-
rate but percentile-t intervals are second-order accurate. When a bootstrap confidence interval (or test)
achieves high-order accuracy than the analogous asymptotic interval (or test), we say that the bootstrap
method achieves an asymptotic refinement. Here, we have shown that the percentile-t interval achieves
an asymptotic refinement.

In order to achieve this asymptotic refinement it is important that the t-ratio T (and its bootstrap
counter-part T ∗) are constructed with asymptotically valid standard errors. This is because the first
term in the Edgeworth expansion is the standard normal distribution and this requires that the t-ratio
is asymptotically normal. This also has the practical finite-sample implication that the accuracy of the
percentile-t interval in practice depends on the accuracy of the standard errors used to construct the
t-ratio.

We do not go through the details, but normal-approximation bootstrap intervals, percentile boot-
strap intervals, and bias-corrected percentile bootstrap intervals are all first-order accurate and do not
achieve an asymptotic refinement.

The BCa interval, however, can be shown to be asymptotically equivalent to the percentile-t interval,
and thus achieves an asymptotic refinement. We do not make this demonstration here as it is advanced.
See Section 3.10.4 of Hall (1992).

Peter Hall

Peter Gavin Hall (1951-2016) of Australia was one of the most influential and
prolific theoretical statisticians in history. He made wide-ranging contributions.
Some of the most relevant for econometrics are theoretical investigations of
bootstrap methods and nonparametric kernel methods.

10.21 Bootstrap Hypothesis Tests

To test the hypothesis H0 : θ = θ0 against H1 : θ 6= θ0 the most common approach is a t-test. We reject
H0 in favor of H1 for large absolute values of the t-statistic T = (

θ̂−θ0
)

/s(θ̂) where θ̂ is an estimator of
θ and s(θ̂) is a standard error for θ̂. For a bootstrap test we use the bootstrap algorithm to calculate the
critical value.

The bootstrap algorithm samples with replacement from the dataset. Given a bootstrap sample
the bootstrap estimator θ̂∗ and standard error s(θ̂∗) are calculated. Given these values the bootstrap
t-statistic is T ∗ = (

θ̂∗− θ̂)
/s(θ̂∗). There are two important features about the bootstrap t-statistic. First,

T ∗ is centered at the sample estimate θ̂, not at the hypothesized value θ0. This is done because θ̂ is the
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true value in the bootstrap universe, and the distribution of the t-statistic must be centered at the true
value within the bootstrap sampling framework. Second, T ∗ is calculated using the bootstrap standard
error s(θ̂∗). This allows the bootstrap to incorporate the randomness in standard error estimation.

The failure to properly center the bootstrap statistic at θ̂ is a common error in applications. Often
this is because the hypothesis to be tested is H0 : θ = 0, so the test statistic is T = θ̂/s(θ̂). This intuitively
suggests the bootstrap statistic T ∗ = θ̂∗/s(θ̂∗), but this is wrong. The correct bootstrap statistic is T ∗ =(
θ̂∗− θ̂)

/s(θ̂∗).
The bootstrap algorithm creates B draws T ∗(b) = (

θ̂∗(b)− θ̂)
/s(θ̂∗(b)), b = 1, ...,B . The bootstrap

100α% critical value is q∗
1−α, where q∗

α is the αth quantile of the absolute values of the bootstrap t-ratios
|T ∗(b)|. For a 100α% test we reject H0 : θ = θ0 in favor of H1 : θ 6= θ0 if |T | > q∗

1−α and fail to reject if
|T | ≤ q∗

1−α.
It is generally better to report p-values rather than critical values. Recall that a p-value is p = 1−

Gn(|T |) where Gn(u) is the null distribution of the statistic |T |. The bootstrap p-value is defined as
p∗ = 1−G∗

n(|T |), where G∗
n(u) is the bootstrap distribution of |T ∗|. This is estimated from the bootstrap

algorithm as

p∗ = 1

B

B∑
b=1

1
{∣∣T ∗(b)

∣∣> |T |} ,

the percentage of bootstrap t-statistics that are larger than the observed t-statistic. Intuitively, we want to
know how “unusual” is the observed statistic T when the null hypothesis is true. The bootstrap algorithm
generates a large number of independent draws from the distribution T ∗ (which is an approximation to
the unknown distribution of T ). If the percentage of the |T ∗| that exceed |T | is very small (say 1%) this
tells us that |T | is an unusually large value. However, if the percentage is larger, say 15%, then we cannot
interpret |T | as unusually large.

If desired, the bootstrap test can be implemented as a one-sided test. In this case the statistic is
the signed version of the t-ratio, and bootstrap critical values are calculated from the upper tail of the
distribution for the alternative H1 : θ > θ0, and from the lower tail for the alternative H1 : θ < θ0. There is
a connection between the one-sided tests and the percentile-t confidence interval. The latter is the set
of parameter values θ which are not rejected by either one-sided 100α/2% bootstrap t-test.

Bootstrap tests can also be conducted with other statistics. When standard errors are not available or
are not reliable we can use the non-studentized statistic T = θ̂−θ0. The bootstrap version is T ∗ = θ̂∗− θ̂.
Let q∗

α be theαth quantile of the bootstrap statistics
∣∣θ̂∗(b)− θ̂∣∣. A bootstrap 100α% test rejectsH0 : θ = θ0

if
∣∣θ̂−θ0

∣∣> q∗
1−α. The bootstrap p-value is

p∗ = 1

B

B∑
b=1

1
{∣∣θ̂∗(b)− θ̂∣∣> ∣∣θ̂−θ0

∣∣} .

Theorem 10.16 If (10.30) and (10.31) hold where ξ is continuously distributed,
then the bootstrap critical value satisfies q∗

1−α −→
p

q1−α where q1−α is the 1−αth

quantile of |ξ|. The bootstrap test “Reject H0 in favor of H1 if |T | > q∗
1−α” has

asymptotic size α: P
[|T | > q∗

1−α |H0
]−→α as n →∞.

In the smooth function model the t-test (with correct standard errors) has the following performance.
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Theorem 10.17 Under the assumptions of Theorem 9.11 of Introduction to
Econometrics,

q∗
1−α = z1−α+op

(
n−1)

where zα =Φ−1 ((1+α)/2) is theαth quantile of |Z |. The asymptotic test “Reject
H0 in favor of H1 if |T | > z1−α” has accuracy

P
[|T | > z1−α |H0

]= 1−α+O
(
n−1)

and the bootstrap test “Reject H0 in favor of H1 if |T | > q∗
1−α” has accuracy

P
[|T | > q∗

1−α |H0
]= 1−α+o

(
n−1) .

This shows that the bootstrap test achieves a refinement relative to the asymptotic test.
The reasoning is as follows. We have shown that the Edgeworth expansion for the absolute t-ratio

takes the form
P [|T | ≤ x] = 2Φ(x)−1+n−12p2(x)+o(n−1).

This means the asymptotic test has accuracy of order O(n−1).
Given the Edgeworth expansion, the Cornish-Fisher expansion for the αth quantile qα of the distri-

bution of |T | takes the form
qα = zα+n−1p21(zα)+o

(
n−1) .

The bootstrap quantile q∗
α has the Cornish-Fisher expansion

q∗
α = zα+n−1p∗

21(zα)+o
(
n−1)

= zα+n−1p21(zα)+op
(
n−1)

= qα+op
(
n−1)

where p∗
21 (x) is the same as p21(x) except that the population moments are replaced by the correspond-

ing sample moments. The bootstrap test has rejection probability, using the Edgeworth expansion Delta
method (Theorem 11.12 of of Introduction to Econometrics)

P
[|T | > q∗

1−α|H0
]=P[|T |+ (q1−α−q∗

1−α) > q1−α
]

=P[|T | > q1−α
]+o(n−1)

= 1−α+o(n−1)

as claimed.

10.22 Wald-Type Bootstrap Tests

If θ is a vector then to testH0 : θ = θ0 againstH1 : θ 6= θ0 at size α, a common test is based on the Wald

statistic W = (
θ̂−θ0

)′
V̂

−1
θ̂

(
θ̂−θ0

)
where θ̂ is an estimator of θ and V̂ θ̂ is a covariance matrix estimator.

For a bootstrap test we use the bootstrap algorithm to calculate the critical value.
The bootstrap algorithm samples with replacement from the dataset. Given a bootstrap sample the

bootstrap estimator θ̂∗ and covariance matrix estimator V̂
∗
θ̂ are calculated. Given these values the boot-

strap Wald statistic is
W ∗ = (

θ̂∗− θ̂)′
V̂

∗−1
θ̂

(
θ̂∗− θ̂)

.
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As for the t-test it is essential that the bootstrap Wald statistic W ∗ is centered at the sample estimator θ̂
instead of the hypothesized value θ0. This is because θ̂ is the true value in the bootstrap universe.

Based on B bootstrap replications we calculate the αth quantile q∗
α of the distribution of the boot-

strap Wald statistics W ∗. The bootstrap test rejects H0 in favor of H1 if W > q∗
1−α. More commonly, we

calculate a bootstrap p-value. This is

p∗ = 1

B

B∑
b=1

1
{
W ∗(b) >W

}
.

The asymptotic performance of the Wald test mimics that of the t-test. In general, the bootstrap
Wald test is first-order correct (achieves the correct size asymptotically) and under conditions for which
an Edgeworth expansion exists, has accuracy

P
[
W > q∗

1−α |H0
]= 1−α+o(n−1)

and thus achieves a refinement relative to the asymptotic Wald test.
If a reliable covariance matrix estimator V̂ θ̂ is not available a Wald-type test can be implemented

with any positive-definite weight matrix instead of V̂ θ̂. This includes simple choices such as the identity
matrix. The bootstrap algorithm can be used to calculate critical values and p-values for the test. So
long as the estimator θ̂ has an asymptotic distribution this bootstrap test will be asymptotically first-
order valid. The test will not achieve an asymptotic refinement but provides a simple method to test
hypotheses when covariance matrix estimates are not available.

10.23 Criterion-Based Bootstrap Tests

A criterion-based estimator takes the form

β̂= argmin
β

J
(
β
)

for some criterion function J
(
β
)
. This includes least squares, maximum likelihood, and minimum dis-

tance. Given a hypothesis H0 : θ = θ0 where θ = r
(
β
)
, the restricted estimator which satisfies H0 is

β̃= argmin
r (β)=θ0

J
(
β
)

.

A criterion-based statistic to test H0 is

J = min
r (β)=θ0

J
(
β
)−min

β
J
(
β
)= J (β̃)− J (β̂).

A criterion-based test rejects H0 for large values of J . A bootstrap test uses the bootstrap algorithm to
calculate the critical value.

In this context we need to be a bit thoughtful about how to construct bootstrap versions of J . It might
seem natural to construct the exact same statistic on the bootstrap samples as on the original sample,
but this is incorrect. It makes the same error as calculating a t-ratio or Wald statistic centered at the
hypothesized value. In the bootstrap universe, the true value of θ is not θ0, rather it is θ̂ = r

(
β̂
)
. Thus

when using the nonparametric bootstrap, we want to impose the constraint r
(
β
) = r

(
β̂
) = θ̂ to obtain

the bootstrap version of J .
Thus, the correct way to calculate a bootstrap version of J is as follows. Generate a bootstrap sample

by random sampling from the dataset. Let J∗
(
β
)

be the the bootstrap version of the criterion. On a
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bootstrap sample calculate the unrestricted estimator β̂∗ = argmin
β

J∗
(
β
)

and the restricted version β̃∗ =

argmin
r (β)=θ̂

J∗
(
β
)

where θ̂ = r
(
β̂
)
. The bootstrap statistic is

J∗ = min
r (β)=θ̂

J∗
(
β
)−min

β
J∗

(
β
)= J∗(β̃∗)− J∗(β̂∗).

Calculate J∗ on each bootstrap sample. Take the 1−αth quantile q∗
1−α. The bootstrap test rejects H0

in favor of H1 if J > q∗
1−α. The bootstrap p-value is

p∗ = 1

B

B∑
b=1

1
{

J∗(b) > J
}

.

Special cases of criterion-based tests are minimum distance tests, F tests, and likelihood ratio tests.
Take the F test for a linear hypothesis R ′β= θ0. The F statistic is

F =
(
σ̃2 − σ̂2

)
/q

σ̂2/(n −k)

where σ̂2 is the unrestricted estimator of the error variance, σ̃2 is the restricted estimator, q is the number
of restrictions and k is the number of estimated coefficients. The bootstrap version of the F statistic is

F∗ =
(
σ̃∗2 − σ̂∗2

)
/q

σ̂∗2/(n −k)

where σ̂∗2 is the unrestricted estimator on the bootstrap sample, and σ̃∗2 is the restricted estimator
which imposes the restriction θ̂ = R ′β̂.

Take the likelihood ratio (LR) test for the hypothesis r
(
β
)= θ0. The LR test statistic is

LR = 2
(
`n

(
β̂
)−`n

(
β̃
))

where β̂ is the unrestricted MLE and β̃ is the restricted MLE (imposing r
(
β
)= θ0). The bootstrap version

is
LR∗ = 2

(
`∗n

(
β̂∗)−`∗n (

β̃∗))
where `∗n(β) is the log-likelihood function calculated on the bootstrap sample, β̂∗ is the unrestricted
maximizer, and β̃∗ is the restricted maximizer imposing the restriction r

(
β
)= r

(
β̂
)
.

10.24 Parametric Bootstrap

Throughout this chapter we have described the most popular form of the bootstrap known as the
nonparametric bootstrap. However there are other forms of the bootstrap algorithm including the para-
metric bootstrap. This is appropriate when there is a full parametric model for the distribution as in
likelihood estimation.

First, consider the context where the model specifies the full distribution of the random vector Y ,
e.g. Y ∼ F (y |β) where the distribution function F is known but the parameter β is unknown. Let β̂ be an
estimator ofβ such as the maximum likelihood estimator. The parametric bootstrap algorithm generates
bootstrap observations Y ∗

i by drawing random vectors from the distribution function F (y | β̂). When this

is done, the true value of β in the bootstrap universe is β̂. Everything which has been discussed in the
chapter can be applied using this bootstrap algorithm.
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Second, consider the context where the model specifies the conditional distribution of the random
vector Y given the random vector X , e.g. Y | X = x ∼ F (y | x,β). An example is the normal linear re-
gression model, where Y | X = x ∼ N

(
x ′β,σ2

)
. In this context we can hold the regressors Xi fixed and

then draw the bootstrap observations Y ∗
i from the conditional distribution F (y | Xi , β̂). In the example of

the normal regression model this is equivalent to drawing a normal error e∗i ∼ N
(
0, σ̂2

)
and then setting

Y ∗
i = X ′

i β̂+ e∗i . Again, in this algorithm the true value of β is β̂ and everything which is discussed in this
chapter can be applied as before.

Third, consider tests of the hypothesis r
(
β
) = θ0. In this context we can also construct a restricted

estimator β̃ (for example the restricted MLE) which satisfies the hypothesis r
(
β̃
)= θ0. Then we can gen-

erate bootstrap samples by simulating from the distribution Y ∗
i ∼ F (y | β̃), or in the conditional context

from Y ∗
i ∼ F (y | Xi , β̃). When this is done the true value of β in the bootstrap is β̃ which satisfies the

hypothesis. So in this context the correct values of the bootstrap statistics are

T ∗ = θ̂∗−θ0

s(θ̂∗)

W ∗ = (
θ̂∗−θ0

)′
V̂

∗−1
θ̂

(
θ̂∗−θ0

)
J∗ = min

r (β)=θ0

J∗
(
β
)−min

β
J∗

(
β
)

LR∗ = 2

(
max
β

`∗n
(
β
)− max

r (β)=θ0

`∗n
(
β
))

and

F∗ =
(
σ̃∗2 − σ̂∗2

)
/q

σ̂∗2/(n −k)

where σ̂∗2 is the unrestricted estimator on the bootstrap sample and σ̃∗2 is the restricted estimator which
imposes the restriction R ′β= θ0.

The primary advantage of the parametric bootstrap (relative to the nonparametric bootstrap) is that
it will be more accurate when the parametric model is correct. This may be quite important in small
samples. The primary disadvantage of the parametric bootstrap is that it can be inaccurate when the
parametric model is incorrect.

10.25 How Many Bootstrap Replications?

How many bootstrap replications should be used? There is no universally correct answer as there is a
trade-off between accuracy and computation cost. Computation cost is essentially linear in B . Accuracy
(either standard errors or p-values) is proportional to B−1/2. Improved accuracy can be obtained but
only at a higher computational cost.

In most empirical research, most calculations are quick and investigatory, not requiring full accu-
racy. But final results (those going into the final version of the paper) should be accurate. Thus it seems
reasonable to use asymptotic and/or bootstrap methods with a modest number of replications for daily
calculations, but use a much larger B for the final version.

In particular, for final calculations, B = 10,000 is desired, with B = 1000 a minimal choice. In contrast,
for daily quick calculations values as low as B = 100 may be sufficient for rough estimates.

A useful way to think about the accuracy of bootstrap methods stems from the calculation of p-
values. The bootstrap p-value p∗ is an average of B Bernoulli draws. The variance of the simulation
estimator of p∗ is p∗(1−p∗)/B , which is bounded above by 1/4B . To calculate the p-value within, say,
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0.01 of the true value with 95% probability requires a standard error below 0.005. This is ensured if
B ≥ 10,000.

Stata by default sets B = 50. This is useful for verification that a program runs but is a poor choice for
empirical reporting. Make sure that you set B to the value you want.

10.26 Setting the Bootstrap Seed

Computers do not generate true random numbers but rather pseudo-random numbers generated by
a deterministic algorithm. The algorithms generate sequences which are indistinguishable from random
sequences so this is not a worry for bootstrap applications.

The methods, however, necessarily require a starting value known as a “seed”. Some packages (in-
cluding Stata and MATLAB) implement this with a default seed which is reset each time the statistical
package is started. This means if you start the package fresh, run a bootstrap program (e.g. a “do” file
in Stata), exit the package, restart the package and then rerun the bootstrap program, you should ob-
tain exactly the same results. If you instead run the bootstrap program (e.g. “do” file) twice sequentially
without restarting the package, the seed is not reset so a different set of pseudo-random numbers will be
generated and the results from the two runs will be different.

The R package has a different implementation. When R is loaded the random number seed is gener-
ated based on the computer’s clock (which results in an essentially random starting seed). Therefore if
you run a bootstrap program in R, exit, restart, and rerun, you will obtain a different set of random draws
and therefore a different bootstrap result.

Packages allow users to set their own seed. (In Stata, the command is set seed #. In MATLAB the
command is rng(#). In R the command is set.seed(#).) If the seed is set to a specific number at the
start of a file then the exact same pseudo-random numbers will be generated each time the program is
run. If this is the case, the results of a bootstrap calculation (standard error or test) will be identical across
computer runs.

The fact that the bootstrap results can be fixed by setting the seed in the replication file has motivated
many researchers to follow this choice. They set the seed at the start of the replication file so that repeated
executions result in the same numerical findings.

Fixing seeds, however, should be done cautiously. It may be a wise choice for a final calculation
(when a paper is finished) but is an unwise choice for daily calculations. If you use a small number of
replications in your preliminary work, say B = 100, the bootstrap calculations will be inaccurate. But as
you run your results again and again (as is typical in empirical projects) you will obtain the same numeri-
cal standard errors and test results, giving you a false sense of stability and accuracy. If instead a different
seed is used each time the program is run then the bootstrap results will vary across runs, and you will
observe that the results vary across these runs, giving you important and meaningful information about
the (lack of) accuracy in your results. One way to ensure this is to set the seed according to the current
clock. In MATLAB use the command rng(`shuffle'). In R use set.seed(seed=NULL). Stata does not
have this option.

These considerations lead to a recommended hybrid approach. For daily empirical investigations do
not fix the bootstrap seed in your program unless you have it set by the clock. For your final calculations
set the seed to a specific arbitrary choice, and set B = 10,000 so that the results are insensitive to the seed.

10.27 Bootstrap Regression

A major focus of this textbook has been on the least squares estimator β̂ in the projection model. The
bootstrap can be used to calculate standard errors and confidence intervals for smooth functions of the
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coefficient estimates.
The nonparametric bootstrap algorithm, as described before, samples observations randomly with

replacement from the dataset, creating the bootstrap sample {
(
Y ∗

1 , X ∗
1

)
, ...,

(
Y ∗

n , X ∗
n

)
}, or in matrix nota-

tion (Y ∗, X ∗) It is important to recognize that entire observations (pairs of Yi and Xi ) are sampled. This
is often called the pairs bootstrap.

Given this bootstrap sample, we calculate the regression estimator

β̂∗ = (
X ∗′X ∗)−1 (

X ∗′Y ∗)
. (10.32)

This is repeated B times. The bootstrap standard errors are the standard deviations across the draws and
confidence intervals are constructed from the empirical quantiles across the draws.

What is the nature of the bootstrap distribution of β̂∗? It is useful to start with the distribution of
the bootstrap observations

(
Y ∗

i , X ∗
i

)
, which is the discrete distribution which puts mass 1/n on each

observation pair (Yi , Xi ). The bootstrap universe can be thought of as the empirical scatter plot of the
observations. The true value of the projection coefficient in this bootstrap universe is

(
E∗

[
X ∗

i X ∗′
i

])−1 (
E∗

[
X ∗

i Y ∗
i

])= (
1

n

n∑
i=1

Xi X ′
i

)−1 (
1

n

n∑
i=1

Xi Yi

)
= β̂.

We see that the true value in the bootstrap distribution is the least squares estimator β̂.
The bootstrap observations satisfy the projection equation

Y ∗
i = X ∗′

i β̂+e∗i (10.33)

E∗
[

X ∗
i e∗i

]= 0.

For each bootstrap pair
(
Y ∗

i , X ∗
i

) = (
Y j , X j

)
the true error e∗i = ê j equals the least squares residual from

the original dataset. This is because each bootstrap pair corresponds to an actual observation.
A technical problem (which is typically ignored) is that it is possible for X ∗′X ∗ to be singular in a sim-

ulated bootstrap sample, in which case the least squares estimator β̂∗ is not uniquely defined. Indeed,
the probability is positive that X ∗′X ∗ is singular. For example, the probability that a bootstrap sample
consists entirely of one observation repeated n times is n−(n−1). This is a small probability, but positive. A
more significant example is sparse dummy variable designs where it is possible to draw an entire sample
with only one observed value for the dummy variable. For example, if a sample has n = 20 observations
with a dummy variable with treatment (equals 1) for only three of the 20 observations, the probability is
4% that a bootstrap sample contains entirely non-treated values (all 0’s). 4% is quite high!

The standard approach to circumvent this problem is to compute β̂∗ only if X ∗′X ∗ is non-singular
as defined by a conventional numerical tolerance and treat it as missing otherwise. A better solution is
to define a tolerance which bounds X ∗′X ∗ away from non-singularity. Define the ratio of the smallest
eigenvalue of the bootstrap design matrix to that of the data design matrix

λ∗ = λmin
(

X ∗′X ∗)
λmin

(
X ′X

) .

If, in a given bootstrap replication, λ∗ < τ is smaller than a given tolerance (Shao and Tu (1995, p. 291)
recommend τ= 1/2) then the estimator can be treated as missing, or we can define the trimming rule

β̂∗ =


β̂∗ if λ∗ ≥ τ

β̂ if λ∗ < τ.
(10.34)

This ensures that the bootstrap estimator β̂∗ will be well behaved.
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10.28 Bootstrap Regression Asymptotic Theory

Define the least squares estimator β̂, its bootstrap version β̂∗ as in (10.32), and the transformations
θ̂ = g (β̂) and θ̂∗ = r (β̂∗) for some smooth transformation r . Let V̂ β and V̂ θ denote heteroskedasticity-

robust covariance matrix estimators for β̂ and θ̂, and let V̂
∗
β and V̂

∗
θ be their bootstrap versions. When

θ is scalar define the standard errors s(θ̂) =
√

n−1V̂ θ and s(θ̂∗) =
√

n−1V̂ θ∗ . Define the t-ratios T =(
θ̂−θ)

/s(θ̂) and bootstrap version T ∗ = (
θ̂∗− θ̂)

/s(θ̂∗). We are interested in the asymptotic distributions
of β̂∗, θ̂∗ and T ∗.

Since the bootstrap observations satisfy the model (10.33), we see by standard calculations that

p
n

(
β̂∗− β̂)= (

1

n

n∑
i=1

X ∗
i X ∗′

i

)−1 (
1p
n

n∑
i=1

X ∗
i e∗i

)
.

By the bootstrap WLLN
1

n

n∑
i=1

X ∗
i X ∗′

i −→
p∗ E

[
Xi X ′

i

]=Q

and by the bootstrap CLT
1p
n

n∑
i=1

X ∗
i e∗i −→

d∗ N(0,Ω)

whereΩ= E[
X X ′e2

]
. Again applying the bootstrap WLLN we obtain

V̂ β −→
p∗ V β =Q−1ΩQ−1

and
V̂ θ −→

p∗ V θ = R ′V βR

where R = R
(
β
)

.
Combining with the bootstrap CMT and delta method we establish the asymptotic distribution of

the bootstrap regression estimator.

Theorem 10.18 Under Assumption 7.2, as n →∞
p

n
(
θ̂∗− θ̂)−→

d∗ N
(
0,V β

)
.

If Assumption 7.3 also holds then

p
n

(
θ̂∗− θ̂)−→

d∗ N(0,V θ) .

If Assumption 7.4 also holds then

T ∗ −→
d∗ N(0,1) .

This means that the bootstrap confidence interval and testing methods all apply for inference on β

and θ. This includes the percentile, BC percentile, BCa , and percentile-t intervals, and hypothesis tests
based on t-tests, Wald tests, MD tests, LR tests and F tests.
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To justify bootstrap standard errors we also need to verify the uniform square integrability of β̂∗ and
θ̂∗. This is technically challenging because the least squares estimator involves matrix inversion which
is not globally continuous. A partial solution is to use the trimmed estimator (10.34). This bounds the
moments of β̂∗ by those of n−1 ∑n

i=1 X ∗
i e∗i . Since this is a sample mean, Theorem 10.10 applies and V̂

∗
β

is bootstrap consistent for V β. However, this does not ensure that V̂
∗
θ will be consistent for V̂ θ unless

the function r (x) satisfies the conditions of Theorem 10.10. For general applications use a trimmed
estimator for the bootstrap variance. For some τn =O

(
en/8

)
define

Z∗
n =p

n
(
θ̂∗− θ̂)

Z∗∗ = z∗1
{∥∥Z∗

n

∥∥≤ τn
}

Z∗∗ = 1

B

B∑
b=1

Z∗∗(b)

V̂
boot,τ
θ = 1

B −1

B∑
b=1

(
Z∗∗(b)−Z∗∗)(

Z∗∗(b)−Z∗∗)′ .

The matrix V̂
boot
θ is a trimmed bootstrap estimator of the variance of Zn = p

n
(
θ̂−θ)

. The associated

bootstrap standard error for θ̂ (in the scalar case) is s(θ̂) =
√

n−1V̂
boot
θ .

By an application of Theorems 10.11 and 10.12, we find that this estimator V̂
boot
θ is consistent for the

asymptotic variance.

Theorem 10.19 Under Assumption 7.2 and 7.3, as n →∞, V̂
boot,τ
θ −→

p∗ V θ.

Programs such as Stata use the untrimmed estimator V̂
boot
θ rather than the trimmed estimator V̂

boot,τ
θ .

This means that we should be cautious about interpreting reported bootstrap standard errors especially
for nonlinear functions such as ratios.

10.29 Wild Bootstrap

Take the linear regression model

Y = X ′β+e

E [e | X ] = 0.

What is special about this model is the conditional mean restriction. The nonparametric bootstrap
(which samples the pairs

(
Y ∗

i , X ∗
i

)
i.i.d. from the original observations) does not make use of this re-

striction. Consequently the bootstrap distribution for (Y ∗, X ∗) does not satisfy the conditional mean re-
striction and therefore does not satisfy the linear regression assumption. To improve precision it seems
reasonable to impose the conditional mean restriction on the bootstrap distribution.

A natural approach is to hold the regressors Xi fixed and then draw the errors e∗i in some way which
imposes a conditional mean of zero. The simplest approach is to draw the errors independent from
the regressors, perhaps from the empirical distribution of the residuals. This procedure is known as
the residual bootstrap. However, this imposes independence of the errors from the regressors which is
much stronger than the conditional mean assumption. This is generally undesirable.



CHAPTER 10. RESAMPLING METHODS 296

A method which imposes the conditional mean restriction while allowing general heteroskedasticity
is the wild bootstrap. It was proposed by Liu (1988) and extended by Mammon (1993). The method uses
auxiliary random variables ξ∗ which are i.i.d., mean zero, and variance 1. The bootstrap observations are
then generated as Y ∗

i = X ′
i β̂+ e∗i with e∗i = êiξ

∗
i , where the regressors Xi are held fixed at their sample

values, β̂ is the sample least squares estimator, and êi are the least squares residuals, which are also held
fixed at their sample values.

This algorithm generates bootstrap errors e∗i which are conditionally mean zero. Thus the bootstrap

pairs
(
Y ∗

i , Xi
)

satisfy a linear regression with the “true” coefficient of β̂. The conditional variance of the
wild bootstrap errors e∗i are E∗

[
e∗2

i | Xi
]= ê2

i . This means that the conditional variance of the bootstrap

estimator β̂∗ is

E∗
[(
β̂∗− β̂)(

β̂∗− β̂)′ | X
]
= (

X ′X
)−1

(
n∑

i=1
Xi X ′

i ê2
i

)(
X ′X

)−1

which is the White estimator of the variance of β̂. Thus the wild bootstrap replicates the appropriate first
and second moments of the distribution.

Two distributions have been proposed for the auxilary variables ξ∗i both of which are two-point dis-
crete distributions. The first are Rademacher random variables which satisfyP [ξ∗ = 1] = 1

2 andP [ξ∗ =−1] =
1
2 . The second is the Mammen (1993) two-point distribution

P

[
ξ∗ = 1+p

5

2

]
=

p
5−1

2
p

5

P

[
ξ∗ = 1−p

5

2

]
=

p
5+1

2
p

5
.

The reasoning behind the Mammen distribution is that this choice implies E
[
ξ∗3

]= 1, which implies
that the third central moment of β̂∗ matches the natural nonparametric estimator of the third central
moment of β̂. Since the wild bootstrap matches the first three moments, the percentile-t interval and
one-sided t-tests can be shown to achieve asymptotic refinements.

The reasoning behind the Rademacher distribution is that this choice implies E
[
ξ∗4

]= 1, which im-
plies that the fourth central moment of β̂∗ matches the natural nonparametric estimator of the fourth
central moment of β̂. If the regression errors e are symmetrically distributed (so the third moment
is zero) then the first four moments are matched. In this case the wild bootstrap should have even
better performance, and additionally two-sided t-tests can be shown to achieve an asymptotic refine-
ment. When the regression error is not symmetrically distributed these asymptotic refinements are not
achieved. Limited simulation evidence for one-sided t-tests presented in Davidson and Flachaire (2008)
suggests that the Rademacher distribution (used with the restricted wild bootstrap) has better perfor-
mance and is their recommendation.

For hypothesis testing improved precision can be obtained by the restricted wild bootstrap. Con-
sider tests of the hypothesisH0 : r

(
β
)= 0. Let β̃ be a CLS or EMD estimator of β subject to the restriction

r
(
β̃
) = 0. Let ẽi = Yi − X ′

i β̃ be the constrained residuals. The restricted wild bootstrap algorithm gen-

erates observations as Y ∗
i = X ′

i β̃+ e∗i with e∗i = ẽiξ
∗
i . With this modification β̃ is the true value in the

bootstrap universe so the null hypothesisH0 holds. Thus bootstrap tests are constructed the same as for
the parametric bootstrap using a restricted parameter estimator.

10.30 Bootstrap for Clustered Observations

Bootstrap methods can also be applied in to clustered samples though the methodological literature
is relatively thin. Here we review methods discussed in Cameron, Gelbach and Miller (2008).
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Let Y g = (Y1g , ...,Yng g )′ and X g = (X1g , ..., Xng g )′ denote the ng ×1 vector of dependent variables and

ng ×k matrix of regressors for the g th cluster. A linear regression model using cluster notation is Y g =
X gβ+eg where eg = (e1g , ...,eng g )′ is an ng ×1 error vector. The sample has G cluster pairs (Y g , X g ).

The pairs cluster bootstrap samples G cluster pairs (Y g , X g ) to create the bootstrap sample. Least
squares is applied to the bootstrap sample to obtain the coefficient estimators. By repeating B times
bootstrap standard errors for coefficients estimates, or functions of the coefficient estimates, can be
calculated. Percentile, BC percentile, and BCa confidence intervals can be calculated.

The BCa interval requires an estimator of the acceleration coefficient a which is a scaled jackknife
estimate of the third moment of the estimator. In the context of clustered observations the delete-cluster
jackknife should be used for estimation of a.

Furthermore, on each bootstrap sample the cluster-robust standard errors can be calculated and
used to compute bootstrap t-ratios, from which percentile-t confidence intervals can be calculated.

The wild cluster bootstrap fixes the clusters and regressors, and generates the bootstrap observa-
tions as

Y ∗
g = X g β̂+e∗

g

e∗
g = ê iξ

∗
g

where ξ∗g is a scalar auxilary random variable as described in the previous section. Notice that ξ∗g is
interacted with the entire vector of residuals from cluster g . Cameron, Gelbach and Miller (2008) follow
the recommendation of Davidson and Flachaire (2008) and use Rademacher random variables for ξ∗g .

For hypothesis testing, Cameron, Gelbach and Miller (2008) recommend the restricted wild cluster
bootstrap. For tests ofH0 : r

(
β
)= 0 let β̃ be a CLS or EMD estimator of β subject to the restriction r

(
β̃
)=

0. Let ẽg = Y g − X g β̃ be the constrained cluster-level residuals. The restricted wild cluster bootstrap
algorithm generates observations as

Y ∗
g = X g β̃+e∗

g

e∗
g = ẽ iξ

∗
g .

On each bootstrap sample the test statistic for H0 (t-ratio, Wald, LR, or F) is applied. Since the bootstrap
algorithm satisfiesH0 these statistics are centered at the hypothesized value. p-values are then calculated
conventionally and used to assess the significance of the test statistic.

There are several reasons why conventional asymptotic approximations may work poorly with clus-
tered observations. First, while the sample size n may be large, the effective sample size is the number
of clusters G . This is because when the dependence structure within each cluster is unconstrained the
central limit theorem effectively treats each cluster as a single observation. Thus, if G is small we should
treat inference as a small sample problem. Second, cluster-robust covariance matrix estimation explic-
itly treats each cluster as a single observation. Consequently the accuracy of normal approximations to t-
ratios and Wald statistics is more accurately viewed as a small sample distribution problem. Third, when
cluster sizes ng are heterogeneous this means that the estimation problems just described also involve
heterogeneous variances. Specifically, heterogeneous cluster sizes induces a high degree of effective het-
eroskedasticity (since the variance of a within-cluster sum is proportional to ng ). When G is small this
means that cluster-robust inference is similar to finite-sample inference with a small heteroskedastic
sample. Fourth, interest often concerns treatment which is applied at the level of a cluster (such as the
effect of tracking discussed in Section 4.23). If the number of treated clusters is small this is equivalent to
estimation with a highly sparse dummy variable design in which case cluster-robust covariance matrix
estimation can be unreliable.
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These concerns suggest that conventional normal approximations may be poor in the context of
clustered observations with a small number of groups G , motivating the use of bootstrap methods. How-
ever, these concerns also can cause challenges with the accuracy of bootstrap approximations. When the
number of clusters G is small, the cluster sizes ng heterogeneous, or the number of treated clusters small,
bootstrap methods may be inaccurate. In such cases inference should proceed cautiously.

To illustrate the use of the pairs cluster bootstrap, Table 10.4 reports the estimates of the example
from Section 4.23 of the effect of tracking on testscores from Duflo, Dupas and Kremer (2011). In addition
to the asymptotic cluster standard error we report the cluster jackknife and cluster bootstrap standard
errors as well as three percentile-type confidence intervals. We use 10,000 bootstrap replications. In this
example the asymptotic, jackknife, and cluster bootstrap standard errors are identical, which reflects the
good balance of this particular regression design.

Table 10.4: Comparison of Methods for Estimate of Effect of Tracking

Coefficient on Tracking 0.138
Asymptotic cluster s.e. (0.078)
Jackknife cluster s.e. (0.078)
Cluster Bootstrap s.e. (0.078)
95% Percentile Interval [−0.013, 0.291]
95% BC Percentile Interval [−0.015, 0.289]
95% BCa Percentile Interval [−0.018, 0.286]

In Stata, to obtain cluster bootstrap standard errors and confidence intervals use the options cluster(id)
vce(bootstrap, reps(#)), where id is the cluster variable and # is the number of replications.

10.31 Technical Proofs*

Some of the asymptotic results are facilitated by the following convergence result.

Theorem 10.20 Marcinkiewicz WLLN If ui are independent and uniformly integrable, then for any r >
1, as n →∞, n−r ∑n

i=1 |ui |r −→
p

0.

Proof of Theorem 10.20

n−r
n∑

i=1
|ui |r ≤

(
n−1 max

1≤i≤n
|ui |

)r−1 1

n

n∑
i=1

|ui | −→
p

0

by the WLLN, Theorem 6.16, and r > 1.

Proof of Theorem 10.1 Fix ε> 0. Since Zn −→
p

Z there is an n sufficiently large such that

P [‖Zn −Z‖ > ε] < ε.

Since the event ‖Zn −Z‖ > ε is non-random under the conditional probability P∗, for such n,

P∗ [‖Zn −Z‖ > ε] =
{

0 with probability exceeding 1−ε
1 with probability less than ε.

Since ε is arbitrary we conclude P∗ [‖Zn −Z‖ > ε] −→
p

0 as required. ■
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Proof of Theorem 10.2 Fix ε > 0. By Markov’s inequality (B.36), the facts (10.12) and (10.13), and finally
the Marcinkiewicz WLLN (Theorem 10.20) with r = 2 and ui = ‖Yi‖,

P∗
[∥∥∥Y

∗−Y
∥∥∥> ε

]
≤ ε−2E∗

∥∥∥Y
∗−Y

∥∥∥2

= ε−2 tr
(
var∗

[
Y

∗])
= ε−2 tr

(
1

n
Σ̂

)
≤ ε−2n−2

n∑
i=1

Y ′
i Yi

−→
p

0.

This establishes that Y
∗−Y −→

p∗ 0.

Since Y −µ−→
p

0 by the WLLN, Y −µ−→
p∗ 0 by Theorem 10.1. Since Y

∗−µ= Y
∗−Y +Y −µ, we deduce

that Y
∗−µ−→

p∗ 0. ■

Proof of Theorem 10.4 We verify conditions for the multivariate Lindeberg CLT (Theorem 6.4). (We
cannot use the Lindeberg–Lévy CLT since the conditional distribution depends on n.) Conditional on
Fn , the bootstrap draws Y ∗

i −Y are i.i.d. with mean 0 and covariance matrix Σ̂. Set ν2
n = λmin(Σ̂). Note

that by the WLLN, ν2
n −→

p
ν2 = λmin(Σ) > 0. Thus for n sufficiently large, ν2

n > 0 with high probability. Fix

ε> 0. Equation (6.2) equals

1

nν2
n

n∑
i=1

E∗
[∥∥∥Y ∗

i −Y
∥∥∥2
1

{∥∥∥Y ∗
i −Y

∥∥∥2 ≥ εnν2
n

}]
= 1

ν2
n
E∗

[∥∥∥Y ∗
i −Y

∥∥∥2
1

{∥∥∥Y ∗
i −Y

∥∥∥2 ≥ εnν2
n

}]
≤ 1

εnν4
n
E∗

∥∥∥Y ∗
i −Y

∥∥∥4

≤ 24

εnν4
n
E∗

∥∥Y ∗
i

∥∥4

= 24

εn2ν4
n

n∑
i=1

‖Yi‖4

−→
p

0.

The second inequality uses Minkowski’s inequality (B.34), Liapunov’s inequality (B.35), and the cr in-
equality (B.6). The following equality is E∗

∥∥Y ∗
i

∥∥4 = n−1 ∑n
i=1 ‖Yi‖4, which is similar to (10.10). The final

convergence holds by the Marcinkiewicz WLLN (Theorem 10.20) with r = 2 and ui = ‖Yi‖2. The condi-
tions for Theorem 6.4 hold and we conclude

Σ̂−1/2pn
(
Y

∗−Y
)
−→
d∗ N(0, I ) .

Since Σ̂−→
p∗ Σwe deduce that

p
n

(
Y

∗−Y
)
−→
d∗ N(0,Σ) as claimed. ■

Proof of Theorem 10.10 For notational simplicity assume θ and µ are scalar. Set hi = h(Yi ). The assump-
tion that the p th derivative of g (u) is bounded implies

∣∣g (p) (u)
∣∣≤C for some C <∞. Taking a p th order

Taylor series expansion
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θ̂∗− θ̂ = g (h
∗

)− g (h) =
p−1∑
j=1

g ( j )
(
h
)

j !

(
h
∗−h

) j + g (p)
(
ζ∗n

)
p !

(
h
∗−h

)p

where ζ∗n lies between h
∗

and h. This implies

∣∣z∗
n

∣∣=p
n

∣∣θ̂∗− θ̂∣∣≤p
n

p∑
j=1

c j

∣∣∣h∗−h
∣∣∣ j

where c j =
∣∣∣g ( j )

(
h
)∣∣∣/ j ! for j < p and cp =C /p !. We find that the fourth central moment of the normalized

bootstrap estimator Z∗
n =p

n
(
θ̂∗− θ̂)

satisfies the bound

E∗
[

Z∗4
n

]≤ 4p∑
r=4

ar n2E∗
∣∣∣h∗−h

∣∣∣r
(10.35)

where the coefficients ar are products of the coefficients c j and hence each Op (1). We see that E∗
[

Z∗4
n

]=
Op (1) if n2E∗

∣∣∣h∗−h
∣∣∣r =Op (1) for r = 4, ...,4p.

We show this holds for any r ≥ 4 using Rosenthal’s inequality (B.50), which states that for each r there
is a constant Rr <∞ such that

n2E∗
∣∣∣h∗−h

∣∣∣r = n2−rE∗
∣∣∣∣∣ n∑
i=1

(
h∗

i −h
)∣∣∣∣∣

r

≤ n2−r Rr

{(
nE∗

(
h∗

i −h
)2

)r /2

+nE∗
∣∣∣h∗

i −h
∣∣∣r

}

= Rr

{
n2−r /2σ̂r + 1

nr−2

n∑
i=1

∣∣∣hi −h
∣∣∣r

}
. (10.36)

Since E
[
h2

i

] < ∞, σ̂2 = Op (1), so the first term in (10.36) is Op (1). Also, by the Marcinkiewicz WLLN

(Theorem 10.20), n−r /2 ∑n
i=1

∣∣∣hi −h
∣∣∣r = op (1) for any r ≥ 1, so the second term in (10.36) is op (1) for

r ≥ 4. Thus for all r ≥ 4, (10.36) is Op (1) and thus (10.35) is Op (1). We deduce that Z∗
n is uniformly square

integrable, and the bootstrap estimate of variance is consistent.
This argument can be extended to vector-valued means and estimates. ■

Proof of Theorem 10.12 We show that E∗
∥∥Z∗∗

n

∥∥4 = Op (1). Theorem 6.14 shows that Z∗∗
n is uniformly

square integrable. Since Z∗∗
n −→

d∗ Z , Theorem 6.15 implies that var
[

Z∗∗
n

]→ var[Z ] =V β as stated.

Set hi = h (Yi ). Since G (x) = ∂

∂x
g (x)′ is continuous in a neighborhood of µ, there exists η > 0 and

M <∞ such that
∥∥x −µ∥∥≤ 2η implies tr

(
G (x)′G (x)

)≤ M . By the WLLN and bootstrap WLLN there is an

n sufficiently large such that
∥∥∥hn −µ

∥∥∥ ≤ η and
∥∥∥h

∗
n −hn

∥∥∥ ≤ η with probability exceeding 1−η. On this

event,
∥∥∥x −hn

∥∥∥≤ η implies tr
(
G (x)′G (x)

)≤ M . Using the mean-value theorem at a point ζ∗n intermedi-

ate between h
∗
n and hn∥∥Z∗∗

n

∥∥4
1

{∥∥∥h
∗
n −hn

∥∥∥≤ η
}
≤ n2

∥∥∥g
(
h
∗
n

)
− g

(
hn

)∥∥∥4
1

{∥∥∥h
∗
n −hn

∥∥∥≤ η
}

≤ n2
∥∥∥G

(
ζ∗n

)′ (h
∗
n −hn

)∥∥∥4

≤ M 2n2
∥∥∥h

∗
n −hn

∥∥∥4
.
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Then

E∗
∥∥Z∗∗

n

∥∥4 ≤ E∗
[∥∥Z∗∗

n

∥∥4
1

{∥∥∥h
∗
n −hn

∥∥∥≤ η
}]

+τ4
nE

∗
[
1

{∥∥∥h
∗
n −hn

∥∥∥> η
}]

≤ M 2n2E∗
∥∥∥h

∗
n −hn

∥∥∥4 +τ4
nP

∗
(∥∥∥h

∗
n −hn

∥∥∥> η
)

. (10.37)

In (10.17) we showed that the first term in (10.37) is Op (1) in the scalar case. The vector case follows
by element-by-element expansion.

Now take the second term in (10.37). We apply Bernstein’s inequality for vectors (B.41). Note that
h
∗
n −hn = n−1 ∑n

i=1 u∗
i with u∗

i = h∗
i −hn and j th element u∗

j i = h∗
j i −h j n . The u∗

i are i.i.d., mean zero,

E∗
[

u∗2
j i

]
= σ̂2

j =Op (1), and satisfy the bound
∣∣∣u∗

j i

∣∣∣≤ 2maxi , j
∣∣h j i

∣∣= Bn , say. Bernstein’s inequality states

that

P∗
[∥∥∥h

∗
n −hn

∥∥∥> η
]
≤ 2m exp

(
−n1/2 η2

2m2n−1/2 max j σ̂
2
j +2mn−1/2Bnη/3

)
. (10.38)

Theorem 6.16 shows that n−1/2Bn = op (1). Thus the expression in the denominator of the parentheses
in (10.38) is op (1) as n →∞, . It follows that for n sufficiently large (10.38) is Op

(
exp

(−n1/2
))

. Hence the
second term in (10.37) is Op

(
exp

(−n1/2
))

op
(
exp

(−n1/2
))= op (1) by the assumption on τn .

We have shown that the two terms in (10.37) are each Op (1). This completes the proof. ■
_____________________________________________________________________________________________

10.32 Exercises

Exercise 10.1 Find the jackknife estimator of variance of the estimator µ̂r = n−1 ∑n
i=1 Y r

i for µr = E
[
Y r

i

]
.

Exercise 10.2 Show that if the jackknife estimator of variance of β̂ is V̂
jack

β̂
, then the jackknife estimator

of variance of θ̂ = a +C β̂ is V̂
jack

θ̂
=CV̂

jack

β̂
C ′.

Exercise 10.3 A two-step estimator such as (12.49) is β̂ = (∑n
i=1 Ŵi Ŵ ′

i

)−1 (∑n
i=1 Ŵi Yi

)
where Ŵi = Â

′
Zi

and Â = (
Z ′Z

)−1 Z ′X . Describe how to construct the jackknife estimator of variance of β̂.

Exercise 10.4 Show that if the bootstrap estimator of variance of β̂ is V̂
boot
β̂ , then the bootstrap estimator

of variance of θ̂ = a +C β̂ is V̂
boot
θ̂ =CV̂

boot
β̂ C ′.

Exercise 10.5 Show that if the percentile interval for β is [L,U ] then the percentile interval for a + cβ is
[a + cL, a + cU ].

Exercise 10.6 Consider the following bootstrap procedure. Using the non-parametric bootstrap, gener-
ate bootstrap samples, calculate the estimate θ̂∗ on these samples and then calculate

T ∗ = (θ̂∗− θ̂)/s(θ̂),

where s(θ̂) is the standard error in the original data. Let q∗
α/2 and q∗

1−α/2 denote the α/2th and 1−α/2th

quantiles of T ∗, and define the bootstrap confidence interval

C = [
θ̂+ s(θ̂)q∗

α/2, θ̂+ s(θ̂)q∗
1−α/2

]
.

Show that C exactly equals the percentile interval.
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Exercise 10.7 Prove Theorem 10.6.

Exercise 10.8 Prove Theorem 10.7.

Exercise 10.9 Prove Theorem 10.8.

Exercise 10.10 Let Yi be i.i.d., µ= E [Y ] > 0, and θ =µ−1. Let µ̂= Y n be the sample mean and θ̂ = µ̂−1.

(a) Is θ̂ unbiased for θ?

(b) If θ̂ is biased, can you determine the direction of the bias E
[
θ̂−θ]

(up or down)?

(c) Is the percentile interval appropriate in this context for confidence interval construction?

Exercise 10.11 Consider the following bootstrap procedure for a regression of Y on X . Let β̂ denote the
OLS estimator and êi = Yi −X ′

i β̂ the OLS residuals.

(a) Draw a random vector (X ∗,e∗) from the pair {(Xi , êi ) : i = 1, ...,n} . That is, draw a random integer i ′

from [1,2, ...,n], and set X ∗ = Xi ′ and e∗ = êi ′ . Set Y ∗ = X ∗′β̂+e∗. Draw (with replacement) n such
vectors, creating a random bootstrap data set (Y ∗, X ∗).

(b) Regress Y ∗ on X ∗, yielding OLS estimator β̂∗ and any other statistic of interest.

Show that this bootstrap procedure is (numerically) identical to the non-parametric bootstrap.

Exercise 10.12 Take p∗ as defined in (10.22) for the BC percentile interval. Show that it is invariant to
replacing θ with g (θ) for any strictly monotonically increasing transformation g (θ). Does this extend to
z∗

0 as defined in (10.23)?

Exercise 10.13 Show that if the percentile-t interval for β is [L,U ] then the percentile-t interval for a+cβ
is [a +bL, a +bU ].

Exercise 10.14 You want to test H0 : θ = 0 against H1 : θ > 0. The test for H0 is to reject if Tn = θ̂/s(θ̂) > c
where c is picked so that Type I error is α. You do this as follows. Using the nonparametric bootstrap,
you generate bootstrap samples, calculate the estimates θ̂∗ on these samples and then calculate T ∗ =
θ̂∗/s(θ̂∗). Let q∗

1−α denote the 1 −αth quantile of T ∗. You replace c with q∗
1−α, and thus reject H0 if

Tn = θ̂/s(θ̂) > q∗
1−α. What is wrong with this procedure?

Exercise 10.15 Suppose that in an application, θ̂ = 1.2 and s(θ̂) = 0.2. Using the nonparametric boot-
strap, 1000 samples are generated from the bootstrap distribution, and θ̂∗ is calculated on each sample.
The θ̂∗ are sorted, and the 0.025th and 0.975th quantiles of the θ̂∗ are .75 and 1.3, respectively.

(a) Report the 95% percentile interval for θ.

(c) With the given information, can you calculate the 95% BC percentile interval or percentile-t inter-
val for θ?

Exercise 10.16 Take the normal regression model Y = X ′β+ e with e | X ∼ N(0,σ2) where we know the
MLE equals the least squares estimators β̂ and σ̂2.

(a) Describe the parametric regression bootstrap for this model. Show that the conditional distribu-
tion of the bootstrap observations is Y ∗

i | Fn ∼ N
(
X ′

i β̂, σ̂2
)
.
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(b) Show that the distribution of the bootstrap least squares estimator is β̂∗ | Fn ∼ N
(
β̂,

(
X ′X

)−1
σ̂2

)
.

(c) Show that the distribution of the bootstrap t-ratio with a homoskedastic standard error is T ∗ ∼
tn−k .

Exercise 10.17 Consider the model Y = X ′β+ e with E [e | X ] = 0, Y scalar, and X a k vector. You have
a random sample (Yi , Xi : i = 1, ...,n). You are interested in estimating the regression function m(x) =
E [Y | X = x] at a fixed vector x and constructing a 95% confidence interval.

(a) Write down the standard estimator and asymptotic confidence interval for m(x).

(b) Describe the percentile bootstrap confidence interval for m(x).

(c) Describe the percentile-t bootstrap confidence interval for m(x).

Exercise 10.18 The observed data is {Yi , Xi } ∈ R×Rk , k > 1, i = 1, ...,n. Take the model Y = X ′β+ e with
E [X e] = 0.

(a) Write down an estimator for µ3 = E
[
e3

]
.

(b) Explain how to use the percentile method to construct a 90% confidence interval for µ3 in this
specific model.

Exercise 10.19 Take the model Y = X ′β+e with E [X e] = 0. Describe the bootstrap percentile confidence
interval for σ2 = E[

e2
]

.

Exercise 10.20 The model is Y = X ′
1β1 + X ′

2β2 + e with E [X e] = 0 and X2 scalar. Describe how to test
H0 :β2 = 0 against H1 :β2 6= 0 using the nonparametric bootstrap.

Exercise 10.21 The model is Y = X ′
1β1+X ′

2β2+e with E [X e] = 0, and both X1 and X2 k×1. Describe how
to test H0 :β1 =β2 against H1 :β1 6=β2 using the nonparametric bootstrap.

Exercise 10.22 Suppose a Ph.D. student has a sample (Yi , Xi , Zi : i = 1, ...,n) and estimates by OLS the
equation Y = Zα+ X ′β+ e where α is the coefficient of interest. She is interested in testing H0 : α = 0
against H1 : α 6= 0. She obtains α̂ = 2.0 with standard error s(α̂) = 1.0 so the value of the t-ratio for H0 is
T = α̂/s(α̂) = 2.0. To assess significance, the student decides to use the bootstrap. She uses the following
algorithm

1. Samples (Y ∗
i , X ∗

i , Z∗
i ) randomly from the observations. (Random sampling with replacement).

Creates a random sample with n observations.

2. On this pseudo-sample, estimates the equation Y ∗
i = Z∗

i α+X ∗′
i β+e∗i by OLS and computes stan-

dard errors, including s(α̂∗). The t-ratio for H0, T ∗ = α̂∗/s(α̂∗) is computed and stored.

3. This is repeated B = 10,000 times.

4. The 0.95th empirical quantile q∗
.95 = 3.5 of the bootstrap absolute t-ratios |T ∗| is computed.

5. The student notes that while |T | = 2 > 1.96 (and thus an asymptotic 5% size test rejects H0), |T | =
2 < q∗

.95 = 3.5 and thus the bootstrap test does not reject H0. As the bootstrap is more reliable, the
student concludes that H0 cannot be rejected in favor of H1.
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Question: Do you agree with the student’s method and reasoning? Do you see an error in her method?

Exercise 10.23 Take the model Y = X1β1 + X2β2 + e with E [X e] = 0 and scalar X1 and X2. The param-
eter of interest is θ = β1β2. Show how to construct a confidence interval for θ using the following three
methods.

(a) Asymptotic Theory.

(b) Percentile Bootstrap.

(c) Percentile-t Bootstrap.

Your answer should be specific to this problem, not general.

Exercise 10.24 Take the model Y = X1β1 +X2β2 + e with i.i.d observations, E [X e] = 0 and scalar X1 and
X2. Describe how you would construct the percentile-t bootstrap confidence interval for θ =β1/β2.

Exercise 10.25 The model is i.i.d. data, i = 1, ...,n, Y = X ′β+ e and E [e | X ] = 0. Does the presence of
conditional heteroskedasticity invalidate the application of the nonparametric bootstrap? Explain.

Exercise 10.26 The RESET specification test for nonlinearity in a random sample (due to Ramsey (1969))
is the following. The null hypothesis is a linear regression Y = X ′β+e with E [e | X ] = 0. The parameterβ is
estimated by OLS yielding predicted values Ŷi . Then a second-stage least squares regression is estimated
including both Xi and Ŷi

Yi = X ′
i β̃+ (

Ŷi
)2
γ̃+ ẽi

The RESET test statistic R is the squared t-ratio on γ̃.
A colleague suggests obtaining the critical value for the test using the bootstrap. He proposes the

following bootstrap implementation.

• Draw n observations (Y ∗
i , X ∗

i ) randomly from the observed sample pairs (Yi , Xi ) to create a boot-
strap sample.

• Compute the statistic R∗ on this bootstrap sample as described above.

• Repeat this B times. Sort the bootstrap statistics R∗, take the 0.95th quantile and use this as the
critical value.

• Reject the null hypothesis if R exceeds this critical value, otherwise do not reject.

Is this procedure a correct implementation of the bootstrap in this context? If not, propose a modifi-
cation.

Exercise 10.27 The model is Y = X ′β+e with E [X e] 6= 0. We know that in this case, the least squares esti-
mator may be biased for the parameter β. We also know that the nonparametric BC percentile interval is
(generally) a good method for confidence interval construction in the presence of bias. Explain whether
or not you expect the BC percentile interval applied to the least squares estimator will have accurate
coverage in this context.

Exercise 10.28 In Exercise 9.26 you estimated a cost function for 145 electric companies and tested the
restriction θ =β3 +β4 +β5 = 1.
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(a) Estimate the regression by unrestricted least squares and report standard errors calculated by
asymptotic, jackknife and the bootstrap.

(b) Estimate θ = β3 +β4 +β5 and report standard errors calculated by asymptotic, jackknife and the
bootstrap.

(c) Report confidence intervals for θ using the percentile and BCa methods.

Exercise 10.29 In Exercise 9.27 you estimated the Mankiw, Romer, and Weil (1992) unrestricted regres-
sion. Let θ be the sum of the second, third, and fourth coefficients.

(a) Estimate the regression by unrestricted least squares and report standard errors calculated by
asymptotic, jackknife and the bootstrap.

(b) Estimate θ and report standard errors calculated by asymptotic, jackknife and the bootstrap.

(c) Report confidence intervals for θ using the percentile and BC methods.

Exercise 10.30 In Exercise 7.28 you estimated a wage regression with the cps09mar dataset and the sub-
sample of white Male Hispanics. Further restrict the sample to those never-married and live in the Mid-
west region. (This sample has 99 observations.) As in subquestion (b) let θ be the ratio of the return to
one year of education to the return of one year of experience.

(a) Estimate θ and report standard errors calculated by asymptotic, jackknife and the bootstrap.

(b) Explain the discrepancy between the standard errors.

(c) Report confidence intervals for θ using the BC percentile method.

Exercise 10.31 In Exercise 4.26 you extended the work from Duflo, Dupas and Kremer (2011). Repeat
that regression, now calculating the standard error by cluster bootstrap. Report a BCa confidence interval
for each coefficient.
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Chapter 11

Multivariate Regression

11.1 Introduction

Multivariate regression is a system of regression equations. Multivariate regression is used as re-
duced form models for instrumental variable estimation (Chaper 12), vector autoregressions (Chapter
15), demand systems (demand for multiple goods), and other contexts.

Multivariate regression is also called by the name systems of regression equations. Closely related is
the method of Seemingly Unrelated Regressions (SUR) introduced in Section 11.7.

Most of the tools of single equation regression generalize to multivariate regression. A major differ-
ence is a new set of notation to handle matrix estimators.

11.2 Regression Systems

A univariate linear regression equation equals Y = X ′β+e where Y is scalar and X is a vector. Multi-
variate regression is a system of m linear regressions, and equals

Y j = X ′
jβ j +e j (11.1)

for j = 1, ...,m. Here we use the subscript j to denote the j th dependent variable, not the i th individual.
As an example, Y j could be expenditures by a household on good category j (e.g., food, housing, trans-
portation, clothing, recreation). The regressor vectors X j are k j × 1 and e j is an error. The coefficient

vectors β j are k j ×1. The total number of coefficients are k = ∑m
j=1 k j . The regressors can be common

across j or can vary across j . In the household expenditure example the regressors X j are typically com-
mon across j , and include variables such as household income, number and ages of family members,
and demographic characteristics. The regression system specializes to univariate regression when m = 1.

Define the m×1 error vector e = (e1, ...,em)′ and its m×m covariance matrixΣ= E[
ee ′

]
. The diagonal

elements are the variances of the errors e j and the off-diagonals are the covariances across variables.
We can group the m equations (11.1) into a single equation as follows. Let Y = (Y1, ...,Ym)′ be the

m ×1 vector of dependent variables. Define the m ×k matrix of regressors

X =

 X ′
1 0 · · · 0

... X ′
2

...
0 0 · · · X ′

m
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and the k ×1 stacked coefficient vector

β=

 β1
...
βm

 .

The m regression equations can be jointly written as

Y = Xβ+e. (11.2)

This is a system of m equations.
For n observations the joint system can be written in matrix notation by stacking. Define

Y =

 Y1
...

Yn

 , e =

 e1
...

en

 , X =


X 1

...
X n


which are mn ×1, mn ×1, and mn ×k, respectively. The system can be written as Y = Xβ+e.

In many applications the regressor vectors X j are common across the variables j , so X j = X and
k j = k. By this we mean that the same variables enter each equation with no exclusion restrictions.
Several important simplifications occur in this context. One is that we can write (11.2) using the notation

Y = B ′X +e (11.3)

where B = (
β1,β2, · · · ,βm

)
is k ×m. Another is that we can write the joint system of observations in the

n ×m matrix notation Y = X B +E where

Y =

 Y ′
1
...

Y ′
n

 , E =

 e ′1
...

e ′n

 , X =

 X ′
1

...
X ′

n

 .

Another convenient implication of common regressors is that we have the simplification

X =


X ′ 0 · · · 0
0 X ′ 0
...

...
...

0 0 · · · X ′

= I m ⊗X ′

where ⊗ is the Kronecker product (see Appendix A.21).

11.3 Least Squares Estimator

The equations (11.1) can be estimated by least squares. This takes the form

β̂ j =
(

n∑
i=1

X j i X ′
j i

)−1 (
n∑

i=1
X j i Y j i

)
.

An estimator of β is the stacked vector

β̂=

 β̂1
...
β̂m

 .
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We can alternatively write this estimator using the systems notation

β̂=
(

X
′
X

)−1 (
X

′
Y

)
=

(
n∑

i=1
X

′
i X i

)−1 (
n∑

i=1
X

′
i Yi

)
. (11.4)

To see this, observe that

X
′
X =

(
X

′
1 · · · X

′
n

)
X 1

...
X n


=

n∑
i=1

X
′
i X i

=
n∑

i=1

 X1i 0 · · · 0
... X2i

...
0 0 · · · Xmi


 X ′

1i 0 · · · 0
... X ′

2i

...
0 0 · · · X ′

mi



=


∑n

i=1 X1i X ′
1i 0 · · · 0

...
∑n

i=1 X2i X ′
2i

...
0 0 · · · ∑n

i=1 Xmi X ′
mi


and

X
′
Y =

(
X

′
1 · · · X

′
n

) Y1
...

Yn


=

n∑
i=1

X
′
i Yi

=
n∑

i=1

 X1i 0 · · · 0
... X2i

...
0 0 · · · Xmi


 Y1i

...
Ymi



=


∑n

i=1 X1i Y1i
...∑n

i=1 Xmi Ymi

 .

Hence

(
X

′
X

)−1 (
X

′
Y

)
=

(
n∑

i=1
X i X

′
i

)−1 (
n∑

i=1
X i Yi

)

=


(∑n

i=1 X1i X ′
1i

)−1 (∑n
i=1 X1i Y1i

)
...(∑n

i=1 Xmi X ′
mi

)−1 (∑n
i=1 Xmi Ymi

)


= β̂

as claimed.



CHAPTER 11. MULTIVARIATE REGRESSION 310

The m ×1 residual vector for the i th observation is êi = Yi − X
′
i β̂. The least squares estimator of the

m ×m error covariance matrix is

Σ̂= 1

n

n∑
i=1

êi ê ′i . (11.5)

In the case of common regressors, the least squares coefficients can be written as

β̂ j =
(

n∑
i=1

Xi X ′
i

)−1 (
n∑

i=1
Xi Y j i

)

and
B̂ = (

β̂1, β̂2, · · · , β̂m
)= (

X ′X
)−1 (

X ′Y
)

. (11.6)

In Stata, multivariate regression can be implemented using the mvreg command.

11.4 Mean and Variance of Systems Least Squares

We can calculate the finite-sample mean and variance of β̂ under the conditional mean assumption

E [e | X ] = 0 (11.7)

where X is the union of the regressors X j . Equation (11.7) is equivalent to E
⌊

Y j | X
⌋= X ′

jβ j , which means
that the regression model is correctly specified.

We can center the estimator as

β̂−β=
(

X
′
X

)−1 (
X

′
e
)
=

(
n∑

i=1
X

′
i X i

)−1 (
n∑

i=1
X

′
i ei

)
.

Taking conditional expectations we find E
[
β̂ | X

] = β. Consequently, systems least squares is unbiased
under correct specification.

To compute the variance of the estimator, define the conditional covariance matrix of the errors of
the i th observation E

[
ei e ′i | Xi

]=Σi which in general is a function of Xi . If the observations are mutually
independent then

E
[
ee ′ | X

]= E


 e1e ′1 e1e ′2 · · · e1e ′n
...

. . .
...

ene ′1 ene ′2 · · · ene ′n


∣∣∣∣∣∣∣ X

=

 Σ1 0 · · · 0
...

. . .
...

0 0 · · · Σn

 .

Also, by independence across observations,

var

[
n∑

i=1
X

′
i ei

∣∣∣∣∣ X

]
=

n∑
i=1

var
[

X
′
i ei

∣∣∣ Xi

]
=

n∑
i=1

X
′
iΣi X i .

It follows that

var
[
β̂ | X

]= (
X

′
X

)−1
(

n∑
i=1

X
′
iΣi X i

)(
X

′
X

)−1
.

When the regressors are common so that X i = I m ⊗X ′
i then the covariance matrix can be written as

var
[
β̂ | X

]= (
I m ⊗ (

X ′X
)−1

)(
n∑

i=1

(
Σi ⊗Xi X ′

i

))(
I m ⊗ (

X ′X
)−1

)
.
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If the errors are conditionally homoskedastic

E
[
ee ′ | X

]=Σ (11.8)

then the covariance matrix simplifies to

var
[
β̂ | X

]= (
X

′
X

)−1
(

n∑
i=1

X
′
iΣX i

)(
X

′
X

)−1
.

If both simplifications (common regressors and conditional homoskedasticity) hold then we have
the considerable simplication

var
[
β̂ | X

]=Σ⊗ (
X ′X

)−1 .

11.5 Asymptotic Distribution

For an asymptotic distribution it is sufficient to consider the equation-by-equation projection model
in which case

E
[

X j e j
]= 0. (11.9)

First, consider consistency. Since β̂ j are the standard least squares estimators, they are consistent for
the projection coefficients β j .

Second, consider the asymptotic distribution. Our single equation theory implies that the β̂ j are
asymptotically normal. But this theory does not provide a joint distribution of the β̂ j across j , which we
now derive. Since the vector

X
′
i ei =

 X1i e1i
...

Xmi emi


is i.i.d. across i and mean zero under (11.9), the central limit theorem implies

1p
n

n∑
i=1

X
′
i ei −→

d
N(0,Ω)

where
Ω= E

[
X

′
i ei e ′i X i

]
= E

[
X

′
iΣi X i

]
.

The matrix Ω is the covariance matrix of the variables X j i e j i across equations. Under conditional
homoskedasticity (11.8) the matrixΩ simplifies to

Ω= E
[

X
′
iΣX i

]
(11.10)

(see Exercise 11.1). When the regressors are common it simplies to

Ω= E[
ee ′⊗X X ′] (11.11)

(see Exercise 11.2). Under both conditions (homoskedasticity and common regressors) it simplifies to

Ω=Σ⊗E[
X X ′] (11.12)

(see Exercise 11.3).
Applied to the centered and normalized estimator we obtain the asymptotic distribution.
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Theorem 11.1 Under Assumption 7.2,
p

n
(
β̂−β) −→

d
N

(
0,V β

)
where V β =

Q−1ΩQ−1 and

Q = E
[

X
′
X

]
=

 E
[

X1X ′
1

]
0 · · · 0

...
. . .

...
0 0 · · · E

[
Xm X ′

m

]
 .

For a proof, see Exercise 11.4.
When the regressors are common the matrix Q simplifies as

Q = I m ⊗E[
X X ′] (11.13)

(See Exercise 11.5).
If both the regressors are common and the errors are conditionally homoskedastic (11.8) then we

have the simplification
V β =Σ⊗

(
E
[

X X ′])−1 (11.14)

(see Exercise 11.6).
Sometimes we are interested in parameters θ = r (β1, ...,βm) = r (β) which are functions of the coeffi-

cients from multiple equations. In this case the least squares estimator of θ is θ̂ = r (β̂). The asymptotic
distribution of θ̂ can be obtained from Theorem 11.1 by the delta method.

Theorem 11.2 Under Assumptions 7.2 and 7.3,
p

n
(
θ̂−θ) −→

d
N(0,V θ) where

V θ = R ′V βR and R = ∂
∂βr

(
β
)′.

For a proof, see Exercise 11.7.
Theorem 11.2 is an example where multivariate regression is fundamentally distinct from univariate

regression. Only by treating least squares as a joint estimator can we obtain a distributional theory for
a function of multiple equations. We can thereby construct standard errors, confidence intervals, and
hypothesis tests.

11.6 Covariance Matrix Estimation

From the finite sample and asymptotic theory we can construct appropriate estimators for the vari-
ance of β̂. In the general case we have

V̂ β̂ =
(

X
′
X

)−1
(

n∑
i=1

X
′
i êi ê ′i X i

)(
X

′
X

)−1
.

Under conditional homoskedasticity (11.8) an appropriate estimator is

V̂
0
β̂ =

(
X

′
X

)−1
(

n∑
i=1

X
′
i Σ̂X i

)(
X

′
X

)−1
.
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When the regressors are common then these estimators equal

V̂ β̂ =
(

I m ⊗ (
X ′X

)−1
)(

n∑
i=1

(
êi ê ′i ⊗Xi X ′

i

))(
I m ⊗ (

X ′X
)−1

)

and V̂
0
β̂ = Σ̂⊗

(
X ′X

)−1, respectively.

Covariance matrix estimators for θ̂ are found as

V̂ θ̂ = R̂
′
V̂ β̂R̂

V̂
0
θ̂ = R̂

′
V̂

0
β̂R̂

R̂ = ∂

∂β
r
(
β̂
)′

.

Theorem 11.3 Under Assumption 7.2, nV̂ β̂ −→p V β and nV̂
0
β̂ −→p V 0

β
.

For a proof, see Exercise 11.8.

11.7 Seemingly Unrelated Regression

Consider the systems regression model under the conditional mean and conditional homoskedas-
ticity assumptions

Y = Xβ+e (11.15)

E [e | X ] = 0

E
[
ee ′ | X

]=Σ.

Since the errors are correlated across equations we consider estimation by Generalized Least Squares
(GLS). To derive the estimator, premultiply (11.15) by Σ−1/2 so that the transformed error vector is i.i.d.
with covariance matrix I m . Then apply least squares and rearrange to find

β̂gls =
(

n∑
i=1

X
′
iΣ

−1X i

)−1 (
n∑

i=1
X

′
iΣ

−1Yi

)
. (11.16)

(see Exercise 11.9). Another approach is to take the vector representation

Y = Xβ+e

and calculate that the equation error e has variance E
[
ee ′] = I n ⊗Σ. Premultiply the equation by I n ⊗

Σ−1/2 so that the transformed error has covariance matrix I nm and then apply least squares to find

β̂gls =
(

X
′ (

I n ⊗Σ−1) X
)−1 (

X
′ (

I n ⊗Σ−1)Y
)

(11.17)

(see Exercise 11.10).



CHAPTER 11. MULTIVARIATE REGRESSION 314

Expressions (11.16) and (11.17) are algebraically equivalent. To see the equivalence, observe that

X
′ (

I n ⊗Σ−1) X =
(

X
′
1 · · · X

′
n

) Σ−1 0 · · · 0
... Σ−1 ...
0 0 · · · Σ−1




X 1
...

X n


=

n∑
i=1

X
′
iΣ

−1X i

and

X
′ (

I n ⊗Σ−1)Y =
(

X
′
1 · · · X

′
n

) Σ−1 0 · · · 0
... Σ−1 ...
0 0 · · · 0−1


 Y1

...
Yn


=

n∑
i=1

X
′
iΣ

−1Yi .

Since Σ is unknown it must be replaced by an estimator. Using Σ̂ from (11.5) we obtain a feasible GLS
estimator.

β̂sur =
(

n∑
i=1

X
′
i Σ̂

−1X i

)−1 (
n∑

i=1
X

′
i Σ̂

−1Yi

)

=
(

X
′ (

I n ⊗ Σ̂−1) X
)−1 (

X
′ (

I n ⊗ Σ̂−1)Y
)

. (11.18)

This is the Seemingly Unrelated Regression (SUR) estimator as introduced by Zellner (1962).
The estimator Σ̂ can be updated by calculating the SUR residuals êi = Yi −X

′
i β̂sur and the covariance

matrix estimator Σ̂= 1
n

∑n
i=1 êi ê ′i . Substituted into (11.18) we obtain an iterated SUR estimator. This can

be iterated until convergence.
Under conditional homoskedasticity (11.8) we can derive its asymptotic distribution.

Theorem 11.4 Under Assumption 7.2 and (11.8)

p
n

(
β̂sur −β

)−→
d

N
(
0,V ∗

β

)
where V ∗

β
=

(
E
[

X
′
Σ−1X

])−1
.

For a proof, see Exercise 11.11.
Under these assumptions SUR is more efficient than least squares.

Theorem 11.5 Under Assumption 7.2 and (11.8)

V ∗
β =

(
E
[

X
′
Σ−1X

])−1 ≤
(
E
[

X
′
X

])−1
E
[

X
′
ΣX

](
E
[

X
′
X

])−1 =V β

and thus β̂sur is asymptotically more efficient than β̂ols.
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For a proof, see Exercise 11.12.
An appropriate estimator of the variance of β̂sur is

V̂ β̂ =
(

n∑
i=1

X
′
i Σ̂

−1X i

)−1

.

Theorem 11.6 Under Assumption 7.2 and (11.8) nV̂ β̂ −→p V β.

For a proof, see Exercise 11.13.
In Stata, the seemingly unrelated regressions estimator is implemented using the sureg command.

Arnold Zellner

Arnold Zellner (1927-2010) of the United States was a founding father of the
econometrics field. He was a pioneer in Bayesian econometrics. One of his core
contributions was the method of Seemingly Unrelated Regressions.

11.8 Equivalence of SUR and Least Squares

When the regressors are common across equations X j = X it turns out that the SUR estimator sim-
plifies to least squares.

To see this, recall that when regressors are common this implies that X = I m ⊗X ′. Then

X
′
i Σ̂

−1 = (I m ⊗Xi ) Σ̂−1

= Σ̂−1 ⊗Xi

= (
Σ̂−1 ⊗ I k

)
(I m ⊗Xi )

= (
Σ̂−1 ⊗ I k

)
X

′
i .

Thus

β̂sur =
(

n∑
i=1

X
′
i Σ̂

−1X i

)−1 (
n∑

i=1
X

′
i Σ̂

−1Yi

)

=
((
Σ̂−1 ⊗ I k

) n∑
i=1

X
′
i X i

)−1 ((
Σ̂−1 ⊗ I k

) n∑
i=1

X
′
i Yi

)

=
(

n∑
i=1

X
′
i X i

)−1 (
n∑

i=1
X

′
i Yi

)
= β̂ols.

A model where regressors are not common across equations is nested within a model with the union
of all regressors included in all equations. Thus the model with regressors common across equations
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is a fully unrestricted model, and a model where the regressors differ across equations is a restricted
model. Thus the above result shows that the SUR estimator reduces to least squares in the absence of
restrictions, but SUR can differ from least squares otherwise.

Another context where SUR=OLS is when the variance matrix is diagonal, Σ = diag
{
σ2

1, ...,σ2
m

}
. In

this case Σ−1/2X i = X i diag
{

I k1σ
−1/2
1 , ..., I kmσ

−1/2
m

}
from which you can calculate that β̂sur = β̂ols. The

intuition is that there is no difference in systems estimation when the equations are uncorrelated, which
occurs when Σ is diagonal.

11.9 Maximum Likelihood Estimator

Take the linear model under the assumption that the error is independent of the regressors and mul-
tivariate normally distributed. Thus Y = Xβ+ e with e ∼ N(0,Σ). In this case we can consider the maxi-
mum likelihood estimator (MLE) of the coefficients.

It is convenient to reparameterize the covariance matrix in terms of its inverse S = Σ−1. With this
reparameterization the conditional density of Y given X = x equals

f
(
y | x

)= det(S)1/2

(2π)m/2
exp

(
−1

2

(
y −xβ

)′ S
(
y −xβ

))
.

The log-likelihood function for the sample is

`n(β,S) =−nm

2
log(2π)+ n

2
log(det(S))− 1

2

n∑
i=1

(
Yi −X iβ

)′
S

(
Yi −X iβ

)
.

The maximum likelihood estimator
(
β̂mle, Ŝmle

)
maximizes the log-likelihood function. The first or-

der conditions are

0 = ∂

∂β
`n(β,S)

∣∣∣∣
β=β̂,S=Ŝ

=
n∑

i=1
X i Ŝ

(
Yi −X i β̂

)
and

0 = ∂

∂S
`n(β,Σ)

∣∣∣∣
β=β̂,S=Ŝ

= n

2
Ŝ
−1 − 1

2
tr

(
n∑

i=1

(
Yi −X i β̂

)(
Yi −X i β̂

)′)
.

The second equation uses the matrix results ∂
∂S log(det(S)) = S−1 and ∂

∂B tr(AB ) = A′ from Appendix
A.20.

Solving and making the substitution Σ̂= Ŝ
−1

we obtain

β̂mle =
(

n∑
i=1

X
′
i Σ̂

−1X i

)−1 (
n∑

i=1
X

′
i Σ̂

−1Yi

)

Σ̂mle =
1

n

n∑
i=1

(
Yi −X i β̂

)(
Yi −X i β̂

)′
.

Notice that each equation refers to the other. Hence these are not closed-form expressions but can be
solved via iteration. The solution is identical to the iterated SUR estimator. Thus the iterated SUR esti-
mator is identical to MLE under normality.

Recall that the SUR estimator simplifies to OLS when the regressors are common across equations.
The same occurs for the MLE. Thus when X i = I m ⊗X ′

i we find that β̂mle = β̂ols and Σ̂mle = Σ̂ols.
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11.10 Restricted Estimation

In many multivariate regression applications it is desired to impose restrictions on the coefficients.
In particular, cross-equation restrictions (for example, imposing Slutsky symmetry on a demand system)
can be quite important and can only be imposed by a multivariate estimation method. Estimation sub-
ject to restrictions can be done by minimum distance, maximum likelihood, or the generalized method
of moments.

Minimum distance is a straightforward application of the methods of Chapter 8 to the estimators
presented in this chapter, since such methods apply to any asymptotically normal estimator.

Imposing restrictions on maximum likelihood is also straightforward. The likelihood is maximized
subject to the imposed restrictions. One important example is explored in detail in the following section.

Generalized method of moments estimation of multivariate regression subject to restrictions will be
explored in Section 13.18. This is a particularly simple and straightforward way to estimate restricted
multivariate regression models and is our generally preferred approach.

11.11 Reduced Rank Regression

One context where systems estimation is important is when it is desired to impose or test restrictions
across equations. Restricted systems are commonly estimated by maximum likelihood under normal-
ity. In this section we explore one important special case of restricted multivariate regression known
as reduced rank regression. The model was originally proposed by Anderson (1951) and extended by
Johansen (1995).

The unrestricted model is

Y = B ′X +C ′Z +e (11.19)

E
[
ee ′ | X , Z

]=Σ
where B is k ×m, C is `×m, Y ∈Rm , X ∈Rk , and Z ∈R`. We separate the regressors as X and Z because
the coefficient matrix B will be restricted while C will be unrestricted.

The matrix B is full rank if
rank(B ) = min(k,m).

The reduced rank restriction is rank(B ) = r < min(k,m)for some known r .
The reduced rank restriction implies that we can write the coefficient matrix B in the factored form

B =G A′ where A is m × r and G is k × r . This representation is not unique as we can replace G with GQ
and A with AQ−1′ for any invertible Q and the same relation holds. Identification therefore requires a
normalization of the coefficients. A conventional normalization is G ′DG = I r for given D .

Equivalently, the reduced rank restriction can be imposed by requiring that B satisfy the restriction
B A⊥ = G A′A⊥ = 0 for some m × (m − r ) coefficient matrix A⊥. Since G is full rank this requires that
A′A⊥ = 0, hence A⊥ is the orthogonal complement of A. Note that A⊥ is not unique as it can be replaced
by A⊥Q for any (m − r )× (m − r ) invertible Q . Thus if A⊥ is to be estimated it requires a normalization.

We discuss methods for estimation of G , A, Σ, C , and A⊥. The standard approach is maximum likeli-
hood under the assumption that e ∼ N(0,Σ). The log-likelihood function for the sample is

`n(G , A,C ,Σ) =−nm

2
log(2π)− n

2
log(det(Σ))

− 1

2

n∑
i=1

(
Yi − AG ′Xi −C ′Zi

)′
Σ−1 (

Yi − AG ′Xi −C ′Zi
)

.
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Anderson (1951) derived the MLE by imposing the constraint B A⊥ = 0 via the method of Lagrange
multipliers. This turns out to be algebraically cumbersome.

Johansen (1995) instead proposed the following straightforward concentration method. Treating G
as if it is known, maximize the log-likelihood with respect to the other parameters. Resubstituting these
estimators we obtain the concentrated log-likelihood function with respect to G . This can be maximized
to find the MLE for G . The other parameter estimators are then obtain by substitution. We now describe
these steps in detail.

Given G the likelihood is a normal multivariate regression in the variables G ′X and Z , so the MLE for
A, C and Σ are least squares. In particular, using the Frisch-Waugh-Lovell residual regression formula we
can write the estimators for A and Σ as

Â(G) =
(
Ỹ

′
X̃ G

)(
G ′X̃ ′

X̃ G
)−1

and

Σ̂(G) = 1

n

(
Ỹ

′
Ỹ − Ỹ

′
X̃ G

(
G ′X̃ ′

X̃ G
)−1

G ′X̃ ′
Ỹ

)
where Ỹ = Y −Z

(
Z ′Z

)−1 Z ′Y and X̃ = X −Z
(

Z ′Z
)−1 Z ′ 6 X .

Substituting these estimators into the log-likelihood function we obtain the concentrated likelihood
function, which is a function of G only.

˜̀n(G) = `n
(
G , Â(G),Ĉ (G), Σ̂(G)

)
= m

2

(
n log(2π)−1

)− n

2
log

[
det

(
Ỹ

′
Ỹ − Ỹ

′
X̃ G

(
G ′X̃ ′

X̃ G
)−1

G ′X̃ ′
Ỹ

)]

= m

2

(
n log(2π)−1

)− n

2
log

(
det

(
Ỹ

′
Ỹ

))
− n

2
log

det

(
G ′

(
X̃

′
X̃ − X̃

′
Ỹ

(
Ỹ

′
Ỹ

)−1
Y ′X̃

)
G

)
det

(
G ′X̃ ′

X̃ G
)

 .

The third equality uses Theorem A.1.8. The MLE Ĝ for G is the maximizer of ˜̀n(G), or equivalently equals

Ĝ = argmin
G

det

(
G ′

(
X̃

′
X̃ − X̃

′
Ỹ

(
Ỹ

′
Ỹ

)−1
Y ′X̃

)
G

)
det

(
G ′X̃ ′

X̃ G
) (11.20)

= argmax
G

det

(
G ′X̃ ′

Ỹ
(
Ỹ

′
Ỹ

)−1
Y ′X̃ G

)
det

(
G ′X̃ ′

X̃ G
)

= {v1, ..., vr }

which are the generalized eigenvectors of X̃
′
Ỹ

(
Ỹ

′
Ỹ

)−1
Y ′X̃ with respect to X̃

′
X̃ corresponding to the

r largest generalized eigenvalues. (Generalized eigenvalues and eigenvectors are discussed in Section
A.14.) The estimator satisfies the normalization Ĝ

′
X̃

′
X̃ Ĝ = I r . Letting v∗

j denote the eigenvectors of

(11.20) we can also express Ĝ = {
v∗

m , ..., v∗
m−r+1

}
.

This is computationally straightforward. In MATLAB, for example, the generalized eigenvalues and
eigenvectors of a matrix A with respect to B are found using the command eig(A,B).

Given Ĝ , the MLE Â, Ĉ , Σ̂ are found by least squares regression of Y on Ĝ
′
X and Z . In particular,

Â = Ĝ
′
X̃

′
Ỹ since Ĝ

′
X̃

′
X̃ Ĝ = I r .



CHAPTER 11. MULTIVARIATE REGRESSION 319

We now discuss the estimator Â⊥ of A⊥. It turns out that

Â⊥ = argmax
A

det

(
A′

(
Ỹ

′
Ỹ − Ỹ

′
X̃

(
X̃

′
X̃

)−1
X̃

′
Ỹ

)
A

)
det

(
A′Ỹ ′

Ỹ A
) (11.21)

= {w1, ..., wm−r }

the eigenvectors of Ỹ
′
Ỹ − Ỹ

′
X̃

(
X̃

′
X̃

)−1
X̃

′
Ỹ with respect to Ỹ

′
Ỹ associated with the largest m − r eigen-

values.
By the dual eigenvalue relation (Theorem A.5), equations (11.20) and (11.21) have the same non-zero

eigenvalues λ j and the associated eigenvectors v∗
j and w j satisfy the relationship

w j =λ−1/2
j

(
Ỹ

′
Ỹ

)−1
Ỹ

′
X̃ v∗

j .

LettingΛ= diag{λm , ...,λm−r+1} this implies

{wm , ..., wm−r+1} =
(
Ỹ

′
Ỹ

)−1
Ỹ

′
X̃

{
v∗

m , ..., v∗
m−r+1

}
Λ=

(
Ỹ

′
Ỹ

)−1
ÂΛ.

The second equality holds since Ĝ = {
v∗

m , ..., v∗
m−r+1

}
and Â = Ỹ

′
X̃ Ĝ . Since the eigenvectors w j satisfy

the orthogonality property w ′
j Ỹ

′
Ỹ w` = 0 for j 6= `, it follows that

0 = Â
′
⊥Ỹ

′
Ỹ {wm , ..., wm−r+1} = Â

′
⊥ ÂΛ.

SinceΛ> 0 we conclude that Â
′
⊥ Â = 0 as desired.

The solution Â⊥ in (11.21) can be represented several ways. One which is computationally conve-
nient is to observe that

Ỹ
′
Ỹ − Ỹ

′
X̃

(
X̃

′
X̃

)−1
Ỹ

′
X̃ = Y ′M X ,Z Y = Ẽ

′
Ẽ

where M X ,Z = I n − (X , Z )
(
(X , Z )′ (X , Z )

)−1
(X , Z )′ and Ẽ = M X ,Z Y is the residual matrix from the unre-

stricted multivariate least squares regression of Y on X and Z . The first equality follows by the Frisch-
Waugh-Lovell theorem. This shows that Â⊥ are the generalized eigenvectors of Ẽ

′
Ẽ with respect to Ỹ

′
Ỹ

corresponding to the m − r largest eigenvalues. In MATLAB, for example, these can be computed using
the eig(A,B) command.

Another representation is to write M Z = I n −Z
(

Z ′Z
)−1 Z ′ so that

Â⊥ = argmax
A

det
(

A′Y ′M X ,Z Y A
)

det
(

A′Y ′M Z Y A
) = argmin

A

det
(

A′Y ′M Z Y A
)

det
(

A′Y ′M X ,Z Y A
) .

We summarize our findings.
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Theorem 11.7 The MLE for the reduced rank model (11.19) under e ∼ N(0,Σ)
is given as follows. Let Ỹ and X̃ be the residual matrices from multivariate re-
gression of Y and X on Z , respectively. Then Ĝmle = {v1, ..., vr } , the generalized

eigenvectors of X̃
′
Ỹ

(
Ỹ

′
Ỹ

)−1
Y ′X̃ with respect to X̃

′
X̃ corresponding to the r

largest eigenvalues λ̂ j . Âmle, Ĉ mle and Σ̂mle are obtained by the least squares
regression

Yi = ÂmleĜ
′
mleXi +Ĉ

′
mleZi + êi

Σ̂mle =
1

n

n∑
i=1

êi ê ′i .

Let Ẽ be the residual matrix from a multivariate regression of Y on X and Z .
Then Â⊥ equals the generalized eigenvectors of Ẽ

′
Ẽ with respect to Ỹ

′
Ỹ corre-

sponding to the m − r smallest eigenvalues. The maximized likelihood equals

`n = m

2

(
n log(2π)−1

)− n

2
log

(
det

(
Ỹ

′
Ỹ

))
− n

2

r∑
j=1

log
(
1− λ̂ j

)
.

An R package for reduced rank regression is “RRR”. I am unaware of a Stata command.

11.12 Principal Component Analysis

In Section 4.23 we described the Duflo, Dupas and Kremer (2011) dataset which is a sample of Kenyan
first grade test scores. Following the authors we focused on the variable totalscore which is each student’s
composite test score. If you examine the data file you will find other pieces of information about the
students’ performance, including each student’s score on separate sections of the test, with the labels
wordscore (word recognition), sentscore (sentence recognition), letterscore (letter recognition), spellscore
(spelling), additions_score (addition), substractions_score (subtraction), multiplications_score (multipli-
cation). The “total” score sums the scores from the individual sections. Perhaps there is more informa-
tion in the section scores. How can we learn about this from the data?

Principal component analysis (PCA) addresses this issue by ordering linear combinations by their
contribution to variance.
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Definition 11.1 Let X be a k ×1 random vector.
The first principal component is U1 = h′

1X where h1 satisfies

h1 = argmax
h′h=1

var
[
h′X

]
.

The second principal component is U2 = h′
2X where

h2 = argmax
h′h=1,h′h1=0

var
[
h′X

]
.

In general, the j th principal component is U j = h′
j X where

h j = argmax
h′h=1,h′h1=0,...,h′h j−1=0

var
[
h′X

]
.

The principal components of X are linear combinations h′X ranked by contribution to variance. By
the properties of quadratic forms (Section A.15) the weight vectors h j are the eigenvectors of Σ= var[X ].

Theorem 11.8 The principal components of X are U j = h′
j X , where h j is the

eigenvector of Σ associated with the j th ordered eigenvalue λ j of Σ.

Another way to see the PCA construction is as follows. Since Σ is symmetric the spectral decompo-
sition (Theorem A.3) states that Σ = HD H ′ where H = [h1, ...,hk ] and D = diag(d1, ...,dk ) are the eigen-
vectors and eigenvalues of Σ. Since Σ is positive semi-definite the eigenvalues are real, non-negative,
and ordered d1 ≥ d2 ≥ ·· · ≥ dk . Let U = (U1, ...,Uk ) be the principal components of X . By Theorem 11.8,
U = H ′X . The covariance matrix of U is

var[U ] = var
[

H ′X
]= H ′ΣH = D

which is diagonal. This shows that var
[
U j

] = d j and the principal components are mutually uncorre-
lated. The relative variance contribution of the j th principal component is d j /tr(Σ).

Principal components are sensitive to the scaling of X . Consequently, it is recommended to first scale
each element of X to have mean zero and unit variance. In this case Σ is a correlation matrix.

The sample principal components are obtained by replacing the unknowns by sample estimators. Let
Σ̂ be the sample covariance or correlation matrix and ĥ1, ĥ2, ..., ĥk its ordered eigenvectors. The sample
principal components are ĥ′

j Xi .
To illustrate we use the Duflo, Dupas and Kremer (2011) dataset. In Table 11.1 we display the seven

eigenvalues of the sample correlation matrix for the seven test scores described above. The seven eigen-
values sum to seven since we have applied PCA to the correlation matrix. The first eigenvalue is 4.0,
implying that the first principal component explains 57% of the variance of the seven test scores. The
second eigenvalue is 1.0, implying that the second principal component explains 15% of the variance.
Together the first two components explain 72% of the variance of the seven test scores.

In Table 11.2 we display the weight vectors (eigenvectors) for the first two principal components.
The weights for the first component are all positive and similar in magnitude. This means that the first
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Table 11.1: Eigenvalue Decomposition of Sample Correlation Matrix

Eigenvalue Proportion
1 4.02 0.57
2 1.04 0.15
3 0.57 0.08
4 0.52 0.08
5 0.37 0.05
6 0.29 0.04
7 0.19 0.03

Table 11.2: Principal Component Weight Vectors

First Second
words 0.41 −0.32
sentences 0.32 −0.49
letters 0.40 −0.13
spelling 0.43 −0.28
addition 0.38 0.41
subtraction 0.35 0.52
multiplication 0.33 0.36

principal component is similar to a simple average of the seven test scores. This is quite fascinating.
This is consistent with our intuition that a simple average (e.g. the variable totalscore) captures most
of the information contained in the seven test scores. The weights for the second component have a
different pattern. The four literacy scores receive negative weight and the three math scores receive
positive weight with similar magnitudes. This means that the second principal component is similar to
the difference between a student’s math and verbal test scores. Taken together, the information in the
first two principal components is equivalent to “average verbal” and “average math” test scores. What
this shows is that 57% of the variation in the seven section test scores can be explained by a simple
average (e.g. totalscore), and 72% can be explained by averages for the verbal and math halves of the test.

In Stata, principal components analysis can be implemented with the pca command. In R use
prcomp or princomp. All three can be applied to either covariance matrices (unscaled data) or corre-
lation matrices (normalized data) but they have different default settings. The Stata pca command by
default normalizes the observations. The R commands by default do not normalize the observations.

11.13 Factor Models

Closely related to principal components are factor models. These are statistical models which de-
compose random vectors into common factors and idiosyncratic errors. Factor models are popular
throughout the social sciences. Consequently a variety of estimation methods have been developed.
In the next few sections we focus on methods which are popular among economists.

Let X = (X1, ..., Xk )′ be a k × 1 random vector (for example the seven test scores described in the
previous section). Assume that the elements of X are scaled to have mean zero and unit variance.

A single factor model for X is
X =λF +u (11.22)
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where λ ∈ Rk are factor loadings, F ∈ R is a common factor, and u ∈ Rk is a random error. The factor F
is individual-specific while the coefficient λ is common across individuals. The model (11.22) specifies
that correlation between the elements of X is due to the common factor F . In the student test score
example it is intuitive to think of F as a student’s scholastic “aptitude”; in this case the vector λ describes
how scholastic aptitude affects the seven subject scores.

A multiple factor model has r < k factors. We write the model as

X =ΛF +u (11.23)

whereΛ is a k × r matrix of factor loadings and F = (F1, ...,Fr )′ is an r ×1 vector of factors. In the student
test score example possible factors could be “math aptitude”, “language skills”, “social skills”, “artistic
ability”, “creativity”, etc. The factor loading matrixΛ indicates the effect of each factor on each test score.
The number of factors r is taken as known. We discuss selection of r later.

The error vector u is assumed to be mean zero, uncorrelated with F , and (under correct specifica-
tion) to have mutually uncorrelated elements. We write its covariance matrix as Ψ= E[

uu′]. The factor
vector F can either be treated as a random vector or as a regressor vector. In this section we treat F as a
random vector; in the next we treat F as regressors. The random factors F are assumed mean zero and
are normalized so that E

[
F F ′]= I r .

The assumptions imply that the correlation matrix Σ= E[
X X ′] equals

Σ=ΛΛ′+Ψ. (11.24)

The factor analysis literature often describesΛΛ′ as the communality and the idiosyncratic error matrix
Ψ as the uniqueness. The former is the portion of the variance which is explained by the factor model
and the latter is the unexplained portion of the variance.

The model is often1 estimated by maximum likelihood. Under joint normality of (F,u) the distribu-
tion of X is N

(
0,ΛΛ′+Ψ)

. The parameters areΛ andΨ= diag
(
ψ1, ...,ψk

)
. The log-likelihood function of

a random sample (X1, ..., Xn) is

`n (Λ,Ψ) =−nk

2
log(2π)− n

2
logdet

(
ΛΛ′+Ψ)− n

2
tr

((
ΛΛ′+Ψ)−1

Σ̂
)

. (11.25)

The MLE
(
Λ̂,Ψ̂

)
maximizes `n (Λ,Ψ). There is not an algebraic solution so the estimator is found

using numerical methods. Fortunately, computational algorithms are available in standard packages. A
detailed description and analysis can be found in Anderson (2003, Chapter 14).

The form of the log-likelihood is intriguing. Notice that the log-likelihood is only a function of the
observations through its correlation matrix Σ̂, and only a function of the parameters through the pop-
ulation correlation matrix ΛΛ′+Ψ. The final term in (11.25) is a measure of the match between Σ̂ and
ΛΛ′+Ψ. Together, we see that the Gaussian log-likelihood is essentially a measure of the fit of the model
and sample correlation matrices. It is therefore not reliant on the normality assumption.

It is often of interest to estimate the factors Fi . Given Λ the equation Xi =ΛFi +ui can be viewed as
a regression with coefficient Fi . Its least squares estimator is F̂i =

(
Λ′Λ

)−1
Λ′Xi . The GLS estimator (tak-

ing into account the covariance matrix of ui ) is F̂i =
(
Λ′Ψ−1Λ

)−1
Λ′Ψ−1Xi . This motivates the Bartlett

scoring estimator

F̃i =
(
Λ̂′Ψ̂−1Λ̂

)−1
Λ̂′Ψ̂−1Xi .

The idealized version satisfies

F̂i =
(
Λ′Ψ−1Λ

)−1
Λ′Ψ−1 (ΛFi +ui ) = Fi +

(
Λ′Ψ−1Λ

)−1
Λ′Ψ−1ui

1There are other estimators used in applied factor analysis. However there is little reason to consider estimators beyond the
MLE of this section and the principal components estimator of the next section.
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which is unbiased for Fi and has variance
(
Λ′Ψ−1Λ

)−1
. Thus the Barlett scoring estimator is typically

described as “unbiased” though this is actually a property of its idealized version F̂i .
A second estimator for the factors can be constructed from the multivariate linear projection of F on

X . This is F = AX +ξ where the coefficient matrix A is r ×k. The coefficient matrix equals

A = E[
F X ′]E[

X X ′]−1 =Λ′Σ−1,

the second equation using E
[
F X ′]= E[

F (ΛF +u)′
]= E[

F F ′]Λ′+E[
Fu′]=Λ′. The predicted value of Fi

is F∗
i = AXi =Λ′Σ−1Xi . This motivates the regression scoring estimator

F i = Λ̂′Σ̂−1Xi .

The idealized version F∗
i has conditional expectation Λ′Σ−1ΛFi and is thus biased for Fi . Hence the

regression scoring estimator F i is often described as “biased”. Some algebraic manipulations reveal that
F∗

i has MSE I r −Λ′ (Λ′Λ+Ψ)−1
Λ which is smaller (in a positive definite sense) than the MSE of the

idealized Bartlett estimator F̂i .
Which estimator is preferred, Bartlett or regression scoring? The differences diminish when k is large

so the choice is most relevant for small to moderate k. The regression scoring estimator has lower ap-
proximate MSE, meaning that it is a more precise estimator. Thus based on estimation precision this is
our recommended choice.

The factor loadings Λ and factors F are not separately identified. To see this, notice that if you re-
place (Λ,F ) with Λ∗ =ΛG and F∗ = G ′F where G is r × r and orthonormal then the regression model is
identical. Such replacements are called “rotations” in the factor analysis literature. Any orthogonal rota-
tion of the factor loadings is an equally valid representation. The default MLE outputs are one specific
rotation; others can be obtained by a variety of algorithms (which we do not review here). Consequently
it is unwise to attribute meaning to the individual factor loading estimates.

Another important and tricky issue is selection of the number of factors r . There is no clear guide-
line. One approach is to examine the principal component decomposition, look for a division between
the “large” and “small eigenvalues, and set r to equal to the number of “large” eigenvalues. Another
approach is based on testing. As a by-product of the MLE (and standard package implementations) we
obtain the LR test for the null hypothesis of r factors against the alternative hypothesis of k factors. If the
LR test rejects (has a small p-value) this is evidence that the given r may be too small.

In Stata, the MLE
(
Λ̂,Ψ̂

)
can be calculated with the factor, ml factors(r) command. The factor

estimates F̃i and F i can be calculated by the predict command with either the barlett or regression
option, respectively. In R, the command factanal(X,factors=r,rotation="none") calculates the
MLE

(
Λ̂,Ψ̂

)
and also calculates the factor estimates F̃i and/or F i using the scores option.

11.14 Approximate Factor Models

The MLE of the previous section is a good choice for factor estimation when the number of variables
k is small and the factor model is believed to be correctly specified. In many economic applications of
factor analysis, however, the number of variables is k is large. In such contexts the MLE can be com-
putationally costly and/or unstable. Furthermore it is typically not credible to believe that the model is
correctly specified; rather it is more reasonable to view the factor model as a useful approximation. In
this section we explore an approach known as the approximate factor model with estimation by princi-
pal components. The estimation method is justified by an asymptotic framework where the number of
variables k →∞.
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The approximate factor model was introduced by Chamberlain and Rothschild (1983). It is the same
as (11.23) but relaxes the assumption on the idiosyncratic error u so that the covariance matrix Ψ =
E
[
uu′] is left unrestricted. In this context the Gaussian MLE of the previous section is misspecified.

Chamberlain and Rothschild (and the literature which followed) proposed estimation by least squares.
The idea is to treat the factors as unknown regressors and simultaneously estimate the factors Fi and fac-
tor loadingsΛ. We first describe the estimation method.

Let (X1, ..., Xn) be a sample centered at sample means. The least squares criterion is

1

n

n∑
i=1

(Xi −ΛFi )′ (Xi −ΛFi ) .

Let
(
Λ̂, F̂1, ..., F̂n

)
be the joint minimizers. As Λ and Fi are not separately identified a normalization is

needed. For compatibility with the notation of the previous section we use n−1 ∑n
i=1 F̂i F̂ ′

i = I r .
We use a concentration argument to find the solution. As described in the previous section, each

observation satisfies the multivariate equation Xi =ΛFi +ui . For fixedΛ this is a set of k equations with
r unknowns Fi . The least squares solution is F̂i (Λ) = (

Λ′Λ
)−1

Λ′Xi . Substituting this expression into the
least squares criterion the concentrated least squares criterion forΛ is

1

n

n∑
i=1

(
Xi −ΛF̂i (Λ)

)′ (
Xi −ΛF̂i (Λ)

)= 1

n

n∑
i=1

(
Xi −Λ

(
Λ′Λ

)−1
Λ′Xi

)′ (
Xi −Λ

(
Λ′Λ

)−1
Λ′Xi

)
= 1

n

n∑
i=1

(
X ′

i Xi −X ′
iΛ

(
Λ′Λ

)−1
Λ′Xi

)
= tr

[
Σ̂

]− tr
[(
Λ′Λ

)−1
Λ′Σ̂Λ

]
where Σ̂= n−1 ∑n

i=1 Xi X ′
i is the sample covariance matrix. The least squares estimator Λ̂ minimizes this

criterion. Let D̂ and Ĥ be first r eigenvalues and eigenvectors of Σ̂. Using the normalization Λ′Λ = I r ,
from the extrema results of Section A.15 the minimizer of the least squares criterion is Λ̂ = Ĥ . More

broadly any rotation of Ĥ is valid. Consider Λ̂ = ĤD̂
1/2

. Recall the expression for the factors F̂i (Λ) =(
Λ′Λ

)−1
Λ′Xi . We find that the estimated factors are

F̂i =
(
D̂

1/2
Ĥ

′
ĤD̂

1/2
)−1

D̂
1/2

Ĥ
′
Xi = D̂

−1/2
Ĥ

′
Xi .

We calculate that

n−1
n∑

i=1
F̂i F̂ ′

i = D̂
−1/2

Ĥ
′
Σ̂ĤD̂

−1/2′ = D̂
−1/2

D̂D̂
−1/2′ = I r

which is the desired normalization. This shows that the rotation Λ̂ = ĤD̂
1/2

produces factor estimates
satisfying this normalization.

We have proven the following result.

Theorem 11.9 The least squares estimator of the factor model (11.23) under
the normalization n−1 ∑n

i=1 F̂i F̂ ′
i = I r has the following solution:

1. Let D̂ = diag
[
d̂1, ..., d̂r

]
and Ĥ = [

ĥ1, ..., ĥr
]

be the first r eigenvalues and
eigenvectors of the sample covariance matrix Σ̂.

2. Λ̂= ĤD̂
1/2

.

3. F̂i = D̂
−1/2

Ĥ
′
Xi .
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Theorem 11.9 shows that the least squares estimator is based on an eigenvalue decomposition of the
covariance matrix. This is computationally stable even in high dimensions.

The factor estimates are the principal components scaled by the eigenvalues of Σ̂. Specifically, the
j th factor estimate is F̂ j i = d̂−1/2

j ĥ′
j X . Consequently many authors call this estimator the “principal-

component method”.
Unfortunately, Λ̂ is inconsistent for Λ if k is fixed, as we now show. By the WLLN and CMT, Σ̂ −→

p
Σ

and Ĥ −→
p

H , the first r eigenvectors of Σ. WhenΨ is diagonal, the eigenvectors of Σ=ΛΛ′+Ψ do not lie

in the range space ofΛ except in the special caseΨ=σ2I k . Consequently the estimator Λ̂ is inconsistent.
This inconsistency should not be viewed as surprising. The sample has a total of nk observations

and the model has a total of nr +kr −r (r +1)/2 parameters. Since the number of estimated pararameters
is proportional to sample size we should not expect estimator consistency.

As first recognized by Chamberlain and Rothschild, this deficiency diminishes as k increases. Specif-
ically, assume that k → ∞ as n → ∞. One implication is that the number of observations nk increase
at a rate faster than n, while the number of parameters increase at a rate proportional to n. Another
implication is that as k increases there is increasing information about the factors.

To make this precise we add the following assumption. Let λmin (A) and λmax (A) denote the smallest
and largest eigenvalues of a positive semi-definite matrix A.

Assumption 11.1 As k →∞

1. λmax (Ψ) ≤ B <∞.

2. λmin
(
Λ′Λ

)→∞ as k →∞.

Assumption 11.1.1 bounds the covariance matrix of the idiosyncratic errors. WhenΨ= diag
(
σ2

1, ...,σ2
k

)
this is the same as bounding the individual variances. Effectively Assumption 11.1.1 means that while
the elements of u can be correlated they cannot have a correlation structure similar to that of a factor
model. Assumption 11.1.2 requires the factor loading matrix to increase in magnitude as the number of
variables increases. This is a fairly mild requirement. When the factor loadings are of similar magnitude
across variables, λmin

(
Λ′Λ

) ∼ k →∞. Conceptually, Assumption 11.1.2 requires additional variables to
add information about the unobserved factors.

Assumption 11.1 implies that in the covariance matrix factorization Σ=ΛΛ′+Ψ the componentΛΛ′

dominates as k increases. This means that for large k the first r eigenvectors of Σ are equivalent to those
of ΛΛ′, which are in the range space of Λ. This observation led Chamberlain and Rothschild (1983) to
deduce that the principal components estimator is an asymptotic (large k) analog estimator for the factor
loadings and factors. Bai (2003) demonstrated that the estimator is consistent as n,k →∞ jointly. The
conditions and proofs are technical so are not reviewed here.

Now consider the estimated factors

F̂i = D−1/2H ′Xi = D−1Λ′Xi

where for simplicity we ignore estimation error. Since Xi =ΛFi +ui andΛ′Λ= D we can write this as

F̂i = Fi +D−1Λ′ui .
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This shows that F̂i is an unbiased estimator for Fi and has variance var
[
F̂i

] = D−1Λ′ΨΛD−1. Under
Assumption 11.1,

∥∥var
[
F̂i

]∥∥≤ B/λmin
(
Λ′Λ

)→ 0. Thus F̂i is consistent for Fi as k →∞. Bai (2003) shows
that this extends to the feasible estimator as n,k →∞.

In Stata, the least squares estimator Λ̂ and factors F̂i can be calculated with the factor, pcf factors(r)

command followed by predict. In R a feasible estimation approach is to calculate the factors by eigen-
value decomposition.

11.15 Factor Models with Additional Regressors

Consider the model
X =ΛF +B Z +e

where X and e are k ×1,Λ is k × r , F is r ×1, B is k ×`, and Z is `×1.
The coefficients Λ and B can be estimated by a combination of factor regression (either MLE or

principal components) and least squares. The key is the following two observations:

1. Given B , the coefficientΛ can be estimated by factor regression applied to X −B Z .

2. Given the factors F the coefficientsΛ and B can be estimated by multivariate least squares of X on
F and Z .

Estimation iterates between these two steps. Start with a preliminary estimator of B obtained by
multivariate least squares of X on Z . Then apply the above two steps and iterate under convergence.

11.16 Factor-Augmented Regression

In the previous sections we considered factor models which decompose a set of variables into com-
mon factors and idiosyncratic errors. In this section we consider factor-augmented regression, which
uses such common factors as regressors for dimension reduction.

Suppose we have the variables (Y , Z , X ) where Y ∈R, Z ∈R`, and X ∈Rk . In practice, k may be large
and the elements of X may be highly correlated. The factor-augmented regression model is

Y = F ′β+Z ′γ+e

X =ΛF +u

E [Fe] = 0

E [Z e] = 0

E
[
Fu′]= 0

E [ue] = 0,

The random variables are e ∈R, F ∈Rr and u ∈Rk . The regression coefficients are β ∈Rk and γ ∈R`. The
matrixΛ are the factor loadings.

This model specifies that the influence of X on Y is through the common factors F . The idea is
that the variation in the regressors is mostly captured by the variation in the factors, so the influence
of the regressors can be captured through these factors. This can be viewed as a dimension-reduction
technique as we have reduced the k-dimensional X to the r -dimensional F . Interest typically focuses
on the regressors Z and its coefficients γ. The factors F are included in the regression as “controls” and
its coefficient β is less typically of interest. Since it is difficult to interpret the factors F only their range
space is identified it is generally prudent to avoid intrepreting the coefficients β.
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The model is typically estimated in multiple steps. First, the factor loadings Λ and factors Fi are
estimated by factor regression. In the case of principal-components estimation the factor estimates are

the scaled2 principal components F̂i = D̂
−1
Λ̂′Xi . Second, Y is regressed on the estimated factors and

the other regressors to obtain the estimator of β and γ. This second-step estimator equals (for simplicity
assume there is no Z )

β̂=
(

n∑
i=1

F̂i F̂ ′
i

)−1 (
n∑

i=1
F̂i Yi

)

=
(

D̂
−1
Λ̂′ 1

n

n∑
i=1

Xi X ′
i Λ̂D̂

−1

)−1 (
D̂

−1
Λ̂′ 1

n

n∑
i=1

Xi Yi

)
.

Now let’s investigate its asymptotic behavior. As n →∞, Λ̂−→
p
Λ and D̂ −→

p
D so

β̂−→
p
β∗ = (

D−1Λ′E
[

X X ′]ΛD−1)−1 (
D−1Λ′E [X Y ]

)
. (11.26)

Recall E
[

X X ′]=ΛΛ′+Ψ andΛ′Λ= D . We calculate that

E [X Y ] = E[
(ΛF +u)

(
F ′β+e

)]=Λβ.

We find that the right-hand-side of (11.26) equals

β∗ = (
D−1Λ′ (ΛΛ′+Ψ)

ΛD−1)−1 (
D−1Λ′Λβ

)= (
I r +D−1Λ′ΨΛD−1)−1

β

which does not equal β. Thus β̂ has a probability limit but is inconsistent for β as n →∞.
This deficiency diminishes as k →∞. Indeed,∥∥D−1Λ′ΨΛD−1

∥∥≤ B
∥∥D−1

∥∥→ 0

as k →∞. This implies β∗ →β. Hence, if we take the sequential asymptotic limit n →∞ followed by k →
∞, we find β̂ −→

p
β. This implies that the estimator is consistent. Bai (2003) demonstrated consistency

under the more rigorous but technically challenging setting where n,k →∞ jointly. The implication of
this result is that factor augmented regression is consistent if both the sample size and dimension of X
are large.

For asymptotic normality of β̂ it turns out that we need to strengthen Assumption 11.1.2. The relevant
condition is n−1/2λmin

(
Λ′Λ

) →∞. This is similar to the condition that k2/n →∞. This is technical but
can be interpreted as meaning that k is large relative to

p
n. Intuitively, this requires that the dimension

of X is larger than sample size n.
In Stata, estimation takes the following steps. First, the factor command is used to estimate the

factor model. Either MLE or principal components estimation can be used. Second, the predict com-
mand is used to estimate the factors, either by Barlett or regression scoring. Third, the factors are treated
as regressors in an estimated regression.

11.17 Multivariate Normal*

Some interesting sampling results hold for matrix-valued normal variates. Let Y be an n ×m matrix
whose rows are independent and distributed N

(
µ,Σ

)
. We say that Y is multivariate matrix normal, and

2The unscaled principal components can equivalently be used if the coefficients β̂ are not reported. The coefficient esti-
mates γ̂ are unaffected by the choice of factor scaling.
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write Y ∼ N
(
µ, I n ⊗Σ)

, where µ is n ×m with each row equal to µ′. The notation is due to the fact that

vec
((

Y −µ)′)∼ N(0, I n ⊗Σ).

Definition 11.2 If n×m Y ∼ N
(
µ, I n ⊗Σ)

then W = Y ′Y is distributed Wishart
with n degress of freedom and covariance matrix Σ, and is written as W ∼
Wm (n,Σ).

The Wishart is a multivariate generalization of the chi-square. If W ∼W1
(
n,σ2

)
then W ∼σ2χ2

n .
The Wishart arises as the exact distribution of a sample covariance matrix in the normal sampling

model. The bias-corrected estimator of Σ is

Σ̂= 1

n −1

n∑
i=1

(
Yi −Y

)(
Yi −Y

)′
.

Theorem 11.10 If Yi ∼ N
(
µ,Σ

)
are independent then Σ̂∼Wm

(
n −1, 1

n−1Σ
)
.

The following manipulation is useful.

Theorem 11.11 If W ∼Wm (n,Σ) then for m ×1 α,
(
α′W −1α

)−1 ∼ χ2
n−m+1.

α′Σ−1α

To prove this, note that without loss of generality we can take Σ = I m and α′α = 1. Let H be m ×m

orthonormal with first row equal to α. so that Hα =
(

1
0

)
. Since the distribution of Y and Y H are

identical we can without loss of generality set α =
(

1
0

)
. Partition Y = [Y 1,Y 2] where Y 1 is n ×1, Y 2 is

n × (m −1), and they are independent. Then

(
α′W −1α

)−1 =
((

1 0
)( Y ′

1Y 1 Y ′
1Y 2

Y ′
2Y 1 Y ′

2Y 2

)−1 (
1
0

))−1

= Y ′
1Y 1 −Y ′

1Y 2
(
Y ′

2Y 2
)−1 Y ′

2Y 1

= Y ′
1M 2Y 1 ∼χ2

n−(m−1)

where M 2 = I m−1 −Y 2
(
Y ′

2Y 2
)−1 Y ′

2. The final distributional equality holds conditional on Y 2 by the
same argument in the proof of Theorem 5.7. Since this does not depend on Y 2 it is the unconditional
distribution as well. This establishes the stated result.

To test hypotheses about µ a classical statistic is known as Hotelling’s T 2:

T 2 = n
(
Y −µ

)′
Σ̂−1

(
Y −µ

)
.



CHAPTER 11. MULTIVARIATE REGRESSION 330

Theorem 11.12 If Y ∼ N
(
µ,Σ

)
then

T 2 ∼ m

(n −m) (n −1)
F (m,n −m)

a scaled F distribution.

To prove this recall that Y is independent of Σ̂. Apply Theorem 11.11 with α= Y −µ. Conditional on
Y and using the fact that Σ̂∼Wm

(
n −1, 1

n−1Σ
)
,

n

T 2 =
((

Y −Σ
)′
Σ̂−1

(
Y −Σ

))−1

∼ χ2
n−1−m+1(

Y −µ
)′ ( 1

n−1Σ
)−1

(
Y −µ

)
∼ n(n −1)

χ2
n−m

χ2
m

.

Since the two chi-square variables are independent, this is the stated result.

A very interesting property of this result is that the T 2 statistic is a multivariate quadratric form in
normal random variables, yet it has the exact F distribution.
_____________________________________________________________________________________________

11.18 Exercises

Exercise 11.1 Show (11.10) when the errors are conditionally homoskedastic (11.8).

Exercise 11.2 Show (11.11) when the regressors are common across equations X j = X .

Exercise 11.3 Show (11.12) when the regressors are common across equations X j = X and the errors are
conditionally homoskedastic (11.8).

Exercise 11.4 Prove Theorem 11.1.

Exercise 11.5 Show (11.13) when the regressors are common across equations X j = X .

Exercise 11.6 Show (11.14) when the regressors are common across equations X j = X and the errors are
conditionally homoskedastic (11.8).

Exercise 11.7 Prove Theorem 11.2.

Exercise 11.8 Prove Theorem 11.3.

Exercise 11.9 Show that (11.16) follows from the steps described.

Exercise 11.10 Show that (11.17) follows from the steps described.

Exercise 11.11 Prove Theorem 11.4.
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Exercise 11.12 Prove Theorem 11.5.
Hint: First, show that it is sufficient to show that

E
[

X
′
X

](
E
[

X
′
Σ−1X

])−1
E
[

X
′
X

]
≤ E

[
X

′
ΣX

]
.

Second, rewrite this equation using the transformations U = Σ1/2X and V = Σ1/2X , and then apply the
matrix Cauchy-Schwarz inequality (B.33).

Exercise 11.13 Prove Theorem 11.6.

Exercise 11.14 Take the model

Y =π′β+e

π= E [X | Z ] = Γ′Z
E [e | Z ] = 0

where Y is scalar, X is a k vector and Z is an ` vector. β and π are k × 1 and Γ is `×k. The sample is
(Yi , Xi , Zi : i = 1, ...,n) with πi unobserved.

Consider the estimator β̂ for β by OLS of Y on π̂= Γ̂′Z where Γ̂ is the OLS coefficient from the multi-
variate regression of X on Z .

(a) Show that β̂ is consistent for β.

(b) Find the asymptotic distribution
p

n
(
β̂−β)

as n →∞ assuming that β= 0.

(c) Why is the assumption β= 0 an important simplifying condition in part (b)?

(d) Using the result in (c) construct an appropriate asymptotic test for the hypothesis H0 :β= 0.

Exercise 11.15 The observations are i.i.d., (Y1i ,Y2i , Xi : i = 1, ...,n). The dependent variables Y1 and Y2

are real-valued. The regressor X is a k-vector. The model is the two-equation system

Y1 = X ′β1 +e1

E [X e1] = 0

Y2 = X ′β2 +e2

E [X e2] = 0.

(a) What are the appropriate estimators β̂1 and β̂2 for β1 and β2?

(b) Find the joint asymptotic distribution of β̂1 and β̂2.

(c) Describe a test for H0 :β1 =β2.



Chapter 12

Instrumental Variables

12.1 Introduction

The concepts of endogeneity and instrumental variable are fundamental to econometrics, and mark
a substantial departure from other branches of statistics. The ideas of endogeneity arise naturally in eco-
nomics from models of simultaneous equations, most notably the classic supply/demand model of price
determination.

The identification problem in simultaneous equations dates back to Philip Wright (1915) and Work-
ing (1927). The method of instrumental variables first appears in an Appendix of a 1928 book by Philip
Wright, though the authorship is sometimes credited to his son Sewell Wright. The label “instrumental
variables” was introduced by Reiersøl (1945). An excellent review of the history of instrumental variables
is Stock and Trebbi (2003).

12.2 Overview

We say that there is endogeneity in the linear model

Y = X ′β+e (12.1)

if β is the parameter of interest and
E [X e] 6= 0. (12.2)

This is a core problem in econometrics and largely differentiates the field from statistics. To distinguish
(12.1) from the regression and projection models, we will call (12.1) a structural equation and β a struc-
tural parameter. When (12.2) holds, it is typical to say that X is endogenous for β.

Endogeneity cannot happen if the coefficient is defined by linear projection. Indeed, we can define
the linear projection coefficient β∗ = E[

X X ′]−1
E [X Y ] and linear projection equation

Y = X ′β∗+e∗

E
[

X e∗
]= 0.

However, under endogeneity (12.2) the projection coefficient β∗ does not equal the structural parameter
β. Indeed,

β∗ = (
E
[

X X ′])−1
E [X Y ]

= (
E
[

X X ′])−1
E
[

X
(
X ′β+e

)]
=β+ (

E
[

X X ′])−1
E [X e] 6=β

332
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the final relation since E [X e] 6= 0.
Thus endogeneity requires that the coefficient be defined differently than projection. We describe

such definitions as structural. We will present three examples in the following section.
Endogeneity implies that the least squares estimator is inconsistent for the structural parameter.

Indeed, under i.i.d. sampling, least squares is consistent for the projection coefficient and thus is incon-
sistent for β.

β̂−→
p

(
E
[

X X ′])−1
E [X Y ] =β∗ 6=β.

The inconsistency of least squares is typically referred to as endogeneity bias or estimation bias due to
endogeneity. (This is an imperfect label as the actual issue is inconsistency, not bias.)

As the structural parameter β is the parameter of interest, endogeneity requires the development of
alternative estimation methods. We discuss those in later sections.

12.3 Examples

The concept of endogeneity may be easiest to understand by example. We discuss three. In each case
it is important to see how the structural parameter β is defined independently from the linear projection
model.

Example: Measurement error in the regressor. Suppose that (Y , Z ) are joint random variables,
E [Y | Z ] = Z ′β is linear, andβ is the structural parameter. Z is not observed. Instead we observe X = Z+u
where u is a k × 1 measurement error, independent of e and Z . This is an example of a latent variable
model, where “latent” refers to a structural variable which is unobserved.

The model X = Z +u with Z and u independent and E [u] = 0 is known as classical measurement
error. This means that X is a noisy but unbiased measure of Z .

By substitution we can express Y as a function of the observed variable X .

Y = Z ′β+e = (X −u)′β+e = X ′β+ v

where v = e −u′β. This means that (Y , X ) satisfy the linear equation

Y = X ′β+ v

with an error v . But this error is not a projection error. Indeed,

E [X v] = E[
(Z +u)

(
e −u′β

)]=−E[
uu′]β 6= 0

if β 6= 0 and E
[
uu′] 6= 0. As we learned in the previous section, if E [X v] 6= 0 then least squares estimation

will be inconsistent.
We can calculate the form of the projection coefficient (which is consistently estimated by least

squares). For simplicity suppose that k = 1. We find

β∗ =β+ E [X v]

E
[

X 2
] =β

(
1− E

[
u2

]
E
[

X 2
])

.

Since E
[
u2

]
/E

[
X 2

] < 1 the projection coefficient shrinks the structural parameter β towards zero. This
is called measurement error bias or attenuation bias.

Example: Supply and Demand. The variables Q and P (quantity and price) are determined jointly
by the demand equation

Q =−β1P +e1
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and the supply equation
Q =β2P +e2.

Assume that e = (e1,e2) satisfies E [e] = 0 and E
[
ee ′

]= I 2 (the latter for simplicity). The question is: if we
regress Q on P, what happens?

It is helpful to solve for Q and P in terms of the errors. In matrix notation,[
1 β1

1 −β2

](
Q
P

)
=

(
e1

e2

)
so (

Q
P

)
=

[
1 β1

1 −β2

]−1 (
e1

e2

)
=

[
β2 β1

1 −1

](
e1

e2

)(
1

β1 +β2

)
=

( (
β2e1 +β1e2

)
/(β1 +β2)

(e1 −e2)/(β1 +β2)

)
.

The projection of Q on P yields Q =β∗P +e∗ with E [Pe∗] = 0 and the projection coefficient is

β∗ = E [PQ]

E
[
P 2

] = β2 −β1

2
.

The projection coefficient β∗ equals neither the demand slope β1 nor the supply slope β2, but equals an
average of the two. (The fact that it is a simple average is an artifact of the covariance structure.)

The OLS estimator satisfies β̂ −→
p
β∗ and the limit does not equal either β1 or β2. The fact that the

limit is neither the supply nor demand slope is called simultaneous equations bias. This occurs gener-
ally when Y and X are jointly determined, as in a market equilibrium.

Generally, when both the dependent variable and a regressor are simultaneously determined then
the variables should be treated as endogenous.

Example: Choice Variables as Regressors. Take the classic wage equation

log
(
wage

)=βeducation+e

with β the average causal effect of education on wages. If wages are affected by unobserved ability and
individuals with high ability self-select into higher education then e contains unobserved ability, so ed-
ucation and e will be positively correlated. Hence education is endogenous. The positive correlation
means that the linear projection coefficient β∗ will be upward biased relative to the structural coefficient
β. Thus least squares (which is estimating the projection coefficient) will tend to over-estimate the causal
effect of education on wages.

This type of endogeneity occurs generally when Y and X are both choices made by an economic
agent, even if they are made at different points in time.

Generally, when both the dependent variable and a regressor are choice variables made by the same
agent, the variables should be treated as endogenous.
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12.4 Endogenous Regressors

We have defined endogeneity as the context where a regressor is correlated with the equation error.
The converse of endogeneity is exogeneity. That is, we say a regressor X is exogenous for β if E [X e] =
0. In general the distinction in an economic model is that a regressor X is endogenous if it is jointly
determined with Y , while a regressor X is exogenous if it is determined separately from Y .

In most applications only a subset of the regressors are treated as endogenous. Partition X = (X1, X2)
with dimensions (k1,k2) so that X1 contains the exogenous regressors and X2 contains the endogenous
regressors. As the dependent variable Y is also endogenous, we sometimes differentiate X2 by calling it
the endogenous right-hand-side variable. Similarly partition β= (β1,β2). With this notation the struc-
tural equation is

Y = X ′
1β1 +X ′

2β2 +e. (12.3)

An alternative notation is as follows. Let Y2 = X2 be the endogenous regressors and rename the depen-
dent variable Y as Y1. Then the structural equation is

Y1 = X ′
1β1 +Y ′

2β2 +e. (12.4)

This is especially useful so that the notation clarifies which variables are endogenous and which exoge-
nous. We also write ~Y = (Y1,Y2) as the set of endogenous variables. We use the notation ~Y so that there
is no confusion with Y as defined in (12.3).

The assumptions regarding the regressors and regression error are

E [X1e] = 0

E [Y2e] 6= 0.

The endogenous regressors Y2 are the critical variables discussed in the examples of the previous
section – simultaneous variables, choice variables, mis-measured regressors – that are potentially corre-
lated with the equation error e. In many applications k2 is small (1 or 2). The exogenous variables X1 are
the remaining regressors (including the equation intercept) and can be low or high dimensional.

12.5 Instruments

To consistently estimateβwe require additional information. One type of information which is com-
monly used in economic applications are what we call instruments.

Definition 12.1 The `× 1 random vector Z is an instrumental variable for
(12.3) if

E [Z e] = 0 (12.5)

E
[

Z Z ′]> 0 (12.6)

rank
(
E
[

Z X ′])= k. (12.7)

There are three components to the definition as given. The first (12.5) is that the instruments are
uncorrelated with the regression error. The second (12.6) is a normalization which excludes linearly
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redundant instruments. The third (12.7) is often called the relevance condition and is essential for the
identification of the model, as we discuss later. A necessary condition for (12.7) is that `≥ k.

Condition (12.5) – that the instruments are uncorrelated with the equation error – is often described
as that they are exogenous in the sense that they are determined outside the model for Y .

Notice that the regressors X1 satisfy condition (12.5) and thus should be included as instrumental
variables. They are therefore a subset of the variables Z . Notationally we make the partition

Z =
(

Z1

Z2

)
=

(
X1

Z2

)
k1

`2
. (12.8)

Here, X1 = Z1 are the included exogenous variables and Z2 are the excluded exogenous variables. That
is, Z2 are variables which could be included in the equation for Y (in the sense that they are uncorrelated
with e) yet can be excluded as they have true zero coefficients in the equation. With this notation we can
also write the structural equation (12.4) as

Y1 = Z ′
1β1 +Y ′

2β2 +e. (12.9)

This is useful notation as it clarifies that the variable Z1 is exogenous and the variable Y2 is endogenous.
Many authors describe Z1 as the “exogenous variables”, Y2 as the “endogenous variables”, and Z2 as

the “instrumental variables”.
We say that the model is just-identified if `= k and over-identified if `> k.
What variables can be used as instrumental variables? From the definition E [Z e] = 0 the instrument

must be uncorrelated with the equation error, meaning that it is excluded from the structural equation as
mentioned above. From the rank condition (12.7) it is also important that the instrumental variables be
correlated with the endogenous variables Y2 after controlling for the other exogenous variables Z1. These
two requirements are typically interpreted as requiring that the instruments be determined outside the
system for ~Y , causally determine Y2, but do not causally determine Y1 except through Y2.

Let’s take the three examples given above.
Measurement error in the regressor. When X is a mis-measured version of Z a common choice for

an instrument Z2 is an alternative measurement of Z . For this Z2 to satisfy the property of an instrumen-
tal variable the measurement error in Z2 must be independent of that in X .

Supply and Demand. An appropriate instrument for price P in a demand equation is a variable Z2

which influences supply but not demand. Such a variable affects the equilibrium values of P and Q but
does not directly affect price except through quantity. Variables which affect supply but not demand are
typically related to production costs.

An appropriate instrument for price in a supply equation is a variable which influences demand but
not supply. Such a variable affects the equilibrium values of price and quantity but only affects price
through quantity.

Choice Variable as Regressor. An ideal instrument affects the choice of the regressor (education)
but does not directly influence the dependent variable (wages) except through the indirect effect on the
regressor. We will discuss an example in the next section.

12.6 Example: College Proximity

In a influential paper David Card (1995) suggested if a potential student lives close to a college this
reduces the cost of attendence and thereby raises the likelihood that the student will attend college.
However, college proximity does not directly affect a student’s skills or abilities so should not have a
direct effect on his or her market wage. These considerations suggest that college proximity can be used
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as an instrument for education in a wage regression. We use the simplest model reported in Card’s paper
to illustrate the concepts of instrumental variables throughout the chapter.

Card used data from the National Longitudinal Survey of Young Men (NLSYM) for 1976. A baseline
least squares wage regression for his data set is reported in the first column of Table 12.1. The dependent
variable is the log of weekly earnings. The regressors are education (years of schooling), experience (years
of work experience, calculated as age (years) less education+6), experience2/100, Black, south (an indica-
tor for residence in the southern region of the U.S.), and urban (an indicator for residence in a standard
metropolitan statistical area). We drop observations for which wage is missing. The remaining sample
has 3,010 observations. His data is the file Card1995 on the textbook website.

The point estimate obtained by least squares suggests an 7% increase in earnings for each year of
education.

Table 12.1: Instrumental Variable Wage Regressions

OLS IV(a) IV(b) 2SLS(a) 2SLS(b) LIML
education 0.074 0.132 0.133 0.161 0.160 0.164

(0.004) (0.049) (0.051) (0.040) (0.041) (0.042)
experience 0.084 0.107 0.056 0.119 0.047 0.120

(0.007) (0.021) (0.026) (0.018) (0.025) (0.019)
experience2/100 −0.224 −0.228 −0.080 −0.231 −0.032 −0.231

(0.032) (0.035) (0.133) (0.037) (0.127) (0.037)
Black −0.190 −0.131 −0.103 −0.102 −0.064 −0.099

(0.017) (0.051) (0.075) (0.044) (0.061) (0.045)
south −0.125 −0.105 −0.098 −0.095 −0.086 −0.094

(0.015) (0.023) (0.0284) (0.022) (0.026) (0.022)
urban 0.161 0.131 0.108 0.116 0.083 0.115

(0.015) (0.030) (0.049) (0.026) (0.041) (0.027)
Sargan 0.82 0.52 0.82
p-value 0.37 0.47 0.37

Notes:

1. IV(a) uses college as an instrument for education.

2. IV(b) uses college, age, and age2/100 as instruments for education, experience, and experience2/100.

3. 2SLS(a) uses public and private as instruments for education.

4. 2SLS(b) uses public, private, age, and age2 as instruments for education, experience, and experi-
ence2/100.

5. LIML uses public and private as instruments for education.

As discussed in the previous sections it is reasonable to view years of education as a choice made by
an individual and thus is likely endogenous for the structural return to education. This means that least
squares is an estimate of a linear projection but is inconsistent for coefficient of a structural equation
representing the causal impact of years of education on expected wages. Labor economics predicts that
ability, education, and wages will be positively correlated. This suggests that the population projection
coefficient estimated by least squares will be higher than the structural parameter (and hence upwards
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biased). However, the sign of the bias is uncertain since there are multiple regressors and there are other
potential sources of endogeneity.

To instrument for the endogeneity of education, Card suggested that a reasonable instrument is a
dummy variable indicating if the individual grew up near a college. We will consider three measures:

college Grew up in same county as a 4-year college
public Grew up in same county as a 4-year public college
private Grew up in same county as a 4-year private college.

12.7 Reduced Form

The reduced form is the relationship between the endogenous regressors Y2 and the instruments Z .
A linear reduced form model for Y2 is

Y2 = Γ′Z +u2 = Γ′12Z1 +Γ′22Z2 +u2 (12.10)

This is a multivariate regression as introduced in Chapter 11. The `×k2 coefficient matrix Γ is defined
by linear projection:

Γ= E[
Z Z ′]−1

E
[

Z Y ′
2

]
(12.11)

This implies E
[

Z u′
2

]= 0. The projection coefficient (12.11) is well defined and unique under (12.6).
We also construct the reduced form for Y1. Substitute (12.10) into (12.9) to obtain

Y1 = Z ′
1β1 +

(
Γ′12Z1 +Γ′22Z2 +u2

)′
β2 +e

= Z ′
1λ1 +Z ′

2λ2 +u1 (12.12)

= Z ′λ+u1 (12.13)

where

λ1 =β1 +Γ12β2 (12.14)

λ2 = Γ22β2 (12.15)

u1 = u′
2β2 +e.

We can also write
λ= Γβ (12.16)

where

Γ=
[

I k1 Γ12

0 Γ22

]
=

[
I k1

0
Γ

]
.

Together, the reduced form equations for the system are

Y1 =λ′Z +u1

Y2 = Γ′Z +u2.

or

~Y =
[
λ′

1 λ′
2

Γ′12 Γ′22

]
Z +u (12.17)

where u = (u1,u2).
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The relationships (12.14)-(12.16) are critically important for understanding the identification of the
structural parameters β1 and β2, as we discuss below. These equations show the tight relationship be-
tween the structural parameters (β1 and β2) and the reduced form parameters (Γ and λ).

The reduced form equations are projections so the coefficients may be estimated by least squares
(see Chapter 11). The least squares estimators of (12.11) and (12.13) are

Γ̂=
(

n∑
i=1

Zi Z ′
i

)−1 (
n∑

i=1
Zi Y ′

2i

)
(12.18)

λ̂=
(

n∑
i=1

Zi Z ′
i

)−1 (
n∑

i=1
Zi Y1i

)
(12.19)

12.8 Identification

A parameter is identified if it is a unique function of the probability distribution of the observables.
One way to show that a parameter is identified is to write it as an explicit function of population mo-
ments. For example, the reduced form coefficient matrices Γ and λ are identified since they can be
written as explicit functions of the moments of the variables (Y , X , Z ). That is,

Γ= E[
Z Z ′]−1

E
[

Z Y ′
2

]
(12.20)

λ= E[
Z Z ′]−1

E [Z Y1] . (12.21)

These are uniquely determined by the probability distribution of (Y1,Y2, Z ) if Definition 12.1 holds, since
this includes the requirement that E

[
Z Z ′] is invertible.

We are interested in the structural parameter β. It relates to (λ,Γ) through (12.16). β is identified if
it uniquely determined by this relation. This is a set of ` equations with k unknowns with ` ≥ k. From
linear algebra we know that there is a unique solution if and only if Γ has full rank k.

rank
(
Γ
)
= k. (12.22)

Under (12.22)β can be uniquely solved from (12.16). If (12.22) fails then (12.16) has fewer equations than
coefficients so there is not a unique solution.

We can write Γ= E[
Z Z ′]−1

E
[

Z X ′]. Combining this with (12.16) we obtain

E
[

Z Z ′]−1
E [Z Y1] = E[

Z Z ′]−1
E
[

Z X ′]β
or

E [Z Y1] = E[
Z X ′]β

which is a set of ` equations with k unknowns. This has a unique solution if (and only if)

rank
(
E
[

Z X ′])= k (12.23)

which was listed in (12.7) as a condition of Definition 12.1. (Indeed, this is why it was listed as part
of the definition.) We can also see that (12.22) and (12.23) are equivalent ways of expressing the same
requirement. If this condition fails then β will not be identified. The condition (12.22)-(12.23) is called
the relevance condition.

It is useful to have explicit expressions for the solution β. The easiest case is when `= k. Then (12.22)

implies Γ is invertible so the structural parameter equals β= Γ−1
λ. It is a unique solution because Γ and

λ are unique and Γ is invertible.
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When `> k we can solve for β by applying least squares to the system of equations λ= Γβ. This is `

equations with k unknowns and no error. The least squares solution is β=
(
Γ
′
Γ
)−1

Γ
′
λ. Under (12.22) the

matrix Γ
′
Γ is invertible so the solution is unique.

β is identified if rank(Γ) = k, which is true if and only if rank(Γ22) = k2 (by the upper-diagonal struc-
ture of Γ). Thus the key to identification of the model rests on the `2×k2 matrix Γ22 in (12.10). To see this,
recall the reduced form relationships (12.14)-(12.15). We can see that β2 is identified from (12.15) alone,
and the necessary and sufficient condition is rank(Γ22) = k2. If this is satisfied then the solution can be
written as β2 = (

Γ′22Γ22
)−1

Γ′22λ2 . Then β1 is identified from this and (12.14), with the explicit solution

β1 = λ1 −Γ12
(
Γ′22Γ22

)−1
Γ′22λ2. In the just-identified case (`2 = k2) these equations simplify to take the

form β2 = Γ−1
22λ2 and β1 =λ1 −Γ12Γ

−1
22λ2.

12.9 Instrumental Variables Estimator

In this section we consider the special case where the model is just-identified so that `= k.
The assumption that Z is an instrumental variable implies that E [Z e] = 0. Making the substitution

e = Y1 −X ′β we find E
[

Z
(
Y1 −X ′β

)]= 0. Expanding,

E [Z Y1]−E[
Z X ′]β= 0.

This is a system of `= k equations and k unknowns. Solving for β we find

β= (
E
[

Z X ′])−1
E [Z Y1] .

This requires that the matrix E
[

Z X ′] is invertible, which holds under (12.7) or equivalently (12.23).
The instrumental variables (IV) estimator β replaces population by sample moments. We find

β̂iv =
(

1

n

n∑
i=1

Zi X ′
i

)−1 (
1

n

n∑
i=1

Zi Y1i

)

=
(

n∑
i=1

Zi X ′
i

)−1 (
n∑

i=1
Zi Y1i

)
. (12.24)

More generally, given any variable W ∈Rk it is common to refer to the estimator

β̂iv =
(

n∑
i=1

Wi X ′
i

)−1 (
n∑

i=1
Wi Y1i

)

as the IV estimator for β using the instrument W .
Alternatively, recall that when ` = k the structural parameter can be written as a function of the

reduced form parameters asβ= Γ−1
λ. Replacing Γ andλ by their least squares estimators (12.18)-(12.19)

we can construct what is called the Indirect Least Squares (ILS) estimator. Using the matrix algebra
representations

β̂ils = Γ̂
−1
λ̂

=
((

Z ′Z
)−1 (

Z ′X
))−1 ((

Z ′Z
)−1 (

Z ′Y 1
))

= (
Z ′X

)−1 (
Z ′Z

)(
Z ′Z

)−1 (
Z ′Y 1

)
= (

Z ′X
)−1 (

Z ′Y 1
)

.
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We see that this equals the IV estimator (12.24). Thus the ILS and IV estimators are identical.
Given the IV estimator we define the residual êi = Y1i −X ′

i β̂iv. It satisfies

Z ′ê = Z ′Y 1 −Z ′X
(

Z ′X
)−1 (

Z ′Y 1
)= 0. (12.25)

Since Z includes an intercept this means that the residuals sum to zero and are uncorrelated with the
included and excluded instruments.

To illustrate IV regression we estimate the reduced form equations for college proximity, now treating
education as endogenous and using college as an instrumental variable. The reduced form equations for
log(wage) and education are reported in the first and second columns of Table 12.2.

Table 12.2: Reduced Form Regressions

log(wage) education education experience experience2/100 education
experience 0.053 −0.410 −0.413

(0.007) (0.032) (0.032)
experience2/100 −0.219 0.073 0.093

(0.033) (0.170) (0.171)
black −0.264 −1.006 −1.468 1.468 0.282 −1.006

(0.018) (0.088) (0.115) (0.115) (0.026) (0.088)
south −0.143 −0.291 −0.460 0.460 0.112 −0.267

(0.017) (0.078) (0.103) (0.103) (0.022) (0.079)
urban 0.185 0.404 0.835 −0.835 −0.176 0.400

(0.017) (0.085) (0.112) (0.112) (0.025) (0.085)
college 0.045 0.337 0.347 −0.347 −0.073

(0.016) (0.081) (0.109) (0.109) (0.023)
public 0.430

(0.086)
private 0.123

(0.101)
age 1.061 −0.061 −0.555

(0.296) (0.296) (0.065)
age2/100 −1.876 1.876 1.313

(0.516) (0.516) (0.116)
F 17.51 8.22 1581 1112 13.87

Of particular interest is the equation for the endogenous regressor education, and the coefficients for
the excluded instruments – in this case college. The estimated coefficient equals 0.337 with a small stan-
dard error. This implies that growing up near a 4-year college increases average educational attainment
by 0.3 years. This seems to be a reasonable magnitude.

Since the structural equation is just-identified with one right-hand-side endogenous variable the
ILS/IV estimate for the education coefficient is the ratio of the coefficient estimates for the instrument
college in the two equations, e.g. 0.045/0.337 = 0.13, implying a 13% return to each year of education.
This is substantially greater than the 7% least squares estimate from the first column of Table 12.1. The
IV estimates of the full equation are reported in the second column of Table 12.1. One first reaction is sur-
prise that the IV estimate is larger than the OLS estimate. The endogeneity of educational choice should
lead to upward bias in the OLS estimator, which predicts that the IV estimate should have been smaller
than the OLS estimator. An alternative explanation may be needed. One possibility is heterogeneous
education effects (when the education coefficient β is heterogenous across individuals). In Section 12.34
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we show that in this context the IV estimator picks up this treatment effect for a subset of the population,
and this may explain why IV estimation results in a larger estimated coefficient on education.

Card (1995) also points out that if education is endogenous then so is our measure of experience since
it is calculated by subtracting education from age. He suggests that we can use the variables age and age2

as instruments for experience and experience2. The age variables are exogenous (not choice variables)
yet highly correlated with experience and experience2. Notice that this approach treats experience2 as a
variable separate from experience. Indeed, this is the correct approach.

Following this recommendation we now have three endogenous regressors and three instruments.
We present the three reduced form equations for the three endogenous regressors in the third through
fifth columns of Table 12.2. It is interesting to compare the equations for education and experience. The
two sets of coefficients are simply the sign change of the other with the exception of the coefficient on
age. Indeed this must be the case because the three variables are linearly related. Does this cause a
problem for 2SLS? Fortunately, no. The fact that the coefficient on age is not simply a sign change means
that the equations are not linearly singular. Hence Assumption (12.22) is not violated.

The IV estimates using the three instruments college, age, and age2 for the endogenous regressors
education, experience, and experience2 is presented in the third column of Table 12.1. The estimate of
the returns to schooling is not affected by this change in the instrument set, but the estimated return to
experience profile flattens (the quadratic effect diminishes).

The IV estimator may be calculated in Stata using the ivregress 2sls command.

12.10 Demeaned Representation

Does the well-known demeaned representation for linear regression (3.18) carry over to the IV es-
timator? To see this, write the linear projection equation in the format Y1 = X ′β+α+ e where α is the
intercept and X does not contain a constant. Similarly, partition the instrument as (1, Z ) where Z does
not contain an intercept. We can write the IV estimator for the i th equation as

Y1i = X ′
i β̂iv + α̂iv + êi .

The orthogonality (12.25) implies the two-equation system

n∑
i=1

(
Y1i −X ′

i β̂iv − α̂iv
)= 0

n∑
i=1

Zi
(
Y1i −X ′

i β̂iv − α̂iv
)= 0.

The first equation implies α̂iv = Y1 −X
′
β̂iv. Substituting into the second equation

n∑
i=1

Zi

((
Y1i −Y1

)
−

(
Xi −X

)′
β̂iv

)
and solving for β̂iv we find

β̂iv =
(

n∑
i=1

Zi

(
Xi −X

)′)−1 (
n∑

i=1
Zi

(
Y1i −Y 1

))

=
(

n∑
i=1

(
Zi −Z

)(
Xi −X

)′)−1 (
n∑

i=1

(
Zi −Z

)(
Y1i −Y 1

))
. (12.26)

Thus the demeaning equations for least squares carry over to the IV estimator. The coefficient esti-
mator β̂iv is a function only of the demeaned data.
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12.11 Wald Estimator

In many cases including the Card proximity example the excluded instrument is a binary (dummy)
variable. Let’s focus on that case and suppose that the model has just one endogenous regressor and no
other regressors beyond the intercept. The model can be written as Y = Xβ+α+ e with E [e | Z ] = 0 and
Z binary.

Take expectations of the structural equation given Z = 1 and Z = 0, respectively. We obtain

E [Y | Z = 1] = E [X | Z = 1]β+α
E [Y | Z = 0] = E [X | Z = 0]β+α.

Subtracting and dividing we obtain an expression for the slope coefficient

β= E [Y | Z = 1]−E [Y | Z = 0]

E [X | Z = 1]−E [X | Z = 0]
. (12.27)

The natural moment estimator replaces the expectations by the averages within the “grouped data”
where Zi = 1 and Zi = 0, respectively. That is, define the group means

Y 1 =
∑n

i=1 Zi Yi∑n
i=1 Zi

, Y 0 =
∑n

i=1 (1−Zi )Yi∑n
i=1 (1−Zi )

X 1 =
∑n

i=1 Zi Xi∑n
i=1 Zi

, X 0 =
∑n

i=1 (1−Zi ) Xi∑n
i=1 (1−Zi )

and the moment estimator

β̂= Y 1 −Y 0

X 1 −X 0
. (12.28)

This is the “Wald estimator” of Wald (1940).
These expressions are rather insightful. (12.27) shows that the structural slope coefficient is the ex-

pected change in Y due to changing the instrument divided by the expected change in X due to changing
the instrument. Informally, it is the change in Y (due to Z ) over the change in X (due to Z ). Equation
(12.28) shows that the slope coefficient can be estimated by a the ratio of a difference in means.

The expression (12.28) may appear like a distinct estimator from the IV estimator β̂iv but it turns out
that they are the same. That is, β̂= β̂iv. To see this, use (12.26) to find

β̂iv =
∑n

i=1 Zi

(
Yi −Y

)
∑n

i=1 Zi

(
Xi −X

) = Y 1 −Y

X 1 −X
.

Then notice

Y 1 −Y = Y 1 −
(

1

n

n∑
i=1

Zi Y 1 + 1

n

n∑
i=1

(1−Zi )Y 0

)
=

(
1−Z

)(
Y 1 −Y 0

)
and similarly

X 1 −X =
(
1−Z

)(
X 1 −X 0

)
and hence

β̂iv =
(
1−Z

)(
Y 1 −Y 0

)
(
1−Z

)(
X 1 −X 0

) = β̂

as defined in (12.28). Thus the Wald estimator equals the IV estimator.
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We can illustrate using the Card proximity example. If we estimate a simple IV model with no covari-
ates we obtain the estimate β̂iv = 0.19. If we estimate the group-mean of log wages and education based
on the instrument college we find

near college not near college difference
log(wage) 6.311 6.156 0.155
education 13.527 12.698 0.829
ratio 0.19

Based on these estimates the Wald estimator of the slope coefficient is (6.311−6.156)/(13.527−12.698) =
0.155/0.829 = 0.19, the same as the IV estimator.

12.12 Two-Stage Least Squares

The IV estimator described in the previous section presumed ` = k. Now we allow the general case
of `≥ k. Examining the reduced-form equation (12.13) we see

Y1 = Z ′Γβ+u1

E [Z u1] = 0.

Defining W = Γ′Z we can write this as

Y1 =W ′β+u1

E [W u1] = 0.

One way of thinking about this is that Z is set of candidate instruments. The instrument vector W = Γ′Z
is a k-dimentional set of linear combinations.

Suppose that Γwere known. Then we would estimate β by least squares of Y1 on W = Γ′Z

β̂= (
W ′W

)−1 (
W ′Y

)= (
Γ
′
Z ′ZΓ

)−1 (
Γ
′
Z ′Y 1

)
.

While this is infeasible we can estimate Γ from the reduced form regression. Replacing Γwith its estima-
tor Γ̂= (

Z ′Z
)−1 (

Z ′X
)

we obtain

β̂2sls =
(
Γ̂′Z ′Z Γ̂

)−1 (
Γ̂′Z ′Y 1

)
=

(
X ′Z

(
Z ′Z

)−1 Z ′Z
(

Z ′Z
)−1 Z

′
X

)−1
X ′Z

(
Z ′Z

)−1 Z ′Y 1

=
(

X ′Z
(

Z ′Z
)−1 Z ′X

)−1
X ′Z

(
Z ′Z

)−1 Z ′Y 1. (12.29)

This is called the two-stage-least squares (2SLS) estimator. It was originally proposed by Theil (1953)
and Basmann (1957) and is a standard estimator for linear equations with instruments.

If the model is just-identified, so that k = `, then 2SLS simplifies to the IV estimator of the previous
section. Since the matrices X ′Z and Z ′X are square we can factor(

X ′Z
(

Z ′Z
)−1 Z ′X

)−1 = (
Z ′X

)−1
((

Z ′Z
)−1

)−1 (
X ′Z

)−1

= (
Z ′X

)−1 (
Z ′Z

)(
X ′Z

)−1 .
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(Once again, this only works when k = `.) Then

β̂2sls =
(

X ′Z
(

Z ′Z
)−1 Z ′X

)−1
X ′Z

(
Z ′Z

)−1 Z ′Y 1

= (
Z ′X

)−1 (
Z ′Z

)(
X ′Z

)−1 X ′Z
(

Z ′Z
)−1 Z ′Y 1

= (
Z ′X

)−1 (
Z ′Z

)(
Z ′Z

)−1 Z ′Y 1

= (
Z ′X

)−1 Z ′Y 1 = β̂iv

as claimed. This shows that the 2SLS estimator as defined in (12.29) is a generalization of the IV estimator
defined in (12.24).

There are several alternative representations of the 2SLS estimator which we now describe. First,
defining the projection matrix

P Z = Z
(

Z ′Z
)−1 Z ′ (12.30)

we can write the 2SLS estimator more compactly as

β̂2sls =
(

X ′P Z X
)−1 X ′P Z Y 1. (12.31)

This is useful for representation and derivations but is not useful for computation as the n×n matrix P Z

is too large to compute when n is large.
Second, define the fitted values for X from the reduced form X̂ = P Z X = Z Γ̂. Then the 2SLS estimator

can be written as

β̂2sls =
(

X̂
′
X

)−1
X̂

′
Y 1.

This is an IV estimator as defined in the previous section using X̂ as an instrument for X .
Third, since P Z is idempotent we can also write the 2SLS estimator as

β̂2sls =
(

X ′P Z P Z X
)−1 X ′P Z Y 1 =

(
X̂

′
X̂

)−1
X̂

′
Y 1

which is the least squares estimator obtained by regressing Y1 on the fitted values X̂ .
This is the source of the “two-stage” name is since it can be computed as follows.

• Regress X on Z to obtain the fitted X̂ : Γ̂= (
Z ′Z

)−1 (
Z ′X

)
and X̂ = Z Γ̂= P Z X .

• Regress Y1 on X̂ : β̂2sls =
(

X̂
′
X̂

)−1
X̂

′
Y 1.

It is useful to scrutinize the projection X̂ . Recall, X = [Z 1,Y 2] and Z = [Z 1, Z 2]. Notice X̂ 1 = P Z Z 1 =
Z 1 since Z 1 lies in the span of Z . Then X̂ = [

X̂ 1, Ŷ 2
] = [

Z 1, Ŷ 2
]
. This shows that in the second stage we

regress Y1 on Z1 and Ŷ2. This means that only the endogenous variables Y2 are replaced by their fitted
values, Ŷ2 = Γ̂′12Z1 + Γ̂′22Z2.

A fourth representation of 2SLS can be obtained using the FWL Theorem. The third representation
and following discussion showed that 2SLS is obtained as least squares of Y1 on the fitted values (Z1, Ŷ2).
Hence the coefficient β̂2 on the endogenous variables can be found by residual regression. Set P 1 =
Z 1

(
Z ′

1Z 1
)−1 Z ′

1. Applying the FWL theorem we obtain

β̂2 =
(
Ŷ

′
2 (I n −P 1) Ŷ 2

)−1 (
Ŷ

′
2 (I n −P 1)Y 1

)
= (

Y ′
2P Z (I n −P 1)P Z Y 2

)−1 (
Y ′

2P Z (I n −P 1)Y 1
)

= (
Y ′

2 (P Z −P 1)Y 2
)−1 (

Y ′
2 (P Z −P 1)Y 1

)
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since P Z P 1 = P 1.
A fifth representation can be obtained by a further projection. The projection matrix P Z can be

replaced by the projection onto the pair [Z 1, Z̃ 2] where Z̃ 2 = (I n −P 1) Z 2 is Z 2 projected orthogonal to

Z 1. Since Z 1 and Z̃ 2 are orthogonal, P Z = P 1 +P 2 where P 2 = Z̃ 2

(
Z̃

′
2 Z̃ 2

)−1
Z̃

′
2. Thus P Z −P 1 = P 2 and

β̂2 =
(
Y ′

2P 2Y 2
)−1 (

Y ′
2P 2Y 1

)
=

(
Y ′

2 Z̃ 2

(
Z̃

′
2 Z̃ 2

)−1
Z̃

′
2Y 2

)−1 (
Y ′

2 Z̃ 2

(
Z̃

′
2 Z̃ 2

)−1
Z̃

′
2Y 1

)
. (12.32)

Given the 2SLS estimator we define the residual êi = Y1i − X ′
i β̂2sls. When the model is overidentified

the instruments and residuals are not orthogonal. That is, Z ′ê 6= 0. It does, however, satisfy

X̂
′
ê = Γ̂′Z ′ê

= X ′Z
(

Z ′Z
)−1 Z ′ê

= X ′Z
(

Z ′Z
)−1 Z ′y −X ′Z

(
Z ′Z

)−1 Z ′X β̂2sls = 0.

Returning to Card’s college proximity example suppose that we treat experience as exogeneous but
that instead of using the single instrument college (grew up near a 4-year college) we use the two instru-
ments (public, private) (grew up near a public/private 4-year college, respectively). In this case we have
one endogenous variable (education) and two instruments (public, private). The estimated reduced form
equation for education is presented in the sixth column of Table 12.2. In this specification the coefficient
on public – growing up near a public 4-year college – is larger than that found for the variable college
in the previous specification (column 2). Furthermore, the coefficient on private – growing up near a
private 4-year college – is much smaller. This indicates that the key impact of proximity on education is
via public colleges rather than private colleges.

The 2SLS estimates obtained using these two instruments are presented in the fourth column of
Table 12.1. The coefficient on education increases to 0.161, indicating a 16% return to a year of education.
This is roughly twice as large as the estimate obtained by least squares in the first column.

Additionally, if we follow Card and treat experience as endogenous and use age as an instrument
we now have three endogenous variables (education, experience, experience2/100) and four instruments
(public, private, age, age2). We present the 2SLS estimates using this specification in the fifth column of
Table 12.1. The estimate of the return to education remains 16% and the return to experience flattens.

You might wonder if we could use all three instruments – college, public, and private. The answer is
no. This is because college=public+private so the three variables are colinear. Since the instruments are
linearly related the three together would violate the full-rank condition (12.6).

The 2SLS estimator may be calculated in Stata using the ivregress 2sls command.

12.13 Limited Information Maximum Likelihood

An alternative method to estimate the parameters of the structural equation is by maximum likeli-
hood. Anderson and Rubin (1949) derived the maximum likelihood estimator for the joint distribution
of ~Y = (Y1,Y2). The estimator is known as limited information maximum likelihood (LIML).

This estimator is called “limited information” because it is based on the structural equation for Y
combined with the reduced form equation for X2. If maximum likelihood is derived based on a structural
equation for X2 as well this leads to what is known as full information maximum likelihood (FIML). The
advantage of LIML relative to FIML is that the former does not require a structural model for X2 and thus
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allows the researcher to focus on the structural equation of interest – that for Y . We do not describe the
FIML estimator as it is not commonly used in applied econometrics.

While the LIML estimator is less widely used among economists than 2SLS it has received a resur-
gence of attention from econometric theorists.

To derive the LIML estimator recall the definition ~Y = (Y1,Y2) and the reduced form (12.17)

~Y =
[
λ′

1 λ2

Γ′12 Γ′22

](
Z1

Z2

)
+u

=Π′
1Z1 +Π′

2Z2 +u (12.33)

whereΠ1 =
[
λ1 Γ12

]
andΠ2 =

[
λ2 Γ22

]
. The LIML estimator is derived under the assumption that

u is multivariate normal.
Define γ′ = [

1 −β′
2

]
. From (12.15) we find

Π2γ=λ2 −Γ22β2 = 0.

Thus the `2×(k2 +1) coefficient matrixΠ2 in (12.33) has deficient rank. Indeed, its rank must be k2 since
Γ22 has full rank.

This means that the model (12.33) is precisely the reduced rank regression model of Section 11.11.
Theorem 11.7 presents the maximum likelihood estimators for the reduced rank parameters. In particu-
lar, the MLE for γ is

γ̂= argmin
γ

γ′~Y ′
M 1~Y γ

γ′~Y ′
MZ ~Y γ

(12.34)

where M 1 = I n − Z 1
(

Z ′
1Z 1

)−1 Z ′
1 and M Z = I n − Z

(
Z ′Z

)−1 Z ′. The minimization (12.34) is sometimes
called the “least variance ratio” problem.

The minimization problem (12.34) is invariant to the scale of γ (that is, γ̂c is equivalently the argmin
for any c) so normalization is required. A convenient choice is γ′~Y ′

MZ ~Y γ= 1. Using this normalization
and the theory of the minimum of quadratic forms (Section A.15) γ̂ is the generalized eigenvector of
~Y

′
M 1~Y with respect to ~Y

′
MZ ~Y associated with the smallest generalized eigenvalue. (See Section A.14

for the definition of generalized eigenvalues and eigenvectors.) Computationally this is straightforward.
For example, in MATLAB the generalized eigenvalues and eigenvectors of the matrix A with respect to B
is found by the command eig(A,B). Once this γ̂ is found any other normalization can be obtained by
rescaling. For example, to obtain the MLE for β2 make the partition γ̂′ = [

γ̂1 γ̂′2
]

and set β̂2 =−γ̂2/γ̂1.
To obtain the MLE for β1 recall the structural equation Y1 = Z ′

1β1+Y ′
2β2+e. Replace β2 with the MLE

β̂2 and apply regression. This yields

β̂1 =
(

Z ′
1Z 1

)−1 Z ′
1

(
Y 1 −Y 2β̂2

)
. (12.35)

These solutions are the MLE for the structural parameters β1 and β2.
Many previous econometrics textbooks do not present a derivation of the LIML estimator as the

original derivation by Anderson and Rubin (1949) is lengthy and not particularly insightful. In contrast
the derivation given here based on reduced rank regression is simple.

There is an alternative (and traditional) expression for the LIML estimator. Define the minimum
obtained in (12.34)

κ̂= min
γ

γ′~Y ′
M 1~Y γ

γ′~Y ′
MZ ~Y γ

(12.36)

which is the smallest generalized eigenvalue of ~Y
′
M 1~Y with respect to ~Y

′
MZ ~Y . The LIML estimator can

be written as
β̂liml =

(
X ′ (I n − κ̂M Z ) X

)−1 (
X ′ (I n − κ̂M Z )Y 1

)
. (12.37)
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We defer the derivation of (12.37) until the end of this section. Expression (12.37) does not simplify
computation (since κ̂ requires solving the same eigenvector problem that yields β̂2). However (12.37) is
important for the distribution theory. It also helps reveal the algebraic connection between LIML, least
squares, and 2SLS.

The estimator (12.37) with arbitrary κ is known as a k-class estimator of β. While the LIML estimator
obtains by setting κ= κ̂, the least squares estimator is obtained by setting κ= 0 and 2SLS is obtained by
setting κ= 1. It is worth observing that the LIML solution satisfies κ̂≥ 1.

When the model is just-identified the LIML estimator is identical to the IV and 2SLS estimators. They
are only different in the over-identified setting. (One corollary is that under just-identification and nor-
mal errors the IV estimator is MLE.)

For inference it is useful to observe that (12.37) shows that β̂liml can be written as an IV estimator

β̂liml =
(

X̃
′
X

)−1 (
X̃

′
Y 1

)
using the instrument

X̃ = (I n − κ̂M Z ) X =
(

X 1

X 2 − κ̂Û 2

)
where Û 2 = MZ X 2 are the reduced-form residuals from the multivariate regression of the endogenous
regressors Y2 on the instruments Z . Expressing LIML using this IV formula is useful for variance estima-
tion.

The LIML estimator has the same asymptotic distribution as 2SLS. However, they have quite differ-
ent behaviors in finite samples. There is considerable evidence that the LIML estimator has reduced
finite sample bias relative to 2SLS when there are many instruments or the reduced form is weak. (We
review these cases in the following sections.) However, on the other hand LIML has wider finite sample
dispersion.

We now derive the expression (12.37). Use the normalization γ′ = [
1 −β′

2

]
to write (12.34) as

β̂2 = argmin
β2

(
Y 1 −Y 2β2

)′ M 1
(
Y 1 −Y 2β2

)(
Y 1 −Y β2

)′ M Z
(
Y 1 −Y 2β2

) .

The first-order-condition for minimization is 2/
(
Y 1 −Y 2β̂2

)′
M Z

(
Y 1 −Y 2β̂2

)
times

0 = Y ′
2M 1

(
Y 1 −Y 2β̂2

)− (
Y 1 −Y 2β̂2

)′
M 1

(
Y 1 −Y 2β̂2

)(
Y 1 −Y 2β̂2

)′
M Z

(
Y 1 −Y 2β̂2

) X ′
2M Z

(
Y 1 −Y 2β̂2

)
= Y ′

2M 1
(
Y 1 −Y 2β̂2

)− κ̂X ′
2M Z

(
Y 1 −Y 2β̂2

)
using definition (12.36). Rewriting,

Y ′
2 (M 1 − κ̂M Z ) X 2β̂2 = X ′

2 (M 1 − κ̂M Z )Y 1. (12.38)

Equation (12.37) is the same as the two equation system

Z ′
1Z 1β̂1 +Z ′

1Y 2β̂2 = Z ′
1Y 1

Y ′
2Z 1β̂1 +

(
Y ′

2 (I n − κ̂M Z )Y 2
)
β̂2 = Y ′

2 (I n − κ̂M Z )Y 1.

The first equation is (12.35). Using (12.35), the second is

Y ′
2Z 1

(
Z ′

1Z 1
)−1 Z ′

1

(
Y 1 −Y 2β̂2

)+ (
Y ′

2 (I n − κ̂M Z )Y 2
)
β̂2 = Y ′

2 (I n − κ̂M Z )Y 1
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which is (12.38) when rearranged. We have thus shown that (12.37) is equivalent to (12.35) and (12.38)
and is thus a valid expression for the LIML estimator.

Returning to the Card college proximity example we now present the LIML estimates of the equation
with the two instruments (public, private). They are reported in the final column of Table 12.1. They are
quite similar to the 2SLS estimates.

The LIML estimator may be calculated in Stata using the ivregress liml command.

Theodore Anderson

Theodore (Ted) Anderson (1918-2016) was a American statistician and econo-
metrician, who made fundamental contributions to multivariate statistical the-
ory. Important contributions include the Anderson-Darling distribution test, the
Anderson-Rubin statistic, the method of reduced rank regression, and his most
famous econometrics contribution – the LIML estimator. He continued working
throughout his long life, even publishing theoretical work at the age of 97!

12.14 Split-Sample IV and JIVE

The ideal instrument for estimation of β is W = Γ′Z . We can write the ideal IV estimator as

β̂ideal =
(

n∑
i=1

Wi X ′
i

)−1 (
n∑

i=1
Wi Yi

)
.

This estimator is not feasible since Γ is unknown. The 2SLS estimator replaces Γ with the multivariate
least squares estimator Γ̂ and Wi with Ŵi = Γ̂′Zi leading to the following representation for 2SLS

β̂2sls =
(

n∑
i=1

Ŵi X ′
i

)−1 (
n∑

i=1
Ŵi Yi

)
.

Since Γ̂ is estimated on the full sample including observation i it is a function of the reduced form
error u which is correlated with the structural error e. It follows that Ŵ and e are correlated, which means
that β̂2sls is biased for β. This correlation and bias disappears asymptotically but it can be important in
applications.

A possible solution to this problem is to replace Ŵ with a predicted value which is uncorrelated with
the error e. One method is the split-sample IV (SSIV) estimator of Angrist and Krueger (1995). Divide
the sample randomly into two independent halves A and B . Use A to estimate the reduce form and B
to estimate the structural coefficient. Specifically, use sample A to construct Γ̂A = (

Z ′
A Z A

)−1 (
Z ′

A X A
)
.

Combine this with sample B to create the predicted values Ŵ B = Z B Γ̂A . The SSIV estimator is β̂ssiv =(
Ŵ

′
B X B

)−1 (
Ŵ

′
B Y B

)
. This has lower bias than β̂2sls.

A limitation of SSIV is that the results will be sensitive to the sample spliting. One split will produce
one estimator; another split will produce a different estimator. Any specific split is arbitrary, so the esti-
mator depends on the specific random sorting of the observations into the samples A and B . A second
limitation of SSIV is that it is unlikely to work well when the sample size n is small.
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A much better solution is obtained by a leave-one-out estimator for Γ. Specifically, let

Γ̂(−i ) =
(

Z ′Z −Zi Z ′
i

)−1 (
Z ′X −Zi X ′

i

)
be the least squares leave-one-out estimator of the reduced form matrix Γ, and let Ŵi = Γ̂′(−i )Zi be the

reduced form predicted values. Using Ŵi = Γ̂′(−i )Zi as an instrument we obtain the estimator

β̂jive1 =
(

n∑
i=1

Ŵi X ′
i

)−1 (
n∑

i=1
Ŵi Yi

)
=

(
n∑

i=1
Γ̂′(−i )Zi X ′

i

)−1 (
n∑

i=1
Γ̂′(−i )Zi Yi

)
.

This was called the jackknife instrumental variables (JIVE1) estimator by Angrist, Imbens, and Krueger
(1999). It first appeared in Phillips and Hale (1977).

Angrist, Imbens, and Krueger (1999) pointed out that a somewhat simpler adjustment also removes
the correlation and bias. Define the estimator and predicted value

Γ̃(−i ) =
(

Z ′Z
)−1 (

Z ′X −Zi X ′
i

)
W̃i = Γ̃′(−i )Zi

which only adjusts the Z ′X component. Their JIVE2 estimator is

β̂jive2 =
(

n∑
i=1

W̃i X ′
i

)−1 (
n∑

i=1
W̃i Yi

)
=

(
n∑

i=1
Γ̃′(−i )Zi X ′

i

)−1 (
n∑

i=1
Γ̃′(−i )Zi Yi

)
.

Using the formula for leave-one-out estimators (Theorem 3.7), the JIVE1 and JIVE2 estimators use
two linear operations: the first to create the predicted values Ŵi or W̃i , and the second to calculate the
IV estimator. Thus the estimators do not require significantly more computation than 2SLS.

An asymptotic distribution theory for the JIVE1 and JIVE2 estimators was developed by Chao, Swan-
son, Hausman, Newey, and Woutersen (2012).

The JIVE1 and JIVE2 estimators may be calculated in Stata using the jive command. It is not a part
of the standard package but can be easily added.

12.15 Consistency of 2SLS

We now demonstrate the consistency of the 2SLS estimator for the structural parameter. The follow-
ing is a set of regularity conditions.

Assumption 12.1

1. The variables (Y1i , Xi , Zi ), i = 1, ...,n, are independent and identically dis-
tributed.

2. E
[
Y 2

1

]<∞.

3. E‖X ‖2 <∞.

4. E‖Z‖2 <∞.

5. E
[

Z Z ′] is positive definite.

6. E
[

Z X ′] has full rank k.

7. E [Z e] = 0.
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Assumptions 12.1.2-4 state that all variables have finite variances. Assumption 12.1.5 states that the
instrument vector has an invertible design matrix, which is identical to the core assumption about re-
gressors in the linear regression model. This excludes linearly redundant instruments. Assumptions
12.1.6 and 12.1.7 are the key identification conditions for instrumental variables. Assumption 12.1.6
states that the instruments and regressors have a full-rank cross-moment matrix. This is often called the
relevance condition. Assumption 12.1.7 states that the instrumental variables and structural error are
uncorrelated. Assumptions 12.1.5-7 are identical to Definition 12.1.

Theorem 12.1 Under Assumption 12.1, β̂2sls −→p β as n →∞.

The proof of the theorem is provided below.
This theorem shows that the 2SLS estimator is consistent for the structural coefficientβunder similar

moment conditions as the least squares estimator. The key differences are the instrumental variables
assumption E [Z e] = 0 and the relevance condition rank

(
E
[

Z X ′])= k.
The result includes the IV estimator (when `= k) as a special case.
The proof of this consistency result is similar to that for least squares. Take the structural equation

Y = Xβ+e in matrix format and substitute it into the expression for the estimator. We obtain

β̂2sls =
(

X ′Z
(

Z ′Z
)−1 Z ′X

)−1
X ′Z

(
Z ′Z

)−1 Z ′ (Xβ+e
)

=β+
(

X ′Z
(

Z ′Z
)−1 Z ′X

)−1
X ′Z

(
Z ′Z

)−1 Z ′e. (12.39)

This separates out the stochastic component. Re-writing and applying the WLLN and CMT

β̂2sls −β=
((

1

n
X ′Z

)(
1

n
Z ′Z

)−1 (
1

n
Z ′X

))−1

×
(

1

n
X ′Z

)(
1

n
Z ′Z

)−1 (
1

n
Z ′e

)
−→

p

(
Q X Z Q−1

Z Z Q Z X
)−1

Q X Z Q−1
Z ZE [Z e] = 0

where

Q X Z = E[
X Z ′]

Q Z Z = E[
Z Z ′]

Q Z X = E[
Z X ′] .

The WLLN holds under the i.i.d. Assumption 12.1.1 and the finite second moment Assumptions 12.1.2-4.
The continuous mapping theorem applies if the matrices Q Z Z and Q X Z Q−1

Z Z Q Z X are invertible, which
hold under the identification Assumptions 12.1.5 and 12.1.6. The final equality uses Assumption 12.1.7.

12.16 Asymptotic Distribution of 2SLS

We now show that the 2SLS estimator satisfies a central limit theorem. We first state a set of sufficient
regularity conditions.
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Assumption 12.2 In addition to Assumption 12.1,

1. E
[
Y 4

1

]<∞.

2. E‖X ‖4 <∞.

3. E‖Z‖4 <∞.

4. Ω= E[
Z Z ′e2

]
is positive definite.

Assumption 12.2 strengthens Assumption 12.1 by requiring that the dependent variable and instru-
ments have finite fourth moments. This is used to establish the central limit theorem.

Theorem 12.2 Under Assumption 12.2, as n →∞.

p
n

(
β̂2sls −β

)−→
d

N
(
0,V β

)
where

V β =
(
Q X Z Q−1

Z Z Q Z X
)−1 (

Q X Z Q−1
Z ZΩQ−1

Z Z Q Z X
)(

Q X Z Q−1
Z Z Q Z X

)−1
.

This shows that the 2SLS estimator converges at a
p

n rate to a normal random vector. It shows as
well the form of the covariance matrix. The latter takes a substantially more complicated form than the
least squares estimator.

As in the case of least squares estimation the asymptotic variance simplifies under a conditional ho-
moskedasticity condition. For 2SLS the simplification occurs when E

[
e2 | Z

] = σ2. This holds when Z
and e are independent. It may be reasonable in some contexts to conceive that the error e is indepen-
dent of the excluded instruments Z2, since by assumption the impact of Z2 on Y is only through X , but
there is no reason to expect e to be independent of the included exogenous variables X1. Hence het-
eroskedasticity should be equally expected in 2SLS and least squares regression. Nevertheless, under

homoskedasticity we have the simplificationsΩ=Q Z Zσ
2 and V β =V 0

β

def= (
Q X Z Q−1

Z Z Q Z X
)−1

σ2.
The derivation of the asymptotic distribution builds on the proof of consistency. Using equation

(12.39) we have

p
n

(
β̂2sls −β

)= ((
1

n
X ′Z

)(
1

n
Z ′Z

)−1 (
1

n
Z ′X

))−1 (
1

n
X ′Z

)(
1

n
Z ′Z

)−1 (
1p
n

Z ′e
)

.

We apply the WLLN and CMT for the moment matrices involving X and Z the same as in the proof of
consistency. In addition, by the CLT for i.i.d. observations

1p
n

Z ′e = 1p
n

n∑
i=1

Zi ei −→
d

N(0,Ω)

because the vector Zi ei is i.i.d. and mean zero under Assumptions 12.1.1 and 12.1.7, and has a finite
second moment as we verify below.
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We obtain

p
n

(
β̂2sls −β

)= ((
1

n
X ′Z

)(
1

n
Z ′Z

)−1 (
1

n
Z ′X

))−1 (
1

n
X ′Z

)(
1

n
Z ′Z

)−1 (
1p
n

Z ′e
)

−→
d

(
Q X Z Q−1

Z Z Q Z X
)−1

Q X Z Q−1
Z Z N(0,Ω) = N

(
0,V β

)
as stated.

To complete the proof we demonstrate that Z e has a finite second moment under Assumption 12.2.
To see this, note that by Minkowski’s inequality (B.34)(

E
[
e4])1/4 =

(
E
[(

Y1 −X ′β
)4

])1/4 ≤ (
E
[
Y 4

1

])1/4 +∥∥β∥∥(
E‖X ‖4)1/4 <∞

under Assumptions 12.2.1 and 12.2.2. Then by the Cauchy-Schwarz inequality (B.32)

E‖Z e‖2 ≤ (
E‖Z‖4)1/2 (

E
[
e4])1/2 <∞

using Assumptions 12.2.3.

12.17 Determinants of 2SLS Variance

It is instructive to examine the asymptotic variance of the 2SLS estimator to understand the factors
which determine the precision (or lack thereof) of the estimator. As in the least squares case it is more
transparent to examine the variance under the assumption of homoskedasticity. In this case the asymp-
totic variance takes the form

V 0
β =

(
Q X Z Q−1

Z Z Q Z X
)−1

σ2

=
(
E
[

X Z ′](
E
[

Z Z ′])−1
E
[

Z X ′])−1
E
[
e2] .

As in the least squares case we can see that the variance of β̂2sls is increasing in the variance of the error
e and decreasing in the variance of X . What is different is that the variance is decreasing in the (matrix-
valued) correlation between X and Z .

It is also useful to observe that the variance expression is not affected by the variance structure of
Z . Indeed, V 0

β
is invariant to rotations of Z (if you replace Z with C Z for invertible C the expression

does not change). This means that the variance expression is not affected by the scaling of Z and is not
directly affected by correlation among the Z .

We can also use this expression to examine the impact of increasing the instrument set. Suppose we
partition Z = (Za , Zb) where dim(Za) ≥ k so we can construct a 2SLS estimator using Za alone. Let β̂a

and β̂ denote the 2SLS estimators constructed using the instrument sets Za and (Za , Zb), respectively.
Without loss of generality we can assume that Za and Zb are uncorrelated (if not, replace Zb with the
projection error after projecting onto Za). In this case both E

[
Z Z ′] and

(
E
[

Z Z ′])−1 are block diagonal
so

avar
[
β̂
]= (

E
[

X Z ′](
E
[

Z Z ′])−1
E
[

Z X ′])−1
σ2

=
(
E
[

X Z ′
a

](
E
[

Za Z ′
a

])−1
E
[

Za X ′]+E[
X Z ′

b

](
E
[

Zb Z ′
b

])−1
E
[

Zb X ′])−1
σ2

≤
(
E
[

X Z ′
a

](
E
[

Za Z ′
a

])−1
E
[

Za X ′])−1
σ2

= avar
[
β̂a

]
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with strict inequality if E
[

X Z ′
b

] 6= 0. Thus the 2SLS estimator with the full instrument set has a smaller
asymptotic variance than the estimator with the smaller instrument set.

What we have shown is that the asymptotic variance of the 2SLS estimator is decreasing as the num-
ber of instruments increases. From the viewpoint of asymptotic efficiency this means that it is better to
use more instruments (when they are available and are all known to be valid instruments).

Unfortunately there is a catch. It turns out that the finite sample bias of the 2SLS estimator (which
cannot be calculated exactly but can be approximated using asymptotic expansions) is generically in-
creasing linearily as the number of instruments increases. We will see some calculations illustrating this
phenomenon in Section 12.37. Thus the choice of instruments in practice induces a trade-off between
bias and variance.

12.18 Covariance Matrix Estimation

Estimation of the asymptotic covariance matrix V β is done using similar techniques as for least
squares estimation. The estimator is constructed by replacing the population moment matrices by sam-
ple counterparts. Thus

V̂ β =
(
Q̂ X Z Q̂

−1
Z Z Q̂ Z X

)−1 (
Q̂ X Z Q̂

−1
Z Z Ω̂Q̂

−1
Z Z Q̂ Z X

)(
Q̂ X Z Q̂

−1
Z Z Q̂ Z X

)−1
(12.40)

where

Q̂ Z Z = 1

n

n∑
i=1

Zi Z ′
i =

1

n
Z ′Z

Q̂ X Z = 1

n

n∑
i=1

Xi Z ′
i =

1

n
X ′Z

Ω̂= 1

n

n∑
i=1

Zi Z ′
i ê2

i

êi = Yi −X ′
i β̂2sls.

The homoskedastic covariance matrix can be estimated by

V̂
0
β =

(
Q̂ X Z Q̂

−1
Z Z Q̂ Z X

)−1
σ̂2

σ̂2 = 1

n

n∑
i=1

ê2
i .

Standard errors for the coefficients are obtained as the square roots of the diagonal elements of
n−1V̂ β. Confidence intervals, t-tests, and Wald tests may all be constructed from the coefficient esti-
mates and covariance matrix estimate exactly as for least squares regression.

In Stata the ivregress command by default calculates the covariance matrix estimator using the
homoskedastic covariance matrix. To obtain covariance matrix estimation and standard errors with the
robust estimator V̂ β, use the “,r” option.

Theorem 12.3 Under Assumption 12.2, as n →∞, V̂
0
β −→p V 0

β
and V̂ β −→p V β.
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To prove Theorem 12.3 the key is to show Ω̂−→
p
Ω as the other convergence results were established

in the proof of consistency. We defer this to Exercise 12.6.
It is important that the covariance matrix be constructed using the correct residual formula êi = Yi −

X ′
i β̂2sls. This is different than what would be obtained if the “two-stage” computation method were used.

To see this let’s walk through the two-stage method. First, we estimate the reduced form Xi = Γ̂′Zi + ûi

to obtain the predicted values X̂i = Γ̂′Zi . Second, we regress Y on X̂ to obtain the 2SLS estimator β̂2sls.
This latter regression takes the form

Yi = X̂ ′
i β̂2sls + v̂i (12.41)

where v̂i are least squares residuals. The covariance matrix (and standard errors) reported by this regres-
sion are constructed using the residual v̂i . For example, the homoskedastic formula is

V̂ β =
(

1

n
X̂

′
X̂

)−1

σ̂2
v =

(
Q̂ X Z Q̂

−1
Z Z Q̂ Z X

)−1
σ̂2

v

σ̂2
v = 1

n

n∑
i=1

v̂2
i

which is proportional to the variance estimator σ̂2
v rather than σ̂2. This is important because the residual

v̂ differs from ê. We can see this because the regression (12.41) uses the regressor X̂ rather than X .
Indeed, we calculate that

v̂i = Yi −X ′
i β̂2sls +

(
Xi − X̂i

)′
β̂2sls = êi + û′

i β̂2sls 6= êi .

This means that standard errors reported by the regression (12.41) will be incorrect.
This problem is avoided if the 2SLS estimator is constructed directly and the standard errors calcu-

lated with the correct formula rather than taking the “two-step” shortcut.

12.19 LIML Asymptotic Distribution

In this section we show that the LIML estimator is asymptotically equivalent to the 2SLS estimator.
We recommend, however, a different covariance matrix estimator based on the IV representation.

We start by deriving the asymptotic distribution. Recall that the LIML estimator has several repre-
sentations including

β̂liml =
(

X ′ (I n − κ̂M Z ) X
)−1 (

X ′ (I n − κ̂M Z )Y 1
)

where

κ̂= min
γ

γ′~Y ′
M 1~Y γ

γ′~Y ′
MZ ~Y γ

and γ= (1,−β′
2)′. For the distribution theory it is useful to rewrite the slope coefficient as

β̂liml =
(

X ′P Z X − µ̂X ′M Z X
)−1 (

X ′P Z Y 1 − µ̂X ′M Z Y 1
)

where

µ̂= κ̂−1 = min
γ

γ′~Y ′
M 1Z 2

(
Z ′

2M 1Z 2
)−1 Z ′

2M 1~Y γ

γ′~Y ′
MZ ~Y γ

.

This second equality holds since the span of Z = [Z 1, Z 2] equals the span of [Z 1, M 1Z 2]. This implies

P Z = Z
(

Z ′Z
)−1 Z ′ = Z 1

(
Z ′

1Z 1
)−1 Z ′

1 +M 1Z 2
(

Z ′
2M 1Z 2

)−1 Z ′
2M 1.
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We now show that nµ̂=Op (1). The reduced form (12.33) implies that

Y = Z 1Π1 +Z 2Π2 +e.

It will be important to note that
Π2 = [λ2,Γ22] = [

Γ22β2,Γ22
]

using (12.15). It follows thatΠ2γ= 0. Note Uγ= e. Then MZ Y γ= MZ e and M 1Y γ= M 1e. Hence

nµ̂= min
γ

γ′~Y ′
M 1Z 2

(
Z ′

2M 1Z 2
)−1 Z ′

2M 1~Y γ

γ′ 1
n
~Y

′
MZ ~Y γ

≤
(

1p
n

e ′M 1Z 2

)( 1
n Z ′

2M 1Z 2
)−1

(
1p
n

Z ′
2M 1e

)
1
n e ′MZ e

=Op (1).

It follows that

p
n

(
β̂liml −β

)= (
1

n
X ′P Z X − µ̂ 1

n
X ′M Z X

)−1 (
1p
n

X ′P Z e −p
nµ̂

1

n
X ′M Z e

)
=

(
1

n
X ′P Z X −op (1)

)−1 (
1p
n

X ′P Z e −op (1)

)
=p

n
(
β̂2sls −β

)+op (1)

which means that LIML and 2SLS have the same asymptotic distribution. This holds under the same
assumptions as for 2SLS.

Consequently, one method to obtain an asymptotically valid covariance estimator for LIML is to use
the 2SLS formula. However, this is not the best choice. Rather, consider the IV representation for LIML

β̂liml =
(

X̃
′
X

)−1 (
X̃

′
Y 1

)
where

X̃ =
(

X 1

X 2 − κ̂Û 2

)
and Û 2 = MZ X 2. The asymptotic covariance matrix formula for an IV estimator is

V̂ β =
(

1

n
X̃

′
X

)−1

Ω̂

(
1

n
X ′X̃

)−1

(12.42)

where

Ω̂= 1

n

n∑
i=1

X̃i X̃i ê2
i

êi = Y1i −X ′
i β̂liml.

This simplifies to the 2SLS formula when κ̂ = 1 but otherwise differs. The estimator (12.42) is a better
choice than the 2SLS formula for covariance matrix estimation as it takes advantage of the LIML estima-
tor structure.
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12.20 Functions of Parameters

Given the distribution theory in Theorems 12.2 and 12.3 it is straightforward to derive the asymptotic
distribution of smooth nonlinear functions of the coefficient estimators.

Specifically, given a function r
(
β
)

: Rk → Θ ⊂ Rq we define the parameter θ = r
(
β
)
. Given β̂2sls a

natural estimator of θ is θ̂2sls = r
(
β̂2sls

)
.

Consistency follows from Theorem 12.1 and the continuous mapping theorem.

Theorem 12.4 Under Assumptions 12.1 and 7.3, as n →∞, θ̂2sls −→p θ.

If r
(
β
)

is differentiable then an estimator of the asymptotic covariance matrix for θ̂2sls is

V̂ θ = R̂
′
V̂ βR̂

R̂ = ∂

∂β
r (β̂2sls)′.

We similarly define the homoskedastic variance estimator as V̂
0
θ = R̂

′
V̂

0
βR̂ .

The asymptotic distribution theory follows from Theorems 12.2 and 12.3 and the delta method.

Theorem 12.5 Under Assumptions 12.2 and 7.3, as n →∞,

p
n

(
θ̂2sls −θ

)−→
d

N(0,V θ)

and V̂ θ −→p V θ where V θ = R ′V βR and R = ∂

∂β
r (β)′.

When q = 1, a standard error for θ̂2sls is s(θ̂2sls) =
√

n−1V̂ θ .
For example, let’s take the parameter estimates from the fifth column of Table 12.1, which are the

2SLS estimates with three endogenous regressors and four excluded instruments. Suppose we are in-
terested in the return to experience, which depends on the level of experience. The estimated return
at experience= 10 is 0.047−0.032×2×10/100 = 0.041 and its standard error is 0.003. This implies a 4%
increase in wages per year of experience and is precisely estimated. Or suppose we are interested in the
level of experience at which the function maximizes. The estimate is 50× 0.047/0.032 = 73. This has
a standard error of 249. The large standard error implies that the estimate (73 years of experience) is
without precision and is thus uninformative.

12.21 Hypothesis Tests

As in the previous section, for a given function r
(
β
)

: Rk →Θ⊂ Rq we define the parameter θ = r
(
β
)

and consider tests of hypotheses of the form H0 : θ = θ0 against H1 : θ 6= θ0. The Wald statistic for H0 is

W = n
(
θ̂−θ0

)′
V̂

−1
θ̂

(
θ̂−θ0

)
.
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From Theorem 12.5 we deduce that W is asymptotically chi-square distributed. Let Gq (u) denote the χ2
q

distribution function.

Theorem 12.6 Under Assumption 12.2, Assumption 7.3, and H0, then as n →
∞, W −→

d
χ2

q . For c satisfying α = 1−Gq (c), P [W > c |H0] −→ α so the test

“Reject H0 if W > c” has asymptotic size α.

In linear regression we often report the F version of the Wald statistic (by dividing by degrees of
freedom) and use the F distribution for inference as this is justified in the normal sampling model. For
2SLS estimation, however, this is not done as there is no finite sample F justification for the F version of
the Wald statistic.

To illustrate, once again let’s take the parameter estimates from the fifth column of Table 12.1 and
again consider the return to experience which is determined by the coefficients on experience and expe-
rience2/100. Neither coefficient is statisticially significant at the 5% level and it is unclear if the overall
effect is statistically significant. We can assess this by testing the joint hypothesis that both coefficients
are zero. The Wald statistic for this hypothesis is W = 244 which is highly significant with an asymptotic
p-value of 0.0000. Thus by examining the joint test in contrast to the individual tests is quite clear that
experience has a non-zero effect.

12.22 Finite Sample Theory

In Chapter 5 we reviewed the rich exact distribution available for the linear regression model under
the assumption of normal innovations. There is a similarly rich literature in econometrics for IV, 2SLS
and LIML estimators. An excellent review of the theory, mostly developed in the 1970s and early 1980s,
is provided by Peter Phillips (1983).

This theory was developed under the assumption that the structural error vector e and reduced form
error u2 are multivariate normally distributed. Even though the errors are normal, IV-type estimators
are nonlinear functions of these errors and are thus non-normally distributed. Formulae for the exact
distributions have been derived but are unfortunately functions of model parameters and hence are not
directly useful for finite sample inference.

One important implication of this literature is that even in this optimal context of exact normal inno-
vations the finite sample distributions of the IV estimators are non-normal and the finite sample distri-
butions of test statistics are not chi-squared. The normal and chi-squared approximations hold asymp-
totically but there is no reason to expect these approximations to be accurate in finite samples.

A second important result is that under the assumption of normal errors most of the estimators do
not have finite moments in any finite sample. A clean statement concerning the existence of moments
for the 2SLS estimator was obtained by Kinal (1980) for the case of joint normality. Let β̂2sls,2 be the 2SLS
estimators of the coefficients on the endogeneous regressors.

Theorem 12.7 If (Y , X , Z ) are jointly normal, then for any r , E
∥∥β̂2sls,2

∥∥r <∞ if
and only if r < `2 −k2 +1.
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This result states that in the just-identified case the IV estimator does not have any finite order in-
teger moments. In the over-identified case the number of finite moments corresponds to the number
of overidentifying restrictions (`2 −k2). Thus if there is one over-identifying restriction 2SLS has a finite
mean and if there are two over-identifying restrictions then the 2SLS estimator has a finite variance.

The LIML estimator has a more severe moment problem as it has no finite integer moments (Mari-
ano, 1982) regardless of the number of over-identifying restrictions. Due to this lack of moments Fuller
(1977) proposed the following modification of LIML. His estimator is

β̂Fuller =
(

X ′ (I n −K M Z ) X
)−1 (

X ′ (I n −K M Z )Y 1
)

K = κ̂− C

n −k

for some C ≥ 1. Fuller showed that his estimator has all moments finite under suitable conditions.
Hausman, Newey, Woutersen, Chao and Swanson (2012) propose an estimator they call HFUL which

combines the ideas of JIVE and Fuller which has excellent finite sample properties.

12.23 Bootstrap for 2SLS

The standard bootstrap algorithm for IV, 2SLS, and GMM generates bootstrap samples by sampling
the triplets (Y ∗

1i , X ∗
i , Z∗

i ) independently and with replacement from the original sample {(Y1i , Xi , Zi ) : i =
1, ...,n}. Sampling n such observations and stacking into observation matrices (Y ∗

1 , X ∗, Z ∗), the boot-
strap 2SLS estimator is

β̂∗
2sls =

(
X ∗′Z ∗ (

Z ∗′Z ∗)−1 Z ∗′X ∗
)−1

X ∗′Z ∗ (
Z ∗′Z ∗)−1 Z ∗′Y ∗

1 .

This is repeated B times to create a sample of B bootstrap draws. Given these draws bootstrap statistics
can be calculated. This includes the bootstrap estimate of variance, standard errors, and confidence
intervals, including percentile, BC percentile, BCa and percentile-t.

We now show that the bootstrap estimator has the same asymptotic distribution as the sample esti-
mator. For overidentified cases this demonstration requires a bit of extra care. This was first shown by
Hahn (1996).

The sample observations satisfy the model Y1 = X ′β+ e with E [Z e] = 0. The true value of β in the
population can be written as

β=
(
E
[

X Z ′]E[
Z Z ′]−1

E
[

Z X ′])−1
E
[

X Z ′]E[
Z Z ′]−1

E [Z Y1] .

The true value in the bootstrap universe is obtained by replacing the population moments by the sample
moments, which equals the 2SLS estimator(

E∗
[

X ∗Z∗′]E∗ [
Z∗Z∗′]−1

E∗
[

Z∗X ∗′])−1
E∗

[
X ∗Z∗′]E∗ [

Z∗Z∗′]−1
E∗

[
Z∗Y ∗

1

]
=

((
1

n
X ′Z

)(
1

n
Z ′Z

)−1 (
1

n
Z ′X

))−1 (
1

n
X ′Z

)(
1

n
Z ′Z

)−1 [
1

n
Z ′Y 1

]
= β̂2sls.

The bootstrap observations thus satisfy the equation Y ∗
1i = X ∗′

i β̂2sls + e∗i . In matrix notation for the
sample this is

Y ∗
1 = X ∗′β̂2sls +e∗. (12.43)
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Given a bootstrap triple (Y ∗
1i , X ∗

i , Z∗
i ) = (Y1 j , X j , Z j ) for some observation j the true bootstrap error is

e∗i = Y1 j −X ′
j β̂2sls = ê j .

It follows that
E∗

[
Z∗e∗

]= n−1Z ′ê. (12.44)

This is generally not equal to zero in the over-identified case.
This an an important complication. In over-identified models the true observations satisfy the pop-

ulation condition E [Z e] = 0 but in the bootstrap sample E∗ [Z∗e∗] 6= 0. This means that to apply the
central limit theorem to the bootstrap estimator we first have to recenter the moment condition. That is,
(12.44) and the bootstrap CLT imply

1p
n

(
Z ∗′e∗−Z ′ê

)= 1p
n

n∑
i=1

(
Z∗

i e∗i −E∗ [
Z∗e∗

])−→
d∗ N(0,Ω) (12.45)

where
Ω= E[

Z Z ′e2] .

Using (12.43) we can normalize the bootstrap estimator as

p
n

(
β̂
∗
2sls − β̂2sls

)
=p

n
(

X ∗′Z ∗ (
Z ∗′Z ∗)−1 Z ∗′X ∗

)−1
X ∗′Z ∗ (

Z ∗′Z ∗)−1 Z ∗′e∗

=
((

1

n
X ∗′Z ∗

)(
1

n
Z ∗′Z ∗

)−1 (
1

n
Z ∗′X ∗

))−1

×
(

1

n
X ∗′Z ∗

)(
1

n
Z ∗′Z ∗

)−1 1p
n

(
Z ∗′e∗−Z ′ê

)
(12.46)

+
((

1

n
X ∗′Z ∗

)(
1

n
Z ∗′Z ∗

)−1 (
1

n
Z ∗′X ∗

))−1

×
(

1

n
X ∗′Z ∗

)(
1

n
Z ∗′Z ∗

)−1 (
1p
n

Z ′ê
)

. (12.47)

Using the bootstrap WLLN,

1

n
X ∗′Z ∗ = 1

n
X ′Z +op (1)

1

n
Z ∗′Z ∗ = 1

n
Z ′Z +op (1).

This implies (12.47) is equal to

p
n

(
X ′Z

(
Z ′Z

)−1 (
Z ′X

))−1
X ′Z

(
Z ′Z

)−1 Z ′ê +op (1) = 0+op (1).

The equality holds because the 2SLS first-order condition implies X ′Z
(

Z ′Z
)−1 Z ′ê = 0. Also, combined

with (12.45) we see that (12.46) converges in bootstrap distribution to(
Q X Z Q−1

Z Z Q Z X
)−1

Q X Z Q−1
Z Z N(0,Ω) = N

(
0,V β

)
where V β is the 2SLS asymptotic variance from Theorem 12.2. This is the asymptotic distribution ofp

n
(
β̂∗

2sls − β̂2sls
)
.

By standard calculations we can also show that bootstrap t-ratios are asymptotically normal.
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Theorem 12.8 Under Assumption 12.2, as n →∞
p

n
(
β̂∗

2sls − β̂2sls
)−→

d∗ N
(
0,V β

)
where V β is the 2SLS asymptotic variance from Theorem 12.2. Furthermore,

T ∗ =
p

n
(
β̂∗

2sls − β̂2sls
)

s
(
β̂∗

2sls

) −→
d∗ N(0,1) .

This shows that percentile-type and percentile-t confidence intervals are asymptotically valid.
One might expect that the asymptotic refinement arguments extend to the BCa and percentile-t

methods but this does not appear to be the case. While
p

n
(
β̂∗

2sls − β̂2sls
)

and
p

n
(
β̂2sls −β

)
have the

same asymptotic distribution they differ in finite samples by an Op
(
n−1/2

)
term. This means that they

have distinct Edgeworth expansions. Consequently, unadjusted bootstrap methods will not achieve an
asymptotic refinement.

An alternative suggested by Hall and Horowitz (1996) is to recenter the bootstrap 2SLS estimator so
that it satisfies the correct orthogonality condition. Define

β̂∗∗
2sls =

(
X ∗′Z ∗ (

Z ∗′Z ∗)−1 Z ∗′X ∗
)−1

X ∗′Z ∗ (
Z ∗′Z ∗)−1 (

Z ∗′Y ∗
1 −Z ′ê

)
.

We can see that

p
n

(
β̂∗∗

2sls − β̂2sls
)= (

1

n
X ∗′Z ∗

(
1

n
Z ∗′Z ∗

)−1 1

n
Z ∗′X ∗

)−1

×
(

1

n
X ∗′Z ∗

)(
1

n
Z ∗′Z ∗

)−1
(

1p
n

n∑
i=1

(
Z∗

i e∗i −E∗ [
Z∗e∗

]))

which converges to the N
(
0,V β

)
distribution without special handling. Hall and Horowitz (1996) show

that percentile-t methods applied to β̂∗∗
2sls achieve an asymptotic refinement and are thus preferred to

the unadjusted bootstrap estimator.
This recentered estimator, however, is not the standard implementation of the bootstrap for 2SLS as

used in empirical practice.

12.24 The Peril of Bootstrap 2SLS Standard Errors

It is tempting to use the bootstrap algorithm to estimate variance matrices and standard errors for the
2SLS estimator. In fact this is one of the most common uses of bootstrap methods in current econometric
practice. Unfortunately this is an unjustified and ill-conceived idea and should not be done. In finite
samples the 2SLS estimator may not have a finite second moment, meaning that bootstrap variance
estimates are unstable and unreliable.

Theorem 12.7 shows that under jointly normality the 2SLS estimator will have a finite variance if
and only if the number of overidentifying restrictions is two or larger. Thus for just-identified IV, and
2SLS with one degree of overidentification, the finite sample variance is infinite. The bootstrap will be
attempting to estimate this value – infinity – and will yield nonsensical answers. When the observations
are not jointly normal there is no finite sample theory (so it is possible that the finite sample variance is
actually finite) but this is unknown and unverifiable.
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In overidentified settings when the number of overidentifying restrictions is two or larger the boot-
strap can be applied for standard error estimation. However this is not the most common application of
IV methods in econometric practice and thus should be viewed as the exception rather than the norm.

To understand what is going on consider the simplest case of a just-identified model with a single
endogenous regressor and no included exogenous regressors. In this case the estimator can be written
as a ratio of means

β̂iv −β=
∑n

i=1 Zi ei∑n
i=1 Zi Xi

.

Under joint normality of (ei , Xi ) this has a Cauchy-like distribution which does not possess any finite
integer moments. The trouble is that the denominator can be either positive or negative, and arbitrarily
close to zero. This means that the ratio can take arbitrarily large values.

To illustrate let us return to the basic Card IV wage regression from column 2 of Table 12.1 which
uses college as an instrument for education. We estimate this equation for the subsample of Black men
which has n = 703 observations, and focus on the coefficient for the return to education. The coefficient
estimate is reported in Table 12.3, along with asymptotic, jackknife, and two bootstrap standard errors
each calculated with 10,000 bootstrap replications.

Table 12.3: Instrumental Variable Return to Education for Black Men

Estimate 0.11
Asymptotic s.e. (0.11)
Jackknife s.e. (0.11)
Bootstrap s.e. (standard) (1.42)
Bootstrap s.e. (repeat) (4.79)

The bootstrap standard errors are an order of magnitude larger than the asymptotic standard errors,
and vary substantially across the bootstrap runs despite using 10,000 bootstrap replications. This indi-
cates moment failure and unreliability of the bootstrap standard errors.

This is a strong message that bootstrap standard errors should not be computed for IV estimators.
Instead, report percentile-type confidence intervals. A further cautionary remark is that in finite samples
percentile confidence intervals also may have poor coverage rates, especially in contexts such as the
results of Table 12.3.

12.25 Clustered Dependence

In Section 4.23 we introduced clustered dependence. We can also use the methods of clustered de-
pendence for 2SLS estimation. Recall, the g th cluster has the observations Y g = (Y1g , ...,Yng g )′, X g =
(X1g , ..., Xng g )′, and Z g = (Z1g , ..., Zng g )′. The structural equation for the g th cluster can be written as the
matrix system Y g = X gβ+eg . Using this notation the centered 2SLS estimator can be written as

β̂2sls −β=
(

X ′Z
(

Z ′Z
)−1 Z ′X

)−1
X ′Z

(
Z ′Z

)−1 Z ′e

=
(

X ′Z
(

Z ′Z
)−1 Z ′X

)−1
X ′Z

(
Z ′Z

)−1

(
G∑

g=1
Z ′

g eg

)
.

The cluster-robust covariance matrix estimator for β̂2sls thus takes the form

V̂ β =
(

X ′Z
(

Z ′Z
)−1 Z ′X

)−1
X ′Z

(
Z ′Z

)−1 Ŝ
(

Z ′Z
)−1 Z ′X

(
X ′Z

(
Z ′Z

)−1 Z ′X
)−1
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with

Ŝ =
G∑

g=1
Z ′

g êg ê ′
g Z g

and the clustered residuals êg = Y g −X g β̂2sls.
The difference between the heteroskedasticity-robust estimator and the cluster-robust estimator is

the covariance estimator Ŝ.

12.26 Generated Regressors

The “two-stage” form of the 2SLS estimator is an example of what is called “estimation with generated
regressors”. We say a regressor is a generated if it is an estimate of an idealized regressor or if it is a
function of estimated parameters. Typically, a generated regressor Ŵ is an estimate of an unobserved
ideal regressor W . As an estimate, Ŵi is a function of the full sample not just observation i . Hence it is not
“i.i.d.” as it is dependent across observations which invalidates the conventional regression assumptions.
Consequently, the sampling distribution of regression estimates is affected. Unless this is incorporated
into our inference methods, covariance matrix estimates and standard errors will be incorrect.

The econometric theory of generated regressors was developed by Pagan (1984) for linear models and
extended to nonlinear models and more general two-step estimators by Pagan (1986). Independently,
similar results were obtained by Murphy and Topel (1985). Here we focus on the linear model:

Y =W ′β+ v (12.48)

W = A′Z
E [Z v] = 0.

The observables are (Y , Z ). We also have an estimate Â of A.
Given Â we construct the estimate Ŵi = Â

′
Zi of Wi , replace Wi in (12.48) with Ŵi , and then estimate

β by least squares, resulting in the estimator

β̂=
(

n∑
i=1

Ŵi Ŵ ′
i

)−1 (
n∑

i=1
Ŵi Yi

)
. (12.49)

The regressors Ŵi are called generated regressors. The properties of β̂ are different than least squares
with i.i.d. observations since the generated regressors are themselves estimates.

This framework includes 2SLS as well as other common estimators. The 2SLS model can be written
as (12.48) by looking at the reduced form equation (12.13), with W = Γ′Z , A = Γ, and Â = Γ̂.

The examples which motivated Pagan (1984) and Murphy and Topel (1985) emerged from the macroe-
conomics literature, in particular the work of Barro (1977) which examined the impact of inflation expec-
tations and expectation errors on economic output. Let π denote realized inflation and Z be variables
available to economic agents. A model of inflation expectations sets W = E [π | Z ] = γ′Z and a model of
expectation error sets W = π−E [π | Z ] = π−γ′Z . Since expectations and errors are not observed they
are replaced in applications with the fitted values Ŵi = γ̂′Zi and residuals Ŵi = πi − γ̂′Zi where γ̂ is the
coefficient from a regression of π on Z .

The generated regressor framework includes all of these examples.
The goal is to obtain a distributional approximation for β̂ in order to construct standard errors, con-

fidence intervals, and tests. Start by substituting equation (12.48) into (12.49). We obtain

β̂=
(

n∑
i=1

Ŵi Ŵ ′
i

)−1 (
n∑

i=1
Ŵi

(
W ′

i β+ vi
))

.
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Next, substitute W ′
i β= Ŵ ′

i β+ (
Wi −Ŵi

)′
β. We obtain

β̂−β=
(

n∑
i=1

Ŵi Ŵ ′
i

)−1 (
n∑

i=1
Ŵi

((
Wi −Ŵi

)′
β+ vi

))
. (12.50)

Effectively, this shows that the distribution of β̂−β has two random components, one due to the con-
ventional regression component and the second due to the generated regressor. Conventional variance
estimators do not address this second component and thus will be biased.

Interestingly, the distribution in (12.50) dramatically simplifies in the special case that the “gener-
ated regressor term”

(
Wi −Ŵi

)′
β disappears. This occurs when the slope coefficients on the generated

regressors are zero. To be specific, partition Wi = (W1i ,W2i ), Ŵi =
(
W1i ,Ŵ2i

)
, and β = (

β1,β2
)

so that

W1i are the conventional observed regressors and Ŵ2i are the generated regressors. Then
(
Wi −Ŵi

)′
β=(

W2i −Ŵ2i
)′
β2. Thus if β2 = 0 this term disappears. In this case (12.50) equals

β̂− β̂=
(

n∑
i=1

Ŵi Ŵ ′
i

)−1 (
n∑

i=1
Ŵi vi

)
.

This is a dramatic simplification.
Furthermore, since Ŵi = Â

′
Zi we can write the estimator as a function of sample moments:

p
n

(
β̂−β)= (

Â
′
(

1

n

n∑
i=1

Zi Z ′
i

)
Â

)−1

Â
′
(

1p
n

n∑
i=1

Zi vi

)
.

If Â −→
p

A we find from standard manipulations that
p

n
(
β̂−β)−→

d
N

(
0,V β

)
where

V β = (
A′E

[
Z Z ′] A

)−1 (
A′E

[
Z Z ′v2] A

)(
A′E

[
Z Z ′] A

)−1 . (12.51)

The conventional asymptotic covariance matrix estimator for β̂ takes the form

V̂ β =
(

1

n

n∑
i=1

Ŵi Ŵ ′
i

)−1 (
1

n

n∑
i=1

Ŵi Ŵ ′
i v̂2

i

)(
1

n

n∑
i=1

Ŵi Ŵ ′
i

)−1

(12.52)

where v̂i = Yi −Ŵ ′
i β̂. Under the given assumptions, V̂ β −→

p
V β. Thus inference using V̂ β is asymptot-

ically valid. This is useful when we are interested in tests of β2 = 0. Often this is of major interest in
applications.

To test H0 : β2 = 0 we partition β̂= (
β̂1, β̂2

)
and construct a conventional Wald statistic

W = nβ̂′
2

([
V̂ β

]
22

)−1
β̂2.

Theorem 12.9 Take model (12.48) with E
[
Y 4

]<∞, E‖Z‖4 <∞, A′E
[

Z Z ′] A >
0, Â −→

p
A, and Ŵi =

(
W1i ,Ŵ2i

)
. Under H0 : β2 = 0, as n →∞,

p
n

(
β̂−β) −→

d

N
(
0,V β

)
where V β is given in (12.51). For V̂ β given in (12.52), V̂ β −→

p
V β.

Furthermore, W −→
d

χ2
q where q = dim(β2). For c satisfying α = 1 −Gq (c),

P [W > c |H0] →α, so the test “Reject H0 if W > c” has asymptotic size α.
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In the special case that Â = A (X , Z ) and v | X , Z ∼ N
(
0,σ2

)
there is a finite sample version of the pre-

vious result. Let W 0 be the Wald statistic constructed with a homoskedastic covariance matrix estimator,
and let

F =W /q (12.53)

be the the F statistic, where q = dim(β2).

Theorem 12.10 Take model (12.48) with Â = A (X , Z ), v | X , Z ∼ N
(
0,σ2

)
and

Ŵ = (
W1,Ŵ2

)
. Under H0 : β2 = 0, t-statistics have exact N(0,1) distributions,

and the F statistic (12.53) has an exact Fq,n−k distribution where q = dim(β2)
and k = dim(β).

To summarize, in the model Y = W ′
1β1 +W ′

2β2 + v where W2 is not observed but replaced with an
estimate Ŵ2, conventional significance tests for H0 : β2 = 0 are asymptotically valid without adjustment.

While this theory allows tests of H0 : β2 = 0 it unfortunately does not justify conventional standard
errors or confidence intervals. For this, we need to work out the distribution without imposing the sim-
plification β2 = 0. This often needs to be worked out case-by-case or by using methods based on the
generalized method of moments to be introduced in Chapter 13. However, in one important set of ex-
amples it is straightforward to work out the asymptotic distribution.

For the remainder of this section we examine the setting where the estimators Â take a least squares
form so for some X can be written as Â = (

Z ′Z
)−1 (

Z ′X
)
. Such estimators correspond to the multivariate

projection model

X = A′Z +u (12.54)

E
[

Z u′]= 0.

This class of estimators includes 2SLS and the expectation model described above. We can write the
matrix of generated regressors as Ŵ = Z Â and then (12.50) as

β̂−β=
(
Ŵ

′
Ŵ

)−1 (
Ŵ

′ ((
W −Ŵ

)
β+v

))
=

(
Â
′
Z ′Z Â

)−1 (
Â
′
Z ′

(
−Z

(
Z ′Z

)−1 (
Z ′U

)
β+v

))
=

(
Â
′
Z ′Z Â

)−1 (
Â
′
Z ′ (−Uβ+v

))
=

(
Â
′
Z ′Z Â

)−1 (
Â
′
Z ′e

)
where

e = v −u′β= Y −X ′β. (12.55)

This estimator has the asymptotic distribution
p

n
(
β̂−β)−→

d
N

(
0,V β

)
where

V β =
(

A′E
[

Z Z ′] A
)−1 (

A′E
[

Z Z ′e2] A
)(

A′E
[

Z Z ′] A
)−1 . (12.56)

Under conditional homoskedasticity the covariance matrix simplifies to

V β = (
A′E

[
Z Z ′] A

)−1
E
[
e2] .
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An appropriate estimator of V β is

V̂ β =
(

1

n
Ŵ

′
Ŵ

)−1
(

1

n

n∑
i=1

Ŵi Ŵ ′
i ê2

i

)(
1

n
Ŵ

′
Ŵ

)−1

(12.57)

êi = Yi −X ′
i β̂.

Under the assumption of conditional homoskedasticity this can be simplified as usual.
This appears to be the usual covariance matrix estimator, but it is not because the least squares resid-

uals v̂i = Yi −Ŵ ′
i β̂ have been replaced with êi . This is exactly the substitution made by the 2SLS covari-

ance matrix formula. Indeed, the covariance matrix estimator V̂ β precisely equals (12.40).

Theorem 12.11 Take model (12.48) and (12.54) with E
[
Y 4

] < ∞, E‖Z‖4 < ∞,

A′E
[

Z Z ′] A > 0, and Â = (
Z ′Z

)−1 (
Z ′X

)
. As n → ∞,

p
n

(
β̂−β) −→

d
N

(
0,V β

)
where V β is given in (12.56) with e defined in (12.55). For V̂ β given in (12.57),
V̂ β −→p V β.

Since the parameter estimators are asymptotically normal and the covariance matrix is consistently
estimated, standard errors and test statistics constructed from V̂ β are asymptotically valid with conven-
tional interpretations.

We now summarize the results of this section. In general, care needs to be exercised when estimat-
ing models with generated regressors. As a general rule, generated regressors and two-step estimation
affects sampling distributions and variance matrices. An important simplication occurs for tests that the
generated regressors have zero slopes. In this case conventional tests have conventional distributions,
both asymptotically and in finite samples. Another important special case occurs when the generated
regressors are least squares fitted values. In this case the asymptotic distribution takes a conventional
form but the conventional residual needs to be replaced by one constructed with the forecasted variable.
With this one modification asymptotic inference using the generated regressors is conventional.

12.27 Regression with Expectation Errors

In this section we examine a generated regressor model which includes expectation errors in the
regression. This is an important class of generated regressor models and is relatively straightforward to
characterize. The model is

Y = X ′β+u′α+ν
W = A′Z
X =W +u

E [Zν] = 0

E [uν] = 0

E
[

Z u′]= 0.

The observables are (Y , X , Z ). This model states that W is the expectation of X (or more generally, the
projection of X on Z ) and u is its expectation error. The model allows for exogenous regressors as in the
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standard IV model if they are listed in W , X , and Z . This model is used, for example, to decompose the
effect of expectations from expectation errors. In some cases it is desired to include only the expectation
error u, not the expectation W . This does not change the results described here.

The model is estimated as follows. First, A is estimated by multivariate least squares of X on Z ,
Â = (

Z ′Z
)−1 (

Z ′X
)
, which yields as by-products the fitted values Ŵi = Â

′
Zi and residuals ûi = X̂i −Ŵi .

Second, the coefficients are estimated by least squares of Y on the fitted values Ŵ and residuals û

Yi = Ŵ ′
i β̂+ û′

i α̂+ ν̂i .

We now examine the asymptotic distributions of these estimators.
By the first-step regression Z ′Û = 0, Ŵ

′
Û = 0 and W ′Û = 0. This means that β̂ and α̂ can be computed

separately. Notice that

β̂=
(
Ŵ

′
Ŵ

)−1
Ŵ

′
Y

and
Y = Ŵβ+Uα+ (

W −Ŵ
)
β+ν.

Substituting, using Ŵ
′
Û = 0 and W −Ŵ =−Z

(
Z ′Z

)−1 Z ′U we find

β̂−β=
(
Ŵ

′
Ŵ

)−1
Ŵ

′ (
Uα+ (

W −Ŵ
)
β+ν)

=
(

Â
′
Z ′Z Â

)−1
Â
′
Z ′ (Uα−Uβ+ν)

=
(

Â
′
Z ′Z Â

)−1
Â
′
Z ′e

where
ei = vi +u′

i

(
α−β)= Yi −X ′

iβ.

We also find

α̂=
(
Û

′
Û

)−1
Û

′
Y .

Since Û
′
W = 0, U −Û = Z

(
Z ′Z

)−1 Z ′U and Û
′
Z = 0 then

α̂−α=
(
Û

′
Û

)−1
Û

′ (
Wβ+ (

U −Û
)
α+ν)

=
(
Û

′
Û

)−1
Û

′
ν.

Together, we establish the following distributional result.
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Theorem 12.12 For the model and estimators described in this section, with
E
[
Y 4

]<∞, E‖Z‖4 <∞, E‖X ‖4 <∞, A′E
[

Z Z ′] A > 0, and E
[
uu′]> 0, as n →∞

p
n

(
β̂−β
α̂−α

)
−→

d
N(0,V ) (12.58)

where

V =
(

V ββ V βα

V αβ V αα

)
and

V ββ =
(

A′E
[

Z Z ′] A
)−1 (

A′E
[

Z Z ′e2] A
)(

A′E
[

Z Z ′] A
)−1

V αβ =
(
E
[
uu′])−1 (

E
[
uZ ′eν

]
A

)(
A′E

[
Z Z ′] A

)−1

V αα = (
E
[
uu′])−1

E
[
uu′ν2](

E
[
uu′])−1 .

The asymptotic covariance matrix is estimated by

V̂ ββ =
(

1

n
Ŵ

′
Ŵ

)−1
(

1

n

n∑
i=1

Ŵi Ŵ ′
i ê2

i

)(
1

n
Ŵ

′
Ŵ

)−1

V̂ αβ =
(

1

n
Û

′
Û

)−1
(

1

n

n∑
i=1

ûi Ŵ ′
i êi ν̂i

)(
1

n
Ŵ

′
Ŵ

)−1

V̂ αα =
(

1

n
Û

′
Û

)−1
(

1

n

n∑
i=1

ÛiÛ ′
i ν̂

2
i

)(
1

n
Û

′
Û

)−1

where

Ŵi = Â
′
Zi

ûi = X̂i −Ŵi

êi = Yi −X ′
i β̂

ν̂i = Yi −Ŵ ′
i β̂− û′

i α̂.

Under conditional homoskedasticity, specifically

E

[(
e2

i eiνi

eiνi v2
i

)∣∣∣∣ Zi

]
=C

then V αβ = 0 and the coefficient estimates β̂ and α̂ are asymptotically independent. The variance com-
ponents also simplify to

V ββ =
(

A′E
[

Z Z ′] A
)−1

E
[
e2

i

]
V αα = (

E
[
uu′])−1

E
[
ν2] .

In this case we have the covariance matrix estimators

V̂
0
ββ =

(
1

n
Ŵ

′
Ŵ

)−1
(

1

n

n∑
i=1

ê2
i

)

V̂
0
αα =

(
1

n
Û

′
Û

)−1
(

1

n

n∑
i=1

ν̂2
i

)
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and V̂
0
αβ = 0.

12.28 Control Function Regression

In this section we present an alternative way of computing the 2SLS estimator by least squares. It is
useful in nonlinear contexts, and also in the linear model to construct tests for endogeneity.

The structural and reduced form equations for the standard IV model are

Y = X ′
1β1 +X ′

2β2 +e

X2 = Γ′12Z1 +Γ′22Z2 +u2.

Since the instrumental variable assumption specifies that E [Z e] = 0, X2 is endogenous (correlated with
e) if u2 and e are correlated. We can therefore consider the linear projection of e on u2

e = u′
2α+ν

α= (
E
[
u2u′

2

])−1
E [u2e]

E [u2ν] = 0.

Substituting this into the structural form equation we find

Y = X ′
1β1 +X ′

2β2 +u′
2α+ν (12.59)

E [X1ν] = 0

E [X2ν] = 0

E [u2ν] = 0.

Notice that X2 is uncorrelated with ν. This is because X2 is correlated with e only through u2, and ν is
the error after e has been projected orthogonal to u2.

If u2 were observed we could then estimate (12.59) by least squares. Since it is not observed we
estimate it by the reduced-form residual û2i = X2i − Γ̂′12Z1i − Γ̂′22Z2i . Then the coefficients (β1,β2,α) can
be estimated by least squares of Y on (X1, X2, û2). We can write this as

Yi = X ′
i β̂+ û′

2i α̂+ ν̂i (12.60)

or in matrix notation as
Y = X β̂+Û 2α̂+ ν̂.

This turns out to be an alternative algebraic expression for the 2SLS estimator.
Indeed, we now show that β̂= β̂2sls. First, note that the reduced form residual can be written as

Û 2 = (I n −P Z ) X 2

where P Z is defined in (12.30). By the FWL representation

β̂=
(

X̃
′
X̃

)−1 (
X̃

′
Y

)
(12.61)

where X̃ = [
X̃ 1, X̃ 2

]
with

X̃ 1 = X 1 −Û 2

(
Û

′
2Û 2

)−1
Û

′
2X 1 = X 1
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(since Û
′
2X 1 = 0) and

X̃ 2 = X 2 −Û 2

(
Û

′
2Û 2

)−1
Û

′
2X 2

= X 2 −Û 2
(

X ′
2 (I n −P Z ) X 2

)−1 X ′
2 (I n −P Z ) X 2

= X 2 −Û 2

= P Z X 2.

Thus X̃ = [X 1,P Z X 2] = P Z X . Substituted into (12.61) we find

β̂= (
X ′P Z X

)−1 (
X ′P Z Y

)= β̂2sls

which is (12.31) as claimed.
Again, what we have found is that OLS estimation of equation (12.60) yields algebraically the 2SLS

estimator β̂2sls.
We now consider the distribution of the control function estimator

(
β̂, α̂

)
. It is a generated regression

model, and in fact is covered by the model examined in Section 12.27 after a slight reparametrization.
Let W = Γ′Z . Note u = X −W . Then the main equation (12.59) can be written as Y =W ′β+u′

2γ+νwhere
γ=α+β2. This is the model in Section 12.27.

Set γ̂= α̂+ β̂2. It follows from (12.58) that as n →∞ we have the joint distribution

p
n

(
β̂2 −β2

γ̂−γ
)
−→

d
N(0,V )

where

V =
(

V 22 V 2γ

V γ2 V γγ

)

V 22 =
[(
Γ
′
E
[

Z Z ′]Γ)−1
Γ
′
E
[

Z Z ′e2]Γ(
Γ
′
E
[

Z Z ′]Γ)−1
]

22

V γ2 =
[(
E
[
u2u′

2

])−1
E
[
uZ ′eν

]
Γ

(
Γ
′
E
[

Z Z ′]Γ)−1
]
·2

V γγ =
(
E
[
u2u′

2

])−1
E
[
u2u′

2ν
2](

E
[
u2u′

2

])−1

e = Y −X ′β.

The asymptotic distribution of γ̂= α̂− β̂2 can be deduced.

Theorem 12.13 If E
[
Y 4

] < ∞, E‖Z‖4 < ∞, E‖X ‖4 < ∞, A′E
[

Z Z ′] A > 0, and
E
[
uu′]> 0, as n →∞ p

n (α̂−α) −→
d

N(0,V α)

where
V α =V 22 +V γγ−V γ2 −V ′

γ2.
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Under conditional homoskedasticity we have the important simplifications

V 22 =
[(
Γ
′
E
[

Z Z ′]Γ)−1
]

22
E
[
e2]

V γγ =
(
E
[
u2u′

2

])−1
E
[
ν2]

V γ2 = 0

V α =V 22 +V γγ.

An estimator for V α in the general case is

V̂ α = V̂ 22 + V̂ γγ− V̂ γ2 − V̂
′
γ2 (12.62)

where

V̂ 22 =
[

1

n

(
X ′P Z X

)−1 X ′Z
(

Z ′Z
)−1

(
n∑

i=1
Zi Z ′

i ê2
i

)(
Z ′Z

)−1 Z ′X
(

X ′P Z X
)−1

]
22

V̂ γ2 =
[

1

n

(
Û

′
Û

)−1
(

n∑
i=1

ûi Ŵ ′
i êi ν̂i

)(
X ′P Z X

)−1

]
·2

êi = Yi −X ′
i β̂

ν̂i = Yi −X ′
i β̂− û′

2i γ̂.

Under the assumption of conditional homoskedasticity we have the estimator

V̂
0
α = V̂

0
ββ+ V̂

0
γγ

V̂ ββ =
[(

X ′P Z X
)−1

]
22

(
n∑

i=1
ê2

i

)

V̂ γγ =
(
Û

′
Û

)−1
(

n∑
i=1

ν̂2
i

)
.

12.29 Endogeneity Tests

The 2SLS estimator allows the regressor X2 to be endogenous, meaning that X2 is correlated with
the structural error e. If this correlation is zero then X2 is exogenous and the structural equation can be
estimated by least squares. This is a testable restriction. Effectively, the null hypothesis is

H0 : E [X2e] = 0

with the alternative
H1 : E [X2e] 6= 0.

The maintained hypothesis is E [Z e] = 0. Since X1 is a component of Z this implies E [X1e] = 0. Conse-
quently we could alternatively write the null as H0 : E [X e] = 0 (and some authors do so).

Recall the control function regression (12.59)

Y = X ′
1β1 +X ′

2β2 +u′
2α+ν

α= (
E
[
u2u′

2

])−1
E [u2e] .
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Notice that E [X2e] = 0 if and only if E [u2e] = 0, so the hypothesis can be restated as H0 : α = 0 against
H1 :α 6= 0. Thus a natural test is based on the Wald statistic W forα= 0 in the control function regression
(12.28). Under Theorem 12.9, Theorem 12.10, and H0, W is asymptotically chi-square with k2 degrees
of freedom. In addition, under the normal regression assumption the F statistic has an exact F (k2,n −
k1 −2k2) distribution. We accept the null hypothesis that X2 is exogenous if W (or F) is smaller than the
critical value, and reject in favor of the hypothesis that X2 is endogenous if the statistic is larger than the
critical value.

Specifically, estimate the reduced form by least squares

X2i = Γ̂′12Z1i + Γ̂′22Z2i + û2i

to obtain the residuals. Then estimate the control function by least squares

Yi = X ′
i β̂+ û′

2i α̂+ ν̂i . (12.63)

Let W , W 0 and F =W 0/k2 denote the Wald, homoskedastic Wald, and F statistics for α= 0.

Theorem 12.14 UnderH0, W −→
d
χ2

k2
. Let c1−α solveP

[
χ2

k2
≤ c1−α

]
= 1−α. The

test “Reject H0 if W > c1−α” has asymptotic size α.

Theorem 12.15 Suppose e | X , Z ∼ N
(
0,σ2

)
. Under H0, F ∼ F (k2,n −k1 −2k2).

Let c1−α solve P [F (k2,n −k1 −2k2) ≤ c1−α] = 1−α. The test “Reject H0 if F >
c1−α” has exact size α.

Since in general we do not want to impose homoskedasticity these results suggest that the most ap-
propriate test is the Wald statistic constructed with the robust heteroskedastic covariance matrix. This
can be computed in Stata using the command estat endogenous after ivregress when the latter uses
a robust covariance option. Stata reports the Wald statistic in F form (and thus uses the F distribution
to calculate the p-value) as “Robust regression F”. Using the F rather than the χ2 is not formally justi-
fied but is a reasonable finite sample adjustment. If the command estat endogenous is applied after
ivregress without a robust covariance option Stata reports the F statistic as “Wu-Hausman F”.

There is an alternative (and traditional) way to derive a test for endogeneity. Under H0, both OLS
and 2SLS are consistent estimators. But under H1 they converge to different values. Thus the difference
between the OLS and 2SLS estimators is a valid test statistic for endogeneity. It also measures what
we often care most about – the impact of endogeneity on the parameter estimates. This literature was
developed under the assumption of conditional homoskedasticity (and it is important for these results)
so we assume this condition for the development of the statistic.

Let β̂ = (
β̂1, β̂2

)
be the OLS estimator and let β̃ = (

β̃1, β̃2
)

be the 2SLS estimator. Under H0 and ho-
moskedasticity the OLS estimator is Gauss-Markov efficient so by the Hausman equality

var
[
β̂2 − β̃2

]= var
[
β̃2

]−var
[
β̂2

]
=

((
X ′

2 (P Z −P 1) X 2
)−1 − (

X ′
2M 1X 2

)−1
)
σ2
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where P Z = Z
(

Z ′Z
)−1 Z ′, P 1 = X 1

(
X ′

1X 1
)−1 X ′

1, and M 1 = I n −P 1. Thus a valid test statistic for H0 is

T =
(
β̂2 − β̃2

)′ ((
X ′

2 (P Z −P 1) X 2
)−1 − (

X ′
2M 1X 2

)−1
)−1 (

β̂2 − β̃2
)

σ̂2 (12.64)

for some estimator σ̂2 of σ2. Durbin (1954) first proposed T as a test for endogeneity in the context of
IV estimation setting σ̂2 to be the least squares estimator of σ2. Wu (1973) proposed T as a test for en-
dogeneity in the context of 2SLS estimation, considering a set of possible estimators σ̂2 including the
regression estimator from (12.63). Hausman (1978) proposed a version of T based on the full contrast
β̂− β̃, and observed that it equals the regression Wald statistic W 0 described earlier. In fact, when σ̂2 is
the regression estimator from (12.63) the statistic (12.64) algebraically equals both W 0 and the version of
(12.64) based on the full contrast β̂− β̃ . We show these equalities below. Thus these three approaches
yield exactly the same statistic except for possible differences regarding the choice of σ̂2. Since the re-
gression F test described earlier has an exact F distribution in the normal sampling model and thus
can exactly control test size, this is the preferred version of the test. The general class of tests are called
Durbin-Wu-Hausman tests, Wu-Hausman tests, or Hausman tests, depending on the author.

When k2 = 1 (there is one right-hand-side endogenous variable), which is quite common in applica-
tions, the endogeneity test can be equivalently expressed at the t-statistic for α̂ in the estimated control
function. Thus it is sufficient to estimate the control function regression and check the t-statistic for α̂.
If |α̂| > 2 then we can reject the hypothesis that X2 is exogenous for β.

We illustrate using the Card proximity example using the two instruments public and private. We first
estimate the reduced form for education, obtain the residual, and then estimate the control function
regression. The residual has a coefficient −0.088 with a standard error of 0.037 and a t-statistic of 2.4.
Since the latter exceeds the 5% critical value (its p-value is 0.017) we reject exogeneity. This means that
the 2SLS estimates are statistically different from the least squares estimates of the structural equation
and supports our decision to treat education as an endogenous variable. (Alternatively, the F statistic is
2.42 = 5.7 with the same p-value).

We now show the equality of the various statistics.
We first show that the statistic (12.64) is not altered if based on the full contrast β̂− β̃. Indeed, β̂1− β̃1

is a linear function of β̂2 − β̃2, so there is no extra information in the full contrast. To see this, observe
that given β̂2 we can solve by least squares to find

β̂1 =
(

X ′
1X 1

)−1 (
X ′

1

(
Y −X 2β̂2

))
and similarly

β̃1 =
(

X ′
1X 1

)−1 (
X ′

1

(
Y −P Z X 2β̃

))= (
X ′

1X 1
)−1 (

X ′
1

(
Y −X 2β̃

))
the second equality since P Z X 1 = X 1. Thus

β̂1 − β̃1 =
(

X ′
1X 1

)−1 X ′
1

(
Y −X 2β̂2

)− (
X ′

1X 1
)−1 X ′

1

(
Y −P Z X 2β̃

)
= (

X ′
1X 1

)−1 X ′
1X 2

(
β̃2 − β̂2

)
as claimed.

We next show that T in (12.64) equals the homoskedastic Wald statistic W 0 for α̂ from the regres-
sion (12.63). Consider the latter regression. Since X 2 is contained in X the coefficient estimate α̂ is
invariant to replacing Û 2 = X 2 − X̂ 2 with −X̂ 2 = −P Z X 2. By the FWL representation, setting M X =
I n −X

(
X ′X

)−1 X ′,

α̂=−
(

X̂
′
2M X X̂ 2

)−1
X̂

′
2M X Y =−(

X ′
2P Z M X P Z X 2

)−1 X ′
2P Z M X Y .
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It follows that

W 0 = Y ′M X P Z X 2
(

X ′
2P Z M X P Z X 2

)−1 X ′
2P Z M X Y

σ̂2 .

Our goal is to show that T = W 0. Define X̃ 2 = (I n −P 1) X 2 so β̂2 =
(

X̃
′
2X̃ 2

)−1
X̃

′
2Y . Then using

(P Z −P 1) (I n −P 1) = (P Z −P 1) and defining Q = X̃ 2

(
X̃

′
2X̃ 2

)−1
X̃

′
2 we find

∆
def= (

X ′
2 (P Z −P 1) X 2

)(
β̃2 − β̂2

)
= X ′

2 (P Z −P 1)Y − (
X ′

2 (P Z −P 1) X 2
)(

X̃
′
2X̃ 2

)−1
X̃

′
2Y

= X ′
2 (P Z −P 1) (I n −Q)Y

= X ′
2 (P Z −P 1 −P Z Q)Y

= X ′
2P Z (I n −P 1 −Q)Y

= X ′
2P Z M X Y .

The third-to-last equality is P 1Q = 0 and the final uses M X = I n −P 1 −Q . We also calculate that

Q∗ def= (
X ′

2 (P Z −P 1) X 2
)((

X ′
2 (P Z −P 1) X 2

)−1 − (
X ′

2M 1X 2
)−1

)(
X ′

2 (P Z −P 1) X 2
)

= X ′
2 (P Z −P 1 − (P Z −P 1)Q (P Z −P 1)) X 2

= X ′
2

(
P Z −P 1 −P Z QP Z

)
X 2

= X ′
2P Z M X P Z X 2.

Thus

T = ∆
′Q∗−1∆

σ̂2

= Y ′M X P Z X 2
(

X ′
2P Z M X P Z X 2

)−1 X ′
2P Z M X Y

σ̂2

=W 0

as claimed.

12.30 Subset Endogeneity Tests

In some cases we may only wish to test the endogeneity of a subset of the variables. In the Card prox-
imity example we may wish test the exogeneity of education separately from experience and its square.
To execute a subset endogeneity test it is useful to partition the regressors into three groups so that the
structural model is

Y = X ′
1β1 +X ′

2β2 +X ′
3β3 +e

E [Z e] = 0.

As before, the instrument vector Z includes X1. The vector X3 is treated as endogenous and X2 is treated
as potentially endogenous. The hypothesis to test is that X2 is exogenous, or H0 : E [X2e] = 0 against
H1 : E [X2e] 6= 0.

Under homoskedasticity a straightfoward test can be constructed by the Durbin-Wu-Hausman prin-
ciple. Under H0 the appropriate estimator is 2SLS using the instruments (Z , X2). Let this estimator of β2
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be denoted β̂2. Under H1 the appropriate estimator is 2SLS using the smaller instrument set Z . Let this
estimator of β2 be denoted β̃2. A Durbin-Wu-Hausman statistic for H0 against H1 is

T = (
β̂2 − β̃2

)′ (
v̂ar

[
β̃2

]− v̂ar
[
β̂2

])−1 (
β̂2 − β̃2

)
.

The asymptotic distribution under H0 is χ2
k2

where k2 = dim(X2), so we reject the hypothesis that the

variables X2 are exogenous if T exceeds an upper critical value from the χ2
k2

distribution.
Instead of using the Wald statistic one could use the F version of the test by dividing by k2 and using

the F distribution for critical values. There is no finite sample justification for this modification, however,
since X3 is endogenous under the null hypothesis.

In Stata, the command estat endogenous (adding the variable name to specify which variable to
test for exogeneity) after ivregress without a robust covariance option reports the F version of this
statistic as “Wu-Hausman F”. For example, in the Card proximity example using the four instruments
public, private, age, and age2, if we estimate the equation by 2SLS with a non-robust covariance matrix
and then compute the endogeneity test for education we find F = 272 with a p-value of 0.0000, but if we
compute the test for experience and its square we find F = 2.98 with a p-value of 0.051. In this model,
the assumption of exogeneity with homogenous coefficients is rejected for education but the result for
experience is unclear.

A heteroskedasticity or cluster-robust test cannot be constructed easily by the Durbin-Wu-Hausman
approach since the covariance matrix does not take a simple form. To allow for non-homoskedastic
errors it is recommended to use GMM estimation. See Section 13.24.

12.31 OverIdentification Tests

When `> k the model is overidentified meaning that there are more moments than free parameters.
This is a restriction and is testable. Such tests are called overidentification tests.

The instrumental variables model specifies E [Z e] = 0. Equivalently, since e = Y −X ′β this is

E [Z Y ]−E[
Z X ′]β= 0.

This is an `×1 vector of restrictions on the moment matrices E [Z Y ] and E
[

Z X ′]. Yet since β is of dimen-
sion k which is less than ` it is not certain if indeed such a β exists.

To make things a bit more concrete, suppose there is a single endogenous regressor X2, no X1, and
two instruments Z1 and Z2. Then the model specifies that

E([Z1Y ] = E [Z1X2]β

and
E [Z2Y ] = E [Z2X2]β.

Thus β solves both equations. This is rather special.
Another way of thinking about this is we could solve for β using either one equation or the other. In

terms of estimation this is equivalent to estimating by IV using just the instrument Z1 or instead just us-
ing the instrument Z2. These two estimators (in finite samples) are different. But if the overidentification
hypothesis is correct both are estimating the same parameter and both are consistent for β. In contrast,
if the overidentification hypothesis is false then the two estimators will converge to different probability
limits and it is unclear if either probability limit is interesting.

For example, take the 2SLS estimates in the fourth column of Table 12.1 which use public and private
as instruments for education. Suppose we instead estimate by IV using just public as an instrument and
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then repeat using private. The IV coefficient for education in the first case is 0.16 and in the second case
0.27. These appear to be quite different. However, the second estimate has a large standard error (0.16)
so the difference may be sampling variation. An overidentification test addresses this question.

For a general overidentification test the null and alternative hypotheses are H0 : E [Z e] = 0 against
H1 : E [Z e] 6= 0. We will also add the conditional homoskedasticity assumption

E
[
e2 | Z

]=σ2. (12.65)

To avoid (12.65) it is best to take a GMM approach which we defer until Chapter 13.
To implement a test of H0 consider a linear regression of the error e on the instruments Z

e = Z ′α+ν (12.66)

withα= (
E
[

Z Z ′])−1
E [Z e]. We can rewriteH0 asα= 0. While e is not observed we can replace it with the

2SLS residual êi and estimateα by least squares regression, e.g. α̂= (
Z ′Z

)−1 Z ′ê. Sargan (1958) proposed
testing H0 via a score test, which equals

S = α̂′ (v̂ar[α̂])− α̂= ê ′Z
(

Z ′Z
)−1 Z ′ê

σ̂2 . (12.67)

where σ̂2 = 1
n ê ′ê. Basmann (1960) independently proposed a Wald statistic for H0, which is S with σ̂2

replaced with σ̃2 = n−1ν̂′ν̂ where ν̂= ê − Z α̂. By the equivalence of homoskedastic score and Wald tests
(see Section 9.16) Basmann’s statistic is a monotonic function of Sargan’s statistic and hence they yield
equivalent tests. Sargan’s version is more typically reported.

The Sargan test rejects H0 in favor of H1 if S > c for some critical value c. An asymptotic test sets c as
the 1−α quantile of the χ2

`−k distribution. This is justified by the asymptotic null distribution of S which
we now derive.

Theorem 12.16 Under Assumption 12.2 and E
[
e2 | Z

] = σ2, then as n → ∞,
S −→

d
χ2
`−k . For c satisfying α= 1−G`−k (c), P [S > c |H0] →α so the test “Reject

H0 if S > c” has asymptotic size α.

We prove Theorem 12.16 below.
The Sargan statistic S is an asymptotic test of the overidentifying restrictions under the assumption

of conditional homoskedasticity. It has some limitations. First, it is an asymptotic test and does not have
a finite sample (e.g. F ) counterpart. Simulation evidence suggests that the test can be oversized (reject
too frequently) in small and moderate sample sizes. Consequently, p-values should be interpreted cau-
tiously. Second, the assumption of conditional homoskedasticity is unrealistic in applications. The best
way to generalize the Sargan statistic to allow heteroskedasticity is to use the GMM overidentification
statistic – which we will examine in Chapter 13. For 2SLS, Wooldrige (1995) suggested a robust score test,
but Baum, Schaffer and Stillman (2003) point out that it is numerically equivalent to the GMM overiden-
tification statistic. Hence the bottom line appears to be that to allow heteroskedasticity or clustering it is
best to use a GMM approach.

In overidentified applications it is always prudent to report an overidentification test. If the test is
insignificant it means that the overidentifying restrictions are not rejected, supporting the estimated
model. If the overidentifying test statistic is highly significant (if the p-value is very small) this is evidence
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that the overidentifying restrictions are violated. In this case we should be concerned that the model is
misspecified and interpreting the parameter estimates should be done cautiously.

When reporting the results of an overidentification test it seems reasonable to focus on very small
significance levels such as 1%. This means that we should only treat a model as “rejected” if the Sargan
p-value is very small, e.g. less than 0.01. The reason to focus on very small significance levels is because
it is very difficult to interpret the result “The model is rejected”. Stepping back a bit it does not seem
credible that any overidentified model is literally true; rather what seems potentially credible is that an
overidentified model is a reasonable approximation. A test is asking the question “Is there evidence
that a model is not true” when we really want to know the answer to “Is there evidence that the model
is a poor approximation”. Consequently it seems reasonable to require strong evidence to lead to the
conclusion “Let’s reject this model”. The recommendation is that mild rejections (p-values between 1%
and 5%) should be viewed as mildly worrisome but not critical evidence against a model. The results of
an overidentification test should be integrated with other information before making a strong decision.

We illustrate the methods with the Card college proximity example. We have estimated two overi-
dentified models by 2SLS in columns 4 & 5 of Table 12.1. In each case the number of overidentifying
restrictions is 1. We report the Sargan statistic and its asymptotic p-value (calculated using the χ2

1 dis-
tribution) in the table. Both p-values (0.37 and 0.47) are far from significant indicating that there is no
evidence that the models are misspecified.

We now prove Theorem 12.16. The statistic S is invariant to rotations of Z (replacing Z with ZC ) so
without loss of generality we assume E

[
Z Z ′]= I`. As n →∞, n−1/2Z ′e −→

d
σZ where Z ∼ N(0, I`). Also

1
n Z ′Z −→

p
I` and 1

n Z ′X −→
p

Q , say. Then

n−1/2Z ′ê =
(

I`−
(

1

n
Z ′X

)(
1

n
X ′P Z X

)−1 (
1

n
X ′Z

)(
1

n
Z ′Z

)−1)
n−1/2Z ′e

−→
d
σ

(
I`−Q

(
Q ′Q

)−1 Q ′
)

Z.

Since σ̂2 −→
p
σ2 it follows that

S −→
d

Z′
(

I`−Q
(
Q ′Q

)−1 Q ′
)

Z ∼χ2
`−k .

The distribution is χ2
`−k since I`−Q

(
Q ′Q

)−1 Q ′ is idempotent with rank `−k.
The Sargan statistic test can be implemented in Stata using the command estat overid after ivregress

2sls or ivregres liml if a standard (non-robust) covariance matrix has been specified (that is, without
the ‘,r’ option), or by the command estat overid, forcenonrobust otherwise.

Denis Sargan

The British econometrician John Denis Sargan (1924-1996) was a pioneer in the
field of econometrics. He made a range of fundamental contributions including
the overidentification test, Edgeworth expansions, and unit root theory. He was
also influential in his role as dissertation advisor for many LSE-trained econo-
metricians.



CHAPTER 12. INSTRUMENTAL VARIABLES 378

12.32 Subset OverIdentification Tests

Tests of H0 : E [Z e] = 0 are typically interpreted as tests of model specification. The alternative H1 :
E [Z e] 6= 0 means that at least one element of Z is correlated with the error e and is thus an invalid instru-
mental variable. In some cases it may be reasonable to test only a subset of the moment conditions.

As in the previous section we restrict attention to the homoskedastic case E
[
e2 | Z

]=σ2.
Partition Z = (Za , Zb) with dimensions `a and `b , respectively, where Za contains the instruments

which are believed to be uncorrelated with e and Zb contains the instruments which may be correlated
with e. It is necessary to select this partition so that `a > k, or equivalently `b < `− k. This means
that the model with just the instruments Za is over-identified, or that `b is smaller than the number of
overidentifying restrictions. (If `a = k then the tests described here exist but reduce to the Sargan test so
are not interesting.) Hence the tests require that `−k > 1, that the number of overidentifying restrictions
exceeds one.

Given this partition the maintained hypothesis is E [Zae] = 0. The null and alternative hypotheses
are H0 : E [Zbe] = 0 against H1 : E [Zbe] 6= 0. That is, the null hypothesis is that the full set of moment
conditions are valid while the alternative hypothesis is that the instrument subset Zb is correlated with e
and thus an invalid instrument. Rejection of H0 in favor of H1 is then interpreted as evidence that Zb is
misspecified as an instrument.

Based on the same reasoning as described in the previous section, to test H0 against H1 we consider
a partitioned version of the regression (12.66)

e = Z ′
aαa +Z ′

bαb +ν

but now focus on the coefficient αb . Given E [Zae] = 0, H0 is equivalent to αb = 0. The equation is
estimated by least squares replacing the unobserved ei with the 2SLS residual êi . The estimate of αb is

α̂b = (
Z ′

b M a Z b
)−1 Z ′

b M a ê

where M a = I n −Z a
(

Z ′
a Z a

)−1 Z ′
a . Newey (1985) showed that an optimal (asymptotically most powerful)

test of H0 against H1 is to reject for large values of the score statistic

N = α̂′
b (v̂ar[α̂b])− α̂b =

ê ′R
(

R ′R −R ′X̂
(

X̂
′
X̂

)−1
X̂

′
R

)−1

R ′ê

σ̂2

where X̂ = P X , P = Z
(

Z ′Z
)−1 Z ′, R = M a Z b , and σ̂2 = 1

n ê ′ê.
Independently from Newey (1985), Eichenbaum, L. Hansen, and Singleton (1988) proposed a test

based on the difference of Sargan statistics. Let S be the Sargan test statistic (12.67) based on the full
instrument set and Sa be the Sargan statistic based on the instrument set Za . The Sargan difference
statistic is C = S − Sa . Specifically, let β̃2sls be the 2SLS estimator using the instruments Za only, set
ẽi = Yi −X ′

i β̃2sls, and set σ̃2 = 1
n ẽ ′ẽ. Then

Sa = ẽ ′Z a
(

Z ′
a Z a

)−1 Z ′
a ẽ

σ̃2 .

An advantage of the C statistic is that it is quite simple to calculate from the standard regression output.
At this point it is useful to reflect on our stated requirement that `a > k. Indeed, if `a < k then Za fails

the order condition for identification and β̃2sls cannot be calculated. Thus `a ≥ k is necessary to compute
Sa and hence S. Furthermore, if `a = k then model a is just identified so while β̃2sls can be calculated,



CHAPTER 12. INSTRUMENTAL VARIABLES 379

the statistic Sa = 0 so C = S. Thus when `a = k the subset test equals the full overidentification test so
there is no gain from considering subset tests.

The C statistic Sa is asymptotically equivalent to replacing σ̃2 in Sa with σ̂2, yielding the statistic

C∗ = ê ′Z
(

Z ′Z
)−1 Z ′ê

σ̂2 − ẽ ′Z a
(

Z ′
a Z a

)−1 Z ′
a ẽ

σ̂2 .

It turns out that this is Newey’s statistic N . These tests have chi-square asymptotic distributions.
Let c satisfy α= 1−G`b (c).

Theorem 12.17 Algebraically, N =C∗. Under Assumption 12.2 and E
[
e2 | Z

]=
σ2, as n →∞, N −→

d
χ2
`b

and C −→
d
χ2
`b

. Thus the tests “Reject H0 if N > c” and

“Reject H0 if C > c” are asymptotically equivalent and have asymptotic size α.

Theorem 12.17 shows that N and C∗ are identical and are near equivalents to the convenient statistic
C . The appropriate asymptotic distribution is χ2

`b
. Computationally, the easiest method to implement

a subset overidentification test is to estimate the model twice by 2SLS, first using the full instrument
set Z and the second using the partial instrument set Za . Compute the Sargan statistics for both 2SLS
regressions and compute C as the difference in the Sargan statistics. In Stata, for example, this is simple
to implement with a few lines of code.

We illustrate using the Card college proximity example. Our reported 2SLS estimates have `−k = 1
so there is no role for a subset overidentification test. (Recall, the number of overidentifying restrictions
must exceed one.) To illustrate we add extra instruments to the estimates in column 5 of Table 12.1
(the 2SLS estimates using public, private, age, and age2 as instruments for education, experience, and
experience2/100). We add two instruments: the years of education of the father and the mother of the
worker. These variables had been used in the earlier labor economics literature as instruments but Card
did not. (He used them as regression controls in some specifications.) The motivation for using parent’s
education as instruments is the hypothesis that parental education influences children’s educational
attainment but does not directly influence their ability. The more modern labor economics literature
has disputed this idea, arguing that children are educated in part at home and thus parent’s education
has a direct impact on the skill attainment of children (and not just an indirect impact via educational
attainment). The older view was that parent’s education is a valid instrument, the modern view is that it
is not valid. We can test this dispute using a overidentification subset test.

We do this by estimating the wage equation by 2SLS using public, private, age, age2, father, and
mother, as instruments for education, experience, and experience2/100). We do not report the param-
eter estimates here but observe that this model is overidentified with 3 overidentifying restrictions. We
calculate the Sargan overidentification statistic. It is 7.9 with an asymptotic p-value (calculated using
χ2

3) of 0.048. This is a mild rejection of the null hypothesis of correct specification. As we argued in the
previous section this by itself is not reason to reject the model. Now we consider a subset overidenti-
fication test. We are interested in testing the validity of the two instruments father and mother, not the
instruments public, private, age, age2. To test the hypothesis that these two instruments are uncorrelated
with the structural error we compute the difference in Sargan statistic, C = 7.9−0.5 = 7.4, which has a
p-value (calculated using χ2

2) of 0.025. This is marginally statistically significant, meaning that there is
evidence that father and mother are not valid instruments for the wage equation. Since the p-value is not
smaller than 1% it is not overwhelming evidence but it still supports Card’s decision to not use parental
education as instruments for the wage equation.
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We now prove the results in Theorem 12.17.
We first show that N = C∗. Define P a = Z a

(
Z ′

a Z a
)−1 Z ′

a and P R = R
(
R ′R

)−1 R ′. Since [Z a ,R] span
Z we find P = P R +P a and P R P a = 0. It will be useful to note that

P R X̂ = P R P X = P R X

X̂
′
X̂ − X̂

′
P R X̂ = X ′ (P −P R ) X = X ′P a X .

The fact that X ′P ê = X̂
′
ê = 0 implies X ′P R ê =−X ′P a ê. Finally, since Y = X β̂+ ê,

ẽ =
(

I n −X
(

X ′P a X
)−1 X ′P a

)
ê

so
ẽ ′P a ẽ = ê ′

(
P a −P a X

(
X ′P a X

)−1 X ′P a

)
ê.

Applying the Woodbury matrix equality to the definition of N and the above algebraic relationships,

N =
ê ′P R ê + ê ′P R X̂

(
X̂

′
X̂ − X̂

′
P R X̂

)−1
X̂

′
P R ê

σ̂2

= ê ′P ê − ê ′P a ê + ê ′P a X
(

X ′P a X
)−1 X ′P a ê

σ̂2

= ê ′P ê − ẽ ′P a ẽ

σ̂2

=C∗

as claimed.
We next establish the asymptotic distribution. Since Z a is a subset of Z , P M a = M aP , thus P R = R

and R ′X = R ′X̂ . Consequently

1p
n

R ′ê = 1p
n

R ′ (Y −X β̂
)

= 1p
n

R ′
(

I n −X
(

X̂
′
X̂

)−1
X̂

′
)

e

= 1p
n

R ′
(

I n − X̂
(

X̂
′
X̂

)−1
X̂

′
)

e

−→
d

N(0,V 2)

where

V 2 = plim
n→∞

(
1

n
R ′R − 1

n
R ′X̂

(
1

n
X̂

′
X̂

)−1 1

n
X̂

′
R

)
.

It follows that N =C∗ −→
d
χ2
`b

as claimed. Since C =C∗+op (1) it has the same limiting distribution.

12.33 Bootstrap Overidentification Tests

In small to moderate sample sizes the overidentification tests are not well approximated by the asymp-
totic chi-square distributions. For improved accuracy it is advised to use bootstrap critical values. The
bootstrap for 2SLS (Section 12.23) can be used for this purpose but the bootstrap version of the overiden-
tification statistic must be adjusted. This is because in the bootstrap universe the overidentified moment
conditions are not satisfied. One solution is to center the moment conditions.
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For the 2SLS estimator the standard overidentification test is based on the Sargan statistic

S = n
ê ′Z

(
Z ′Z

)−1 Z ′ê
ê ′ê

ê = Y −X β̂2sls.

The recentered bootstrap analog is

S∗∗ = n

(
ê∗′Z ∗−Z ′ê

)(
Z ∗′Z ∗)−1 (

Z ∗′ê∗−Z ′ê
)

ê∗′ê∗

ê∗ = Y ∗−X ∗β̂∗
2sls.

On each bootstrap sample S∗∗(b) is calculated and stored. The bootstrap p-value is

p∗ = 1

B

B∑
b=1

1
{
S∗∗(b) > S

}
.

This bootstrap p-value is valid because the statistic S∗∗ satisfies the overidentified moment condi-
tions.

12.34 Local Average Treatment Effects

In a pair of influential papers Imbens and Angrist (1994) and Angrist, Imbens and Rubin (1996) pro-
posed an new interpretation of the instrumental variables estimator using the potential outcomes model
introduced in Section 2.30.

We will restrict attention to the case that the endogenous regressor X and excluded instrument Z are
binary variables. We write the model as a pair of potential outcome functions. The dependent variable Y
is a function of the regressor and an unobservable vector U , Y = h (X ,U ), and the endogenous regressor
X is a function of the instrument Z and U , X = g (Z ,U ). By specifying U as a vector there is no loss of
generality in letting both equations depend on U .

In this framework the outcomes are determined by the random vector U and the exogenous instru-
ment Z . This determines X which determines Y . To put this in the context of the college proximity
example the variable U is everything specific about an individual. Given college proximity Z the person
decides to attend college or not. The person’s wage is determined by the individual attributes U as well
as college attendence X but is not directly affected by college proximity Z .

We can omit the random variable U from the notation as follows. An individual has a realization U .
We then set Y (x) = h (x,U ) and X (z) = g (z,U ). Also, given a realization Z the observables are X = X (Z )
and Y = Y (X ).

In this model the causal effect of college for an individual is C = Y (1)−Y (0). As discussed in Section
2.30, this is individual-specific and random.

We would like to learn about the distribution of the causal effects, or at least features of the distribu-
tion. A common feature of interest is the average treatment effect (ATE)

ATE = E [C ] = E [Y (1)−Y (0)] .

This, however, it typically not feasible to estimate allowing for endogenous X without strong assump-
tions (such as that the causal effect C is constant across individuals). The treatment effect literature has
explored what features of the distribution of C can be estimated.



CHAPTER 12. INSTRUMENTAL VARIABLES 382

One particular feature of interest, and emphasized by Imbens and Angrist (1994), is known as the
local average treatment effect (LATE) and is roughly the average effect upon those effected by the instru-
mental variable. To understand LATE it is helpful to consider the college proximity example using the
potential outcomes framework. In this framework, each person is fully characterized by their individual
unobservable U . Given U , their decision to attend college is a function of the proximity indicator Z . For
some students proximity has no effect on their decision. For other students it has an effect in the spe-
cific sense that given Z = 1 they choose to attend college while if Z = 0 they choose to not attend. We
can summarize the possibilites with the following chart which is based on labels developed by Angrist,
Imbens and Rubin (1996).

X (0) = 0 X (0) = 1
X (1) = 0 Never Takers Deniers
X (1) = 1 Compliers Always Takers

The columns indicate the college attendence decision given Z = 0 (not close to a college). The rows
indicate the college attendence decision given Z = 1 (close to a college). The four entries are labels for the
four types of individuals based on these decisions. The upper-left entry are the individuals who do not
attend college regardless of Z . They are called “Never Takers”. The lower-right entry are the individuals
who conversely attend college regardless of Z . They are called “Always Takers”. The bottom left are the
individuals who only attend college if they live close to one. They are called “Compliers”. The upper
right entry is a bit of a challenge. These are individuals who attend college only if they do not live close
to one. They are called “Deniers”. Imbens and Angrist discovered that to identify the parameters of
interest we need to assume that there are no Deniers, or equivalently that X (1) ≥ X (0). They call this a
“monotonicity” condition – increasing the instrument does not decrease X for any individual.

As another example suppose we are interested in the effect of wearing a face mask X during a virus
pandemic on health Y . Wearing a face mask is a choice made by the individual so should be viewed as
endogenous. For an instrument Z consider a government policy that requires face masks to be worn in
public. The “Compliers” are those who wear a face mask if there is a policy but otherwise do not. The
“Deniers” are those who do the converse. That is, these individuals would have worn a face mask based
on the evidence of a pandemic but rebel against a government policy. Once again, identification requires
that there are no Deniers.

We can distinguish the types in the table by the relative values of X (1)− X (0). For Never-Takers and
Always-Takers X (1)−X (0) = 0, while for Compliers X (1)−X (0) = 1.

We are interested in the causal effect C = h(1,U )−h(0,U ) of college on wages. The average causal
effect (ACE) is its expectation E [Y (1)−Y (0)]. To estimate the ACE we need observations of both Y (0) and
Y (1) which means we need to observe some individuals who attend college and some who do not attend
college. Consider the group “Never-Takers”. They never attend college so we only observe Y (0). It is thus
impossible to estimate the ACE of college for this group. Similarly consider the group “Always-Takers”.
They always attend college so we only observe Y (1) and again we cannot estimate the ACE of college for
this group. The group for which we can estimate the ACE are the “Compliers”. The ACE for this group is

LATE = E [Y (1)−Y (0) | X (1) > X (0)] .

Imbens and Angrist call this the local average treatment effect (LATE) as it is the average treatment
effect for the sub-population whose endogenous regressor is affected by the instrument. Examining the
definition, the LATE is the average causal effect of college attendence on wages for the sub-sample of
individuals who choose to attend college if (and only if) they live close to one.

Interestingly, we show below that

LATE = E [Y | Z = 1]−E [Y | Z = 0]

E [X | Z = 1]−E [X | Z = 0]
. (12.68)



CHAPTER 12. INSTRUMENTAL VARIABLES 383

That is, LATE equals the Wald expression (12.27) for the slope coefficient in the IV regression model.
This means that the standard IV estimator is an estimator of LATE. Thus when treatment effects are
potentially heterogeneous we can interpret IV as an estimator of LATE. The equality (12.68) occurs under
the following conditions.

Assumption 12.3 U and Z are independent and P [X (1)−X (0) < 0] = 0.

One interesting feature about LATE is that its value can depend on the instrument Z and the dis-
tribution of causal effects C in the population. To make this concrete suppose that instead of the Card
proximity instrument we consider an instrument based on the financial cost of local college attendence.
It is reasonable to expect that while the set of students affected by these two instruments are similar the
two sets of students will not be the same. That is, some students may be responsive to proximity but
not finances, and conversely. If the causal effect C has a different average in these two groups of stu-
dents then LATE will be different when calculated with these two instruments. Thus LATE can vary by
the choice of instrument.

How can that be? How can a well-defined parameter depend on the choice of instrument? Doesn’t this
contradict the basic IV regression model? The answer is that the basic IV regression model is restrictive –
it specifies that the causal effect β is common across all individuals. Thus its value is the same regardless
of the choice of specific instrument (so long as it satisfies the instrumental variables assumptions). In
contrast, the potential outcomes framework is more general allowing for the causal effect to vary across
individuals. What this analysis shows us is that in this context is quite possible for the LATE coefficient
to vary by instrument. This occurs when causal effects are heterogeneous.

One implication of the LATE framework is that IV estimates should be interpreted as causal effects
only for the population of compliers. Interpretation should focus on the population of potential compli-
ers and extension to other populations should be done with caution. For example, in the Card proximity
model the IV estimates of the causal return to schooling presented in Table 12.1 should be interpreted as
applying to the population of students who are incentivized to attend college by the presence of a college
within their home county. The estimates should not be applied to other students.

Formally, the analysis of this section examined the case of a binary instrument and endogenous re-
gressor. How does this generalize? Suppose that the regressor X is discrete, taking J +1 discrete values.
We can then rewrite the model as one with J binary endogenous regressors. If we then have J binary in-
struments we are back in the Imbens-Angrist framework (assuming the instruments have a monotonic
impact on the endogenous regressors). A benefit is that with a larger set of instruments it is plausible
that the set of compliers in the population is expanded.

We close this section by showing (12.68) under Assumption 12.3. The realized value of X can be
written as

X = (1−Z ) X (0)+Z X (1) = X (0)+Z (X (1)−X (0)) .

Similarly
Y = Y (0)+X (Y (1)−Y (0)) = Y (0)+XC .

Combining,
Y = Y (0)+X (0)C +Z (X (1)−Y (0))C .

The independence of u and Z implies independence of (Y (0),Y (1), X (0), X (1),C ) and Z . Thus

E [Y | Z = 1] = E [Y (0)]+E [X (0)C ]+E [(X (1)−X (0))C ]
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and
E [Y | Z = 0] = E [Y (0)]+E [X (0)C ] .

Subtracting we obtain

E [Y | Z = 1]−E [Y | Z = 0] = E [(X (1)−X (0))C ]

= 1×E [C | X (1)−X (0) = 1]P [X (1)−X (0) = 1]

+0×E [C | X (1)−X (0) = 0]P [X (1)−X (0) = 0]

+ (−1)×E [C | X (1)−X (0) =−1]P [X (1)−X (0) =−1]

= E [C | X (1)−X (0) = 1](E [X | X = 1]−E [X | Z = 0])

where the final equality uses P [X (1)−X (0) < 0] = 0 and

P [X (1)−X (0) = 1] = E [X (1)−X (0)] = E [X | Z = 1]−E [X | Z = 0] .

Rearranging

LATE = E [C | X (1)−X (0) = 1] = E [Y | Z = 1]−E [Y | Z = 0]

E [X | Z = 1]−E [X | Z = 0]

as claimed.

12.35 Identification Failure

Recall the reduced form equation

X2 = Γ′12Z1 +Γ′22Z2 +u2.

The parameter β fails to be identified if Γ22 has deficient rank. The consequences of identification failure
for inference are quite severe.

Take the simplest case where k1 = 0 and k2 = `2 = 1. Then the model may be written as

Y = Xβ+e (12.69)

X = Zγ+u

and Γ22 = γ= E [Z X ]/E
[

Z 2
]

. We see thatβ is identified if and only if γ 6= 0, which occurs when E [X Z ] 6= 0.
Thus identification hinges on the existence of correlation between the excluded exogenous variable and
the included endogenous variable.

Suppose this condition fails. In this case γ = 0 and E [X Z ] = 0. We now analyze the distribution of
the least squares and IV estimators of β. For simplicity we assume conditional homoskedasticity and
normalize the variances of e, u, and Z to unity. Thus

var

[(
e
u

)∣∣∣∣ Z

]
=

(
1 ρ

ρ 1

)
. (12.70)

The errors have non-zero correlation ρ 6= 0 when the variables are endogenous.
By the CLT we have the joint convergence

1p
n

n∑
i=1

(
Zi ei

Zi ui

)
−→

d

(
ξ1

ξ2

)
∼ N

(
0,

(
1 ρ

ρ 1

))
.

It is convenient to define ξ0 = ξ1 −ρξ2 which is normal and independent of ξ2.
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As a benchmark it is useful to observe that the least squares estimator of β satisfies

β̂ols −β= n−1 ∑n
i=1 ui ei

n−1 ∑n
i=1 u2

i

−→
p
ρ 6= 0

so endogeneity causes β̂ols to be inconsistent for β.
Under identification failure γ= 0 the asymptotic distribution of the IV estimator is

β̂iv −β=
1p
n

∑n
i=1 Zi ei

1p
n

∑n
i=1 Zi Xi

−→
d

ξ1

ξ2
= ρ+ ξ0

ξ2
.

This asymptotic convergence result uses the continuous mapping theorem which applies since the func-
tion ξ1/ξ2 is continuous everywhere except at ξ2 = 0, which occurs with probability equal to zero.

This limiting distribution has several notable features.
First, β̂iv does not converge in probability to a limit, rather it converges in distribution to a random

variable. Thus the IV estimator is inconsistent. Indeed, it is not possible to consistently estimate an
unidentified parameter and β is not identified when γ= 0.

Second, the ratio ξ0/ξ2 is symmetrically distributed about zero so the median of the limiting distri-
bution of β̂iv is β+ρ. This means that the IV estimator is median biased under endogeneity. Thus under
identification failure the IV estimator does not correct the centering (median bias) of least squares.

Third, the ratio ξ0/ξ2 of two independent normal random variables is Cauchy distributed. This is
particularly nasty as the Cauchy distribution does not have a finite mean. The distribution has thick
tails meaning that extreme values occur with higher frequency than the normal. Inferences based on the
normal distribution can be quite incorrect.

Together, these results show that γ = 0 renders the IV estimator particularly poorly behaved – it is
inconsistent, median biased, and non-normally distributed.

We can also examine the behavior of the t-statistic. For simplicity consider the classical (homoskedas-
tic) t-statistic. The error variance estimate has the asymptotic distribution

σ̂2 = 1

n

n∑
i=1

(
Yi −Xi β̂iv

)2

= 1

n

n∑
i=1

e2
i −

2

n

n∑
i=1

ei Xi
(
β̂iv −β

)+ 1

n

n∑
i=1

X 2
i

(
β̂iv −β

)2

−→
d

1−2ρ
ξ1

ξ2
+

(
ξ1

ξ2

)2

.

Thus the t-statistic has the asymptotic distribution

T = β̂iv −β√
σ̂2 ∑n

i=1 Z 2
i /

∣∣∑n
i=1 Zi Xi

∣∣ −→d ξ1/ξ2√
1−2ρ ξ1

ξ2
+

(
ξ1
ξ2

)2
.

The limiting distribution is non-normal, meaning that inference using the normal distribution will be
(considerably) incorrect. This distribution depends on the correlation ρ. The distortion is increasing
in ρ. Indeed as ρ → 1 we have ξ1/ξ2 →p 1 and the unexpected finding σ̂2 →p 0. The latter means that
the conventional standard error s(β̂iv) for β̂iv also converges in probability to zero. This implies that the
t-statistic diverges in the sense |T | →p ∞. In this situations users may incorrectly interpret estimates as
precise despite the fact that they are highly imprecise.
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12.36 Weak Instruments

In the previous section we examined the extreme consequences of full identification failure. Similar
problems occur when identification is weak in the sense that the reduced form coefficients are of small
magnitude. In this section we derive the asymptotic distribution of the OLS, 2SLS, and LIML estimators
when the reduced form coefficients are treated as weak. We show that the estimators are inconsistent
and the 2SLS and LIML estimators remain random in large samples.

To simplify the exposition we assume that there are no included exogenous variables (no X1) so we
write X2, Z2, and β2 simply as X , Z , and β. The model is

Y = X ′β+e

X = Γ′Z +u2.

Recall the reduced form error vector u = (u1,u2) and its covariance matrix

E
[
uu′]=Σ=

[
Σ11 Σ12

Σ21 Σ22

]
.

Recall that the structural error is e = u1 −β′u2 = γ′u where γ = (
1,−β)

which has variance E
[
e2 | Z

] =
γ′Σγ. Also define the covariance Σ2e = E [u2e | Z ] =Σ21 −Σ22β.

In Section 12.35 we assumed complete identification failure in the sense that Γ = 0. We now want
to assume that identification does not completely fail but is weak in the sense that Γ is small. A rich
asymptotic distribution theory has been developed to understand this setting by modeling Γ as “local-
to-zero”. The seminal contribution is Staiger and Stock (1997). The theory was extended to nonlinear
GMM estimation by Stock and Wright (2000).

The technical device introduced by Staiger and Stock (1997) is to assume that the reduced form pa-
rameter is local-to-zero, specifically

Γ= n−1/2C (12.71)

where C is a free matrix. The n−1/2 scaling is picked because it provides just the right balance to allow
a useful distribution theory. The local-to-zero assumption (12.71) is not meant to be taken literally but
rather is meant to be a useful distributional approximation. The parameter C indexes the degree of
identification. Larger ‖C‖ implies stronger identification; smaller ‖C‖ implies weaker identification.

We now derive the asymptotic distribution of the least squares, 2SLS, and LIML estimators under the
local-to-unity assumption (12.71).

The least squares estimator satisfies

β̂ols −β= (
n−1X ′X

)−1 (
n−1X ′e

)
= (

n−1U ′
2U 2

)−1 (
n−1U ′

2e
)+op (1)

−→
p
Σ−1

22Σ2e .

Thus the least squares estimator is inconsistent for β.
To examine the 2SLS estimator, by the central limit theorem

1p
n

n∑
i=1

Zi u′
i −→d ξ= [ξ1,ξ2]

where
vec(ξ) ∼ N

(
0,E

[
uu′⊗Z Z ′]) .
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This implies
1p
n

Z ′e −→
d
ξe = ξγ.

We also find that
1p
n

Z ′X = 1

n
Z ′ZC + 1p

n
Z ′U 2 −→

d
Q Z C +ξ2.

Thus

X ′P Z X =
(

1p
n

X ′Z
)(

1

n
Z ′Z

)−1 (
1p
n

Z ′X
)
−→

d

(
Q Z C +ξ2

)′Q−1
Z

(
Q Z C +ξ2

)
and

X ′P Z e =
(

1p
n

X ′Z
)(

1

n
Z ′Z

)−1 (
1p
n

Z ′e
)
−→

d

(
Q Z C +ξ2

)′Q−1
Z ξe .

We find that the 2SLS estimator has the asymptotic distribution

β̂2sls −β= (
X ′P Z X

)−1 (
X ′P Z e

)
−→

d

((
Q Z C +ξ2

)′Q−1
Z

(
Q Z C +ξ2

))−1 (
Q Z C +ξ2

)′Q−1
Z ξe . (12.72)

As in the case of complete identification failure we find that β̂2sls is inconsistent for β, it is asymptotically
random, and its asymptotic distribution is non-normal. The distortion is affected by the coefficient C .
As ‖C‖→∞ the distribution in (12.72) converges in probability to zero suggesting that β̂2sls is consistent
for β. This corresponds to the classic “strong identification” context.

Now consider the LIML estimator. The reduced form is ~Y = ZΠ+U . This implies MZ ~Y = MZ U and
by standard asymptotic theory

1

n
~Y

′
MZ ~Y = 1

n
U ′MZ U −→

p
Σ= E[

uu′] .

Define β= [
β, I k

]
so that the reduced form coefficients equalΠ= [

Γβ,Γ
]= n−1/2Cβ. Then

1p
n

Z ′~Y = 1

n
Z ′ZCβ+ 1p

n
Z ′U −→

d
Q Z Cβ+ξ

and
~Y

′
Z

(
Z ′Z

)−1 Z ′~Y −→
d

(
Q Z Cβ+ξ

)′
Q−1

Z

(
Q Z Cβ+ξ

)
.

This allows us to calculate that by the continuous mapping theorem

nµ̂= min
γ

γ′~Y ′
Z

(
Z ′Z

)−1 Z ′~Y γ

γ′ 1
n
~Y

′
MZ ~Y γ

−→
d

min
γ

γ′
(
Q Z Cβ+ξ

)′
Q−1

Z

(
Q Z Cβ+ξ

)
γ

γ′Σγ
=µ∗

say, which is a function of ξ and thus random. We deduce that the asymptotic distribution of the LIML
estimator is
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β̂liml −β=
(

X ′P Z X −nµ̂
1

n
X ′M Z X

)−1 (
X ′P Z e −nµ̂

1

n
X ′M Z e

)
−→

d

((
Q Z C +ξ2

)′Q−1
Z

(
Q Z C +ξ2

)−µ∗Σ22

)−1 ((
Q Z C +ξ2

)′Q−1
Z ξe −µ∗Σ2e

)
.

Similarly to 2SLS, the LIML estimator is inconsistent for β, is asymptotically random, and non-normally
distributed.

We summarize.

Theorem 12.18 Under (12.71),

β̂ols −β−→
p
Σ−1

22Σ2e

β̂2sls −β−→
d

((
Q Z C +ξ2

)′Q−1
Z

(
Q Z C +ξ2

))−1 (
Q Z C +ξ2

)′Q−1
Z ξe

and

β̂liml −β−→
d

((
Q Z C +ξ2

)′Q−1
Z

(
Q Z C +ξ2

)−µ∗Σ22

)−1

×
((

Q Z C +ξ2
)′Q−1

Z ξe −µ∗Σ2e

)
where

µ∗ = min
γ

γ′
(
Q Z Cβ+ξ

)′
Q−1

Z

(
Q Z Cβ+ξ

)
γ

γ′Σγ

and β= [
β, I k

]
.

All three estimators are inconsistent. The 2SLS and LIML estimators are asymptotically random with
non-standard distributions, similar to the asymptotic distribution of the IV estimator under complete
identification failure explored in the previous section. The difference under weak identification is the
presence of the coefficient matrix C .

12.37 Many Instruments

Some applications have available a large number ` of instruments. If they are all valid using a large
number should reduce the asymptotic variance relative to estimation with a smaller number of instru-
ments. Is it then good practice to use many instruments? Or is there a cost to this practice? Bekker
(1994) initiated a large literature investigating this question by formalizing the idea of “many instru-
ments”. Bekker proposed an asymptotic approximation which treats the number of instruments ` as
proportional to the sample size, that is ` = αn, or equivalently that `/n → α ∈ [0,1). The distributional
theory obtained is similar in many respects to the weak instrument theory outlined in the previous sec-
tion. Consequently the impact of “weak” and “many” instruments is similar.

Again for simplicity we assume that there are no included exogenous regressors so that the model is

Y = X ′β+e (12.73)

X = Γ′Z +u2
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with Z `×1. We also make the simplifying assumption that the reduced form errors are conditionally
homoskedastic. Specifically,

E
[
uu′ | Z

]=Σ=
[
Σ11 Σ12

Σ21 Σ22

]
. (12.74)

In addition we assume that the conditional fourth moments are bounded

E
[‖u‖4 | Z

]≤ B <∞. (12.75)

The idea that there are “many instruments” is formalized by the assumption that the number of in-
struments is increasing proportionately with the sample size

`

n
−→α. (12.76)

The best way to think about this is to viewα as the ratio of ` to n in a given sample. Thus if an application
has n = 100 observations and `= 10 instruments, then we should treat α= 0.10.

Suppose that there is a single endogenous regressor X . Calculate its variance using the reduced form:
var[X ] = var

[
Z ′Γ

]+var[u]. Suppose as well that var[X ] and var[u] are unchanging as ` increases. This
implies that var

[
Z ′Γ

]
is unchanging even though the dimension ` is increasing. This is a useful assump-

tion as it implies that the population R2 of the reduced form is not changing with `. We don’t need this
exact condition, rather we simply assume that the sample version converges in probability to a fixed
constant. Specifically, we assume that

1

n

n∑
i=1
Γ′Zi Z ′

iΓ−→p H (12.77)

for some matrix H > 0. Again, this essentially implies that the R2 of the reduced form regressions for
each component of X converge to constants.

As a baseline it is useful to examine the behavior of the least squares estimator of β. First, observe
that the variance of vec

(
n−1 ∑n

i=1Γ
′Zi u′

i

)
, conditional on Z , is

Σ⊗n−2
n∑

i=1
Γ′Zi Z ′

iΓ−→p 0

by (12.77). Thus it converges in probability to zero:

n−1
n∑

i=1
Γ′Zi u′

i −→p 0. (12.78)

Combined with (12.77) and the WLLN we find

1

n

n∑
i=1

Xi ei = 1

n

n∑
i=1
Γ′Zi ei + 1

n

n∑
i=1

u2i ei −→
p
Σ2e

and
1

n

n∑
i=1

Xi X ′
i =

1

n

n∑
i=1
Γ′Zi Z ′

iΓ+
1

n

n∑
i=1
Γ′Zi u′

2i +
1

n

n∑
i=1

u2i Z ′
iΓ+

1

n

n∑
i=1

u2i u′
2i −→p H +Σ22.

Hence

β̂ols =β+
(

1

n

n∑
i=1

Xi X ′
i

)−1 (
1

n

n∑
i=1

Xi ei

)
−→

p
β+ (H +Σ22)−1Σ2e .
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Thus least squares is inconsistent for β.
Now consider the 2SLS estimator. In matrix notation, setting P Z = Z

(
Z ′Z

)−1 Z ′,

β̂2sls −β=
(

1

n
X ′P Z X

)−1 (
1

n
X ′P Z e

)
=

(
1

n
Γ
′
Z ′ZΓ+ 1

n
Γ
′
Z ′u2 + 1

n
u′

2ZΓ+ 1

n
u′

2P Z u2

)−1 (
1

n
Γ′Z ′e + 1

n
u′

2P Z e
)

. (12.79)

In the expression on the right-side of (12.79) several of the components have been examined in (12.77)
and (12.78). We now examine the remaining components 1

n u′
2P Z e and 1

n u′
2P Z u2 which are sub-components

of the matrix 1
n u′P Z u. Take the j k th element 1

n u′
j P Z uk .

First, take its expectation. We have (given under the conditional homoskedasticity assumption (12.74))

E

[
1

n
u′

j P Z uk

∣∣∣∣ Z
]
= 1

n
tr

(
E
[

P Z uk u′
j

∣∣∣ Z
])

= 1

n
tr(P Z )Σ j k = `

n
Σ j k →αΣ j k (12.80)

using tr(P Z ) = `.
Second, we calculate its variance which is a more cumbersome exercise. Let Pi m = Z ′

i

(
Z ′Z

)−1 Zm

be the i mth element of P Z . Then u′
j PZ uk = ∑n

i=1

∑n
m=1 u j i ukmPi m . The matrix P Z is idempotent. It

therefore has the properties
∑n

i=1 Pi i = tr(P Z ) = ` and 0 ≤ Pi i ≤ 1. The property P Z P Z = P Z also implies∑n
m=1 P 2

i m = Pi i . Then

var

[
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j P Z uk

∣∣∣∣ Z
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n∑
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∑
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E
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n2
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∑
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≤ B

n2

(
n∑

i=1
P 2

i i +2
n∑

i=1

n∑
m=1

P 2
i m

)

≤ 3B

n2

n∑
i=1

Pi i

= 3B
`

n2 → 0.

The third equality holds because the remaining cross-products have zero expectation since the obser-
vations are independent and the errors have zero mean. The first inequality is (12.75). The second uses
P 2

i i ≤ Pi i and
∑n

m=1 P 2
i m = Pi i . The final equality is

∑n
i=1 Pi i = `.

Using (12.76), (12.80), Markov’s inequality (B.36), and combining across all j and k we deduce that

1

n
u′P Z u −→

p
αΣ. (12.81)

Returning to the 2SLS estimator (12.79) and combining (12.77), (12.78), and (12.81), we find

β̂2sls −β−→
p

(H +αΣ22)−1αΣ2e .
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Thus 2SLS is also inconsistent for β. The limit, however, depends on the magnitude of α.
We finally examine the LIML estimator. (12.81) implies

1

n
Y ′MZ Y = 1

n
u′u − 1

n
u′P Z u −→

p
(1−α)Σ.

Similarly

1

n
Y ′Z

(
Z ′Z

)−1 Z ′Y =β′
Γ′

(
1

n
Z ′Z

)
Γβ+β′

Γ′
(

1

n
Z ′u

)
+

(
1

n
u′Z

)
Γβ+ 1

n
u′P Z u

−→
d
β
′
Hβ+αΣ.

Hence

µ̂= min
γ

γ′Y ′Z
(

Z ′Z
)−1 Z ′Y γ

γ′Y ′MZ Y γ
−→

d
min
γ

γ′
(
β
′
Hβ+αΣ

)
γ

γ′ (1−α)Σγ
= α

1−α
and

β̂liml −β=
(

1

n
X ′P Z X − µ̂ 1

n
X ′M Z X

)−1 (
1

n
X ′P Z e − µ̂ 1

n
X ′M Z e

)
−→

d

(
H +αΣ22 − α

1−α (1−α)Σ22

)−1 (
αΣ2e − α

1−α (1−α)Σ2e

)
= H−10

= 0.

Thus LIML is consistent for β, unlike 2SLS.
We state these results formally.

Theorem 12.19 In model (12.73), under assumptions (12.74), (12.75) and
(12.76), then as n →∞.

β̂ols −→p β+ (H +Σ22)−1Σ2e

β̂2sls −→p β+ (H +αΣ22)−1αΣ2e

β̂liml −→p β.

This result is quite insightful. It shows that while endogeneity (Σ2e 6= 0) renders the least squares
estimator inconsistent, the 2SLS estimator is also inconsistent if the number of instruments diverges
proportionately with n. The limit in Theorem 12.19 shows a continuity between least squares and 2SLS.
The probability limit of the 2SLS estimator is continuous inα, with the extreme case (α= 1) implying that
2SLS and least squares have the same probability limit. The general implication is that the inconsistency
of 2SLS is increasing in α.

The theorem also shows that unlike 2SLS the LIML estimator is consistent under the many instru-
ments assumption. Effectively, LIML makes a bias-correction.

Theorems 12.18 (weak instruments) and 12.19 (many instruments) tell a cautionary tale. They show
that when instruments are weak and/or many the 2SLS estimator is inconsistent. The degree of incon-
sistency depends on the weakness of the instruments (the magnitude of the matrix C in Theorem 12.18)
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and the degree of overidentification (the ratio α in Theorem 12.19). The Theorems also show that the
LIML estimator is inconsistent under the weak instrument assumption but with a bias-correction, and
is consistent under the many instrument assumption. This suggests that LIML is more robust than 2SLS
to weak and many instruments.

An important limitation of the results in Theorem 12.19 is the assumption of conditional homoskedas-
ticity. It appears likely that the consistency of LIML fails in the many instrument setting if the errors are
heteroskedastic.

In applications users should be aware of the potential consequences of the many instrument frame-
work. It is useful to calculate the “many instrument ratio” α = `/n. While there is no specific rule-of-
thumb for α which leads to acceptable inference a minimum criterion is that if α ≥ 0.05 you should be
seriously concerned about the many-instrument problem. In general, whenα is large it seems preferable
to use LIML instead of 2SLS.

12.38 Testing for Weak Instruments

In the previous sections we found that weak instruments results in non-standard asymptotic distri-
butions for the 2SLS and LIML estimators. In practice how do we know if this is a problem? Is there a way
to check if the instruments are weak?

This question was addressed in an influential paper by Stock and Yogo (2005) as an extension of
Staiger and Stock (1997). Stock-Yogo focus on two implications of weak instruments: (1) estimation bias
and (2) inference distortion. They show how to test the hypothesis that these distortions are not “too big”.
They propose F tests for the excluded instruments in the reduced form regressions with non-standard
critical values. In particular, when there is one endogenous regressor and a single instrument the Stock-
Yogo test rejects the null of weak instruments when this F statistic exceeds 10. While Stock and Yogo
explore two types of distortions, we focus exclusively on inference as that is the more challenging prob-
lem. In this section we describe the Stock-Yogo theory and tests for the case of a single endogenous re-
gressor (k2 = 1). In the following section we describe their method for the case of multiple endogeneous
regressors.

While the theory in Stock and Yogo allows for an arbitrary number of exogenous regressors and in-
struments, for the sake of clear exposition we will focus on the very simple case of no included exogenous
variables (k1 = 0) and just one exogenous instrument (`2 = 1) which is model (12.69) from Section 12.35.

Y = Xβ+e

X = ZΓ+u.

Furthermore, as in Section 12.35 we assume conditional homoskedasticity and normalize the variances
as in (12.70). Since the model is just-identified the 2SLS, LIM,L and IV estimators are all equivalent.

The question of primary interest is to determine conditions on the reduced form under which the IV
estimator of the structural equation is well behaved, and secondly, what statistical tests can be used to
learn if these conditions are satisfied. As in Section 12.36 we assume that the reduced form coefficient Γ
is local-to-zero, specifically Γ = n−1/2µ. The asymptotic distribution of the IV estimator is presented in
Theorem 12.18. Given the simplifying assumptions the result is

β̂iv −β−→
d

ξe

µ+ξ2

where (ξe ,ξ2) are bivariate normal. For inference we also examine the behavior of the classical (ho-
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moskedastic) t-statistic for the IV estimator. Note

σ̂2 = 1

n

n∑
i=1

(
Yi −Xi β̂iv

)2

= 1

n

n∑
i=1

e2
i −

2

n

n∑
i=1

ei Xi
(
β̂iv −β

)+ 1

n

n∑
i=1

X 2
i

(
β̂iv −β

)2

−→
d

1−2ρ
ξe

µ+ξ2
+

(
ξe

µ+ξ2

)2

.

Thus

T = β̂iv −β√
σ̂2 ∑n

i=1 z2
i /

∣∣∑n
i=1 zi xi

∣∣ −→d ξ1√
1−2ρ ξ1

µ+ξ2
+

(
ξ1

µ+ξ2

)2

def= S. (12.82)

In general, S is non-normal and its distribution depends on the parameters ρ and µ.
Can we use the distribution S for inference on β? The distribution depends on two unknown param-

eters and neither is consistently estimable. This means we cannot use the distribution in (12.82) with
ρ and µ replaced with estimates. To eliminate the dependence on ρ one possibility is to use the “worst
case” value which turns out to be ρ = 1. By worst-case we mean the value which causes the greatest
distortion away from normal critical values. Setting ρ = 1 we have the considerable simplification

S = S1 = ξ
∣∣∣∣1+ ξ

µ

∣∣∣∣ (12.83)

where ξ ∼ N(0,1). When the model is strongly identified (so
∣∣µ∣∣ is very large) then S1 ≈ ξ is standard

normal, consistent with classical theory. However when
∣∣µ∣∣ is very small (but non-zero) |S1| ≈ ξ2/µ (in

the sense that this term dominates), which is a scaled χ2
1 and quite far from normal. As

∣∣µ∣∣ → 0 we find
the extreme case |S1|→p ∞.

While (12.83) is a convenient simplification it does not yield a useful approximation for inference
since the distribution in (12.83) is highly dependent on the unknown µ. If we take the worst-case value
of µ, which is µ= 0, we find that |S1| diverges and all distributional approximations fail.

To break this impasse Stock and Yogo (2005) recommended a constructive alternative. Rather than
using the worst-case µ they suggested finding a threshold such that if µ exceeds this threshold then the
distribution (12.83) is not “too badly” distorted from the normal distribution.

Specifically, the Stock-Yogo recommendation can be summarized by two steps. First, the distribution
result (12.83) can be used to find a threshold value τ2 such that if µ2 ≥ τ2 then the size of the nominal1

5% test “Reject if |T | ≥ 1.96” has asymptotic size P [|S1| ≥ 1.96] ≤ 0.15. This means that while the goal
is to obtain a test with size 5%, we recognize that there may be size distortion due to weak instruments
and are willing to tolerate a specific distortion. For example, a 10% distortion means we allow the actual
size to be up to 15%. Second, they use the asymptotic distribution of the reduced-form (first stage) F
statistic to test if the actual unknown value of µ2 exceeds the threshold τ2. These two steps together give
rise to the rule-of-thumb that the first-stage F statistic should exceed 10 in order to achieve reliable IV
inference. (This is for the case of one instrumental variable. If there is more than one instrument then
the rule-of-thumb changes.) We now describe the steps behind this reasoning in more detail.

The first step is to use the distribution (12.82) to determine the threshold τ2. Formally, the goal is
to find the value of τ2 = µ2 at which the asymptotic size of a nominal 5% test is actually a given r (e.g.

1The term “nominal size” of a test is the official intended size – the size which would obtain under ideal circumstances. In
this context the test “Reject if |T | ≥ 1.96” has nominal size 0.05 as this would be the asymptotic rejection probability in the ideal
context of strong instruments.
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r = 0.15), thus P [|S1| ≥ 1.96] ≤ r . By some algebra and the quadratic formula the event
∣∣ξ(

1+ξ/µ
)∣∣< x is

the same as
µ2

4
−xµ<

(
ξ+ µ

2

)2
< µ2

4
+xµ.

The random variable between the inequalities is distributed χ2
1(µ2/4), a noncentral chi-square with one

degree of freedom and noncentrality parameter µ2/4. Thus

P [|S1| ≥ x] =P
[
χ2

1

(
µ2

4

)
≥ µ2

4
+xµ

]
+P

[
χ2

1

(
µ2

4

)
≤ µ2

4
−xµ

]
= 1−G

(
µ2

4
+xµ,

µ2

4

)
+G

(
µ2

4
−xµ,

µ2

4

)
(12.84)

where G (u,λ) is the distribution function of χ2
1(λ). Hence the desired threshold τ2 solves

1−G

(
τ2

4
+1.96τ,

τ2

4

)
+G

(
τ2

4
−1.96τ,

τ2

4

)
= r

or effectively

G

(
τ2

4
+1.96τ,

τ2

4

)
= 1− r

since τ2/4−1.96τ < 0 for relevant values of τ. The numerical solution (computed with the non-central
chi-square distribution function, e.g. ncx2cdf in MATLAB) is τ2 = 1.70 when r = 0.15. (That is, the
command

ncx2cdf(1.7/4+1.96∗sqrt(1.7),1,1.7/4)

yields the answer 0.8500. Stock and Yogo (2005) approximate the same calculation using simulation
methods and report τ2 = 1.82.)

This calculation means that if the reduced form satisfies µ2 ≥ 1.7, or equivalently if Γ2 ≥ 1.7/n, then
the asymptotic size of a nominal 5% test on the structural parameter is no larger than 15%.

To summarize the Stock-Yogo first step, we calculate the minimum value τ2 forµ2 sufficient to ensure
that the asymptotic size of a nominal 5% t-test does not exceed r , and find that τ2 = 1.70 for r = 0.15.

The Stock-Yogo second step is to find a critical value for the first-stage F statistic sufficient to reject
the hypothesis that H0 :µ2 = τ2 against H1 :µ2 > τ2. We now describe this procedure.

They suggest testingH0 :µ2 = τ2 at the 5% size using the first stage F statistic. If the F statistic is small
so that the test does not reject then we should be worried that the true value of µ2 is small and there is a
weak instrument problem. On the other hand if the F statistic is large so that the test rejects then we can
have some confidence that the true value of µ2 is sufficiently large that the weak instrument problem is
not too severe.

To implement the test we need to calculate an appropriate critical value. It should be calculated
under the null hypothesis H0 : µ2 = τ2. This is different from a conventional F test which is calculated
under H0 :µ2 = 0.

We start by calculating the asymptotic distribution of F. Since there is one regressor and one instru-
ment in our simplified setting the first-stage F statistic is the squared t-statistic from the reduced form.
Given our previous calculations it has the asymptotic distribution

F = γ̂2

s
(
γ̂
)2 =

(∑n
i=1 Zi Xi

)2(∑n
i=1 X 2

i

)
σ̂2

u
−→

d

(
µ+ξ2

)2 ∼χ2
1

(
µ2) .

This is a non-central chi-square distribution with one degree of freedom and non-centrality parameter
µ2. The distribution function of the latter is G(u,µ2).
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To test H0 : µ2 = τ2 against H1 : µ2 > τ2 we reject for F ≥ c where c is selected so that the asymptotic
rejection probability satisfies

P
[
F ≥ c |µ2 = τ2]→P

[
χ2

1

(
τ2)≥ c

]= 1−G
(
c,τ2)= 0.05

for τ2 = 1.70, or equivalently G (c,1.7) = 0.95. This is found by inverting the non-central chi-square quan-
tile function, e.g. the function Q(p,d) which solves G(Q(p,d),d) = p. We find that c =Q (0.95,1.7) = 8.7.
In MATLAB, this can be computed by ncx2inv(.95,1.7). Stock and Yogo (2005) report c = 9.0 since
they used τ2 = 1.82.

This means that if F > 8.7 we can reject H0 : µ2 = 1.7 against H1 : µ2 > 1.7 with an asymptotic 5% test.
In this context we should expect the IV estimator and tests to be reasonably well behaved. However, if
F < 8.7 then we should be cautious about the IV estimator, confidence intervals, and tests. This finding
led Staiger and Stock (1997) to propose the informal “rule of thumb” that the first stage F statistic should
exceed 10. Notice that F exceeding 8.7 (or 10) is equivalent to the reduced form t-statistic exceeding 2.94
(or 3.16), which is considerably larger than a conventional check if the t-statistic is “significant”. Equiv-
alently, the recommended rule-of-thumb for the case of a single instrument is to estimate the reduced
form and verify that the t-statistic for exclusion of the instrumental variable exceeds 3 in absolute value.

Does the proposed procedure control the asymptotic size of a 2SLS test? The first step has asymptotic
size bounded below r (e.g. 15%). The second step has asymptotic size 5%. By the Bonferroni bound (see
Section 9.20) the two steps together have asymptotic size bounded below r +0.05 (e.g. 20%). We can thus
call the Stock-Yogo procedure a rigorous test with asymptotic size r +0.05 (or 20%).

Our analysis has been confined to the case k2 = `2 = 1. Stock and Yogo (2005) also examine the case
`2 > 1 (which requires numerical simulation to solve) and both the 2SLS and LIML estimators. They
show that the F statistic critical values depend on the number of instruments `2 as well as the estimator.
We report their calculations in Table 12.4.

Table 12.4: 5% Critical Value for Weak Instruments, k2 = 1

Maximal Size r
2SLS LIML

`2 0.10 0.15 0.20 0.25 0.10 0.15 0.20 0.25
1 16.4 9.0 6.7 5.5 16.4 9.0 6.7 5.5
2 19.9 11.6 8.7 7.2 8.7 5.3 4.4 3.9
3 22.3 12.8 9.5 7.8 6.5 4.4 3.7 3.3
4 24.6 14.0 10.3 8.3 5.4 3.9 3.3 3.0
5 26.9 15.1 11.0 8.8 4.8 3.6 3.0 2.8
6 29.2 16.2 11.7 9.4 4.4 3.3 2.9 2.6
7 31.5 17.4 12.5 9.9 4.2 3.2 2.7 2.5
8 33.8 18.5 13.2 10.5 4.0 3.0 2.6 2.4
9 36.2 19.7 14.0 11.1 3.8 2.9 2.5 2.3

10 38.5 20.9 14.8 11.6 3.7 2.8 2.5 2.2
15 50.4 26.8 18.7 12.2 3.3 2.5 2.2 2.0
20 62.3 32.8 22.7 17.6 3.2 2.3 2.1 1.9
25 74.2 38.8 26.7 20.6 3.8 2.2 2.0 1.8
30 86.2 44.8 30.7 23.6 3.9 2.2 1.9 1.7

One striking feature about these critical values is that those for the 2SLS estimator are strongly in-
creasing in `2 while those for the LIML estimator are decreasing in `2. This means that when the number
of instruments `2 is large, 2SLS requires a much stronger reduced form (larger µ2) in order for inference
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to be reliable, but this is not the case for LIML. This is direct evidence that LIML inference is less sensitive
to weak instruments than 2SLS. This makes a strong case for LIML over 2SLS, especially when `2 is large
or the instruments are potentially weak.

We now summarize the recommended Staiger-Stock/Stock-Yogo procedure for k1 ≥ 1, k2 = 1, and
`2 ≥ 1. The structural equation and reduced form equations are

Y1 = Z ′
1β1 +Y2β2 +e

Y2 = Z ′
1γ1 +Z ′

2γ2 +u.

The structural equation is estimated by either 2SLS or LIML. Let F be the F statistic for H0 : γ2 = 0 in the
reduced form equation. Let s(β̂2) be a standard error for β2 in the structural equation. The procedure is:

1. Compare F with the critical values c in Table 12.4 with the row selected to match the number of
excluded instruments `2 and the columns to match the estimation method (2SLS or LIML) and
the desired size r .

2. If F > c then report the 2SLS or LIML estimates with conventional inference.

The Stock-Yogo test can be implemented in Stata using the command estat firststage after ivregress
2sls or ivregres liml if a standard (non-robust) covariance matrix has been specified (that is, without
the ‘,r’ option).

There are possible extensions to the Stock-Yogo procedure.
One modest extension is to use the information to convey the degree of confidence in the accuracy

of a confidence interval. Suppose in an application you have `2 = 5 excluded instruments and have
estimated your equation by 2SLS. Now suppose that your reduced form F statistic equals 12. You check
Table 12.4 and find that F = 12 is significant with r = 0.20. Thus we can interpret the conventional 2SLS
confidence interval as having coverage of 80% (or 75% if we make the Bonferroni correction). On the
other hand if F = 27 we would conclude that the test for weak instruments is significant with r = 0.10,
meaning that the conventional 2SLS confidence interval can be interpreted as having coverage of 90% (or
85% after Bonferroni correction). Thus the value of the F statistic can be used to calibrate the coverage
accuracy.

A more substantive extension, which we now discuss, reverses the steps. Unfortunately this discus-
sion will be limited to the case `2 = 1. First, use the reduced form F statistic to find a one-sided confi-
dence interval for µ2 of the form [µ2

L ,∞). Second, use the lower bound µ2
L to calculate a critical value c

for S1 such that the 2SLS test has asymptotic size bounded below 0.05. This produces better size con-
trol than the Stock-Yogo procedure and produces more informative confidence intervals for β2. We now
describe the steps in detail.

The first goal is to find a one-sided confidence interval for µ2. This is found by test inversion. As we
described earlier, for any τ2 we reject H0 : µ2 = τ2 in favor of H1 : µ2 > τ2 if F > c where G(c,τ2) = 0.95.
Equivalently, we reject if G(F,τ2) > 0.95. By the test inversion principle an asymptotic 95% confidence
interval [µ2

L ,∞) is the set of all values of τ2 which are not rejected. Since G(F,τ2) ≥ 0.95 for all τ2 in this
set, the lower bound µ2

L satisfies G(F,µ2
L) = 0.95, and is found numerically. In MATLAB, the solution is

mu2 when ncx2cdf(F,1,mu2) returns 0.95.
The second goal is to find the critical value c such that P (|S1| ≥ c) = 0.05 when µ2 = µ2

L . From (12.84)
this is achieved when

1−G

(
µ2

L

4
+ cµL ,

µ2
L

4

)
+G

(
µ2

L

4
− cµL ,

µ2
L

4

)
= 0.05. (12.85)

This can be solved as

G

(
µ2

L

4
+ cµL ,

µ2
L

4

)
= 0.95.
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(The third term on the left-hand-side of (12.85) is zero for all solutions so can be ignored.) Using the
non-central chi-square quantile function Q(p,d), this C equals

c =
Q

(
0.95,

µ2
L

4

)
− µ2

L
4

µL
.

For example, in MATLAB this is found as c=(ncx2inv(.95,1,mu2/4)-mu2/4)/sqrt(mu2). 95% confi-
dence intervals for β2 are then calculated as β̂iv ± cs(β̂iv).

We can also calculate a p-value for the t-statistic T for β2. This is

p = 1−G

(
µ2

L

4
+|T |µL ,

µ2
L

4

)
+G

(
µ2

L

4
−|T |µL ,

µ2
L

4

)

where the third term equals zero if |T | ≥ µL/4. In MATLAB, for example, this can be calculated by the
commands

T1= mu2/4+abs(T)∗sqrt(mu2);
T2= mu2/4−abs(T)∗sqrt(mu2);
p=−ncx2cdf(T1,1,mu2/4)+ncx2cdf(T2,1,mu2/4);
These confidence intervals and p-values will be larger than the conventional intervals and p-values,

reflecting the incorporation of information about the strength of the instruments through the first-stage
F statistic. Also, by the Bonferroni bound these tests have asymptotic size bounded below 10% and the
confidence intervals have asymptotic converage exceeding 90%, unlike the Stock-Yogo method which
has size of 20% and coverage of 80%.

The augmented procedure suggested here, only for the `2 = 1 case, is

1. Find µ2
L which solves G

(
F,µ2

L

) = 0.95 . In MATLAB, the solution is mu2 when ncx2cdf(F,1,mu2)

returns 0.95.

2. Find c which solves G
(
µ2

L/4+ cµL ,µ2
L/4

)= 0.95. In MATLAB, the command is

c=(ncx2inv(.95,1,mu2/4)-mu2/4)/sqrt(mu2)

3. Report the confidence interval β̂2 ± cs(β̂2) for β2.

4. For the t statistic T = (
β̂2 −β2

)
/s(β̂2) the asymptotic p-value is

p = 1−G

(
µ2

L

4
+|T |µL ,

µ2
L

4

)
+G

(
µ2

L

4
−|T |µL ,

µ2
L

4

)

which is computed in MATLAB by T1=mu2/4+abs(T)*sqrt(mu2); T2=mu2/4-abs(T)*sqrt(mu2);
and p=1-ncx2cdf(T1,1,mu2/4)+ncx2cdf(T2,1,mu2/4).

We have described an extension to the Stock-Yogo procedure for the case of one instrumental vari-
able `2 = 1. This restriction was due to the use of the analytic formula (12.85) for the asymptotic distribu-
tion which is only available when `2 = 1. In principle the procedure could be extended using simulation
or bootstrap methods but this has not been done to my knowledge.

To illustrate the Stock-Yogo and extended procedures let us return to the Card proximity example.
Take the IV estimates reported in the second column of Table 12.1 which used college proximity as a
single instrument. The reduced form estimates for the endogenous variable education are reported in
the second column of Table 12.2. The excluded instrument college has a t-ratio of 4.2 which implies an
F statistic of 17.8. The F statistic exceeds the rule-of thumb of 10 so the structural estimates pass the
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Stock-Yogo threshold. Based on their recommendation this means that we can interpret the estimates
conventionally. However, the conventional confidence interval, e.g. for the returns to education 0.132±
0.049×1.96 = [0.04, 0.23] , has an asymptotic coverage of 80% rather than the nominal 95% rate.

Now consider the extended procedure. Given F = 17.8 we calculate the lower bound µ2
L = 6.6. This

implies a critical value of C = 2.7. Hence an improved confidence interval for the returns to education
in this equation is 0.132±0.049×2.7 = [0.01, 0.26]. This is a wider confidence interval but has improved
asymptotic coverage of 90%. The p-value for β2 = 0 is p = 0.012.

Next, take the 2SLS estimates reported in the fourth column of Table 11.1 which use the two instru-
ments public and private. The reduced form equation is reported in column six of Table 12.2. An F
statistic for exclusion of the two instruments is F = 13.9 which exceeds the 15% size threshold for 2SLS
and all thresholds for LIML, indicating that the structural estimates pass the Stock-Yogo threshold test
and can be interpreted conventionally.

The weak instrument methods described here are important for applied econometrics as they dis-
cipline researchers to assess the quality of their reduced form relationships before reporting structural
estimates. The theory, however, has limitations and shortcomings, in particular the strong assumption of
conditional homoskedasticity. Despite this limitation, in practice researchers apply the Stock-Yogo rec-
ommendations to estimates computed with heteroskedasticity-robust standard errors. This is an active
area of research so the recommended methods may change in the years ahead.

12.39 Weak Instruments with k2 > 1

When there is more than one endogenous regressor (k2 > 1) it is better to examine the reduced form
as a system. Staiger and Stock (1997) and Stock and Yogo (2005) provided an analysis of this case and
constructed a test for weak instruments. The theory is considerably more involved than the k2 = 1 case
so we briefly summarize it here excluding many details, emphasizing their suggested methods.

The structural equation and reduced form equations are

Y1 = Z ′
1β1 +Y ′

2β2 +e

Y2 = Γ′12Z1 +Γ′22Z2 +u2.

As in the previous section we assume that the errors are conditionally homoskedastic.
Identification of β2 requires the matrix Γ22 to be full rank. A necessary condition is that each row of

Γ′22 is non-zero but this is not sufficient.
We focus on the size performance of the homoskedastic Wald statistic for the 2SLS estimator of β2.

For simplicity assume that the variance of e is known and normalized to one. Using representation
(12.32), the Wald statistic can be written as

W = e ′ Z̃ 2

(
Z̃

′
2 Z̃ 2

)−1
Z̃

′
2Y 2

(
Y ′

2 Z̃ 2

(
Z̃

′
2 Z̃ 2

)−1
Z̃

′
2Y 2

)−1 (
Y ′

2 Z̃ 2

(
Z̃

′
2 Z̃ 2

)−1
Z̃

′
2e

)
where Z̃ 2 = (I n −P 1) Z 2 and P 1 = Z 1

(
Z ′

1Z 1
)−1 Z ′

1.
Recall from Section 12.36 that Stock and Staiger model the excluded instruments Z2 as weak by set-

ting Γ22 = n−1/2C for some matrix C . In this framework we have the asymptotic distribution results

1

n
Z̃

′
2 Z̃ 2 −→

p
Q = E[

Z2Z ′
2

]−E[
Z2Z ′

1

](
E
[

Z1Z ′
1

])−1
E
[

Z1Z ′
2

]
and

1p
n

Z̃
′
2e −→

d
Q1/2ξ0
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where ξ0 is a matrix normal variate whose columns are independent N(0, I ). Furthermore, setting Σ =
E
[
u2u′

2

]
and C =Q1/2CΣ−1/2,

1p
n

Z̃
′
2Y 2 = 1

n
Z̃

′
2 Z̃ 2C + 1p

n
Z̃

′
2U 2 −→

d
Q1/2CΣ1/2 +Q1/2ξ2Σ

1/2

where ξ2 is a matrix normal variate whose columns are independent N(0, I ). The variables ξ0 and ξ2 are
correlated. Together we obtain the asymptotic distribution of the Wald statistic

W −→
d

S = ξ′0
(
C +ξ2

)(
C

′
C

)−1 (
C +ξ2

)′
ξ0.

Using the spectral decomposition, C
′
C = H ′ΛH where H ′H = I and Λ is diagonal. Thus we can write

S = ξ′0ξ2Λ
−1ξ

′
2ξ0 where ξ2 = C H ′ + ξ2H ′. The matrix ξ∗ = (ξ0,ξ2) is multivariate normal, so ξ∗′ξ∗ has

what is called a non-central Wishart distribution. It only depends on the matrix C through HC
′
C H ′ =Λ

which are the eigenvalues of C
′
C . Since S is a function of ξ∗ only through ξ

′
2ξ0 we conclude that S is a

function of C only through these eigenvalues.
This is a very quick derivation of a rather involved derivation but the conclusion drawn by Stock and

Yogo is that the asymptotic distribution of the Wald statistic is non-standard and a function of the model

parameters only through the eigenvalues of C
′
C and the correlations between the normal variates ξ0 and

ξ2. The worst-case can be summarized by the maximal correlation between ξ0 and ξ2 and the smallest

eigenvalue of C
′
C . For convenience they rescale the latter by dividing by the number of endogenous

variables. Define
G =C

′
C /k2 =Σ−1/2C ′QCΣ−1/2/k2

and
g =λmin (G) =λmin

(
Σ−1/2C ′QCΣ−1/2)/k2.

This can be estimated from the reduced-form regression

X2i = Γ̂′12Z1i + Γ̂′22Z2i + û2i .

The estimator is

Ĝ = Σ̂−1/2Γ̂′22

(
Z̃

′
2 Z̃ 2

)
Γ̂22Σ̂

−1/2/k2 = Σ̂−1/2
(

X ′
2 Z̃ 2

(
Z̃

′
2 Z̃ 2

)−1
Z̃

′
2X 2

)
Σ̂−1/2/k2

Σ̂= 1

n −k

n∑
i=1

û2i û′
2i

ĝ =λmin
(
Ĝ

)
.

Ĝ is a matrix F -type statistic for the coefficient matrix Γ̂22.
The statistic ĝ was proposed by Cragg and Donald (1993) as a test for underidentification. Stock and

Yogo (2005) use it as a test for weak instruments. Using simulation methods they determined critical
values for ĝ similar to those for k2 = 1. For given size r > 0.05 there is a critical value c (reported in
the table below) such that if ĝ > c then the 2SLS (or LIML) Wald statistic W for β̂2 has asymptotic size
bounded below r . On the other hand, if ĝ ≤ c then we cannot bound the asymptotic size below r and we
cannot reject the hypothesis of weak instruments.

The Stock-Yogo critical values for k2 = 2 are presented in Table 12.5. The methods and theory applies
to the cases k2 > 2 as well but those critical values have not been calculated. As for the k2 = 1 case
the critical values for 2SLS are dramatically increasing in `2. Thus when the model is over-identified,
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we need a large value of ĝ to reject the hypothesis of weak instruments. This is a strong cautionary
message to check the ĝ statistic in applications. Furthermore, the critical values for LIML are generally
decreasing in `2 (except for r = 0.10 where the critical values are increasing for large `2). This means that
for over-identified models LIML inference is less sensitive to weak instruments than 2SLS and may be
the preferred estimation method.

The Stock-Yogo test can be implemented in Stata using the command estat firststage after ivregress
2sls or ivregres liml if a standard (non-robust) covariance matrix has been specified (that is, without
the ‘,r’ option). Critical values which control for size are only available for k2 ≤ 2. For for k2 > 2 critical
values which control for relative bias are reported.

Robust versions of the test have been proposed by Kleibergen and Paap (2006). These can be imple-
mented in Stata using the downloadable command ivreg2.

Table 12.5: 5% Critical Value for Weak Instruments, k2 = 2

Maximal Size r
2SLS LIML

`2 0.10 0.15 0.20 0.25 0.10 0.15 0.20 0.25
2 7.0 4.6 3.9 3.6 7.0 4.6 3.9 3.6
3 13.4 8.2 6.4 5.4 5.4 3.8 3.3 3.1
4 16.9 9.9 7.5 6.3 4.7 3.4 3.0 2.8
5 19.4 11.2 8.4 6.9 4.3 3.1 2.8 2.6
6 21.7 12.3 9.1 7.4 4.1 2.9 2.6 2.5
7 23.7 13.3 9.8 7.9 3.9 2.8 2.5 2.4
8 25.6 14.3 10.4 8.4 3.8 2.7 2.4 2.3
9 27.5 15.2 11.0 8.8 3.7 2.7 2.4 2.2

10 29.3 16.2 11.6 9.3 3.6 2.6 2.3 2.1
15 38.0 20.6 14.6 11.6 3.5 2.4 2.1 2.0
20 46.6 25.0 17.6 13.8 3.6 2.4 2.0 1.9
25 55.1 29.3 20.6 16.1 3.6 2.4 1.97 1.8
30 63.5 33.6 23.5 18.3 4.1 2.4 1.95 1.7

12.40 Example: Acemoglu, Johnson and Robinson (2001)

One particularly well-cited instrumental variable regression is in Acemoglu, Johnson and Robinson
(2001) with additional details published in (2012). They are interested in the effect of political insti-
tutions on economic performance. The theory is that good institutions (rule-of-law, property rights)
should result in a country having higher long-term economic output than if the same country had poor
institutions. To investigate this question they focus on a sample of 64 former European colonies. Their
data is in the file AJR2001 on the textbook website.

The authors’ premise is that modern political institutions have been influenced by colonization. In
particular they argue that colonizing countries tended to set up colonies as either an “extractive state” or
as a “migrant colony”. An extractive state was used by the colonizer to extract resources for the colonizing
country but was not largely settled by the European colonists. In this case the colonists had no incentive
to set up good political institutions. In contrast, if a colony was set up as a “migrant colony” then large
numbers of European settlers migrated to the colony to live. These settlers desired institutions similar
to those in their home country and hence had an incentive to set up good political institutions. The
nature of institutions is quite persistent over time so these 19th-century foundations affect the nature of
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modern institutions. The authors conclude that the 19th-century nature of the colony is predictive of the
nature of modern institutions and hence modern economic growth.

To start the investigation they report an OLS regression of log GDP per capita in 1995 on a measure
of political institutions they call risk which is a measure of legal protection against expropriation. This
variable ranges from 0 to 10, with 0 the lowest protection against appropriation and 10 the highest. For
each country the authors take the average value of the index over 1985 to 1995 (the mean is 6.5 with a
standard deviation of 1.5). Their reported OLS estimates (intercept omitted) are

álog(GDP per Capita) = 0.52
(0.06)

risk. (12.86)

These estimates imply a 52% difference in GDP between countries with a 1-unit difference in risk.
The authors argue that the risk is endogenous since economic output influences political institutions

and because the variable risk is undoubtedly measured with error. These issues induce least-square bias
in different directions and thus the overall bias effect is unclear.

To correct for endogeneity bias the authors argue the need for an instrumental variable which does
not directly affect economic performance yet is associated with political institutions. Their innovative
suggestion was to use the mortality rate which faced potential European settlers in the 19th century.
Colonies with high expected mortality were less attractive to European settlers resulting in lower levels
of European migrants. As a consequence the authors expect such colonies to be more likely structured
as an extractive state rather than a migrant colony. To measure the expected mortality rate the authors
use estimates provided by historical research of the annualized deaths per 1000 soldiers, labeled mortal-
ity. (They used military mortality rates as the military maintained high-quality records.) The first-stage
regression is

risk = −0.61
(0.13)

log(mortality)+ û. (12.87)

These estimates confirm that 19th-century high mortality rates are associated with lower quality modern
institutions. Using log(mortality) as an instrument for risk, they estimate the structural equation using
2SLS and report

álog(GDP per Capita) = 0.94
(0.16)

risk. (12.88)

This estimate is much higher than the OLS estimate from (12.86). The estimate is consistent with a near
doubling of GDP due to a 1-unit difference in the risk index.

These are simple regressions involving just one right-hand-side variable. The authors considered a
range of other models. Included in these results are a reversal of a traditional finding. In a conventional
(least squares) regression two relevant variables for output are latitude (distance from the equator) and
africa (a dummy variable for countries from Africa) both of which are difficult to interpret causally. But
in the proposed instrumental variables regression the variables latitude and africa have much smaller –
and statistically insignificant – coefficients.

To assess the specification we can use the Stock-Yogo and endogeneity tests. The Stock-Yogo test is
from the reduced form (12.87). The instrument has a t-ratio of 4.8 (or F = 23) which exceeds the Stock-
Yogo critical value and hence can be treated as strong. For an endogeneity test we take the least squares
residual û from this equation and include it in the structural equation and estimate by least squares. We
find a coefficient on û of −0.57 with a t-ratio of 4.7 which is highly significant. We conclude that the least
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squares and 2SLS estimates are statistically different and reject the hypothesis that the variable risk is
exogenous for the GDP structural equation.

In Exercise 12.23 you will replicate and extend these results using the authors’ data.
This paper is a creative and careful use of instrumental variables. The creativity stems from the his-

torical analysis which lead to the focus on mortality as a potential predictor of migration choices. The
care comes in the implementation as the authors needed to gather country-level data on political insti-
tutions and mortality from distinct sources. Putting these pieces together is the art of the project.

12.41 Example: Angrist and Krueger (1991)

Another influential instrument variable regression is Angrist and Krueger (1991). Their concern, sim-
ilar to Card (1995), is estimation of the structural returns to education while treating educational attain-
ment as endogenous. Like Card, their goal is to find an instrument which is exogenous for wages yet has
an impact on education. A subset of their data in the file AK1991 on the textbook website.

Their creative suggestion was to focus on compulsory school attendance policies and their interac-
tion with birthdates. Compulsory schooling laws vary across states in the United States, but typically
require that youth remain in school until their sixteenth or seventeenth birthday. Angrist and Krueger
argue that compulsory schooling has a causal effect on wages – youth who would have chosen to drop
out of school stay in school for more years – and thus have more education which causally impacts their
earnings as adults.

Angrist and Krueger observe that these policies have differential impact on youth who are born early
or late in the school year. Students who are born early in the calendar year are typically older when they
enter school. Consequently when they attain the legal dropout age they have attended less school than
those born near the end of the year. This means that birthdate (early in the calendar year versus late)
exogenously impacts educational attainment and thus wages through education. Yet birthdate must be
exogenous for the structural wage equation as there is no reason to believe that birthdate itself has a
causal impact on a person’s ability or wages. These considerations together suggest that birthdate is a
valid instrumental variable for education in a causal wage equation.

Typical wage datasets include age but not birthdates. To obtain information on birthdate, Angrist
and Krueger used U.S. Census data which includes an individual’s quarter of birth (January-March, April-
June, etc.). They use this variable to construct 2SLS estimates of the return to education.

Their paper carefully documents that educational attainment varies by quarter of birth (as predicted
by the above discussion), and reports a large set of least squares and 2SLS estimates. We focus on two
estimates at the core of their analysis reported in column (6) of their Tables V and VII. This involves data
from the 1980 census with men born in 1930-1939, with 329,509 observations. The first equation is

álog(wage) = 0.081
(0.016)

edu− 0.230
(0.026)

Black+ 0.158
(0.017)

urban+ 0.244
(0.005)

married (12.89)

where edu is years of education and Black, urban, and married are dummy variables indicating race
(1 if Black, 0 otherwise), lives in a metropolitan area, and if married. In addition to the reported coeffi-
cients the equation also includes as regressors nine year-of-birth dummies and eight region-of-residence
dummies. The equation is estimated by 2SLS. The instrumental variables are the 30 interactions of three
quarter-of-birth times ten year-of-birth dummy variables.

This equation indicates an 8% increase in wages due to each year of education.
Angrist and Krueger observe that the effect of compulsory education laws are likely to vary across

states, so expand the instrument set to include interactions with state-of-birth. They estimate the fol-
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lowing equation by 2SLS

álog(wage) = 0.083
(0.009)

edu− 0.233
(0.011)

Black+ 0.151
(0.009)

urban+ 0.244
(0.004)

married. (12.90)

This equation also adds fifty state-of-birth dummy variables as regressors. The instrumental variables
are the 180 interactions of quarter-of-birth times year-of-birth dummy variables, plus quarter-of-birth
times state-of-birth interactions.

This equation shows a similar estimated causal effect of education on wages as in (12.89). More
notably, the standard error is smaller in (12.90) suggesting improved precision by the expanded instru-
mental variable set.

However, these estimates seem excellent candidates for weak instruments and many instruments.
Indeed, this paper (published in 1991) helped spark these two literatures. We can use the Stock-Yogo
tools to explore the instrument strength and the implications for the Angrist-Krueger estimates.

We first take equation (12.89). Using the original Angrist-Krueger data we estimate the correspond-
ing reduced form and calculate the F statistic for the 30 excluded instruments. We find F = 4.8. It has an
asymptotic p-value of 0.000 suggesting that we can reject (at any significance level) the hypothesis that
the coefficients on the excluded instruments are zero. Thus Angrist and Krueger appear to be correct
that quarter of birth helps to explain educational attainment and are thus a valid instrumental variable
set. However, using the Stock-Yogo test F = 4.8 is not high enough to reject the hypothesis that the in-
struments are weak. Specifically, for `2 = 30 the critical value for the F statistic is 45 to bound size below
15%. The actual value of 4.8 is far below 45. Since we cannot reject that the instruments are weak this
indicates that we cannot interpret the 2SLS estimates and test statistics in (12.89) as reliable.

Second, take (12.90) with the expanded regressor and instrument set. Estimating the correspond-
ing reduced form we find the F statistic for the 180 excluded instruments is F = 2.43 which also has an
asymptotic p-value of 0.000 indicating that we can reject at any significance level the hypothesis that
the excluded instruments have no effect on educational attainment. However, using the Stock-Yogo test
we also cannot reject the hypothesis that the instruments are weak. While Stock and Yogo did not cal-
culate the critical values for `2 = 180, the 2SLS critical values are increasing in `2 so we can use those
for `2 = 30 as a lower bound. The observed value of F = 2.43 is far below the level needed for signifi-
cance. Consequently the results in (12.90) cannot be viewed as reliable. In particular, the observation
that the standard errors in (12.90) are smaller than those in (12.89) should not be interpreted as evidence
of greater precision. Rather, they should be viewed as evidence of unreliability due to weak instruments.

When instruments are weak one constructive suggestion is to use LIML estimation rather than 2SLS.
Another constructive suggestion is to alter the instrument set. While Angrist and Krueger used a large
number of instrumental variables we can consider using a smaller set. Take equation (12.89). Rather
than estimating it using the 30 interaction instruments consider using only the three quarter-of-birth
dummy variables. We report the reduced form estimates here:

êdu =− 1.57
(0.02)

Black+ 1.05
(0.01)

urban+ 0.225
(0.016)

married+ 0.050
(0.016)

Q2 + 0.101
(0.016)

Q3 + 0.142
(0.016)

Q4

(12.91)
where Q2, Q3 and Q4 are dummy variables for birth in the 2nd , 3r d , and 4th quarter. The regression also
includes nine year-of-birth and eight region-of-residence dummy variables.

The reduced form coefficients in (12.91) on the quarter-of-birth dummies are instructive. The coeffi-
cients are positive and increasing, consistent with the Angrist-Krueger hypothesis that individuals born
later in the year achieve higher average education. Focusing on the weak instrument problem the F test



CHAPTER 12. INSTRUMENTAL VARIABLES 404

for exclusion of these three variables is F = 31. The Stock-Yogo critical value is 12.8 for `2 = 3 and a size of
15%, and is 22.3 for a size of 10%. Since F = 31 exceeds both these thresholds we can reject the hypothesis
that this reduced form is weak. Estimating the model by 2SLS with these three instruments we find

álog(wage) = 0.099
(0.021)

edu− 0.201
(0.033)

Black+ 0.139
(0.022)

urban+ 0.240
(0.006)

married. (12.92)

These estimates indicate a slightly larger (10%) causal impact of education on wages but with a larger
standard error. The Stock-Yogo analysis indicates that we can interpret the confidence intervals from
these estimates as having asymptotic coverage 85%.

While the original Angrist-Krueger estimates suffer due to weak instruments their paper is a very cre-
ative and thoughtful application of the natural experiment methodology. They discovered a completely
exogenous variation present in the world – birthdate – and showed how this has a small but measur-
able effect on educational attainment and thereby on earnings. Their crafting of this natural experiment
regression is extremely clever and demonstrates a style of analysis which can successfully underlie an
effective instrumental variables empirical analysis.

12.42 Programming

We now present Stata code for some of the empirical work reported in this chapter.

Stata do File for Card Example

use Card1995.dta, clear
set more off
gen exp = age76 - ed76 - 6
gen exp2 = (exp^2)/100
* Drop observations with missing wage
drop if lwage76==.
* Table 12.1 regressions
reg lwage76 ed76 exp exp2 black reg76r smsa76r, r
ivregress 2sls lwage76 exp exp2 black reg76r smsa76r (ed76=nearc4), r
ivregress 2sls lwage76 black reg76r smsa76r (ed76 exp exp2 = nearc4 age76 age2), r perfect
ivregress 2sls lwage76 exp exp2 black reg76r smsa76r (ed76=nearc4a nearc4b), r
ivregress 2sls lwage76 black reg76r smsa76r (ed76 exp exp2 = nearc4a nearc4b age76 age2), r
perfect
ivregress liml lwage76 exp exp2 black reg76r smsa76r (ed76=nearc4a nearc4b), r
* Table 12.2 regressions
reg lwage76 exp exp2 black reg76r smsa76r nearc4, r
reg ed76 exp exp2 black reg76r smsa76r nearc4, r
reg ed76 black reg76r smsa76r nearc4 age76 age2, r
reg exp black reg76r smsa76r nearc4 age76 age2, r
reg exp2 black reg76r smsa76r nearc4 age76 age2, r
reg ed76 exp exp2 black reg76r smsa76r nearc4a nearc4b, r
reg lwage76 ed76 exp exp2 smsa76r reg76r, r
reg lwage76 nearc4 exp exp2 smsa76r reg76r, r
reg ed76 nearc4 exp exp2 smsa76r reg76r, r
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Stata do File for Acemoglu-Johnson-Robinson Example

use AJR2001.dta, clear
reg loggdp risk
reg risk logmort0
predict u, residual
ivregress 2sls loggdp (risk=logmort0)
reg loggdp risk u

Stata do File for Angrist-Krueger Example

use AK1991.dta, clear
ivregress 2sls logwage black smsa married i.yob i.region (edu = i.qob#i.yob)
ivregress 2sls logwage black smsa married i.yob i.region i.state (edu =
i.qob#i.yob i.qob#i.state)
reg edu black smsa married i.yob i.region i.qob#i.yob
testparm i.qob#i.yob
reg edu black smsa married i.yob i.region i.state i.qob#i.yob i.qob#i.state
testparm i.qob#i.yob i.qob#i.state
reg edu black smsa married i.yob i.region i.qob
testparm i.qob
ivregress 2sls logwage black smsa married i.yob i.region (edu = i.qob)

_____________________________________________________________________________________________

12.43 Exercises

Exercise 12.1 Consider the single equation model Y = Zβ+e where Y and Z are both real-valued (1×1).
Let β̂ denote the IV estimator of β using as an instrument a dummy variable D (takes only the values 0
and 1). Find a simple expression for the IV estimator in this context.

Exercise 12.2 Take the linear model Y = X ′β+ e with E [e | X ] = 0. Suppose σ2(x) = E
[
e2 | X = x

]
is

known. Show that the GLS estimator of β can be written as an IV estimator using some instrument
Z . (Find an expression for Z .)

Exercise 12.3 Take the linear model Y = X ′β+ e. Let the OLS estimator for β be β̂ with OLS residual êi .
Let the IV estimator for β using some instrument Z be β̃ with IV residual ẽi = Yi − X ′

i β̃. If X is indeed
endogenous, will IV “fit” better than OLS in the sense that

∑n
i=1 ẽ2

i <
∑n

i=1 ê2
i , at least in large samples?

Exercise 12.4 The reduced form between the regressors X and instruments Z takes the form X = Γ′Z +u
where X is k×1, Z is `×1, and Γ is `×k. The parameter Γ is defined by the population moment condition
E
[

Z u′]= 0. Show that the method of moments estimator for Γ is Γ̂= (
Z ′Z

)−1 (
Z ′X

)
.

Exercise 12.5 In the structural model Y = X ′β+ e with X = Γ′Z +u and Γ `× k, ` ≥ k, we claim that
a necessary condition for β to be identified (can be recovered from the reduced form) is rank(Γ) = k.
Explain why this is true. That is, show that if rank(Γ) < k then β is not identified.
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Exercise 12.6 For Theorem 12.3 establish that V̂ β −→p V β.

Exercise 12.7 Take the linear model Y = X ′β+e with E [e | X ] = 0 where X and β are 1×1.

(a) Show that E [X e] = 0 and E
[

X 2e
]= 0. Is Z = (X X 2)′ a valid instrument for estimation of β?

(b) Define the 2SLS estimator of β using Z as an instrument for X . How does this differ from OLS?

Exercise 12.8 Suppose that price and quantity are determined by the intersection of the linear demand
and supply curves

Demand : Q = a0 +a1P +a2Y +e1

Supply : Q = b0 +b1P +b2W +e2

where income (Y ) and wage (W ) are determined outside the market. In this model are the parameters
identified?

Exercise 12.9 Consider the model Y = X ′β+ e with E [e | Z ] = 0 with Y scalar and X and Z each a k
vector. You have a random sample (Yi , Xi , Zi : i = 1, ...,n).

(a) Assume that X is exogenous in the sense that E [e | Z , X ] = 0. Is the IV estimator β̂iv unbiased?

(b) Continuing to assume that X is exogenous, find the conditional covariance matrix var
[
β̂iv | X , Z

]
.

Exercise 12.10 Consider the model

Y = X ′β+e

X = Γ′Z +u

E [Z e] = 0

E
[

Z u′]= 0

with Y scalar and X and Z each a k vector. You have a random sample (Yi , Xi , Zi : i = 1, ...,n). Take
the control function equation e = u′γ+ν with E [uν] = 0 and assume for simplicity that u is observed.
Inserting into the structural equation we find Y = Z ′β+u′γ+ν. The control function estimator (β̂, γ̂) is
OLS estimation of this equation.

(a) Show that E [Xν] = 0 (algebraically).

(b) Derive the asymptotic distribution of (β̂, γ̂) .

Exercise 12.11 Consider the structural equation

Y =β0 +β1X +β2X 2 +e (12.93)

with X ∈ R treated as endogenous so that E [X e] 6= 0. We have an instrument Z ∈ R which satisfies
E [e | Z ] = 0 so in particular E [e] = 0 , E [Z e] = 0 and E

[
Z 2e

]= 0.

(a) Should X 2 be treated as endogenous or exogenous?
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(b) Suppose we have a scalar instrument Z which satisfies

X = γ0 +γ1Z +u (12.94)

with u independent of Z and mean zero.

Consider using (1, Z , Z 2) as instruments. Is this a sufficient number of instruments? Is (12.93)
just-identified, over-identified, or under-identified?

(c) Write out the reduced form equation for X 2. Under what condition on the reduced form parame-
ters (12.94) are the parameters in (12.93) identified?

Exercise 12.12 Consider the structural equation and reduced form

Y =βX 2 +e

X = γZ +u

E [Z e] = 0

E [Z u] = 0

with X 2 treated as endogenous so that E
[

X 2e
] 6= 0. For simplicity assume no intercepts. Y , Z , and X are

scalar. Assume γ 6= 0. Consider the following estimator. First, estimate γ by OLS of X on Z and construct

the fitted values X̂i = γ̂Zi . Second, estimate β by OLS of Yi on
(
X̂i

)2
.

(a) Write out this estimator β̂ explicitly as a function of the sample.

(b) Find its probability limit as n →∞.

(c) In general, is β̂ consistent for β? Is there a reasonable condition under which β̂ is consistent?

Exercise 12.13 Consider the structural equation Y1 = Z ′
1β1 +Y ′

2β2 + e with E [Z e] = 0 where Y2 is k2 ×1
and treated as endogenous. The variables Z = (Z1, Z2) are treated as exogenous where Z2 is `2 ×1 and
`2 ≥ k2. You are interested in testing the hypothesis H0 :β2 = 0.

Consider the reduced form equation for Y1

Y1 = Z ′
1λ1 +Z ′

2λ2 +u1. (12.95)

Show how to test H0 using only the OLS estimates of (12.95).
Hint: This will require an analysis of the reduced form equations and their relation to the structural

equation.

Exercise 12.14 Take the linear instrumental variables equation Y1 = Z ′
1β1+Y ′

2β2+e with E [Z e] = 0 where
Z1 is k1 ×1, Y2 is k2 ×1, and Z is `×1, with ` ≥ k = k1 +k2. The sample size is n. Assume that Q Z Z =
E
[

Z Z ′]> 0 and QZ X = E[
Z X ′] has full rank k.

Suppose that only (Y1, Z1, Z2) are available and Y2 is missing from the dataset.
Consider the 2SLS estimator β̂1 of β1 obtained from the misspecified IV regression of Y1 on Z1 only,

using Z2 as an instrument for Z1.

(a) Find a stochastic decomposition β̂1 =β1+b1n +r1n where r1n depends on the error e and b1n does
not depend on the error e.

(b) Show that r1n →p 0 as n →∞.
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(c) Find the probability limit of b1n and β̂1 as n →∞.

(d) Does β̂1 suffer from “omitted variables bias”? Explain. Under what conditions is there no omitted
variables bias?

(e) Find the asymptotic distribution as n →∞ of
p

n
(
β̂1 −β1 −b1n

)
.

Exercise 12.15 Take the linear instrumental variables equation Y1 = Zβ1 + Y2β2 + e with E [e | Z ] = 0
where both X and Z are scalar 1×1.

(a) Can the coefficients (β1,β2) be estimated by 2SLS using Z as an instrument for Y2?

Why or why not?

(b) Can the coefficients (β1,β2) be estimated by 2SLS using Z and Z 2 as instruments?

(c) For the 2SLS estimator suggested in (b), what is the implicit exclusion restriction?

(d) In (b) what is the implicit assumption about instrument relevance?

[Hint: Write down the implied reduced form equation for Y2.]

(e) In a generic application would you be comfortable with the assumptions in (c) and (d)?

Exercise 12.16 Take a linear equation with endogeneity and a just-identified linear reduced form Y =
Xβ+e with X = γZ +u2 where both X and Z are scalar 1×1. Assume that E [Z e] = 0 and E [Z u2] = 0.

(a) Derive the reduced form equation Y = Zλ+u1. Show that β=λ/γ if γ 6= 0, and that E [Z u] = 0.

(b) Let λ̂ denote the OLS estimate from linear regression of Y on Z , and let γ̂ denote the OLS estimate
from linear regression of X on Z . Write θ = (λ,γ)′ and let θ̂ = (λ̂, γ̂)′. Define u = (u1,u2). Writep

n
(
θ̂−θ)

using a single expression as a function of the error u.

(c) Show that E [Z u] = 0.

(d) Derive the joint asymptotic distribution of
p

n
(
θ̂−θ)

as n →∞. Hint: DefineΩu = E[
Z 2uu′] .

(e) Using the previous result and the Delta Method find the asymptotic distribution of the Indirect
Least Squares estimator β̂= λ̂/γ̂.

(f) Is the answer in (e) the same as the asymptotic distribution of the 2SLS estimator in Theorem 12.2?

Hint: Show that
(

1 −β )
u = e and

(
1 −β )

Ωu

(
1
−β

)
= E[

Z 2e2
]

.

Exercise 12.17 Take the model Y = X ′β+ e with E [Z e] = 0 and consider the two-stage least squares
estimator. The first-stage estimate is least squares of X on Z with least squares fitted values X̂ . The
second-stage is least squares of Y on X̂ with coefficient estimator β̂ and least squares residuals êi =
Yi − X̂i β̂. Consider σ̂2 = 1

n

∑n
i=1 ê2

i as an estimator for σ2 = E[
e2

i

]
. Is this appropriate? If not, propose an

alternative estimator.
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Exercise 12.18 You have two independent i.i.d. samples (Y1i , X1i , Z1i : i = 1, ...,n) and (Y2i , X2i , Z2i : i =
1, ...,n). The dependent variables Y1 and Y2 are real-valued. The regressors X1 and X2 and instruments
Z1 and Z2 are k-vectors. The model is standard just-identified linear instrumental variables

Y1 = X ′
1β1 +e1

E [Z1e1] = 0

Y2 = X ′
2β2 +e2

E [Z2e2] = 0.

For concreteness, sample 1 are women and sample 2 are men. You want to test H0 : β1 = β2, that the
two samples have the same coefficients.

(a) Develop a test statistic for H0.

(b) Derive the asymptotic distribution of the test statistic.

(c) Describe (in brief) the testing procedure.

Exercise 12.19 You want to use household data to estimate β in the model Y = Xβ+e with X scalar and
endogenous, using as an instrument the state of residence.

(a) What are the assumptions needed to justify this choice of instrument?

(b) Is the model just identified or overidentified?

Exercise 12.20 The model is Y = X ′β+ e with E [Z e] = 0. An economist wants to obtain the 2SLS esti-
mates and standard errors for β. He uses the following steps

• Regresses X on Z , obtains the predicted values X̂ .

• Regresses Y on X̂ , obtains the coefficient estimate β̂ and standard error s(β̂) from this regression.

Is this correct? Does this produce the 2SLS estimates and standard errors?

Exercise 12.21 Let Y = X ′
1β1+X ′

2β2+e. Let (β̂1, β̂2) denote the 2SLS estimates of (β1,β2) when Z2 is used
as an instrument for X2 and they are the same dimension (so the model is just identified). Let (λ̂1, λ̂2) be
the OLS estimates from the regression of Y on X1 and Z2. Show that β̂1 = λ̂1.

Exercise 12.22 In the linear model Y = Xβ+ e with X ∈R suppose σ2(x) = E[
e2 | X = x

]
is known. Show

that the GLS estimator of β can be written as an instrumental variables estimator using some instrument
Z . (Find an expression for Z .)

Exercise 12.23 You will replicate and extend the work reported in Acemoglu, Johnson and Robinson
(2001). The authors provided an expanded set of controls when they published their 2012 extension and
posted the data on the AER website. This dataset is AJR2001 on the textbook website.

(a) Estimate the OLS regression (12.86), the reduced form regression (12.87), and the 2SLS regression
(12.88). (Which point estimate is different by 0.01 from the reported values? This is a common
phenomenon in empirical replication).
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(b) For the above estimates calculate both homoskedastic and heteroskedastic-robust standard errors.
Which were used by the authors (as reported in (12.86)-(12.87)-(12.88)?)

(c) Calculate the 2SLS estimates by the Indirect Least Squares formula. Are they the same?

(d) Calculate the 2SLS estimates by the two-stage approach. Are they the same?

(e) Calculate the 2SLS estimates by the control variable approach. Are they the same?

(f) Acemoglu, Johnson and Robinson (2001) reported many specifications including alternative re-
gressor controls, for example latitude and africa. Estimate by least squares the equation for log-
GDP adding latitude and africa as regressors. Does this regression suggest that latitude and africa
are predictive of the level of GDP?

(g) Now estimate the same equation as in (f) but by 2SLS using log(mortality) as an instrument for
risk. How does the interpretation of the effect of latitude and africa change?

(h) Return to our baseline model (without including latitude and africa). The authors’ reduced form
equation uses log(mortality) as the instrument, rather than, say, the level of mortality. Estimate
the reduced form for risk with mortality as the instrument. (This variable is not provided in the
dataset so you need to take the exponential of log(mortality).) Can you explain why the authors
preferred the equation with log(mortality)?

(i) Try an alternative reduced form including both log(mortality) and the square of log(mortality).
Interpret the results. Re-estimate the structural equation by 2SLS using both log(mortality) and
its square as instruments. How do the results change?

(j) For the estimates in (i) are the instruments strong or weak using the Stock-Yogo test?

(k) Calculate and interpret a test for exogeneity of the instruments.

(l) Estimate the equation by LIML using the instruments log(mortality) and the square of log(mortality).

Exercise 12.24 In Exercise 12.23 you extended the work reported in Acemoglu, Johnson and Robinson
(2001). Consider the 2SLS regression (12.88). Compute the standard errors both by the asymptotic for-
mula and by the bootstrap using a large number (10,000) of bootstrap replications. Re-calculate the
bootstrap standard errors. Comment on the reliability of bootstrap standard errors for IV regression.

Exercise 12.25 You will replicate and extend the work reported in the chapter relating to Card (1995).
The data is from the author’s website and is posted as Card1995. The model we focus on is labeled
2SLS(a) in Table 12.1 which uses public and private as instruments for edu. The variables you will need
for this exercise include lwage76, ed76 , age76, smsa76r, reg76r, nearc2, nearc4, nearc4a, nearc4b. See the
description file for definitions. Experience is not in the dataset, so needs to be generated as age−edu−6.

(a) First, replicate the reduced form regression presented in the final column of Table 12.2, and the
2SLS regression described above (using public and private as instruments for edu) to verify that
you have the same variable defintions.

(b) Try a different reduced form model. The variable nearc2 means “grew up near a 2-year college”.
See if adding it to the reduced form equation is useful.
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(c) Try more interactions in the reduced form. Create the interactions nearc4a*age76 and nearc4a*age762/100,
and add them to the reduced form equation. Estimate this by least squares. Interpret the coeffi-
cients on the two new variables.

(d) Estimate the structural equation by 2SLS using the expanded instrument set

{nearc4a, nearc4b, nearc4a*age76, nearc4a*age762/100}.

What is the impact on the structural estimate of the return to schooling?

(e) Using the Stock-Yogo test are the instruments strong or weak?

(f) Test the hypothesis that edu is exogenous for the structural return to schooling.

(g) Re-estimate the last equation by LIML. Do the results change meaningfully?

Exercise 12.26 In Exercise 12.25 you extended the work reported in Card (1995). Now, estimate the IV
equation corresponding to the IV(a) column of Table 12.1 which is the baseline specification considered
in Card. Use the bootstrap to calculate a BC percentile confidence interval. In this example should we
also report the bootstrap standard error?

Exercise 12.27 You will extend Angrist and Krueger (1991) using the data file AK1991 on the textbook
website.. Their Table VIII reports estimates of an analog of (12.90) for the subsample of 26,913 Black
men. Use this sub-sample for the following analysis.

(a) Estimate an equation which is identical in form to (12.90) with the same additional regressors
(year-of-birth, region-of-residence, and state-of-birth dummy variables) and 180 excluded instru-
mental variables (the interactions of quarter-of-birth times year-of-birth dummy variables and
quarter-of-birth times state-of-birth interactions) but use the subsample of Black men. One re-
gressor must be omitted to achieve identification. Which variable is this?

(b) Estimate the reduced form for the above equation by least squares. Calculate the F statistic for the
excluded instruments. What do you conclude about the strength of the instruments?

(c) Repeat, estimating the reduced form for the analog of (12.89) which has 30 excluded instrumental
variables and does not include the state-of-birth dummy variables in the regression. What do you
conclude about the strength of the instruments?

(d) Repeat, estimating the reduced form for the analog of (12.92) which has only 3 excluded instru-
mental variables. Are the instruments sufficiently strong for 2SLS estimation? For LIML estima-
tion?

(e) Estimate the structural wage equation using what you believe is the most appropriate set of re-
gressors, instruments, and the most appropriate estimation method. What is the estimated return
to education (for the subsample of Black men) and its standard error? Without doing a formal hy-
pothesis test, do these results (or in which way?) appear meaningfully different from the results for
the full sample?

Exercise 12.28 In Exercise 12.27 you extended the work reported in Angrist and Krueger (1991) by es-
timating wage equations for the subsample of Black men. Re-estimate equation (12.92) for this group
using as instruments only the three quarter-of-birth dummy variables. Calculate the standard error for
the return to education by asymptotic and bootstrap methods. Calculate a BC percentile interval. In this
application of 2SLS is it appropriate to report the bootstrap standard error?



Chapter 13

Generalized Method of Moments

13.1 Introduction

One of the most popular estimation methods in applied econometrics is the Generalized Method
of Moments (GMM). GMM generalizes classical method of moments by allowing for more equations
than unknown parameters (so are overidentified) and by allowing general nonlinear functions of the
observations and parameters. Together this allows for a fairly rich and flexible estimation framework.
GMM includes as special cases OLS, IV, multivariate regression, and 2SLS. It includes both linear and
nonlinear models. In this chapter we focus primarily on linear models.

The GMM label and methods were introduced to econometrics in a seminal paper by Lars Hansen
(1982). The ideas and methods build on the work of Amemiya (1974, 1977), Gallant (1977), and Gal-
lant and Jorgenson (1979). The ideas are closely related to the contemporeneous work of Halbert White
(1980, 1982) and White and Domowitz (1984). The methods are also related to what are called estimating
equations in the statistics literature. For a review of the latter see Godambe (1991).

13.2 Moment Equation Models

All of the models that have been introduced so far can be written as moment equation models where
the population parameters solve a system of moment equations. Moment equation models are broader
than the models so far considered and understanding their common structure opens up straightforward
techniques to handle new econometric models.

Moment equation models take the following form. Let gi (β) be a known `×1 function of the i th ob-
servation and a k ×1 parameter β. A moment equation model is summarized by the moment equations

E
[
gi (β)

]= 0 (13.1)

and a parameter space β ∈ B . For example, in the instrumental variables model gi
(
β
)= Zi

(
Yi −X ′

iβ
)
.

In general, we say that a parameter β is identified if there is a unique mapping from the data distri-
bution to β. In the context of the model (13.1) this means that there is a unique β satisfying (13.1). Since
(13.1) is a system of ` equations with k unknowns, then it is necessary that `≥ k for there to be a unique
solution. If `= k we say that the model is just identified, meaning that there is just enough information
to identify the parameters. If `> k we say that the model is overidentified, meaning that there is excess
information. If ` < k we say that the model is underidentified, meaning that there is insufficient infor-
mation to identify the parameters. In general, we assume that `≥ k so the model is either just identified
or overidentified.

412
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13.3 Method of Moments Estimators

In this section we consider the just-identified case `= k.
Define the sample analog of (13.5)

g n(β) = 1

n

n∑
i=1

gi (β). (13.2)

The method of moments estimator (MME) β̂mm is the parameter value which sets g n(β) = 0. Thus

g n(β̂mm) = 1

n

n∑
i=1

gi (β̂mm) = 0. (13.3)

The equations (13.3) are known as the estimating equations as they are the equations which determine
the estimator β̂mm.

In some contexts (such as those discussed in the examples below) there is an explicit solution for
β̂mm. In other cases the solution must be found numerically.

We now show how most of the estimators discussed so far in the textbook can be written as method
of moments estimators.

Mean: Set gi
(
µ
)= Yi −µ. The MME is µ̂= 1

n

∑n
i=1 Yi .

Mean and Variance: Set

gi
(
µ,σ2)= (

Yi −µ(
Yi −µ

)2 −σ2

)
.

The MME are µ̂= 1
n

∑n
i=1 Yi and σ̂2 = 1

n

∑n
i=1

(
Yi − µ̂

)2 .

OLS: Set gi
(
β
)= Xi

(
Yi −X ′

iβ
)
. The MME is β̂= (

X ′X
)−1 (

X ′Y
)
.

OLS and Variance: Set

gi
(
β,σ2)= (

Xi
(
Yi −X ′

iβ
)(

Yi −X ′
iβ

)2 −σ2

)
.

The MME is β̂= (
X ′X

)−1 (
X ′Y

)
and σ̂2 = 1

n

∑n
i=1

(
Yi −X ′

i β̂
)2

.

Multivariate Least Squares, vector form: Set gi
(
β
)= X

′
i

(
Yi −X iβ

)
. The MME is β̂=

(∑n
i=1 X

′
i X i

)−1 (∑n
i=1 X i Yi

)
which is (11.4).

Multivariate Least Squares, matrix form: Set gi (B ) = vec
(
Xi

(
Y ′

i −X ′
i B

))
. The MME is B̂ = (∑n

i=1 Xi X ′
i

)−1 (∑n
i=1 Xi Y ′

i

)
which is (11.6).

Seemingly Unrelated Regression: Set

gi
(
β,Σ

)=
 X iΣ

−1
(
Yi −X

′
iβ

)
vec

(
Σ−

(
Yi −X

′
iβ

)(
Yi −X

′
iβ

)′)
 .

The MME is β̂=
(∑n

i=1 X i Σ̂
−1X

′
i

)−1 (∑n
i=1 X i Σ̂

−1Yi

)
and Σ̂= n−1 ∑n

i=1

(
Yi −X

′
i β̂

)(
Yi −X

′
i β̂

)′
.

IV: Set gi
(
β
)= Zi

(
Yi −X ′

iβ
)
. The MME is β̂= (

Z ′X
)−1 (

Z ′Y
)
.
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Generated Regressors: Set

gi
(
β, A

)= (
A′Zi

(
Yi −Z ′

i Aβ
)

vec
(
Zi

(
X ′

i −Z ′
i A

)) )
.

The MME is Â = (∑n
i=1 Zi Z ′

i

)−1 (∑n
i=1 Zi X ′

i

)
and β̂=

(
Â
′
Z ′Z Â

)−1 (
Â
′
Z ′Y

)
.

A common feature of these examples is that the estimator can be written as the solution to a set of
estimating equations (13.3). This provides a common framework which enables a convenient develop-
ment of a unified distribution theory.

13.4 Overidentified Moment Equations

In the instrumental variables model gi (β) = Zi
(
Yi −X ′

iβ
)
. Thus (13.2) is

g n(β) = 1

n

n∑
i=1

gi (β) = 1

n

n∑
i=1

Zi
(
Yi −X ′

iβ
)= 1

n

(
Z ′Y −Z ′Xβ

)
. (13.4)

We have defined the method of moments estimator for β as the parameter value which sets g n(β) =
0. However, when the model is overidentified (if ` > k) this is generally impossible as there are more
equations than free parameters. Equivalently, there is no choice of β which sets (13.4) to zero. Thus the
method of moments estimator is not defined for the overidentified case.

While we cannot find an estimator which sets g n(β) equal to zero we can try to find an estimator
which makes g n(β) as close to zero as possible.

One way to think about this is to define the vector µ = Z ′Y , the matrix G = Z ′X and the “error”
η = µ−Gβ. Then we can write (13.4) as µ = Gβ+η. This looks like a regression equation with the `×1
dependent variable µ, the `×k regressor matrix G , and the `×1 error vector η. The goal is to make the
error vector η as small as possible. Recalling our knowledge about least squares we deduct that a simple
method is to regress µ on G , obtaining β̂= (

G ′G
)−1 (

G ′µ
)
. This minimizes the sum-of-squares η′η. This

is certainly one way to make η “small”.
More generally we know that when errors are non-homogeneous it can be more efficient to estimate

by weighted least squares. Thus for some weight matrix W consider the estimator

β̂= (
G ′W G

)−1 (
G ′W µ

)= (
X ′Z W Z ′X

)−1 (
X ′Z W Z ′Y

)
.

This minimizes the weighted sum of squares η′W η. This solution is known as the generalized method
of moments (GMM).

The estimator is typically defined as follows. Given a set of moment equations (13.2) and an `×`
weight matrix W > 0 the GMM criterion function is defined as

J (β) = n g n(β)′W g n(β).

The factor “n” is not important for the definition of the estimator but is convenient for the distribution
theory. The criterion J (β) is the weighted sum of squared moment equation errors. When W = I` then
J (β) = n g n(β)′g n(β) = n

∥∥g n(β)
∥∥2 , the square of the Euclidean length. Since we restrict attention to

positive definite weight matrices W the criterion J (β) is non-negative.

Definition 13.1 The Generalized Method of Moments (GMM) estimator is

β̂gmm = argmin
β

J
(
β
)

.
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Recall that in the just-identified case k = ` the method of moments estimator β̂mm solves g n(β̂mm) =
0. Hence in this case J

(
β̂mm

) = 0 which means that β̂mm minimizes J
(
β
)

and equals β̂gmm = β̂mm. This
means that GMM includes MME as a special case. This implies that all of our results for GMM apply to
any method of moments estimator.

In the over-identified case the GMM estimator depends on the choice of weight matrix W and so this
is an important focus of the theory. In the just-identified case the GMM estimator simplifies to the MME
which does not depend on W .

The method and theory of the generalized method of moments was developed in an influential paper
by Lars Hansen (1982). This paper introduced the method, its asymptotic distribution, the form of the
efficient weight matrix, and tests for overidentification.

13.5 Linear Moment Models

One of the great advantages of the moment equation framework is that it allows both linear and non-
linear models. However, when the moment equations are linear in the parameters then we have explicit
solutions for the estimates and a straightforward asymptotic distribution theory. Hence we start by con-
fining attention to linear moment equations and return to nonlinear moment equations later. In the
examples listed earlier the estimators which have linear moment equations include the sample mean,
OLS, multivariate least squares, IV, and 2SLS. The estimates which have nonlinear moment equations
include the sample variance, SUR, and generated regressors.

In particular, we focus on the overidentified IV model with moment equations

gi (β) = Zi (Yi −X ′
iβ) (13.5)

where Zi is `×1 and Xi is k ×1.

13.6 GMM Estimator

Given (13.5) the sample moment equations are (13.4). The GMM criterion can be written as

J (β) = n
(

Z ′Y −Z ′Xβ
)′W

(
Z ′Y −Z ′Xβ

)
.

The GMM estimator minimizes J (β). The first order conditions are

0 = ∂

∂β
J (β̂)

= 2
∂

∂β
g n(β̂)′W g n(β̂)

=−2

(
1

n
X ′Z

)
W

(
1

n
Z ′ (Y −X β̂

))
.

The solution is given as follows.

Theorem 13.1 For the overidentified IV model

β̂gmm = (
X ′Z W Z ′X

)−1 (
X ′Z W Z ′Y

)
. (13.6)
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While the estimator depends on W the dependence is only up to scale. This is because if W is re-
placed by cW for some c > 0, β̂gmm does not change. When W is fixed by the user we call β̂gmm a one-step
GMM estimator. The formula (13.6) applies for the over-identified (`> k) and the just-identified (`= k)
case. When the model is just-identified then X ′Z is k ×k so expression (13.6) simplifies to

β̂gmm = (
Z ′X

)−1 W −1 (
X ′Z

)−1 (
X ′Z W Z ′Y

)= (
Z ′X

)−1 (
Z ′Y

)= β̂iv

the IV estimator.
The GMM estimator (13.6) resembles the 2SLS estimator (12.29). In fact they are equal when W =(

Z ′Z
)−1. This means that the 2SLS estimator is a one-step GMM estimator for the linear model.

Theorem 13.2 If W = (
Z ′Z

)−1 then β̂gmm = β̂2sls. Furthermore, if k = ` then
β̂gmm = β̂iv.

13.7 Distribution of GMM Estimator

Let Q = E[
Z X ′] andΩ= E[

Z Z ′e2
]
. Then(
1

n
X ′Z

)
W

(
1

n
Z ′X

)
−→

p
Q ′W Q

and (
1

n
X ′Z

)
W

(
1p
n

Z ′e
)
−→

d
Q ′W N(0,Ω) .

We conclude:

Theorem 13.3 Asymptotic Distribution of GMM Estimator. Under Assump-
tion 12.2, as n →∞,

p
n

(
β̂gmm −β)−→

d
N

(
0,V β

)
where

V β = (
Q ′W Q

)−1 (
Q ′WΩW Q

)(
Q ′W Q

)−1 . (13.7)

The GMM estimator is asymptotically normal with a “sandwich form” asymptotic variance.
Our derivation treated the weight matrix W as if it is non-random but Theorem 13.3 applies to the

random weight matrix case so long as Ŵ converges in probability to a positive definite limit W . This
may require scaling the weight matrix, for example replacing Ŵ = (

Z ′Z
)−1 with Ŵ = (

n−1Z ′Z
)−1

. Since
rescaling the weight matrix does not affect the estimator this is ignored in implementation.
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13.8 Efficient GMM

The asymptotic distribution of the GMM estimator β̂gmm depends on the weight matrix W through
the asymptotic variance V β. The asymptotically optimal weight matrix W 0 is that which minimizes V β.
This turns out to be W 0 =Ω−1. The proof is left to Exercise 13.4.

When the GMM estimator β̂ is constructed with W = W 0 =Ω−1 (or a weight matrix which is a con-
sistent estimator of W 0) we call it the Efficient GMM estimator:

β̂gmm = (
X ′ZΩ−1Z ′X

)−1 (
X ′ZΩ−1Z ′Y

)
.

Its asymptotic distribution takes a simpler form than in Theorem 13.3. By substituting W = W 0 = Ω−1

into (13.7) we find

V β =
(
Q ′Ω−1Q

)−1 (
Q ′Ω−1ΩΩ−1Q

)(
Q ′Ω−1Q

)−1 = (
Q ′Ω−1Q

)−1
.

This is the asymptotic variance of the efficient GMM estimator.

Theorem 13.4 Asymptotic Distribution of GMM with Efficient Weight Ma-
trix. Under Assumption 12.2 and W = Ω−1, as n → ∞,

p
n

(
β̂gmm −β) −→

d

N
(
0,V β

)
where V β =

(
Q ′Ω−1Q

)−1
.

Theorem 13.5 Efficient GMM. Under Assumption 12.2, for any W > 0,(
Q ′W Q

)−1 (
Q ′WΩW Q

)(
Q ′W Q

)−1 − (
Q ′Ω−1Q

)−1 ≥ 0.

The inequality “≥” can be replaced with “>” if W 6= Ω−1. Thus if β̂gmm is the
efficient GMM estimator and β̃gmm is another GMM estimator, then

avar
[
β̂gmm

]≤ avar
[
β̃gmm

]
.

For a proof see Exercise 13.4.
This means that the smallest possible GMM covariance matrix (in the positive definite sense) is

achieved by the efficient GMM weight matrix.
W 0 =Ω−1 is not known in practice but it can be estimated consistently as we discuss in Section 13.10.

For any Ŵ −→
p

W 0 the asymptotic distribution in Theorem 13.4 is unaffected. Consequently we call any

β̂gmm constructed with an estimate of the efficient weight matrix an efficient GMM estimator.
By “efficient” we mean that this estimator has the smallest asymptotic variance in the class of GMM

estimators with this set of moment conditions. This is a weak concept of optimality as we are only con-
sidering alternative weight matrices Ŵ . However, it turns out that the GMM estimator is semiparamet-
rically efficient as shown by Gary Chamberlain (1987). If it is known that E

[
gi (β)

]= 0 and this is all that
is known this is a semi-parametric problem as the distribution of the data is unknown. Chamberlain
showed that in this context no semiparametric estimator (one which is consistent globally for the class
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of models considered) can have a smaller asymptotic variance than
(
G ′Ω−1G

)−1
where G = E

[
∂
∂β′ gi (β)

]
.

Since the GMM estimator has this asymptotic variance it is semiparametrically efficient.
The results in this section show that in the linear model no estimator has better asymptotic efficiency

than the efficient linear GMM estimator. No estimator can do better (in this first-order asymptotic sense)
without imposing additional assumptions.

13.9 Efficient GMM versus 2SLS

For the linear model we introduced 2SLS as a standard estimator for β. Now we have introduced
GMM which includes 2SLS as a special case. Is there a context where 2SLS is efficient?

To answer this question recall that 2SLS is GMM given the weight matrix Ŵ = (
Z ′Z

)−1 or equiv-

alently Ŵ = (
n−1Z ′Z

)−1
since scaling doesn’t matter. Since Ŵ −→

p

(
E
[

Z Z ′])−1 this is asymptotically

equivalent to the weight matrix W = (
E
[

Z Z ′])−1. In contrast, the efficient weight matrix takes the form(
E
[

Z Z ′e2
])−1

. Now suppose that the structural equation error e is conditionally homoskedastic in the

sense that E
[
e2 | Z

] = σ2. Then the efficient weight matrix equals W = (
E
[

Z Z ′])−1
σ−2 or equivalently

W = (
E
[

Z Z ′])−1 since scaling doesn’t matter. The latter weight matrix is the same as the 2SLS asymptotic
weight matrix. This shows that the 2SLS weight matrix is the efficient weight matrix under conditional
homoskedasticity.

Theorem 13.6 Under Assumption 12.2 and E
[
e2 | Z

] = σ2, β̂2sls is efficient
GMM.

This shows that 2SLS is efficient under homoskedasticity. When homoskedasticity holds there is no
reason to use efficient GMM over 2SLS. More broadly, when homoskedasticity is a reasonable approxi-
mation then 2SLS will be a reasonable estimator. However, this result also shows that in the general case
where the error is conditionally heteroskedastic, 2SLS is inefficient relative to efficient GMM.

13.10 Estimation of the Efficient Weight Matrix

To construct the efficient GMM estimator we need a consistent estimator Ŵ of W 0 =Ω−1. The con-
vention is to form an estimator Ω̂ ofΩ and then set Ŵ = Ω̂−1.

The two-step GMM estimator proceeds by using a one-step consistent estimator of β to construct
the weight matrix estimator Ŵ . In the linear model the natural one-step estimator for β is 2SLS. Set
ẽi = Yi −X ′

i β̂2sls, g̃i = gi (β̃) = Zi ẽi , and g n = n−1 ∑n
i=1 g̃i . Two moment estimators ofΩ are

Ω̂= 1

n

n∑
i=1

g̃i g̃ ′
i (13.8)

and

Ω̂∗ = 1

n

n∑
i=1

(
g̃i − g n

)(
g̃i − g n

)′ . (13.9)

The estimator (13.8) is an uncentered covariance matrix estimator while the estimator (13.9) is a
centered version. Either is consistent when E [Z e] = 0 which holds under correct specification. However
under misspecification we may have E [Z e] 6= 0. In the latter context Ω̂∗ remains an estimator of var[Z e]
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while Ω̂ is an estimator of E
[

Z Z ′e2
]
. In this sense Ω̂∗ is a robust variance estimator. For some testing

problems it turns out to be preferable to use a covariance matrix estimator which is robust to the alter-
native hypothesis. For these reasons estimator (13.9) is generally preferred. The uncentered estimator
(13.8) is more commonly seen in practice since it is the default choice by most packages. It is also worth
observing that when the model is just identified then g n = 0 so the two are algebraically identical. The
choice of weight matrix may also impact covariance matrix estimation as discussed in Section 13.12.

Given the choice of covariance matrix estimator we set Ŵ = Ω̂−1 or Ŵ = Ω̂∗−1. Given this weight
matrix we construct the two-step GMM estimator as (13.6) using the weight matrix Ŵ .

Since the 2SLS estimator is consistent for β, by arguments nearly identical to those used for covari-
ance matrix estimation we can show that Ω̂ and Ω̂∗ are consistent forΩ and thus Ŵ is consistent forΩ−1.
See Exercise 13.3.

This also means that the two-step GMM estimator satisfies the conditions for Theorem 13.4.

Theorem 13.7 Under Assumption 12.2 and Ω > 0, if Ŵ = Ω̂−1 or Ŵ =
Ω̂∗−1 where the latter are defined in (13.8) and (13.9) then as n → ∞,p

n
(
β̂gmm −β)−→

d
N

(
0,V β

)
where V β =

(
Q ′Ω−1Q

)−1
.

This shows that the two-step GMM estimator is asymptotically efficient.
The two-step GMM estimator of the IV regression equation can be computed in Stata using the

ivregress gmm command. By default it uses formula (13.8). The centered version (13.9) may be se-
lected using the center option.

13.11 Iterated GMM

The asymptotic distribution of the two-step GMM estimator does not depend on the choice of the
preliminary one-step estimator. However, the actual value of the estimator depends on this choice and so
will the finite sample distribution. This is undesirable and likely inefficient. To remove this dependence
we can iterate the estimation sequence. Specifically, given β̂gmm we can construct an updated weight
matrix estimate Ŵ and then re-estimate β̂gmm. This updating can be iterated until convergence1. The
result is called the iterated GMM estimator and is a common implementation of efficient GMM.

Interestingly, B. E. Hansen and Lee (2020) show that the iterated GMM estimator is unaffected if the
weight matrix is computed with or without centering. Standard errors and test statistics, however, will
be affected by the choice.

The iterated GMM estimator of the IV regression equation can be computed in Stata using the ivregress
gmm command using the igmm option.

13.12 Covariance Matrix Estimation

An estimator of the asymptotic variance of β̂gmm can be obtained by replacing the matrices in the
asymptotic variance formula by consistent estimators.

1In practice, “convergence” obtains when the difference between the estimates at subsequent steps is smaller than a pre-
specified tolerance. A sufficient condition for convergence is that the sequence is a contraction mapping. Indeed, B. Hansen
and Lee (2020) have shown that the iterated GMM estimator generally satisfies this condition in large samples.
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For the one-step or two-step GMM estimator the covariance matrix estimator is

V̂ β =
(
Q̂

′
Ŵ Q̂

)−1 (
Q̂

′
Ŵ Ω̂Ŵ Q̂

)(
Q̂

′
Ŵ Q̂

)−1
(13.10)

where Q̂ = 1
n

∑n
i=1 Zi X ′

i . The weight matrix is constructed using either the uncentered estimator (13.8) or

centered estimator (13.9) with the residuals êi = Yi −X ′
i β̂gmm.

For the efficient iterated GMM estimator the covariance matrix estimator is

V̂ β =
(
Q̂

′
Ω̂−1Q̂

)−1 =
((

1

n
X ′Z

)
Ω̂−1

(
1

n
Z ′X

))−1

. (13.11)

Ω̂ can be computed using either the uncentered estimator (13.8) or centered estimator (13.9). Based on
the asymptotic approximation the estimator (13.11) can be used as well for the two-step estimator but
should use the final residuals êi = Yi −X ′

i β̂gmm.
Asymptotic standard errors are given by the square roots of the diagonal elements of n−1V̂ β.
It is unclear if it is preferred to use the covariance matrix estimator based on the centered or uncen-

tered estimator of Ω to construct the covariance matrix estimator. Using the centered estimator results
in a smaller covariance matrix and standard errors and thus more “significant” tests based on asymptotic
critical values. In contrast the uncentered estimator ofΩwill result in larger standard errors and will thus
be more “conservative”.

In Stata, the default covariance matrix estimation method is determined by the choice of weight
matrix. Thus if the centered estimator (13.9) is used for the weight matrix it is also used for the covariance
matrix estimator.

13.13 Clustered Dependence

In Section 4.23 we introduced clustered dependence and in Section 12.25 described covariance ma-
trix estimation for 2SLS. The methods extend naturally to GMM but with the additional complication of
potentially altering weight matrix calculation.

The structural equation for the g th cluster can be written as the matrix system Y g = X gβ+eg . Using
this notation the centered GMM estimator with weight matrix W can be written as

β̂gmm −β= (
X ′Z W Z ′X

)−1 X ′Z W

(
G∑

g=1
Z ′

g eg

)
.

The cluster-robust covariance matrix estimator for β̂gmm is

V̂ β =
(

X ′Z W Z ′X
)−1 X ′Z W ŜW Z ′X

(
X ′Z W Z ′X

)−1 (13.12)

with

Ŝ =
G∑

g=1
Z ′

g êg ê ′
g Z g (13.13)

and the clustered residuals
êg = Y g −X g β̂gmm. (13.14)

The cluster-robust estimator (13.12) is appropriate for the one-step or two-step GMM estimator. It is
also appropriate for the iterated estimator when the latter uses a conventional (non-clustered) efficient
weight matrix. However in the clustering context it is more natural to use a cluster-robust weight matrix
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such as W = Ŝ
−1

where Ŝ is a cluster-robust covariance estimator as in (13.13) based on a one-step or
iterated residual. This gives rise to the cluster-robust GMM estimator

β̂gmm =
(

X ′Z Ŝ
−1

Z ′X
)−1

X ′Z Ŝ
−1

Z ′Y . (13.15)

An appropriate cluster-robust covariance matrix estimator is

V̂ β =
(

X ′Z Ŝ
−1

Z ′X
)−1

where Ŝ is calculated using the final residuals.
To implement a cluster-robust weight matrix use the 2SLS estimator for first step. Compute the clus-

ter residuals (13.14) and covariance matrix (13.13). Then (13.15) is the two-step GMM estimator. Iterating
the residuals and covariance matrix until convergence we obtain the iterated GMM estimator.

In Stata, using the ivregress gmm command with the cluster option implements the two-step
GMM estimator using the cluster-robust weight matrix and cluster-robust covariance matrix estimator.
To use the centered covariance matrix use the center option and to implement the iterated GMM esti-
mator use the igmm option. Alternatively, you can use the wmatrix and vce options to separately specify
the weight matrix and covariance matrix estimation methods.

13.14 Wald Test

For a given function r
(
β
)

: Rk → Θ ⊂ Rq we define the parameter θ = r
(
β
)
. The GMM estimator

of θ is θ̂gmm = r
(
β̂gmm

)
. By the delta method it is asymptotically normal with covariance matrix V θ =

R ′V βR where R = ∂

∂β
r (β)′. An estimator of the asymptotic covariance matrix is V̂ θ = R̂

′
V̂ βR̂ where

R̂ = ∂

∂β
r (β̂gmm)′. When θ is scalar then an asymptotic standard error for θ̂gmm is formed as

√
n−1V̂ θ.

A standard test of the hypothesis H0 : θ = θ0 against H1 : θ 6= θ0 is based on the Wald statistic

W = n
(
θ̂−θ0

)′
V̂

−1
θ̂

(
θ̂−θ0

)
.

Let Gq (u) denote the χ2
q distribution function.

Theorem 13.8 Under Assumption 12.2, Assumption 7.3, and H0, as n → ∞,
W −→

d
χ2

q . For c satisfying α= 1−Gq (c), P [W > c |H0] −→α so the test “Reject

H0 if W > c” has asymptotic size α.

For a proof see Exercise 13.5.
In Stata, the commands test and testparm can be used after ivregress gmm to implement Wald

tests of linear hypotheses. The commands nlcom and testnl can be used after ivregress gmm to im-
plement Wald tests of nonlinear hypotheses.
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13.15 Restricted GMM

It is often desirable to impose restrictions on the coefficients. In this section we consider estimation
subject to the linear constraints R ′β= c . In the following section we consider nonlinear constraints.

The constrained GMM estimator minimizes the GMM criterion subject to the constraint. It is

β̂cgmm = argmin
R ′β=c

J (β).

This is the parameter vector which makes the estimating equations as close to zero as possible with
respect to the weighted quadratic distance while imposing the restriction on the parameters.

Suppose the weight matrix W is fixed. Using the methods of Chapter 8 it is straightforward to derive
that the constrained GMM estimator is

β̂cgmm = β̂gmm − (
X ′Z W Z ′X

)−1 R
(
R ′ (X ′Z W Z ′X

)−1 R
)−1 (

R ′β̂gmm −c
)

. (13.16)

(For details, see Exercise 13.6.)
We derive the asymptotic distribution under the assumption that the restriction is true. Make the

substitution c = R ′β in (13.16) and reorganize to find

p
n

(
β̂cgmm −β)= (

I k −
(

X ′Z W Z ′X
)−1 R

(
R ′ (X ′Z W Z ′X

)−1 R
)−1

R ′
)p

n
(
β̂gmm −β)

. (13.17)

This is a linear function of
p

n
(
β̂gmm −β)

. Since the asymptotic distribution of the latter is known the
asymptotic distribution of

p
n

(
β̂cgmm −β)

is a linear function of the former.

Theorem 13.9 Under Assumptions 12.2 and 8.3, for the constrained GMM es-
timator (13.16),

p
n

(
β̂cgmm −β)−→

d
N

(
0,V cgmm

)
as n →∞, where

V cgmm =V β−
(
Q ′W Q

)−1 R
(
R ′ (Q ′W Q

)−1 R
)−1

R ′V β (13.18)

−V βR
(
R ′ (Q ′W Q

)−1 R
)−1

R ′ (Q ′W Q
)−1

+ (
Q ′W Q

)−1 R
(
R ′ (Q ′W Q

)−1 R
)−1

R ′V βR
(
R ′ (Q ′W Q

)−1 R
)−1

R ′ (Q ′W Q
)−1 .

For a proof, see Exercise 13.8. Unfortunately the asymptotic covariance matrix formula (13.18) is
quite tedious!

Now suppose that the the weight matrix is set as W = Ω̂−1, the efficient weight matrix from uncon-
strained estimation. In this case the constrained GMM estimator can be written as

β̂cgmm = β̂gmm − V̂ βR
(
R ′V̂ βR

)−1 (
R ′β̂gmm −c

)
(13.19)

which is the same formula (8.25) as efficient minimum distance. (For details, see Exercise 13.7.) We find
that the asymptotic covariance matrix simplifies considerably.



CHAPTER 13. GENERALIZED METHOD OF MOMENTS 423

Theorem 13.10 Under Assumptions 12.2 and 8.3, for the efficient constrained
GMM estimator (13.19),

p
n

(
β̂cgmm −β)−→

d
N

(
0,V cgmm

)
as n →∞, where

V cgmm =V β−V βR
(
R ′V βR

)−1 R ′V β. (13.20)

For a proof, see Exercise 13.9.
The asymptotic covariance matrix (13.20) can be estimated by

V̂ cgmm = Ṽ β− Ṽ βR
(
R ′Ṽ βR

)−1
R ′Ṽ β. (13.21)

Ṽ β =
(
Q̂

′
Ω̃−1Q̂

)−1

Ω̃= 1

n

n∑
i=1

Zi Z ′
i ẽ2

i (13.22)

ẽi = Yi −X ′
i β̂cgmm.

The covariance matrix (13.18) can be estimated similarly, though using (13.10) to estimate V β. The co-
variance matrix estimator Ω̃ can also be replaced with a centered version.

A constrained iterated GMM estimator can be implemented by setting W = Ω̃−1 where Ω̃ is defined
in (13.22) and then iterating until convergence. This is a natural estimator as it is the appropriate imple-
mentation of iterated GMM.

Since both Ω̂ and Ω̃ converge to the same limit Ω under the assumption that the constraint is true
the constrained iterated GMM estimator has the asymptotic distribution given in Theorem 13.10.

13.16 Nonlinear Restricted GMM

Nonlinear constraints on the parameters can be written as r
(
β
) = 0 for some function r : Rk → Rq .

The constraint is nonlinear if r
(
β
)

cannot be written as a linear function of β. Least squares estima-
tion subject to nonlinear constraints was explored in Section 8.14. In this section we introduce GMM
estimation subject to nonlinear constraints.

The constrained GMM estimator minimizes the GMM criterion subject to the constraint. It is

β̂cgmm = argmin
r (β)=0

J (β). (13.23)

This is the parameter vector which makes the estimating equations as close to zero as possible with
respect to the weighted quadratic distance while imposing the restriction on the parameters.

In general there is no explicit solution for β̂cgmm. Instead the solution is found numerically. Fortu-
nately there are excellent nonlinear constrained optimization solvers implemented in standard software
packages.

For the asymptotic distribution assume that the restriction r
(
β
)= 0 is true. Using the same methods

as in the proof of Theorem 8.10 we can show that (13.17) approximately holds in the sense that

p
n

(
β̂cgmm −β)= (

I k −
(

X ′Z W Z ′X
)−1 R

(
R ′ (X ′Z W Z ′X

)−1 R
)−1

R ′
)p

n
(
β̂gmm −β)+op (1)

where R = ∂
∂βr

(
β
)′. Thus the asymptotic distribution of the constrained estimator takes the same form

as in the linear case.
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Theorem 13.11 Under Assumptions 12.2 and 8.3, for the constrained GMM
estimator (13.23),

p
n

(
β̂cgmm −β) −→

d
N

(
0,V cgmm

)
as n → ∞, where V cgmm

equals (13.18). If W = Ω̂−1, then V cgmm equals (13.20).

The asymptotic covariance matrix in the efficient case is estimated by (13.21) with R replaced with
R̂ = ∂

∂βr
(
β̂cgmm

)′
. The asymptotic covariance matrix (13.18) in the general case is estimated similarly.

To implement an iterated restricted GMM estimator the weight matrix may be set as W = Ω̃−1 where
Ω̃ is defined in (13.22), and then iterated until convergence.

13.17 Constrained Regression

Take the conventional projection model Y = X ′β+e with E [X e] = 0. This is a special case of GMM as
it is model (13.5) with Z = X . The just-identified GMM estimator equals least squares β̂gmm = β̂ols.

In Chapter 8 we discussed estimation of the projection model subject to linear constraints R ′β = c ,
which includes exclusion restrictions. Since the projection model is a special case of GMM the con-
strained projection model is also constrained GMM. From the results of Section 13.15 we find that the
efficient constrained GMM estimator is

β̂cgmm = β̂ols − V̂ βR
(
R ′V̂ βR

)−1 (
R ′β̂ols −c

)= β̂emd,

the efficient minimum distance estimator. Thus for linear constraints on the linear projection model
efficient GMM equals efficient minimum distance. Thus one convenient method to implement efficient
minimum distance is GMM.

13.18 Multivariate Regression

GMM methods can simplify estimation and inference for multivariate regressions such as those in-
troduced in Chapter 11.

The general multivariate regression (projection) model is

Y j = X ′
jβ j +e j

E
[

X j e j
]= 0

for j = 1, ...,m. Using the notation from Section 11.2 the equations can be written jointly as Y = Xβ+ e
and for the full sample as Y = Xβ+e. The k moment conditions are

E
[

X
′ (

Y −Xβ
)]

= 0. (13.24)

Given a k ×k weight matrix W the GMM criterion is

J (β) = n
(
Y −Xβ

)′
X W X

′ (
Y −Xβ

)
.

The GMM estimator β̂gmm minimizes J (β). Since this is a just-identified model the estimator solves
the sample equations

X
′ (

Y −X β̂gmm

)
= 0.
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The solution is

β̂gmm =
(

n∑
i=1

X
′
i X i

)−1 (
n∑

i=1
X

′
i Yi

)
=

(
X

′
X

)−1 (
X

′
Y

)
= β̂ols,

the multivariate least squares estimator.
Thus the unconstrained GMM estimator of the multivariate regression model is least squares. The

estimator does not depend on the weight matrix since the model is just-identified.
A important advantage of the GMM framework is the ability to incorporate cross-equation con-

straints. Consider the class of restrictions R ′β = c . Minimization of the GMM criterion subject to this
restrition has solutions as described in (13.15). The restricted GMM estimator is

β̂gmm = β̂ols −
(

X
′
X W X

′
X

)−1
R

(
R ′

(
X

′
X W X

′
X

)−1
R

)−1 (
R ′β̂ols −c

)
.

This estimator depends on the weight matrix because it is over-identified.
A simple choice for weight matrix is W = X

′
X . This leads to the one-step estimator

β̂1 = β̂ols −
(

X
′
X

)−1
R

(
R ′

(
X

′
X

)−1
R

)−1 (
R ′β̂ols −c

)
.

The asymptotically efficient choice sets W = Ω̂−1 where Ω̂= n−1 ∑n
i=1 X

′
i êi ê ′i X i and êi = Yi − X i β̂1. This

leads to the two-step estimator

β̂2 = β̂ols −
(

X
′
X Ω̂−1X

′
X

)−1
R

(
R ′

(
X

′
X Ω̂−1X

′
X

)−1
R

)−1 (
R ′β̂ols −c

)
.

When the regressors X are common across all equations the multivariate regression model can be
written conveniently as in (11.3): Y = B ′X + e with E

[
X e ′

] = 0. The moment restrictions can be written
as the matrix system E

[
X

(
Y ′−X ′B

)]= 0. Written as a vector system this is (13.24) and leads to the same
restricted GMM estimators.

These are general formula for imposing restrictions. In specific cases (such as an exclusion restric-
tion) direct methods may be more convenient. In all cases the solution is found by minimization of the
GMM criterion J (β) subject to the restriction.

13.19 Distance Test

In Section 13.14 we introduced Wald tests of the hypothesis H0 : θ = θ0 where θ = r
(
β
)

for a given
function r

(
β
)

: Rk →Θ ⊂ Rq . When r
(
β
)

is nonlinear an alternative is to use a criterion-based statistic.
This is sometimes called the GMM Distance statistic and sometimes called a LR-like statistic (the LR is
for likelihood-ratio). The idea was first put forward by Newey and West (1987a).

The idea is to compare the unrestricted and restricted estimators by contrasting the criterion func-
tions. The unrestricted estimator takes the form

β̂gmm = argmin
β

Ĵ (β)

where
Ĵ (β) = n g n(β)′Ω̂−1g n(β)

is the unrestricted GMM criterion with an efficient weight matrix estimate Ω̂. The minimized value of
the criterion is Ĵ = Ĵ (β̂gmm).
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As in Section 13.15, the estimator subject to r
(
β
)= θ0 is

β̂cgmm = argmin
r (β)=θ0

J̃ (β)

where
J̃ (β) = n g n(β)′Ω̃−1 g n(β)

which depends on an efficient weight matrix estimator, either Ω̂ (the same as the unrestricted estimator)
or Ω̃ (the iterated weight matrix from constrained estimation). The minimized value of the criterion is
J̃ = J̃

(
β̂cgmm

)
.

The GMM distance (or LR-like) statistic is the difference in the criterion functions: D = J̃ − Ĵ . The
distance test shares the useful feature of LR tests in that it is a natural by-product of the computation of
alternative models.

The test has the following large sample distribution.

Theorem 13.12 Under Assumption 12.2, Assumption 7.3, and H0, then as n →
∞, D −→

d
χ2

q . For c satisfying α= 1−Gq (c), P [D > c |H0] −→α. The test “Reject

H0 if D > c” has asymptotic size α.

The proof is given in Section 13.28.
Theorem 13.12 shows that the distance statistic has the same asymptotic distribution as Wald and

likelihood ratio statistics and can be interpreted similarly. Small values of D mean that imposing the
restriction does not result in a large value of the moment equations. Hence the restriction appears to be
compatible with the data. On the other hand, large values of D mean that imposing the restriction results
in a much larger value of the moment equations, implying that the restriction is not compatible with the
data. The finding that the asymptotic distribution is chi-squared allows the calculation of asymptotic
critical values and p-values.

We now discuss the choice of weight matrix. As mentioned above one simple choice is to set Ω̃= Ω̂.
In this case we have the following result.

Theorem 13.13 If Ω̃ = Ω̂ then D ≥ 0. Furthermore, if r is linear in β then D
equals the Wald statistic.

The statement that Ω̃= Ω̂ implies D ≥ 0 follows from the fact that in this case the criterion functions
Ĵ (β) = J̃ (β) are identical so the constrained minimum cannot be smaller than the unconstrained. The
statement that linear hypotheses and Ω̃= Ω̂ implies D =W follows from applying the expression for the
constrained GMM estimator (13.19) and using the covariance matrix formula (13.11).

The fact that D ≥ 0 when Ω̃= Ω̂motivated Newey and West (1987a) to recommend this choice. How-
ever, this is necessary. Setting Ω̃ to be the constrained efficient weight matrix is natural for efficient
estimation of β̂cgmm. In the event that D < 0 the test simply fails to reject H0 at any significance level.

As discussed in Section 9.17 for tests of nonlinear hypotheses the Wald statistic can work quite poorly.
In particular, the Wald statistic is affected by how the hypothesis r

(
β
)

is formulated. In contrast, the
distance statistic D is not affected by the algebraic formulation of the hypothesis. Current evidence
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suggests that the D statistic appears to have good sampling properties, and is a preferred test statistic
relative to the Wald statistic for nonlinear hypotheses. (See B. E. Hansen (2006).)

In Stata the command estat overid after ivregress gmm can be used to report the value of the
GMM criterion J . By estimating the two nested GMM regressions the values Ĵ and J̃ can be obtained
and D computed.

13.20 Continuously-Updated GMM

An alternative to the two-step GMM estimator can be constructed by letting the weight matrix be an
explicit function of β. These leads to the criterion function

J (β) = n g n(β)′
(

1

n

n∑
i=1

gi (β)gi (β)′
)−1

g n(β).

The β̂ which minimizes this function is called the continuously-updated GMM (CU-GMM) estimator
and was introduced by L. Hansen, Heaton and Yaron (1996).

A complication is that the continuously-updated criterion J (β) is not quadratic in β. This means that
minimization requires numerical methods. It may appear that the CU-GMM estimator is the same as
the iterated GMM estimator but this is not the case at all. They solve distinct first-order conditions and
can be quite different in applications.

Relative to traditional GMM the CU-GMM estimator has lower bias but thicker distributional tails.
While it has received considerable theoretical attention it is not used commonly in applications.

13.21 OverIdentification Test

In Section 12.31 we introduced the Sargan (1958) overidentification test for the 2SLS estimator under
the assumption of homoskedasticity. L. Hansen (1982) generalized the test to cover the GMM estimator
allowing for general heteroskedasticity.

Recall, overidentified models (`> k) are special in the sense that there may not be a parameter value
β such that the moment conditionH0 : E [Z e] = 0 holds. Thus the model – the overidentifying restrictions
– are testable.

For example, take the linear model Y = β′
1X1 +β′

2X2 + e with E [X1e] = 0 and E [X2e] = 0. It is pos-
sible that β2 = 0 so that the linear equation may be written as Y = β′

1X1 + e. However, it is possible
that β2 6= 0. In this case it is impossible to find a value of β1 such that both E

[
X1

(
Y −X ′

1β1
)] = 0 and

E
[

X2
(
Y −X ′

1β1
)]= 0 hold simultaneously. In this sense an exclusion restriction can be seen as an overi-

dentifying restriction.
Note that g n −→

p
E [Z e] and thus g n can be used to assess the hypothesis E [Z e] = 0. Assuming that

an efficient weight matrix estimator is used the criterion function at the parameter estimator is J =
J (β̂gmm) = n g ′

nΩ̂
−1g n . This is a quadratic form in g n and is thus a natural test statistic forH0 : E [Z e] = 0.

Note that we assume that the criterion function is constructed with an efficient weight matrix estimator.
This is important for the distribution theory.

Theorem 13.14 Under Assumption 12.2 then as n →∞, J = J
(
β̂gmm

)−→
d
χ2
`−k .

For c satisfyingα= 1−G`−k (c), P [J > c |H0] −→α so the test “RejectH0 if J > c”
has asymptotic size α.
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The proof of the theorem is left to Exercise 13.13.
The degrees of freedom of the asymptotic distribution are the number of overidentifying restrictions.

If the statistic J exceeds the chi-square critical value we can reject the model. Based on this information
alone it is unclear what is wrong but it is typically cause for concern. The GMM overidentification test is
a useful by-product of the GMM methodology and it is advisable to report the statistic J whenever GMM
is the estimation method. When over-identified models are estimated by GMM it is customary to report
the J statistic as a general test of model adequacy.

In Stata the command estat overid afer ivregress gmm can be used to implement the overiden-
tification test. The GMM criterion J and its asymptotic p-value using the χ2

`−k distribution are reported.

13.22 Subset OverIdentification Tests

In Section 12.32 we introduced subset overidentification tests for the 2SLS estimator under the as-
sumption of homoskedasticity. In this section we describe how to construct analogous tests for the GMM
estimator under general heteroskedasticity.

Recall, subset overidentification tests are used when it is desired to focus attention on a subset of
instruments whose validity is questioned. Partition Z = (Za , Zb) with dimensions `a and `b , respectively,
where Za contains the instruments which are believed to be uncorrelated with e and Zb contains the
instruments which may be correlated with e. It is necessary to select this partition so that `a > k, so that
the instruments Za alone identify the parameters.

Given this partition the maintained hypothesis is E [Zae] = 0. The null and alternative hypotheses
are H0 : E [Zbe] = 0 and H1 : E [Zbe] 6= 0. The GMM test is constructed as follows. First, estimate the
model by efficient GMM with only the smaller set Za of instruments. Let J̃ denote the resulting GMM
criterion. Second, estimate the model by efficient GMM with the full set Z = (Za , Zb) of instruments.
Let Ĵ denote the resulting GMM criterion. The test statistic is the difference in the criterion functions:
C = Ĵ − J̃ . This is similar to the GMM distance statistic presented in Section 13.19. The difference is
that the distance statistic compares models which differ based on the parameter restrictions while the C
statistic compares models based on different instrument sets.

Typically C ≥ 0. However, this is not necessary and C < 0 can arise. If this occurs it leads to a non-
rejection of H0.

If the smaller instrument set Za is just-identified so that `a = k then J̃ = 0 so C = Ĵ is simply the
standard overidentification test. This is why we have restricted attention to the case `a > k.

The test has the following large sample distribution.

Theorem 13.15 Under Assumption 12.2 and E
[

Za X ′] has full rank k, then as
n →∞, C −→

d
χ2
`b

. For c satisfying α = 1−G`b (c), P [C > c |H0] −→ α. The test

“Reject H0 if C > c” has asymptotic size α.

The proof of Theorem 13.15 is presented in Section 13.28.
In Stata the command estat overid zb afer ivregress gmm can be used to implement a subset

overidentification test where zb is the name(s) of the instruments(s) tested for validity. The statistic C
and its asymptotic p-value using the χ2

`2
distribution are reported.
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13.23 Endogeneity Test

In Section 12.29 we introduced tests for endogeneity in the context of 2SLS estimation. Endogeneity
tests are simple to implement in the GMM framework as a subset overidentification test. The model is
Y = Z ′

1β1+Y ′
2β2+e where the maintained assumption is that the regressors Z1 and excluded instruments

Z2 are exogenous so that E [Z1e] = 0 and E [Z2e] = 0. The question is whether or not Y2 is endogenous.
The null hypothesis is H0 : E [Y2e] = 0 with the alternative H1 : E [Y2e] 6= 0.

The GMM test is constructed as follows. First, estimate the model by efficient GMM using (Z1, Z2)
as instruments for (Z1,Y2). Let J̃ denote the resulting GMM criterion. Second, estimate the model by
efficient GMM2 using (Z1, Z2,Y2) as instruments for (Z1,Y2). Let Ĵ denote the resulting GMM criterion.
The test statistic is the difference in the criterion functions: C = Ĵ − J̃ .

The distribution theory for the test is a special case of overidentification testing.

Theorem 13.16 Under Assumption 12.2 and E
[

Z2Y ′
2

]
has full rank k2, then as

n → ∞, C −→
d

χ2
k2

. For c satisfying α = 1−Gk2 (c), P [C > c |H0] → α. The test

“Reject H0 if C > c” has asymptotic size α.

In Stata the command estat endogenous afer ivregress gmm can be used to implement the test
for endogeneity. The statistic C and its asymptotic p-value using the χ2

k2
distribution are reported.

13.24 Subset Endogeneity Test

In Section 12.30 we introduced subset endogeneity tests for 2SLS estimation. GMM tests are simple
to implement as subset overidentification tests. The model is Y = Z ′

1β1 +Y ′
2β2 +Y ′

3β3 + e with E [Z e] = 0
where the instrument vector is Z = (Z1, Z2). The k3 ×1 variables Y3 are treated as endogenous and the
k2 ×1 variables Y2 are treated as potentially endogenous. The hypothesis to test is that Y2 is exogenous,
or H0 : E [Y2e] = 0 against H1 : E [Y2e] 6= 0. The test requires that `2 ≥ (k2 +k3) so that the model can be
estimated under H1.

The GMM test is constructed as follows. First, estimate the model by efficient GMM using (Z1, Z2)
as instruments for (Z1,Y2,Y3). Let J̃ denote the resulting GMM criterion. Second, estimate the model by
efficient GMM using (Z1, Z2,Y2) as instruments for (Z1,Y2,Y3). Let Ĵ denote the resulting GMM criterion.
The test statistic is the difference in the criterion functions: C = Ĵ − J̃ .

The distribution theory for the test is a special case of the theory of overidentification testing.

Theorem 13.17 Under Assumption 12.2 and E
[

Z2
(
Y ′

2,Y ′
3

)]
has full rank k2+k3,

then as n → ∞, C −→
d

χ2
k2

. For c satisfying α = 1−Gk2 (c), P [C > c |H0] −→ α.

The test “Reject H0 if C > c” has asymptotic size α.

In Stata, the command estat endogenous x2 afer ivregress gmm can be used to implement the
test for endogeneity where x2 is the name(s) of the variable(s) tested for endogeneity. The statistic C and
its asymptotic p-value using the χ2

k2
distribution are reported.

2If the homoskedastic weight matrix is used this GMM estimator equals least squares, but when the weight matrix allows for
heteroskedasticity the efficient GMM estimator does not equal least squares as the model is overidentified.
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13.25 Nonlinear GMM

GMM applies whenever an economic or statistical model implies the `×1 moment condition

E
[
gi (β)

]= 0.

where gi (β) is a possibly nonlinear function of the parameters β. Often, this is all that is known. Identi-
fication requires `≥ k = dim(β). The GMM estimator minimizes

J (β) = n g n(β)′Ŵ g n(β)

for some weight matrix Ŵ where

g n(β) = 1

n

n∑
i=1

gi (β).

The efficient GMM estimator can be constructed by setting

Ŵ =
(

1

n

n∑
i=1

ĝi ĝ ′
i − g n g ′

n

)−1

,

with ĝi = gi (β̃) constructed using a preliminary consistent estimator β̃, perhaps obtained with Ŵ = I`.
As in the case of the linear model the weight matrix can be iterated until convergence to obtain the
iterated GMM estimator.

Proposition 13.1 Distribution of Nonlinear GMM Estimator
Under general regularity conditions,

p
n

(
β̂gmm −β)−→

d
N

(
0,V β

)
where

V β =
(
Q ′W Q

)−1 (
Q ′WΩW Q

)(
Q ′W Q

)−1

withΩ= E[
gi g ′

i

]
and

Q = E
[
∂

∂β′ gi (β)

]
.

If the efficient weight matrix is used then V β =
(
Q ′Ω−1Q

)−1
.

The proof of this result is omitted as it uses more advanced techniques.
The asymptotic covariance matrices can be estimated by sample counterparts of the population ma-

trices. For the case of a general weight matrix,

V̂ β =
(
Q̂

′
Ŵ Q̂

)−1 (
Q̂

′
Ŵ Ω̂Ŵ Q̂

)(
Q̂

′
Ŵ Q̂

)−1

where

Ω̂= 1

n

n∑
i=1

(
gi (β̂)− g

)(
gi (β̂)− g

)′
g = n−1

n∑
i=1

gi (β̂)
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and

Q̂ = 1

n

n∑
i=1

∂

∂β′ gi (β̂).

For the case of the iterated efficient weight matrix,

V̂ β =
(
Q̂

′
Ω̂−1Q̂

)−1
.

All of the methods discussed in this chapter – Wald tests, constrained estimation, distance tests,
overidentification tests, endogeneity tests – apply similarly to the nonlinear GMM estimator.

13.26 Bootstrap for GMM

The bootstrap for 2SLS (Section 12.23) can be used for GMM estimation. The standard bootstrap
algorithm generates bootstrap samples by sampling the triplets (Y ∗

i , X ∗
i , Z∗

i ) independently and with
replacement from the original sample. The GMM estimator is applied to the bootstrap sample to obtain
the bootstrap estimates β̂∗

gmm. This is repeated B times to create a sample of B bootstrap draws. Given
these draws, bootstrap confidence intervals, including percentile, BC percentile, BCa and percentile-t,
are calculated conventionally.

For variance and standard error estimation the same cautions apply as for 2SLS. It is difficult to know
if the GMM estimator has a finite variance in a given application. It is best to avoid using the bootstrap to
calculate standard errors. Instead, use the bootstrap for percentile and percentile-t confidence intervals.

When the model is overidentified, as discussed for 2SLS, bootstrap GMM inference will not achieve
an asymptotic refinement unless the bootstrap estimator is recentered to satisfy the orthogonality con-
dition. We now describe the recentering recommended by Hall and Horowitz (1996).

For linear GMM wth weight matrix W the recentered GMM bootstrap estimator is

β̂∗∗
gmm = (

X ∗′Z ∗W ∗Z ∗′X ∗)−1 (
X ∗′Z ∗W ∗ (

Z ∗′Y ∗−Z ′ê
))

where W ∗ is the bootstrap version of W and ê = Y −X β̂gmm. For efficient GMM,

W ∗ =
(

1

n

n∑
i=1

Z∗
i Z∗′

i

(
Y ∗

i −X ∗′
i β̃∗)2

)−1

for preliminary estimator β̃∗.
For nonlinear GMM (Section 13.25) the bootstrap criterion function is modified. The recentered

bootstrap criterion is

J∗∗(β) = n
(
g∗

n(β)− g n(β̂gmm)
)′

W ∗ (
g∗

n(β)− g n(β̂gmm)
)

g∗
n(β) = 1

n

n∑
i=1

g∗
i (β)

where g n(β̂gmm) is from the sample not from the bootstrap data. The bootstrap estimator is

β̂∗∗
gmm = argmin J∗∗(β).

The bootstrap can be used to calculate the p-value of the GMM overidentification test. For the GMM
estimator with an efficient weight matrix the standard overidentification test is the Hansen J statistic

J = n g n(β̂gmm)′Ω̂−1g n(β̂gmm).
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The recentered bootstrap analog is

J∗∗ = n
(
g∗

n(β̂∗∗
gmm)− g n(β̂gmm)

)′
Ω̂∗−1

(
g∗

n(β̂∗∗
gmm)− g n(β̂gmm)

)
.

On each bootstrap sample J∗∗(b) is calculated and stored. The bootstrap p-value is

p∗ = 1

B

B∑
b=1

1
{

J∗∗(b) > S
}

.

This bootstrap p-value is asymptotically valid since J∗∗ satisfies the overidentified moment conditions.

13.27 Conditional Moment Equation Models

In many contexts, an economic model implies conditional moment restriction of the form

E
[
ei (β) | Zi

]= 0

where ei (β) is some s ×1 function of the observation and the parameters. In many cases s = 1. It turns
out that this conditional moment restriction is more powerful than the unconditional moment equation
model discussed throughout this chapter.

For example, the linear model Y = X ′β+e with instruments Z falls into this class under the assump-
tion E [e | Z ] = 0. In this case ei (β) = Yi −X ′

iβ.
It is also helpful to realize that conventional regression models also fall into this class except that

in this case X = Z . For example, in linear regression ei (β) = Yi − X ′
iβ, while in a nonlinear regression

model ei (β) = Yi −m(Xi ,β). In a joint model of the conditional mean E [Y | X = x] = x ′β and variance
var[Y | X = x] = f (x)′γ, then

ei
(
β,γ

)=


Yi −X ′
iβ(

Yi −X ′
iβ

)2 − f (Xi )′γ
.

Here s = 2.
Given a conditional moment restriction an unconditional moment restriction can always be con-

structed. That is for any `×1 functionφ
(
Z ,β

)
we can set gi (β) =φ(

Zi ,β
)

ei (β) which satisfies E
[
gi (β)

]=
0 and hence defines an unconditional moment equation model. The obvious problem is that the class of
functions φ is infinite. Which should be selected?

This is equivalent to the problem of selection of the best instruments. If Z ∈ R is a valid instrument
satisfying E [e | Z ] = 0, then Z , Z 2, Z 3, ..., etc., are all valid instruments. Which should be used?

One solution is to construct an infinite list of potent instruments and then use the first k instruments.
How is k to be determined? This is an area of theory still under development. One study of this problem
is Donald and Newey (2001).

Another approach is to construct the optimal instrument which minimizes the asymptotic variance.
The form was uncovered by Chamberlain (1987). Take the case s = 1. Let

Ri = E
[
∂

∂β
ei (β)

∣∣∣∣ Zi

]
and σ2

i = E
[
ei (β)2 | Zi

]
. Then the optimal instrument is Ai = −σ−2

i Ri . The optimal moment is gi (β) =
Ai ei (β). Setting gi (β) to be this choice (which is k×1, so is just-identified) yields the GMM estimator with
lowest asymptotic variance. In practice Ai is unknown, but its form helps us think about construction of
good instruments.
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In the linear model ei (β) = Yi − X ′
iβ note that Ri = −E [Xi | Zi ] and σ2

i = E
[
e2

i | Zi
]
. This means the

optimal instrument is Ai = σ−2
i E [Xi | Zi ]. In the case of linear regression Xi = Zi so Ai = σ−2

i Zi . Hence
efficient GMM is equivalent to GLS!

In the case of endogenous variables note that the efficient instrument Ai involves the estimation of
the conditional mean of X given Z . In other words, to get the best instrument for X we need the best
conditional mean model for X given Z not just an arbitrary linear projection. The efficient instrument is
also inversely proportional to the conditional variance of e. This is the same as the GLS estimator; namely
that improved efficiency can be obtained if the observations are weighted inversely to the conditional
variance of the errors.

13.28 Technical Proofs*

Proof of Theorem 13.12 Set ẽi = Yi −X ′
i β̂cgmm and êi = Yi −X ′

i β̂gmm. By standard covariance matrix anal-
ysis Ω̂−→

p
Ω and Ω̃−→

p
Ω. Thus we can replace Ω̂ and Ω̃ in the criteria without affecting the asymptotic

distribution. In particular

J̃ (β̂cgmm) = 1

n
ẽ ′Z Ω̃−1Z ′ẽ

= 1

n
ẽ ′Z Ω̂−1Z ′ẽ +op (1). (13.25)

Now observe that
Z ′ẽ = Z ′ê −Z ′X

(
β̂cgmm − β̂gmm

)
.

Thus

1

n
ẽ ′Z Ω̂−1Z ′ẽ = 1

n
ê ′Z Ω̂−1Z ′ê − 2

n

(
β̂cgmm − β̂gmm

)′
X ′Z Ω̂−1Z ′ê

+ 1

n

(
β̂cgmm − β̂gmm

)′
X ′Z Ω̂−1Z ′X

(
β̂cgmm − β̂gmm

)
= Ĵ (β̂gmm)+ 1

n

(
β̂cgmm − β̂gmm

)′
X ′Z Ω̂−1Z ′X

(
β̂cgmm − β̂gmm

)
(13.26)

where the second equality holds since X ′Z Ω̂−1Z ′ê = 0 is the first-order condition for β̂gmm. By (13.16)
and Theorem 13.4, under H0

p
n

(
β̂cgmm − β̂gmm

)=−(
X ′ZΩ−1Z ′X

)−1
R

(
R ′ (X ′ZΩ−1Z ′X

)−1
R

)−1
R ′pn

(
β̂gmm −β)+op (1)

−→
d

(
Q ′Ω−1Q

)−1
R Z (13.27)

where

Z ∼ N(0,V R ) (13.28)

V R =
(
RV ′ (Q ′Ω−1Q

)−1
R

)−1
.

Putting together (13.25), (13.26), (13.27) and (13.28),

D = J̃ (β̂cgmm)− Ĵ (β̂gmm)

=p
n

(
β̂cgmm − β̂gmm

)′ 1

n
X ′Z Ω̂−1 1

n
Z ′X

p
n

(
β̂cgmm − β̂gmm

)
−→

d
Z ′V −1

R Z ∼χ2
q
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since V R > 0 and Z is q ×1. ■

Proof of Theorem 13.15 Let β̃ denote the GMM estimator obtained with the instrument set Za and let β̂
denote the GMM estimator obtained with the instrument set Z . Set ẽi = Yi −X ′

i β̃, êi = Yi −X ′
i β̂,

Ω̃= n−1
n∑

i=1
Zai Z ′

ai ẽ2
i

Ω̂= n−1
n∑

i=1
Zi Z ′

i ê2
i .

Let R be the `×`a selector matrix so that Za = R ′Z . Note that

Ω̃= R ′n−1
n∑

i=1
Zi Z ′

i ẽ2
i R .

By standard covariance matrix analysis, Ω̂ −→
p
Ω and Ω̃ −→

p
R ′ΩR . Also, 1

n Z ′X −→
p

Q , say. By the CLT,

n−1/2Z ′e −→
d

Z where Z ∼ N(0,Ω). Then

n−1/2Z ′ê =
(

I`−
(

1

n
Z ′X

)(
1

n
X ′Z Ω̂−1 1

n
Z ′X

)−1 (
1

n
X ′Z

)
Ω̂−1

)
n−1/2Z ′e

−→
d

(
I`−Q

(
Q ′Ω−1Q

)−1
Q ′Ω−1

)
Z

and

n−1/2Z ′
a ẽ = R ′

(
I`−

(
1

n
Z ′X

)(
1

n
X ′Z RΩ̃−1R ′ 1

n
Z ′X

)−1 (
1

n
X ′Z

)
RΩ̃−1R ′

)
n−1/2Z ′e

−→
d

R ′
(

I`−Q
(
Q ′R

(
R ′ΩR

)−1 R ′Q
)−1

Q ′R
(
R ′ΩR

)−1 R ′
)

Z

jointly.
By linear rotations of Z and R we can setΩ= I` to simplify the notation. Thus setting PQ =Q

(
Q ′Q

)−1 Q ′,
P R = R

(
R ′R

)−1 R ′ and Z ∼ N(0, I`) we have

Ĵ −→
d

Z′ (I`−PQ
)

Z

and
J̃ −→

d
Z ′

(
P R −P RQ

(
Q ′P RQ

)−1 Q ′P R

)
Z .

It follows that
C = Ĵ − J̃ −→

d
Z′AZ

where
A =

(
I`−PQ −P R +P RQ

(
Q ′P RQ

)−1 Q ′P R

)
.

This is a quadratic form in a standard normal vector and the matrix A is idempotent (this is straightfor-
ward to check). Z ′AZ is thus distributed χ2

d with degrees of freedom d equal to

rank(A) = tr
(

I`−PQ −P R +P RQ
(
Q ′P RQ

)−1 Q ′P R

)
= `−k −`a +k = `b .

Thus the asymptotic distribution of C is χ2
`b

as claimed. ■
_____________________________________________________________________________________________
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13.29 Exercises

Exercise 13.1 Take the model

Y = X ′β+e

E [X e] = 0

e2 = Z ′γ+η
E
[

Zη
]= 0.

Find the method of moments estimators
(
β̂, γ̂

)
for

(
β,γ

)
.

Exercise 13.2 Take the model Y = X ′β+ e with E [e | Z ] = 0. Let β̂gmm be the GMM estimator using the

weight matrix W n = (
Z ′Z

)−1 . Under the assumption E
[
e2 | Z

]=σ2 show that

p
n

(
β̂−β)−→

d
N

(
0,σ2 (

Q ′M−1Q
)−1

)
where Q = E[

Z X ′] and M = E[
Z Z ′] .

Exercise 13.3 Take the model Y = X ′β+ e with E [Z e] = 0. Let ẽi = Yi − X ′
i β̃ where β̃ is consistent for β

(e.g. a GMM estimator with some weight matrix). An estimator of the optimal GMM weight matrix is

Ŵ =
(

1

n

n∑
i=1

Zi Z ′
i ẽ2

i

)−1

.

Show that Ŵ −→
p
Ω−1 whereΩ= E[

Z Z ′e2
]

.

Exercise 13.4 In the linear model estimated by GMM with general weight matrix W the asymptotic vari-
ance of β̂gmm is

V = (
Q ′W Q

)−1 Q ′WΩW Q
(
Q ′W Q

)−1 .

(a) Let V 0 be this matrix when W =Ω−1. Show that V 0 =
(
Q ′Ω−1Q

)−1
.

(b) We want to show that for any W , V −V 0 is positive semi-definite (for then V 0 is the smaller possible
covariance matrix and W =Ω−1 is the efficient weight matrix). To do this start by finding matrices
A and B such that V = A′ΩA and V 0 = B ′ΩB .

(c) Show that B ′ΩA = B ′ΩB and therefore that B ′Ω (A −B ) = 0.

(d) Use the expressions V = A′ΩA, A = B + (A −B ) , and B ′Ω (A −B ) = 0 to show that V ≥V 0.

Exercise 13.5 Prove Theorem 13.8.

Exercise 13.6 Derive the constrained GMM estimator (13.16).

Exercise 13.7 Show that the constrained GMM estimator (13.16) with the efficient weight matrix is (13.19).

Exercise 13.8 Prove Theorem 13.9.

Exercise 13.9 Prove Theorem 13.10.



CHAPTER 13. GENERALIZED METHOD OF MOMENTS 436

Exercise 13.10 The equation of interest is Y = m(X ,β)+e with E [Z e] = 0 where m(x,β) is a known func-
tion, β is k ×1 and Z is `×1. Show how to construct an efficient GMM estimator for β.

Exercise 13.11 As a continuation of Exercise 12.7 derive the efficient GMM estimator using the instru-
ment Z = (X X 2)′. Does this differ from 2SLS and/or OLS?

Exercise 13.12 In the linear model Y = X ′β+e with E [X e] = 0 the GMM criterion function for β is

J (β) = 1

n

(
Y −Xβ

)′ X Ω̂−1X ′ (Y −Xβ
)

(13.29)

where Ω̂ = n−1 ∑n
i=1 Xi X ′

i ê2
i , êi = Yi − X ′

i β̂ are the OLS residuals, and β̂ = (
X ′X

)−1 X ′Y is least squares.
The GMM estimator of β subject to the restriction r (β) = 0 is

β̃= argmin
r (β)=0

Jn(β).

The GMM test statistic (the distance statistic) of the hypothesis r (β) = 0 is

D = J (β̃) = min
r (β)=0

J (β). (13.30)

(a) Show that you can rewrite J (β) in (13.29) as

J (β) = n
(
β− β̂)′

V̂
−1
β

(
β− β̂)

and thus β̃ is the same as the minimum distance estimator.

(b) Show that under linear hypotheses the distance statistic D in (13.30) equals the Wald statistic.

Exercise 13.13 Take the linear model Y = X ′β+ e with E [Z e] = 0. Consider the GMM estimator β̂ of β.
Let J = n g n(β̂)′Ω̂−1g n(β̂) denote the test of overidentifying restrictions. Show that J −→

d
χ2
`−k as n →∞

by demonstrating each of the following.

(a) SinceΩ> 0, we can writeΩ−1 =CC ′ andΩ=C ′−1C−1 for some matrix C .

(b) J = n
(
C ′g n(β̂)

)′ (
C ′Ω̂C

)−1
C ′g n(β̂).

(c) C ′g n(β̂) = DnC ′g n(β) where g n(β) = 1
n Z ′e and

Dn = I`−C ′
(

1

n
Z ′X

)((
1

n
X ′Z

)
Ω̂−1

(
1

n
Z ′X

))−1 (
1

n
X ′Z

)
Ω̂−1C ′−1.

(d) Dn −→
p

I`−R
(
R ′R

)−1 R ′ where R =C ′E
[

Z X ′] .

(e) n1/2C ′g n(β) −→
d

u ∼ N(0, I`) .

(f) J −→
d

u′
(

I`−R
(
R ′R

)−1 R ′
)

u.

(g) u′
(

I`−R
(
R ′R

)−1 R ′
)

u ∼χ2
`−k .

Hint: I`−R
(
R ′R

)−1 R ′ is a projection matrix.
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Exercise 13.14 Take the model Y = X ′β+ e with E [Z e] = 0, Y ∈ R, X ∈ Rk , Z ∈ R`, ` ≥ k. Consider the
statistic

J (β) = nmn(β)′W mn(β)

mn(β) = 1

n

n∑
i=1

Zi
(
Yi −X ′

iβ
)

for some weight matrix W > 0.

(a) Take the hypothesis H0 :β=β0. Derive the asymptotic distribution of J (β0) under H0 as n →∞.

(b) What choice for W yields a known asymptotic distribution in part (a)? (Be specific about degrees
of freedom.)

(c) Write down an appropriate estimator Ŵ for W which takes advantage of H0. (You do not need to
demonstrate consistency or unbiasedness.)

(d) Describe an asymptotic test of H0 against H1 :β 6=β0 based on this statistic.

(e) Use the result in part (d) to construct a confidence region for β. What can you say about the form
of this region? For example, does the confidence region take the form of an ellipse, similar to
conventional confidence regions?

Exercise 13.15 Consider the model Y = X ′β+e with E [Z e] = 0 and

R ′β= 0 (13.31)

with Y ∈ R, X ∈ Rk , Z ∈ R`, ` > k. The matrix R is k × q with 1 ≤ q < k. You have a random sample
(Yi , Xi , Zi : i = 1, ...,n).

For simplicity, assume the efficient weight matrix W = (
E
[

Z Z ′e2
])−1

is known.

(a) Write out the GMM estimator β̂ ignoring constraint (13.31).

(b) Write out the GMM estimator β̃ adding the constraint (13.31).

(c) Find the asymptotic distribution of
p

n
(
β̃−β)

as n →∞ under Assumption (13.31).

Exercise 13.16 The observed data is {Yi , Xi , Zi } ∈ R×Rk ×R`, k > 1 and `> k > 1, i = 1, ...,n. The model
is Y = X ′β+e with E [Z e] = 0.

(a) Given a weight matrix W > 0 write down the GMM estimator β̂ for β.

(b) Suppose the model is misspecified. Specifically, assume that for some δ 6= 0,

e = δn−1/2 +u (13.32)

E [u | Z ] = 0

with µZ = E [Z ] 6= 0. Show that (13.32) implies that E [Z e] 6= 0.

(c) Express
p

n
(
β̂−β)

as a function of W , n, δ, and the variables (Xi , Zi , ui ).

(d) Find the asymptotic distribution of
p

n
(
β̂−β)

under Assumption (13.32).
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Exercise 13.17 The model is Y = Zβ+ Xγ+ e with E [e | Z ] = 0, X ∈ R and Z ∈ R. X is potentially en-
dogenous and Z is exogenous. Someone suggests estimating (β,γ) by GMM using the pair (Z , Z 2) as
instruments. Is this feasible? Under what conditions is this a valid estimator?

Exercise 13.18 The observations are i.i.d., (Yi , Xi ,Qi : i = 1, ...,n), where X is k × 1 and Q is m × 1. The
model is Y = X ′β+e with E [X e] = 0 and E [Qe] = 0. Find the efficient GMM estimator for β.

Exercise 13.19 You want to estimate µ = E [Y ] under the assumption that E [X ] = 0, where Y and X are
scalar and observed from a random sample. Find an efficient GMM estimator for µ.

Exercise 13.20 Consider the model Y = X ′β+e given E [Z e] = 0 and R ′β= 0. The dimensions are X ∈ Rk

and Z ∈ R` with `> k. The matrix R is k ×q, 1 ≤ q < k. Derive an efficient GMM estimator for β.

Exercise 13.21 Take the linear equation Y = X ′β+e and consider the following estimators of β.

1. β̂ : 2SLS using the instruments Z1.

2. β̃ : 2SLS using the instruments Z2.

3. β : GMM using the instruments Z = (Z1, Z2) and the weight matrix

W =
( (

Z ′
1Z 1

)−1
λ 0

0
(

Z ′
2Z 2

)−1
(1−λ)

)

for λ ∈ (0,1).

Find an expression for β which shows that it is a specific weighted average of β̂ and β̃.

Exercise 13.22 Consider the just-identified model Y = X ′
1β1 + X ′

2β2 + e with E [Z e] = 0 where X = (X ′
1

X ′
2)′ ∈Rk and Z ∈Rk . We want to test H0 :β1 = 0. Three econometricians are called for advice.

• Econometrician 1 proposes testing H0 by a Wald statistic.

• Econometrician 2 suggests testing H0 by the GMM Distance Statistic.

• Econometrician 3 suggests testing H0 using the test of overidentifying restrictions.

You are asked to settle this dispute. Explain the advantages and/or disadvantages of the different
procedures in this specific context.

Exercise 13.23 Take the model Y = X ′β+ e with E [X e] = 0 and β=Qθ, where β is k ×1, Q is k ×m with
m < k, Q is known, and θ is m ×1. The observations (Yi , Xi ) are i.i.d. across i = 1, ...,n.

Under these assumptions what is the efficient estimator of θ?

Exercise 13.24 Take the model Y = θ+e with E [X e] = 0, Y ∈R, X ∈Rk and (Yi , Xi ) a random sample.

(a) Find the efficient GMM estimator of θ.

(b) Is this model over-identified or just-identified?

(c) Find the GMM test statistic for over-identification.
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Exercise 13.25 Take the model Y = X ′β+e with E [X e] = 0 where X contains an intercept so E [e] = 0. An
enterprising econometrician notices that this implies the n moment conditions

E [ei ] = 0, i = 1, ...,n.

Given an n ×n weight matrix W , this implies a GMM criterion

J (β) = (
Y −Xβ

)′W
(
Y −Xβ

)
.

(a) Under i.i.d. sampling, show that the efficient weight matrix is W =σ−2I n where σ2 = E[
e2

]
.

(b) Using the weight matrix W =σ−2I n find the GMM estimator β̂ that minimizes J (β).

(c) Find a simple expression for the minimized criteria J (β̂).

(d) Theorem 13.14 says that criterion such as J (β̂) are asymptotically χ2
`−k where ` is the number of

moments. While the assumptions of Theorem 13.14 do not apply to this context, what is ` here?
That is, which χ2 distribution is the asserted asymptotic distribution?

(e) Does the answer in (d) make sense? Explain your reasoning.

Exercise 13.26 Take the model Y = X ′β+e with E [e | X ] = 0 and E
[
e2 | X

]=σ2. An econometrician more
enterprising than the one in previous question notices that this implies the nk moment conditions

E [Xi ei ] = 0, i = 1, ...,n.

We can write the moments using matrix notation as E
[

X
′ (

Y −Xβ
)]

where

X =


X ′

1 0 · · · 0
0 X ′

2 0
...

...
...

0 0 · · · X ′
n

 .

Given an nk ×nk weight matrix W this implies a GMM criterion

J (β) = (
Y −Xβ

)′ X W X
′ (

Y −Xβ
)

.

(a) CalculateΩ= E
[

X
′
ee ′X

]
.

(b) The econometrician decides to set W = Ω−, the Moore-Penrose generalized inverse of Ω. (See
Section A.6.) Note: A useful fact is that for a vector a,

(
aa ′)− = aa ′ (a ′a

)−2 .

(c) Find the GMM estimator β̂ that minimizes J (β).

(d) Find a simple expression for the minimized criterion J (β̂).

(e) Comment on whether the χ2 approximation from Theorem 13.14 is appropriate for J (β̂).

Exercise 13.27 Continuation of Exercise 12.23, based on the empirical work reported in Acemoglu, John-
son and Robinson (2001).

(a) Re-estimate the model estimated in part (j) by efficient GMM. Use the 2SLS estimates as the first-
step for the weight matrix and then calculate the GMM estimator using this weight matrix without
further iteration. Report the estimates and standard errors.
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(b) Calculate and report the J statistic for overidentification.

(c) Compare the GMM and 2SLS estimates. Discuss your findings.

Exercise 13.28 Continuation of Exercise 12.25, which involved estimation of a wage equation by 2SLS.

(a) Re-estimate the model in part (a) by efficient GMM. Do the results change meaningfully?

(b) Re-estimate the model in part (d) by efficient GMM. Do the results change meaningfully?

(c) Report the J statistic for overidentification.
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Chapter 14

Time Series

14.1 Introduction

A time series Yt ∈ Rm is a process which is sequentially ordered over time. In this textbook we focus
on discrete time series where t is an integer, though there is also a considerable literature on continuous-
time processes. To denote the time period it is typical to use the subscript t . The time series is univariate
if m = 1 and multivariate if m > 1. This chapter is primarily focused on univariate time series models,
though we describe the concepts for the multivariate case when the added generality does not add extra
complications.

Most economic time series are recorded at discrete intervals such as annual, quarterly, monthly,
weekly, or daily. The number of observations s per year is called the frequency. In most cases we will
denote the observed sample by the periods t = 1, ...,n.

Because of the sequential nature of time series we expect that observations close in calender time,
e.g. Yt and its lagged value Yt−1, will be dependent. This type of dependence structure requires a differ-
ent distributional theory than for cross-sectional and clustered observations since we cannot divide the
sample into independent groups. Many of the issues which distinguish time series from cross-section
econometrics concern the modeling of these dependence relationships.

There are many excellent textbooks for time series analysis. The encyclopedic standard is Hamil-
ton (1994). Others include Harvey (1990), Tong (1990), Brockwell and Davis (1991), Fan and Yao (2003),
Lütkepohl (2005), Enders (2014), and Kilian and Lütkepohl (2017). For textbooks on the related subject
of forecasting see Granger (1989), Granger and Newbold (1986), and Elliott and Timmermann (2016).

14.2 Examples

Many economic time series are macroeconomic variables. An excellent resource for U.S. macroeco-
nomic data are the FRED-MD and FRED-QD databases which contain a wide set of monthly and quar-
terly variables, assembled and maintained by the St. Louis Federal Reserve Bank. See McCracken and
Ng (2015). The datasets FRED-MD and FRED-QD for 1959-2017 are posted on the textbook website.
FRED-MD has 129 variables over 708 months. FRED-QD has 248 variables over 236 quarters.

When working with time series data one of the first tasks is to plot the series against time. In Figures
14.1-14.4 we plot eight example time series from FRED-QD and FRED-MD. As is conventional in time
series plots the x-axis displays calendar dates (in this case years) and the y-axis displays the level of the
series. The series plotted are: (1a) Real U.S. GDP (gdpc1); (1b) U.S.-Canada exchange rate (excausx); (2a)
Interest rate on U.S. 10-year Treasury bond (gs10); (2b) Real crude oil price (oilpricex); (3a) U.S. unem-
ployment rate (unrate); (3b) U.S. real non-durables consumption growth rate (growth rate of pcndx); (4a)

442
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(b) U.S.-Canada Exchange Rate

Figure 14.1: U.S. GDP and Exchange Rate
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(b) Real Crude Oil Price

Figure 14.2: Interest Rate and Crude Oil Price

U.S. CPI inflation rate (growth rate of cpiaucsl); (4b) S&P 500 return (growth rate of sp500). (1a) and (3b)
are quarterly series, the rest are monthly.

Many of the plots are smooth, meaning that the neighboring values (in calendar time) are similar
to one another and hence are serially correlated. Some of the plots are non-smooth, meaning that the
neighboring values are not similar and hence less correlated. At least one plot (real GDP) displays an
upward trend.
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Figure 14.3: Unemployment Rate and Consumption Growth Rate
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(a) U.S. Inflation Rate
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(b) S&P 500 Return

Figure 14.4: U.S. Inflation Rate and S&P 500 Return

14.3 Differences and Growth Rates

It is common to transform series by taking logarithms, differences and/or growth rates. Three of the
series in Figures 14.3-14.4 (consumption growth, inflation [growth rate of CPI index], and S&P 500 return)
are displayed as growth rates. This transformation may be done for a number of different reasons. The
most credible is that this is the suitable variable for the desired analysis.

Many aggregate series such as real GDP are transformed by taking natural logarithms. This flattens
the apparent exponential growth and makes fluctuations proportionate.
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The first difference of a series Yt is
∆Yt = Yt −Yt−1.

The second difference is
∆2Yt =∆Yt −∆Yt−1.

Higher-order differences can be defined similarly but are not used in practice.
The annual, or year-on-year, change of a series Yt with frequency s is

∆sYt = Yt −Yt−s .

There are several methods to calculate growth rates. The one-period growth rate is the percentage
change from period t −1 to period t :

Qt = 100

(
∆Yt

Yt−1

)
= 100

(
Yt

Yt−1
−1

)
. (14.1)

The multiplication by 100 is not essential but scales Qt so that it is a percentage. This is the transforma-
tion used for the plots in Figures 14.3(b)-14.4(a)(b).

For non-annual data the one-period growth rate (14.1) may be unappealing for interpretation. Con-
sequently, statistical agencies commonly report “annualized” growth rates which is the annual growth
which would occur if the one-period growth rate is compounded for a full year. For a series with fre-
quency s the annualized growth rate is

At = 100

((
Yt

Yt−1

)s

−1

)
. (14.2)

Notice that At is a nonlinear function of Qt .
Year-on-year growth rates are

Gt = 100

(
∆sYt

Yt−s

)
= 100

(
Yt

Yt−s
−1

)
.

These do not need annualization.
Growth rates are closely related to logarithmic transformations. For small growth rates, Qt , At and

Gt are approximately first differences in logarithms:

Qt ' 100∆ logYt

At ' 400∆ logYt

Gt ' 100∆s logYt .

For analysis using growth rates I recommend the one-period growth rates (14.1) or differenced log-
arithms rather than the annualized growth rates (14.2). While annualized growth rates are preferred for
reporting, they are a highly nonlinear transformation which is unnatural for statistical analysis. Dif-
ferenced logarithms are the most common choice and are recommended for models which combine
log-levels and growth rates for then the models are linear in all variables.

14.4 Stationarity

Recall that cross-sectional observations are conventionally treated as random draws from an under-
lying population. This is not an appropriate model for time series processes due to serial dependence.
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Instead, we treat the observed sample {Y1, ...,Yn} as a realization of a dependent stochastic process. It is
often useful to view {Y1, ...,Yn} as a subset of an underlying doubly-infinite sequence {...,Yt−1,Yt ,Yt+1, ...}.

A random vector Yt can be characterized by its distribution. A set such as (Yt ,Yt+1, ...,Yt+`) can be
characterized by their joint distribution. Important features of these distributions are their means, vari-
ances, and covariances. Since there is only one observed time series sample, in order to learn about these
distributions there needs to be some sort of constancy. This may only hold after a suitable transforma-
tion such as growth rates (as discussed in the previous section).

The most commonly assumed form of constancy is stationarity. There are two definitions. The first
is sufficient for construction of linear models.

Definition 14.1 {Yt } is covariance or weakly stationary if the mean µ = E [Yt ]

and covariance matrix Σ = var[Yt ] = E
[(

Yt −µ
)(

Yt −µ
)′] are finite and are in-

dependent of t , and the autocovariances

Γ(k) = cov(Yt ,Yt−k ) = E
[(

Yt −µ
)(

Yt−k −µ
)′]

are independent of t for all k.

In the univariate case we typically write the variance as σ2 and autocovariances as γ(k).
The mean µ and variance Σ are features of the marginal distribution of Yt (the distribution of Yt at

a specific time period t ). Their constancy as stated in the above definition means that these features of
the distribution are stable over time.

The autocovariances Γ(k) are features of the bivariate distributions of (Yt ,Yt−k ). Their constancy as
stated in the definition means that the correlation patterns between adjacent Yt are stable over time and
only depend on the number of time periods k separating the variables. By symmetry we have Γ(−k) =
Γ(k)′. In the univariate case this simplifies to γ(−k) = γ(k).

The autocovariances summarize the linear dependence between Yt and its lags. A scale-free measure
of linear dependence in the univariate case are the autocorrelations

ρ(k) = corr(Yt ,Yt−k ) = cov(Yt ,Yt−k )p
var[Yt ]var[Yt−1]

= γ(k)

σ2 = γ(k)

γ(0)
.

Notice by symmetry that ρ(−k) = ρ(k).
The second definition of stationarity concerns the entire joint distribution.

Definition 14.2 {Yt } is strictly stationary if the joint distribution of
(Yt , ...,Yt+`) is independent of t for all `.

This is the natural generalization of the cross-section definition of identical distributions. Strict sta-
tionarity implies that the (marginal) distribution of Yt does not vary over time. It also implies that the
bivariate distributions of (Yt ,Yt+1) and multivariate distributions of (Yt , ...,Yt+`) are stable over time.
Under the assumption of a bounded variance a strictly stationary process is covariance stationary1.

1More generally, the two classes are non-nested since strictly stationary infinite variance processes are not covariance sta-
tionary.



CHAPTER 14. TIME SERIES 447

For formal statistical theory we will generally require the stronger assumption of strict stationarity.
Therefore if we label a process as “stationary” you should interpret it as meaning “strictly stationary”.

The core meaning of both weak and strict stationarity is the same – that the distribution of Yt is stable
over time. To understand the concept it may be useful to review the plots in Figures 14.1-14.4. Are these
stationary processes? If so, we would expect that the mean and variance to be stable over time. This
seems unlikely to apply to the series in Figures 14.1 and 14.2, as in each case it is difficult to describe
what is the “typical” value of the series. Stationarity may be appropriate for the series in Figures 14.3 and
14.4 as each oscillates with a fairly regular pattern. It is difficult, however, to know whether or not a given
time series is stationary simply by examining a time series plot.

A straightforward but essential relationship is that an i.i.d. process is strictly stationary.

Theorem 14.1 If Yt is i.i.d., then it strictly stationary.

Here are some examples of strictly stationary scalar processes. In each, et is i.i.d. and E [et ] = 0.

Example 14.1 Yt = et +θet−1.

Example 14.2 Yt = Z for some random variable Z .

Example 14.3 Yt = (−1)t Z for a random variable Z which is symmetrically distributed about 0.

Example 14.4 Yt = Z cos(θt ) for a random variable Z symmetrically distributed about 0.

Here are some examples of processes which are not stationary.

Example 14.5 Yt = t .

Example 14.6 Yt = (−1)t .

Example 14.7 Yt = cos(θt ) .

Example 14.8 Yt =
p

t et .

Example 14.9 Yt = et + t−1/2et−1.

Example 14.10 Yt = Yt−1 +et with Y0 = 0.

From the examples we can see that stationarity means that the distribution is constant over time. It
does not mean, however, that the process has some sort of limited dependence, nor that there is an ab-
sence of periodic patterns. These restrictions are associated with the concepts of ergodicity and mixing
which we shall introduce in subsequent sections.
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14.5 Transformations of Stationary Processes

One of the important properties of strict stationarity is that it is preserved by transformation. That is,
transformations of strictly stationary processes are also strictly stationary. This includes transformations
which include the full history of Yt .

Theorem 14.2 If Yt is strictly stationary and X t = φ (Yt ,Yt−1,Yt−2, ...) ∈ Rq is a
random vector then X t is strictly stationary.

Theorem 14.2 is extremely useful both for the study of stochastic processes which are constructed
from underlying errors and for the study of sample statistics such as linear regression estimators which
are functions of sample averages of squares and cross-products of the original data.

We give the proof of Theorem 14.2 in Section 14.47.

14.6 Convergent Series

A transformation which includes the full past history is an infinite-order moving average. For scalar
Y and coefficients a j define the vector process

X t =
∞∑

j=0
a j Yt− j . (14.3)

Many time-series models involve representations and transformations of the form (14.3).
The infinite series (14.3) exists if it is convergent, meaning that the sequence

∑N
j=0 a j Yt− j has a finite

limit as N →∞. Since the inputs Yt are random we define this as a probability limit.

Definition 14.3 The infinite series (14.3) converges almost surely if∑N
j=0 a j Yt− j has a finite limit as N → ∞ with probability one. In this case

we describe X t as convergent.

Theorem 14.3 If Yt is strictly stationary, E |Y | < ∞, and
∑∞

j=0

∣∣a j
∣∣ < ∞, then

(14.3) converges almost surely. Furthermore, X t is strictly stationary.

The proof of Theorem 14.3 is provided in Section 14.47.
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14.7 Ergodicity

Stationarity alone is not sufficient for the weak law of large numbers as there are strictly stationary
processes with no time series variation. As we described earlier, an example of a stationary process is
Yt = Z for some random variable Z . This is random but constant over all time. An implication is that the
sample mean of Yt = Z will be inconsistent for the population mean.

What is a minimal assumption beyond stationarity so that the law of large numbers applies? This
topic is called ergodicity. It is sufficiently important that it is treated as a separate area of study. We
mention only a few highlights here. For a rigorous treatment see a standard textbook such as Walters
(1982).

A time series Yt is ergodic if all invariant events are trivial, meaning that any event which is unaf-
fected by time-shifts has probability either zero or one. This definition is rather abstract and difficult to
grasp but fortunately it is not needed by most economists.

A useful intuition is that if Yt is ergodic then its sample paths will pass through all parts of the sample
space never getting “stuck” in a subregion.

We will first describe the properties of ergodic series which are relevant for our needs and follow with
the more rigorous technical definitions. For proofs of the results see Section 14.47.

First, many standard time series processes can be shown to be ergodic. A useful starting point is the
observation that an i.i.d. sequence is ergodic.

Theorem 14.4 If Yt ∈Rm is i.i.d. then it strictly stationary and ergodic.

Second, ergodicity, like stationarity, is preserved by transformation.

Theorem 14.5 If Yt ∈ Rm is strictly stationary and ergodic and X t =
φ (Yt ,Yt−1,Yt−2, ...) is a random vector, then X t is strictly stationary and ergodic.

As an example, the infinite-order moving average transformation (14.3) is ergodic if the input is er-
godic and the coefficients are absolutely convergent.

Theorem 14.6 If Yt is strictly stationary, ergodic, E |Y | <∞, and
∑∞

j=0

∣∣a j
∣∣<∞

then X t =∑∞
j=0 a j Yt− j is strictly stationary and ergodic.

We now present a useful property. It is that the Cesàro sum of the autocovariances limits to zero.

Theorem 14.7 If Yt ∈R is strictly stationary, ergodic, and E
[
Y 2

]<∞, then

lim
n→∞

1

n

n∑
`=1

cov(Yt ,Yt+`) = 0. (14.4)
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The result (14.4) can be interpreted as that the covariances “on average” tend to zero. Some authors
have mis-stated ergodicity as implying that the covariances tend to zero but this is not correct, as (14.4)
allows, for example, the non-convergent sequence cov(Yt ,Yt+`) = (−1)`. The reason why (14.4) is partic-
ularly useful is because it is sufficient for the WLLN as we discover later in Theorem 14.9.

We now give the formal definition of ergodicity for interested readers. As the concepts will not be
used again most readers can safely skip this discussion.

As we stated above, by definition the series Yt ∈ Rm is ergodic if all invariant events are trivial. To
understand this we introduce some technical definitions. First, we can write an event as A = {

Ỹt ∈G
}

where Ỹt = (...,Yt−1,Yt ,Yt+1, ...) is an infinite history and G ⊂ Rm∞. Second, the `th time-shift of Ỹt is
defined as Ỹt+` = (...,Yt−1+`,Yt+`,Yt+1+`, ...). Thus Ỹt+` replaces each observation in Ỹt by its `th shifted
value Yt+`. A time-shift of the event A = {

Ỹt ∈G
}

is A` =
{
Ỹt+` ∈G

}
. Third, an event A is called invariant

if it is unaffected by a time-shift, so that A` = A. Thus replacing any history Ỹt with its shifted history
Ỹt+` doesn’t change the event. Invariant events are rather special. An example of an invariant event is
A = {max−∞<t<∞ Yt ≤ 0}. Fourth, an event A is called trivial if either P [A] = 0 or P [A] = 1. You can think
of trivial events as essentially non-random. Recall, by definition Yt is ergodic if all invariant events are
trivial. This means that any event which is unaffected by a time shift is trivial – is essentially non-random.
For example, again consider the invariant event A = {max−∞<t<∞ Yt ≤ 0}. If Yt = Z ∼ N(0,1) for all t then
P [A] = P [Z ≤ 0] = 0.5. Since this does not equal 0 or 1 then Yt = Z is not ergodic. However, if Yt is i.i.d.
N(0,1) then P [max−∞<t<∞ Yt ≤ 0] = 0. This is a trivial event. For Yt to be ergodic (it is in this case) all
such invariant events must be trivial.

An important technical result is that ergodicity is equivalent to the following property.

Theorem 14.8 A stationary series Yt ∈Rm is ergodic iff for all events A and B

lim
n→∞

1

n

n∑
`=1

P [A`∩B ] =P [A]P [B ] . (14.5)

This result is rather deep so we do not prove it here. See Walters (1982), Corollary 1.14.2, or David-
son (2020), Theorem 14.7. The limit in (14.5) is the Cesàro sum of P [A`∩B ]. The Theorem of Cesàro
Means (Theorem A.4 of Introduction to Econometrics) shows that a sufficient condition for (14.5) is that
P [A`∩B ] → P [A]P [B ] which is known as mixing. Thus mixing implies ergodicity. Mixing, roughly,
means that separated events are asymptotically independent. Ergodicity is weaker, only requiring that
the events are asymptotically independent “on average”. We discuss mixing in Section 14.12.

14.8 Ergodic Theorem

The ergodic theorem is one of the most famous results in time series theory. There are actually sev-
eral forms of the theorem, most of which concern almost sure convergence. For simplicity we state the
theorem in terms of convergence in probability.
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Theorem 14.9 Ergodic Theorem.
If Yt ∈Rm is strictly stationary, ergodic, and E‖Y ‖ <∞, then as n →∞,

E
∥∥∥Y −µ

∥∥∥−→ 0 (14.6)

and
Y −→

p
µ (14.7)

where µ= E [Y ].

The ergodic theorem shows that ergodicity is sufficient for consistent estimation. The moment con-
dition E‖Y ‖ <∞ is the same as in the WLLN for i.i.d. observations.

We now provide a proof of the ergodic theorem for the scalar case under the additional assumption
that var[Y ] =σ2 <∞. A proof which relaxes this assumption is provided in Section 14.47.

By direct calculation

var
[

Y
]
= 1

n2

n∑
t=1

n∑
j=1

γ
(
t − j

)
where γ(`) = cov(Yt ,Yt+`). The double sum is over all elements of an n ×n matrix whose t j th element
is γ

(
t − j

)
. The diagonal elements are γ(0) = σ2, the first off-diagonal elements are γ(1), the second off-

diagonal elements are γ(2) and so on. This means that there are precisely n diagonal elements equalling
σ2, 2(n −1) equalling γ(1), etc. Thus the above equals

var
[

Y
]
= 1

n2

(
nσ2 +2(n −1)γ(1)+2(n −2)γ(2)+·· ·+2γ(n −1)

)
= σ2

n
+ 2

n

n∑
`=1

(
1− `

n

)
γ(`). (14.8)

This is a rather intruiging expression. It shows that the variance of the sample mean precisely equals
σ2/n (which is the variance of the sample mean under i.i.d. sampling) plus a weighted Cesàro mean of
the autocovariances. The latter is zero under i.i.d. sampling but is non-zero otherwise. Theorem 14.7
shows that the Cesàro mean of the autocovariances converges to zero. Let wn` = 2(`/n2), which satisfy
the conditions of the Toeplitz Lemma (Theorem A.5 of Introduction to Econometrics). Then

2

n

n∑
`=1

(
1− `

n

)
γ(`) = 2

n2

n−1∑
`=1

∑̀
j=1

γ( j ) =
n−1∑
`=1

wn`

(
1

`

∑̀
j=1

γ( j )

)
−→ 0. (14.9)

Together, we have shown that (14.8) is o(1) under ergodicity. Hence var
[

Y
]
→ 0. Markov’s inequality

establishes that Y −→
p
µ.

14.9 Conditioning on Information Sets

In the past few sections we have introduced the concept of the infinite histories. We now consider
conditional expectations given infinite histories.

First, some basics. Recall from probability theory that an outcome is an element of a sample space.
An event is a set of outcomes. A probability law is a rule which assigns non-negative real numbers to
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events. When outcomes are infinite histories then events are collections of such histories and a proba-
bility law is a rule which assigns numbers to collections of infinite histories.

Now we wish to define a conditional expectation given an infinite past history. Specifically, we wish
to define

Et−1 [Yt ] = E [Yt | Yt−1,Yt−2, . . .] (14.10)

the expected value of Yt given the history Ỹt−1 = (Yt−1,Yt−2, . . .) up to time t . Intuitively, Et−1 [Yt ] is the
mean of the conditional distribution, the latter reflecting the information in the history. Mathematically
this cannot be defined using (2.6) as the latter requires a joint density for (Yt ,Yt−1,Yt−2, . . .) which does
not make much sense. Instead, we can appeal to Theorem 2.13 which states that the conditional ex-
pectation (14.10) exists if E |Yt | <∞ and the probabilities P

[
Ỹt−1 ∈ A

]
are defined. The latter events are

discussed in the previous paragraph. Thus the conditional expectation is well defined.
In this textbook we have avoided measure-theoretic terminology to keep the presentation accessible,

and because it is my belief that measure theory is more distracting than helpful. However, it is standard in
the time series literature to follow the measure-theoretic convention of writing (14.10) as the conditional
expectation given a σ-field. So at the risk of being overly-technical we will follow this convention and
write the expectation (14.10) as E [Yt |Ft−1] where Ft−1 =σ

(
Ỹt−1

)
is the σ-field generated by the history

Ỹt−1. Aσ-field (also known as aσ-algebra) is a collection of sets satisfying certain regularity conditions2.
See Introduction to Econometrics, Section 1.14. The σ-field generated by a random variable Y is the
collection of measurable events involving Y . Similarly, the σ-field generated by an infinite history is
the collection of measurable events involving this history. Intuitively, Ft−1 contains all the information
available in the history Ỹt−1. Consequently, economists typically call Ft−1 an information set rather
than a σ-field. As I said, in this textbook we endeavor to avoid measure theoretic complications so will
follow the economists’ label rather than the probabilists’, but use the latter’s notation as is conventional.
To summarize, we will write Ft =σ (Yt ,Yt−1, . . .) to indicate the information set generated by an infinite
history (Yt ,Yt−1, . . .), and will write (14.10) as E [Yt |Ft−1].

We now describe some properties about information sets Ft .
First, they are nested: Ft−1 ⊂Ft . This means that information accumulates over time. Information

is not lost.
Second, it is important to be precise about which variables are contained in the information set.

Some economists are sloppy and refer to “the information set at time t” without specifying which vari-
ables are in the information set. It is better to be specific. For example, the information sets F1t =
σ (Yt ,Yt−1, . . .) and F2t =σ (Yt , X t ,Yt−1, X t−1 . . .) are distinct even though they are both dated at time t .

Third, the conditional expectations (14.10) follow the law of iterated expectations and the condition-
ing theorem, thus

E [E [Yt |Ft−1] |Ft−2] = E [Yt |Ft−2]

E [E [Yt |Ft−1]] = E [Yt ] ,

and
E [Yt−1Yt |Ft−1] = Yt−1E [Yt |Ft−1] .

14.10 Martingale Difference Sequences

An important concept in economics is unforecastability, meaning that the conditional expectation is
the unconditional expectation. This is similar to the properties of a regression error. An unforecastable
process is called a martingale difference sequence (MDS).

2A σ-field contains the universal set, is closed under complementation, and closed under countable unions.
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A MDS et is defined with respect to a specific sequence of information sets Ft . Most commonly
the latter are the natural filtration Ft = σ (et ,et−1, . . .) (the past history of et ) but it could be a larger
information set. The only requirement is that et is adapted to Ft , meaning that E [et |Ft ] = et .

Definition 14.4 The process (et ,Ft ) is a Martingale Difference Sequence
(MDS) if et is adapted to Ft , E |et | <∞, and E [et |Ft−1] = 0.

In words, a MDS et is unforecastable in the mean. It is useful to notice that if we apply iterated
expectations E [et ] = E [E [et |Ft−1]] = 0. Thus a MDS is mean zero.

The definition of a MDS requires the information sets Ft to contain the information in et , but is
broader in the sense that it can contain more information. When no explicit definition is given it is stan-
dard to assume that Ft is the natural filtration. However, it is best to explicitly specify the information
sets so there is no confusion.

The term “martingale difference sequence” refers to the fact that the summed process St = ∑t
j=1 e j

is a martingale and et is its first-difference. A martingale St is a process which has a finite mean and
E [St |Ft−1] = St−1.

If et is i.i.d. and mean zero it is a MDS but the reverse is not the case. To see this, first suppose that et

is i.i.d. and mean zero. It is then independent of Ft−1 =σ (et−1,et−2, . . .) so E [et |Ft−1] = E [et ] = 0. Thus
an i.i.d. shock is a MDS as claimed.

To show that the reverse is not true let ut be i.i.d. N(0,1) and set

et = ut ut−1. (14.11)

By the conditioning theorem
E [et |Ft−1] = ut−1E [ut |Ft−1] = 0

so et is a MDS. The process (14.11) is not, however, i.i.d. One way to see this is to calculate the first
autocovariance of e2

t , which is

cov
(
e2

t ,e2
t−1

)= E[
e2

t e2
t−1

]−E[
e2

t

]
E
[
e2

t−1

]
= E[

u2
t

]
E
[
u4

t−1

]
E
[
u2

t−2

]−1

= 2 6= 0.

Since the covariance is non-zero, et is not an independent sequence. Thus et is a MDS but not i.i.d.
An important property of a square integrable MDS is that it is serially uncorrelated. To see this, ob-

serve that by iterated expectations, the conditioning theorem, and the definition of a MDS, for k > 0,

cov(et ,et−k ) = E [et et−k ]

= E [E [et et−k |Ft−1]]

= E [E [et |Ft−1]et−k ]

= E [0et−k ]

= 0.

Thus the autocovariances and autocorrelations are zero.
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A process that is serially uncorrelated, however, is not necessarily a MDS. Take the process et = ut +
ut−1ut−2 with ut i.i.d. N(0,1). The process et is not a MDS since E [et |Ft−1] = ut−1ut−2 6= 0. However,

cov(et ,et−1) = E [et et−1]

= E [(ut +ut−1ut−2) (ut−1 +ut−2ut−3)]

= E[
ut ut−1 +ut ut−2ut−3 +u2

t−1ut−2 +ut−1u2
t−2ut−3

]
= E [ut ]E [ut−1]+E [ut ]E [ut−2]E [ut−3]

+E[
u2

t−1

]
E [ut−2]+E [ut−1]E

[
u2

t−2

]
E [ut−3]

= 0.

Similarly, cov(et ,et−k ) = 0 for k 6= 0. Thus et is serially uncorrelated. We have proved the following.

Theorem 14.10 If (et ,Ft ) is a MDS and E
[
e2

t

] <∞ then et is serially uncorre-
lated.

Another important special case is a homoskedastic martingale difference sequence.

Definition 14.5 The MDS (et ,Ft ) is a Homoskedastic Martingale Difference
Sequence if E

[
e2

t |Ft−1
]=σ2.

A homoskedastic MDS should more properly be called a conditionally homoskedastic MDS because
the property concerns the conditional distribution rather than the unconditional. That is, any strictly
stationary MDS satisfies a constant variance E

[
e2

t

]
but only a homoskedastic MDS has a constant condi-

tional variance E
[
e2

t |Ft−1
]
.

A homoskedatic MDS is analogous to a conditionally homoskedastic regression error. It is intermedi-
ate between a MDS and an i.i.d. sequence. Specifically, a square integrable and mean zero i.i.d. sequence
is a homoskedastic MDS and the latter is a MDS.

The reverse is not the case. First, a MDS is not necessarily conditionally homoskedastic. Consider the
example et = ut ut−1 given previously which we showed is a MDS. It is not conditionally homoskedastic,
however, since

E
[
e2

t |Ft−1
]= u2

t−1E
[
u2

t |Ft−1
]= u2

t−1

which is time-varying. Thus this MDS et is conditionally heteroskedastic. Second, a homoskedastic MDS
is not necessarily i.i.d. Consider the following example. Set et =

√
1−2/ηt−1Tt , where Tt is distributed

as student t with degree of freedom parameter ηt−1 = 2+ e2
t−1. This is scaled so that E [et |Ft−1] = 0 and

E
[
e2

t |Ft−1
] = 1, and is thus a homoskedastic MDS. The conditional distribution of et depends on et−1

through the degree of freedom parameter. Hence et is not an independent sequence.
One way to think about the difference between MDS and i.i.d. shocks is in terms of forecastability.

An i.i.d. process is fully unforecastable in that no function of an i.i.d. process is forecastable. A MDS is
unforecastable in the mean but other moments may be forecastable.
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14.11 CLT for Martingale Differences

We are interested in an asymptotic approximation for the distribution of the normalized sample
mean

Sn = 1p
n

n∑
t=1

ut (14.12)

where ut is mean zero with variance E
[
ut u′

t

]=Σ<∞. In this section we present a CLT for the case where
ut is a martingale difference sequence.

Theorem 14.11 MDS CLT If ut is a strictly stationary and ergodic martingale
difference sequence and E

[
ut u′

t

]=Σ<∞, then as n →∞,

Sn = 1p
n

n∑
t=1

ut −→
d

N(0,Σ) .

The conditions for Theorem 14.11 are similar to the Lindeberg-Lévy CLT. The only difference is that
the i.i.d. assumption has been replaced by the assumption of a strictly stationarity and ergodic MDS.

The proof of Theorem 14.11 is technically advanced so we do not present the full details, but instead
refer readers to Theorem 3.2 of Hall and Heyde (1980) or Theorem 25.3 of Davidson (2020) (which are
more general than Theorem 14.11, not requiring strict stationarity). To illustrate the role of the MDS
assumption we give a sketch of the proof in Section 14.47.

14.12 Mixing

For many results, including a CLT for correlated (non-MDS) series, we need a stronger restriction on
the dependence between observations than ergodicity.

Recalling the property (14.5) of ergodic sequences we can measure the dependence between two
events A and B by the discrepancy

α(A,B) = |P [A∩B ]−P [A]P [B ]| . (14.13)

This equals 0 when A and B are independent and is positive otherwise. In general, α(A,B) can be used
to measure the degree of dependence between the events A and B .

Now consider the two information sets (σ-fields)

F t
−∞ =σ (...,Yt−1,Yt )

F∞
t =σ (Yt ,Yt+1, ...) .

The first is the history of the series up until period t and the second is the history of the series starting
in period t and going forward. We then separate the information sets by ` periods, that is, take F t−`−∞
and F∞

t . We can measure the degree of dependence between the information sets by taking all events
in each and then taking the largest discrepancy (14.13). This is

α (`) = sup
A∈F t−`−∞ ,B∈F∞

t

α(A,B).
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The constants α(`) are known as the mixing coefficients. We say that Yt is strong mixing if α(`) → 0
as `→∞. This means that as the time separation increases between the information sets, the degree of
dependence decreases, eventually reaching independence.

From the Theorem of Cesàro Means (Theorem A.4 of Introduction to Econometrics), strong mixing
implies (14.5) which is equivalent to ergodicity. Thus a mixing process is ergodic.

An intuition concerning mixing can be colorfully illustrated by the following example due to Halmos
(1956). A martini is a drink consisting of a large portion of gin and a small part of vermouth. Suppose that
you pour a serving of gin into a martini glass, pour a small amount of vermouth on top, and then stir the
drink with a swizzle stick. If your stirring process is mixing, with each turn of the stick the vermouth will
become more evenly distributed throughout the gin, and asymptotically (as the number of stirs tends to
infinity) the vermouth and gin distributions will become independent3. If so, this is a mixing process.

For applications mixing is often useful when we can characterize the rate at which the coefficients
α(`) decline to zero. There are two types of conditions which are seen in asymptotic theory: rates and
summation. Rate conditions take the form α(`) = O(`−r ) or α(`) = o(`−r ). Summation conditions take
the form

∑∞
`=0α(`)r <∞ or

∑∞
`=0`

sα(`)r <∞.
There are alternative measures of dependence beyond (14.13) and many have been proposed. Strong

mixing is one of the weakest (and thus embraces a wide set of time series processes) but is insufficiently
strong for some applications. Another popular dependence measure is known as absolute regularity or
β-mixing. The β-mixing coefficients are

β (`) = sup
A∈F∞

t

E
∣∣∣P[

A |F t−`
−∞

]
−P [A]

∣∣∣ .

Absolute regularity is stronger than strong mixing in the sense that β (`) →∞ implies α(`) → 0, and rate
conditions for the β-mixing coefficients imply the same rates for the strong mixing coefficients.

One reason why mixing is useful for applications is that it is preserved by transformations.

Theorem 14.12 If Yt has mixing coefficients αY (`) and X t =
φ(Yt ,Yt−1,Yt−2, ...,Yt−q ) then X t has mixing coefficients αX (`) ≤ αY (` − q)
(for ` ≥ q). The coefficients αX (m) satisfy the same summation and rate
conditions as αY (`).

A limitation of the above result is that it is confined to a finite number of lags unlike the transforma-
tion results for stationarity and ergodicity.

Mixing can be a useful tool because of the following inequalities.

3Of course, if you really make an asymptotic number of stirs you will never finish stirring and you won’t be able to enjoy the
martini. Hence in practice it is advised to stop stirring before the number of stirs reaches infinity.
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Theorem 14.13 Let F t−∞ and F∞
t be constructed from the pair (X t , Zt ).

1. If |X t | ≤C1 and |Zt | ≤C2 then

|cov(X t−`, Zt )| ≤ 4C1C2α(`).

2. If E |X t |r <∞ and E |Zt |q <∞ for 1/r +1/q < 1 then

|cov(X t−`, Zt )| ≤ 8
(
E |X t |r

)1/r (
E |Zt |q

)1/q
α(`)1−1/r−1/q .

3. If E [Zt ] = 0 and E |Zt |r <∞ for r ≥ 1 then

E
∣∣∣E[

Zt

∣∣∣F t−`
−∞

]∣∣∣≤ 6
(
E |Zt |r

)1/r
α(`)1−1/r .

The proof is given in Section 14.47. Our next result follows fairly directly from the definition of mixing.

Theorem 14.14 If Yt is i.i.d. then it is strong mixing and ergodic.

14.13 CLT for Correlated Observations

In this section we develop a CLT for the normalized mean Sn defined in (14.12) allowing the variables
ut to be serially correlated.

In (14.8) we found that in the scalar case

var[Sn] =σ2 +2
n∑
`=1

(
1− `

n

)
γ(`)

where σ2 = var[ut ] and γ(`) = cov(ut ,ut−`). Since γ(−`) = γ(`) this can be written as

var[Sn] =
n∑

`=−n

(
1− |`|

n

)
γ(`). (14.14)

In the vector case define the variance Σ= E[
ut u′

t

]
and the matrix covariance Γ(`) = E[

ut u′
t−`

]
which

satisfies Γ(−`) = Γ(`)′. We obtain by a calculation analogous to (14.14)

var[Xn] =Σ+
n∑
`=1

(
1− `

n

)(
Γ(`)+Γ(`)′

)= n∑
`=−n

(
1− |`|

n

)
Γ(`). (14.15)

A necessary condition for Sn to converge to a normal distribution is that the variance (14.15) con-
verges to a limit. Indeed,

n∑
`=1

(
1− `

n

)
Γ(`) = 1

n

n−1∑
`=1

∑̀
j=1
Γ( j ) →

∞∑
`=0

Γ(`) (14.16)
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where the convergence holds by the Theorem of Cesàro Means if the limit in (14.16) is convergent. A nec-
essary condition for this to hold is that the covariances Γ(`) decline to zero as `→∞, which is stronger
than ergodicity. A sufficient condition is that the covariances are absolutely summable which can be
verified using a mixing inequality. Using the triangle inequality (B.16) and Theorem 14.13.2, for r > 2

∞∑
`=0

‖Γ(`)‖ ≤ 8
(
E‖ut‖r )2/r

∞∑
`=0

α(`)1−2/r .

This implies that (14.15) converges if E‖ut‖r <∞ and
∑∞
`=0α(`)1−2/r <∞. We conclude that under these

assumptions

var[Sn] →
∞∑

`=−∞
Γ(`)

def= Ω. (14.17)

The matrixΩ plays a special role in the inference theory for tme series. It is often called the long-run
variance of ut as it is the variance of sample means in large samples.

It turns out that these conditions are sufficient for the CLT.

Theorem 14.15 If ut is strictly stationary with mixing coefficientsα(`), E [ut ] =
0, for some r > 2, E‖ut‖r <∞ and

∑∞
`=1α(`)1−2/r <∞, then (14.17) is conver-

gent and Sn = n−1/2 ∑n
t=1 ut

d−→ N(0,Ω).

The proof is in Section 14.47.
The theorem requires r > 2 finite moments which is stronger than the MDS CLT. The summability

condition on the mixing coefficients in Theorem 14.15 is considerably stronger than ergodicity. There
is a trade-off involving the choice of r . A larger r means more moments are required finite but a slower
decay in the coefficients α(`) is allowed. Smaller r is less restrictive regarding moments but requires a
faster decay rate in the mixing coefficients.

14.14 Linear Projection

In Chapter 2 we extensively studied the properties of linear projection models. In the context of
stationary time series we can use similar tools. An important extension is to allow for projections onto
infinite dimensional random vectors. For this analysis we assume that Yt is covariance stationary.

Recall that when (Y , X ) have a joint distribution with bounded variances the linear projection of Y

onto X (the best linear predictor) is the minimizer of S
(
β
)= E[(

Y −β′X
)2

]
and has the solution

P [Y | X ] = X ′ (E[
X X ′])−1

E [X Y ] .

This projection is unique and has a unique projection error e = Y −P [Y | X ].
This idea extends to any Hilbert space including the infinite past history Ỹt−1 = (...,Yt−2,Yt−1). From

the projection theorem for Hilbert spaces (see Theorem 2.3.1 of Brockwell and Davis (1991)) the projec-
tion P t−1 [Yt ] =P

[
Yt | Ỹt−1

]
of Yt onto Ỹt−1 is unique and has a unique projection error

et = Yt −P t−1 [Yt ] . (14.18)

The projection error is mean zero, has finite variance σ2 = E
[
e2

t

] ≤ E
[
Y 2

t

] <∞, and is serially uncorre-
lated. By Theorem 14.2, if Yt is strictly stationary then P t−1 [Yt ] and et are strictly stationary.

Thus the projection errors are serially uncorrelated. We state these results formally.
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Theorem 14.16 If Yt ∈R is covariance stationary it has the projection equation

Yt =P t−1 [Yt ]+et .

The projection error et satisfies

E [et ] = 0

E
[
et− j et

]= 0 j ≥ 1

and
σ2 = E[

e2
t

]≤ E[
Y 2

t

]<∞. (14.19)

If Yt is strictly stationary then et is strictly stationary.

14.15 White Noise

The projection error et is mean zero, has a finite variance, and is serially uncorrelated. This describes
what is known as a white noise process.

Definition 14.6 The process et is white noise if E [et ] = 0, E
[
e2

t

]=σ2 <∞, and
cov(et ,et−k ) = 0 for k 6= 0.

A MDS is white noise (Theorem 14.10) but the reverse is not true as shown by the example et =
ut +ut−1ut−2 given in Section 14.10, which is white noise but not a MDS. Therefore, the following types
of shocks are nested: i.i.d., MDS, and white noise, with i.i.d. being the most narrow class and white noise
the broadest. It is helpful to observe that a white noise process can be conditionally heteroskedastic as
the conditional variance is unrestricted.

14.16 The Wold Decomposition

In Section 14.14 we showed that a covariance stationary process has a white noise projection error.
This result can be used to express the series as an infinite linear function of the projection errors. This is
a famous result known as the Wold decomposition.
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Theorem 14.17 The Wold Decomposition If Yt is covariance stationary and
σ2 > 0 where σ2 is the projection error variance (14.19), then Yt has the linear
representation

Yt =µt +
∞∑

j=0
b j et− j (14.20)

where et are the white noise projection errors (14.18), b0 = 1,

∞∑
j=1

b2
j <∞, (14.21)

and
µt = lim

m→∞P t−m [Yt ] . (14.22)

The Wold decomposition shows that Yt can be written as a linear function of the white noise projec-
tion errors plus µt . The infinite sum in (14.20) is also known as a linear process. The Wold decomposi-
tion is a foundational result for linear time series analysis. Since any covariance stationary process can
be written in this format this justifies linear models as approximations.

The series µt is the projection of Yt on the history from the infinite past. It is the part of Yt which
is perfectly predictable from its past values and is called the deterministic component. In most cases
µt = µ, the unconditional mean of Yt . However, it is possible for stationary processes to have more
substantive deterministic components. An example is

µt =
{

(−1)t with probability 1/2
(−1)t+1 with probability 1/2.

This series is strictly stationary, mean zero, and variance one. However, it is perfectly predictable given
the previous history as it simply oscillates between −1 and 1.

In practical applied time series analysis, deterministic components are typically excluded by as-
sumption. We call a stationary time series non-deterministic4 if µt = µ, a constant. In this case the
Wold decomposition has a simpler form.

Theorem 14.18 If Yt is covariance stationary and non-deterministic then Yt

has the linear representation

Yt =µ+
∞∑

j=0
b j et− j ,

where b j satisfy (14.21) and et are the white noise projection errors (14.18).

A limitation of the Wold decomposition is the restriction to linearity. Effectively, it says that there is a
valid linear approximation within the class of linear models. It excludes alternative (nonlinear) models
by assumption.

For a proof of Theorem 14.17 see Section 14.47.

4Most authors define purely non-deterministic as the case µt = 0. We allow for a non-zero mean so to accomodate practical
time series applications.
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14.17 Lag Operator

An algebraic construct which is useful for the analysis of time series models is the lag operator.

Definition 14.7 The lag operator L satisfies LYt = Yt−1.

Defining L2 = LL, we see that L2Yt = LYt−1 = Yt−2. In general, Lk Yt = Yt−k .
Using the lag operator the Wold decomposition can be written in the format

Yt =µ+b0et +b1Let +b2L2et +·· ·
=µ+ (

b0 +b1L+b2L2 +·· ·)et

=µ+b(L)et

where b(z) = b0+b1z+b2z2+·· · is an infinite-order polynomial. The expression Yt =µ+b(L)et is compact
way to write the Wold representation.

14.18 Autoregressive Wold Representation

From Theorem 14.16, Yt satisfies a projection onto its infinite past. Theorem 14.18 shows that this
projection equals a linear function of the lagged projection errors. An alternative is to write the projection
as a linear function of the lagged Yt . It turns out that to obtain a unique and convergent representation
we need a strengthening of the conditions.

Theorem 14.19 If Yt is covariance stationary, non-deterministic, with Wold
representation Yt = b(L)et , such that |b(z)| ≥ δ > 0 for all complex |z| ≤ 1, and
for some integer s ≥ 0 the Wold coefficients satisfy

∑∞
j=0

(∑∞
k=0 k sb j+k

)2 < ∞,
then Yt has the representation

Yt =µ+
∞∑

j=1
a j Yt− j +et (14.23)

for some coefficients µ and a j . The coefficients satisfy
∑∞

k=0 k s |ak | < ∞ so
(14.23) is convergent.

Equation (14.23) is known as an infinite-order autoregressive representation with autoregressive co-
efficients a j .

A solution to the equation b(z) = 0 is a root of the polynomial b(z). The assumption |b(z)| > 0 for
|z| ≤ 1 means that the roots of b(z) lie outside the unit circle |z| = 1 (the circle in the complex plane with
radius one). Theorem 14.19 makes the stronger restriction that |b(z)| is bounded away from 0 for z on
or within the unit circle. The need for this strengthening is less intuitive but essentially excludes the
possibility of an infinite number of roots outside but arbitrarily close to the unit circle. The summability
assumption on the Wold coefficients ensures convergence of the autoregressive coefficients a j .
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To understand the restriction on the roots of b(z) consider the simple case b(z) = 1−b1z. (Below we
call this a MA(1) model.) The requirement |b(z)| ≥ δ for |z| ≤ 1 means |b1| ≤ 1−δ. Thus the assumption in
Theorem 14.19 bounds the coefficient strictly below 1. Now consider an infinite polynomial case b(z) =
∞∏

j=1

(
1−b j z

)
. The assumption in Theorem 14.19 requires sup j

∣∣b j
∣∣< 1.

Theorem 14.19 is attributed to Wiener and Masani (1958). For a recent treatment and proof see Corol-
lary 6.1.17 of Politis and McElroy (2020). These authors (as is common in the literature) state their as-
sumptions differently than we do in Theorem 14.19. First, instead of the condition on b(z) they bound
from below the spectral density function f (λ) of Yt . We do not define the spectral density in this text so
we restate their condition in terms of the linear process polynomial b(z). Second, instead of the con-
dition on the Wold coefficients they require that the autocovariances satisfy

∑∞
k=0 k s

∣∣γ(k)
∣∣ <∞. This is

implied by out stated summability condition on the b j (using the expression for γ(k) in Section 14.21
below and simplifying).

14.19 Linear Models

In the previous two sections we showed that any non-deterministic covariance stationary time series
has the projection representation

Yt =µ+
∞∑

j=0
b j et− j

and under invertibility conditions satisfies the autoregressive representation

Yt =µ+
∞∑

j=1
a j Yt− j +et

where in both equations the errors et are white noise projection errors. These representations help us
understand that linear models can be used as approximations for stationary time series.

For the next several sections we reverse the analysis. We will assume a specific linear model and then
study the properties of the resulting time series. In particular we will be seeking conditions under which
the stated process is stationary. This helps us understand the properties of linear models. Throughout,
we assume that the error et is a strictly stationary and ergodic white noise process. This allows as a special
case the stronger assumption that et is i.i.d. but is less restrictive. In particular, it allows for conditional
heteroskedasticity.

14.20 Moving Average Processes

The first-order moving average process, denoted MA(1), is

Yt =µ+et +θet−1

where et is a strictly stationary and ergodic white noise process. The model is called a “moving average”
because Yt is a weighted average of the shocks et and et−1.
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It is straightforward to calculate that a MA(1) has the following moments.

E [Yt ] =µ
var[Yt ] = (

1+θ2)σ2

γ(1) = θσ2

ρ(1) = θ

1+θ2

γ(k) = ρ(k) = 0, k ≥ 2.

Thus the MA(1) process has a non-zero first autocorrelation with the remainder zero.
An MA(1) process with θ 6= 0 is serially correlated with each pair of adjacent observations (Yt−1,Yt )

correlated. If θ > 0 the pair are positively correlated, while if θ < 0 they are negatively correlated. The
serial correlation is limited in that observations separated by multiple periods are mutually independent.

The qth-order moving average process, denoted MA(q), is

Yt =µ+θ0et +θ1et−1 +θ2et−2 +·· ·+θq et−q

where θ0 = 1. It is straightforward to calculate that a MA(q) has the following moments.

E [Yt ] =µ

var[Yt ] =
(

q∑
j=0

θ2
j

)
σ2

γ(k) =
(

q−k∑
j=0

θ j+kθ j

)
σ2, k ≤ q

ρ(k) =
∑q−k

j=0 θ j+kθ j∑q
j=0θ

2
j

γ(k) = ρ(k) = 0, k > q.

In particular, a MA(q) has q non-zero autocorrelations with the remainder zero.
A MA(q) process Yt is strictly stationary and ergodic.
A MA(q) process with moderately large q can have considerably more complicated dependence rela-

tions than an MA(1) process. One specific pattern which can be induced by a MA process is smoothing.
Suppose that the coefficients θ j all equal 1. Then Yt is a smoothed version of the shocks et .

To illustrate, Figure 14.5(a) displays a plot of a simulated white noise (i.i.d. N(0,1)) process with
n = 120 observations. Figure 14.5(b) displays a plot of an MA(8) process constructed with the same
innovations, with θ j = 1, j = 1, ...,8. You can see that the white noise has no predictable behavior while
the MA(8) is smooth.

14.21 Infinite-Order Moving Average Process

An infinite-order moving average process, denoted MA(∞), also known as a linear process, is

Yt =µ+
∞∑

j=0
θ j et− j (14.24)
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Figure 14.5: White Noise and MA(8)

where et is a strictly stationary and ergodic white noise process and
∑∞

j=0

∣∣θ j
∣∣<∞. From Theorem 14.6,

Yt is strictly stationary and ergodic. A linear process has the following moments:

E [Yt ] =µ

var[Yt ] =
( ∞∑

j=0
θ2

j

)
σ2

γ(k) =
( ∞∑

j=0
θ j+kθ j

)
σ2

ρ(k) =
∑∞

j=0θ j+kθ j∑q
j=0θ

2
j

.

14.22 First-Order Autoregressive Process

The first-order autoregressive process, denoted AR(1), is

Yt =α0 +α1Yt−1 +et (14.25)

where et is a strictly stationary and ergodic white noise process. The AR(1) model is probably the single
most important model in econometric time series analysis.

As a simple motivating example let Yt be is the employment level (number of jobs) in an economy.
Suppose that a fixed fraction 1−α1 of employees lose their job and a random number ut of new employ-
ees are hired each period. Setting α0 = E [ut ] and et = ut −α0, this implies the law of motion (14.25).

To illustrate the behavior of the AR(1) process, Figure 14.6 plots two simulated AR(1) processes. Each
is generated using the white noise process et displayed in Figure 14.5(a). The plot in Figure 14.6(a) sets
α1 = 0.5 and the plot in Figure 14.6(b) sets α1 = 0.95. You can see how both are more smooth than the
white noise process and that the smoothing increases with α.
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(b) AR(1) with α= 0.95

Figure 14.6: AR(1) Processes

Our first goal is to obtain conditions under which (14.25) is stationary. We can do so by showing that
Yt can be written as a convergent linear process and then appealing to Theorem 14.5. To find a linear
process representation for Yt we can use backward recursion. Notice that Yt in (14.25) depends on its
previous value Yt−1. If we take (14.25) and lag it one period we find Yt−1 =α0+α1Yt−2+et−1. Substituting
this into (14.25) we find

Yt =α0 +α1 (α0 +α1Yt−2 +et−1)+et

=α0 +α1α0 +α2
1Yt−2 +α1et−1 +et .

Similarly we can lag (14.31) twice to find Yt−2 =α0+α1Yt−3+et−2 and can be used to substitute out Yt−2.
Continuing recursively t times, we find

Yt =α0
(
1+α1 +α2

1 +·· ·+αt−1
1

)+αt
1Y0 +αt−1

1 e1 +αt−2
1 e2 +·· ·+et

=α0

t−1∑
j=0

α
j
1 +αt

1Y0 +
t−1∑
j=0

α
j
1et− j . (14.26)

Thus Yt equals an intercept plus the scaled initial condition αt
1Y0 and the moving average

∑t−1
j=0α

j
1et− j .

Now suppose we continue this recursion into the infinite past. By Theorem 14.3 this converges if∑∞
j=0 |α1| j <∞. The limit is provided by the following well-known result.

Theorem 14.20
∞∑

k=0
βk = 1

1−β is absolutely convergent if
∣∣β∣∣< 1.

The series converges by the ratio test (see Theorem A.3 of Introduction to Econometrics). To find the
limit,

A =
∞∑

k=0
βk = 1+

∞∑
k=1

βk = 1+β
∞∑

k=0
βk = 1+βA.
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Solving, we find A = 1/(1−β).
Thus the intercept in (14.26) converges to α0/(1−α1). We deduce the following:

Theorem 14.21 If E |et | <∞ and |α1| < 1 then the AR(1) process (14.25) has the
convergent representation

Yt =µ+
∞∑

j=0
α

j
1et− j (14.27)

where µ=α0/(1−α1). The AR(1) process Yt is strictly stationary and ergodic.

We can compute the moments of Yt from (14.27)

E [Yt ] =µ+
∞∑

k=0
αk

1E [et−k ] =µ

var[Yt ] =
∞∑

k=0
α2k

1 var[et−k ] = σ2

1−α2
1

.

An informal way to calculate the moments is as follows. Apply expectations to both sides of (14.25)

E [Yt ] =α0 +α1E [Yt−1]+E [et ] =α0 +α1E [Yt−1] .

Stationarity implies E [Yt−1] = E [Yt ]. Solving we find E [Yt ] =α0/(1−α1). Similarly,

var[Yt ] = var[αYt−1 +et ] =α2
1 var[Yt−1]+var[et ] =α2

1 var[Yt−1]+σ2.

Stationarity implies var[Yt−1] = var[Yt ]. Solving we find var[Yt ] = σ2/(1−α2
1). This method is useful for

calculation of autocovariances and autocorrelations. For simplicity set α0 = 1. We find

γ(1) = E [Yt−1Yt ] = E [Yt−1 (α1Yt−1 +et )] =α1 var[Yt ]

so
ρ(1) = γ(1)/var[Yt ] =α1.

Furthermore,
γ(k) = E [Yt−k Yt ] = E [Yt−k (α1Yt−1 +et )] =α1γ(k −1).

By recursion we obtain

γ(k) =αk
1 var[Yt ]

ρ(k) =αk
1 .

Thus the AR(1) process with α1 6= 0 has non-zero autocorrelations of all orders which decay to zero geo-
metrically as k increases. For α1 > 0 the autocorrelations are all positive. For α1 < 0 the autocorrelations
alternate in sign.

We can also express the AR(1) process using the lag operator notation:

(1−α1L)Yt =α0 +et . (14.28)
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We can write this as α(L)Yt = α0 + et where α(L) = 1−α1L. We call α(z) = 1−α1z the autoregressive
polynomial of Yt .

This suggests an alternative way of obtaining the representation (14.27). We can invert the operator
(1−α1L) to write Yt as a function of lagged et . That is, suppose that the inverse operator (1−α1L)−1

exists. Then we can use this operator on (14.28) to find

Yt = (1−α1L)−1 (1−α1L)Yt = (1−α1L)−1 (α0 +et ) . (14.29)

What is the operator (1−α1L)−1? Recall from Theorem 14.20 that for |x| < 1,

∞∑
j=0

x j = 1

1−x
= (1−x)−1 .

Evaluate this expression at x =α1z. We find

(1−α1z)−1 =
∞∑

j=0
α

j
1z j . (14.30)

Setting z = L this is

(1−α1L)−1 =
∞∑

j=0
α

j
1L j .

Substituted into (14.29) we obtain

Yt = (1−α1L)−1 (α0 +et )

=
( ∞∑

j=0
α j L j

)
(α0 +et )

=
∞∑

j=0
α

j
1L j (α0 +et )

=
∞∑

j=0
α

j
1

(
α0 +et− j

)
= α0

1−α1
+

∞∑
j=0

α
j
1et− j

which is (14.27). This is valid for |α1| < 1.
This illustrates another important concept. We say that a polynomial α(z) is invertible if

α(z)−1 =
∞∑

j=0
a j z j

is absolutely convergent. In particular, the AR(1) autoregressive polynomial α(z) = 1−α1z is invertible if
|α1| < 1. This is the same condition as for stationarity of the AR(1) process. Invertibility turns out to be a
useful property.

14.23 Unit Root and Explosive AR(1) Processes

The AR(1) process (14.25) is stationary if |α| < 1. What happens otherwise?
If α0 = 0 and α1 = 1 the model is known as a random walk.

Yt = Yt−1 +et .
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This is also called a unit root process, a martingale, or an integrated process. By back-substitution

Yt = Y0 +
t∑

j=1
e j .

Thus the initial condition does not disappear for large t . Consequently the series is non-stationary. The
autoregressive polynomial α(z) = 1− z is not invertible, meaning that Yt cannot be written as a conver-
gent function of the infinite past history of et .

The stochastic behavior of a random walk is noticably different from a stationary AR(1) process. It
wanders up and down with equal likelihood and is not mean-reverting. While it has no tendency to re-
turn to its previous values the wandering nature of a random walk can give the illusion of mean reversion.
The difference is that a random walk will take a very large number of time periods to “revert”.
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Figure 14.7: Random Walk Processes

To illustrate, Figure 14.7 plots two independent random walk processes. The plot in panel (a) uses
the innovations from Figure 14.5(a). The plot in panel (b) uses an independent set of i.i.d. N(0,1) errors.
You can see that the plot in panel (a) appears similar to the MA(8) and AR(1) plots in the sense that
the series is smooth with long swings, but the difference is that the series does not return to a long-
term mean. It appears to have drifted down over time. The plot in panel (b) appears to have quite
different behavior, falling dramatically over a 5-year period, and then appearing to stabilize. These are
both common behaviors of random walk processes.

Ifα1 > 1 the process is explosive. The model (14.25) withα1 > 1 exhibits exponential growth and high
sensitivity to initial conditions. Explosive autoregressive processes do not seem to be good descriptions
for most economic time series. While aggregate time series such as the GDP process displayed in Figure
14.1(a) exhibit a similar exponential growth pattern, the exponential growth can typically be removed by
taking logarithms.

The caseα1 <−1 induces explosive oscillating growth and does not appear to be empirically relevant
for economic applications.
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14.24 Second-Order Autoregressive Process

The second-order autoregressive process, denoted AR(2), is

Yt =α0 +α1Yt−1 +α2Yt−2 +et (14.31)

where et is a strictly stationary and ergodic white noise process. The dynamic patterns of an AR(2) pro-
cess are more complicated than an AR(1) process.

As a motivating example consider the multiplier-accelerator model of Samuelson (1939). It might
be a bit dated as a model but it is simple so hopefully makes the point. Aggregate output (in an econ-
omy with no trade) is defined as Yt =Consumptiont+Investment t +Govt . Suppose that individuals make
their consumption decisions on the previous period’s income Consumptiont = bYt−1, firms make their
investment decisions on the change in consumption Investment t = d∆Ct , and government spending is
random Govt = a +et . Then aggregate output follows

Yt = a +b(1+d)Yt−1 −bdYt−2 +et (14.32)

which is an AR(2) process.
Using the lag operator we can write (14.31) as

Yt −α1LYt −α2L2Yt =α0 +et ,

or α(L)Yt =α0 +et where α(L) = 1−α1L−α2L2. We call α(z) the autoregressive polynomial of Yt .
We would like to find the conditions for the stationarity of Yt . It turns out that it is convenient to

transform the process (14.31) into a VAR(1) process (to be studied in the next chapter). Set Ỹt = (Yt ,Yt−1)′,
which is stationary if and only if Yt is stationary. Equation (14.31) implies that Ỹt satisfies(

Yt

Yt−1

)
=

(
α1 α2

1 0

)(
Yt−1

Yt−2

)
+

(
a0 +et

0

)
or

Ỹt = AỸt−1 + ẽt (14.33)

where A =
(
α1 α2

1 0

)
and ẽt = (a0 + et ,0)′. Equation (14.33) falls in the class of VAR(1) models studied

in Section 15.6. Theorem 15.6 shows that the VAR(1) process is strictly stationary and ergodic if the inno-
vations satisfy E‖ẽt‖ <∞ and all eigenvalues λ of A are less than one in absolute value. The eigenvalues
satisfy det(A − I 2λ) = 0, where

det(A − I 2λ) = det

(
α1 −λ α2

1 −λ
)
=λ2 −λα1 −α2 =λ2α (1/λ)

and α(z) = 1−α1z −α2z2 is the autoregressive polynomial. Thus the eigenvalues satisfy α (1/λ) = 0.
Factoring the autoregressive polynomial as α(z) = (1−λ1z) (1−λ2z) the solutionsα (1/λ) = 0 must equal
λ1 and λ2. The quadratic formula shows that these equal

λ j =
α1 ±

√
α2

1 +4α2

2
. (14.34)

These eigenvalues are real if α2
1 +4α2 ≥ 0 and are complex conjugates otherwise. The AR(2) process is

stationary if the solutions (14.34) satisfy
∣∣λ j

∣∣< 1.
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Figure 14.8: Stationarity Region for AR(2)

Using (14.34) to solve for the AR coefficients in terms of the eigenvalues we find α1 = λ1 +λ2 and
α2 =−λ1λ2. With some algebra (the details are deferred to Section 14.47) we can show that |λ1| < 1 and
|λ2| < 1 iff the following restrictions hold on the autoregressive coefficients:

α1 +α2 < 1 (14.35)

α2 −α1 < 1 (14.36)

α2 >−1. (14.37)

These restrictions describe a triangle in (α1,α2) space which is shown in Figure 14.8. Coefficients within
this triangle correspond to a stationary AR(2) process.

Furthermore, the triangle is divided into two regions as marked in Figure 14.8: the region above the
parabola α2

1+4α2 = 0 producing real eigenvalues λ j , and the region below the parabola producing com-
plex eigenvalues λ j . This is interesting because when the eigenvalues are complex the autocorrelations
of Yt display damped oscillations. For this reason the dynamic patterns of an AR(2) can be much more
complicated than those of an AR(1).

Take the Samuelson multiplier-accelerator model (14.32). You can calculate that the model has com-
plex eigenvalues (and thus oscillations) for certain values of b and d , including b ≤ 0.8 and d ≥ 0.4.

Theorem 14.22 If E |et | < ∞ and
∣∣λ j

∣∣ < 1 for λ j defined in (14.34), or equiva-
lently if the inequalities (14.35)-(14.37) hold, then the AR(2) process (14.31) is
absolutely convergent, strictly stationary, and ergodic.

The proof is presented in Section 14.47.
To illustrate, Figure 14.9 displays two simulated AR(2) processes. The plot in panel (a) sets α1 =α2 =

0.4. These coefficients produce real factors so the process displays behavior similar to that of the AR(1)
processes. The plot in panel (b) sets α1 = 1.3 and α2 =−0.8. These coefficients produce complex factors
so the process displays oscillations.
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Figure 14.9: AR(2) Processes

14.25 AR(p) Processes

The pth-order autoregressive process, denoted AR(p), is

Yt =α0 +α1Yt−1 +α2Yt−2 +·· ·+αp Yt−p +et (14.38)

where et is a strictly stationary and ergodic white noise process.
Using the lag operator,

Yt −α1LYt −α2L2
t Y −·· ·−αp Lp

t Y =α0 +et ,

or α(L)Yt =α0 +et where
α(L) = 1−α1L−α2L2 −·· ·−αp Lp . (14.39)

We call α(z) the autoregressive polynomial of Yt .
We find conditions for the stationarity of Yt by a technique similar to that used for the AR(2) process.

Set Ỹt = (Yt ,Yt−1, ...,Yt−p+1)′ and ẽt = (a0+et ,0, ...,0)′. Equation (14.38) implies that Ỹt satisfies the VAR(1)
equation (14.33) with

A =


α1 α2 · · · αp−1 αp

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 . (14.40)

As shown in the proof of Theorem 14.23 below, the eigenvalues λ j of A are the reciprocals of the roots r j

of the autoregressive polynomial (14.39). The roots r j are the solutions to α(r j ) = 0. Theorem 15.6 shows
that stationarity of Ỹt holds if the eigenvaluesλ j are less than one in absolute value, or equivalently when
the roots r j are greater than one in absolute value. For complex numbers the equation |z| = 1 defines the
unit circle (the circle with radius of unity). We therefore say that “z lies outside the unit circle” if |z| > 1.
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Theorem 14.23 If E |et | <∞ and all roots ofα(z) lie outside the unit circle then
the AR(p) process (14.38) is absolutely convergent, strictly stationary, and er-
godic.

When the roots of α(z) lie outside the unit circle then the polynomial α(z) is invertible. Inverting the
autoregressive representationα(L)Yt =α0+et we obtain an infinite-order moving average representation

Yt =µ+b(L)et

where

b(z) =α(z)−1 =
∞∑

j=0
b j z j (14.41)

and µ=α(1)−1a0.
We have the following characterization of the moving average coefficients.

Theorem 14.24 If all roots r j of the autoregressive polynomial α(z) satisfy∣∣r j
∣∣ > 1 then (14.41) holds with

∣∣b j
∣∣ ≤ (

j +1
)p
λ j and

∑∞
j=0

∣∣b j
∣∣ < ∞ where

λ= max j

∣∣∣r−1
j

∣∣∣< 1.

The proof is presented in Section 14.47.

14.26 Impulse Response Function

The coefficients of the moving average representation

Yt = b(L)et

=
∞∑

j=0
b j et− j

= b0et +b1et−1 +b2et−2 +·· ·

are known among economists as the impulse response function (IRF). Often the IRF is scaled by the
standard deviation of et . We discuss this scaling at the end of the section. In linear models the impulse
response function is defined as the change in Yt+ j due to a shock at time t . This is

∂

∂et
Yt+ j = b j .

This means that the coefficient b j can be interpreted as the magnitude of the impact of a time t shock
on the time t + j variable. Plots of b j can be used to assess the time-propagation of shocks. This is a
standard method of analysis for multivariate time series.

It is desirable to have a convenient method to calculate the impulse responses b j from the coeffi-
cients of an autoregressive model (14.38). There are two methods which we now describe.



CHAPTER 14. TIME SERIES 473

The first uses a simple recursion. In the linear AR(p) model, we can see that the coefficient b j is the
simple derivative

b j = ∂

∂et
Yt+ j = ∂

∂e0
Y j

We can calculate b j by generating a history and perturbing the shock e0. Since this calculation is unaf-
fected by all other shocks we can simply set et = 0 for t 6= 0 and set e0 = 1. This implies the recursion

b0 = 1

b1 =α1b0

b2 =α1b1 +α2b0

...

b j =α1b j−1 +α2b j−2 +·· ·+αp b j−p .

This recursion is conveniently calculated by the following simulation. Set Yt = 0 for t ≤ 0. Set e0 = 1 and
et = 0 for t > 1. Generate Yt for t ≥ 0 by Yt =α1Yt−1 +α2Yt−2 +·· ·+αp Yt−p +et . Then Y j = b j .

A second method uses the vector representation (14.33) of the AR(p) model with coefficient matrix
(14.40). By recursion

Ỹt =
∞∑

j=0
A j ẽt− j .

Here, A j = A · · · A means the j th matrix product of A with itself. Setting S = (1,0, ...0)′ we find

Yt =
∞∑

j=0
S′A j Set− j .

By linearity

b j = ∂

∂et
Yt+ j = S′A j S. (14.42)

Thus the coefficient b j can be calculated by forming the matrix A, its j -fold product A j , and then taking
the upper-left element.

As mentioned at the beginning of the section it is often desirable to scale the IRF so that it is the
response to a one-deviation shock. Let σ2 = var[et ] and define εt = et /σ which has unit variance. Then
the IRF at lag j is

IRF j = ∂

∂εt
Yt+ j =σb j .

14.27 ARMA and ARIMA Processes

The autoregressive-moving-average process, denoted ARMA(p,q), is

Yt =α0 +α1Yt−1 +α2Yt−2 +·· ·+αp Yt−p +θ0et +θ1et−1 +θ2et−2 +·· ·+θq et−q

where et is a strictly stationary and erogodic white noise process. It can be written using lag operator
notation as α(L)Yt =α0 +θ(L)et .
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Theorem 14.25 The ARMA(p,q) process (14.38) is strictly stationary and er-
godic if all roots of α(z) lie outside the unit circle. In this case we can write

Yt =µ+b(L)et

where b j =O
(

j pβ j
)

and
∑∞

j=0

∣∣b j
∣∣<∞.

The process Yt follows an autoregressive-integrated moving-average process, denoted ARIMA(p,d,q),
if ∆d Yt is ARMA(p,q). It can be written using lag operator notation as α(L)(1−L)d Yt =α0 +θ(L)et .

14.28 Mixing Properties of Linear Processes

There is a considerable probability literature investigating the mixing properties of time series pro-
cesses. One challenge is that since autoregressive processes depend on the infinite past sequence of
innovations et it is not immediately obvious if they satisfy the mixing conditions.

In fact, a simple AR(1) is not necessarily mixing. A counter-example was developed by Andrews
(1984). He showed that if the error et has a two-point discrete distribution then an AR(1) Yt is not strong
mixing. The reason is that a discrete innovation combined with the autoregressive structure means that
by observing Yt you can deduce with near certainty the past history of the shocks et . The example seems
rather special but shows the need to be careful with the theory. The intuition stemming from Andrews’
finding is that for an autoregressive process to be mixing it is necessary for the errors et to be continuous.

A useful characterization was provided by Pham and Tran (1985).

Theorem 14.26 Suppose that Yt = µ+∑∞
j=0θ j et− j satisfies the following con-

ditions:

1. et is i.i.d. with E |et |r <∞ for some r > 0 and density f (x) which satisfies∫ ∞

−∞

∣∣ f (x −u)− f (x)
∣∣d x ≤C |u| (14.43)

for some C <∞.

2. All roots of θ(z) = 0 lie outside the unit circle and
∑∞

j=0

∣∣θ j
∣∣<∞.

3.
∑∞

k=1

(∑∞
j=k

∣∣θ j
∣∣)r /(1+r ) <∞.

Then for some B <∞

α(`) ≤ 4β(`) ≤ B
∞∑

k=`

( ∞∑
j=k

∣∣θ j
∣∣)r /(1+r )

and Yt is absolutely regular and strong mixing.

The condition (14.43) is rather unusual, but specifies that et has a smooth density. This rules out the
counter-example discovered by Andrews (1984).
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The summability condition on the coefficients in part 3 involves a trade-off with the number of mo-
ments r . If et has all moments finite (e.g. normal errors) then we can set r = ∞ and this condition
simplifies to

∑∞
k=1 k |θk | <∞. For any r the summability condition holds if θ j has geometric decay.

It is instructive to deduce how the decay in the coefficients θ j affects the rate for the mixing co-

efficients α(`). If
∣∣θ j

∣∣ ≤ O
(

j−η
)

then
∑∞

j=k

∣∣θ j
∣∣ ≤ O

(
k−(η−1)

)
so the rate is α(`) ≤ 4β(`) ≤ O (`−s) for

s = (
η−1

)
r /(1+ r )−1. Mixing requires s > 0, which holds for sufficiently large η. For example, if r = 4 it

holds for η> 9/4.
The primary message from this section is that linear processes, including autoregressive and ARMA

processes, are mixing if the innovations satisfy suitable conditions. The mixing coefficients decay at rates
related to the decay rates of the moving average coefficients.

14.29 Identification

The parameters of a model are identified if the parameters are uniquely determined by the proba-
bility distribution of the observations. In the case of linear time series analysis we typically focus on the
second moments of the observations (means, variances, covariances). We therefore say that the coef-
ficients of a stationary MA, AR, or ARMA model are identified if they are uniquely determined by the
autocorrelation function. That is, given the autocorrelation function ρ(k), are the coefficients unique?

It turns out that the answer is that MA and ARMA models are generally not identified. Identification is
achieved by restricting the class of polynomial operators. In contrast, AR models are generally identified.

Let us start with the MA(1) model
Yt = et +θet−1.

It has first-order autocorrelation

ρ(1) = θ

1+θ2 .

Set ω= 1/θ. Then
ω

1+ω2 = 1/ω

1+ (1/ω)2 = θ

1+θ2 = ρ(1).

Thus the MA(1) model with coefficient ω= 1/θ produces the same autocorrelations as the MA(1) model
with coefficient θ. For example, θ = 1/2 and ω = 2 each yield ρ(1) = 2/5. There is no empirical way to
distinguish between the models Yt = et+θet−1 and Yt = et+ωet−1. Thus the coefficient θ is not identified.

The standard solution is to select the parameter which produces an invertible moving average poly-
nomial. Since there is only one such choice this yields a unique solution. This may be sensible when
there is reason to believe that shocks have their primary impact in the contemporaneous period and
secondary (lesser) impact in the second period.

Now consider the MA(2) model
Yt = et +θ1et−1 +θ2et−2.

The moving average polynomial can be factored as

θ(z) = (
1−β1z

)(
1−β2z

)
so that β1β2 = θ2 and β1 +β2 =−θ1. The process has first- and second-order autocorrelations

ρ(1) = θ1 +θ1θ2

1+θ2
1 +θ2

2

= −β1 −β2 −β2
1β2 −β1β

2
2

1+β2
1 +β2

2 +2β1β2 +β2
1β

2
2

ρ(2) = θ2

1+θ2
1 +θ2

2

= β1β2

1+β2
1 +β2

2 +2β1β2 +β2
1β

2
2

.
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If we replace β1 with ω1 = 1/β1 we obtain

ρ(1) = −1/β1 −β2 −β2/β2
1 −β2

2/β1

1+1/β2
1 +β2

2 +2β2/β1 +β2
2/β2

1

= −β1 −β2β
2
1 −β2 −β2

2β1

β2
1 +1+β2

2β
2
1 +2β2β1 +β2

2

ρ(2) = β2/β1

1+1/β2
1 +β2

2 +2β2/β1 +β2
2/β2

1

= β1β2

β2
1 +1+β2

1β
2
2 +2β1β2 +β2

2

which is unchanged. Similarly if we replace β2 with ω2 = 1/β2 we obtain unchanged first- and second-
order autocorrelations. It follows that in the MA(2) model the factors β1 and β2 nor the coefficients θ1

and θ2 are identified. Consequently there are four distinct MA(2) models which are identifiably indistin-
guishable.

This analysis extends to the MA(q) model. The factors of the MA polynomial can be replaced by their
inverses and consequently the coefficients are not identified.

The standard solution is to confine attention to MA(q) models with invertible roots. This techni-
cally solves the identification dilemma. This solution corresponds to the Wold decomposition, since it is
defined in terms of the projection errors which correspond to the invertible representation.

A deeper identification failure occurs in ARMA models. Consider an ARMA(1,1) model

Yt =αYt−1 +et +θet−1.

Written in lag operator notation
(1−αL)Yt = (1+θL)et .

The identification failure is that when α = −θ then the model simplifies to Yt = et . This means that the
continuum of models with α=−θ are all identical and the coefficients are not identified.

This extends to higher order ARMA models. Take the ARMA(2,2) model written in factored lag oper-
ator notation

(1−α1L)(1−α2L)Yt = (1+θ1L)(1+θ2L)et .

The models with α1 =−θ1, α1 =−θ2, α2 =−θ1, or α2 =−θ2 all simplify to an ARMA(1,1). Thus all these
models are identical and hence the coefficients are not identified.

The problem is called “cancelling roots” due to the fact that it arises when there are two identical lag
polynomial factors in the AR and MA polynomials.

The standard solution in the ARMA literature is to assume that there are no cancelling roots. The
trouble with this solution is that this is an assumption about the true process which is unknown. Thus it
is not really a solution to the identification problem. One recommendation is to be careful when using
ARMA models and be aware that highly parameterized models may not have unique coefficients.

Now consider the AR(p) model (14.38). It can be written as

Yt = X ′
tα+et (14.44)

where α = (α0,α1, ...αp )′ and X t = (1,Yt−1, ...,Yt−p )′. The MDS assumption implies that E [et ] = 0 and
E [X t et ] = 0. This means that the coefficient α satisfies

α= (
E
[

X t X ′
t

])−1
(E [X t Yt ]) . (14.45)

This equation is unique if Q = E[
X t X ′

t

]
is positive definite. It turns out that this is generically true so α is

unique and identified.
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Theorem 14.27 In the AR(p) model (14.38), if 0 < σ2 <∞ then Q > 0 and α is
unique and identified.

The assumption σ2 > 0 means that Yt is not purely deterministic.
We can extend this result to approximating AR(p) models. That is, consider the equation (14.44)

without the assumption that Yt is necessarily a true AR(p) with a MDS error. Instead, suppose that Yt

is a non-deterministic stationary process. (Recall, non-deterministic means that σ2 > 0 where σ2 is the
projection error variance (14.19).) We then define the coefficient α as the best linear predictor, which is
(14.45). The error et is defined by the equation (14.44). This is a linear projection model.

As in the case of any linear projection, the error et satisfies E [X t et ] = 0. This means that E [et ] = 0 and
E
[
Yt− j et

]= 0 for j = 1, ..., p. However, the error et is not necessarily a MDS nor white noise.
The coefficient α is identified if Q > 0. The proof of Theorem 14.27 (presented in Section 14.47) does

not make use of the assumption that Yt is an AR(p) with a MDS error. Rather, it only uses the assumption
that σ2 > 0. This holds in the approximate AR(p) model as well under the assumption that Yt is non-
deterministic. We conclude that any approximating AR(p) is identified.

Theorem 14.28 If Yt is strictly stationary, not purely deterministic, and
E
[
Y 2

t

] < ∞, then for any p, Q = E
[

X t X ′
t

] > 0 and thus the coefficient vector
(14.45) is identified.

14.30 Estimation of Autoregressive Models

We consider estimation of an AR(p) model for stationary, ergodic, and non-deterministic Yt . The
model is (14.44) where X t = (1,Yt−1, ...,Yt−p )′. The coefficient α is defined by projection in (14.45). The
error is defined by (14.44) and has variance σ2 = E[

e2
t

]
. This allows Yt to follow a true AR(p) process but

it is not necessary.
The least squares estimator is

α̂=
( n∑

t=1
X t X ′

t

)−1 ( n∑
t=1

X t Yt

)
.

This notation presumes that there are n + p total observations on Yt from which the first p are used
as initial conditions so that X1 = (1,Y0,Y−1, ...,Y−p+1) is defined. Effectively, this redefines the sample
period. (An alternative notational choice is to define the periods so the sums range from observations
p +1 to n.)

The least squares residuals are êt = Yt −X ′
t α̂. The error variance can be estimated by σ̂2 = n−1 ∑n

t=1 ê2
t

or s2 = (
n −p −1

)−1 ∑n
t=1 ê2

t .
If Yt is strictly stationary and ergodic then so are X t X ′

t and X t Yt . They have finite means if E
[
Y 2

t

]<∞.
Under these assumptions the Ergodic Theorem implies that

1

n

n∑
t=1

X t Yt −→
p
E [X t Yt ] (14.46)
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and
1

T

T∑
t=1

X t X ′
t −→p E

[
X t X ′

t

]=Q .

Theorem 14.28 shows that Q > 0. Combined with the continuous mapping theorem we see that

α̂=
(

1

T

T∑
t=1

X t X ′
t

)−1 (
1

T

T∑
t=1

X t Yt

)
−→

p

(
E
[

X t X ′
t

])−1
E [X t Yt ] =α.

It is straightforward to show that σ̂2 is consistent as well.

Theorem 14.29 If Yt is strictly stationary, ergodic, not purely deterministic,
and E

[
Y 2

t

]<∞, then for any p, α̂−→
p
α and σ̂2 −→

p
σ2 as n →∞.

This shows that under very mild conditions the coefficients of an AR(p) model can be consistently es-
timated by least squares. Once again, this does not require that the series Yt is actually an AR(p) process.
It holds for any stationary process with the coefficient defined by projection.

14.31 Asymptotic Distribution of Least Squares Estimator

The asymptotic distribution of the least squares estimator α̂ depends on the stochastic assumptions.
In this section we derive the asymptotic distribution under the assumption of correct specification.

Specifically, we assume that the error et is a MDS. An important implication of the MDS assumption
is that since X t = (1,Yt−1, ...,Yt−p )′ is part of the information set Ft−1, by the conditioning theorem,

E [X t et |Ft−1] = X tE [et |Ft−1] = 0.

Thus X t et is a MDS. It has a finite variance if et has a finite fourth moment. To see this, by Theorem
14.24, Yt =µ+∑∞

j=0 b j et− j with
∑∞

j=0

∣∣b j
∣∣<∞. Using Minkowski’s Inequality,

(
E |Yt |4

)1/4 ≤
∞∑

j=0

∣∣b j
∣∣(E ∣∣et− j

∣∣4
)1/4 <∞.

Thus E
[
Y 4

t

]<∞. The Cauchy-Schwarz inequality then shows that E‖X t et‖2 <∞. We can then apply the
martingale difference CLT (Theorem 14.11) to see that

1p
n

n∑
t=1

X t et −→
d

N(0,Σ)

where Σ= E[
X t X ′

t e2
t

]
.

Theorem 14.30 If Yt follows the AR(p) model (14.38), all roots of a(z) lie out-
side the unit circle, E [et |Ft−1] = 0, E

[
e4

t

] <∞, and E
[
e2

t

] > 0, then as n →∞,p
n (α̂−α) −→

d
N(0,V ) where V =Q−1ΣQ−1.

This is identical in form to the asymptotic distribution of least squares in cross-section regression.
The implication is that asymptotic inference is the same. In particular, the asymptotic covariance matrix
is estimated just as in the cross-section case.
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14.32 Distribution Under Homoskedasticity

In cross-section regression we found that the covariance matrix simplifies under the assumption of
conditional homoskedasticity. The same occurs in the time series context. Assume that the error is a
homoskedastic MDS:

E [et |Ft−1] = 0

E
[
e2

t |Ft−1
]=σ2.

In this case
Σ= E[

X t X ′
tE

[
e2

t |Ft−1
]]=Qσ2

and the asymptotic distribution simplifies.

Theorem 14.31 Under the assumptions of Theorem 14.30, if in addition
E
[
e2

t |Ft−1
]=σ2, then as n →∞,

p
n (α̂−α) −→

d
N

(
0,V 0

)
where V 0 =σ2Q−1.

These results show that under correct specification (a MDS error) the format of the asymptotic dis-
tribution of the least squares estimator exactly parallels the cross-section case. In general the covariance
matrix takes a sandwich form with components exactly equal to the cross-section case. Under condi-
tional homoskedasticity the covariance matrix simplies exactly as in the cross-section case.

A particularly useful insight which can be derived from Theorem 14.31 is to focus on the simple AR(1)
with no intercept. In this case Q = E[

Y 2
t

]=σ2/(1−α2
1) so the asymptotic distribution simplifies to

p
n (α̂1 −α1) −→

d
N

(
0,1−α2

1

)
.

Thus the asymptotic variance depends only onα1 and is decreasing withα2
1. An intuition is that largerα2

1
means greater signal and hence greater estimation precision. This result also shows that the asymptotic
distribution is non-similar: the variance is a function of the parameter of interest. This means that we
can expect (from advanced statistical theory) asymptotic inference to be less accurate than indicated by
nominal levels.

In the context of cross-section data we argued that the homoskedasticity assumption was dubious ex-
cept for occassional theoretical insight. For practical applications it is recommended to use heteroskedasticity-
robust theory and methods when possible. The same argument applies to the time series case. While
the distribution theory simplifies under conditional homoskedasticity there is no reason to expect ho-
moskedasticity to hold in practice. Therefore in applications it is better to use the heteroskedasticity-
robust distributional theory when possible.

Unfortunately, many existing time series textbooks report the distribution theory from (14.31). This
has influenced computer software packages many of which also by default (or exclusively) use the ho-
moskedastic distribution theory. This is unfortunate.

14.33 Asymptotic Distribution Under General Dependence

If the AR(p) model (14.38) holds with white noise errors or if the AR(p) is an approximation with α

defined as the best linear predictor then the MDS central limit theory does not apply. Instead, if Yt is
strong mixing we can use the central limit theory for mixing processes (Theorem 14.15).
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Theorem 14.32 Assume that Yt is strictly stationary, ergodic, and for some r >
4, E |Yt |r <∞ and the mixing coefficients satisfy

∑∞
`=1α(`)1−4/r <∞. Let α be

defined as the best linear projection coefficients (14.45) from an AR(p) model
with projection errors et . Let α̂ be the least squares estimator of α. Then

Ω=
∞∑

`=−∞
E
[

X t−`X ′
t et et−`

]
is convergent and

p
n (α̂−α) −→

d
N(0,V ) as n →∞, where V =Q−1ΩQ−1.

This result is substantially different from the cross-section case. It shows that model misspecification
(including misspecifying the order of the autoregression) renders invalid the conventional “heteroskedasticity-
robust” covariance matrix formula. Misspecified models do not have unforecastable (martingale differ-
ence) errors so the regression scores X t et are potentially serially correlated. The asymptotic variance
takes a sandwich form with the central component Ω the long-run variance (recall Section 14.13) of the
regression scores X t et .

14.34 Covariance Matrix Estimation

Under the assumption of correct specification covariance matrix estimation is identical to the cross-
section case. The asymptotic covariance matrix estimator under homoskedasticity is

V̂
0 = σ̂2Q̂

−1

Q̂ = 1

n

n∑
t=1

X t X ′
t

The estimator s2 may be used instead of σ̂2.
The heteroskedasticity-robust asymptotic covariance matrix estimator is

V̂ = Q̂
−1
Σ̂Q̂

−1
(14.47)

where

Σ̂= 1

n

n∑
t=1

X t X ′
t ê2

t .

Degree-of-freedom adjustments may be made as in the cross-section case though a theoretical justifica-
tion has not been developed in the time series case.

Standard errors s
(
α̂ j

)
for individual coefficient estimates can be formed by taking the scaled diagonal

elements of V̂ .

Theorem 14.33 Under the assumptions of Theorem 14.32, as n →∞, V̂ −→
p

V

and
(
α̂ j −α j

)
/s(α̂ j ) −→

d
N(0,1) .

Theorem 14.33 shows that standard covariance matrix estimation is consistent and the resulting t-
ratios are asymptotically normal. This means that for stationary autoregressions, inference can proceed
using conventional regression methods.
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14.35 Covariance Matrix Estimation Under General Dependence

Under the assumptions of Theorem 14.32 the conventional covariance matrix estimators are incon-
sistent as they do not capture the serial dependence in the regression scores X t et . To consistently esti-
mate the covariance matrix we need an estimator of the long-run variance Ω. The appropriate class of
estimators are called Heteroskedasticity and Autocorrelation Consistent (HAC) or Heteroskedasticity
and Autocorrelation Robust (HAR) covariance matrix estimators.

To understand the methods it is helpful to define the vector series ut = X t et and autocovariance
matrices Γ(`) = E[

ut−`u′
t

]
so that

Ω=
∞∑

`=−∞
Γ(`).

Since this sum is convergent the autocovariance matrices converge to zero as `→∞. Therefore Ω can
be approximated by taking a finite sum of autocovariances such as

ΩM =
M∑

`=−M
Γ(`).

The number M is sometimes called the lag truncation number. Other authors call it the bandwidth. An
estimator of Γ(`) is

Γ̂(`) = 1

n

∑
1≤t−`≤n

ût−`û′
t

where ût = X t êt . By the ergodic theorem we can show that for any `, Γ̂(`) −→
p
Γ(`). Thus for any fixed M ,

the estimator

Ω̂M =
M∑

`=−M
Γ̂(`) (14.48)

is consistent forΩM .
If the serial correlation in X t et is known to be zero after M lags, then ΩM = Ω and the estimator

(14.48) is consistent forΩ. This estimator was proposed by L. Hansen and Hodrick (1980) in the context
of multiperiod forecasts and by L. Hansen (1982) for the generalized method of moments.

In the general case we can select M to increase with sample size n. If the rate at which M increases is
sufficiently slow then Ω̂M will be consistent forΩ as first shown by White and Domowitz (1984).

Once we view the lag truncation number M as a choice the estimator (14.48) has two potential de-
ficiencies. One is that Ω̂M can change non-smoothly with M which makes estimation results sensitive
to the choice of M . The other is that Ω̂M may not be positive semi-definite and is therefore not a valid
covariance matrix estimator. We can see this in the simple case of scalar ut and M = 1. In this case
Ω̂1 = γ̂(0)

(
1+2ρ̂(1)

)
which is negative when ρ̂(1) <−1/2. Thus if the data are strongly negatively autocor-

related the variance estimator can be negative. A negative variance estimator means that standard errors
are ill-defined (a naïve computation will produce a complex standard error which makes no sense5).

These two deficiencies can be resolved if we amend (14.48) by a weighted sum of autocovariances.
Newey and West (1987b) proposed

Ω̂nw =
M∑

`=−M

(
1− |`|

M +1

)
Γ̂(`). (14.49)

5A common computational mishap is a complex standard error. This occurs when a covariance matrix estimator has nega-
tive elements on the diagonal.
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This is a weighted sum of the autocovariances. Other weight functions can be used; the one in (14.49)
is known as the Bartlett kernel6. Newey and West (1987b) showed that this estimator has the algebraic
property that Ω̂nw ≥ 0 (it is positive semi-definite), solving the negative variance problem, and it is also a
smooth function of M . Thus this estimator solves the two problems described above.

For Ω̂nw to be consistent forΩ the lag trunction number M must increase to infinity with n. Sufficient
conditions were established by B. E. Hansen (1992).

Theorem 14.34 Under the assumptions of Theorem 14.32 plus∑∞
`=1α(`)1/2−4/r <∞, if M →∞ yet M 3/n =O(1), then as n →∞, Ω̂nw −→

p
Ω.

The assumption M 3/n = O(1) technically means that M grows no faster than n1/3 but this does not
have a practical counterpart other than the implication that “M should be much smaller than n”.

A important practical issue is how to select M . One way to think about it is that M impacts the pre-
cision of the estimator Ω̂nw through its bias and variance. Since Γ̂(`) is a sample average its variance is
O (1/n) so we expect the variance of Ω̂M to be of order O (M/n). The bias of Ω̂nw for Ω is harder to cal-
culate but depends on the rate at which the covariances Γ(`) decay to zero. Andrews (1991b) found that
the M which minimizes the mean squared error of Ω̂nw satisfies the rate M =C n1/3 where the constant C
depends on the autocovariances. Practical rules to estimate and implement this optimal lag truncation
parameter have been proposed by Andrews (1991b) and Newey and West (1994). Andrews’ rule for the
Newey-West estimator (14.49) can be written as

M =
(

6
ρ2(

1−ρ2
)2

)1/3

n1/3 (14.50)

where ρ is a serial correlation parameter. When ut is scalar ρ is the first autocorrelation of ut . Andrews
suggested using an estimator of ρ to plug into this formula to find M . An alternative is to use a default
value of ρ. For example, if we set ρ = 0.25 or ρ = 0.5 then the Andrews rule is M = 0.75n1/3 or M = 1.4n1/3.

14.36 Testing the Hypothesis of No Serial Correlation

In some cases it may be of interest to test the hypothesis that the series Yt is serially uncorrelated
against the alternative that it is serially correlated. There have been many proposed tests of this hypoth-
esis. The most appropriate is based on the least squares regression of an AR(p) model. Take the model

Yt =α0 +α1Yt−1 +α2Yt−2 +·· ·+αp Yt−p +et

with et a MDS. In this model the series Yt is serially uncorrelated if the slope coefficients are all zero.
Thus the hypothesis of interest is

H0 :α1 = ·· · =αp = 0

H1 :α j 6= 0 for some j ≥ 1.

6See Andrews (1991b) for a description of popular options. In practice, the choice of weight function is much less important
than the choice of lag truncation number M .
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The test can be implemented by a Wald or F test. Estimate the AR(p) model by least squares. Form
the Wald or F statistic using the variance estimator (14.47). (The Newey-West estimator should not be
used as there is no serial correlation under the null hypothesis.) Accept the hypothesis if the test statistic
is smaller than a conventional critical value (or if the p-value exceeds the significance level) and reject
the hypothesis otherwise.

Implementation of this test requires a choice of autoregressive order p. This choice affects the power
of the test. A sufficient number of lags should be included so to pick up potential serial correlation
patterns but not so many that the power of the test is diluted. A reasonable choice in many applications
is to set p to equals s, the seasonal periodicity. Thus include four lags for quarterly data or twelve lags for
monthly data.

14.37 Testing for Omitted Serial Correlation

When using an AR(p) model it may be of interest to know if there is any remaining serial correlation.
This can be expressed as a test for serial correlation in the error or equivalently as a test for a higher-order
autogressive model.

Take the AR(p) model

Yt =α0 +α1Yt−1 +α2Yt−2 +·· ·+αp Yt−p +ut . (14.51)

The null hypothesis is that ut is serially uncorrelated and the alternative hypothesis is that it is serially
correlated. We can model the latter as a mean-zero autoregressive process

ut = θ1ut−1 +·· ·+θq ut−q +et . (14.52)

The hypothesis is

H0 : θ1 = ·· · = θq = 0

H1 : θ j 6= 0 for some j ≥ 1.

A seemingly natural test for H0 uses a two-step method. First estimate (14.51) by least squares and
obtain the residuals ût . Second, estimate (14.52) by least squares by regressing ût on its lagged values
and obtain the Wald or F test for H0. This seems like a natural approach but it is muddled by the fact
that the distribution of the Wald statistic is distorted by the two-step procedure. The Wald statistic is not
asymptotically chi-square so it is inappropriate to make a decision based on the conventional critical
values. One approach to obtain the correct asymptotic distribution is to use the generalized method of
moments treating (14.51)-(14.52) as a two-equation just-identified system.

An easier solution is to re-write (14.51)-(14.52) as a higher-order autoregression so that we can use a
standard test statistic. To illustrate how this works take the case q = 1. Take (14.51) and lag the equation
once:

Yt−1 =α0 +α1Yt−2 +α2Yt−3 +·· ·+αp Yt−p−1 +ut−1.

Multiply this by θ1 and subtract from (14.51) to find

Yt −θ1Yt−1 =α0 +α1Yt−1 +α2Yt−2 +·· ·+αp Yt−p +ut

−θ1α0 −θ1α1Yt−2 −θ1α2Yt−3 −·· ·−θ1αp Yt−p−1 −θ1ut−1

or
Yt =α0(1−θ1)+ (α1 +θ1)Yt−1 + (α2 −θ1α1)Yt−2 +·· ·−θ1αp Yt−p−1 +et .
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This is an AR(p+1). It simplifies to an AR(p) when θ1 = 0. Thus H0 is equivalent to the restriction that the
coefficient on Yt−p−1 is zero.

Thus testing the null hypothesis of an AR(p) (14.51) against the alternative that the error is an AR(1)
is equivalent to testing an AR(p) against an AR(p+1). The latter test is implemented as a Wald (or F) test
on the coefficient on Yt−p−1.

More generally, testing the null hypothesis of an AR(p) (14.51) against the alternative that the error is
an AR(q) is equivalent to testing that Yt is an AR(p) against the alternative that Yt is an AR(p+q). The latter
test is implemented as a Wald (or F) test on the coefficients on Yt−p−1, ...,Yt−p−1. If the statistic is smaller
than the critical values (or the p-value is larger than the significance level) then we reject the hypothesis
that the AR(p) is correctly specified in favor of the alternative that there is omitted serial correlation.
Otherwise we accept the hypothesis that the AR(p) model is correctly specified.

Another way of deriving the test is as follows. Write (14.51) and (14.52) using lag operator notation
α(L)Yt =α0+ut with θ(L)ut = et . Applying the operator θ(L) to the first equation we obtain θ(L)α(L)Yt =
α∗

0 +et where α∗
0 = θ(1)α0. The product θ(L)α(L) is a polynomial of order p +q so Yt is an AR(p+q).

While this discussion is all good fun, it is unclear if there is good reason to use the test described
in this section. Economic theory does not typically produce hypotheses concerning the autoregressive
order. Consequently there is rarely a case where there is scientific interest in testing, say, the hypothesis
that a series is an AR(4) or any other specific autoregressive order. Instead, practitioners tend to use
hypothesis tests for another purpose – model selection. That is, in practice users want to know “What
autoregressive model should be used” in a specific application and resort to hypothesis tests to aid in this
decision. This is an inappropriate use of hypothesis tests because tests are designed to provide answers
to scientific questions rather than being designed to select models with good approximation properties.
Instead, model selection should be based on model selection tools. One is described in the following
section.

14.38 Model Selection

What is an appropriate choice of autoregressive order p? This is the problem of model selection.
A good choice is to minimize the Akaike information criterion (AIC)

AIC(p) = n log σ̂2(p)+2p

where σ̂2(p) is the estimated residual variance from an AR(p). The AIC is a penalized version of the
Gaussian log-likelihood function for the estimated regression model. It is an estimator of the divergence
between the fitted model and the true conditional density (see Section 28.4). By selecting the model with
the smallest value of the AIC you select the model with the smallest estimated divergence – the highest
estimated fit between the estimated and true densities.

The AIC is also a monotonic transformation of an estimator of the one-step-ahead forecast mean
squared error. Thus selecting the model with the smallest value of the AIC you are selecting the model
with the smallest estimated forecast error.

One possible hiccup in computing the AIC criterion for multiple models is that the sample size avail-
able for estimation changes as p changes. (If you increase p, you need more initial conditions.) This
renders AIC comparisons inappropriate. The same sample – the same number of observations – should
be used for estimation of all models. The appropriate remedy is to fix a upper value p, and then reserve
the first p as initial conditions. Then estimate the models AR(1), AR(2), ..., AR(p) on this (unified) sample.

The AIC of an estimated regression model can be displayed in Stata by using the estimates stats

command.
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14.39 Illustrations

We illustrate autoregressive estimation with three empirical examples using U.S. quarterly time series
from the FRED-QD data file.

Table 14.1: U.S. GDP AR Models

AR(0) AR(1) AR(2) AR(3) AR(4)
α0 0.65 0.40 0.34 0.34 0.34

(0.06) (0.08) (0.10) (0.10) (0.11)
[0.09] [0.08] [0.09] [0.09] [0.09]

α1 0.39 0.34 0.33 0.34
(0.09) (0.10) (0.10) (0.10)
[0.10] [0.10] [0.10] [0.10]

α2 0.14 0.13 0.13
(0.11) (0.13) (0.14)
[0.10] [0.10] [0.11]

α3 0.02 0.03
(0.11) (0.12)
[0.07] [0.09]

α4 −0.02
(0.12)
[0.13]

AIC 329 306 305 307 309

1. Standard errors robust to heteroskedasticity in parenthesis.

2. Newey-West standard errors in square brackets, with M = 5.

The first example is real GDP growth rates (growth rate of gdpc1). We estimate autoregressive models
of order 0 through 4 using the sample from 1980-20177. This is a commonly estimated model in applied
macroeconomic practice and is the empirical version of the Samuelson multiplier-accelerator model
discussed in Section 14.24. The coefficient estimates, conventional (heteroskedasticity-robust) standard
errors, Newey-West (with M = 5) standard errors, and AIC, are displayed in Table 14.1. This sample has
152 observations. The model selected by the AIC criterion is the AR(2). The estimated model has positive
and small values for the first two autoregressive coefficients. This means that quarterly output growth
rates are positively correlated from quarter to quarter, but only mildly so, and most of the correlation is
captured by the first lag. The coefficients of this model are in the real section of Figure 14.8, meaning
that the dynamics of the estimated model do not display oscillations. The coefficients of the estimated
AR(4) model are nearly identical to the AR(2) model. The conventional and Newey-West standard errors
are somewhat different from one another for the AR(0) and AR(4) models, but are nearly identical to one
another for the AR(1) and AR(2) models

Our second example is real non-durables consumption growth rates (growth rate of pcndx). This is
motivated by an influential paper by Robert Hall (1978) who argued that the permanent income hypoth-
esis implies that changes in consumption should be unpredictable (martingale differences). To test this

7This sub-sample was used for estimation as it has been argued that the growth rate of U.S. GDP slowed around this period.
The goal was to estimate the model over a period of time when the series is plausibly stationary.



CHAPTER 14. TIME SERIES 486

model Hall (1978) estimated an AR(4) model. Our estimated regression using the full sample (n = 231)
and heteroskedasticity-robust standard errors is reported in the following equation. Let Ct denote the
consumption growth rate.

Ĉt = 0.15
(0.07)

Ct−1 + 0.11
(0.07)

Ct−2 + 0.13
(0.07)

Ct−3 + 0.02
(0.08)

Ct−4 + 0.35
(0.09)

.

Hall’s hypothesis is that all autoregressive coefficients should be zero. We test this joint hypothesis with
an F statistic and find F = 3.32 with a p-value of p = 0.012. This is significant at the 5% level and close
to the 1% level. The first three autoregressive coefficients appear to be positive, but small, indicat-
ing positive serial correlation. This evidence is (mildly) inconsistent with Hall’s hypothesis. We report
heteroskedasticity-robust standard errors (not Newey-West standard errors) since the purpose was to
test the hypothesis of no serial correlation.

Table 14.2: U.S. Inflation AR Models

AR(1) AR(2) AR(3) AR(4) AR(5)
α0 0.004 0.003 0.003 0.003 0.003

(0.034) (0.032) (0.032) (0.032) (0.032)
[0.023] [0.028] [0.029] [0.031] [0.032]

α1 −0.26 −0.36 −0.36 −0.36 −0.37
(0.08) (0.07) (0.07) (0.07) (0.07)
[0.05] [0.07] [0.07] [0.07] [0.07]

α2 −0.36 −0.37 −0.42 −0.43
(0.07) (0.06) (0.06) (0.06)
[0.06] [0.05] [0.07] [0.07]

α3 −0.00 −0.06 −0.08
(0.09) (0.10) (0.11)
[0.09] [0.12] [0.13]

α4 −0.16 −0.18
(0.08) (0.08)
[0.09] [0.09]

α5 −0.04
(0.07)
[0.06]

AIC 342 312 314 310 312

1. Standard errors robust to heteroskedasticity in parenthesis.

2. Newey-West standard errors in square brackets, with M = 5.

The third example is the first difference of CPI inflation (first difference of growth rate of cpiaucsl).
This is motivated by Stock and Watson (2007) who examined forecasting models for inflation rates. We
estimate autoregressive models of order 1 through 8 using the full sample (n = 226); we report models
1 through 5 in Table 14.2. The model with the lowest AIC is the AR(4). All four estimated autoregressive
coefficients are negative, most particularly the first two. The two sets of standard errors are quite similar
for the AR(4) model. There are meaningful differences only for the lower order AR models.
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14.40 Time Series Regression Models

Least squares regression methods can be used broadly with stationary time series. Interpretation and
usefulness can depend, however, on constructive dynamic specifications. Furthermore, it is necessary to
be aware of the serial correlation properties of the series involved, and to use the appropriate covariance
matrix estimator when the dynamics have not been explicitly modeled.

Let (Yt , X t ) be paired observations with Yt the dependent variable and X t a vector of regressors in-
cluding an intercept. The regressors can contain lagged Yt so this framework includes the autoregressive
model as a special case. A linear regression model takes the form

Yt = X ′
tβ+et . (14.53)

The coefficient vector is defined by projection and therefore equals

β= (
E
[

X t X ′
t

])−1
E [X t Yt ] . (14.54)

The error et is defined by (14.53) and thus its properties are determined by that relationship. Implicitly
the model assumes that the variables have finite second moments and E

[
X t X ′

t

]> 0, otherwise the model
is not uniquely defined and a regressor could be eliminated. By the property of projection the error is
uncorrelated with the regressors E [X t et ] = 0.

The least squares estimator of β is

β̂=
(

T∑
t=1

X t X ′
t

)−1 (
T∑

t=1
X t Yt

)
.

Under the assumption that the joint series (Yt , X t ) is strictly stationary and ergodic the estimator is con-
sistent. Under the mixing and moment conditions of Theorem 14.32 the estimator is asymptotically
normal with a general covariance matrix

However, under the stronger assumption that the error is a MDS the asymptotic covariance matrix
simplifies. It is worthwhile investigating this condition further. The necessary condition is E [et |Ft−1] =
0 where Ft−1 is an information set to which (et−1, X t ) is adapted. This notation may appear somewhat
odd but recall in the autoregessive context that X t = (1,Yt−1, ...,Yt−p ) contains variables dated time t −1
and previously, thus X t in this context is a “time t −1” variable. The reason why we need (et−1, X t ) to be
adapted to Ft−1 is that for the regression function X ′

tβ to be the conditional mean of Yt given Ft−1, X t

must be part of the information set Ft−1. Under this assumption

E [X t et |Ft−1] = X tE [et |Ft−1] = 0

so (X t et ,Ft ) is a MDS. This means we can apply the MDS CLT to obtain the asymptotic distribution.
We summarize this discussion with the following formal statement.
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Theorem 14.35 If (Yt , X t ) is strictly stationary, ergodic, with finite second mo-
ments, and Q = E[

X t X ′
t

]> 0, then β in (14.54) is uniquely defined and the least
squares estimator is consistent, β̂−→

p
β.

If in addition, E [et |Ft−1] = 0, where Ft−1 is an information set to which
(et−1, X t ) is adapted, E |Yt |4 <∞ , and E‖X t‖4 <∞, then

p
n

(
β̂−β)−→

d
N

(
0,Q−1ΩQ−1) (14.55)

as n →∞, whereΩ= E[
X t X ′

t e2
t

]
.

Alternatively, if for some r > 4, E |Yt |r <∞ , E‖X t‖r <∞, and the mixing coeffi-
cients for (Yt , X t ) satisfy

∑∞
`=1α(`)1−4/r <∞, then (14.55) holds with

Ω=
∞∑

`=−∞
E
[

X t−`X ′
t et et−`

]
.

14.41 Static, Distributed Lag, and Autoregressive Distributed Lag Models

In this section we describe standard linear time series regression models.
Let (Yt , Zt ) be paired observations with Yt the dependent variable and Zt an observed regressor vec-

tor which does not include lagged Yt .
The simplest regression model is the static equation

Yt =α+Z ′
tβ+et .

This is (14.53) by setting X t = (1, Z ′
t )′. Static models are motivated to describe how Yt and Zt co-move.

Their advantage is their simplicity. The disadvantage is that they are difficult to interpret. The coefficient
is the best linear predictor (14.54) but almost certainly is dynamically misspecified. The regression of
Yt on contemporeneous Zt is difficult to interpret without a causal framework since the two may be
simultaneous. If this regression is estimated it is important that the standard errors be calculated using
the Newey-West method to account for serial correlation in the error.

A model which allows the regressor to have impact over several periods is called a distributed lag
(DL) model. It takes the form

Yt =α+Z ′
t−1β1 +Z ′

t−2β2 +·· ·+Z ′
t−qβq +et .

It is also possible to include the contemporenous regressor Zt . In this model the leading coefficient β1

represents the initial impact of Zt on Yt , β2 represents the impact in the second period, and so on. The
cumulative impact is the sum of the coefficients β1 +·· ·+βq which is called the long-run multiplier.

The distributed lag model falls in the class (14.53) by setting X t = (1, Z ′
t−1, Z ′

t−2, . . . , Z ′
t−q )′. While it

allows for a lagged impact of Zt on Yt , the model does not incorporate serial correlation so the error
et should be expected to be serially correlated. Thus the model is (typically) dynamically misspecified
which can make interpretation difficult. It is also necessary to use Newey-West standard errors to ac-
count for the serial correlation.

A more complete model combines autoregressive and distributed lags. It takes the form

Yt =α0 +α1Yt−1 +·· ·+αp Yt−p +Z ′
t−1β1 +·· ·+Z ′

t−qβq +et .
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This is called an autoregressive distributed lag (AR-DL) model. It nests both the autoregressive and
distributed lag models thereby combining serial correlation and dynamic impact. The AR-DL model
falls in the class (14.53) by setting X t = (1,Yt−1, ...,Yt−p , Z ′

t−1, . . . , Z ′
t−q )′.

If the lag orders p and q are selected sufficiently large the AR-DL model will have an error which is
approximately white noise in which case the model can be interpreted as dynamically well-specified and
conventional standard error methods can be used.

In an AR-DL specification the long-run multiplier is

β1 +·· ·+βq

1−α1 −·· ·−αp

which is a nonlinear function of the coefficients.

14.42 Time Trends

Many economic time series have means which change over time. A useful way to think about this is
the components model

Yt = Tt +ut

where Tt is the trend component and ut is the stochastic component. The latter can be modeled by a
linear process or autoregression

α(L)ut = et .

The trend component is often modeled as a linear function in the time index

Tt =β0 +β1t

or a quadratic function in time
Tt =β0 +β1t +β2t 2.

These models are typically not thought of as being literally true but rather as useful approximations.
When we write down time series models we write the index as t = 1, ...,n. But in practical applica-

tions the time index corresponds to a date, e.g. t = 1960,1961, ...,2017. Furtheremore, if the data is at
a higher frequency than annual then it is incremented in fractional units. This is not of fundamental
importance; it merely changes the meaning of the intercept β0 and slope β1. Consequently these should
not be interpreted outside of how the time index is defined.

One traditional way of dealing with time trends is to “detrend” the data. This means using an es-
timation method to estimate the trend and subtract it off. The simplest method is least squares linear
detrending. Given the linear model

Yt =β0 +β1t +ut (14.56)

the coefficients are estimated by least squares. The detrended series is the residual ût . More intricate
methods can be used but they have a similar flavor.

To understand the properties of the detrending method we can apply an asymptotic approximation.
A time trend is not a stationary process so we should be thoughtful before applying standard theory. We
will study asymptotics for non-stationary processes in more detail in Chapter 16 so our treatment here
will be brief. It turns out that most of our conventional procedures work just fine with time trends (and
quadratics in time) as regressors. The rates of convergence change but this does not affect anything of
practical importance.
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Let us demonstrate that the least squares estimator of the coefficients in (14.56) is consistent. We can
write the estimator as (

β̂0 −β0

β̂1 −β1

)
=

(
n

∑n
t=1 t∑n

t=1 t
∑n

t=1 t 2

)−1 ( ∑n
t=1 ut∑n

t=1 tut

)
.

We need to study the behavior of the sums in the design matrix. For this the following result is useful,
which follows by taking the limit of the Riemann sum for the integral

∫ 1
0 xr d x = 1/(1+ r ).

Theorem 14.36 For any r > 0, as n →∞, n−1−r ∑n
t=1 t r −→ 1/(1+ r ).

Theorem 14.36 implies that
1

n2

n∑
t=1

t → 1

2

and
1

n3

n∑
t=1

t 2 → 1

3
.

What is interesting about these results is that the sums require normalizations other than n−1!
To handle this in multiple regression it is convenient to define a scaling matrix which normalizes each

element in the regression by its convergence rate. Define the matrix Dn =
[

1 0
0 n

]
. The first diagonal

element is the intercept and second for the time trend. Then

Dn

(
β̂0 −β0

β̂1 −β1

)
= Dn

(
n

∑n
t=1 t∑n

t=1 t
∑n

t=1 t 2

)−1

DnD−1
n

( ∑n
t=1 ut∑n

t=1 tut

)

=
(
D−1

n

(
n

∑n
t=1 t∑n

t=1 t
∑n

t=1 t 2

)
D−1

n

)−1 ( ∑n
t=1 ut

1
n

∑n
t=1 tut

)

=
(

n 1
n

∑n
t=1 t

1
n

∑n
t=1 t 1

n2

∑n
t=1 t 2

)−1 ( ∑n
i=1 ut

1
n

∑n
i=1 tut

)
.

Multiplying by n1/2 we obtain(
n1/2

(
β̂0 −β0

)
n3/2

(
β̂1 −β1

) )
=

(
1 1

n2

∑n
t=1 t

1
n2

∑n
t=1 t 1

n3

∑n
t=1 t 2

)−1 ( 1
n1/2

∑n
t=1 ut

1
n3/2

∑n
t=1 tut

)
.

The denominator matrix satisfies(
1 1

n2

∑n
t=1 t

1
n2

∑n
t=1 t 1

n3

∑n
t=1 t 2

)
→

(
1 1

2
1
2

1
3

)
which is invertible. Setting Xnt = (t/n, 1), the numerator vector can be written as n−1/2 ∑n

t=1 Xnt ut . It has
variance ∥∥∥∥var

[
1

n1/2

n∑
t=1

Xnt ut

]∥∥∥∥=
∥∥∥∥∥ 1

n

n∑
t=1

n∑
j=1

Xnt X ′
n jE

[
ut u j

]∥∥∥∥∥
≤
p

2
∞∑

`=−∞

∥∥E[
ut u j

]∥∥<∞
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by Theorem 14.15 if ut satisfies the mixing and moment conditions for the central limit theorem. This
means that the numerator vector is Op (1). (It is also asymptotically normal but we defer this demonstra-
tion for now.) We conclude that (

n1/2
(
β̂0 −β0

)
n3/2

(
β̂1 −β1

) )
=Op (1).

This shows that both coefficients are consistent, β̂0 converges at the standard n1/2 rate, and β̂1 converges
at the faster n3/2 rate. The consistency of the coefficient estimators means that the detrending method
is consistent.

An alternative is to include a time trend in the estimated regression. If we have an autoregression, a
distributed lag, or an AL-DL model, we add a time index to obtain a model of the form

Yt =α0 +α1Yt−1 +·· ·+αp Yt−p +Z ′
t−1β1 +·· ·+Z ′

t−qβq +γt +et .

Estimation by least squares is equivalent to estimation after linear detrending by the FWL theorem.
Inclusion of a linear (and possibly quadratic) time trend in a regression model is typically the easiest
method to incorporate time trends.

14.43 Illustration

We illustrate the models described in the previous section using a classical Phillips curve for infla-
tion prediction. A. W. Phillips (1958) famously observed that the unemployment rate and the wage infla-
tion rate are negatively correlated over time. Equations relating the inflation rate, or the change in the
inflation rate, to macroeconomic indicators such as the unemployment rate are typically described as
“Phillips curves”. A simple Phillips curve takes the form

∆πt =α+βUt +et (14.57)

where πt is price inflation and Ut is the unemployment rate. This specification relates the change in
inflation in a given period to the level of the unemployment rate in the previous period.

The least squares estimate of (14.57) using U.S. quarterly series from FRED-QD is reported in the
first column of Table 14.3. Both heteroskedasticity-robust and Newey-West standard errors are reported.
The Newey-West standard errors are the appropriate choice since the estimated equation is static – no
modeling of the serial correlation. In this example the measured impact of the unemployment rate on
inflation appears minimal. The estimate is consistent with a small effect of the unemployment rate on
the inflation rate but it is not precisely estimated.

A distributed lag (DL) model takes the form

∆πt =α+β1Ut−1 +β2Ut−2 +·· ·+βqUt−q +et . (14.58)

The least squares estimate of (14.58) is reported in the second column of Table 14.3. The estimates are
quite different from the static model. We see large negative impacts in the first and third periods, coun-
tered by a large positive impact in the second period. The model suggests that the unemployment rate
has a strong impact on the inflation rate but the long-run impact is mitigated. The long-run multiplier
is reported at the bottom of the column. The point estimate of −0.022 is quite small and similar to the
static estimate. It implies that an increase in the unemployment rate by 5 percentage points (a typical
recession) decreases the long-run annual inflation rate by about a half of a percentage point.

An AR-DL takes the form

∆πt =α0 +α1∆πt−1 +·· ·+αp∆πt−p +β1Ut−1 +·· ·+βqUt−q +et . (14.59)
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The least squares estimate of (14.59) is reported in the third column of Table 14.3. The coefficient esti-
mates are similar to those from the distributed lag model. The point estimate of the long-run multiplier
is also nearly identical but with a smaller standard error.

Table 14.3: Phillips Curve Regressions

Static Model DL Model AR-DL Model
Ut −0.023

(0.025)
[0.017]

Ut−1 −0.59 −0.62
(0.20) (0.16)
[0.16] [0.12]

Ut−2 1.14 0.88
(0.29) (0.25)
[0.28] [0.21]

Ut−3 −0.68 −0.36
(0.22) (0.25)
[0.25] [0.24]

Ut−4 0.12 0.05
(0.11) (0.12)
[0.11] [0.12]

πt−1 −0.43
(0.08)
[0.08]

πt−2 −0.47
(0.10)
[0.09]

πt−3 −0.14
(0.10)
[0.11]

πt−4 −0.19
(0.08)
[0.09]

Multiplier −0.023 −0.022 −0.021
[0.017] [0.012] [0.008]

1. Standard errors robust to heteroskedasticity in parenthesis.

2. Newey-West standard errors in square brackets with M = 5.

14.44 Granger Causality

In the AR-DL model (14.59) the unemployment rate has no predictive impact on the inflation rate
under the coefficient restriction β1 = ·· · =βq = 0. This restriction is called Granger non-causality. When
the coefficients are non-zero we say that the unemployment rate “Granger causes” the inflation rate. This
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definition of causality was developed by Granger (1969) and Sims (1972).
The reason why we call this “Granger causality” rather than “causality” is because this is not a struc-

tural definition. An alternative label is “predictive causality”.
To be precise, assume that we have two series (Yt , Zt ). Consider the projection of Yt onto the lagged

history of both series

Yt =P t−1(Yt )+et

=α0 +
∞∑

j=1
α j Yt− j +

∞∑
j=1

β j Zt− j +et .

We say that Zt does not Granger-cause Yt if β j = 0 for all j . If β j 6= 0 for some j then we say that Zt

Granger-causes Yt .
It is important that the definition includes the projection on the past history of Yt . Granger causality

means that Zt helps to predict Yt even after the past history of Yt has been accounted for.
The definition can alternatively be written in terms of conditional expectations rather than projec-

tions. We can say that Zt does not Granger-cause Yt if

E [Yt | Yt−1,Yt−2...; Zt−1, Zt−2, ...] = E [Yt | Yt−1,Yt−2, ...] .

Granger causality can be tested in AR-DL models using a standard Wald or F test. In the context of
model (14.59) we report the F statistic for β1 = ·· · =βq = 0. The test rejects the hypothesis (and thus finds
evidence of Granger causality) if the statistic is larger than the critical value (if the p-value is small) and
fails to reject the hypothesis (and thus finds no evidence of causality) if the statistic is smaller than the
critical value.

For example, in the results presented in Table 14.3 the F statistic for the hypothesis β1 = ·· · = β4 = 0
using the Newey-West covariance matrix is F = 6.98 with a p-value of 0.000. This is statistically signifi-
cant at any conventional level so we can conclude that the unemployment rate has a predictively causal
impact on inflation.

Granger causality should not be interpreted structurally outside the context of an economic model.
For example consider the regression of GDP growth rates Yt on stock price growth rates Rt . We use the
quarterly series from FRED-QD, estimating an AR-DL specification with two lags

Yt = 0.22
(0.09)

Yt−1 + 0.14
(0.10)

Yt−2 + 0.03
(0.01)

Rt−1 + 0.01
(0.01)

Rt−2.

The coefficients on the lagged stock price growth rates are small in magnitude but the first lag appears
statistically significant. The F statistic for exclusion of (Rt−1,Rt−2) is F = 9.3 with a p-value of 0.0002,
which is highly significant. We can therefore reject the hypothesis of no Granger causality and deduce
that stock prices Granger-cause GDP growth. We should be wary of concluding that this is structurally
causal – that stock market movements cause output fluctuations. A more reasonable explanation from
economic theory is that stock prices are forward-looking measures of expected future profits. When
corporate profits are forecasted to rise the value of corporate stock rises, bidding up stock prices. Thus
stock prices move in advance of actual economic activity but are not necessarily structurally causal.
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Clive W. J. Granger

Clive Granger (1934-2009) of England was one of the leading figures in time-
series econometrics, and co-winner of the 2003 Nobel Memorial Prize in Eco-
nomic Sciences. In addition to formalizing the definition of causality known as
Granger causality, he invented the concept of cointegration, introduced spec-
tral methods into econometrics, and formalized methods for the combination
of forecasts.

14.45 Testing for Serial Correlation in Regression Models

Consider the problem of testing for omitted serial correlation in an AR-DL model such as

Yt =α0 +α1Yt−1 +·· ·+αp Yt−p +β1Zt−1 +·· ·+βq Zt−q +ut . (14.60)

The null hypothesis is that ut is serially uncorrelated and the alternative hypothesis is that it is serially
correlated. We can model the latter as a mean-zero autoregressive process

ut = θ1ut−1 +·· ·+θr ut−r +et . (14.61)

The hypothesis is

H0 : θ1 = ·· · = θr = 0

H1 : θ j 6= 0 for some j ≥ 1.

There are two ways to implement a test of H0 against H1. The first is to estimate equations (14.60)-
(14.61) sequentially by least squares and construct a test for H0 on the second equation. This test is
complicated by the two-step estimation. Therefore this approach is not recommended.

The second approach is to combine equations (14.60)-(14.61) into a single model and execute the test
as a restriction within this model. One way to make this combination is by using lag operator notation.
Write (14.60)-(14.61) as

α(L)Yt =α0 +β(L)Zt−1 +ut

θ(L)ut = et

Applying the operator θ(L) to the first equation we obtain

θ(L)α(L)Yt = θ(L)α0 +θ(L)β(L)Zt−1 +θ(L)ut

or
α∗(L)Yt =α∗

0 +β∗(L)Zt−1 +et

where α∗(L) is a p + r order polynomial and β∗(L) is a q + r order polynomial. The restriction H0 is that
these are p and q order polynomials. Thus we can implement a test of H0 against H1 by estimating an
AR-DL model with p + r and q + r lags, and testing the exclusion of the final r lags of Yt and Zt . This test
has a conventional asymptotic distribution so is simple to implement.

The basic message is that testing for omitted serial correlation can be implement in regression mod-
els by estimating and contrasting different dynamic specifications.
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14.46 Bootstrap for Time Series

Recall that the bootstrap approximates the sampling distribution of estimators and test statistics by
the empirical distribution of the observations. The traditional non-parametric bootstrap is appropriate
for independent observations. For dependent observations alternative methods should be used.

Bootstrapping for time series is considerably more complicated than the cross section case. Many
methods have been proposed. One of the challenges is that theoretical justifications are more difficult to
establish than in the independent observation case.

In this section we describe the most popular methods to implement bootstrap resampling for time
series data.

Recursive Bootstrap

1. Estimate a complete model such as an AR(p) producing coefficient estimates α̂ and residuals êt .

2. Fix the initial condition (Y−p+1,Y−p+2, ...,Y0).

3. Simulate i.i.d. draws e∗t from the empirical distribution of the residuals {ê1, ..., ên}.

4. Create the bootstrap series Y ∗
t by the recursive formula

Y ∗
t = α̂0 + α̂1Y ∗

t−1 + α̂2Y ∗
t−2 +·· ·+ α̂p Y ∗

t−p +e∗t .

This construction creates bootstrap samples Y ∗
t with the stochastic properties of the estimated AR(p)

model including the auxiliary assumption that the errors are i.i.d. This method can work well if the true
process is an AR(p). One flaw is that it imposes homoskedasticity on the errors e∗t which may be different
than the properties of the actual et . Another limitation is that it is inappropriate for AR-DL models unless
the conditioning variables are strictly exogenous.

There are alternative versions of this basic method. First, instead of fixing the initial conditions at
the sample values a random block can be drawn from the sample. The difference is that this produces
an unconditional distribution rather than a conditional one. Second, instead of drawing the errors from
the residuals a parametric (typically normal) distribution can be used. This can improve precision when
sample sizes are small but otherwise is not recommended.

Pairwise Bootstrap

1. Write the sample as {Yt , X t } where X t = (Yt−1, ...,Yt−p )′ contains the lagged values used in estima-
tion.

2. Apply the traditional nonparametric bootstrap which samples pairs (Y ∗
t , X ∗

t ) i.i.d. from {Yt , X t }
with replacement to create the bootstrap sample.

3. Create the bootstrap estimates on this bootstrap sample, e.g. regress Y ∗
t on X ∗

t .

This construction is essentially the traditional nonparametric bootstrap but applied to the paired
sample {Yt , X t }. It does not mimic the time series correlations across observations. However, it does
produce bootstrap statistics with the correct first-order asymptotic distribution under MDS errors. This
method may be useful when we are interested in the distribution of nonlinear functions of the coefficient
estimates and therefore desire an improvement on the Delta Method approximation.

Fixed Design Residual Bootstrap
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1. Write the sample as {Yt , X t , êt } where X t = (Yt−1, ...,Yt−p )′ contains the lagged values used in esti-
mation and êt are the residuals.

2. Fix the regressors X t at their sample values.

3. Simulate i.i.d. draws e∗t from the empirical distribution of the residuals {ê1, ..., ên}.

4. Set Y ∗
t = X ′

t β̂+e∗t .

This construction is similar to the pairwise bootstrap but imposes an i.i.d. error. It is therefore only
valid when the errors are i.i.d. (and thus excludes heteroskedasticity).

Fixed Design Wild Bootstrap

1. Write the sample as {Yt , X t , êt } where X t = (Yt−1, ...,Yt−p )′ contains the lagged values used in esti-
mation and êt are the residuals.

2. Fix the regressors X t and residuals êt at their sample values.

3. Simulate i.i.d. auxiliary random variables ξ∗t with mean zero and variance one. See Section 10.29
for a discussion of choices.

4. Set e∗t = ξ∗t êt and Y ∗
t = X ′

t β̂+e∗t .

This construction is similar to the pairwise and fixed design bootstrap combined with the wild boot-
strap. This imposes the conditional mean assumption on the error but allows heteroskedasticity.

Block Bootstrap

1. Write the sample as {Yt , X t } where X t = (Yt−1, ...,Yt−p )′ contains the lagged values used in estima-
tion.

2. Divide the sample of paired observations {Yt , X t } into n/m blocks of length m.

3. Resample complete blocks. For each simulated sample draw n/m blocks.

4. Paste the blocks together to create the bootstrap time series {Y ∗
t , X ∗

t }.

This construction allows for arbitrary stationary serial correlation, heteroskedasticity, and model-
misspecification. One challenge is that the block bootstrap is sensitive to the block length and the way
that the data are partitioned into blocks. The method may also work less well in small samples. Notice
that the block bootstrap with m = 1 is equal to the pairwise bootstrap and the latter is the traditional
nonparametric bootstrap. Thus the block bootstrap is a natural generalization of the nonparametric
bootstrap.

14.47 Technical Proofs*

Proof of Theorem 14.2 Define Ỹt = (Yt ,Yt−1,Yt−2, ...) ∈ Rm×∞ as the history of Yt up to time t . Write
X t =φ(Ỹt ). Let B be the pre-image of {X t ≤ x} (the vectors Ỹ ∈Rm×∞ such that φ(Ỹ ) ≤ x). Then

P [X t ≤ x] =P[
φ(Ỹt ) ≤ x

]=P[
Ỹt ∈ B

]
.
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Since Yt is strictly stationary, P
[
Ỹt ∈ B

]
is independent8 of t . This means that the distribution of X t

is independent of t . This argument can be extended to show that the distribution of (X t , ..., X t+`) is
independent of t . This means that X t is strictly stationary as claimed. ■

Proof of Theorem 14.3 By the Cauchy criterion for convergence (see Theorem A.2 of Introduction to
Econometrics), SN =∑N

j=0 a j Yt− j converges almost surely if for all ε> 0,

inf
N

sup
j>N

∣∣SN+ j −SN
∣∣≤ ε.

Let Aε be this event. Its complement is

Ac
ε =

∞⋂
N=1

{
sup
j>N

∣∣∣∣∣ N+ j∑
i=N+1

ai Yt−i

∣∣∣∣∣> ε
}

.

This has probability

P
[

Ac
ε

]≤ lim
N→∞

P

[
sup
j>N

∣∣∣∣∣ N+ j∑
i=N+1

ai Yt−i

∣∣∣∣∣> ε
]
≤ lim

N→∞
1

ε
E

[
sup
j>N

∣∣∣∣∣ N+ j∑
i=N+1

ai Yt−i

∣∣∣∣∣
]
≤ 1

ε
lim

N→∞

∞∑
i=N+1

|ai |E |Yt−i | = 0.

The second equality is Markov’s inequality (B.36) and the following is the triangle inequality (B.1). The
limit is zero since

∑∞
i=0 |ai | <∞ and E |Yt | <∞. Hence for all ε> 0, P

[
Ac
ε

]= 0 and P [Aε] = 1. This means
that SN converges with probability one, as claimed.

Since Yt is strictly stationary then X t is as well by Theorem 14.2. ■

Proof of Theorem 14.4 See Theorem 14.14. ■

Proof of Theorem 14.5 Strict stationarity follows from Theorem 14.2. Let Ỹt and X̃ t be the histories of Yt

and X t . Write X t =φ
(
Ỹt

)
. Let A be an invariant event for X t . We want to show P [A] = 0 or 1. The event A

is a collection of X̃ t histories, and occurs if and and only if an associated collection of Ỹt histories occur.
That is, for some sets G and H ,

A = {
X̃ t ∈G

}= {
φ

(
Ỹt

) ∈G
}= {

Ỹt ∈ H
}

.

The assumption that A is invariant means it is unaffected by the time shift, thus can be written as

A = {
X̃ t+` ∈G

}= {
Ỹt+` ∈ H

}
.

This means the event
{
Ỹt+` ∈ H

}
is invariant. Since Yt is ergodic the event has probability 0 or 1. Hence

P [A] = 0 or 1, as desired. ■

Proof of Theorem 14.7 Suppose Yt is discrete with support on (τ1, ...,τN ) and without loss of generality

8An astute reader may notice that the independence of P
[
Ỹt ∈ B

]
from t does not follow directly from the definition of strict

stationarity. Indeed, a full derivation requires a measure-theoretic treatment. See Section 1.2.B of Petersen (1983) or Section
3.5 of Stout (1974).
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assume E [Yt ] = 0. Then by Theorem 14.8

lim
n→∞

1

n

n∑
`=1

cov(Yt ,Yt+`) = lim
n→∞

1

n

n∑
`=1

E [Yt Yt+`]

= lim
n→∞

1

n

n∑
`=1

N∑
j=1

N∑
k=1

τ jτkP
[
Yt = τ j ,Yt+` = τk

]
=

N∑
j=1

N∑
k=1

τ jτk lim
n→∞

1

n

n∑
`=1

P
[
Yt = τ j ,Yt+` = τk

]
=

N∑
j=1

N∑
k=1

τ jτkP
[

yt = τ j
]
P [Yt+` = τk ]

= E [Yt ]E [Yt+`]

= 0.

which is (14.4). This can be extended to the case of continuous distributions using the monotone con-
vergence theorem. See Corollary 14.8 of Davidson (2020). ■

Proof of Theorem 14.9 We show (14.6). (14.7) follows by Markov’s inequality (B.36).
Without loss of generality we focus on the scalar case and assume E [Yt ] = 0. Fix ε > 0. Pick B large

enough such that

E |Yt1 {|Yt | > B}| ≤ ε

4
(14.62)

which is feasible since E |Yt | <∞. Define

Wt = Yt1 {|Yt | ≤ B}−E [Yt1 {|Yt | ≤ B}]

Zt = Yt1 {|Yt | > B}−E [Yt1 {|Yt | > B}] .

Notice that Wt is a bounded transformation of the ergodic series Yt . Thus by (14.4) and (14.9) there is an
n sufficiently large so that

var[Wt ]

n
+ 2

n

n∑
m=1

(
1− m

n

)
cov

(
Wt ,W j

)≤ ε2

4
(14.63)

By the triangle inequality (B.1)

E
∣∣∣Y ∣∣∣= E ∣∣∣W +Z

∣∣∣≤ E ∣∣∣W ∣∣∣+E ∣∣∣Z
∣∣∣ . (14.64)

By another application of the triangle inequality and (14.62)

E
∣∣∣Z

∣∣∣≤ E |Zt | ≤ 2E |Yt1 (|Yt | > B)| ≤ ε

2
. (14.65)

By Jensen’s inequality (B.27), direct calculation, and (14.63)(
E
∣∣∣W ∣∣∣)2 ≤ E

[∣∣∣W ∣∣∣2
]

= 1

n2

n∑
t=1

n∑
j=1

E
[
Wt W j

]
= var[Wt ]

n
+ 2

n

n∑
m=1

(
1− m

n

)
cov

(
Wt ,W j

)
≤ ε2

4
.
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Thus
E
∣∣∣W ∣∣∣≤ ε

2
. (14.66)

Together, (14.64), (14.65) and (14.66) show that E
∣∣∣Y ∣∣∣ ≤ ε. Since ε is arbitrary, this establishes (14.6) as

claimed. ■

Proof of Theorem 14.11 (sketch) By the Cramér-Wold device (Theorem 8.4 from Introduction to Econo-
metrics) it is sufficient to establish the result for scalar ut . Let σ2 = E[

u2
t

]
. By a Taylor series expansion,

for x small log(1+x) ' x −x2/2. Taking exponentials and rearranging we obtain the approximation

exp(x) ' (1+x)exp

(
x2

2

)
. (14.67)

Fix λ. Define

T j =
j∏

i=1

(
1+ λp

n
ut

)
Vn = 1

n

n∑
t=1

u2
t .

Since ut is strictly stationary and ergodic, Vn
p−→σ2 by the Ergodic Theorem (Theorem 14.9). Since ut is

a MDS
E [Tn] = 1. (14.68)

To see this, define Ft =σ (...,ut−1,ut ). Note T j = T j−1

(
1+ λp

n
u j

)
. By iterated expectations

E [Tn] = E [E [Tn |Fn−1]]

= E
[

Tn−1E

[
1+ λp

n
un

∣∣∣∣ Fn−1

]]
= E [Tn−1] = ·· · = E [T1]

= 1.

This is (14.68).
The moment generating function of Sn is

E

[
exp

(
λp
n

n∑
t=1

ut

)]
= E

[
n∏

i=1
exp

(
λp
n

ut

)]

' E
[

n∏
i=1

[
1+ λp

n
ut

]
exp

(
λ2

2n
u2

t

)]
(14.69)

= E
[

Tn exp

(
λ2Vn

2

)]
' E

[
Tn exp

(
λ2σ2

2

)]
(14.70)

= exp

(
λ2σ2

2

)
.

The approximation in (14.69) is (14.67). The approximation (14.70) is Vn −→
p
σ2. (A rigorous justification

which allows this substitution in the expectation is technical.) The final equality is (14.68). This shows
that the moment generating function of Sn is approximately that of N

(
0,σ2

)
, as claimed.
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The assumption that ut is a MDS is critical for (14.68). Tn is a nonlinear function of the errors ut so
a white noise assumption cannot be used instead. The MDS assumption is exactly the minimal condi-
tion needed to obtain (14.68). This is why the MDS assumption cannot be easily replaced by a milder
assumption such as white noise. ■

Proof of Theorem 14.13.1 Without loss of generality suppose E [X t ] = 0 and E [Zt ] = 0. Set ηt−m =
sgn

(
E
[

Zt |F t−m−∞
])

. By iterated expectations, |X t | ≤ C1,
∣∣E[

Zt |F t−m−∞
]∣∣ = ηt−mE

[
Zt |F t−m−∞

]
, and again

using iterated expectations

|cov(X t−m , Zt )| = ∣∣E[
E
[

X t−m Zt |F t−m
−∞

]]∣∣
= ∣∣E(

X t−mE
[

Zt |F t−m
−∞

])∣∣
≤C1E

∣∣E[
Zt |F t−m

−∞
]∣∣

=C1E
[
ηt−mE

[
Zt |F t−m

−∞
]]

=C1E
[
E
[
ηt−m Zt |F t−m

−∞
]]

=C1E
[
ηt−m Zt

]
=C1 cov

(
ηt−m , Zt

)
. (14.71)

Setting ξt = sgn
(
E
[

X t−m |F∞
t

])
, by a similar argument (14.71) is bounded by C1C2 cov

(
ηt−m ,ξt

)
. Set

A1 =1
{
ηt−m = 1

}
, A2 =1

{
ηt−m =−1

}
, B1 =1 {ξt = 1}, B2 =1 {ξt =−1}. We calculate∣∣cov

(
ηt−m ,ξt

)∣∣= |P [A1 ∩B1]+P [A2 ∩B2]−P [A2 ∩B1]−P [A1 ∩B2]

−P [A1]P [B1]−P [A2]P [B2]+P [A2]P [B1]+P [A1]P [B2]|
≤ 4α(m).

Together, |cov(X t−m , zt )| ≤ 4C1C2α(m) as claimed. ■

Proof of Theorem 14.13.2 Assume E [X t ] = 0 and E [Zt ] = 0. We first show that if |X t | ≤C then

|cov(X t−`, Zt )| ≤ 6C
(
E |Zt |r

)1/r
α(`)1−1/r . (14.72)

Indeed, ifα(`) = 0 the result is immediate so assumeα(`) > 0. Set D =α(`)−1/r (E |Zt |r )1/r , Vt = Zt1 {|Zt | ≤ D}
and Wt = Zt1 {|Zt | > D}. Using the triangle inequality (B.1) and then part 1, since |X t | ≤C and |Vt | ≤ D ,

|cov(X t−`, Zt )| ≤ |cov(X t−`,Vt )|+ |cov(X t−`,Wt )| ≤ 4C Dα(`)+2CE |wt | .

Also,

E |Wt | = E |Zt1 {|Zt | > D}| = E
∣∣∣∣ |Zt |r
|Zt |r−11 {|Zt | > D}

∣∣∣∣≤ E |Zt |r
Dr−1 =α(`)(r−1)/r (

E |Zt |r
)1/r

using the definition of D . Together we have

|cov(X t−`, Zt )| ≤ 6C
(
E |X t |r

)1/r
α(`)1−1/r .

which is (14.72) as claimed.
Now set C = α(`)−1/r (E |X t |r )1/r , Vt = X t1 {|X t | ≤C } and Wt = X t1 {|X t | >C }. Using the triangle in-

equality and (14.72)
|cov(X t−`, Zt )| ≤ |cov(Vt−`, Zt )|+ |cov(Wt−`, Zt )| .

Since |Vt | ≤C , using (14.72) and the definition of C

|cov(Vt−`, Zt )| ≤ 6C
(
E |Zt |q

)1/q
α(`)1−1/q = 6

(
E |X t |r

)1/r (
E |Zt |q

)1/q
α(`)1−1/q−1/r .
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Using Hölder’s inequality (B.31) and the definition of C

|cov(Wt−`, Zt )| ≤ 2
(
E |Wt |q/(q−1))(q−1)/q (

E |Zt |q
)1/q

= 2
(
E
[|X t |q/(q−1)1 {|X t | >C }

])(q−1)/q (
E |Zt |q

)1/q

= 2

(
E

[ |X t |r
|X t |r−q/(q−1)

1 {|X t | >C }

])(q−1)/q (
E |Zt |q

)1/q

≤ 2

C r (q−1)/q−1

(
E |X t |r

)(q−1)/q (
E |Zt |q

)1/q

= 2
(
E |X t |r

)1/r (
E |Zt |q

)1/q
α(`)1−1/q−1/r .

Together we have

|cov(X t−`, Zt )| ≤ 8
(
E |X t |r

)1/r (
E |Zt |q

)1/q
α(`)1−1/r−1/q

as claimed. ■

Proof of Theorem 14.13.3 Set ηt−` = sgn
(
E
[

Zt
∣∣F t−`−∞

])
which satisfies

∣∣ηt−`
∣∣ ≤ 1. Since ηt−` is F t−`−∞ -

measurable, iterated expectations, using (14.72) with C = 1, the conditional Jensen’s inequality (B.28),
and iterated expectations,

E
∣∣∣E[

Zt

∣∣∣F t−`
−∞

]∣∣∣= E[
ηt−`E

[
Zt

∣∣∣F t−`
−∞

]]
= E

[
E
[
ηt−`Zt

∣∣∣F t−`
−∞

]]
= E[

ηt−`Zt
]

≤ 6
(
E
∣∣∣E[

Zt

∣∣∣F t−`
−∞

]∣∣∣r )1/r
α(`)1−1/r

≤ 6
(
E
(
E
[
|Zt |r

∣∣∣F t−`
−∞

]))1/r
α(`)1−1/r

= 6
(
E |Zt |r |

)1/r
α(`)1−1/r

as claimed. ■

Proof of Theorem 14.15 By the Cramér-Wold device (Theorem 8.4 of Introduction to Econometrics) it is
sufficient to prove the result for the scalar case. Our proof method is based on a MDS approximation.
The trick is to establish the relationship

ut = et +Zt −Zt+1 (14.73)

where et is a strictly stationary and ergodic MDS with E
[
e2

t

]=Ω and E |Zt | <∞. Defining Se
n = 1p

n

∑n
t=1 et ,

we have

Sn = 1p
n

n∑
t=1

(et +Zt −Zt+1) = Se
n + Z1p

n
− Zn+1p

n
. (14.74)

The first component on the right side is asymptotically N(0,Ω) by the MDS CLT (Theorem 14.11). The
second and third terms are op (1) by Markov’s inequality (B.36).

The desired relationship (14.73) holds as follows. Set Ft =σ (...,ut−1,ut ),

et =
∞∑
`=0

(E [ut+` |Ft ]−E [ut+` |Ft−1]) (14.75)
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and

Zt =
∞∑
`=0

E [ut+` |Ft−1] .

You can verify that these definitions satisfy (14.73) given E [ut |Ft ] = ut . The variable Zt has a finite mean
since by the triangle inequality (B.1), Theorem 14.13.3, and the assumptions

E |Zt | = E
∣∣∣∣∣ ∞∑
`=0

E [ut+` |Ft−1]

∣∣∣∣∣≤ 6
(
E |ut |r

)1/r
∞∑
`=0

α(`)1−1/r <∞,

the final inequality since
∑∞
`=0α(`)1−2/r <∞ implies

∑∞
`=0α(`)1−1/r <∞.

The series et in (14.75) has a finite mean by the same calculation as for Zt . It is a MDS since by
iterated expectations

E [et |Ft−1] = E
[ ∞∑
`=0

(E [ut+` |Ft ]−E [ut+` |Ft−1]) |Ft−1

]

=
∞∑
`=0

(E [E [ut+` |Ft ] |Ft−1]−E [E [ut+` |Ft−1] |Ft−1])

=
∞∑
`=0

(E [ut+` |Ft−1]−E [ut+` |Ft−1])

= 0.

It is strictly stationary and ergodic by Theorem 14.2 since it is a function of the history (...,ut−1,ut ).
The proof is completed by showing that et has a finite variance which equals Ω. The trickiest step is

to show that var[et ] <∞. Since
E |Sn | ≤

√
var[Sn] →

p
Ω

(as shown in (14.17)) it follows that E |Sn | ≤ 2
p
Ω for n sufficiently large. Using (14.74) and E |Zt | <∞, for

n sufficiently large,

E
∣∣Se

n

∣∣≤ E |Sn |+ E |Z1|p
n

+ E |Zn+1|p
n

≤ 3
p
Ω. (14.76)

Now define eB t = et1 {|et | ≤ B} − E [et1 {|et | ≤ B} |Ft−1] which is a bounded MDS. By Theorem 14.11,
1p
n

∑n
t=1 eB t

d−→ N
(
0,σ2

B

)
where σ2

B = E[
e2

B t

]
. Since the sequence is uniformly integrable this implies

E

∣∣∣∣ 1p
n

n∑
t=1

eB t

∣∣∣∣−→ E
∣∣N(

0,σ2
B

)∣∣=√
2

π
σB (14.77)

using E |N(0,1)| = 2/π. We want to show that var[et ] <∞. Suppose not. ThenσB →∞ as B →∞, so there
will be some B sufficiently large such that the right-side of (14.77) exceeds the right-side of (14.76). This
is a contradiction. We deduce that var[et ] <∞.

Examining (14.74), we see that since var[Sn] →Ω<∞ and var
[
Se

n

]= var[et ] <∞ then var[Z1 −Zn+1]/n <
∞. Since Zt is stationary, we deduce that var[Z1 −Zn+1] <∞. Equation (14.74) implies var[et ] = var

[
Se

n

]=
var[Sn]+o(1) →Ω. We deduce that var[et ] =Ω as claimed. ■

Proof of Theorem 14.17 (Sketch) Consider the projection of Yt onto (...,et−1,et ). Since the projection
errors et are uncorrelated, the coefficients of this projection are the bivariate projection coefficients b j =
E
[
Yt et− j

]
/E

[
e2

t− j

]
. The leading coefficient is

b0 = E [Yt et ]

σ2 =
∑∞

j=1α jE
[
Yt− j et

]+E[
e2

t

]
σ2 = 1
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using Theorem 14.16. By Bessel’s Inequality (Brockwell and Davis, 1991, Corollary 2.4.1),

∞∑
j=1

b2
j =σ−4

∞∑
j=1

(E [Yt et ])2 ≤σ−4 (
E
[
Y 2

t

])2 <∞

since E
[
Y 2

t

]<∞ by the assumption of covariance stationarity.
The error from the projection of Yt onto (...,et−1,et ) is µt = Yt −∑∞

j=0 b j et− j . The fact that this can be
written as (14.22) is technical. See Theorem 5.7.1 of Brockwell and Davis (1991). ■

Proof of Theorem 14.22 In the text we showed that
∣∣λ j

∣∣< 1 is sufficient for Yt to be strictly stationary and
ergodic. We now verify that

∣∣λ j
∣∣ < 1 is equivalent to (14.35)-(14.37). The roots λ j are defined in (14.34).

Consider separately the cases of real roots and complex roots.
Suppose that the roots are real, which occurs when α2

1 +4α2 ≥ 0. Then
∣∣λ j

∣∣< 1 iff |α1| < 2 and

α1 +
√
α2

1 +4α2

2
< 1 and −1 <

α1 −
√
α2

1 +4α2

2
.

Equivalently, this holds iff

α2
1 +4α2 < (2−α1)2 = 4−4α1 +α2

1 and α2
1 +4α2 < (2+α1)2 = 4+4α1 +α2

1

or equivalently iff
α2 < 1−α1 and α2 < 1+α1

which are (14.35) and (14.36). α2
1 +4α2 ≥ 0 and |α1| < 2 imply α2 ≥−α2

1/4 ≥−1, which is (14.37).
Now suppose the roots are complex, which occurs when α2

1 +4α2 < 0. The squared modulus of the

roots λ j =
(
α1 ±

√
α2

1 +4α2

)
/2 are

∣∣λ j
∣∣2 =

(α1

2

)2
−


√
α2

1 +4α2

2


2

=−α2.

Thus the requirement
∣∣λ j

∣∣< 1 is satisfied iffα2 >−1, which is (14.37). α2
1+4α2 < 0 andα2 >−1 implyα2

1 <
−4α2 < 4, so |α1| < 2. α2

1+4α2 < 0 and |α1| < 2 imply α1+α2 <α1−α2
1/4 < 1 and α2−α1 <−α2

1/4−α1 < 1
which are (14.35) and (14.36). ■

Proof of Theorem 14.23 To complete the proof we need to establish that the eigenvalues λ j of A defined
in (14.40) equal the reciprocals of the roots r j of the autoregressive polynomial α(z) of (14.39). Our goal
is therefore to show that if λ satisfies det

(
A − I pλ

)= 0 then it satisfies α(1/λ) = 0.
Notice that

A − I pλ=
( −λ+α1 α̃′

a B

)
where α̃′ = (α2, ...,αp ), a′ = (1,0, ...,0), and B is a lower-diagonal matrix with −λ on the diagonal and 1
immediately below the diagonal. Notice that det(B ) = (−λ)p−1 and by direct calculation

B−1 =−


λ−1 0 · · · 0 0
λ−2 λ−1 · · · 0 0
λ−3 λ−2 · · · 0 0

...
...

. . .
...

...
λ−p+1 λ−p+2 · · · λ−2 λ−1

 .
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Using the properties of the determinant (Theorem A.1.5)

det
(

A − I pλ
)= det

( −λ+α1 α̃′

a B

)
= det(B )

(−λ+α1 − α̃′B−1a
)

= (−λ)p (
1−α1λ

−1 −α2λ
−2 −α3λ

−3 −·· ·−αpλ
−p)

= (−λ)p α (1/λ) .

Thus if λ satisfies det
(

A − I pλ
)= 0 then α (1/λ) = 0 as required. ■

Proof of Theorem 14.24 By the Fundamental Theorem of Algebra we can factor the autoregressive poly-
nomial as α(z) = ∏p

`=1 (1−λ`z) where λ` = r−1
`

. By assumption |λ`| < 1. Inverting the autoregressive
polynomial we obtain

α(z)−1 =
p∏
`=1

(1−λ`z)−1

=
p∏
`=1

( ∞∑
j=0

λ
j
`

z j

)

=
∞∑

j=0

( ∑
i1+···+ip= j

λ
i1
1 · · ·λip

p

)
z j

=
∞∑

j=0
b j z j

with b j =∑
i1+···+ip= j λ

i1
1 · · ·λip

p .
Using the triangle inequality and the stars and bars theorem (Theorem 1.10 of Introduction to Econo-

metrics) ∣∣b j
∣∣≤ ∑

i1+···+ip= j
|λ1|i1 · · · ∣∣λp

∣∣ip

≤ ∑
i1+···+ip= j

λ j

≤
(

p + j −1

j

)
λ j

=
(
p + j −1

)
!(

p −1
)
! j !

λ j

≤ (
j +1

)p
λ j

as claimed. We next verify the convergence of
∑∞

j=0

∣∣b j
∣∣≤∑∞

j=0

(
j +1

)p
λ j . Note that

lim
j→∞

(
j +1

)p
λ j(

j
)p
λ j−1

=λ< 1.

By the ratio test (Theorem A.3.2 of Introduction to Econometrics)
∑∞

j=0

(
j +1

)p
λ j is convergent. ■

Proof of Theorem 14.27 If Q is singular then there is some γ such that γ′Qγ= 0. We can normalize γ to
have a unit coefficient on Yt−1 (or the first non-zero coefficient other than the intercept). We then have
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that E

[(
Yt−1 −

(
1,Yt−2, ...,Yt−p)

)′
φ

)2
]
= 0 for some φ, or equivalently E

[(
Yt −

(
1,Yt−1, ...,Yt−p+1)

)′
φ

)2
]
=

0. Setting β = (φ′,0)′ this implies E
[(

Yt −β′X t
)2

]
= 0. Since α is the best linear predictor we must have

β=α. This implies σ2 = E
[(

Yt −α′X t
)2

]
= 0. This contradicts the assumption σ2 > 0. We conclude that

Q is not singular. ■
_____________________________________________________________________________________________

14.48 Exercises

Exercise 14.1 For a scalar time series Yt define the sample autocovariance and autocorrelation

γ̂(k) = n−1
n∑

t=k+1

(
Yt −Y

)(
Yt−k −Y

)

ρ̂(k) = γ̂(k)

γ̂(0)
=

∑n
t=k+1

(
Yt −Y

)(
Yt−k −Y

)
∑n

t=1

(
Yt −Y

)2 .

Assume the series is strictly stationary, ergodic, strictly stationary, and E
[
Y 2

t

]<∞.
Show that γ̂(k) −→

p
γ(k) and ρ̂(k) −→

p
γ(k) as n →∞. (Use the Ergodic Theorem.)

Exercise 14.2 Show that if (et ,Ft ) is a MDS and X t is Ft -measurable then ut = X t−1et is a MDS.

Exercise 14.3 Let σ2
t = E

[
e2

t |Ft−1
]
. Show that ut = e2 −σ2

t is a MDS.

Exercise 14.4 Continuing the previous exercise, show that if E
[
e4

t

]<∞ then

n−1/2
n∑

t=1

(
e2

t −σ2
t

)−→
d

N
(
0, v2) .

Express v2 in terms of the moments of et .

Exercise 14.5 A stochastic volatility model is

Yt =σt et

logσ2
t =ω+β logσ2

t−1 +ut

where et and ut are independent i.i.d. N(0,1) shocks.

(a) Write down an information set for which Yt is a MDS.

(b) Show that if
∣∣β∣∣< 1 then Yt is strictly stationary and ergodic.

Exercise 14.6 Verify the formula ρ(1) = θ/
(
1+θ2

)
for a MA(1) process.

Exercise 14.7 Verify the formula ρ(k) =
(∑∞

j=0θ j+kθ j

)
/
(∑q

j=0θ
2
j

)
for a MA(∞) process.

Exercise 14.8 Suppose Yt = Yt−1 +et with et i.i.d. (0,1) and Y0 = 0. Find var[Yt ]. Is Yt stationary?

Exercise 14.9 Take the AR(1) model with no intercept Yt =α1Yt−1 +et .
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(a) Find the impulse response function b j = ∂
∂et

Yt+ j .

(b) Let α̂1 be the least squares estimator of α1. Find an estimator of b j .

(c) Let s (α̂1) be a standard error for α̂1. Use the delta method to find a 95% asymptotic confidence
interval for b j .

Exercise 14.10 Take the AR(2) model Yt =α1Yt−1 +α2Yt−1 +et .

(a) Find expressions for the impulse responses b1, b2, b3 and b4.

(b) Let (α̂1, α̂2) be the least squares estimator. Find an estimator of b2.

(c) Let V̂ be the estimated covariance matrix for the coefficients. Use the delta method to find a 95%
asymptotic confidence interval for b2.

Exercise 14.11 Show that the models
α(L)Yt =α0 +et

and

α(L)Yt =µ+ut

α(L)ut = et

are identical. Find an expression for µ in terms of α0 and α(L).

Exercise 14.12 Take the model

α(L)Yt = ut

β(L)ut = et

where α(L) and β(L) are p and q order lag polynomials. Show that these equations imply that

γ(L)Yt = et

for some lag polynomial γ(L). What is the order of γ(L)?

Exercise 14.13 Suppose that Yt = et +ut +θut−1 where ut and et are mutually independent i.i.d. (0,1)
processes.

(a) Show that Yt is a MA(1) process Yt = ηt +ψηt−1 for a white noise error ηt .

Hint: Calculate the autocorrelation function of Yt .

(b) Find an expression for ψ in terms of θ.

(c) Suppose θ = 1. Find ψ.

Exercise 14.14 Suppose that

Yt = X t +et

X t =αX t−1 +ut

where the errors et and ut are mutually independent i.i.d. processes. Show that Yt is an ARMA(1,1)
process.
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Exercise 14.15 A Gaussian AR model is an autoregression with i.i.d. N(0,σ2) errors. Consider the Gaus-
sian AR(1) model

Yt =α0 +α1Yt−1 +et

et ∼ N
(
0,σ2)

with |α1| < 1. Show that the marginal distribution of Yt is also normal:

Yt ∼ N

(
α0

1−α1
,
σ2

1−α2
1

)
.

Hint: Use the MA representation of Yt .

Exercise 14.16 Assume that Yt is a Gaussian AR(1) as in the previous exercise. Calculate the moments

µ= E [Yt ]

σ2
Y = E

[(
Yt −µ

)2
]

κ= E
[(

Yt −µ
)4

]
A colleague suggests estimating the parameters (α0,α1,σ2) of the Gaussian AR(1) model by GMM ap-
plied to the corresponding sample moments. He points out that there are three moments and three
parameters, so it should be identified. Can you find a flaw in his approach?

Hint: This is subtle.

Exercise 14.17 Take the nonlinear process

Yt = Y α
t−1u1−α

t

where ut is i.i.d. with strictly positive support.

(a) Find the condition under which Yt is strictly stationary and ergodic.

(b) Find an explicit expression for Yt as a function of (ut ,ut−1, ...).

Exercise 14.18 Take the quarterly series pnfix (nonresidential real private fixed investment) from FRED-QD.

(a) Transform the series into quarterly growth rates.

(b) Estimate an AR(4) model. Report using heteroskedastic-consistent standard errors.

(c) Repeat using the Newey-West standard errors, using M = 5.

(d) Comment on the magnitude and interpretation of the coefficients.

(e) Calculate (numerically) the impulse responses for j = 1, ...,10.

Exercise 14.19 Take the quarterly series oilpricex (real price of crude oil) from FRED-QD.

(a) Transform the series by taking first differences.

(b) Estimate an AR(4) model. Report using heteroskedastic-consistent standard errors.
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(c) Test the hypothesis that the real oil prices is a random walk by testing that the four AR coefficients
jointly equal zero.

(d) Interpret the coefficient estimates and test result.

Exercise 14.20 Take the monthly series unrate (unemployment rate) from FRED-MD.

(a) Estimate AR(1) through AR(8) models, using the sample starting in 1960m1 so that all models use
the same observations.

(b) Compute the AIC for each AR model and report.

(c) Which AR model has the lowest AIC?

(d) Report the coefficient estimates and standard errors for the selected model.

Exercise 14.21 Take the quarterly series unrate (unemployment rate) and claimsx (initial claims) from
FRED-QD. “Initial claims” are the number of individuals who file for unemployment insurance.

(a) Estimate a distributed lag regression of the unemployment rate on initial claims. Use lags 1 through
4. Which standard error method is appropriate?

(b) Estimate an autoregressive distributed lag regression of the unemployment rate on initial claims.
Use lags 1 through 4 for both variables.

(c) Test the hypothesis that initial claims does not Granger cause the unemployment rate.

(d) Interpret your results.

Exercise 14.22 Take the quarterly series gdpc1 (real GDP) and houst (housing starts) from FRED-QD.
“Housing starts” are the number of new houses on which construction is started.

(a) Transform the real GDP series into its one quarter growth rate.

(b) Estimate a distributed lag regression of GDP growth on housing starts. Use lags 1 through 4. Which
standard error method is appropriate?

(c) Estimate an autoregressive distributed lag regression of GDP growth on housing starts. Use lags 1
through 2 for GDP growth and 1 through 4 for housing starts.

(d) Test the hypothesis that housing starts does not Granger cause GDP growth.

(e) Interpret your results.



Chapter 15

Multivariate Time Series

15.1 Introduction

A multivariate time series Yt = (Y1t , ...,Ymt )′ is an m × 1 vector process observed in sequence over
time, t = 1, ...,n. Multivariate time series models primarily focus on the joint modeling of the vector series
Yt . The most common multivariate time series models used by economists are vector autoregressions
(VARs). VARs were introduced to econometrics by Sims (1980).

Some excellent textbooks and review articles on multivariate time series include Hamilton (1994),
Watson (1994), Canova (1995), Lütkepohl (2005), Ramey (2016), Stock and Watson (2016), and Kilian and
Lütkepohl (2017).

15.2 Multiple Equation Time Series Models

To motivate vector autoregressions let us start by reviewing the autoregressive distributed lag model
of Section 14.41 for the case of two series Yt = (Y1t ,Y2t )′ with a single lag. An AR-DL model for Y1t is

Y1t =α0 +α1Y1t−1 +β1Y2t−1 +e1t .

Similarly, an AR-DL model for Y2t is

Y2t = γ0 +γ1Y2t−1 +δ1Y1t−1 +e2t .

These two equations specify that each variable is a linear function of its own lag and the lag of the
other variable. In so doing we find that the variables on the right hand side of each equation are Yt−1.

We can simplify the equations by combining the regressors stacking the two equations together and
writing the vector error as et = (e1t ,e2t )′ to find

Yt = a0 + A1Yt−1 +et

where a0 is 2×1 and A1 is 2×2. This is a bivariate vector autoregressive model for Yt . It specifies that
the multivariate process Yt is a linear function of its own lag Yt−1 plus et . It is the combination of two
equations each of which is an autoregressive distributed lag model. Thus a multivariate autoregression
is simply a set of autoregressive distributed lag models.

The above derivation assumed a single lag. If the equations include p lags of each variable we obtain
the p th order vector autoregressive (VAR) model

Yt = a0 + A1Yt−1 + A2Yt−2 +·· ·+ Ap Yt−p +et . (15.1)

509
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This is a bivariate vector autoregressive model for Yt .
Furthermore, there is nothing special about the two variable case. The notation in (15.1) allows Yt to

be a vector of dimension m in which case the matrices A` are m ×m and the error et is m ×1. We will
denote the elements of A` using the notation

A` =


a11,` a12,` · · · a1m,`

a21,` a22,` · · · a2m,`
...

...
...

am1,` am2,` · · · amm,`

 .

The error et = (e1t , ...,emt )′ is the component of Yt = (Y1t , ...,Ymt )′ which is unforecastable at time t −
1. However, the components of Yt are contemporaneously correlated. Therefore the contemporaneous
covariance matrix Σ= E[

ee ′
]

is non-diagonal.
The VAR model falls in the class of multivariate regression models studied in Chapter 11.
In the following several sections we take a step back and provide a rigorous foundation for vector

autoregressions for stationary time series.

15.3 Linear Projection

In Section 14.14 we derived the linear projection of the univariate series Yt on its infinite past his-
tory. We now extend this to the multivariate case. Define the multivariate infinite past history Ỹt−1 =
(...,Yt−2,Yt−1). The projection of Yt onto Ỹt−1, written P t−1 [Yt ] = P

[
Yt | Ỹt−1

]
, is unique and has a

unique projection error
et = Yt −P t−1 [Yt ] . (15.2)

We will call the projection errors et the “innnovations”.
The innovations et are mean zero and serially uncorrelated. We state this formally.

Theorem 15.1 If Yt is covariance stationary it has the projection equation

Yt =P t−1 [Yt ]+et .

The innovations et satisfy E [et ] = 0, E
[
et−`e ′t

]= 0 for `≥ 1, and Σ= E[
ee ′

]<∞.
If Yt is strictly stationary then et is strictly stationary.

The uncorrelatedness of the projection errors is a property of a multivariate white noise process.

Definition 15.1 The vector process et is multivariate white noise if E [et ] = 0,
E
[
et e ′t

]=Σ<∞, and E
[
et e ′t−`

]= 0 for ` 6= 0.
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15.4 Multivariate Wold Decomposition

By projecting Yt onto the past history of the white noise innovations et we obtain a multivariate
version of the Wold decomposition.

Theorem 15.2 If Yt is covariance stationary and non-deterministic then it has
the linear representation

Yt =µ+
∞∑
`=0

Θ`et−` (15.3)

where et are the white noise projection errors and Θ0 = I m . The coefficient
matricesΘ` are m ×m.

We can write the moving average representation using the lag operator notation as

Yt =µ+Θ (L)et

where

Θ (z) =
∞∑
`=0

Θ`z`.

A multivariate version of Theorem 14.19 can also be established.

Theorem 15.3 If Yt is covariance stationary, non-deterministic, with Wold
representation Yt = Θ (L)et , such that λmin (Θ∗(z)Θ(z)) ≥ δ > 0 for all
complex |z| ≤ 1, and for some integer s ≥ 0 the Wold coefficients satisfy∑∞

j=0

∥∥∑∞
k=0 k sΘ j+k

∥∥2 <∞, then Yt has an infinite-order autoregressive repre-
sentation

A (L)Yt = a0 +et (15.4)

where

A (z) = I m −
∞∑
`=1

A`z`

and the coefficients satisfy
∑∞

k=1 k s ‖Ak‖ <∞. The series in (15.4) is convergent.

For a proof see Section 2 of Meyer and Kreiss (2015).
We can also provide an analog of Theorem 14.6.

Theorem 15.4 If et ∈ Rm is strictly stationary, ergodic, E‖et‖ < ∞, and∑∞
`=0 ‖Θ`‖ <∞, then Yt =∑∞

`=0Θ`et−` is strictly stationary and ergodic.
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The proof of Theorem 15.4 is a straightforward extension of Theorem 14.6 so is omitted.
The moving average and autoregressive lag polynomials satisfy the relationshipΘ (z) = A (z)−1.
For some purposes (such as impulse response calculations) we need to calculate the moving average

coefficient matricesΘ` from the autoregressive coefficient matrices A`. While there is not a closed-form
solution there is a simple recursion by which the coefficients may be calculated.

Theorem 15.5 For j ≥ 1,Θ j =∑ j
`=1 A`Θ j−`.

To see this, suppose for simplicity a0 = 0 and that the innovations satisfy et = 0 for t 6= 0. Then Yt = 0
for t < 0. Using the regression equation (15.4) for t ≥ 0 we solve for each Yt . For t = 0

Y0 = e0 =Θ0e0

whereΘ0 = I m . For t = 1
Y1 = A1Y0 = A1Θ0e0 =Θ1e0

whereΘ1 = A1Θ0. For t = 2

Y2 = A1Y1 + A2Y0 = A1Θ1e0 + A2Θ0e0 =Θ2e0

whereΘ2 = A1Θ1 + A2Θ0. For t = 3

Y3 = A1Y2 + A2Y1 + A3Y0 = A1Θ2e0 + A2Θ1e0 + A3Θ0e0 =Θ3e0

whereΘ3 = A1Θ2 + A2Θ2 + A2Θ0. The coefficients satisfy the stated recursion as claimed.

15.5 Impulse Response

One of the most important concepts in applied multivariate time series is the impulse response
function (IRF) which is defined as the change in Yt due to a change in an innovation or shock. In this
section we define the baseline IRF – the unnormalized non-orthogonalized impulse response function
– which is the change in Yt due to a change in an innovation et . Specifically, we define the impulse re-
sponse of variable i with respect to innovation j as the change in the time t projection of the i th variable
Yi t+h due to the j th innovation e j t

IRFi j (h) = ∂

∂e j t
P t [Yi t+h] .

There are m2 such responses for each horizon h. We can write them as an m ×m matrix

IRF(h) = ∂

∂e ′t
P t [Yt+h] .

Recall the multivariate Wold representation

Yt =µ+
∞∑
`=0

Θ`et−`.
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We can calculate that the projection onto the history at time t is

P t [Yt+h] =µ+
∞∑
`=h

Θ`et+h−` =µ+
∞∑
`=0

Θh+`et−`.

We deduce that the impulse response is IRF(h) = Θh , the hth moving average coefficient matrix. The
invididual impulse response is IRFi j (h) =Θh,i j , the i j th element ofΘh .

Here we have defined the impulse response in terms of the linear projection operator. An alternative
is to define the impulse response in terms of the conditional expectation operator. The two coincide
when the innovations et are a martingale difference sequence (and thus when the true process is linear)
but otherwise will not coincide.

Typically we view impulse responses as a function of the horizon h and plot them as a function of
h for each pair (i , j ). The impulse response function IRFi j (h) is interpreted as how the i th variable re-
sponds over time to the j th innovation.

In a linear vector autoregression the impulse response function is symmetric in negative and positive
innovations. That is, the impact on Yi t+h of a positive innovation e j t = 1 is IRFi j (h) and the impact of
a negative innovation e j t = −1 is −IRFi j (h). Furthermore, the magnitude of the impact is linear in the
magnitude of the innovation. Thus the impact of the innovation e j t = 2 is 2× IRFi j (h) and the impact
of the innovation e j t =−2 is −2× IRFi j (h). This means that the shape of the impulse response function
is unaffected by the magnitude of the innovation. (These are consequences of the linearity of the vector
autoregressive model not necessarily features of the true world.)

The impulse response functions can be scaled as desired. One standard choice is to scale so that the
innovations correspond to one unit of the impulse variable. Thus if the impulse variable is measured in
dollars the impulse response can be scaled to correspond to a change in $1 or some multiple such as a
million dollars. If the impulse variable is measured in percentage points (e.g. an interest rate) then the
impulse response can be scaled to correspond to a change of one percentage point (e.g. from 3% to 4%)
or to correspond to a change of one basis point (e.g. from 3.05% to 3.06%). Another standard choice is to
scale the impulse responses to correspond to a “one standard deviation” innovation. This occurs when
the innovations have been scaled to have unit variances. In this latter case impulse response functions
can be interpreted as responses due to a “typical” sized (one standard deviation) innovation.

Closely related to the IRF is the cumulative impulse response function (CIRF) defined as

CIRF(h) =
h∑
`=1

∂

∂e ′t
P t [Yt+`] =

h∑
`=1

Θ`.

The cumulative impulse response is the accumulated (summed) responses on Yt from time t to t +h.
The limit of the cumulative impulse response as h →∞ is the long-run impulse response matrix

C = lim
h→∞

CIRF(h) =
∞∑
`=1

Θ` =Θ (1) = A (1)−1 .

This is the full (summed) effect of the innovation over all time.
It is useful to observe that when a VAR is estimated on differenced observations∆Yt then cumulative

impulse response is

CIRF(h) = ∂

∂e ′t
P t

[
h∑
`=1

∆Yt+`

]
= ∂

∂e ′t
P t [Yt+h]

which is the impulse response for the variable Yt in levels. More generally, when a VAR is estimated with
some variables in levels and some in differences then the cumulative impulse response for the second
group will coincide with the impulse responses for the same variables measured in levels.
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It is typical to report cumulative impulse response functions for variables which enter a VAR in differ-
ences. In fact, in this context many authors will label the cumulative impulse response as “the impulse
response”.

15.6 VAR(1) Model

The first-order vector autoregressive process, denoted VAR(1), is

Yt = a0 + A1Yt−1 +et

where et is a strictly stationary and ergodic white noise process.
We are interested in conditions under which Yt is a stationary process. Let λi (A) denote the i th

eigenvalue of A.

Theorem 15.6 If et is strictly stationary, ergodic, E‖et‖ < ∞, and |λi (A1)| < 1
for i = 1, ...,m, then the VAR(1) process Yt is strictly stationary and ergodic.

The proof is given in Section 15.31.

15.7 VAR(p) Model

The pth-order vector autoregressive process, denoted VAR(p), is

Yt = a0 + A1Yt−1 +·· ·+ Ap Yt−p +et

where et is a strictly stationary and ergodic white noise process.
We can write the model using the lag operator notation as

A (L)Yt = a0 +et

where
A (z) = I m − A1z −·· ·− Ap zp .

The condition for stationarity of the system can be expressed as a restriction on the roots of the
determinantal equation of the autoregressive polynomial. Recall, a root r of det(A (z)) is a solution to
det(A (r )) = 0.

Theorem 15.7 If all roots r of det(A (z)) satisfy |r | > 1 then the VAR(p) process
Yt is strictly stationary and ergodic.

The proof is structurally identical to that of Theorem 14.23 so is omitted.
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15.8 Regression Notation

Define the
(
mp +1

)×1 vector

X t =


1

Yt−1

Yt−2
...

Yt−p


and the m × (mp +1) matrix A′ = (

a0 A1 A2 · · · Ap
)
. Then the VAR system of equations can be

written as
Yt = A′X t +et . (15.5)

This is a multivariate regression model. The error has covariance matrix

Σ= E[
et e ′t

]
. (15.6)

We can also write the coefficient matrix as A = (
a1 a2 · · · am

)
where a j is the vector of coeffi-

cients for the j th equation. Thus Y j t = a′
j X t +e j t .

In general, if Yt is strictly stationary we can define the coefficient matrix A by linear projection.

A = (
E
[

X t X ′
t

])−1
E
[

X t Y ′
t

]
.

This holds whether or not Yt is actually a VAR(p) process. By the properties of projection errors

E
[

X t e ′t
]= 0. (15.7)

The projection coefficient matrix A is identified if E
[

X t X ′
t

]
is invertible.

Theorem 15.8 If Yt is strictly stationary and 0 < Σ<∞ for Σ defined in (15.6),
then Q = E[

X t X ′
t

]> 0 and the coefficient vector (14.45) is identified.

The proof is given in Section 15.31.

15.9 Estimation

From Chapter 11 the systems estimator of a multivariate regression is least squares. The estimator
can be written as

Â =
( n∑

t=1
X t X ′

t

)−1 ( n∑
t=1

X t Y ′
t

)
.

Alternatively, the coefficient estimator for the j th equation is

â j =
( n∑

t=1
X t X ′

t

)−1 ( n∑
t=1

X t Y j t

)
.
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The least squares residual vector is êt = Yt − Â
′
X t . The estimator of the covariance matrix is

Σ̂= 1

n

n∑
t=1

êt ê ′t . (15.8)

(This may be adjusted for degrees-of-freedom if desired, but there is no established finite-sample justi-
fication for a specific adjustment.)

If Yt is strictly stationary and ergodic with finite variances then we can apply the Ergodic Theorem
(Theorem 14.9) to deduce that

1

n

n∑
t=1

X t Y ′
t −→p E

[
X t Y ′

t

]
and

n∑
t=1

X t X ′
t −→p E

[
X t X ′

t

]
.

Since the latter is positive definite by Theorem 15.8 we conclude that Â is consistent for A. Standard
manipulations show that Σ̂ is consistent as well.

Theorem 15.9 If Yt is strictly stationary, ergodic, and 0 < Σ <∞ then Â −→
p

A

and Σ̂−→
p
Σ as n →∞.

VAR models can be estimated in Stata using the var command.

15.10 Asymptotic Distribution

Set

a = vec(A) =

 a1
...

am

 , â = vec
(

Â
)=

 â1
...

âm

 .

By the same analysis as in Theorem 14.30 combined with Theorem 11.1 we obtain the following.

Theorem 15.10 Suppose that Yt follows the VAR(p) model, all roots r of
det(A (z)) satisfy |r | > 1, E [et |Ft−1] = 0, E‖et‖4 <∞, and Σ> 0, then as n →∞,p

n (â −a) −→
d

N(0,V ) where

V =Q
−1
ΩQ

−1

Q = I m ⊗Q

Q = E[
X t X ′

t

]
Ω= E[

et e ′t ⊗X t X ′
t

]
.
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Notice that the theorem uses the strong assumption that the innovation is a martingale difference
sequence E [et |Ft−1] = 0. This means that the VAR(p) model is the correct conditional mean for each
variable. In words, these are the correct lags and there is no omitted nonlinearity.

If we further strengthen the MDS assumption to conditional homoskedasticity

E
[
et e ′t |Ft−1

]=Σ
then the asymptotic variance simplifies as

Ω=Σ⊗Q

V =Σ⊗Q−1.

In contrast, if the VAR(p) is an approximation then the MDS assumption is not appropriate. In this
case the asymptotic distribution can be derived under mixing conditions.

Theorem 15.11 Assume that Yt is strictly stationary, ergodic, and for some r >
4, E‖Yt‖r <∞ and the mixing coefficients satisfy

∑∞
`=1α(`)1−4/r <∞. Let a be

the projection coefficient vector and et the projection error. Then as n → ∞,p
n (â −a) −→

d
N(0,V ) where

V = (
I m ⊗Q−1)Ω(

I m ⊗Q−1)
Q = E[

X t X ′
t

]
Ω=

∞∑
`=−∞

E
[
et−`e ′t ⊗X t−`X ′

t

]
.

This theorem does not require that the true process is a VAR. Instead, the coefficients are defined as
those which produce the best (mean square) approximation, and the only requirements on the true pro-
cess are general dependence conditions. The theorem shows that the coefficient estimators are asymp-
totically normal with a covariance matrix which takes a “long-run” sandwich form.

15.11 Covariance Matrix Estimation

The classic homoskedastic estimator of the covariance matrix for â equals

V̂
0
â = Σ̂⊗ (

X ′X
)−1 . (15.9)

Estimators adjusted for degree-of-freedom can also be used though there is no established finite-sample
justification. This variance estimator is appropriate under the assumption that the conditional mean is
correctly specified as a VAR(p) and the innovations are conditionally homoskedastic.

The heteroskedasticity-robust estimator equals

V̂ â =
(

I n ⊗ (
X ′X

)−1
)( n∑

t=1

(
êt ê ′t ⊗X t X ′

t

))(
I n ⊗ (

X ′X
)−1

)
. (15.10)

This variance estimator is appropriate under the assumption that the conditional mean is correctly spec-
ified as a VAR(p) but does not require that the innovations are conditionally homoskedastic.
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The Newey-West estimator equals

V̂ â =
(

I n ⊗ (
X ′X

)−1
)
Ω̂M

(
I n ⊗ (

X ′X
)−1

)
(15.11)

Ω̂M =
M∑

`=−M
w`

∑
1≤t−`≤n

(êt−`⊗X t−`)
(
ê ′t ⊗X ′

t

)
w` = 1− |`|

M +1
.

The number M is called the lag truncation number. An unweighted version sets w` = 1. The Newey-West
estimator does not require that the VAR(p) is correctly specified.

Traditional textbooks have only used the homoskedastic variance estimation formula (15.9) and con-
sequently existing software follows the same convention. For example, the var command in Stata dis-
plays only homoskedastic standard errors. Some researchers use the heteroskedasticity-robust estimator
(15.10). The Newey-West estimator (15.11) is not commonly used for VAR models.

Asymptotic approximations tend to be much less accurate under time series dependence than for
independent observations. Therefore bootstrap methods are popular. In Section 14.46 we described
several bootstrap methods for time series observations. While Section 14.46 focused on univariate time
series, the extension to multivariate observations is straightforward.

15.12 Selection of Lag Length in an VAR

For a data-dependent rule to pick the lag length p it is recommended to minimize an information
criterion. The formula for the AIC is

AIC(p) = n logdet Σ̂(p)+2K (p)

Σ̂(p) = 1

n

n∑
t=1

êt (p)êt (p)′

K (p) = m(pm +1)

where K (p) is the number of parameters and êt (p) is the OLS residual vector from the model with p lags.
The log determinant is the criterion from the multivariate normal likelihood.

In Stata the AIC for a set of estimated VAR models can be compared using the varsoc command. It
should be noted, however, that the Stata routine actually displays AIC(p)/n = logdet Σ̂(p)+2K (p)/n. This
does not affect the ranking of the models but makes the differences between models appear misleadingly
small.

15.13 Illustration

We estimate a three-variable system which is a simplified version of a model often used to study
the impact of monetary policy. The three variables are quarterly from FRED-QD: real GDP growth rate
(100∆ log(GDPt )), GDP inflation rate (100∆ log(Pt )), and the Federal funds interest rate. VARs from lags 1
through 8 were estimated by least squares. The model with the smallest AIC is the VAR(6). The coefficient
estimates and (homoskedastic) standard errors for the VAR(6) are reported in Table 15.1.

Examining the coefficients in the table we can see that GDP displays a moderate degree of serial
correlation and shows a large response to the federal funds rate, especially at lags 2 and 3. Inflation also
displays serial correlation, shows minimal response to GDP, and also has meaningful response to the
federal funds rate. The federal funds rate has the strongest serial correlation. Overall, it is difficult to
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read too much meaning into the coefficient estimates due to the complexity of the interactions. Because
of this difficulty it is typical to focus on other representations of the coefficient estimates such as impulse
responses which we discuss in the upcoming sections.

15.14 Predictive Regressions

In some contexts (including prediction) it is useful to consider models where the dependent variable
is dated multiple periods ahead of the right-hand-side variables. These equations can be single equation
or multivariate; we can consider both as special cases of a VAR (as a single equation model can be written
as one equation taken from a VAR system). An h-step predictive VAR(p) takes the form

Yt+h = b0 +B 1Yt +·· ·+B p Yt−p+1 +ut . (15.12)

The integer h ≥ 1 is the horizon. A one-step predictive VAR equals a standard VAR. The coefficients
should be viewed as the best linear predictors of Yt+h given (Yt , ...,Yt−p+1).

There is an interesting relationship between a VAR model and the corresponding h-step predictive
VAR model.

Theorem 15.12 If Yt is a VAR(p) process then its h-step predictive regression
is a predictive VAR(p) with ut a MA(h-1) process and B 1 =Θh = IRF(h).

The proof of Theorem 15.12 is presented in Section 15.31.
There are several implications of this theorem. First, if Yt is a VAR(p) process then the correct number

of lags for an h-step predictive regression is also p lags. Second, the error in a predictive regression is a
MA process and is thus serially correlated. The linear dependence, however, is capped by the horizon.
Third, the leading coefficient matrix corresponds to the hth moving average coefficient matrix which also
equals the hth impulse response matrix.

The predictive regression (15.12) can be estimated by least squares. We can write the estimates as

Yt+h = b̂0 + B̂ 1Yt +·· ·+ B̂ p Yt−p+1 + ût . (15.13)

For a distribution theory we need to apply Theorem 15.11 since the innovations ut are a moving average
and thus violate the MDS assumption. It follows as well that the covariance matrix for the estimators
should be estimated by the Newey-West (15.11) estimator. There is a difference, however. Since ut is
known to be a MA(h-1) a reasonable choice is to set M = h−1 and use the simple weights w` = 1. Indeed,
this was the original suggestion by L. Hansen and Hodrick (1980).

For a distributional theory we can apply Theorem 15.11. Let b be the vector of coefficients in (15.12)
and b̂ the corresponding least squares estimator. Let X t be the vector of regressors in (15.12).
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Table 15.1: Vector Autoregression

GDP INF FF
GDPt−1 0.25 0.01 0.08

(0.07) (0.02) (0.02)
GDPt−2 0.23 −0.02 0.04

(0.07) (0.02) (0.02)
GDPt−3 0.00 0.03 0.01

(0.07) (0.02) (0.02)
GDPt−4 0.14 0.04 −0.02

(0.07) (0.02) (0.02)
GDPt−5 −0.02 −0.03 0.04

(0.07) (0.02) (0.02)
GDPt−6 0.05 −0.00 −0.01

(0.06) (0.02) (0.02)
I N Ft−1 0.11 0.57 0.01

(0.20) (0.07) (0.05)
I N Ft−2 −0.17 0.10 0.17

(0.23) (0.08) (0.06)
I N Ft−3 0.01 0.09 −0.05

(0.23) (0.08) (0.06)
I N Ft−4 0.16 0.14 −0.05

(0.23) (0.08) (0.06)
I N Ft−5 0.12 −0.05 −0.05

(0.24) (0.08) (0.06)
I N Ft−6 −0.14 0.10 0.09

(0.21) (0.07) (0.05)
F Ft−1 0.13 0.28 1.14

(0.26) (0.08) (0.07)
F Ft−2 −1.50 −0.27 −0.53

(0.38) (0.12) (0.10)
F Ft−3 1.40 0.12 0.53

(0.40) (0.13) (0.10)
F Ft−4 −0.57 −0.13 −0.28

(0.41) (0.13) (0.11)
F Ft−5 0.01 0.25 0.28

(0.40) (0.13) (0.10)
F Ft−6 0.47 −0.27 −0.24

(0.26) (0.08) (0.07)
Intercept 1.15 0.22 −0.33

(0.54) (0.18) (0.14)
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Theorem 15.13 If Yt is strictly stationary, ergodic, Σ > 0, and for some r > 4,
E‖Yt‖r <∞ and the mixing coefficients satisfy

∑∞
`=1α(`)1−4/r <∞, then as n →

∞,
p

n
(
b̂ −b

)−→
d

N(0,V ) where

V = (
I m ⊗Q−1)Ω(

I m ⊗Q−1)
Q = E[

X t X ′
t

]
Ω=

∞∑
`=−∞

E
[
(ût−`⊗X t−`)

(
û′

t ⊗X ′
t

)]
.

15.15 Impulse Response Estimation

Reporting of impulse response estimates is one of the most common applications of vector autore-
gressive modeling. There are several methods to estimate the impulse response function. In this section
we review the most common estimator based on the estimated VAR parameters.

Within a VAR(p) model the impulse responses are determined by the VAR coefficients. We can write
this mapping as Θh = gh (A). The plug-in approach suggests the estimator Θ̂h = gh(Â) given the VAR(p)
coefficient estimator Â. These are the impulse responses implied by the estimated VAR coefficients.
While it is possible to explicitly write the function gh (A), a computationally simple approach is to use
Theorem 15.5 which shows that the impulse response matrices can be written as a simple recursion in
the VAR coefficients. Thus the impulse response estimator satisfies the recursion

Θ̂h =
min[h,p]∑
`=1

Â`Θ̂h−`.

We then set ÎRF(h) = Θ̂h .
This is the the most commonly used method for impulse response estimation and it is the method

implemented in standard packages.
Since Â is random so is ÎRF(h) as it is a nonlinear function of Â. Using the delta method, we deduce

that the elements of ÎRF(h) (the impulse responses) are asymptotically normally distributed. With some
messy algebra explicit expressions for the asymptotic variances can be obtained. Sample versions can be
used to calculate asymptotic standard errors. These can be used to form asymptotic confidence intervals
for the impulse responses.

The asymptotic approximations, however, can be poor. As we discussed earlier the asymptotic ap-
proximations for the distribution of the coefficients Â can be poor due to the serial dependence in the
observations. The asymptotic approximations for ÎRF(h) can be significantly worse because the impulse
responses are highly nonlinear functions of the coefficients. For example, in the simple AR(1) model
with coefficient estimate α̂ the hth impulse response is α̂h which is highly nonlinear for even moderate
horizons h.

Consequently, asymptotic approximations are less popular than bootstrap approximations. The
most popular bootstrap approximation uses the recursive bootstrap (see Section 14.46) using the fit-
ted VAR model and then calculates confidence intervals for the impulse responses with the percentile
method. An unfortunate feature of this choice is that the percentile bootstrap confidence interval is bi-
ased since the nonlinear impulse response estimates are biased and the percentile bootstrap accentuates
bias.



CHAPTER 15. MULTIVARIATE TIME SERIES 522

Some advantages of the estimation method as described is that it produces impulse response esti-
mates which are directly related to the estimated VAR(p) model and are internally consistent with one
another. The method is also numerically stable. It is efficient when the true process is a true VAR(p)
with conditionally homoskedastic MDS innovations. When the true process is not a VAR(p) it can be
thought of as a non-parametric estimator of the impulse response if p is large (or selected appropriately
in a data-dependent fashion, such as by the AIC).

A disadvantage of this estimator is that it is a highly nonlinear function of the VAR coefficient estima-
tors. Therefore the distribution of the impulse response estimator is unlikely to be well approximated by
the normal distribution. When the VAR(p) is not the true process then it is possible that the nonlinear
transformation accentuates the misspecification bias.

Impulse response functions can be calculated and displayed in Stata using the irf command. The
command irf create is used to calculate impulse response functions and confidence intervals. The
default confidence intervals are asymptotic (delta method). Bootstrap (recursive method) standard er-
rors can be substituted using the bs option. The command irf graph irf produces graphs of the
impulse response function along with 95% asymptotic confidence intervals. The command irf graph

cirf produces the cumulative impulse response function. It may be useful to know that the impulse
response estimates are unscaled so represent the response due to a one-unit change in the impulse vari-
able. A limitation of the Stata irf command is that there are limited options for standard error and
confidence interval construction. The asymptotic standard errors are calculated using the homoskedas-
tic formula not the correct heteroskedastic formula. The bootstrap confidence intervals are calculated
using the normal approximation bootstrap confidence interval, the least reliable bootstrap confidence
interval method. Better options such as the bias-corrected percentile confidence interval are not pro-
vided as options.

15.16 Local Projection Estimator

Jordà (2005) observed that the impulse response can be estimated by a least squares predictive re-
gression. The key is Theorem 15.12 which established that Θh = B 1, the leading coefficient matrix in the
h-step predictive regression.

The method is as follows. For each horizon h estimate a predictive regression (15.12) to obtain the
leading coefficient matrix estimator B̂ 1. The estimator is ÎRF(h) = B̂ 1 and is known as the local projec-
tion estimator.

Theorem 15.13 shows that the local projection impulse response estimator is asymptotically normal.
Newey-West methods must be used for calculation of asymptotic standard errors since the regression
errors are serially correlated.

Jordà (2005) speculates that the local projection estimator will be less sensitive to misspecification
since it is a straightforward linear estimator. This is intuitive but unclear. Theorem 15.12 relies on the
assumption that Yt is a VAR(p) process, and fails otherwise. Thus if the true process is not a VAR(p) then
the coefficient matrix B 1 in (15.12) does not correspond to the desired impulse response matrix Θh and
hence will be misspecified. The accuracy (in the sense of low bias) of both the conventional and the local
projection estimator relies on p being sufficiently large that the VAR(p) model is a good approximation
to the true infinite-order regression (15.4). Without a formal theory it is difficult to know which estimator
is more robust than the other.

One implementation challenge is the choice of p. While the method allows for p to vary across hori-
zon h there is no well-established method for selection of the VAR order for predictive regressions. (Stan-
dard selection criteria such as AIC are inappropriate under serially correlated errors just as conventional
standard errors are inappropriate.) Therefore the seemingly natural choice is to use the same p for all
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horizons and base this choice on the one-step VAR model where AIC can be used for model selection.
An advantage of the local projection method is that it is a direct estimator of the impulse response

and thus possibly more robust than the conventional method. It is a linear estimator and thus likely to
have a better-behaved asymptotic distribution.

A disadvantage is that the method relies on a regression (15.12) that has serially correlated errors. The
latter are highly correlated at long horizons and this renders the estimator imprecise. Local projection
estimators tend to be less smooth and more erratic than those produced by the conventional estimator
reflecting a possible lack of precision.

15.17 Regression on Residuals

If the innovations et were observed it would be natural to directly estimate the coefficients of the
multivariate Wold decomposition. We would pick a maximum horizon h and then estimate the equation

Yt =µ+Θ1et−1 +Θ2et−2 +·· ·+Θhet−h +ut

where

ut = et +
∞∑

`=h+1
Θ`et−`.

The variables (et−1, ...,et−h) are uncorrelated with ut so the least squares estimator of the coefficients is
consistent and asymptotically normal. Since ut is serially correlated the Newey-West method should be
used to calculate standard errors.

In practice the innovations et are not observed. If they are replaced by the residuals êt from an esti-
mated VAR(p) then we can estimate the coefficients by least squares applied to the equation

Yt =µ+Θ1êt−1 +Θ2êt−2 +·· ·+Θh êt−h + ût .

This idea originated with Durbin (1960).
This is a two-step estimator with generated regressors. (See Section 12.26.) The impulse response

estimators are consistent and asymptotically normal but with a non-standard covariance matrix due to
the two-step estimation. Conventional, robust, and Newey-West standard errors do not account for this
without modification.

Chang and Sakata (2007) proposed a simplified version of the Durbin regression. Notice that for any
horizon h we can rewrite the Wold decomposition as

Yt+h =µ+Θhet + vt+h

where

vt =
h−1∑
`=0

Θ`et−`+
∞∑

`=h+1
Θ`et−`.

The regressor et is uncorrelated with vt+h . Thus Θh can be estimated by a regression of Yt+h on et .
In practice we can replace et by the least squares residual êt from an estimated VAR(p) to estimate the
regression

Yt+h =µ+Θh êt + v̂t+h . (15.14)

Similar to the Durbin regression the Chang-Sakata estimator is a two-step estimator with a generated
regressor. However, as it takes the form studied in Section 12.27 it can be shown that the Chang-Sakata
two-step estimator has the same asymptotic distribution as the idealized one-step estimator as if et were
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observed. Thus the standard errors do not need to be adjusted for generated regressors which is an ad-
vantage. The errors are serially correlated so Newey-West standard errors should be used. The variance
of the error vt+h is larger than the variance of the error ut in the Durbin regression so the Chang-Sakata
estimator may be less precise than the Durbin estimator.

Chang and Sakata (2007) also point out the following implication of the FWL theorem. The least
squares slope estimator in (15.14) is algebraically identical1 to the slope estimator B̂ 1 in a predictive
regression with p −1 lags. Thus the Chang-Sakata estimator is similar to a local projection estimator.

15.18 Orthogonalized Shocks

We can use the impulse response function to examine how the innnovations impact the time-paths
of the variables. A difficulty in interpretation, however, is that the elements of the innovation vector et

are contemporeneously correlated. Thus e j t and ei t are (in general) not independent, so consequently it
does not make sense to treat e j t and ei t as fundamental “shocks”. Another way of describing the problem
is that it does not make sense, for example, to describe the impact of e j t while “holding” ei t constant.

The natural solution is to orthogonalize the innovations so that they are uncorrelated and then view
the orthogonalized errors as the fundamental “shocks”. Recall that et is mean zero with covariance matrix
Σ. We can factor Σ into the product of an m ×m matrix B with its transpose Σ = B B ′. The matrix B is
called a “square root” of Σ. (See Section A.13.) Define εt = B−1et . The random vector εt has mean
zero and covariance matrix B−1ΣB−1′ = B−1B B ′B−1′ = I m . The elements εt = (ε1t , ...,εmt ) are mutually
uncorrelated. We can write the innovations as a function of the orthogonalized errors as

et = Bεt . (15.15)

To distinguish εt from et we will typically call εt the “orthogonalized shocks” or more simply as the
“shocks” and continue to call et the “innovations”.

When m > 1 there is not a unique square root matrix B so there is not a unique orthogonalization.
The most common choice (and was originally advocated by Sims (1980)) is the Cholesky decomposition
(see Section A.16). This sets B to be lower triangular, meaning that it takes the form

B =
 b11 0 0

b21 b22 0
b31 b32 b33


with non-negative diagonal elements. We can write the Cholesky decomposition of a matrix A as C =
chol(A) which means that A =CC ′ with C lower triangular. We thus set

B = chol(Σ). (15.16)

Equivalently, the innovations are related to the orthogonalized shocks by the equations

e1t = b11ε1t

e2t = b21ε1t +b22ε2t

e3t = b31ε1t +b31ε2t +b33ε3t .

This structure is recursive. The innovation e1t is a function only of the single shock ε1t . The inno-
vation e2t is a function of the shocks ε1t and ε2t , and the innovation e3t is a function of all three shocks.

1Technically, if the sample lengths are adjusted.
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Another way of looking at the structure is that the first shock ε1t affects all three innovation, the second
shock ε2t affects e2t and e3t , and the third shock ε3t only affects e3t .

A recursive structure is an exclusion restriction. The recursive structure excludes ε2t and ε3t contem-
poreneously affecting e1t , and excludes ε3t contemporeneously affecting e2t .

When using the Cholesky decomposition the recursive structure is determined by the ordering of the
variables in the system. The order matters and is the key identifying assumption. We will return to this
issue later.

Finally, we mention that the system (15.15) is equivalent to the system

Aet = εt (15.17)

where A = B−1 is lower triangular when B is lower triangular. The representation (15.15) is more conve-
nient, however, for most of our purposes.

15.19 Orthogonalized Impulse Response Function

We have defined the impulse response function as the change in the time t projection of the variables
Yt+h due to the innovation et . As we discussed in the previous section since the innovations are contem-
poreneously correlated it makes better sense to focus on changes due to the orthogonalized shocks εt .
Consequently we define the orthgonalized impulse response function (OIRF) as

OIRF(h) = ∂

∂ε′t
P t [Yt+h] .

We can write the multivariate Wold representation as

Yt =µ+
∞∑
`=0

Θ`et−` =µ+
∞∑
`=0

Θ`Bεt−`

where B is from (15.16). We deduce that

OIRF(h) =ΘhB = IRF(h)B .

This is the non-orthogonalized impulse response matrix multiplied by the matrix square root B .
Write the rows of the matrixΘh as

Θh =
 θ′1h

θ′mh


and the columns of the matrix B as B = [b1, ...,bm]. We can see that

OIRFi j (h) = [ΘhB ]i j = θ′i hb j .

There are m2 such responses for each horizon h.
The cumulative orthogonalized impulse response function (COIRF) is

COIRF(h) =
h∑
`=1

OIRF(`) =
h∑
`=1

Θ`B .
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15.20 Orthogonalized Impulse Response Estimation

We have discussed estimation of the moving average matricesΘ`. We need an estimator of B .
We first estimate the VAR(p) model by least squares. This gives us the coefficient matrices Â and the

error covariance matrix Σ̂. From the latter we apply the Cholesky decomposition B̂ = chol
(
Σ̂

)
so that

Σ̂= B̂ B̂
′
. (See Section A.16 for the algorithm.) The orthogonalized impulse response estimators are

�OIRF(h) = Θ̂hB̂ = θ̂′i h b̂ j .

The estimator �OIRF(h) is a nonlinear function of Â and Σ̂. It is asymptotically normally distributed
by the delta method. This allows for explicit calculation of asymptotic standard errors. These can be
used to form asymptotic confidence intervals for the impulse responses.

As discussed earlier, the asymptotic approximations can be quite poor. Consequently bootstrap ap-
proximations are more widely used than asymptotic methods.

Orthogonalized impulse response functions can be displayed in Stata using the irf command. The
command irf graph oirf produces graphs of the orthogonalized impulse response function along
with 95% asymptotic confidence intervals. The command irf graph coirf produces the cumulative
orthogonalized impulse response function. It may also be useful to know that the OIRF are scaled for a
one-standard deviation shock so the impulse response represents the response due to a one-standard-
deviation change in the impulse variable. As discussed earlier, the Stata irf command has limited op-
tions for standard error and confidence interval construction. The asymptotic standard errors are cal-
culated using the homoskedastic formula not the correct heteroskedastic formula. The bootstrap confi-
dence intervals are calculated using the normal approximation bootstrap confidence interval.

15.21 Illustration

To illustrate we use the three-variable system from Section 15.13. We use the ordering (1) real GDP
growth rate, (2) inflation rate, (3) Federal funds interest rate. We discuss the choice later when we dis-
cuss identification. We use the estimated VAR(6) and calculate the orthogonalized impulse response
functions using the standard VAR estimator.

In Figure 15.1 we display the estimated orthogonalized impulse response of the GDP growth rate in
response to a one standard deviation increase in the federal funds rate. The left plot shows the impulse
response function and the middle plot the cumulative impulse response function. As we discussed ear-
lier the interpretation of the impulse response and the cumulative impulse response depends on whether
the variable enters the VAR in differences or in levels. In this case, GDP growth is the first difference of
the natural logarithm. Thus the left plot (the impulse response function) shows the effect of interest rates
on the growth rate of GDP. The middle plot (the cumulative impulse response) shows the effect on the
log-level of GDP. The left plot shows that the GDP growth rate is negatively affected in the second quarter
after an interest rate increase (a drop of about 0.2%, non-annualized), and the negative effects continue
for several quarters following. The middle plot shows the effect on the level of GDP measured as per-
centage changes. It shows that an interest rate increase causes GDP to fall for about 8 quarters, reducing
GDP by about 0.6%.

15.22 Forecast Error Decomposition

An alternative tool to investigate an estimated VAR is the forecast error decomposition which de-
composes multi-step forecast error variances by the component shocks. The forecast error decomposi-
tion indicates which shocks contribute towards the fluctuations of each variable in the system.
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Figure 15.1: Response of GDP Growth to Orthogonalized Fed Funds Shock

It is defined as follows. Take the moving average representation of the i th variable Yi ,t+h written as a
function of the orthogonalized shocks

Yi ,t+h =µi +
∞∑
`=0

θi (`)′Bεt+h−`.

The best linear forecast of Yt+h at time t is

Yi ,t+h|t =µi +
∞∑
`=h

θi (`)′Bεt+h−`.

The h-step forecast error is the difference

Yi ,t+h −Yi ,t+h|t =
h−1∑
`=0

θi (`)′Bεt+h−`.

The variance of this forecast error is

var
[
Yi ,t+h −Yi ,t+h|t

]= h−1∑
`=0

var
[
θi (`)′Bεt+h−`

]= h−1∑
`=0

θi (`)′B B ′θi (`). (15.18)

To isolate the contribution of the j th shock, notice that

et = Bεt = b1ε1t +·· ·+bmεmt .

Thus the contribution of the j th shock is b jε j t . Now imagine replacing Bεt in the variance calculation
by the j th contribution b jε j t . This is

var
[
Yi t+h −Yi ,t+h|t

]= h−1∑
`=0

var
[
θi (`)′b jε j t+h−`

]= h−1∑
`=0

(
θi (`)′b j

)2 . (15.19)

Examining (15.18) and using B = [b1, ...,bm] we can write (15.18) as

var
[
Yi ,t+h −Yi ,t+h|t

]= m∑
j=1

h−1∑
`=0

(
θi (`)′b j

)2 . (15.20)
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The forecast error decomposition is defined as the ratio of the j th contribution to the total which is
the ratio of (15.19) to (15.20):

FEi j (h) =
∑h−1
`=0

(
θi (`)′b j

)2∑m
j=1

∑h−1
`=0

(
θi (`)′b j

)2 .

The FEi j (h) lies in [0,1] and varies across h. Small values indicate that ε j t contributes only a small
amount to the variance of Yi t . Large values indicate that ε j t contributes a major amount of the vari-
ance of εi t .

A forecast error decomposition requires orthogonalized innovations. There is no non-orthogonalized
version.

The forecast error decomposition can be calculated and displayed in Stata using the irf command.
The command irf graph fevd produces graphs of the forecast error decomposition along with 95%
asymptotic confidence intervals.

To illustrate, in Figure 15.1 (right plot) we display the estimated forecast error decomposition of the
GDP growth rate due to the federal funds rate. This shows the contribution of movements in the federal
funds rate towards fluctuations in GDP growth. The estimated effect is about 15% at long horizons. This
is a small but important share of the variance of GDP growth. Combined with the impulse response func-
tions we learn two lessons: (1) Monetary policy (movements in the federal funds rate) can meaningfully
affect GDP growth; (2) Monetary policy only accounts for a small component of fluctuations in U.S. GDP.

15.23 Identification of Recursive VARs

As we have discussed a common method to orthogonalize the VAR errors is the lower triangular
Cholesky decomposition which implies a recursive structure. The ordering of the variables is critical
this recursive structure. Unless the errors are uncorrelated different orderings will lead to different im-
pulse response functions and forecast error decompositions. The ordering must be selected by the user;
there is no data-dependent choice.

In order for impulse responses and forecast error decompositions to be interpreted causally the or-
thogonalization must be identified by the user based on a structural economic argument. The choice is
similar to the exclusion restrictions necessary for specification of an instrumental variables regression.
By ordering the variables recursively we are effectively imposing exclusion restrictions. Recall that in our
empirical example we used the ordering: (1) real GDP growth rate, (2) inflation rate, (3) Federal funds
interest rate. This means that in the equation for GDP we excluded the contemporeneous inflation rate
and interest rate, and in the equation for inflation we excluded the contemporenous interest rate. These
are exclusion restrictions. Are they justified?

One approach is to order first the variables which are believed to be contemporaneously affected by
the fewest number of shocks. One way of thinking about it is that they are the variables which are “most
sticky” within a period. The variables listed last are those which are believed to be contemporanously
affected by the greatest number of shocks. These are the ones which are able to respond within a single
period to the shocks or are most flexible. In our example we listed output first, prices second and interest
rates last. This is consistent with the view that output is effectively pre-determined (within a period) and
does not (within a period) respond to price and interest rate movements. Prices are allowed to respond
within a period in response to output changes but not in response to interest rate changes. The latter
could be justified if interest rate changes affect investment decisions but the latter take at least one period
to implement. By listing the federal funds rate last the model allows monetary policy to respond within
a period to contemporeneous information about output and prices.

In general, this line of reasoning suggests that production measures should be listed first, goods
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prices second, and financial prices last. This reasoning is more credible when the time periods are short,
and less credible for longer time periods.

Further justifications for possible recursive orderings can include: (1) information delays; (2) imple-
mentation delays; (3) institutions; (4) market structure; (5) homogeneity; (6) imposing estimates from
other sources. In most cases such arguments can be made but will be viewed as debatable and restric-
tive. In any situation it is best to be explicit about your choice and reasoning.

Returning to the empirical illustration it is fairly conventional to order the fed funds rate last. This
allows the fed funds rate to respond to contemporeneous information about output and price growth
and identifies the fed funds policy shock by the assumption that it does not have a contemporenous
impact on the other variables. It is not clear, however, how to order the other two variables. For simplicity
consider a traditional aggregate supply/aggregate demand model of the determination of output and the
price level. If the aggregate supply curve is perfectly inelastic in the short run (one quarter) then output
is effectively fixed (sticky) so changes in aggregate demand affect prices but not output. Changes in
aggregate supply affect both output and prices. Thus we would want to order GDP first and inflation
second. This choice would identify the GDP error as the aggregate supply shock. This is the ordering
used in our example.

In contrast, suppose that the aggregate supply curve is perfectly elastic in the short run. Then prices
are fixed and output is flexible. Changes in aggregate supply affect both price and output but changes
in aggregate demand only affect output. In this case we would want to order inflation first and GDP
second. This choice identifies the inflation error as the aggregate supply shock, the opposite case from
the previous assumption!

If the choice between perfectly elastic and perfectly inelastic aggregate supply is not credible then
the supply and demand shocks cannot be separately identified based on ordering alone. In this case
the full set of impulse responses and error decompositions are not identified. However, a subset may be
identified. In general, if the shocks can be ordered in groups then we can identify any shock for which a
group has a single variable. In our example, consider the ordering (1) GDP and inflation; (2) federal funds
rate. This means that the model assumes that GDP and inflation do not contemporeneously respond to
interest rate movements but no other restrictions are imposed. In this case the fed funds policy shock is
identified. This means that impulse responses of all three variables with respect to the policy shock are
identified and similarly the forecast error composition of the effect of the fed funds shock on each vari-
able is identified. These can be estimated by a VAR using the ordering (GDP, inflation, federal funds rate)
as done in our example or using the ordering (inflation, GDP, federal funds rate). Both choices will lead
to the same estimated impulse responses as described. The remaining impulse responses (responses to
GDP and inflation shocks), however, will differ across these two orderings.

15.24 Oil Price Shocks

To further illustrate the identification of impulse response functions by recursive structural assump-
tions we repeat here some of the analysis from Kilian (2009). His paper concerns the identification of
the factors affecting crude oil prices, in particular separating supply and demand shocks. The goal is to
determine how oil prices respond to economic shocks and how the responses differ by the type of shock.

To answer this question Kilian uses a three-variable VAR with monthly measures of global oil pro-
duction, global economic activity, and the global price of crude oil for 1973m2-2007m12. He uses global
variables since the price of crude oil is globally determined. One innovation in the paper is that Kil-
ian develops a new index of global economic activity based on ocean freight rates. His motivation is
that shipping rates are directly related to the global demand for industrial commodities. This data set is
posted on the textbook webpage as Kilian2009.
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Kilian argues that these three variables are determined by three economic shocks: oil supply, aggre-
gate demand, and oil demand. He suggests that oil supply shocks should be thought of as disruptions
in production, processing, or shipping. Aggregate demand is global economic activity. Kilian also ar-
gues that oil demand shocks are primarily due to the precautionary demand for oil driven by uncertainty
about future oil supply shortfalls.

To identify the shocks Kilian makes the following exclusion restrictions. First, he assumes that the
short-run (one month) supply of crude oil is inelastic with respect to price. Equivalently, oil production
takes at least one month to respond to price changes. This restriction is believed to be plausible because
of technological factors in crude oil production. It is costly to open new oil fields; and it is nearly impossi-
ble to cap an oil well once tapped. Second, Kilian assumes that in the short-run (one month) global real
economic activity does not respond to changes in oil prices (due to shocks specific to the oil market),
while economic activity is allowed to respond to oil production shocks. This assumption is viewed by
Kilian as plausible due to the sluggishness in the response of economic activity to price changes. Crude
oil prices, however, are allowed to respond simultaneously to all three shocks.

Kilian’s identification strategy is similar to that described in the previous section for the simple ag-
gregate demand/aggregate supply model. The separation of supply and demand shocks is achieved by
exclusion restrictions which imply short-run inelasticities. The plausibility of these assumptions rests in
part on the monthly frequency of the data. While it is plausible that oil production and economic activity
may not respond within one month to price shocks, it is much less plausible that there is no response
for a full quarter. Kilian’s least convincing identifying assumption (in my opinion) is the assumption that
economic activity does not respond simultaneously to oil price changes. While much economic activity
is pre-planned and hence sluggish to respond, some economic activity (recreational driving, for exam-
ple) may immediately respond to price changes.

Kilian estimates the three-variable VAR using 24 lags and calculates the orthogonalized impulse re-
sponse functions using the ordering implied by these assumptions. He does not discuss the choice of
24 lags but presumably this is intended to allow for flexible dynamic responses. If the AIC is used for
model selection, three lags would be selected. For the analysis reported here I used 4 lags. The results are
qualitatively similar to those obtained using 24 lags. For ease of interpretation oil supply is entered neg-
atively (multiplied by −1) so that all three shocks are scaled to increase oil prices. The impulse response
functions for the price of crude oil are displayed in Figure 15.2 for 1-24 months. Panel (a) displays the re-
sponse of crude oil prices due to an oil supply shock, panel (b) displays the response due to an aggregate
demand shock, and panel (c) displays the response due to an oil-demand shock. Notice that all three
figures have been displayed using the same y-axis scalings so that the figures are comparable.

What is noticeable about the figures is how differently crude oil prices respond to the three types of
shocks. Panel (a) shows that oil prices are only minimally affected by oil production shocks. There is an
estimated small short term increase in oil prices, but it is not statistically significant and it reverses within
one year. Panel (b) shows that oil prices are significantly affected by aggregate demand shocks and the
effect cumulatively increases over two years. This is not surprising. Economic activity relies on crude
oil and economic activity is serially correlated. Panel (c) shows that oil prices are strongly immediately
affected by oil demand shocks but the effect attenuates over time. This is a reverse pattern than that
found for aggregate demand shocks.

The Kilian (2009) paper is an excellent example of how recursive orderings can be used to identify an
orthogonalized VAR through a careful discussion of the causal system and the use of monthly observa-
tions.
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Figure 15.2: Response of Oil Prices to Orthogonalized Shocks

15.25 Structural VARs

Recursive models do not allow for simultaneity between the elements of et and thus the variables
Yt cannot be contemporeneously endogenous. This is highly restrictive and may not credibly describe
many economic systems. There is a general preference in the economics community for structural vec-
tor autoregressive models (SVARs) which use alternative identification restrictions which do not rely
exclusively on recursiveness. Two popular categories of structural VAR models are those based on short-
run (contemporeneous) restrictions and those based on long-run (cumulative) restrictions. In this sec-
tion we review SVARs based on short-run restrictions.

When we introduced methods to orthogonalize the VAR errors we pointed out that we can represent
the relationship between the errors and shocks using either the equation et = Bεt (15.15) or the equation
Aet = εt (15.17). Equation (15.15) writes the errors as a function of the shocks. Equation (15.17) writes
the errors as a simultaneous system. A broader class of models can be captured by the equation system

Aet = Bεt (15.21)

where (in the 3×3 case)

A =
 1 a12 a13

a21 1 a23

a31 a32 1

 , B =
 b11 b12 b13

b21 b22 b23

b31 b32 b33

 . (15.22)

(Note: This matrix A has nothing to do with the regression coefficient matrix A. I apologize for the double
use of A, but I use the notation (15.21) to be consistent with the notation elsewhere in the literature.)

Written out,

e1t =−a12e2t −a13e3t +b11ε1t +b12ε2t +b13ε3t

e2t =−a21e1t −a23e3t +b21ε1t +b22ε2t +b23ε3t

e3t =−a31e1t −a32e2t +b31ε1t +b32ε2t +b33ε3t .

The diagonal elements of the matrix A are set to 1 as normalizations. This normalization allows the
shocks εi t to have unit variance which is convenient for impulse response calculations.

The system as written is under-identified. In this three-equation example, the matrix Σ provides
only six moments, but the above system has 15 free parameters! To achieve identification we need nine
restrictions.
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In most applications, it is common to start with the restriction that for each common non-diagonal
element of A and B at most one can be non-zero. That is, for any pair i 6= j , either b j i = 0 or a j i = 0.

We will illustrate by using a simplified version of the model employed by Blanchard and Perotti (2002)
who were interested in decomposing the effects of government spending and taxes on GDP. They pro-
posed a three-variable system consisting of real government spending (net of transfers), real tax revenues
(including transfer payments as negative taxes), and real GDP. All variables are measured in logs. They
start with the restrictions a21 = a12 = b31 = b32 = b13 = b23 = 0, or

A =
 1 0 a13

0 1 a23

a31 a32 1

 , B =
 b11 b12 0

b21 b22 0
0 0 b33

 .

This is done so that that the relationship between the shocks ε1t and ε2t is treated as reduced-form but
the coefficients in the A matrix can be interpreted as contemporeneous elasticities between the vari-
ables. For example, a23 is the within-quarter elasticity of tax revenue with respect to GDP, a31 is the
within-quarter elasticity of GDP with respect to government spending, etc.

We just described six restrictions while nine are required for identification. Blanchard and Perotti
(2002) made a strong case for two additional restrictions. First, the within-quarter elasticity of govern-
ment spending with respect to GDP is zero, a13 = 0. This is because government fiscal policy does not
(and cannot) respond to news about GDP within the same quarter. Since the authors defined govern-
ment spending as net of transfer payments there is no “automatic stabilizer” component of spending.
Second, the within-quarter elasticity of tax revenue with respect to GDP can be estimated from exist-
ing microeconometric studies. The authors survey the available literature and set a23 = −2.08. To fully
identify the model we need one final restriction. The authors argue that there is no clear case for any
specific restriction, and so impose a recursive B matrix (setting b12 = 0) and experiment with the alter-
native b21 = 0, finding that the two specifications are near-equivalent since the two shocks are nearly
uncorrelated. In summary the estimated model takes the form

A =
 1 0 0

0 1 −2.08
a31 a32 1

 , B =
 b11 0 0

b21 b22 0
0 0 b33

 .

Blanchard and Perotti (2002) make use of both matrices A and B . Other authors use either the sim-
pler structure Aet = εt or et = Bεt . In general, either of the two simpler structures are simpler to compute
and interpret.

Taking the variance of the variables on each side of (15.21) we find

AΣA′ = B B ′. (15.23)

This is a system of quadratic equations in the free parameters. If the model is just identified it can be
solved numerically to find the coefficients of A and B given Σ. Similarly, given the least squares error
covariance matrix Σ̂we can numerically solve for the coefficients of Â and B̂ .

While most applications use just-identified models, if the model is over-identified (if there are fewer
free parameters than estimated components of Σ) then the coefficients of Â and B̂ can be found using
minimum distance. The implementation in Stata uses MLE (which simultaneously estimates the VAR
coefficients). The latter is appropriate when the model is correctly specified (including normality) but
otherwise an unclear choice.

Given the parameter estimates the structural impulse response function is

�SIRF(h) = Θ̂(h)Â
−1

B̂ .
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The structural forecast error decompositions are calculated as before with b j replaced by the j th column

of Â
−1

B̂ .
The structural impulse responses are nonlinear functions of the VAR coefficient and covariance ma-

trix estimators so by the delta method are asymptotically normal. Thus asymptotic standard errors can
be calculated (using numerical derivatives if convenient). As for orthogonalized impulse responses the
asymptotic normal approximation is unlikely to be a good approximation so bootstrap methods are an
attractive alternative.

Structural VARs should be interpreted similarly to instrumental variable estimators. Their interpre-
tation relies on valid exclusion restrictions which can only be justified by external information.

We replicate a simplified version of Blanchard-Perotti (2002). We use2 quarterly variables from FRED-
QD for 1959-2017: real GDP (gdpc1), real tax revenue (fgrecptx), and real government spending (gcec1),
all in natural logarithms. Using the AIC for lag length selection we estimate VARs from one to eight lags
and select a VAR(5). The model also includes a linear and quadratic function of time3. The estimated
structural impulse responses of the three variables with respect to the government spending shock are
displayed in Figure 15.3, and the impulse responses with respect to the tax revenue shock are displayed
in Figure 15.4. The estimated impulse responses are similar to those reported by Blanchard-Perotti.

In Figure 15.3 we see that the effect of a government spending shock is persistent, increasing govern-
ment spending about 1% for the four-year horizon. The effect on tax revenue is minimal. The effect on
GDP is positive, small (around 0.25%), but persistent.
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Figure 15.3: Response to a Government Spending Shock

In Figure 15.4 we see that the effect of a tax revenue shock is quite different. The initial effect on
tax revenue is high but diminishes to zero by about two years. The effect on government spending is
mildly negative4. The effect on GDP is negative and persistent, and more substantial than the effect of
a spending shock, reaching about −0.5% at six quarters. Together, the impulse response estimates show
that changes in government spending and tax revenue have meaningful economic impacts. Increased
spending has a positive effect on GDP while increased taxes has a negative effect.

The Blanchard-Perotti (2002) paper is an excellent example of how credible exclusion restrictions can
be used to identify a non-recursive structural system to help answer an important economic question.

2These are similar to, but not the same as, the variables used by Blanchard and Perotti.
3The authors detrend their data using a quadratic function of time. By the FWL Theorem this is equivalent to including a

quadratic in time in the regression.
4The estimated negative effect is difficult to explain, and was not discussed in Blanchard-Perotti.
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Figure 15.4: Response to a Tax Revenue Shock

The within-quarter exogeneity of government spending is compelling and the use of external informa-
tion to fix the elasticity of tax revenue with respect to GDP is clever.

Structural vector autoregressions can be estimated in Stata using the svar command. Short-run
restrictions of the form (15.21) can be imposed using the aeq and beq options. Structural impulse re-
sponses can be displayed using irf graph sirf and structural forecast error decompositions using irf
graph sfevd. Unfortunately, Stata does not provide a convenient way to display cumulative structural
impulse response functions. The same limitations for standard error and confidence interval construc-
tion in Stata hold for structural impulse responses as for non-structural impulse responses.

15.26 Identification of Structural VARs

The coefficient matrices A and B in (15.21) are identified if they can be uniquely solved from (15.23).
This is a set of m(m +1)/2 unique equations so the total number of free coefficients in A and B cannot
be larger than m(m +1)/2, e.g., 6 when m = 3. This is the order condition for identification. It is neces-
sary, but not sufficient. It is easy to write down restrictions which satisfy the order condition but do not
produce an identified system.

It is difficult to see if the system is identified simply by looking at the restrictions (except in the recur-
sive case, which is relatively straightforward to identify). An intuitive way of verifying identification is to
use our knowledge of instrumental variables. We can identify the equations sequentially, one at a time,
or in blocks, using the metaphor of instrumental variables.

The general technique is as follows. Start by writing out the system imposing all restrictions and
absorbing the diagonal elements of B into the shocks (so that they are still uncorrelated but have non-
unit variances). For the Blanchard-Perotti (2002) example, this is

e1t = ε1t

e2t = 2.08e3t +b21ε1t +ε2t

e3t =−a31e1t −a32e2t +ε3t .

Take the equations one at a time and ask if they can be estimated by instrumental variables using the
excluded variables as instruments. Once an equation has been verified as identified then its shock is
identified and can be used as an instrument since it is uncorrelated with the shocks in the other equa-
tions.
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In this example take the equations as ordered. The first equation is identified as there are no coef-
ficients to estimate. Thus ε1t is identified. For the second equation there is one free parameter which
can be estimated by least squares of e2t −2.08e3t on ε1t , which is valid since ε1t and ε2t are uncorrelated.
This identifies the second equation and the shock ε2t . The third equation has two free parameters and
two endogenous regressors so we need two instruments. We can use the shocks ε1t and ε2t as they are
uncorrelated with ε3t and are correlated with the variables e1t and e2t . Thus this equation is identified.
We deduce that the system is identified.

Consider another example based on Keating (1992). He estimated a four-variable system with prices,
the fed funds rate, M2, and GDP. His model for the errors takes the form Aet = εt . Written out explicitly:

eP = εAS

eF F = a23eM +εMS

eM = a31 (eP +eGDP )+a32eF F +εMD

eGDP = a41eP +a42eF F +a43eM +εI S

where the four shocks are “aggregate supply”, “money supply”, “money demand”, and “I-S”. This struc-
ture can be based on the following assumptions: An elastic short-run aggregate supply curve (prices do
not respond within a quarter); a simple monetary supply policy (the fed funds rate only responds within
quarter to the money supply); money demand only responds to nominal output (log price plus log real
output) and fed funds rate within quarter; and unrestricted I-S curve.

To analyze conditions for identification we start by checking the order condition. There are 10 coeffi-
cients in the system (including the four variances), which equals m(m+1)/2 since m = 4. Thus the order
condition is exactly satisfied.

We check the equations for identification. We start with the first equation. It has no coefficients so is
identified and thus so is εAS . The second equation has one coefficient. We can use εAS as an instrument
because it is uncorrelated with εMS . The relevance condition will hold if εAS is correlated with eM . From
the third equation we see that this will hold if a31 6= 0. Given this assumption a23 and εMS are identified.
The third equation has two coefficients so we can use (εAS , εMS) as instruments since they are uncorre-
lated with εMD . εMS is correlated with eF F and εAS is correlated with eP . Thus the relevance condition
is satisfied. The final equation has three coefficients so we use (εAS , εMS ,εMD ) as instruments. They are
uncorrelated with εI S and correlated with the variables (eP ,eF F ,eM ) so this equation is identified.

We find that the system is identified if a31 6= 0. This requires that money demand responds to nom-
inal GDP which is a prediction from standard monetary economics. This condition seems reasonable.
Regardless, the point of this exercise is to determine specific conditions for identification and articulate
them in your analysis.

15.27 Long-Run Restrictions

To review, the algebraic identification problem for impulse response estimation is that we require a
square root matrix B = Σ1/2 yet the latter is not unique and the results are sensitive to the choice. The
non-uniqueness arises because B has m2 elements while Σ has m(m +1)/2 free elements. The recursive
solution is to set B to equal the Cholesky decomposition of Σ, or equivalently to specify B as lower trian-
gular. Structural VARs based on short-run (contemporeneous) restrictions generalize this idea by allow-
ing general restrictions on B based on economic assumptions about contemporeneous causal relations
and prior knowledge about B . Identification requires m(m − 1)/2 restrictions. Even more generally, a
structural VAR can be constructed by imposing m(m − 1)/2 restrictions due to any known structure or
features of the impulse response functions.
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One important class of such structural VARs are those based on long-run restrictions. Some eco-
nomic hypotheses imply restrictions on long-run impulse responses. These can provide a compelling
case for identification.

An influential example of a structural VAR based on a long-run restriction is Blanchard and Quah
(1989). They were interested in decomposing the effects of demand and supply shocks on output. Their
hypothesis is that demand shocks are long-run neutral meaning that the long-run impact of a demand
shock on output is zero. This implies that the long-run impulse response of output with respect to de-
mand is zero. This can be used as an identifying restriction.

The long-run structural impulse response is the cumulative sum of all impulse responses

C =
∞∑
`=1

Θ`B =Θ(1)B = A (1)−1 B .

A long-run restriction is a restriction placed on the matrix C . Since the sum A (1) is identified this pro-
vides identifying information on the matrix B .

Blanchard and Quah (1989) suggest a bivariate VAR for the first-differenced logarithm of real GDP
and the unemployment rate. Blanchard-Quah assume that the structural shocks are aggregate supply
and aggregate demand. They adopt the hypothesis that aggregate demand has no long-run impact on
GDP. This means that the long-run impulse response matrix satisfies

C =
[

c11 0
c21 c22

]
. (15.24)

Another way of thinking about this is that Blanchard-Quah label “aggregate supply” as the long-run com-
ponent of GDP and label “aggregate demand” as the transitory component of GDP.

The relations C = A (1)−1 B and B B ′ =Σ imply

CC ′ = A (1)−1 B B ′A (1)−1′ = A (1)−1ΣA (1)−1′ . (15.25)

This is a set of m2 equations but because the matrices are positive semi-definite there are m(m + 1)/2
independent equations. If the matrix C has m(m+1)/2 free coefficients then the system is identified. This
requires m(m −1)/2 restrictions. In the Blanchard-Quah example, m = 2 so one restriction is sufficient
for identification.

In many applications, including Blanchard-Quah, the matrix C is lower triangular which permits the
following elegant solution. Examining (15.25) we see that C is a matrix square root of A (1)−1ΣA (1)−1′,
and since C is lower triangular it is the Cholesky decomposition. We deduce C = chol

(
A (1)−1ΣA (1)−1

)
.

The plug-in estimator for C is Ĉ = chol
(

Â(1)−1Σ̂Â(1)−1
)

where Â(1) = I m − Â1−·· ·− Âp . By construc-
tion the solution Ĉ will be lower triangular and satisfy the desired restriction.

More generally if the restrictions on C do not take a lower triangular form then the estimator can be
found by numerically solving the system of quadratic equations

ĈĈ
′ = Â (1)−1 Σ̂Â (1)−1′ .

In either case the estimator is B̂ = Â(1)Ĉ and the estimator of the structural impulse response is

�SIRF(h) = Θ̂hB̂ = Θ̂h Â(1)Ĉ .

Notice that by construction the long-run impulse response is

∞∑
`=1

�SIRF(h) =
∞∑
`=1

Θ̂h Â(1)Ĉ = Â(1)−1 Â(1)Ĉ = Ĉ
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so indeed Ĉ is the estimated long-run impulse response and satisfies the desired restriction.
Long-run structural vector autoregressions can be estimated in Stata using the svar command using

the lreq option. Structural impulse responses can be displayed using irf graph sirf and structural
forecast error decompositions using irf graph sfevd. This Stata option does not produce asymptotic
standard errors when imposing long-run restrictions so for confidence intervals bootstrapping is rec-
ommended. The same limitations for such intervals constructed in Stata hold for structural impulse
response functions as the other cases discussed.

Unfortunately, a limitation of the Stata svar command is that it does not display cumulative struc-
tural impulse response functions. In order to display these one needs to cumulate the impulse response
estimates. This can be done but then standard errors and confidence intervals are not available. This
means that for serious applied work programming needs to be done outside of Stata.

15.28 Blanchard and Quah (1989) Illustration

As we described in the previous section, Blanchard and Quah (1989) estimated a bivariate VAR in GDP
growth and the unemployment rate assuming that the the structural shocks are aggregate supply and
aggregate demand imposing that that the long-run response of GDP with respect to aggregate demand
is zero. Their original application used U.S. data for 1950-1987. We revisit using FRED-QD (1959-2017).
While Blanchard and Quah used a VAR(8) model the AIC selects a VAR(3). We use a VAR(4). To ease
the interpretation of the impulse responses the unemployment rate is entered negatively (multiplied by
−1) so that both series are pro-cyclical and positive shocks increase output. Blanchard and Quah used a
careful detrending method; instead we including a linear time trend in the estimated VAR.

The fitted reduced form model coefficients satisfy

Â(1) = I m −
4∑

j=1
Â j =

(
0.42 0.05
−0.15 0.04

)
and the residual covariance matrix is

Σ̂=
(

0.531 0.095
0.095 0.053

)
.

We calculate

Ĉ = chol
(

Â (1)−1 Σ̂Â (1)−1′)= (
1.00 0
4.75 5.42

)

B̂ = Â(1)Ĉ =
(

0.67 0.28
0.05 0.23

)
.

Examining B̂ , the unemployment rate is contemporeneously mostly affected by the aggregate demand
shock, while GDP growth is affected by both shocks.

Using this square root of Σ̂ we construct the structural impulse response functions for GDP and the
unemployment rate as a function of the two shocks (aggregate supply and aggregate demand). The cal-
culations were done in Stata. Unfortunately the Stata svar command is highly limited and does not pro-
duce cumulative structural impulse responses which are needed for GDP (as it is estimated in growth
rates). We calculated the impulse responses for GDP by cumulating the impulse responses for GDP
growth. This can be done for the point estimates but does not produce standard errors. For confidence
intervals explicit programming of the estimation would be required.

In Figures 15.5 and 15.6 we display the estimated structural impulse response functions. Figure 15.5
displays the impulse responses of GDP and Figure 15.6 displays the impulse responses of the (negative)
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Figure 15.5: Response of GDP

unemployment rate. The left panels display the impulse responses with respect to the aggregate supply
shock and the right panels the impulse responses with respect to the aggregate demand shock. Figure
15.6 displays 95% normal approximation bootstrap intervals, calculated from 10,000 bootstrap replica-
tions. The four estimated impulse responses have similar hump shapes with a peak around four quarters.
The estimated functions are similar to those found by Blanchard and Quah (1989).

-.2

-.1

0

.1

.2

.3

.4

.5

.6

0 4 8 12 16 20 24

Quarters

(a) Supply Shock

-.2

-.1

0

.1

.2

.3

.4

.5

.6

0 4 8 12 16 20 24

Quarters

(b) Demand Shock

Figure 15.6: Response of Unemployment Rate

Let’s examine and contrast panels (a) and (b) of Figure 15.5. These are the responses of GDP to ag-
gregate supply and demand shocks, respectively. We can see in panel (a) that the impulse response due
to a supply shock is immediate, strong, and persistent. The effect peaks around four quarters and then
flattens with an effect at 24 quarters similar to the immediate effect. In contrast we can see in panel (b)
that the effect of a demand shock is more modest, peaks sooner, and decays, with the effect near zero by
24 quarters. The decay reflects the long-run neutrality of demand shocks. While the estimated effect is
transitory the duration of the effect is still meaningful out to three years.

Figure 15.6 displays the responses of the unemployment rate. Its response to a supply shock (panel
(a)) takes several quarters to take effect, peaks around 5 quarters, and then decays. The response of the
unemployment rate to a demand shock (panel (b)) is more immediate, peaks around 4 quarters, and then
decays. Both are near zero by 6 years. The confidence intervals for the supply shock impulse responses
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are wider than those for the demand shocks indicating that the estimates of the impulse responses due
to supply shocks are not precisely estimated.
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Figure 15.7: Forecast Error Decomposition, % due to Supply Shock

Figure 15.7 displays the estimated structural forecast error decompositions. Since there are only two
errors we only display the percentage squared error due to the supply shock. In panel (a) we display the
forecast error decomposition for GDP and in panel (b) the forecast error decomposition for the unem-
ployment rate. We can see that about 80% of the fluctuations in GDP are attributed to the supply shock.
For the unemployment rate the short-term fluctuations are mostly attributed to the demand shock but
the long-run impact is about 40% due to the supply shock. The confidence intervals are very wide, how-
ever, indicating that these estimates are not precise.

It is fascinating that the structural impulse response estimates shown here are nearly identical to
those found by Blanchard and Quah (1989) despite the fact that we have used a considerably different
sample period.

15.29 External Instruments

Structural VARs can also be identified and estimated using external instrumental variables. This
method is also called Proxy SVARs. Consider the three-variable system for the innovations

e1t +a12e2t +a13e3t = ε1t (15.26)

a21e1t +e2t = ε2t +b23ε3t = u2t (15.27)

a31e1t + e3t = b32ε2t +ε3t = u3t . (15.28)

In this system we have used the normalization b11 = b22 = b33 = 1 rather than normalizing the variances
of the shocks.

Suppose we have an external instrumental variable Zt which satisfies the properties

E [Ztε1t ] 6= 0 (15.29)

E [Ztε2t ] = 0 (15.30)

E [Ztε3t ] = 0. (15.31)

Equation (15.29) is the relevance condition – that the instrument and the shock ε1t are correlated. Equa-
tions (15.30)-(15.31) are the exogeneity condition – that the instrument is uncorrelated with the shocks
ε2t and ε3t . Identification rests on the validity of these assumptions.
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Suppose e1t , e2t and e3t were observed. Then the coefficient a21 in (15.27) can be estimated by in-
strumental variables regression of e2t on e1t using the instrumental variable Zt . This is valid because Zt

is uncorrelated with u2t = ε2t +b23ε3t under the assumptions (15.30)-(15.31) yet is correlated with e1t

under (15.29). Given this estimator we obtain a residual û2t . Similarly we can estimate a31 in (15.27)
by instrumental variables regression of e3t on e1t using the instrumental variable Zt , obtaining a resid-
ual û3t . We can then estimate a12 and a13 in in (15.26) by instrumental variables regression of e1t on
(e2t ,e3t ) using the instrumental variables (û2t , û3t ). The latter are valid instruments since E [u2tε1t ] = 0
and E [u3tε1t ] = 0 since the structural errors are uncorrelated, and because (u2t ,u3t ) is correlated with
(e2t ,e3t ) by construction. This regression also produces a residual ε̂1t which is an appropriate estimator
for the shock ε1t .

This estimation method is not special for a three-variable system; it can be applied for any m. The
identified coefficients are those in the first equation (15.26), the structural shock ε1t , and the impacts (a21

and α31) of this shock on the other variables. The other shocks ε2t and ε3t are not separately identified,
and their correlation structure (b23 and b32) is not identified. An exception arises when m = 2, in which
case all coefficients and shocks are identified.

While e1t , e2t and e3t are not observed we can replace their values by the residuals ê1t , ê2t and ê3t

from the estimated VAR(p) model. All of the coefficient estimates are then two-step estimators with gen-
erated regressors. This affects the asymptotic distribution so conventional asymptotic standard errors
should not be used. Bootstrap confidence intervals are appropriate.

The structure (15.26)-(15.28) is convenient as four coefficients can be identified. Other structures
can also be used. Consider the structure

e1t = ε1t +b12ε2t +b23ε3t

e2t = b21ε1t +ε2t +b23ε3t

e3t = b31ε1t +b32ε2t +ε3t

If the same procedure is applied we can identify the coefficients b21 and b31 and the shock ε1t but no
other coefficients or shocks. In this structure the coefficients b12 and b23 cannot be separately identified
because the shocks ε2t and ε3t are not separately identified.

For more details see Stock and Watson (2012) and Mertens and Ravn (2013).

15.30 Dynamic Factor Models

Dynamic factor models are increasingly popular in applied time series, in particular for forecasting.
For a recent detailed review of the methods see Stock and Watson (2016) and the references therein. For
some of the foundational theory see Bai (2003) and Bai and Ng (2002, 2006).

In Sections 11.13-11.16 we introduced the standard multi-factor model (11.23):

X t =ΛFt +ut (15.32)

where X t and ut are k ×1,Λ is k ×r with r < k, and Ft is r ×1. The elements of Ft are called the common
factors as they affect all elements of X t . The columns ofΛ are called the factor loadings. The variables ut

are called the idiosyncratic errors. It is often assumed that the elements of X t have been transformed to
be mean zero and have common variances.

In the time-series case it is natural to augment the model to allow for dynamic relationships. In
particular we would like to allow Ft and ut to be serially correlated. It is convenient to consider vector
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autoregressive models which can be written using lag operator notation as

A (L)Ft = vt (15.33)

B (L)ut = et (15.34)

where A (L) and B (L) are lag polynomials with p and q lags, respectively. Equations (15.32)-(15.33)-
(15.34) together make the standard dynamic factor model. To simplify the model and aid identification,
further restrictions are often imposed, in particular that the lag polynomial B (L) is diagonal.

Furthermore we may wish to generalize (15.32) to allow Ft to impact X t via a distributed lag relation-
ship. This generalization can be written as

X t =Λ (L)Ft +ut (15.35)

where Λ (L) is an `th order distributed lag of dimension k × r . Equation (15.35), however, is not funda-
mentally different from (15.32). That is, if we define the stacked factor vector F t =

(
F ′

t ,F ′
t−1, ...,F ′

t−`
)′ then

(15.35) can be written in the form (15.32) with F t replacing Ft and the matrixΛ replaced by (Λ1,Λ2, ...,Λ`).
Hence we will focus on the standard model (15.32)-(15.33)-(15.34).

Define the inverse lag operators D (L) = A (L)−1 and C (L) = B (L)−1. Then by applying C (L) to (15.32)
and D (L) to (15.33) we obtain

C (L) X t =C (L)ΛFt +C (L)ut

=C (L)ΛD (L) vt +et

=Λ (L) vt +et

where Λ (L) = C (L)ΛD (L). For simplicity treat this lag polynomial as if it has ` lags. Using the same
stacking trick from the previous paragraph and defining Vt =

(
v ′

t , v ′
t−1, ..., v ′

t−`
)′ we find that this model

can be written as
C (L) X t = HVt +et (15.36)

for some k ×r` matrix H . This is known as the static form of the dynamic factor model. It shows that X t

can be written as a function of its own lags plus a linear function of the serially uncorrelated factors Vt

and a serially uncorrelated error et .
The static form (15.36) is convenient as factor regression can be used for estimation. The model is

identical to factor regression with additional regressors as described in Section 11.15. (The additional
regressors are the lagged values of X t .) In that section it is described how to estimate the coefficients and
factors by iterating between multivariate least squares and factor regression.

To estimate the explicit dynamic model (15.32)-(15.33)-(15.34) state-space methods are convenient.
For details and references see Stock and Watson (2016).

The dynamic factor model (15.32)-(15.33)-(15.34) can be estimated in Stata using dfactor.

15.31 Technical Proofs*

Proof of Theorem 15.6 Without loss of generality assume a0 = 0.
By the Jordan matrix decomposition (see Section A.13), A = P J P−1 where J = diag{J 1, ..., J r } is in

Jordan normal form. The dimension of each Jordan block J i is determined by the multiplicity of the
eigenvalues λi of A. For unique eigenvalues λi , J i = λi . For eigenvalues λi with double multiplicity the
Jordan blocks take the form

J i =
[
λi 1
0 λi

]
.
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For eigenvalues with multiplicity s > 2 the Jordan blocks are s × s upper diagonal with the eigenvalue on
the diagonal and 1 immediately above the diagonal (see A.7).

Define X t = P−1Yt and ut = P−1et , which satisfy X t = J X t−1 +ut . Partition X t and ut conformably
with J . The i th set satisfy Xi t = J i Xi ,t−1 +ui t . We now show that Xi t is strictly stationary and ergodic,
from which we deduce that Yt = P X t is strictly stationary and ergodic.

For single dimension blocks J i = λi , so Xi t = λi Xi ,t−1 +ui t which is an AR(1) model with coefficient
λi and innovation ui t . The assumptions imply |λi | < 1 and E |ui t | < ∞ so the conditions of Theorem
14.21 are satisfied, implying that Xi t is strictly stationary and ergodic.

For blocks with dimension two, by back-substitution we find Xi t = ∑∞
`=0 J`i ui ,t−`. By direct calcula-

tion we find that

J`i =
[
λ`i `λ`−1

i
0 λ`i

]
.

Partitioning Xi t = (X1i t , X2i t ) and ui t = (u1i t ,u2i t ) this means that

X1i t =
∞∑
`=0

λ`i u1i ,t−`+
∞∑
`=0

`λ`i u2i ,t−`

X2i t =
∞∑
`=0

λ`i u2i ,t−`.

The series
∑∞
`=0λ

`
i and

∑∞
`=0`λ

`
i are convergent by the ratio test (Theorem A.3 of Introduction to Econo-

metrics) since |λi | < 1. Thus the above sums satisfy the conditions of Theorem 14.6 so are strictly station-
ary and ergodic as required.

Blocks with multiplicity s > 2 are handled by similar but more tedious calculations. ■

Proof of Theorem 15.8 The assumption that Σ > 0 means that if we regress Y1t on Y2t , ...,Ypt and
Yt−1, ...,Yt−p that the error will have positive variance. If Q is singular then there is some γ such that
γ′Qγ= 0. As in the proof of Theorem 14.28 this means that the regression of Y1t on Y2t , ...,Ypt ,Yt−1, ...,Yt−p+1

has a zero variance. This is a contradiction. We conclude that Q is not singular. ■

Proof of Theorem 15.12 The first part of the theorem is established by back-substitution. Since Yt is a
VAR(p) process,

Yt+h = a0 + A1Yt+h−1 + A2Yt+h−2 +·· ·+ Ap Yt+h−p +et .

We then substitute out the first lag. We find

Yt+h = a0 + A1
(
a0 + A1Yt+h−2 + A2Yt+h−3 +·· ·+ Ap Yt+h−p−1 +et−1

)+ A2Yt+h−2 +·· ·+ Ap Yt+h−p +et

= a0 + A1a0 + (A1 A1 + A2)Yt+h−2 + (A1 A2 + A3)Yt+h−3 +·· ·+ Ap Ap Yt+h−p−1 + A1et−1 +et .

We continue making substitutions. With each substitution the error increases its MA order. After h −1
substitutions the equation takes the form (15.12) with ut an MA(h-1) process.

To recognize that B 1 = Θh , notice that the deduction that ut is an MA(h-1) process means that we
can equivalently write (15.12) as

Yt+h = b0 +
∞∑

j=1
B j Yt+1− j +ut

with B j = 0 for j > p. That is, the equation (15.12) includes all relevant lags. By the projection properties
of regression coefficients this means that the coefficient B 1 is invariant to replacing the regressor Yt by
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the innovation from its regression on the other lags. This is the VAR(p) model itself which has innovation
et . We have deduced that the coefficient B 1 is equivalent to that in the regression

Yt+h = b0 +B 1et +
∞∑

j=2
B j Yt+1− j +ut .

Notice that et is uncorrelated with the other regressors. Thus B 1 = ∂
∂e ′

t
P t [Yt+h] = Θh as claimed. This

completes the proof. ■
_____________________________________________________________________________________________

15.32 Exercises

Exercise 15.1 Take the VAR(1) model Yt = AYt−1 + et . Assume et is i.i.d. For each specified matrix A
below, check if Yt is strictly stationary. Use mathematical software to compute eigenvalues if needed.

(a) A =
[

0.7 0.2
0.2 0.7

]

(b) A =
[

0.8 0.4
0.4 0.8

]

(c) A =
[

0.8 0.4
−0.4 0.8

]

Exercise 15.2 Take the VAR(2) model Yt = A1Yt−1+A2Yt−2+et with A1 =
[

0.3 0.2
0.2 0.3

]
and A2 =

[
0.4 −0.1
−0.1 0.4

]
.

Assume et is i.i.d. Is Yt strictly stationary? Use mathematical software if needed.

Exercise 15.3 Suppose Yt = AYt−1 +ut and ut = But−1 + et . Show that Yt is a VAR(2) and derive the
coefficient matrices and equation error.

Exercise 15.4 Suppose Yi t , i = 1, ...,m, are independent AR(p) processes. Derive the form of their joint
VAR representation.

Exercise 15.5 In the VAR(1) model Yt = A1Yt−1 + et find an explicit expression for the h-step moving
average matrixΘh from (15.3).

Exercise 15.6 In the VAR(2) model Yt = A1Yt−1 + A2Yt−2 + et find explicit expressions for the moving
average matrixΘh from (15.3) for h = 1, ...4.

Exercise 15.7 Derive a VAR(1) representation of a VAR(p) process analogously to equation (??) for au-
toregressions. Use this to derive an explicit formula for the h-step impulse response IRF(h) analogously
to (14.42).

Exercise 15.8 Let Yt = (Y1t ,Y2t )′ be 2×1 and consider a VAR(2) model. Suppose Y2t does not Granger-
cause Y1t . What are the implications for the VAR coefficient matrices A1 and A2?

Exercise 15.9 Continuting the previous exercise, suppose that both Y2t does not Granger-cause Y1t , and
Y1t does not Granger-cause Y2t . What are the implications for the VAR coefficient matrices A1 and A2?
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Exercise 15.10 Suppose that you have 20 years of monthly observations on m = 8 variables. Your advisor
recommends p = 12 lags to account for annual patterns. How many coefficients per equation will you be
estimating? How many observations do you have? In this context does it make sense to you to estimate
a VAR(12) with all eight variables?

Exercise 15.11 Let êt be the least squares residuals from an estimated VAR, Σ̂ be the residual covariance
matrix, and B̂ = chol(Σ̂). Show that B̂ can be calculated by recursive least squares using the residuals.

Exercise 15.12 Cholesky factorization

(a) Derive the Cholesky decomposition of the covariance matrix

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
1

]
.

(b) Write the answer for the correlation matrix (the special case σ2
1 = 1 and σ2

2 = 1).

(c) Find an upper triangular decomposition for the correlation matrix. That is, an upper-triangular

matrix R which satisfies RR ′ =
[

1 ρ

ρ 1

]
.

(d) SupposeΘh =
[

1 0
1 1

]
,σ2

1 = 1, andσ2
2 = 1, and ρ = 0.8. Find the orthogonalized impulse response

OIRF(h) using the Cholesky decomposition.

(e) Suppose that the ordering of the variables is reversed. This is equivalent to using the upper trian-
gular decomposition from part (c). Calculate the orthogonalized impulse response OIRF(h).

(f) Compare the two orthogonalized impulse responses.

Exercise 15.13 You read an empirical paper which estimates a VAR in a listed set of variables and dis-
plays estimated orthogonalized impulse response functions. No comment is made in the paper about
the ordering or the identification of the system, and you have no reason to believe that the order used is
“standard” in the literature. How should you interpret the estimated impulse response functions?

Exercise 15.14 Take the quarterly series gdpc1 (real GDP), gdpctpi (GDP price deflator), and fedfunds
(Fed funds interest rate) from FRED-QD. Transform the first two into growth rates as in Section 15.13.
Estimate the same three-variable VAR(6) using the same ordering. The identification strategy discussed
in Section 15.23 specifies the supply shock as the orthogonalized shock to the GDP equation. Calculate
the impulse response function of GDP, the price level, and the Fed funds rate with respect to this supply
shock. For the first two this will require calculating the cumulative impulse response function. (Explain
why.) Comment on the estimated functions.

Exercise 15.15 Take the Kilian2009 dataset which has the variables oil (oil production), output (global
economic activity), and price (price of crude oil). Estimate an orthogonalized VAR(4) using the same
ordering as in Kilian (2009) as described in Section 15.24. (As described in that section, multiply “oil” by
−1 so that all shocks increase prices.) Estimate the impulse response of output with respect to the three
shocks. Comment on the estimated functions.

Exercise 15.16 Take the monthly series permit (building permits), houst (housing starts), and realln (real
estate loans) from FRED-MD. The listed ordering is motivated by transaction timing. A developer is
required to obtain a building permit before they start building a house (the latter is known as a “housing
start”). A real estate loan is obtained when the house is purchased.
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(a) Transform realln into growth rates (first difference of logs).

(b) Select an appropriate lag order for the three-variable system by comparing the AIC of VARs of order
1 through 8.

(c) Estimate the VAR model and plot the impulse response functions of housing starts with respect to
the three shocks.

(d) Interpret your findings.

Exercise 15.17 Take the quarterly series gpdic1 (Real Gross Private Domestic Investment), gdpctpi (GDP
price deflator), gdpc1 (real GDP), and fedfunds (Fed funds interest rate) from FRED-QD. Transform the
first three into logs, e.g. gdp= 100log(gdpc1). Consider a structural VAR based on short-run restrictions.
Use a structure of the form Aet = εt . Impose the restrictions that the first three variables do not react
to the fed funds rate, that investment does not respond to prices, and that prices do not respond to
investment. Finally, impose that investment is short-run unit elastic with respect to GDP (in the equation
for investment, the A coefficient on GDP is −1).

(a) Write down the matrix A similar to (15.22), imposing the identifying constraints as defined above.

(b) Is the model identified? Is there a condition for identification? Explain.

(c) In this model are output and price simultaneous, or recursive as in the example described in Sec-
tion 15.23?

(d) Estimate the structural VAR using 6 lags or a different number of your choosing (justify your choice)
and include an exogenous time trend. Report your estimates of the A matrix. Can you interpret
the coefficients?

(e) Estimate and report the following three impulse response functions:

1. The effect of the fed funds rate on GDP.

2. The effect of the GDP shock on GDP.

3. The effect of the GDP shock on prices.

Exercise 15.18 Take the Kilian2009 dataset which has the variables oil (oil production), output (global
economic activity), and price (price of crude oil). Consider a structural VAR based on short-run restric-
tions. Use a structure of the form Aet = εt . Impose the restrictions that oil production does not respond
to output or oil prices, and that output does not respond to oil production. The last restriction can be
motivated by the observation that supply disruptions take more than a month to reach the retail market
so the effect on economic activity is similarly delayed by one month.

(a) Write down the matrix A similar to (15.22) imposing the identifying constraints as defined above.

(b) Is the model identified? Is there a condition for identification? Explain.

(c) Estimate the structural VAR using 4 lags or a different number of your choosing (justify your choice).
(As described in that section, multiply “oil” by −1 so that all shocks increase prices.) Report your
estimates of the A matrix. Can you interpret the coefficients?

(d) Estimate the impulse response of oil price with respect to the three shocks. Comment on the esti-
mated functions.
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Exercise 15.19 Take the quarterly series gdpc1 (real GDP), m1realx (real M1 money stock), and cpiaucsl
(CPI) from FRED-QD. Create nominal M1 (multiply m1realx times cpiaucsl), and transform real GDP and
nominal M1 to growth rates. The hypothesis of monetary neutrality is that the nominal money supply
has no effect on real outcomes such as GDP. Strict monetary neutrality states that there is no short or
long-term effect. Long-run neutrality states that there is no long-term effect.

(a) To test strict neutrality use a Granger-causality test. Regress GDP growth on four lags of GDP
growth and four lags of money growth. Test the hypothesis that the four money lags jointly have
zero coeffficients. Use robust standard errors. Interpret the results.

(b) To test long-run neutrality test if the sum of the four coefficients on money growth equals zero.
Interpret the results.

(c) Estimate a structural VAR in real GDP growth and nominal money growth imposing the long-run
neutrality of money. Explain your method.

(d) Report estimates of the impulse responses of the levels of GDP and nominal money to the two
shocks. Interpret the results.

Exercise 15.20 Shapiro and Watson (1988) estimated a structural VAR imposing long-run constraints.
Replicate a simplified version of their model. Take the quarterly series hoanbs (hours worked, nonfarm
business sector), gdpc1 (real GDP), and gdpctpi (GDP deflator) from FRED-QD. Transform the first two
to growth rates and for the third (GDP deflator) take the second difference of the logarithm (differenced
inflation). Shapiro and Watson estimated a structural model imposing the constraints that labor sup-
ply hours are long-run unaffected by output and inflation and GDP is long-run unaffected by demand
shocks. This implies a recursive ordering in the variables for a long-run restriction.

(a) Write down the matrix C as in (15.24) imposing the identifying constraints as defined above.

(b) Is the model identified?

(c) Use the AIC to select the number of lags for a VAR.

(d) Estimate the structural VAR. Report the estimated C matrix. Can you interpret the coefficients?

(e) Estimate the structural impulse responses of the level of GDP with respect to the three shocks.
Interpret the results.



Chapter 16

Non-Stationary Time Series

16.1 Introduction

At the beginning of Chapter 14 we displayed a set of economic time series. Several (real GDP, ex-
change rate, interest rate, crude oil price) did not appear to be stationary. In Section 14.23 we intro-
duced the non-stationary unit root process which is an autoregressive process with an autoregressive
root at unity. Plots of two simulated examples (Figure 14.7) displayed time-paths with wandering be-
havior similar to the economic time series. This suggests that perhaps a unit root autoregression is a
reasonable model for these series. In this chapter we explore econometric estimation and inference for
non-stationary unit root time series.

16.2 Partial Sum Process and Functional Convergence

Take the multivariate random walk
Yt = Yt−1 +et

where (et ,Ft ) is a vector MDS with finite covariance matrix Σ. By back-substitution we find Yt = Y0 +St

where

St =
t∑

i=1
ei

is the cumulative sum of the errors up to time t . We call St a partial sum process.
The time index t ranges from 0 to n. Write1 t = bnr c as a fraction r of the sample size n. This allows

us to write Sbnr c as a function of the fraction r . Divide by
p

n so that the variance is stabilized. With these
modifications we define the standardized partial sum process.

Sn(r ) = 1p
n

Sbnr c = 1p
n

bnr c∑
t=1

et .

The random process Sn(r ) is a scaled version of the time-series Yt and is a function of the sample fraction
r ∈ [0,1]. It is a stochastic process meaning that it is a random function. For any finite n, Sn(r ) is a step
function with n jumps.

Let’s consider the behavior of Sn(r ) as n increases. It’s largest discrete jump equals n−1/2 max1≤t≤n ‖et‖.
Theorem 6.16 shows that this is op (1). This suggests that the jumps in Sn(r ) asymptotically vanish. We
would like to find its asymptotic distribution. We expect the limit distribution to be a stochastic process
as well.

1The notation bxc means “round down to the nearest integer”.

547
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To do so we need to define the asymptotic distribution of a random function. The primary tool is the
functional central limit theorem (FCLT) which is a component of empirical process theory (Chapter 18
of Introduction to Econometrics). It turns out that the FCLT depends on how we measure the difference
between two functions. The most commonly used measure is the uniform metric. On the space of
functions from [0,1] to Rm it is

ρ (ν1,ν2) = sup
0≤r≤1

‖ν1(r )−ν2(r )‖ .

Convergence in distribution for random processes (e.g. Definition 18.6 of Introduction to Econometrics)
is defined with respect to a specific metric. While we don’t repeat the details here the important conse-
quence is that continuity is defined with respect to this metric and this impacts applications such as the
continuous mapping theorem.

The Functional Central Limit Theorem (Theorem 18.9 of Introduction to Econometrics) states that
Sn(r ) −→

d
S(r ) as a function over r ∈ [0,1] if two conditions hold:

1. The limit distributions of Sn(r ) coincide with those of S(r ).

2. Sn(r ) is asymptotically equicontinuous.

The first condition means that for any fixed r1, ...,rm , (Sn(r1), ...,Sn(rm)) −→
d

(S(r1), ...,S(rm)). The

second condition is technical but essentially requires that Sn(r ) is asymptotically continuous.
We now characterize the limit distributions of Sn(r ). There are three important properties.

1. Sn(0) = 0.

2. For any r , Sn(r ) −→
d

N(0,rΣ).

3. For r1 < r2, Sn(r1) and Sn(r2)−Sn(r1) are asymptotically independent.

The first property follows from the definition of Sn(r ). For the second, set N = bnr c. For r > 0, N →∞
as n →∞. The MDS CLT (Theorem 14.11) implies that

Sn(r ) =
√

bnr c
n

1p
N

N∑
t=1

et −→
d

p
r N(0,Σ) = N(0,rΣ)

as claimed. For the third property the assumption that et is a MDS implies that Sn(r1) and Sn(r2)−Sn(r1)
are uncorrelated. An extension of the above previous asymptotic argument shows that they are jointly
asymptotically normal with a zero covariance and hence are asymptotically independent.

The above three limit properties of Sn(r ) are asymptotic versions of the definition of Brownian mo-
tion.

Definition 16.1 A vector Brownian motion B(r ) for r ≥ 0 is defined by the
properties:

1. B(0) = 0.

2. For any r , B(r ) ∼ N(0,rΣ).

3. For any r1 ≤ r2, B(r1) and B(r2)−B(r1) are independent.

We call Σ the covariance matrix of B(r ). If Σ= I m we say that B(r ) is a standard
Brownian motion and denote it as W (r ). They satisfy B(r ) =Σ1/2W (r ).
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A Brownian motion B(r ) is continuous with probability one but is nowhere differentiable. In physics
Brownian motion is used to describe the movement of particles. The wandering properties of particles
suspended in liquid was described as far back as the Roman poet Lucretius (On the Nature of the Universe,
55 BCE). The name Brownian motion credits the pioneering observational studies of botanist Robert
Brown. The mathematical process is often called a Wiener process crediting the work of Norbert Wiener.

The above discussion has shown that the limit distributions of the partial sum process Sn(r ) coin-
cide with those of Brownian motion B(r ). In Section 16.22 we demonstrate that Sn(r ) is asymptotically
equicontinuous. Together with the FCLT this establishes that Sn(r ) converges in distribution to B(r ).

Theorem 16.1 Weak Convergence of Partial Sum Process If (et ,Ft ) is a
strictly stationary and ergodic MDS and Σ = E

[
et e ′t

] < ∞ then as a function
over r ∈ [0,1], Sn(r ) −→

d
B(r ), a Brownian motion with covariance matrix Σ.

We extend Theorem 16.1 to serially correlated processes in Section 16.4.
Let’s connect our analysis of Sn(r ) with the random walk series Yt . Since Yt = Y0 +St , we find

1p
n

Ybnr c = Sn(r )+ 1p
n

Y0.

The second term is op (1) when Y0 is finite with probability one. Thus under this latter assumption
n−1/2Ybnr c = Sn(r )+ op (1) −→

d
B . For simplicity we will frequently implicitly assume Y0 = 0 to simplify

the notation, as the case with Y0 6= 0 does not fundamentally change the analysis.

16.3 Beveridge-Nelson Decomposition

The previous section focused on random walk processes. A unit root process more broadly is an
autoregression with a single root at unity, which means that the differenced process∆Yt is serially corre-
lated but stationary.

Beveridge and Nelson (1981) introduced a clever way to decompose a unit root process into a perma-
nent (random walk) component and a transitory (stationary) component. This allows a straightforward
generalization of Theorem 16.1 to incorporate serial correlation.

Recall that a stationary process has a Wold representation ∆Yt =Θ(L)et whereΘ(z) =∑∞
j=0Θ j z j .

Assumption 16.1 ∆Yt is strictly stationary with no deterministic component,
mean zero, and finite covariance matrix Σ. The coefficients of its Wold repre-
sentation ∆Yt =Θ(L)et satisfy

∞∑
j=0

∥∥∥∥∥ ∞∑
`= j+1

Θ`

∥∥∥∥∥<∞. (16.1)

The condition (16.1) on the coefficients is stronger than absolute summability but holds (for exam-
ple) if∆Yt is generated by a stationary AR process. It is similar to the condition used for the autoregressive
Wold representation (Theorem 14.19).
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Consider the following factorization of the lag polynomial

Θ(z) =Θ(1)+ (1− z)Θ∗(z) (16.2)

whereΘ(1) =∑∞
`=0Θ` andΘ∗(z) is the lag polynomial

Θ∗(z) =
∞∑

j=0
Θ∗

j z j (16.3)

Θ∗
j =−

∞∑
`= j+1

Θ`. (16.4)

At the end of this section we demonstrate (16.2)-(16.4). Assumption (16.1) is the same as
∞∑

j=0

∥∥∥Θ∗
j

∥∥∥ <∞,

which implies that Ut =Θ∗(L)et is convergent, strictly stationary, and ergodic (by Theorem 15.4).
The factorization (16.2) means that we can write

∆Yt = ξt +Ut −Ut−1.

where ξt =Θ(1)et . This decomposes ∆Yt into the innovation et plus the first-difference of the stochastic
process Ut . Summing the differences we find

Yt = St +Ut +V0

where St =∑t
i=1 ξt and V0 = Y0 −U0. This decomposes the unit root process Yt into the random walk St ,

the stationary process Ut , and an initial condition V0.
We have established the following.

Theorem 16.2 Under Assumption 16.1 then (16.2)-(16.4) holds with
∞∑

j=0

∥∥∥Θ∗
j

∥∥∥<∞. The process ∆Yt satisfies

∆Yt = ξt +Ut −Ut−1

and
Yt = St +Ut +V0

where St =∑t
i=1 ξt is a random walk, ξt is white noise with varianceΘ(1)ΣΘ(1)′,

Ut is strictly stationary, and V0 is an initial condition.

Beveridge and Nelson (1981) called St the permanent (trend) component of Yt and Ut the transitory
component. They called St the permanent component since it determines the long-run behavior of Yt .

As an example, take the MA(1) case ∆Yt = et +Θ1et−1. This has decomposition ∆Yt = (I m +Θ1)et −
Θ1(et −et−1). In this case Ut =−Θ1et .

The Beveridge-Nelson decomposition of a series is unique but it is not the only way to construct a
permanent/transitory decomposition. The Beveridge-Nelson decomposition has the characteristic that
the innovations driving the permanent and transitory components St and Ut are identical, so the perma-
nent and transitory components are correlated. For example, in the MA(1) case ∆St = et and Ut =−Θ1et

are perfectly correlated.



CHAPTER 16. NON-STATIONARY TIME SERIES 551

We close this section by verifying (16.2)-(16.4). Observe that the right-side of (16.2) is

∞∑
j=0
Θ j −

∞∑
j=0

∞∑
`= j+1

Θ`z j (1− z) =
∞∑

j=0
Θ j −

∞∑
j=0

∞∑
`= j+1

Θ`z j +
∞∑

j=0

∞∑
`= j+1

Θ`z j+1

=Θ0 −
∞∑

j=1

∞∑
`= j+1

Θ`z j +
∞∑

j=1

∞∑
`= j

Θ`z j

=Θ0 +
∞∑

j=1
Θ j z j

which isΘ(z) as claimed.

16.4 Functional CLT

Theorem 16.1 showed that a random walk process converges in distribution to a Brownian motion.
We now extend this result to the case of a unit root process with correlated differences.

Under Assumption 16.1 a unit root process can be written as Yt = St +Ut +V0 where St = ∑t
i=1 ξt .

Define the scaled processes Zn(r ) = n−1/2Ybnr c and Sn(r ) = n−1/2Sbnr c. We find

Zn(r ) = Sn(r )+ 1p
n

V0 + 1p
n

Ubnr c.

If the errors et are a MDS with covariance matrix Σ then by Theorem 16.1, Sn(r ) −→
d

B(r ), a vector Brow-

nian motion with covariance matrix Ω = Θ(1)ΣΘ(1)′. The initial condition n−1/2V0 is op (1). The third

term n−1/2Ubnr c is op (1) if sup1≤t≤n

∣∣∣ 1p
n

Ut

∣∣∣ = op (1), which holds under Theorem 6.16 if Ut has a finite

variance. We now show that this holds under Assumption 16.1. The latter implies that
∑∞

j=0

∥∥∥Θ∗
j

∥∥∥ <∞,

as discussed before Theorem 16.2. This implies

‖var[Ut ]‖ =
∥∥∥∥∥ ∞∑

j=0
Θ∗

j ΣΘ
∗′
j

∥∥∥∥∥≤ ‖Σ‖
∞∑

j=0

∥∥∥Θ∗
j

∥∥∥2 ≤ ‖Σ‖max
j

∥∥∥Θ∗
j

∥∥∥ ∞∑
j=0

∥∥∥Θ∗
j

∥∥∥<∞

as needed.
Together we find that

Zn(r ) = Sn(r )+op (1) −→
d

B(r ).

The variance of the limiting process isΩ=Θ(1)ΣΘ(1)′. This is the “long-run variance” of ∆Yt .

Theorem 16.3 Under Assumption 16.1 and in addition (et ,Ft ) is a MDS with
covariance matrix Σ, then as a function over r ∈ [0,1], Zn(r ) −→

d
B(r ) a vector

Brownian motion with covariance matrixΩ.

Our derivation used the assumption that the linear projection errors are a MDS. This is not essential
for the basic result; the FCLT holds under a variety of dependence conditions. A flexible version can be
stated using mixing conditions.
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Theorem 16.4 If ∆Yt is strictly stationary, E [∆Yt ] = 0, with mixing coefficients
α(`), and for some r > 2, E‖∆Yt‖r <∞ and

∑∞
`=1α(`)1−2/r <∞, then as a func-

tion over r ∈ [0,1], Zn(r ) −→
d

B(r ), a vector Brownian motion with covariance

matrix

Ω=
∞∑

`=−∞
E [∆Yt∆Yt−`] . (16.5)

For a proof see Davidson (2020, Theorems 31.5 and 31.15). Interestingly, Theorem 16.4 employs ex-
actly the same assumptions as for Theorem 14.15 (the CLT for mixing processes). This means that we
obtain the stronger result (the FCLT) without stronger assumptions.

The covariance matrix Ω appearing in (16.5) is the long-run covariance matrix of ∆Yt as defined in
Section 14.13. It is useful to observe that we can decompose the long-run variance as Ω = Σ+Λ+Λ′

where Σ= var[∆Yt ] and

Λ=
∞∑
`=1

E
[
∆Yt∆Y ′

t−`
]

.

This decomposes the long-run variance of ∆Yt into its static (one-period) variance Σ and a sum of co-
variancesΛ. The matrixΛ is not symmetric.

16.5 Orders of Integration

Take a univariate series Yt . Theorems 16.3 and 16.4 showed that if ∆Yt is stationary and mean zero
then the level process Yt , suitably scaled, is asymptotically a Brownian motion with variance ω2. For this
theory to be meaningful this variance should be strictly positive definite. To see why this is a potential
restriction suppose that Yt = a(L)et where the coefficients of a(z) are absolutely convergent and et is
i.i.d. (0,σ2). Then ∆Yt = b(L)et where b(z) = (1− z)a(z) so ω2 = b(1)2σ2 = 0. That is, ∆Yt has a long-run
variance of 0. We can think of the process∆Yt as over-differenced, since Yt is strictly stationary and does
not require differencing to achieve stationarity.

To meaningfully differentiate between processes which require differencing to achieve stationarity
we use the following definition.

Definition 16.2 Order of Integration.

1. Yt ∈R is Integrated of Order 0, written I (0), if Yt is weakly stationary with
positive long-run variance.

2. Yt ∈R is Integrated of Order d , written I (d), if ut =∆d Yt is I (0).

I (1) processes include random walks and unit root processes more broadly. I (2) processes require
double differencing to achieve stationarity. I (−1) processes are stationary but their cumulative sums
are also stationary. I (−1) processes are over-differenced stationary processes, e.g. ∆Yt when Yt is sta-
tionary. I (0) processes are stationary processes which are not over-differenced. Many macroeconomic
time series in log-levels are potentially I (1) processes. Economic time series which are potentially I (2)
are log price indices, for their first difference (inflation rates) are potentially non-stationary proceses.
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In this textbook we focus on integer-valued orders of integration but fractional d are also well-defined.
In most applications economists presume that economic series are either I (0) or I (1) and often use the
shorthand “integrated” to refer to I (1) series.

The long-run variance of ARMA processes is straightforward to calculate. As we have seen, if ∆Yt =
b(L)et where et is white noise with variance σ2, then ω2 = b(1)2σ2. Now suppose a(L)∆Yt = et where
a(z) is invertible. Then b(z) = a(z)−1 and ω2 = σ2/a(1)2. For an ARMA process a(L)∆Yt = b(L)et with
invertible a(z), then ω2 =σ2b(1)2/a(1)2. Hence, if ∆Yt satisfies the ARMA process a(L)∆Yt = b(L)et then
Yt is I (1) if a(z) is invertible and b(1) 6= 0.

Consider vector processes. The long-run covariance matrix of ∆Yt = Θ(L)et is Ω = Θ(1)ΣΘ(1)′. The
long-run covariance matrix of A(L)∆Yt = et is Ω = A(1)−1ΣA(1)−1′. It is conventional to describe the
vector ∆Yt as I (0) if each element of ∆Yt is I (0) but this allows its covariance matrix to be singular. To
exclude the latter we introduce the following.

Definition 16.3 The vector process Yt is full rank I (0) if its long-run covari-
ance matrixΩ is positive definite.

16.6 Means, Local Means, and Trends

Theorem 16.4 shows that Zn(r ) −→
d

B(r ). The continuous mapping theorem shows that if a function

f (x) is continuous2 then f (Zn) −→
d

f (B). This can be used to obtain the asymptotic distribution of many

statistics of interest. Simple examples are Zn(r )2 −→
d

B(r )2 and
∫ 1

0 Zn(r )dr −→
d

∫ 1
0 B(r )dr . The latter

produces the asymptotic distribution for the sample mean as we now show.
Let Y n = n−1 ∑n

t=1 Yt be the sample mean. For simplicity assume Y0 = 0. Note that for r ∈ [ t
n , t+1

n

)
,

1

n1/2
Yt = Zn(r ) = n

∫ (t+1)/n

t/n
Zn(r )dr.

Taking the average for t = 0 to n −1 we find

1

n1/2
Y n = 1

n3/2

n−1∑
t=0

Yt =
n−1∑
t=0

∫ (t+1)/n

t/n
Zn(r )dr =

∫ 1

0
Zn(r )dr.

This is the integral (or average) of Zn(r ) over [0,1].
The continuous mapping theorem can be applied3. The above expression converges in distribution

to the random variable
∫ 1

0 B(r )dr . This is the average of the Brownian motion over [0,1].
Now consider sub-sample means. Let Y 1n = (n/2)−1 ∑n/2−1

t=0 Yt and Y 2n = (n/2)−1 ∑n−1
t=n/2 Yt be the

sample means on the first-half and second-half of the sample, respectively. By a similar analysis as for
the full-sample mean

1

n1/2
Y 1n = 2

n3/2

n/2−1∑
t=0

Yt = 2
∫ 1/2

0
Zn(r )dr −→

d
2
∫ 1/2

0
B(r )dr

1

n1/2
Y 2n = 2

n3/2

n−1∑
t=n/2

Yt = 2
∫ 1

1/2
Zn(r )dr −→

d
2
∫ 1

1/2
B(r )dr

2With respect to the uniform metric ρ.
3The integral f (g ) = ∫ 1

0 g (r )dr is a continuous function of g with respect to the uniform metric. (Small changes in g result
in small changes in f .)
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which are the averages of B(r ) over the regions [0,1/2] and [1/2,1]. These are distinct random variables.
This gives rise to the prediction that if Yt is a unit root process, sample averages will not be constant
(even approximately in large samples) and will vary across subsamples.

Furthermore, observe that the limit distributions were obtained after dividing by n1/2. This means
that without this standardization the sample mean would not be bounded in probability. This implies
that the sample mean can be (randomly) large. This leads to the rather peculiar property that sample
means will be large, random, and non-informative about population parameters. This means that inter-
preting simple statistics such as means is treacherous when the series may be a unit root process.
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(a) Fitted Means

0 40 80 120 160 200 240

−
10

−
8

−
6

−
4

−
2

0
2

4
6

8

Fitted Trend

(b) Fitted Trend

Figure 16.1: Random Walk with Fitted Mean, Sub-Sample Means, and Trend

To illustrate, Figure 16.1(a) displays a simulated random walk with n = 240 observations. Also plotted
is the sample mean Y n =−2.98, along with the sub-sample means Y 1n =−0.75 and Y 2n =−5.21. As pre-
dicted, the mean and sub-sample means are large, variable, and uninformative regarding the population
mean.

Now consider a linear regression of Yt on a linear time trend. The model for estimation is

Yt =β0 +β1t +et = X ′
tβ+et

where X t = (1, t )′. Again for simplicity assume that Y0 = 0. Take the least squares estimator β̂. Theorem
14.36 shows that

1

n2

n∑
t=1

t →
∫ 1

0
r dr = 1

2

1

n3

n∑
t=1

t 2 →
∫ 1

0
r 2dr = 1

3
.
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Define Dn =
[

1 0
0 n

]
. We calculate that

D−1
n

1

n

n∑
t=1

X t X ′
t D−1

n =


1

n

n∑
t=1

1
1

n2

n∑
t=1

t

1

n2

n∑
t=1

t
1

n3

n∑
t=1

t 2

→
[

1
∫ 1

0 r dr∫ 1
0 r dr

∫ 1
0 r 2dr

]
=

∫ 1

0
X (r )X (r )′dr

where X (r ) = (1,r ).
An application of the continuous mapping theorem with Theorem 16.1 yields

D−1
n

1

n3/2

n∑
t=1

X t Yt =
∫ 1

0
X (r )Zn(r )dr −→

d

∫ 1

0
X (r )B(r )dr.

Together we obtain

Dnn−1/2β̂= Dnn−1/2
( n∑

t=1
X t X ′

t

)−1 ( n∑
t=1

X t Yt

)

=
(
D−1

n
1

n

n∑
t=1

X t X ′
t D−1

n

)−1 (
D−1

n
1

n3/2

n∑
t=1

X t Yt

)

−→
d

(∫ 1

0
X (r )X (r )′dr

)−1 (∫ 1

0
X (r )B(r )dr

)
.

This shows that the estimator β̂has an asymptotic distribution which is a transformation of the Brownian

motion B(r ). For compactness we often write the final expression as
(∫ 1

0 X X ′
)−1 (∫ 1

0 X B
)
.

To illustrate, Figure 16.1(b) displays the random walk from panel (a) along with a fitted trend line.
The fitted trend appears large and substantial. However it is purely random, a feature only of this spe-
cific realization, is uninformative about the underlying parameters, and is dangerously misleading for
prediction.

16.7 Demeaning and Detrending

A common preliminary step in time series analysis is demeaning (subtracting off a mean) and de-
trending (subtracting off a linear trend). With stationary processes this does not affect asymptotic infer-
ence. In contrast, an important property of unit root processes is that their behavior is altered by these
transformations.

Take demeaning. The demeaned version of Yt is Y ∗
t = Yt −Y n . An important observation is that Y ∗

t
is invariant to the initial condition Y0, so without loss of generality we simply assume Y0 = 0.

The normalized process is

Z∗
n (r ) = 1p

n
Ybnr c− 1p

n
Y n = Zn(r )−Zn(1) −→

d
B(r )−

∫ 1

0
B

def= B∗(r ).

B∗(r ) is demeaned Brownian motion. It has the property that
∫ 1

0 B∗(r )dr = 0.
Take linear detrending. Based on least squares estimation of a linear trend the detrended series is

Y ∗∗
t = Yt − X ′

t β̂ where X t = (1, t )′. Like the demeaned series the detrended series is invariant to Y0. The
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associated normalized process is

Z∗∗
n (r ) = 1p

n
Ybnr c− 1p

n
X ′
bnr cβ̂

= Zn(r )−X (bnr c/n)′ Dn
1p
n
β̂

−→
d

B(r )−X (r )′
(∫ 1

0
X X ′

)−1 (∫ 1

0
X B

)
def= B∗∗(r ).

B∗∗(r ) is the continuous-time residual of the Brownian motion B(r ) projected orthogonal to X (r ) =
(1,r )′. We call B∗∗(r ) detrended Brownian motion.

There is another method of detrending through first differencing. Suppose that Yt = β0 +β1t + Zt .
The first difference is ∆Yt =β1 +∆Zt . An estimator of β1 is the sample mean of ∆Yt :

∆Y n = 1

n

n∑
t=1
∆Yt = Yn −Y0

n
.

The normalization Z0 = 0 implies Y0 = β0 so an estimator of β0 is Y0. The detrended version of Yt is
Ỹt = Yt −Y0 − (t/n) (Yn −Y0). The associated normalized process is

Z̃n(r ) = Zn(r )− bnr c
n

Zn(1) −→
d

B(r )− r B(1)
def= V (r ).

V (r ) is called a Brownian Bridge. It is also known as a tied-down Brownian motion. It has the property
that V (0) = V (1) = 0. It is also a detrended version of B(r ) but is distinct from the linearly detrended
version B∗(r ).

We summarize the findings in the following theorem.

Theorem 16.5 Under the conditions of either Theorem 16.3 or Theorem 16.4,
then as n →∞

1. Z∗
n (r ) −→

d
B∗(r )

2. Z∗∗
n (r ) −→

d
B∗∗(r )

3. Z̃n(r ) −→
d

V (r ).

To illustrate, Figure 16.2 displays two detrended versions of the series from Figure 16.1. Panel (a)
shows the linear detrended series Y ∗

t . Panel (b) shows the first-difference detrended series Ỹt . They are
visually similar to one another and to Figure 16.1 except that the strong linear trend has been removed.

16.8 Stochastic Integrals

The distribution of the least squares estimator in the regression model Yt = X ′
tβ+ et requires the

distribution of the sample moments n−1
n−1∑
t=1

X t et+1. When X t is non-stationary the limit distribution is

non-standard and equals a stochastic integral.
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Figure 16.2: Detrended Random Walk

It may help to recall the definition of the Riemann-Stieltijes integral. Over the region [0,1] the integral
of g (x) with respect to f (x) is∫ 1

0
g (x)d f (x) = lim

N→∞

N−1∑
i=0

g

(
i

N

)(
f

(
i +1

N

)
− f

(
i

N

))
.

A stochastic integral is the case where the function f is random and is defined as a probability limit.

Definition 16.4 The stochastic integral of vector-valued X (r ) with respect to
vector-valued Z (r ) over [0,1] is∫ 1

0
X d Z ′ =

∫ 1

0
X (r )d Z (r )′ = plim

N→∞

N−1∑
i=0

X

(
i

N

)(
Z

(
i +1

N

)
−Z

(
i

N

))′
.

Now consider the following setting. Let (X t ,et ) be vector-valued sequences where et is a MDS with
finite covariance and X t is non-stationary. Assume that for some scaling sequence Dn the scaled process
Xn(r ) = D−1

n Xbnr c satisfies Xn(r ) −→
d

X (r ) for some deterministic or stochastic process X (r ). Examples of

X t sequences include the partial sum process constructed from et or another shock, a detrended version
of a partial sum process, or a deterministic trend proceses. We desire the asymptotic distribution of∑n−1

t=1 X t e ′t+1. Define the partial sum process for et as Sn(r ) = n−1/2 ∑bnr c
t=1 et . From Theorem 16.1, Sn −→

d
B . We calculate that

1p
n

D−1
n

n−1∑
t=0

X t e ′t+1 =
n−1∑
t=0

Xn

(
t

n

)(
Sn

(
t +1

n

)
−Sn

(
t

n

))′
=

∫ 1

0
XndS′

n .

The equalities hold because Sn(r ) and Xn(r ) are step functions with jumps at r = t/n. Since Xn(r ) and
Sn(r ) converge to X (r ) and B(r ), by analogy we expect

∫ 1
0 XndSn to converge to

∫ 1
0 X dB . This is true,
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but rather tricky to show since the stochastic integral is not a continuous function of B(r ). A general
statement of the conditions has been provided by Kurtz and Protter (1991, Theorem 2.2). The following
is a simplification of their result.

Theorem 16.6 If (et ,Ft ) is a martingale difference sequence, E
[
et e ′t

]=Σ<∞,
X t ∈Ft , and (Xn(r ),Sn(r )) −→

d
(X (r ),B(r )) then

∫ 1

0
XndS′

n = 1p
n

D−1
n

n−1∑
t=1

X t et+1 −→
d

∫ 1

0
X dB ′

where B(r ) is a Brownian motion with covariance matrix Σ.

The basic application of Theorem 16.6 is to the case Xn(r ) = Sn(r ). Thus if St = ∑t
i=1 et and et is a

MDS with covariance matrix Σ then

1

n

n−1∑
t=1

St e ′t+1 −→
d

∫ 1

0
BdB ′.

We can extend this result to the case of serially correlated errors.

Theorem 16.7 If Zt satisfies the conditions of Theorem 16.4 and St =∑t
i=1 Zt

then
1

n

n−1∑
t=1

St Z ′
t+1 −→

d

∫ 1

0
BdB ′+Λ

where B(r ) is a Brownian motion with covariance matrix Ω = Σ+Λ+Λ′ , Σ =
E
[

Zt Z ′
t

]
, andΛ=∑∞

j=1E
[

Zt− j Z ′
t

]
.

The proof is presented in Section 16.22.

16.9 Estimation of an AR(1)

Consider least squares estimation of the AR(1) parameterα in the model Yt =αYt−1+et . The centered
estimator is α̂−α= (∑n−1

t=1 Y 2
t

)−1 (∑n−1
t=1 Yt et+1

)
. We use the scaling

n (α̂−α) =

1

n

n−1∑
t=1

Yt et+1

1

n2

n−1∑
t=1

Y 2
t

.

We examine the denominator and numerator separately under the assumption α= 1.
Similarly to our analysis of the sample mean the denominator can be written as an integral. Thus

1

n2

n−1∑
t=1

Y 2
t = 1

n

n−1∑
t=1

(
1

n1/2
Yt

)2

=
∫ 1

0
Zn(r )2dr −→

d

∫ 1

0
B(r )2dr =σ2

∫ 1

0
W (r )2dr.
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The convergence is by the continuous mapping theorem4. The final equality recognizes that if B(r ) has
variance σ2 then B(r )2 = σ2W (r )2 where W (r ) is standard Brownian motion. For conciseness we often
write the final integral as

∫ 1
0 W 2.

For the numerator we appeal to Theorem 16.6.

1

n

n−1∑
t=1

Yt et+1 =
∫ 1

0
ZndSn −→

d

∫ 1

0
BdB =σ2

∫ 1

0
W dW.

This limiting stochastic integral is quite famous. It is known as Itô’s integral.

Theorem 16.8 Itô’s Integral
∫ 1

0 W dW = 1
2

(
W (1)2 −1

)
.

If you are not surprised by Itô’s integral take another look. The derivative of 1
2W (r )2 is W (r )dW (r ).

Thus by standard calculus and W (0) = 0 you might expect
∫ 1

0 W dW = 1
2W (1)2. The presence of the extra

term −1/2 is surprising. This arises because W (r ) has unbounded variation.
The random variable W (1)2 is χ2

1 which has expectation 1. Therefore the random variable
∫ 1

0 W dW
is mean zero but skewed.

The proof of Theorem 16.8 is presented in Section 16.22.
Returning to the least squares estimation problem we have shown that when α= 1

n (α̂−1) −→
d

σ2

2

(
W (1)2 −1

)
σ2

∫ 1
0 W 2

=
∫ 1

0 W dW∫ 1
0 W 2

.

Theorem 16.9 Dickey-Fuller Coefficient Distribution If Yt = αYt−1 + et with
α= 1, and (et ,Ft ) is a strictly stationary and ergodic martingale difference se-
quence with a finite variance, then

n (α̂−1) −→
d

∫ 1
0 W dW∫ 1

0 W 2
.

The limit distribution in Theorem 16.9 is known as the Dickey-Fuller Distribution due to the work
of Wayne Fuller and David Dickey. Theorem 16.9 shows that the least squares estimator is consistent
for α = 1 and converges at the “super-consistent” rate Op

(
n−1

)
. The limit distribution is non-standard

and is written as a function of the Brownian motion W (r ). There is not a closed-form expression for the
distribution or density of the statistic. Most commonly it is calculated by simulation.

The density of the Dickey-Fuller coefficient distribution is displayed5 as the solid line (labeled “No
Constant or Trend”) in Figure 16.3(a). You can see that the density is high skewed with a long left tail.

4The function g ( f ) = ∫ 1
0 f (x)2d x is continuous with respect to the uniform metric.

5The densities in Figure 16.3 were estimated from one million simulation draws of the finite sample distribution for a sample
size n = 10,000. The densities were estimated using nonparametric kernel methods (see Chapter 17 of Introduction to Econo-
metrics).
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You can see that most of the probability mass of the distribution is over the negative region. This has the
implication that the density has a negative mean and median. Hence the asymptotic distribution of the
least squares estimator is biased negatively. This has the practical implication that when α= 1 the least
squares estimator is biased away from one.

We can also examine the limit distribution of the t-ratio. Let êt = Yt − α̂Yt−1 be the least squares

residual, σ̂2 = n−1 ∑
ê2

t the least squares variance estimator, and s (α̂) = σ̂/
√∑

Y 2
t the classical standard

error for α̂. The t-ratio for α is T = (α̂−1)/s (α̂).

Theorem 16.10 Dickey-Fuller T Distribution Under the assumptions of The-
orem 16.9

T = α̂−1

s (α̂)
−→

d

∫ 1
0 W dW(∫ 1
0 W 2

)1/2
.

The limit distribution in Theorem 16.10 is known as the Dickey-Fuller T distribution. Theorem 16.10
shows that the classical t-ratio converges to a non-standard asymptotic distribution. There is no closed-
form expression for the distribution or density so it is typically calculated using simulation techniques.
The proof is presented in Section 16.22.

The density of the Dickey-Fuller T distribution is displayed as the solid line (labeled “No Constant or
Trend”) in Figure 16.3(b). You can see that the density is skewed but much less so than the coefficient
distribution. The distribution appears to be a “fatter” version of the conventional student t distribution.
An implication is that conventional inference (confidence intervals and tests) will be inaccurate. We
discuss testing in Section 16.13.

−30 −25 −20 −15 −10 −5 0

No Constant or Trend
Constant Included
Constant and Trend

(a) DF Coefficient Distribution

−5 −4 −3 −2 −1 0 1 2 3

No Constant or Trend
Constant Included
Constant and Trend

(b) DF T Distribution

0.0 0.1 0.2 0.3 0.4 0.5

Constant Included
Constant and Trend

(c) KPSS Distribution

Figure 16.3: Unit Root Test Distributions

16.10 AR(1) Estimation with an Intercept

Suppose that Yt is a random walk and we estimate an AR(1) model with an intercept. The estimated
model is Yt =µ+αYt−1+et . By the Frisch-Waugh-Lovell Theorem (Theorem 3.5) the least squares estima-
tor α̂ of α can be written as the simple regression using the demeaned series Y ∗

t . That is, the normalized
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estimator is

n (α̂−1) =

1

n

n−1∑
t=1

Y ∗
t et+1

1

n2

n−1∑
t=1

Y ∗2
t

where Y ∗
t = Yt −Y with Y = 1

n

n−1∑
t=1

Yt . By Theorems 16.5.1 and 16.6 the calculations from the previous

section show that

n (α̂−1) −→
d

∫ 1
0 W ∗dW∫ 1

0 W ∗2
.

This is similar to the distribution in Theorem 16.9. This is known as the Dickey-Fuller coefficient distri-
bution for the case of an included constant.

Similarly if we estimate an AR(1) model with an intercept and trend the estimated model is Yt =
µ+βt+αYt−1+et . By the Frisch-Waugh-Lovell Theorem this is equivalent to regression on the detrended
series Y ∗∗

t . Applying Theorems 16.5.2 and 16.6, we find

n (α̂−1) −→
d

∫ 1
0 W ∗∗dW∫ 1

0 W ∗∗2
.

This is known as the Dickey-Fuller coefficient distribution for the case of an included constant and linear
trend.

Similar results arise for the t-ratios. We summarize the results in the following theorem.

Theorem 16.11 Under the assumptions of Theorem 16.9, for the case of an es-
timated AR(1) with an intercept

n (α̂−1) −→
d

∫ 1
0 W ∗dW∫ 1

0 W ∗2

T −→
d

∫ 1
0 W ∗dW(∫ 1
0 W ∗2

)1/2
.

For the case of an estimated AR(1) with an intercept and linear time trend

n (α̂−1) −→
d

∫ 1
0 W ∗∗dW∫ 1

0 W ∗∗2

T −→
d

∫ 1
0 W ∗∗dW(∫ 1
0 W ∗∗2

)1/2
.

The densities of the Dickey-Fuller coefficient distributions are displayed in Figure 16.3(a). The den-
sities are considerably affected by the inclusion of the constant or constant and trend. The effect is
twofold: (1) the distributions shift substantially to the left; and (2) the distributions substantially widen.



CHAPTER 16. NON-STATIONARY TIME SERIES 562

Examining the “constant and trend” version we can see that there is very little probability mass above
zero. This means that the asymptotic distribution is not only biased downward, the realization is nearly
always negative. This has the practical implication that the least squares estimator is almost certainly
less than the true coefficient value. This is a strong form of bias.

The densities of the Dickey-Fuller T distributions are displayed in Figure 16.3(b). The effect of de-
trending on the T distributions is quite different from the effect on the coefficient distirbutions. Here we
see that the primary effect is a location shift with only a mild impact on dispersion. The strong location
shift is a bias in the asymptotic T distribution, implying that conventional inferences will be incorrect.

16.11 Sample Covariances of Integrated and Stationary Processes

Let (X t ,ut ) be a sequence where X t is non-stationary and ut is mean zero and strictly stationary.
Assume that for some scaling sequence Dn the scaled process Xn(r ) = D−1

n Xbnr c satisfies Xn(r ) −→
d

X (r )

where X (r ) is continuous with probability one. Consider the scaled sample covariance

Cn = 1

n
D−1

n

n∑
t=1

X t ut .

Theorem 16.12 Assume that Xn(r ) = D−1
n Xbnr c −→

d
X (r ) where X (r ) is almost

surely continuous. Assume ut is mean zero, strictly stationary and ergodic, and
E |ut | <∞. Then Cn −→

p
0 as n →∞.

The proof is presented in Section 16.22.

16.12 AR(p) Models with a Unit Root

Assume that Yt satisfies a(L)∆Yt = et where a(z) is a p −1 order invertible lag polynomial and et is a
stationary MDS with finite variance σ2. Then Yt can be written as the AR(p) process

Yt = a1Yt−1 +·· ·+ap Yt−p +et (16.6)

where the coefficients satisfy a1 +·· ·+ap = 1. Let â be the least squares estimator of a = (a1, ..., ap ). We
now describe its sampling distribution.

Let B be the p × p matrix which transforms (Yt−1, ...,Yt−p ) to (Yt−1,∆Yt−1, ...,∆Yt−p+1), for example

when p = 3 then B =
 1 0 0

1 −1 0
0 1 −1

. Make the partition B−1′a = (ρ,β) where ρ ∈R and β ∈Rp−1. Then

the AR(p) model can be written as
Yt = ρYt−1 +β′X t−1 +et (16.7)

where X t−1 = (∆Yt−1, ...,∆Yt−p+1). The leading coefficient is ρ = a1 + ·· · + ap = 1. This transformation
separates the regressors into the unit root component Yt−1 and the stationary component X t−1.
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Consider the least squares estimators (ρ̂, β̂). They can be written under the assumption of a unit root
as

(
n

(
ρ̂−1

)
p

n
(
β̂−β) )

=


1

n2

n∑
t=1+p

Y 2
t−1

1

n3/2

n∑
t=1+p

Yt−1X ′
t−1

1

n3/2

n∑
t=1+p

X t−1Yt−1
1

n

n∑
t=1+p

X t−1X ′
t−1


−1 

1

n

n∑
t=1+p

Yt−1et

1p
n

n∑
t=1+p

X t−1et

 .

Theorems 16.4 and the CMT show that

1

n2

n∑
t=1+p

Y 2
t−1 −→

d
ω2

∫ 1

0
W 2

where ω2 is the long-run variance of ∆Yt which equals ω2 =σ2/a(1)2 > 0.
Theorem 16.12 shows that

1

n3/2

n∑
t=1+p

X t−1Yt−1 −→
p

0.

Theorems 16.4 and 16.6 show that

1

n

n∑
t=1+p

Yt−1et −→
d
ωσ

∫ 1

0
W dW.

The WLLN and the CLT for stationary processes show that

1

n

n∑
t=1+p

X t−1X ′
t−1 −→p Q

1p
n

n∑
t=1+p

X t−1et −→
d

N(0,Ω)

where Q = E[
X t−1X ′

t−1

]
andΩ= E[

X t−1X ′
t−1e2

t

]
. Together we have established the following.

Theorem 16.13 Assume that Yt satisfies a(L)∆Yt = et where a(z) is a p−1 order
invertible lag polynomial and (et ,ℑt ) is a stationary MDS with finite variance
σ2. Then (

n
(
ρ̂−1

)
p

n
(
β̂−β) )

−→
d


a(1)

∫ 1
0 W dW∫ 1

0 W 2

N(0,V )

 (16.8)

where V =Q−1ΩQ−1.

This theorem provides an asymptotic distribution theory for the least squares estimators. The esti-
mator (â, β̂) is consistent, the coefficient β̂ on the stationary variables is asymptotically normal, and the
coefficient â on the unit root component has a scaled Dickey-Fuller distribution.

The estimator of the representation (16.6) is the linear transformation B ′(ρ̂, β̂′)′, and therefore its
asymptotic distribution is the transformation B ′ of (16.8). Since the unit root component converges at a
faster Op (n−1) rate than the stationary component it drops out of the asymptotic distribution. We obtain

p
n (â −a) −→

d
N(0,GV G ′) (16.9)
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where, in the p = 3 case

G =
 1 0

−1 1
0 −1

 .

The asymptotic covariance matrix GV G ′ is deficient with rank p −1. Hence this is only a partial charac-
terization of the asymptotic distribution; equation (16.8) is a complete first-order characterization. The
implication of (16.9) is that individual coefficient estimators and standard errors of (16.6) have conven-
tional asymptotic interpretations. This extends to conventional hypothesis tests which do not include
the sum of the coefficients. For most purposes (except testing the unit root hypothesis) this means that
asymptotic inference on the coefficients of (16.6) can be based on the conventional normal approxima-
tion and can ignore the possible presence of unit roots.

16.13 Testing for a Unit Root

The asymptotic properties of the time series process change discontinuously at the unit root ρ =
a1 + ·· · + ap = 1. It is therefore of standard interest to test the hypothesis of a unit root. We typically
express this as the test of H0 : ρ = 1 against H1 : ρ < 1. We typically view the test as one-sided as we are
interested in the alternative hypothesis that the series is stationary (not that it is explosive).

The test forH0 vs. H1 is the t-statistic for a1+·· ·+ap = 1 in the AR(p) model (16.6). This is identical to
the t-statistic for ρ = 1 in reparameterized form (16.7). Since the latter is a simple t-ratio this is the most
convenient implementation. It is typically called the Augmented Dickey-Fuller statistic. It equals

ADF = ρ̂−1

s
(
ρ̂
)

where s
(
ρ̂
)

is a standard error for ρ̂. This t-ratio is typically calculated using a classical (homoskedastic)
standard error, perhaps for historical reasons, and perhaps because the asymptotic distribution of ADF
is invariant to conditional heteroskedasticity. The statistic is called the ADF statistic when the estimated
model is an AR(p) model with p > 1; it is typically called the Dickey-Fuller statistic if the estimated model
is an AR(1).

The asymptotic distribution of ADF depends on the fitted deterministic components. The test statis-
tic is most typically calculated in a model with a fitted intercept or a fitted intercept and time trend,
though the theory is also presented for the case with no fitted intercept and extends to any polynomial
order trend.

Let Zα denote the αth quantile of the Dickey-Fuller T distribution (from Theorem 16.10 or Theorem
16.11).
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Theorem 16.14 Assume that Yt satisfies a(L)∆Yt = et where a(z) is a p−1 order
invertible lag polynomial and (et ,ℑt ) is a stationary MDS with finite variance
σ2. Then

ADF −→
d

∫ 1
0 UdW(∫ 1
0 U 2

)1/2

where W is Brownian motion. The process U depends on the fitted determin-
istic components:

1. Case 1: No intercept or trend included. U (r ) =W (r ).

2. Case 2: Fitted intercept (demeaned data). U (r ) =W (r )− r
∫ 1

0 W .

3. Case 3: Fitted intercept and trend (detrended data). U (r ) = W (r ) −
X (r )′

(∫ 1
0 X X ′

)−1 (∫ 1
0 X W

)
where X (r ) = (1,r )′.

The test “Reject H0 if ADF < Zα” has asymptotic size α.

The asymptotic critical values6 are displayed in Table 16.1. This is a one-sided hypothesis test so
rejections occur when the test statistic is less than (more negative than) the critical value. Notice that the
critical values are larger than the standard normal approximation. For the case of a fitted intercept the
5% critical value is −2.9. For the case of a fitted trend it is −3.4. This means that a we need to be careful
with our conventional intuition when interpreting ADF estimates and tests.

In most applications an ADF test is implemented with at least a fitted intercept (which is the middle
line of the table). Many are implemented with a fitted linear time trend (which is the third line). The
choice depends on the nature of the alternative hypothesis. If H1 is that the series is stationary about
a constant mean then the case of a fitted intercept is appropriate. Example series for this context are
unemployment and interest rates. If H1 is that the series is stationary about a linear trend then the case
of a fitted trend is appropriate. Examples for this context are levels or log-levels of macroeconomic ag-
gregates.

The ADF test depends on the autoregressive order p. The issue of selection of p is similar to that
of autoregressive model selection. In general, if p is too small than the model is mis-specified and the
ADF statistic has an asymptotic bias. If p is too large than the test coefficient â is imprecisely estimated
reducing the power of the test. Since ρ̂ is the sum of the p estimated AR coefficients in the levels model
the imprecision can be quite sensitive to the choice of p. A reasonable selection rule is to use the AIC-
selected AR model. Improved rules have been studied by Ng and Perron (2001).

We have argued that it is better to report asymptotic p-values than “accept/reject”. For this calcu-
lation we need the asymptotic distribution function but this is not available in closed form. A simple
approximation is interpolation of the critical values. For example, suppose ADF = −1.9 with a fitted in-
tercept. The two closest critical values are the 30% (−2.0) and 50% (−1.6). Linear interpolation between
these values yields

p = 0.30× (1.9−1.6)+0.50× (2.0−1.9)

2.0−1.6
= 0.35.

Thus the asymptotic p-value is approximately 35%. Reporting a p-value instead of the “decision” of a test
improves interpretation and communication.

6Calculated by simulation from one million simulation draws for a sample of size n = 10,000.
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How should unit root tests be used in empirical practice? The answer is subtle. A common mistake
is “We use a unit root test to discover whether or not the series has a unit root.” This is a mistake because
a test does not reveal the truth. Rather, it presents evidence whether or notH0 can be rejected. If the test
fails to reject H0 this does not mean that “We have found a unit root”. Rather, the correct conclusion is
“We cannot reject the hypothesis that it has a unit root”. Thus we do not know. If the test rejects H0 (if
the p-value is very small) then we can conclude that the series is unlikely to be a unit root process; its
behavior is more consistent with a stationary process. Another common mistake is to adopt the rule: “If
the ADF test rejects then we work with Yt in levels; if the ADF test does not reject then we work with the
differenced series ∆Yt .” This is a mistake because it assigns a modeling rule to the result of a statistical
test while the test is only designed to answer the question if there is evidence against the hypothesis of a
unit root. The choice of Yt versus ∆Yt is a model selection choice not a hypothesis testing decision.

I believe a reasonable approach is to start with a hypothesis based on theory and context. Does
economic theory lead you to treat a series as stationary or non-stationary? Is there a reason to believe that
a series should be stationary – thus stable in the mean – or is there reason to believe the series will exhibit
growth and change? If you have a clear answer to these questions that should be your starting place,
your default. Use the unit root test to help confirm your assumptions rather than to select a modeling
approach. If your assumption is that Yt has a unit root but the unit root test strongly rejects, then you
should re-appraise your theory. On the other hand if your assumption is that Yt is stationary but the
unit root test fails to reject the null of a unit root, do not necessarily depart from your theoretical base.
Consider the degree of evidence, the sample size, as well as the point estimates. Use all information
together to base your decision.

To illustrate application of the ADF test let’s take the eight series displayed in Figures 14.1-14.4 using
the variables measured in levels or log-levels. The variables and transformations are listed in Table 16.2.
For six of the eight series (all but the interest and unemployment rates) we took the log transformation.
We included an intercept and linear time trend in each regression and selected the autoregressive order
by minimizing the AIC across AR(p) models with a linear time trend. For the quarterly series we examined
AR(p) models up to p = 8, for the monthly series up to p = 12. The selected values of p are shown in the
table. The point estimate of â −1, its standard error, the ADF t statistic, and its asymptotic p-value are
shown. What we see is for for seven of the eight series (all but the unemployment rate) the p-values are far
from the critical region indicating failure to reject the null hypothesis of a unit root. The p-value for the
unemployment rate is 0.01, however, indicating rejection of a unit root. Overall, the results are consistent
with the hypotheses that the unemployment rate is stationary and that the other seven variables are
possibly (but not decisively) unit root processes.

The ADF test came into popularity in economics with a seminar paper by Nelson and Plosser (1982).
These authors applied the ADF to a set of standard macroeconomic variables (similar to those in Table
16.2) and found that the unit root hypothesis could not be rejected in most series. This empirical finding
had a substantial effect on applied economic time series. Before this paper the conventional wisdom
was that economic series were stationary (possibly about linear time trends). After their work it became
more accepted to assume that economic time series are better described as autoregressive unit root pro-
cesses. Nelson and Plosser (1982) used this empirical finding to make a further and stronger claim. They
argued that Keynesian macroeconomic models (which were standard at the time) imply that economic
time series are stationary while real business cycle (RBC) models (which were new at the time) imply
that economic time series are unit root processes. Nelson-Plosser argued that the empirical finding that
the unit root tests do not reject was strong support for the RBC research program. Their argument was
influential and was a factor motivating the rise of the RBC literature. With hindsight we can see that Nel-
son and Plosser (1982) made a fundamental error in this latter argument. The unit root behavior in RBC
models is not inherent to their structure; rather it is a by-product of the assumptions on the technology
process. (If exogenous technology is a unit root process or a stationary process then macroeconomic
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variables will also be unit root processes or stationary processes, respectively.) Similarly the stationary
behavior of 1970s Keynesian models was not inherent to their structure but rather a by-product of as-
sumptions about unobservables. Fundamentally the unit root/stationary distinction says little about
the RBC/Keynesian debate.

The ADF test with a fitted intercept can be implemented in Stata by the command dfuller y,

lags(q) regress. For a fitted intercept and trend add the option trend. The number of lags “q” in
the command is the number of first differences in (16.7), hence q = p −1 where p is the autoregressive
order. The dfuller command reports the estimated regression, the ADF statistic, asymptotic critical
values, and approximate asymptotic p-value.

16.14 KPSS Stationarity Test

Kwiatkowski, Phillips, Schmidt, and Shin (1992) developed a test of the null hypothesis of stationarity
against the alternative of a unit root which has become known as the KPSS test. Many users find this idea
attractive as a useful counterpoint to the ADF test.

The test is derived from what is known as a local level model. This is

Yt =µ+θSt +et

St = St−1 +ut

where et is a mean zero stationary process and ut is i.i.d. (0,σ2
u). When σ2

u = 0 then Yt is stationary.
When σ2

u > 0 then Yt is a unit root process. Thus a test of the null of stationarity against the alternative
of a unit root is a test of H0 :σ2

u = 0 against H1 :σ2
u > 0. Add the auxillary assumption that (et ,ut ) are i.i.d

normal. The Lagrange multiplier test can be shown to reject H0 in favor of H1 for large values of

1

n2σ̂2

n∑
i=1

(
i∑

t=1
êt

)2

where êt = Yt −Y are the residuals under the null and σ̂2 is its sample variance. To generalize to the
context of serially correlated et KPSS proposed the statistic

KPSS1 = 1

n2ω̂2

n∑
i=1

(
i∑

t=1
êt

)2

where

ω̂2 =
M∑

`=−M

(
1− |`|

M +1

)
1

n

n∑
t=1

êt êt−`

is the Newey-West estimator of the long-run variance ω2 of Yt .
For contexts allowing for a linear time trend the local level model takes the form

Yt =µ+βt +θSt +et

which has null least squares estimator
Yt = µ̃+ β̃t + ẽt .

Notice that ẽt is linearly detrended Yt . The KPSS test for H0 against H1 rejects for large values of

KPSS2 = 1

n2ω̃2

n∑
i=1

(
i∑

t=1
ẽt

)2

where ω̃2 is defined as ω̂2 but with the detrended residuals ẽt .
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Theorem 16.15 If Yt follows Assumption 16.1 then

KPSS1 −→
d

∫ 1

0
V 2

and

KPSS2 −→
d

∫ 1

0
V 2

2

where V (r ) = W (r ) − r W (1) is a Brownian bridge, and V2(r ) = W (r ) −(∫ r
0 X (s)d s

)′ (∫ 1
0 X X ′

)′ ∫ 1
0 X dW with X (s) = (1, s)′.

The asymptotic distributions in Theorem 16.15 are non-standard and are typically calculated by sim-
ulation. The process V2(r ) is known as a Second-level Brownian Bridge. The asymptotic distributions
are displayed7 in Figure 16.3(c). The dashed line is the density of the KPSS1 asymptotic distribution. The
solid line is the density of the KPSS1 asymptotic distribution. The densities are skewed with a slowly-
decaying right tail. The KPSS2 distribution is substantially shifted towards the origin compared to the
KPSS1 distribution, indicating a substantial effect of detrending.

The asymptotic critical values are displayed8 in Table 16.3. Rejections occur when the test statis-
tic exceeds the critical value. As for the Dickey-Fuller tests an approximate asymptotic p-value can be
calculated from this table by linear interpolation between adjacent critical values.

The KPSS statistic critically depends on the lag order M used to estimate the long-run variance ω2.
This is a challenge for test implementation. If Yt is stationary but highly persistent (for example, an AR(1)
with a large autoregressive coefficient) then the lag truncation M needs to be large in order to accurately
estimate ω2. However, under the alternative that Yt is a unit root process, the estimator ω̂2 will increase
roughly linearly with M so that for any given sample the KPSS statistic can be made arbitrarily small by
selecting M sufficiently large.

Recall that the Andrews (1991) reference rule (14.50) is

M =
(

6
ρ2(

1−ρ2
)2

)1/3

n1/3

where ρ is the first autocorrelation of Yt . For the KPSS test we should not replace ρ with an estimator ρ̂
as the latter converges to 1 under H0, leading to M →∞ rendering the test inconsistent. Instead we can
use a default rule based on a reasonable alternative. Suppose we consider the alternative ρ = 0.8. The as-
sociated Andrews’ reference rule is M = 3.1n1/3. This leads to a simple rule M = 3n1/3. An interpretation
of this choice is that it should approximately control the size of the test when the truth is an AR(1) with
coefficient 0.8 but over-reject for more persistent AR processes.

To illustrate, Table 16.2 reports the KPSS2 statistic for the same eight series as examined in the pre-
vious section, using M = 3n1/3. For the first two quarterly series n = 228 leading to M = 18. For the six
monthly series n = 684 leading to M = 26. For six of the eight series (all but consumption and the unem-
ployment rate) the KPSS statistic equals or exceeds the 1% critical value leading to a rejection of the null
hypothesis of stationarity in favor of the alternative of a unit root. This is consistent with the ADF test
which failed to reject a unit root for these series.

For the consumption series the KPSS statistic has a p-value of 12%, which does not reject the hypoth-
esis of stationarity. Recall that the ADF test failed to reject the hypothesis of a unit root. Thus neither test

7Calculated by simulation from one million simulation draws for a sample of size n = 10,000.
8Calculated by simulation from one million simulation draws for a sample of size n = 10,000.
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Table 16.1: ADF Test Critical Values

1% 2% 3% 4% 5% 7% 10% 15% 20% 30% 50% 70% 90%
Case 1 (No Constant or Trend)

−2.6 −2.3 −2.2 −2.0 −1.9 −1.8 −1.6 −1.4 −1.2 −1.0 −0.5 0.1 0.9
Case 2 (Constant Included)

−3.4 −3.2 −3.1 −3.0 −2.9 −2.7 −2.6 −2.4 −2.2 −2.0 −1.6 −1.1 −0.4
Case 3 (Constant and Trend Included)

−4.0 −3.7 −3.6 −3.5 −3.4 −3.3 −3.1 −2.9 −2.8 −2.6 −2.2 −1.8 −1.2

Table 16.2: Unit Root and KPSS Test Applications

p â −1 ADF p-value M KPSS2 p-value

log(real GDP) 3
−0.017
(.009)

−1.8 0.71 18 0.23 0.01

log(real consumption) 4
−0.029
(.012)

−2.4 0.37 18 0.113 0.12

log(exchange rate) 11
−0.009
(.004)

−2.2 0.49 26 0.31 < .01

interest rate 12
−0.005
(.004)

−1.5 0.52 26 0.56 < .01

log(oil price) 2
−0.013
(.005)

−2.4 0.35 26 0.23 < .01

unemployment rate 7
−0.014
(.004)

−3.4 0.01 26 0.14 0.06

log(CPI) 11
−0.001
(.001)

−1.0 0.95 26 0.55 < .01

log(stock price) 6
−0.010
(.004)

−2.2 0.47 26 0.30 < .01

Table 16.3: KPSS Critical Values

1% 2% 3% 4% 5% 7% 10% 15% 20% 30% 50% 70%
KPSS1 (Constant Included)

0.75 0.62 0.55 0.50 0.46 0.41 0.35 0.28 0.24 0.18 0.12 0.08
KPSS2 (Constant and Trend Included)

0.22 0.19 0.17 0.16 0.15 0.13 0.12 0.10 0.09 0.08 0.06 0.04
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leads to a decisive result; as a pair the two tests are inconclusive. In this context I recommend staying
with the prediction of economic theory (consumption is a martingale) as it is not rejected by a hypothesis
test. The KPSS fails to reject stationarity but that does not mean that the series is stationary.

An interesting case is the unemployment rate series. It has KPSS2 = 0.14 with a p-value of 6%. This
is borderline significant for rejection of stationarity. On the other hand, recall that the ADF test had a p-
value of 1% rejecting the unit root hypothesis. These results are borderline conflicting. To augment our
information we calculate the KPSS1 test as the unemployment rate does not appear to be trended. We
find KPSS1 = 0.19 with a p-value of 30%. This is clearly in the non-rejection region, failing to provide evi-
dence against stationarity. As a whole, the ADF test (reject unit root), the KPSS1 test (accept stationarity),
and the KPSS2 test (borderline reject stationarity), taken together are consistent with the interpretation
that the unemployment rate is a stationary process.

The KPSS2 test can be implemented in Stata using the command9 kpss y, maxlag(q). For the
KPSS1 test add the option notrend. The command reports the KPSS statistics for M = 1, ..., q , as well as
asymptotic critical values. Approximate asymptotic p-values are not reported.

16.15 Spurious Regression

One of the most empirically relevant discoveries from the theory of non-stationary time series is the
phenomenon of spurious regression. This is the finding that two statistically independent series, if both
unit root processes, are likely to fool traditional statistical analysis by appearing to be statistically related
by both eyeball scrutiny and traditional statistical tests. The phenomenon was observed10 and named
by Granger and Newbold (1974) and explained using the theory of non-stationary time series by Phillips
(1986). The primary lesson is that it is easy to be tricked by non-stationary time-series but the problem
disappears if we pay suitable attention to dynamic specification.

1980 1985 1990 1995 2000 2005 2010 2015 2020

Series 1
Series 2

(a) Two Unrelated Random Walks

1960 1970 1980 1990 2000 2010 2020

Labor Force Participation Rate
Exchange Rate

(b) Exchange and Labor Force Participation Rates

Figure 16.4: Plots of Empirical Series

To illustrate the problem examine Figure 16.4(a). Displayed are two time series, monthly for 1980-

9The command kpss is not part of the standard package, but can be installed by typing ssc install kpss.
10In numerical simulations.
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2018. A casual review of the graphs shows that both series are generally increasing over 1980-2010 with
a no-growth period around 2000, and the series display a downward trend for the final decade. A more
refined perusal may appear to reveal that Series 2 leads Series 1 by about five years, in the sense that
Series 2 reaches turning points about five years before Series 1. A casual observer is likely to deduce
based on Figure 16.4(a) that the two time series are strongly related.

However the truth is that Series 1 and Series 2 are statistically independent random walks generated
by computer simulation, each standardized to have mean zero and unit variance for the purpose of visual
comparison. The “fact” that both series are generally upward trended and have “similar” turning points
are statistical accidents. Random walks have an uncanny ability to fool casual analysis. Newspaper (and
other journalistic) articles containing plots of time series are routinely subject to the tricks of Figure
16.4(a). Economists are also routinely tricked and fooled.

Traditional statistical examination of the series in Figure 16.4(a) can also lead to a false inference of
a strong relationship. A linear regression of Series 1 on Series 2 yields a slope coefficient of 0.76 with
classical standard error of 0.03. The t-ratio for the test of a zero slope is T = 26. The equation R2 is 0.59.
These traditional statistics support the incorrect inference that the two series are strongly related.

Spurious relationships of this form are commonplace in economic time series. An example is shown
in Figure 16.4(b), which displays the U.S. labor force participation rate and U.S.-Canada exchange rate,
quarterly for 1960-2018. As a visual aid both series have been normalized to have mean zero and unit
variance. Both series appear to grow at a similar rate from 1960-2000, though the exchange rate is more
volatile. From 2000-2018 they reverse course, with both series declining. The visual evidence is sup-
ported by traditional statistics. A linear regression of labor participation on the exchange rate yields a
slope coefficient of 0.70 with a clasical standard error of 0.05. The t-ratio for the test of a zero slope is
T = 15. The equation R2 is 0.49. The visual and statistical evidence support the inference that the two
series are related.

This empirical “finding” that the labor participation and exchange rates are related does not make
economic sense. Is this an example of a spurious regression between non-stationary variables? A visual
inspection of each series supports the contention that each is non-stationary and may be well charac-
terized as a unit root process. We saw in Sections 16.13 and 16.14 that the ADF and KPSS tests support
the hypothesis that the exchange rate is a unit root process. Similar tests reach the same conclusion for
labor force participation. Thus the two series are reasonably characterized as unit root processes and
these two series could be an empirical example of a spurious regression.

For a formal framework assume that the series Yt and X t are random walk processes

Yt = Yt−1 +e1t (16.10)

X t = X t−1 +e2t (16.11)

where (e1t ,e2t ) are i.i.d., mean zero, mutually uncorrelated, and normalized to have unit variance. Let
Y ∗

t and X ∗
t denote demeaned versions of Yt and X t . From the FCLT they satisfy(

1p
n

Y ∗
bnr c,

1p
n

X ∗
bnr c

)
−→

d

(
W ∗

1 (r ),W ∗
2 (r )

)
where W ∗

1 (r ) and W ∗
2 (r ) are demeaned Brownian motions.

Applying the CMT the sample correlation has the asymptotic distribution

ρ̂ =
1

n2

∑n
i=1 Y ∗

i X ∗
i( 1

n2

∑n
i=1 Y ∗2

i

)1/2 ( 1
n2

∑n
i=1 X ∗2

i

)1/2
−→

d

∫ 1
0 W ∗

1 W ∗
2(∫ 1

0 W ∗2
1

)1/2 (∫ 1
0 W ∗2

2

)1/2
.

The right-hand-side is a random variable. Furthermore it is also non-degenerate (indeed, it is non-zero
with probability one). Thus the sample correlation ρ̂ remains random in large samples.
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To understand magnitudes, Figure 16.5(a) displays the asymptotic distributon11 of ρ̂. The density has
most probability mass in the interval [−0.5,0.5], over which the density is essentially flat. This means that
the sample correlation has a diffuse distribution. Above we saw that the two simulated random walks
had a sample correlation12 of 0.76 and the two empirical series a sample correlation of 0.70. We can
now see that these results are consistent with the distribution shown in Figure 16.5(a) and are therefore
uninformative regarding the underlying relationships.

−1.0 −0.5 0.0 0.5 1.0

(a) Asymptotic Density of Sample Correlation
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(b) Coverage Probability of Nominal 95% Interval

Figure 16.5: Properties of Spurious Regression

We can also examine the regression estimators. The slope coefficient from a regression of Yt on
X t has the asymptotic distribution

β̂=
1

n2

∑n
i=1 Y ∗

i X ∗
i

1
n2

∑n
i=1 X ∗2

i

−→
d

∫ 1
0 W ∗

1 W ∗
2∫ 1

0 W ∗2
2

.

This is a non-degenerate random variable. Thus the slope estimator remains random in large samples
and does not converge in probability.

Now consider the classical t-ratio T . It has the asymptotic distribution

1

n1/2
T =

1
n2

∑n
i=1 Y ∗

i X ∗
i( 1

n2

∑n
i=1 X ∗2

i

)1/2
(

1
n2

∑n
i=1

(
Y ∗

i −X ∗
i β̂

)2
)1/2

−→
d

∫ 1
0 W ∗

1 W ∗
2(∫ 1

0 W ∗2
2

)1/2
(∫ 1

0

(
W ∗

1 −W ∗
2

∫ 1
0 W ∗

1 W ∗
2∫ 1

0 W ∗2
2

)2)1/2
.

This is non-degenerate. Thus the t-ratio has an asymptotic distribution only after normalization by n1/2,
meaning that the unnormalized t-ratio diverges in probability!

To understand the utter failure of classical inference theory observe that the regression equation is

Yt =α+βX t +ξt (16.12)

11Calculated by simulation from one million simulation draws for a sample of size n = 10,000.
12Since the variables have been standardized to have a unit variance the sample correlation equals the least squares slope

coefficient.
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with true values α= 0 and β= 0. This means that the error ξt = Yt is a random walk. The latter is consid-
erably more strongly autocorrelated than allowed by stationary regression theory, invalidating conven-
tional standard errors. The latter are too small by an order of magnitude resulting in t-ratios which are
misleadingly large.

What this means in practice is that t-ratios from spurious regressions are random and large even
when there is no relationship. This explains the large t-ratio T = 26 for the simulated series and shows
that the value T = 15 for the empirical series is uninformative. The reason for a large t-ratio is not because
the series are related but is rather because the series are unit root processes so classical standard errors
mis-characterize estimation variance.

One of the features of the above theory is that it shows that the magnitude of the distortion of the
t-ratio increases with sample size. Interestingly, the original Granger-Newbold (1974) analysis was a sim-
ulation study which confined attention to the case n = 50. Granger-Newbold found the (then surprising)
result that t-tests substantially overreject under the null hypothesis of a zero coefficient. It wasn’t until
the theoretical analysis by Phillips (1986) that it was realized that this distortion worsened as sample size
increased. These results illustrate the insight – and limitations – of simulation analysis. Using simulation
Granger-Newbold pointed out that there was a problem. But by fixing sample size at a single value they
did not discover the surprising effect of sample size.

The fact that the t-ratio diverges as n increases means that the coverage of classical confidence in-
tervals worses as n increases. To calibrate the magnitude of this distortion examine Figure 16.5(b). This
plots13 the finite-sample coverage probability of classical nominal 95% confidence intervals for the slope
using student t critical values plotted as a function of sample size n. The observations were generated
as independent random walks with normal innovations. You can see that the coverage ranges from 0.68
(for n = 10) to 0.2 (for n = 200). These coverage rates are unacceptably below the nominal coverage level
of 0.95.

The above analysis focused on classical t-ratios and confidence intervals constructed with old-fashioned
homoskedastic standard errors. This may seem to be an out-of-date analysis as we have made the
case that old-fashioned standard errors are not used in contemporary econometric practice. However
the problem as described carries over to alternative standard error constructions. The common het-
eroskedastic standard errors do not fundamentally change the asymptotic distribution. The Newey-West
standard errors reduce the under-coverage but only partially. They are designed to consistently estimate
the long-run variance of stationary series but fail when the series are non-stationary.

At this point let us collect what we have learned. If we have two time-series which are independent
unit root processes, then by time-series plots, correlation analysis, and simple linear regressions it is
easy to make the false inference that they are related. Their sample correlations and regression slope
estimates will be random, inconsistent, and uninformative.

Our deduction is that it is inappropriate to use simple inference techniques when handling poten-
tially non-stationary time series. We need to be more careful and use better inference methods.

It turns out that a simple modification is often sufficient to fundamentally alter the inference prob-
lem. Again, suppose we observe the independent series (16.10)-(16.11). A linear regression model is
(16.12) with error ξt = Yt . We can write the latter as ξt = Yt−1 + et . This means that a correct dynamic
specfication of the regression model is

Yt =α+βX t +δYt−1 +et (16.13)

with α = β = 0 and δ = 1. If equation (16.13) is estimated the error is no longer a random walk and
inference on β can proceed conventionally! In this simple example a solution is simply to include the
lagged dependent variable Yt−1 in the estimated regression. More generally, if a trend component is

13Calculated by simulation on a grid of values for n with one million simulation replications.
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missing or ∆Yt is serially correlated it is necessary to include the trend terms and/or sufficient lags of Yt

in the estimated regression.
For example, take the simulated random walk series from Figure 16.4(a). Estimating model (16.13)

we find β̂ = 0.004 with a standard error of 0.005. Thus by adding the lagged dependent variable the
spurious regression relationship has been broken. Now take the empirical series from Figure 16.4(b). We
estimate an analog of (16.13) augmented with a linear trend. The estimate of β in this model is 0.16 with
a standard error of 0.12. Once again the spurious regression relationship has been broken by a simple
dynamic re-adjustment.

This seems like a straightforward solution. If so, why does the spurious regression problem persist14

in applied analysis? The reason is partially that non-specialists find that the simple regression (16.12) is
easy to interpret while the dynamic model (16.13) is challenging to interpret. One of the tasks of a skilled
econometrician is to understand this failure of reasoning, to explain the problem to colleagues and users,
and to present constructive useful alternative methods of analysis.

16.16 NonStationary VARs

Let Yt be an m×1 time series. Suppose that Yt satisfies a VAR(p-1) in first differences, thus D(L)∆Yt =
et where D(z) is invertible and Σ = var[et ] > 0. Then ∆Yt has the long-run covariance matrix Ω =
D(1)−1ΣD(1)−1′ > 0. In this case Yt is a vector I (1) process in the sense that each element of Yt is I (1)
and so are all linear combinations of Yt .

The model can be written as a VAR in levels as

Yt = A1Yt−1 + A2Yt−2 +·· ·+ Ap Yt−p +et (16.14)

where A1 + A2 +·· ·+ Ap = I m . It can also be written in the mixed format

∆Yt = AYt−1 +D1∆Yt−1 +·· ·+D p−1∆Yt−p+1 +et (16.15)

where A = 0. These are equivalent algebraic representations. Let d = vec
((

D1, ...,D p−1
)′).

Let
(

Â, d̂
)

be the multivariate least squares estimator of (16.15). Set X t = (∆Yt−1, ...,∆Yt−p+1).

Theorem 16.16 Assume that ∆Yt follows the VAR(p-1) process D(L)∆Yt = et

with invertible D(z), E [et |Ft−1] = 0, E‖et‖4 <∞, and E
[
et e ′t

]=Σ> 0. Then as
n →∞

(
n Âp

n
(
d̂ −d

) )
−→

d

 Σ1/2
∫ 1

0 dW W ′
(∫ 1

0 W W ′
)−1

Ω−1/2

N(0,V )


where W (r ) is vector Brownian motion and

V = (
I m ⊗E[

X t X ′
t

])−1
Ω

(
I m ⊗E[

X t X ′
t

])−1

Ω= E[
et e ′t ⊗X t X ′

t

]
.

14An amusing exercise is to peruse newspaper/magazine articles for time series plots of historical series. More often than
not the displayed series appear to be I (1), and more often than not the article describes the series as “related” based on a
combination of eyeball analysis and simple correlation statistics.
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The top component of the asymptotic distribution is a multivariate version of the Dickey-Fuller co-
efficient distribution. The bottom component is a conventional normal distribution. This shows that the
coefficient estimator Â is consistent at the Op (n−1) rate, converges to a non-standard (biased and non-
normal) asymptotic distribution, and the coefficient estimator d̂ has a conventional asymptotic normal
distribution.

Parameters of interest, including the coefficients of the levels equation (16.14), impulse response
functions, and forecast error decompositions, are linear combination of the estimators

(
Â, d̂

)
. For VAR(p)

models with p ≥ 2, unless the linear combination of interest is in the span of Â, the asymptotic distri-
bution of estimators are dominated by the Op (n−1/2) component d̂ . Thus these coefficient estimators
have conventional asymptotic normal distributions. Consequently, for most purposes estimation and
inference on a VAR model is robust to the presence of (multivariate) unit roots.

There are two important exceptions. First, inference on the sum of levels coefficients A1+A2+·· ·+Ap

is non-standard as the estimator of this sum has the multivariate Dickey-Fuller coefficient distribution.
This includes questions concerning the presence of unit roots and many questions concerning the long-
run properties of the series. Second, the long-run impulse matrix C = A−1 = (

I − A1 − A2 −·· ·− Ap
)−1 is

a (non-linear) function of this same sum and thus by the Delta Method is asymptotically a linear trans-
formation of the multivariate Dickey-Fuller coefficient distribution. This means that the least squares
estimator of C is non-standard (biased and non-normal). As C is the limit of the CIRF as the horizon
tends to infinity this indicates that estimators of the CIRF at long horizons will be non-standard in fi-
nite samples. Consequently when a VAR model includes variables which are potentially unit root pro-
cesses the conventional confidence intervals for the CIRF at long horizons are not trustworthy. This is a
widespread issue since macroeconomists routinely estimate VAR models with macroeconomic variables
in levels (for example, the Blanchard-Perotti (2002) model presented in Section 15.25).

16.17 Cointegration

A fascinating topic is cointegration. The idea is due to Granger (1981) and was articulated in detail
by Engle and Granger (1987). A pair of unit root processes are cointegrated if their difference (or some
linear combination) is stationary. This means that the pair “hang together” over the long run.

To visualize examine Figure 16.6(a). This shows two interest rate series. The solid line is the interest
rate (quarterly for 1959-2017) on ten-year U.S. Treasury Bonds15. The dashed line is the interest rate on
3-month U.S. Treasury Bonds16. Over the 59-year period the two series move up and down together. The
10-year rate exceeds the 3-month rate in most time periods. For some periods the two lines pull apart
but they always come together again. This indicates that the two time series are tightly tied together.
From our unit root analysis we have already determined that the 10-year interest rate is consistent with a
unit root process; the same findings apply to the 3-month series. Thus it appears that these are two time
series which are individually unit root processes but jointly track each other closely.

To see this further define the interest rate spread as the difference between the two interest rates,
long (10-year) minus short (3-month). This series is plotted in Figure 16.6(b). The mean of the series is
displayed by the dashed line. What we can see is that the spread roughly appears to be mean reverting.
With the possible exception of the first decade of the plot we see that that the spread crosses its mean
multiple times each decade. The fluctuations appear to be stationary. Applying an ADF unit root test
with no trend included to the spread yields ADF =−4.0 which is less than the 1% critical value, rejecting
the null hypothesis of a unit root. Thus the levels of the two interest rates appear to be non-stationary
while the spread is stationary. This suggests that the two interest rate series are cointegrated.

15From FRED-QD, series gs10.
16From FRED-QD, series tb3ms.
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Figure 16.6: Cointegration

This concept is formalized in the following definition.

Definition 16.5 The m ×1 non-deterministic series Yt is cointegrated if there
exists a full rank m ×m matrix

[
β,β⊥

]
such that β′Yt ∈ Rr and β′

⊥∆Yt ∈ Rm−r

are I (0). The r vectors in β are called the cointegrating vectors. The variable
Zt =β′Yt is called the equilibrium error.

In the interest rate example of Figure 16.6, there are m = 2 series and r = 1 cointegrating relationships.
Our discussion assumes that the cointegrating vector is β= (1,−1)′.

The cointegrating vectors β are not individually identified; only the space spanned by the vectors
is identified so β is typically normalized. When r = 1 a common normalization is to set one non-zero
element equal to one. Another common normalization is to set β to be orthonormal: β′β= I r .
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Theorem 16.17 Granger Representation Theorem. If non-deterministic Yt ∈
Rm is cointegrated with m × r cointegrating vectors β and (16.1) holds, then

1. The coefficients of the Wold representation

∆Yt = θ+Θ(L)et (16.16)

satisfy Θ(1) = β⊥η′ and θ = β⊥γ for some full-rank m × (m − r ) matrix η
and some (m − r )×1 γ.

2. The Beveridge-Nelson decomposition of Yt is

Yt =β⊥
(
γt +η′St

)+Ut +V0 (16.17)

where St = ∑t
i=1 et , Ut =Θ∗(L)et is a stationary linear process, and V0 =

Y0 −U0 is an initial condition.

3. Suppose that (a) all complex solutions to det(Θ(z)) = 0 are either z = 1
or |z| ≥ 1+δ for some δ> 0; (b) β′Θ∗(1)η⊥ is full rank, where η⊥ is a full
rank m × r matrix such that η′η⊥ = 0. Then Yt has the (infinite-order)
convergent VAR representation

A(L)Yt = a +et (16.18)

where the coefficients satisfy A(1) = −η⊥
(
β′Θ∗(1)η⊥

)−1
β′. All complex

solutions to det(A(z)) = 0 are either z = 1 or |z| ≥ 1+δ for some δ> 0.

4. Under the assumptions of part 3 plus
∑∞

j=0

∥∥∑∞
k=0 kΘ j+k

∥∥2 <∞ the VAR
representation can be written in error-correction form

∆Yt =αβ′Yt−1 +Γ(L)∆Yt−1 +a +et (16.19)

where Γ(L) is a lag polynomial with absolutely summable coefficient ma-
trices and α=−η⊥

(
β′Θ∗(1)η⊥

)−1.

5. If θ = 0 in the Wold representation (16.16) then γ = 0 in (16.17) so there
is no linear trend in (16.17). The intercept in (16.18) and (16.19) equals
a =αµ where µ is r ×1. Equation (16.19) can be written as

∆Yt =α
(
β′Yt−1 +µ

)+Γ(L)∆Yt−1 +et . (16.20)

The proof is presented in Section 16.22. The Granger Representation Theorem appears in Engle and
Granger (1987). The assumption on β′Θ∗(1)η⊥ was introduced by Johansen (1995, Theorem 4.5).

Part 1 shows that the coefficients of the Wold representation sum to a singular matrix in the null
space of the cointegrating vectors.

Part 2 gives the Beveridge-Nelson permanent-transitory representation of Yt . It shows that the trend
β⊥

(
γt +η′St

)
lies in the null space of the cointegrating vectors. Thus there is no trend in the range space

of the cointegrating vectors. This shows that the cointegrated vector Yt can be thought of as possessing
r “unit roots and linear trends” and m − r “stationary processes”.
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Part 3 provides the VAR representation. It shows that the VAR coefficients sum to a singular matrix
which is in the range space of the cointegrating vectors.

Part 4 is perhaps the most famous result. It shows that a cointegrated system satisfies equation
(16.19) which is called the error-correction representation. The error-correction representation is a
regression model in stationary transformations as the variables∆Yt and β′Yt−1 are stationary. The equa-
tion shows that the change∆Yt relates to past changes∆Yt−1 (as in a standard VAR) as well as the equilib-
rium error β′Yt−1. The full term αβ′Yt−1 is known as the “error-correction term”. It is the key component
which governs how the cointegrated relationship is maintained.

Part 5 examines the case of no linear trend. The condition θ = 0 arises when the variables ∆Yt are all
mean zero. The theorem (unsuprisingly) shows that this implies that the linear trend does not appear in
the Beveridge-Nelson decomposition. More interestingly the theorem shows that this condition implies
that the error-correction model can be written to incorporate the intercept.

To understand the error-correction effect examine Figure 16.6(c). This shows a scatter plot of the
historical values of the two interest rate series from panel (a). Also plotted is an estimate17 of the linear
relation β′Y +µ displayed as the solid line. This is the attractor of the system. For values of Y on this
line β′Y +µ = 0. For values to the southeast β′Y +µ < 0, and for values to the northwest β′Y +µ > 0.
The components ofα dictate how these values impact the expected direction of∆Y . The arrows indicate
these directions18. When β′Y +µ> 0 the error correction decreases the 3-month rate and increases the
10-year rate, pushing Y towards the line of attraction. When β′Y +µ < 0 the error correction increases
the 3-month rate and decreases the 10-year rate, again pushing Y towards the line of attraction. In this
particular example the two effects are similar in magnitude so the arrows show that both variables move
towards the attractor in response to deviations.

Theorem 16.17 shows that if Yt is cointegrated then it satisfies a VECM. The reverse is also the case.

Theorem 16.18 Granger Representation Theorem, Part II. Suppose that Yt

satisfies a VAR(∞) model A(L)Yt = a +et with VECM representation

∆Yt =αβ′Yt−1 +Γ(L)∆Yt−1 +a +et

where β and α are m × r and full rank. Suppose that (a) All complex solutions
to det(A(z)) = 0 are either z = 1 or |z| ≥ 1+δ for some δ> 0; (b)

∑∞
j=0

∥∥Γ j
∥∥<∞;

(c)α′
⊥ (I m −Γ(1))β⊥ is full rank whereα⊥ and β⊥ lie in the null spaces ofα and

β. Then Yt is cointegrated with cointegrating vectors β.

The proof is presented in Section 16.22. This result for a finite-order VAR first appeared in Johansen
(1995, Theorem 4.2).

The condition that α′
⊥Γ(1)β⊥ is full rank is necessary to exclude the (somewhat pathological) possi-

bility that the system is “multi-cointegrated”, meaning that a linear combination of β′Yt−1 and ∆Yt−1 is
of reduced order of integration. Together, Theorems 16.17 and 16.18 show that a VECM representation is
necessary and sufficient for a vector time series to be cointegrated.

17From Table 16.5.
18From the estimates in Table 16.6.
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16.18 Role of Intercept and Trend

The role of intercepts and trends in cointegrating VECMs gives rise to distinct models. We list some
major options.

1. Trend Model 1. This specification has no intercept or trend terms

∆Yt =αβ′Yt−1 +Γ(L)∆Yt−1 +et .

This is convenient for pedagogy but is not relevant for empirical applications. In Stata use option
trend(none).

2. Trend Model 2. This specification is appropriate for non-trended series such as interest rates. In
this model the intercept is in the cointegrating relationship

∆Yt =α
(
β′Yt−1 +µ

)+Γ(L)∆Yt−1 +et .

In Stata use option trend(rconstant).

3. Trend Model 3. This is appropriate for series which have possible linear trends. This model has an
unconstrained intercept

∆Yt =αβ′Yt−1 +Γ(L)∆Yt−1 +a +et .

In this model the level series Yt is the sum of a linear time trend and a unit root process. The equi-
librium error β′Yt is stationary so eliminates the linear time trend and the unit root component.
In Stata use option trend(constant).

4. Trend Model 4. This model extends the VECM model to allow a linear trend in the cointegrating
relationship. This model is

∆Yt =α
(
β′Yt−1 +µt

)+Γ(L)∆Yt−1 +a +et .

In this model the level series Yt is the sum of a linear time trend and a unit root process. The
equilibrium error β′Yt contains a linear time trend and a stationary process. Thus the cointegrat-
ing vector β only eliminates the unit root, not the time trend component. In Stata use option
trend(rtrend).

5. Trend Model 5. This is a further extension allowing an unconstrained trend term

∆Yt =αβ′Yt−1 +Γ(L)∆Yt−1 +a +bt +et .

In this model the unconstrained trend induces a quadratic time trend into the levels series Yt . This
is not a typical modeling choice for applied economic time series. In Stata use option trend(trend).

16.19 Cointegrating Regression

If Yt is cointegrated with a single cointegrating vector (r = 1) then it turns out that β can be estimated
by a least squares regression of one component of Yt on the others. This approach may be fruitfully
employed when the major focus is the cointegrating vector, the number of variables m is small (e.g.
m = 2 or m = 3), and it is known that the number of cointegrating vectors r is at most one.
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Partition Yt = (Y1t ,Y2t ) and reparameterize β as (1,−β). Thus the first component of the cointegrat-
ing vector has been normalized to one (this requires that the true value is non-zero) and the remainder
multiplied by −1. The coefficient of interest is β. Least squares is fit either to the equation

Y1t =µ+β′Y2t +u1t (16.21)

(for Trend Models 1 or 2) or to the equation

Y1t =µ+θt +β′Y2t +u1t (16.22)

(for Trend Models 3 or 4).
Define u2t = ∆Y2t , ut = (u1t ,u′

2t )′, and the long-run covariance matrix Ω = Σ+Λ+Λ′ where Σ =
E
[
ut u′

t−`
]

andΛ=∑∞
`=1E

[
ut−`u′

t

]
. Partition the covariance matrices conformably with Y , e.g.

Ω=
[
Ω11 Ω12

Ω21 Ω22

]
.

Theorem 16.19 If ut satisfies the conditions of Theorem 16.4 andΩ22 > 0 then
the least squares estimator satisfies

n
(
β̂−β)−→

d

(∫ 1

0
X X ′

)−1 (∫ 1

0
X dB1 +Σ21 +Λ21

)
where B(r ) = (B1(r ),B2(r )) is a vector Brownian motion with covariance matrix
Ω and X (r ) is determined by the model:

Trend Model 1 or 2 estimated by (16.21): X = B∗
2 (demeaned B2(r )).

Trend Model 3 or 4 estimated by (16.22): X = B∗∗
2 (detrended B2(r )).

The proof is presented in Section 16.22.
Theorem 16.19 shows that the estimator converges at the superconsistent Op (n−1) rate. This was

discovered by Stock (1987) and the asymptotic distribution derived by Park and Phillips (1988). The
asymptotic distribution is non-standard due to the serial correlation terms. Take our empirical example.
A least squares regression of the 3-month interest rate on the 10-year interest rate yields the estimated
equation Ŷ1t = 1.03Y2t −1.71.

Modifications to the least squares estimator which eliminate the non-standard components were
introduced by Phillips and B. E. Hansen (1990) and Stock and Watson (1993). The Phillips-Hansen es-
timator, known as Fully Modified OLS (FM-OLS), eliminates the non-standard components through
first-stage estimation of the serial correlation terms. The Stock-Watson estimator, known as Dynamic
OLS (DOLS), eliminates the non-standard components by estimating an augmented regression includ-
ing leads and lags of ∆Y2t .

We are often interested in testing the hypothesis of no cointegration:

H0 : r = 0

H1 : r > 0.

Under H0 Zt = β′Yt is I (1) yet under H1 Zt is I (0). When β is known H0 can be tested by appying a
univariate ADF test on Zt . Take the interest rate example. We already conjectured that the interest rate
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spread is stationary which is the same as the hypothesis that β= 1 is the cointegrating coefficient. Using
this value we computed ADF = −4.0 with an asymptotic p-value less than 0.01. Hence we are able to
reject the null hypothesis of a unit root in the spread, or equivalently reject the null hypothesis of no
cointegration.

When β is unknown, Engle and Granger (1987) proposed applying the ADF test to the least squares
residual û1t from either (16.21) or (16.22). The asymptotic null distribution is different from the Dickey-
Fuller distribution since under H0 the estimated regression is spurious so the least squares estimator is
inconsistent. The asymptotic distribution of the statistic was worked out by Phillips and Ouliaris (1990)
by combining the theory of spurious regression with Dickey-Fuller distribution theory. Let EGp denote
the Engle-Granger ADF statistic with p autoregressive lags in the ADF regression.

Theorem 16.20 Assume that (∆Y1t ,∆Y2t ) satisfies the conditions of Theorem
16.4 andΩ> 0. If p →∞ as n →∞ such that p3/n → 0 then

EGp −→
d

(∫ 1
0 V dV

)
(∫ 1

0 V 2
)1/2

(1+ζ′ζ)1/2

where, V (r ) = W ∗
1 (r ) − ζ′W ∗

2 (r ) and ζ =
(∫ 1

0 W ∗
2 W ∗′

2

)−1 (∫ 1
0 W ∗

2 W ∗
1

)
, W (r ) =

(W1(r ),W2(r )) is vector standard Brownian motion, and W ∗(r ) is demeaned
W (r ) if (16.21) is estimated or detrended W (r ) if (16.22) is estimated.

For a proof see Phillips and Ouliaris (1990).
An unusual feature of this Theorem is that it requires p → ∞ as n → ∞ even if the true process is

a finite order AR process because the first stage spurious regression induces serial correlation into the
first-stage residuals which needs to be handled in the second stage ADF test. Another unusual feature
is the component 1+ ζ′ζ in the denominator. This is due to the variance estimator component which
asymptotically is random because of the first stage spurious regression.

Table 16.4: Engle-Granger Cointegration Test Critical Values

m 1% 2% 3% 4% 5% 7% 10% 15% 20% 30% 50% 70%
Regression with Intercept

2 −3.9 −3.7 −3.5 −3.4 −3.3 −3.2 −3.0 −2.8 −2.7 −2.5 −2.1 −1.7
3 −4.3 −4.1 −4.0 −3.9 −3.8 −3.6 −3.5 −3.3 −3.1 −2.9 −2.5 −2.1
4 −4.6 −4.4 −4.3 −4.2 −4.1 −4.0 −3.8 −3.6 −3.5 −3.2 −2.8 −2.4

Regression with Intercept and Trend
2 −4.3 −4.1 −4.0 −3.9 −3.8 −3.6 −3.5 −3.3 −3.2 −2.9 −2.5 −2.2
3 −4.7 −4.4 −4.3 −4.2 −4.1 −4.0 −3.8 −3.6 −3.5 −3.3 −2.9 −2.5
4 −5.0 −4.7 −4.6 −4.5 −4.4 −4.3 −4.1 −4.0 −3.8 −3.6 −3.2 −2.8

The asymptotic critical values19 are displayed in Table 16.4. The EG test is one-sided, so rejections
occur when the test statistic is less than (more negative than) the critical value. The critical values are a
function of the number of variables m and the detrending method.

19Calculated by simulation from one million simulation draws for a sample of size n = 10,000.
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An important question is which trend model to fit. If the observations are untrended then the in-
tercept regression (16.21) should be fit and the “Regression with Intercept” critical values used. If the
observations are trended and no constraints are imposed then the trend regression (16.22) should be fit
and the “Regression with Intercept and Trend” critical values used. A complication arises in the case of
Model 3, which allows the observations to be trended but the trend is excluded from the cointegrating
regression. In this cases there are two options. One is to treat the situation as Model 4: estimate re-
gression (16.22) and use the associated critical values. The other option is to estimate (16.21) since the
linear trend is not in the cointegrating relationship. In this case the appropriate critical values are from
the “Regression with Intercept and Trend” section of the table, but with the row corresponding to m −1.
This is because one of the unit root processes in regression (16.22) is dominated by a linear trend. For
example, if there are m = 3 variables in the system and (16.21) is estimated, then use the critical values
for “Regression with Intercept and Trend” and m = 2. If there are m = 2 variables then use the “Case 3”
ADF critical values from Table 16.1.

To illustrate, take the interest rate application. These variables are non-trended so we use model
(16.21) with the “Regression with Intercept” critical values. The least squares residuals are û1t = Ŷ1t −
1.03Y2t −1.7. Applying an ADF test with p = 8 we obtain EG =−4.0. This is smaller than the 1% asymp-
totic critical value of −3.9 from Table 16.4. We therefore reject the hypothesis of no cointegration, sup-
porting the hypothesis that the pair are cointegrated.

16.20 VECM Estimation

The Granger Representation Theorem (Theorems 16.17 and 16.18) showed that Yt is cointegrated if
(and only if) Yt satisfies an error-correction model. A VECM(p) model is

∆Yt =αβ′Yt−1 +Γ1∆Yt−1 +·· ·+Γp−1∆Yt−p+1 +a +et . (16.23)

This is a reduced rank regression as introduced in Section 11.11. The standard estimation method is
maximum likelihood under the auxilary assumption that et is i.i.d. N(0,Σ), described in Theorem 11.7.
We repeat this result here for the VECM model.

Theorem 16.21 The MLE for the VECM (16.23) under e ∼ N(0,Σ) is given as
follows. First, regress∆Yt and Yt−1 on∆Yt−1, ...,∆Yt−p+1 and an intercept to ob-
tain the residual vectors û0t and û1t , organized in matrices as Û 0 and Û 1. The

MLE β̂ equals the first r generalized eigenvectors of 1
n Û

′
1Û 0

(
1
n Û

′
0Û 0

)−1
1
n Û

′
0Û 1

with respect to 1
n Û

′
1Û 1 corresponding to the r largest eigenvalues λ̂ j . This uses

the normalization β̂′ 1
n Û

′
1Û 1β̂ = I r . The MLE for the remaining coefficients α̂,

Γ̂1, ..., Γ̂p−1, and â are obtained by the least squares regression of∆Yt on β̂′Yt−1,
∆Yt−1, ...,∆Yt−p+1, and an intercept. The maximized log-likelhood function is

`n(r ) = m

2

(
n log(2π)−1

)− n

2
det

(
1

n
Û

′
0Û 0

)
− n

2

r∑
j=1

log
(
1− λ̂ j

)
.

This estimation method was developed by Johansen (1988, 1991, 1995) as an extension of the reduced
rank regression of Anderson (1951).
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The VECM is a constrained VAR so the VECM estimates can be used for any purpose for which a VAR is
used. An advantage of the VECM estimation approach is that it provides a coherent model of the system,
is computationally straightforward, and can handle multiple cointegrating vectors. A disadvantage is
that when there are multiple cointegrating vectors (r > 1) then interpretation of the cointegrating space
(the space spanned by β) is difficult.

The VECM model assumes that the VAR order p and cointegrating rank r are known. In practice data-
based selection rules are used. AIC minimization may be used for selection of p. A simple approach is to
select p by estimating unrestricted VAR models. Selection of r is typically done by testing methods; this
is reviewed in the next section.

We illustrate with the two interest rate series already introduced. AIC selection on levels VARs selects
a VAR(8); we report here a VAR(4) as it yields similar results. This implies a VECM with 3 dynamic lags.
Since interest rates are not a trended series we use Trend Model 2. The estimated model is reported in
Tables 16.5 and 16.6.

Table 16.5: VECM Cointegrating Vector

β s.e.
3-Month 1
10-Year −1.01 0.07
Intercept 1.58 0.46

Table 16.6: Vector Error Correction Model

∆3-Montht ∆10-Yeart

Zt−1 −0.09 0.07
(0.04) (0.03)

∆3-Montht−1 0.37 0.04
(0.08) (0.06)

∆3-Montht−2 −0.20 −0.08
(0.08) (0.06)

∆3-Montht−3 0.28 0.07
(0.08) (0.06)

∆10-Yeart−1 0.06 0.21
(0.07) (0.08)

∆10-Yeart−2 −0.19 −0.09
(0.12) (0.08)

∆10-Yeart−3 0.10 0.06
(0.12) (0.08)

Table 16.5 reports the estimated cointegrating vector β. The coefficient on the 3-month interest rate
is normalized to one. The estimated coefficient on the 10-year rate is near −1 and the estimated inter-
cept is about 1.6. The latter means that the 3-month rate is on average 1.6 percentage points below the
10-year rate. The coefficients of the estimated VECM are reported in Table 16.6, one column for each
variable. The first reported coefficient is α̂, the error-correction term. The coefficient for the 3-month
rate is negative and that for the 10-year rate is positive and they are of similar magnitude. Thus when the
3-month rate exceeds the 10-year rate by more than the typical 1.6, the 3-month rate tends to fall and
the 10-year rate tends to rise, moving the two rates closer to the cointegrating relation. The following six
coefficients are the dynamic coefficients of the VECM. We can see that each variable tends to respond
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mostly to its own lagged changes. The 3-month interest rate has considerably larger coefficients than the
10-year rate indicating that it has stronger serial correlation. The varying signs of the coefficients reveal
complicated dynamics..

An asymptotic distribution of the VECM estimator requires a normalization for the cointegrating vec-
tors. A popular choice is β= (I r ,β∗′)′. Johansen (1995, Theorem 13.5) shows that under the assumption
that the errors et are i.i.d. with covariance matrix Σ, the coefficient estimators θ̂ = (α̂, Γ̂) satisfy

p
n

(
θ̂−θ)−→

d
N

(
0,Σ⊗Q−1)

where Q = E[
X t X ′

t

]
with X t = (β′Yt−1,∆Yt−1, ...,∆Yt−p+1), the regressors given β. This is a classical (ho-

moskedastic) asymptotic distribution for multivariate regression. This result shows that inference on the
coefficients θ can proceed using conventional methods. The homoskedastic covariance matrix is due to
the assumption that the errors are homoskedastic. If the latter assumption is relaxed then the asymptotic
distribution generalizes to the case of an unrestricted covariance matrix.

Johansen (1995, Theorem 13.3) presents the asymptotic distribution of β̂. He shows that the asymp-
totic distribution is normal with a random covariance matrix. The latter is known as a mixed Gaussian
distribution. From a practical point of view this means that we can treat the asymptotic distribution
as normal since when scaled by an appropriate standard error the asymptotic distribution is standard
normal. For brevity we do not present the details.

In Stata use the command vec to estimate a VECM with given cointegrating rank r and VAR order p.

16.21 Testing for Cointegration in a VECM

Take the model
∆Yt =ΠYt−1 +Γ1∆Yt−1 +·· ·+Γp−1∆Yt−p+1 +a +et . (16.24)

The Granger Representation Theorem shows that Yt is cointegrated with r cointegrating vectors if and
only if the rank ofΠ equals r . Thus testing for cointegration is equal to testing hypotheses on the rank of
Π. Write the hypothesis that there are r cointegrating vectors as H(r ) : rank(Π) = r .

Cointegration is a restriction on the unrestricted model H(m). A test for r cointegrating vectors
against an unrestricted alternative is a test of H(r ) against H(m). The likelihood ratio statistic for H(r )
against H(m) is

LR(r ) = 2(`n(m)−`n(r )) =−n
m∑

j=1
log

(
1− λ̂ j

)+n
r∑

j=1
log

(
1− λ̂ j

)=−n
m∑

j=r+1
log

(
1− λ̂ j

)
where λ̂ j are the eigenvalues from the estimation problem (16.21). The test acceptsH(r ) for small values
of LR(r ); the test rejects H(r ) for large values of LR(r ).

The asymptotic distribution theory was developed by Johansen (1988, 1991, 1995).
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Theorem 16.22 Assume that the finite-lag VECM (16.24) is correctly specified,
the conditions of Theorem 16.18 hold, and the errors et are a MDS. Under the
hypothesis thatΠ has rank r

LR(r ) −→
d

tr

[(∫ 1

0
dW X ′

)(∫ 1

0
X X ′

)−1 (∫ 1

0
X dW ′

)]

where W (r ) is a m − r dimensional standard Brownian motion and X (r ) is a
stochastic process which is a function of W (r ) depending on the trend model.

1. Trend Model 1. X (r ) =W (r )

2. Trend Model 2. X (r ) = (W (r ),1)

3. Trend Model 3. X (r ) = (W ∗
1 (r ),r −1/2)

4. Trend Model 4. X (r ) = (W ∗(r ),r −1/2)

where W ∗(r ) =W (r )−∫ 1
0 W is demeaned W (r ), and W ∗

1 (r ) is the first m−r −1
components of W ∗(r ).

A proof of Theorem 16.22 is algebraically tedious. We provide a sketch in Section 16.22. See Johansen
(1995, Chapter 11) for full details.

Theorem 16.22 provides the asymptotic distribution of the LR test for cointegration rank. Because
the asymptotic distribution equals the trace of a multivariate Dickey-Fuller distribution the statistic LR
is often referred to as the “trace test” or “Johansen’s trace test”. The asymptotic distribution is a func-
tion of the stochastic process X (r ) which equals the trend components of Yt (under the hypothesis of r
cointegrating vectors) projected orthogonal to the other regressors. For Trend Model 2 the intercept is
included in the cointegrating relationship so it is a component of X (r ). For Trend Model 3 the variables
are trended which dominates the other components so appears in the asymptotic distribution. Since the
intercept is excluded from the cointegrating relationship the components of X (r ) are all demeaned. For
Trend Model 4 the linear trend is included in the cointegrating relationship so it is added to the trend
components while the intercept is excluded so the X (r ) process is demeaned.

The asymptotic distribution is a function only of m − r and the trend specification. The asymptotic
critical values20 are displayed in Table 16.7 for m − r up to 12 for Trend Models 2, 3, and 4.

How are the test statistics LR(r ) used in practice? When the cointegrating rank is unknown the statis-
tics can be used to determine r . The conventional procedure is a sequential test. Start withH(0) (the null
hypothesis of no cointegration) and the associated statistic LR(0) which has m degrees of freedom. If the
test rejects (if LR(0) exceeds the row m critical value) this is evidence that there is at least one cointegrat-
ing vector, or r ≥ 1. Next, take H(1) (the null hypothesis of one cointegrating vector) and the associated
statistic LR(1) which has m −1 degrees of freedom. If this test also rejects (if LR(1) exceeds the row m −1
critical value) this is evidence that there is at least two cointegrating vectors, or r ≥ 2. Continue this
sequence of tests until one fails to reject.

For example, when there are two variables (m = 2) compare the statistic LR(0) against the m = 2
critical value. If the test rejects (if the statistic exceeds the critical value) this is evidence that the series
are cointegrated. If the test fails to reject the inference is uncertain.

20Calculated by simulation from one million simulation draws for a sample of size n = 10,000.
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Table 16.7: VECM Cointegration Rank Critical Values

m − r 50% 30% 20% 15% 10% 7% 5% 4% 3% 2% 1%
Trend Model 2

1 3.5 4.9 5.9 6.6 7.6 8.4 9.2 9.7 10.4 11.3 12.7
2 11.4 13.9 15.5 16.6 18.0 19.2 20.3 21.0 21.9 23.1 25.1
3 23.4 26.8 29.0 30.4 32.3 33.8 35.2 36.1 37.2 38.7 41.3
4 39.4 43.7 46.5 48.3 50.6 52.5 54.1 55.2 56.5 58.4 61.3
5 59.4 64.6 67.9 70.1 72.8 75.0 77.0 78.3 79.8 82 85
6 83 89 93 96 99 102 104 105 107 110 113
7 111 118 123 126 129 132 135 136 138 141 145
8 143 151 156 159 163 167 170 171 174 177 182
9 179 188 194 197 202 205 208 210 213 216 222

10 219 229 235 239 244 248 251 254 256 260 266
11 263 274 281 285 290 295 298 301 304 307 314
12 311 323 330 335 341 345 349 352 355 359 366

Trend Model 3
1 0.5 1.1 1.6 2.1 2.7 3.3 3.8 4.2 4.7 5.4 6.6
2 7.7 9.7 11.2 12.1 13.4 14.5 15.5 16.1 17.0 18.1 19.9
3 18.9 22.0 24.0 25.3 27.1 28.5 29.8 30.7 31.7 33.2 35.5
4 34.0 38.0 40.7 42.3 44.5 46.3 47.9 48.9 50.2 51.9 54.7
5 53.1 58.0 61.2 63.2 65.8 67.9 69.8 71.0 72.5 74.5 77.9
6 76 82 86 88 91 94 96 97 99 101 105
7 103 110 114 117 120 123 126 127 129 132 136
8 134 142 147 150 154 157 159 161 163 166 171
9 169 178 183 187 191 194 197 199 202 205 210

10 208 218 224 227 232 236 239 241 244 247 253
11 251 262 269 272 277 282 285 287 290 294 300
12 298 310 317 321 327 331 335 338 341 345 351

Trend Model 4
1 5.7 7.4 8.7 9.5 10.7 11.7 12.5 13.1 13.8 14.9 16.6
2 15.9 18.7 20.5 21.7 23.3 24.7 25.9 26.7 27.6 29.0 31.2
3 30.0 33.8 36.2 37.7 39.8 41.4 42.9 43.9 45.1 46.7 49.4
4 48.1 52.8 55.7 57.6 60.1 62.1 63.9 65.0 66.4 68.4 71.5
5 70.2 75.7 79.2 81 84 87 89 90 92 94 98
6 96 103 107 109 113 115 118 119 121 124 128
7 126 134 138 141 145 148 150 152 154 157 162
8 160 168 174 177 181 184 187 189 192 195 200
9 198 207 213 217 221 225 228 230 233 236 242

10 240 250 257 261 266 270 273 275 278 282 288
11 286 297 304 308 314 318 322 325 328 331 338
12 336 348 356 360 366 371 375 378 381 385 392
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This testing procedure is appealing when m is small (e.g. m ≤ 4) but is less appealing for large m.
With large m the procedure has several challenges. Sequential testing requires multiple testing for which
it is difficult to control Type I error. Simultaneously the test can have low power implying that the proce-
dure is likely to “identify” an inappropriately low value of r .

An alternative approach is to use cointegration tests to verify a selected specification. Start with
economic modeling to motivate the cointegrating rank r . The likelihood ratio LR(r ) can be used to test
this assumption against the unrestricted VAR. If the test rejects H(r ) this is evidence that the proposed
model is incorrect.

We illustrate using the interest rate series with a VAR(4) and Trend Model 2. The value of LR(0) is 31.6.
To compute the p-value we use Table 16.7 for Trend Model 2 with m − r = 2. The value 31.6 exceeds the
1% critical value of 25.1 so the asymptotic p-value of the test is less than 1%. Thus the null hypothesis of
no cointegration is strongly rejected in favor of at least one cointegrating vector. The value of LR(1) is 2.8.
The p-value is calculated using m−r = 1. The value 2.8 is smaller than the 50% critical value of 3.5 so the
p-value is larger than 50%. The statistic does not reject the hypothesis ofH(1). Together the statistics are
consistent with the modeling assumption that the series are I (1) and mutually cointegrated.

For a broader application we expand to five Treasury interest rates21: 3-month, 6-month, 1-year, 5-
year, and 10-year. If the four spreads are mutually stationary then the system should have four coingrat-
ing vectors, thus r = 4. However if the the distribution of the spreads change over time the cointegrating
rank could be less than four.

We report the likelihood ratio tests for cointegration rank in Table 16.8. The LR test for r = 0 is 120
which exceeds the 1% critical value of 85.4, and the LR test for r = 1 is 68.3 which exceeds the 1% critical
value of 61.3, so we safely reject the hypotheses of r = 0 and r = 1. This suggests that r ≥ 2. The LR
test for r = 2 is 33.6 with a p-value of 0.07, which is borderline significant. The tests for r = 3 and r = 4
are insignificant. In sum, we cannot reject the models H(2), H(3), or H(4), but H(2) is doubtful. Our
recommendation in this context is to use either H(3) or H(4).

Table 16.8: Tests for Cointegrating Rank

LR(r) p-value
0 120 < 0.01
1 68.3 < 0.01
2 33.6 0.07
3 10.8 > 0.50
4 2.9 > 0.50

In Stata use vecrank to calculate the LR tests for cointegrating rank. The output is a table displaying
LR(r) for r = 0, ...,m −1 along with the asymptotic 5% critical values. The p-value can be calculated from
Table 16.7.

16.22 Technical Proofs*

Proof of Theorem 16.1. In the text we showed that the limit distributions of Sn coincide with those of B .
To appeal to the Functional Central Limit Theorem (Theorem 18.3 of Introduction to Econometrics) we
need to verify that Sn is asymptotically equicontinuous (see Definition 18.7 of Introduction to Economet-
rics). For simplicity we focus on the scalar case et ∈R.

21FRED-MD series TB3MS, TB6MS, GS1, GS5, and GS10.
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Assume without loss of generality that σ2 = 1. Take any 0 < η< 1 and 0 < ε< 1. Set δ≤ εη4/482. Note
that

sup
|r2−r1|≤δ

|Sn(r2)−Sn(r1)| ≤ 2 sup
0≤ j≤b1/δc

sup
0≤r≤δ

∣∣Sn( jδ+ r )−Sn
(

jδ
)∣∣ .

Then

P

[
sup

|r2−r1|≤δ
|Sn(r2)−Sn(r1)| > η

]
≤P

[b1/δc⋃
j=0

sup
0≤r≤δ

∣∣Sn( jδ+ r )−Sn
(

jδ
)∣∣> η

2

]

≤
b1/δc∑
j=0

P

[
sup

0≤r≤δ

∣∣Sn( jδ+ r )−Sn
(

jδ
)∣∣> η

2

]
≤

(
1

δ
+1

)
P

[
sup

0≤r≤δ
|Sn(r )| > η

2

]

=
(

1

δ
+1

)
P

[
max

i≤bnδc

∣∣∣∣∣ 1p
n

i∑
t=1

et

∣∣∣∣∣> η

2

]

≤ 2

(
1

δ
+1

)
P

[∣∣∣∣∣ 1p
n

bnδc∑
t=1

et

∣∣∣∣∣> η

4

]
.

The final inequality is Billingsley’s (B.52) which holds since δ< η/4
p

2 under the assumptions. Our state-
ment (B.52) of Billingsley’s inequality assumes that et is an i.i.d. sequence; the result can be extended to
a MDS sequence.

The CLT implies that n−1/2 ∑bnδc
t=1 et −→

d
Zδ ∼ N(0,δ). For n sufficiently large the final line is bounded

by
3

δ
P

[
|Zδ| >

η

4

]
= 3

δ
P

[
Z 4
δ > η4

162

]
≤ 3

δ

162

η4 E
[

Z 4]= 482

η4 δ= ε. (16.25)

The first inequality is Markov’s, the following equality E
[

Z 4
δ

]= 3δ2, and the final equality is the assump-
tion δ= εη4/482. This shows that Sn satisfies the definition of asymptotic equicontinuity. ■

Proof of Theorem 16.7. Zt has the Wold decomposition Zt =Θ(L)et . We add the additional assumption
that et is a MDS to simplify the proof. By the Beveridge-Nelson decomposition Zt = ξt +Ut −Ut−1 where
ξt =Θ(1)et and Ut =Θ∗(L)et . Then

1

n

n∑
t=1

St−1Z ′
t =

1

n

n∑
t=1

St−1ξ
′
t +

1

n

n∑
t=1

St−1U ′
t −

1

n

n∑
t=1

St−1U ′
t−1

= 1

n

n∑
t=1

St−1ξ
′
t −

1

n

n−1∑
t=1

ZtU ′
t +op (1).

The first term converges to
∫ 1

0 BdB ′ by Theorem 16.6. The Brownian motion has covariance matrix equal
to the long-run variance of Zt , which isΩ. The second term converges in probability to E

[
ZtU ′

t

]
. Making

the substitutions Ut = ξt+1 +Ut+1 −Zt+1 and E
[

Ztξ
′
t+1

]= 0 this can be written as

E
[

ZtU ′
t

]= E[
Ztξ

′
t+1

]+E[
ZtU ′

t+1

]−E[
Zt Z ′

t+1

]
= E[

ZtU ′
t+1

]−E[
Zt Z ′

t+1

]
= E[

ZtU ′
t+2

]−E[
Zt Z ′

t+2

]−E[
Zt Z ′

t+1

]
= ·· ·

=−
∞∑

j=1
E
[

Zt Z ′
t+ j

]
=−

∞∑
j=1

E
[

Zt− j Z ′
t

]=−Λ.
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The third line makes the substitutions Ut+1 = ξt+2+Ut+2−Zt+2 and E
[

Ztξ
′
t+2

]= 0, and the substitutions
are repeated until infinity. We have shown the result as claimed. ■

Proof of Theorem 16.8. By the definition of the stochastic integral∫ 1

0
W dW = plim

N→∞

N−1∑
i=0

W

(
i

N

)(
W

(
i +1

N

)
−W

(
i

N

))
. (16.26)

Take any positive integer N and any j < N . Observe that

W

(
j +1

N

)
=W

(
j

N

)
+

(
W

(
j +1

N

)
−W

(
j

N

))
.

Squaring we obtain

W

(
j +1

N

)2

−W

(
j

N

)2

= 2W

(
j

N

)(
W

(
j +1

N

)
−W

(
j

N

))
+ 1

N
χ j N .

where χ j N = N
(
W

(
j+1
N

)
−W

(
j

N

))2
. Notice that χ j N are i.i.d. across j , distributed as χ2

1, and have expec-

tation 1. Summing over j = 0 to N −1 we obtain

W (1)2 = 2
N−1∑
i=0

W

(
i

N

)(
W

(
i +1

N

)
−W

(
i

N

))
+ 1

N

N−1∑
i=0

χ2
i N .

Rewriting
N−1∑
i=0

W

(
i

N

)(
W

(
i +1

N

)
−W

(
i

N

))
= 1

2

(
W (1)2 − 1

N

N−1∑
i=0

χ2
i N

)
.

By (16.26),
∫ 1

0 W dW is the probability limit of the right side. By the WLLN this is 1
2

(
W (1)2 −1

)
as claimed. ■

Proof of Theorem 16.10.

σ̂2 = 1

n

n−1∑
t=1

ê2
t+t =

1

n

n−1∑
t=1

e2
t+t −

1

n

(
1

n

n−1∑
t=1

Yt et+1

)2

1

n2

n−1∑
t=1

Y 2
t

= 1

n

n−1∑
t=1

e2
t+t +op (1) −→

p
σ2.

Then

T =

1

n

n−1∑
t=1

Yt et+1(
1

n2

n−1∑
t=1

Y 2
t

)1/2

σ̂

−→
d

σ2
∫ 1

0 W dW(
σ2

∫ 1
0 W 2

)1/2
σ

=
∫ 1

0 W dW(∫ 1
0 W 2

)1/2
.

■

Proof of Theorem 16.12. Pick η> 0 and ε> 0. Pick δ such that

P

(
sup

|r−s|≤δ
|X (r )−X (s)| > ε

)
≤ η (16.27)
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which is possible since X (r ) is almost surely continuous. Set N = b1/δc and tk = kn/N . Write Xnt =
D−1

n X t . Then

Cn = 1

n

N∑
k=0

tk+1−1∑
t=tk

Xnt ut = 1

n

N∑
k=0

Xn,tk

tk+1−1∑
t=tk

ut + 1

n

N∑
k=0

tk+1−1∑
t=tk

(
Xnt −Xn,tk

)
ut

and
|Cn | ≤ sup

0≤r≤1
|Xn(r )| An + sup

|r−s|≤δ
|Xn(r )−Xn(s)|Bn

where

An = N

n
max
k≤N

∣∣∣∣∣tk+1−1∑
t=tk

ut

∣∣∣∣∣
Bn = 1

n

n∑
t=1

|ut | .

Since Xn −→
d

X and X is continuous,

sup
0≤r≤1

|Xn(r )| −→
d

sup
0≤r≤1

|X (r )| <∞

almost surely. Thus sup0≤r≤1 |Xn(r )| =Op (1). Since Xn −→
d

X ,

sup
|r−s|≤δ

|Xn(r )−Xn(s)| −→
d

sup
|r−s|≤δ

|X (r )−X (s)| ≤ ε

where the inequality holds with probability exceeding 1−η by (16.27). Thus for sufficiently large n the
left hand side is bounded by 2ε with the same probability, and hence is op (1).

For fixed N , An −→
p

0 by the ergodic theorem. The assumption that E |ut | <∞ implies that Bn =Op (1).

Together, we have shown that

|Cn | ≤Op (1)op (1)+op (1)Op (1) = op (1)

as stated. ■

Proof of Theorem 16.17.
Part 1: The definition of cointegration implies that ∆Yt is stationary with a finite covariance matrix. By
the multivariate Wold representation (Theorem 15.2), ∆Yt = θ+Θ(L)et with the errors white noise. Pre-
multiplication by β′ yields β′∆Yt =β′θ+β′Θ(L)et which has long-run variance β′Θ(1)ΣΘ(1)′βwhere Σ is
the covariance matrix of et . The assumption that β′Yt is I (0) implies that β′θ = 0 (else β′Yt will have a
time trend). This implies θ lies in the range space of β⊥, hence θ =β⊥γ for some γ. Also, the assumption
thatβ′Yt is I (0) implies thatβ′∆Yt is I (−1), which implies that its long-run covariance matrix equals zero.
This implies that β′Θ(1) = 0 and henceΘ(1) =β⊥η′ for some matrix η. The assumption that β′

⊥∆Yt is I (0)
implies that β′

⊥Θ(1)ΣΘ(1)′β⊥ > 0 which implies that Θ(1) must have rank m − r and hence so does the
matrix η.
Part 2: The Beveridge-Nelson decomposition plus Θ(1) = β⊥η′ implies Θ(L) = β⊥η′+Θ∗(L)(1−L). Ap-
plied to the Wold representation we obtain ∆Yt =β⊥γ+β⊥η′et +Θ∗(L)∆et . Summing we find the stated
representation.
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Part 3: Without loss of generality assume that H = [
β,β⊥

]
is orthonormal. Also define the orthonormal

matrix Hη = [
η⊥,η

]
where η = η(η′η)−1/2. Define X t = H ′Yt . The Wold representation implies ∆X t =(

0
γ

)
+C (L)et where using the Beveridge-Nelson decomposition

C (L) = H ′ (β⊥η′+Θ∗(L)(1−L)
)= (

β′Θ∗(L)(1−L)
η′+β′

⊥Θ
∗(L)(1−L)

)
.

Partition X t = (X1t , X2t ) comformably with H . We see that(
∆X1t

∆X2t

)
=

(
β′Θ∗(L)(1−L)et

γ+η′et +β′
⊥Θ

∗(L)(1−L)et

)
.

Summing the first equation we obtain(
X1t

∆X2t

)
=

(
µ

γ

)
+D(L)H ′

ηet (16.28)

where µ= X1,0 −β′Θ∗(L)e0 and

D(L) =
(

β′Θ∗(L)
η′+β′

⊥Θ
∗(L)(1−L)

)
Hη =

(
β′Θ∗(L)η⊥ β′Θ∗(L)η

β′
⊥Θ

∗(L)η⊥(1−L)
(
η′η

)1/2 +β′
⊥Θ

∗(L)η(1−L)

)
.

This is an invertible matrix polynomial. To see this, first observe that

D(1) =
(
β′Θ∗(1)η⊥ β′Θ∗(1)η

0
(
η′η

)1/2

)

which is full rank under the assumption that β′Θ∗(1)η⊥ is full rank. This means that det(D(z)) has no
unit roots. Second, (16.28) and the definition of X t imply that

D(z) =
(

1− z 0
0 1

)
HΘ(z)Hη.

Since H and Hη are full rank this implies that the solutions to det(D(z)) = 0 are solutions to det(Θ(z)) = 0
and hence satisfy |z| ≥ 1+δ (since z 6= 1) by the assumption on Θ(z). Together we have shown that D(L)
is invertible. Thus (16.28) implies

HηD(L)−1
(

X1t

∆X2t

)
= a +et (16.29)

where

a = HηD(1)−1
(
µ

γ

)
.

(16.29) is a VAR representation for
(
β′Yt ,β′

⊥∆Yt
)

with all roots satisfying |z| ≥ 1+δ. This implies a VAR
representation for Yt which is equation (16.18) with

A(z) = HηD(z)−1
(

β′

β′
⊥(1− z)

)
.
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By partitioned matrix inversion we calculate

A(1) = HηD(1)−1
(
β′

0

)

= [
η⊥,η

]( (
β′Θ∗(1)η⊥

)−1 −(
β′Θ∗(1)η⊥

)−1
β′Θ∗(1)η

0
(
η′η

)−1/2

)(
β′

0

)
= η⊥

(
β′Θ∗(1)η⊥

)−1
β′

=−αβ′.

as claimed.
Part 4. Under the assumption

∑∞
j=0

∥∥∑∞
k=0 kΘ j+k

∥∥2 <∞, Theorem 15.3 implies that the coefficients A∗
k =∑∞

j=0 A j+k are absolutely summable. We can then apply the Beveridge-Nelson decomposition A(z) =
A(1)+ A∗(z)(1− z). Applying A(1) =−αβ′ and a little rewriting yields

A(z) = I m(1− z)−αβ′z − (
I m +αβ′− A∗(z)

)
(1− z).

Applied to (16.18) we obtain the stated result with Γ(L) = I m +αβ′− A∗(z). The coefficients of Γ(L) are
absolutely summable because the coefficients A∗

k are.
Part 5. The assumption θ = 0 direct implies γ= 0. This implies

a = HηD(1)−1
(
µ

0

)

= [
η⊥,η

]( (
β′Θ∗(1)η⊥

)−1 −(
β′Θ∗(1)η⊥

)−1
β′Θ∗(1)η

0
(
η′η

)−1/2

)(
µ

0

)
= η⊥

(
β′Θ∗(1)η⊥

)−1
µ

=αµ
as claimed. ■

Proof of Theorem 16.18. Write the VECM as Γ∗(L)∆Yt −αβ′Yt−1 = a + et where Γ∗(z) = I m −Γ(z). Set
α=α(

α′α
)−1/2 and orthonormal H = [

α,α⊥
]
. Assume that

[
β,β⊥

]
is orthonormal. Define Zt =β′Yt and

Ut =β′
⊥∆Yt . Our goal is to show that (Zt ,Ut ) is I (0) which is the same as showing that Yt is cointegrated

with cointegrating vectors β.
Premultiplying the VECM model by H ′ we find the system

H ′ (Γ∗(L)∆Yt −αβ′Yt−1
)= H ′a +H ′et .

Using the identity I m =ββ′+β⊥β′
⊥ we see that∆Yt =β∆Zt +β⊥Ut . Making this substitution and setting

a = H ′a vt = H ′et we obtain the system

D(L)

(
Zt

Ut

)
= a + vt

where

D(z) =
[
α′Γ∗(z)β (1− z)− I m α′Γ∗(z)β⊥
α′
⊥Γ

∗(z)β (1− z) α′
⊥Γ

∗(z)β⊥

]
.

We now show that this is a stationary system. First, note that

D(1) =
[ −I m α′Γ∗(1)β⊥

0 α′
⊥Γ

∗(1)β⊥

]
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which is full rank under the assumption that α′
⊥Γ

∗(1)β⊥ is full rank. That means that det(D(z)) = 0 has
no solutions z = 1. Second, D(z) relates to A(z) by the relationship

D(z) = H ′A(z)
[
β,β⊥(1− z)

]
.

Thus the solutions z 6= 1 to

det(D(z)) = det(H)det(A(z))det
([
β,β⊥(1− z)

])= 0

are all solutions to det(A(z)) = 0, which all satisfy |z| ≥ 1+δ by assumption. Thus D(z) is invertible with
summable moving average coefficient matrices. This implies the VAR system for (Zt ,Ut ) is stationary.

As discussed above, this shows that (Zt ,Ut ) is a stationary process and hence Yt is cointegrated with
cointegrating vector β. ■

Proof of Theorem 16.19. Set Y ∗
2t = Y2t −Y 2. The estimator satisfies

n
(
β̂−β)= (

1

n2

n∑
t=1

Y ∗
2t Y ∗′

2t

)−1 (
1

n

n∑
t=1

Y ∗
2t u1t

)
.

Set St = ∑t
i=1 ut . Theorems 16.4 and 16.5 imply Sbnr c −→

d
B(r ) and Y ∗

2bnr c −→d B∗
2 (r ). By the continuous

mapping theorem
1

n2

n∑
t=1

Y ∗
2t Y ∗′

2t −→
d

∫ 1

0
B∗

2 B∗′
2 .

By Theorem 16.7 and the WLLN

1

n

n∑
t=1

Y ∗
2t u1t = 1

n

n∑
t=1

Y ∗
2t−1u1t + 1

n

n∑
t=1

u2t u1t +op (1) −→
d

∫ 1

0
B∗

2 dB1 +Λ21 +Σ21.

Together we obtain the stated result. ■

Proof of Theorem 16.22 (sketch). For simplicity abstract from the dynamic and trend coefficients so that
the unconstrained model is

∆Yt =αβ′Yt−1 +et .

where et is a MDS with covariance matrix Σ. We examine two cases in detail. First, the case H(0) (which
is relatively straightforward) and second the case H(r ) (which is algebraically more tedious).

First, take H(0), in which case the process is ∆Yt = et . The statistic is

LR(0) =−n
m∑

j=1
log

(
1− λ̂ j

)' n
m∑

j=1
λ̂ j

= tr

[(
1

n

n∑
t=1

Yt−1e ′t
)(

1

n

n∑
t=1

et e ′t
)−1 (

1

n

n∑
t=1

et Y ′
t−1

)(
1

n2

n∑
t=1

Yt−1Y ′
t−1

)−1
]

−→
d

tr

[(∫ 1

0
dBB ′

)(∫ 1

0
BB ′

)−1 (∫ 1

0
BdB ′

)]

= tr

[(∫ 1

0
dW W ′

)(∫ 1

0
W W ′

)−1 (∫ 1

0
W dW ′

)]

where B(r ) is a Brownian motion with covariance matrix Σ, and W (r ) = Σ−1/2B(r ) is standard Brownian
motion. This is the stated result.
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Second, take H(r ) for 1 < r < m. Define Zt = β′Yt . The process under H(r ) is ∆Yt = αZt−1 + et .
Normalize β so that E

[
Zt Z ′

t

]= I r . The test statistic is invariant to linear transformations of Yt so we can
rescale the data so that E

[
∆Yt∆Y ′

t

]= I m . Notice that Σ= E[
et e ′t

]= E[
∆Yt∆Y ′

t

]−αE[
Zt Z ′

t

]
α′ = I m −αα′.

The likelihood ratio statistic is

LR(r ) =−n
m∑

j=r+1
log

(
1− λ̂ j

)' m∑
j=r+1

ρ̂ j

where ρ̂ j = nλ̂ j are the m − r smallest roots of the equation det
(
S(ρ)

)= 0 where

S(ρ) = ρ 1

n2

n∑
t=1

Yt−1Y ′
t−1 −

1

n

n∑
t=1

Yt−1∆Y ′
t

(
1

n

n∑
t=1
∆Yt∆Y ′

t

)−1 1

n

n∑
t=1
∆Yt Y ′

t−1.

Define a full-rank matrix H = [β,β⊥] whereβ′β⊥ = 0. The roots of ρ̂ j are the same as those of det
(
S∗(ρ)

)=
0 where S∗(ρ) = H ′S(ρ)H , which replaces Yt−1 with (Zt−1, X t−1) where X t =β′

⊥Yt . We calculate that

S∗(ρ) = ρ
[ 1

n2

∑n
t=1 Zt−1Z ′

t−1
1

n2

∑n
t=1 Zt−1X ′

t−1
1

n2

∑n
t=1 X t−1Z ′

t−1
1

n2

∑n
t=1 X t−1X ′

t−1

]

−
[ 1

n

∑n
t=1 Zt−1∆Y ′

t
1
n

∑n
t=1 X t−1∆Y ′

t

](
1

n

n∑
t=1
∆Yt∆Y ′

t

)−1 [ 1
n

∑n
t=1 Zt−1∆Y ′

t
1
n

∑n
t=1 X t−1∆Y ′

t

]′
.

We now apply the asymptotic theory for non-stationary theory to each component. The process X t =
β′
⊥Yt is non-stationary and satisfies the FCLT n−1Xbnr c −→

d
X (r ) ∼ B M

(
β′
⊥Ωβ⊥

)
whereΩ is the long-run

covariance matrix of ∆Yt . The sum of the errors satisfy n−1/2 ∑bnr c
t=1 et −→

d
B(r ) ∼ B M (Σ). The process

X (r ) is a linear function of B(r ).
We find that 1

n2

∑n
t=1 X t−1X ′

t−1 −→d
∫ 1

0 X X ′, 1
n2

∑n
t=1 X t−1et −→

d

∫ 1
0 X dB ′, 1

n

∑n
t=1 Zt−1Z ′

t−1 −→p I r , 1
n

∑n
t=1∆Yt∆Y ′

t −→p
I m , 1

n

∑n
t=1 Zt−1∆Y ′

t −→p α′, 1
n

∑n
t=1 X t−1Z ′

t−1 −→d ζ for some random matrix by Theorem 16.7, and 1
n

∑n
t=1 X t−1∆Y ′

t −→d
ζ′α′+∫ 1

0 X dB ′. Together we find that

S∗(ρ) −→
d
ρ

[
0

0
∫ 1

0 X X ′

]
−

 α′α α′
(
αζ+∫ 1

0 dB X ′
)(

ζ′α′+∫ 1
0 X dB ′

)
α

(
ζ′α′+∫ 1

0 X dB ′
)(
αζ+∫ 1

0 dB X ′
)  .

Thus det
(
S∗(ρ)

)
converges in distribution to the determinant of the right-hand-side, which equals (using

Theorem A.1.5) det
(
α′α

)
multiplied by the determinant of

ρ

∫ 1

0
X X ′−

(
ζ′α′+

∫ 1

0
X dB ′

)(
I m −α(

α′α
)−1

α′
)(
αζ+

∫ 1

0
dB X ′

)
= ρ

∫ 1

0
X X ′−

∫ 1

0
X dB ′Mα

∫ 1

0
dB X ′

= ρ
∫ 1

0
X X ′−

∫ 1

0
X dW ′H ′

1

∫ 1

0
H1dW X ′

= ρ
∫ 1

0
X X ′−

∫ 1

0
X dW ′

∫ 1

0
dW X ′ (16.30)

where Mα = I m −α(
α′α

)−1
α′ and

MαB(r ) ∼ B M
(
Mα

(
I m −αα′)Mα

)= B M (Mα) = H1W (r )
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where Mα = H1H ′
1, H ′

1H1 = I m−r and W (r ) ∼ B M (I m−r ).
The determinant of (16.30) has m − r roots and their sum equals

tr

[(∫ 1

0
dW X ′

)(∫ 1

0
X X ′

)−1 (∫ 1

0
X dW ′

)]
= tr

[(∫ 1

0
dW W ′

)(∫ 1

0
W W ′

)−1 (∫ 1

0
W dW ′

)]

since X (r ) is a linear rotation of W (r ). This is the stated result. ■
_____________________________________________________________________________________________

16.23 Exercises

Exercise 16.1 Take St = St−1 +et with S0 = 0 and et i.i.d. (0,σ2).

(a) Calculate E [St ] and var[St ].

(b) Set Yt = (St −E [St ])/
p

var[St ]. By construction E [Yt ] = 0 and var[Yt ] = 1. Is Yt stationary?

(c) Find the asymptotic distribution of Ybnr c for r ∈ [δ,1].

Exercise 16.2 Find the Beveridge-Nelson decomposition of ∆Yt = et +Θ1et−1 +Θ2et−2.

Exercise 16.3 Suppose Yt = X t +ut where X t = X t−1 +et with (et ,ut ) ∼ I (0).

(a) Is Yt I (0) or I (1)?.

(b) Find the asymptotic functional distribution of n−1/2Ybnr c.

Exercise 16.4 Let Yt = et be i.i.d. and X t =∆Yt .

(a) Show that Yt is stationary and I (0).

(b) Show that X t is stationary but not I (0).

Exercise 16.5 Let Ut =Ut−1 + et , Yt =Ut + vt and X t = 2Ut +wt , where (et , vt , wt ) is an i.i.d. sequence.
Find the cointegrating vector for (Yt , X t ).

Exercise 16.6 Take the AR(1) model Yt = αYt−1 + et with i.i.d. et and the least squares estimator α̂. In
Chaper 14 we learned that the asymptotic distribution when |α| < 1 is

p
n (α̂−α) −→

d
N

(
0,1−α2

)
. How

do you reconcile this with Theorem 16.9, especially for α close to one?

Exercise 16.7 Take the VECM(1) model∆Yt =αβ′Yt−1+et . Show that Zt =β′Yt follows an AR(1) process.

Exercise 16.8 An economist estimates the model Yt =αYt−1+et and finds α̂= 0.9 with s (α̂) = 0.05. They
assert: “The t-statistic for testing α= 1 is 2, so α= 1 is rejected.” Is there an error in their reasoning?

Exercise 16.9 An economist estimates the model Yt = αYt−1 + et and finds α̂ = 0.9 with s (α̂) = 0.04.
They assert: “The 95% confidence interval for α is [0.82,0.98] which does not contain 1. So α = 1 is not
consistent with the data.” Is there an error in their reasoning?

Exercise 16.10 An economist takes Yt , detrends to obtain the detrended series Zt , applies a ADF test to
Zt and finds ADF = −2.5. They assert: “Stata provides the 5% critical value −1.9 with p-value less than
1%. Thus we reject the null hypothesis of a unit root.” Is there an error in their reasoning?
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Exercise 16.11 An economist wants to build an autoregressive model for the number of daily tweets by
a prominant politician. For a model with an intercept they obtain ADF =−2.0. They assert “The number
of tweets is a unit root process.” Is there an error in their reasoning?

Exercise 16.12 For each of the following monthly series from FRED-MD implement the Dickey-Fuller unit
root test. For each, you need to consider the AR order p and the trend specification.

(a) log real personal income: log(rpi)

(b) industrial production index: indpro

(c) housing starts: houst

(d) help-wanted index: hwi

(e) civilian labor force: clf16ov

(f) initial claims: claims

(g) industrial production index (fuels): ipfuels

Exercise 16.13 For each of the series in the previous exercise implement the KPSS test of stationarity.
For each, you need consider the lag truncation M and the trend specification.

Exercise 16.14 For each of the following monthly pairs from FRED-MD test the hypothesis of no coin-
tegration using the Johansen trace test. For each, you need to consider the VAR order p and the trend
specification.

(a) 3-month treasury interest rate (tb3ms) and 10-year treasury interest rate (gs10). Note: In the text
we implemented the test on the quarterly series, not monthly.

(b) interest rate on AAA bonds (aaa) and interest rate on BAA bonds (baa).

(c) log(industrial production durable consumer goods) and log(industrial production nondurable con-
sumer goods) (log of ipdcongd and ipncongd).



Chapter 17

Panel Data

17.1 Introduction

Economists traditionally use the term panel data to refer to data structures consisting of observa-
tions on individuals for multiple time periods. Other fields such as statistics typically call this structure
longitudinal data. The observed “individuals” can be, for example, people, households, workers, firms,
schools, production plants, industries, regions, states, or countries. The distinguishing feature relative
to cross-sectional data sets is the presence of multiple observations for each individual. More broadly,
panel data methods can be applied to any context with cluster-type dependence.

There are several distinct advantages of panel data relative to cross-section data. One is the possibil-
ity of controlling for unobserved time-invariant endogeneity without the use of instrumental variables.
A second is the possibility of allowing for broader forms of heterogeneity. A third is modeling dynamic
relationships and effects.

There are two broad categories of panel data sets in economic applications: micro panels and macro
panels. Micro panels are typically surveys or administrative records on individuals and are characterized
by a large number of individuals (often in the 1000’s or higher) and a relatively small number of time
periods (often 2 to 20 years). Macro panels are typically national or regional macroeconomic variables
and are characterized by a moderate number of individuals (e.g. 7-20) and a moderate number of time
periods (20-60 years).

Panel data was once relatively esoteric in applied economic practice. Now, it is a dominant feature of
applied research.

A typical maintained assumption for micro panels (which we follow in this chapter) is that the in-
dividuals are mutually independent while the observations for a given individual are correlated across
time periods. This means that the observations follow a clustered dependence structure. Because of
this, current econometric practice is to use cluster-robust covariance matrix estimators when possible.
Similar assumptions are often used for macro panels though the assumption of independence across
individuals (e.g. countries) is much less compelling.

The application of panel data methods in econometrics started with the pioneering work of Mundlak
(1961) and Balestra and Nerlove (1966).

Several excellent monographs and textbooks have been written on panel econometrics, including
Arellano (2003), Hsiao (2003), Wooldridge (2010), and Baltagi (2013). This chapter will summarize some
of the main themes but for a more in-depth treatment see these references.

One challenge arising in panel data applications is that the computational methods can require
meticulous attention to detail. It is therefore advised to use established packages for routine applica-
tions. For most panel data applications in economics Stata is the standard package.

597
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17.2 Time Indexing and Unbalanced Panels

It is typical to index observations by both the individual i and the time period t , thus Yi t denotes a
variable for individual i in period t . We index individuals as i = 1, ..., N and time periods as t = 1, ...T .
Thus N is the number of individuals in the panel and T is the number of time series periods.

Panel data sets can involve data at any time series frequency though the typical application involves
annual data. The observations in a data set will be indexed by calendar time which for the case of annual
observations is the year. For notational convenience it is customary to denote the time periods as t =
1, ...,T , so that t = 1 is the first time period observed and T is the final time period.

When observations are available on all individuals for the same time periods we say that the panel
is balanced. In this case there are an equal number T of observations for each individual and the total
number of observations is n = N T .

When different time periods are available for the individuals in the sample we say that the panel is
unbalanced. This is the most common type of panel data set. It does not pose a problem for applications
but does make the notation cumbersome and also complicates computer programming.

To illustrate, consider the data set Invest1993 on the textbook webpage. This is a sample of 1962 U.S.
firms extracted from Compustat, assembled by Bronwyn Hall, and used in the empirical work in Hall and
Hall (1993). In Table 17.1 we display a set of variables from the data set for the first 13 observations. The
first variable is the firm code number. The second variable is the year of the observation. These two
variables are essential for any panel data analysis. In Table 17.1 you can see that the first firm (#32) is
observed for the years 1970 through 1977. The second firm (#209) is observed for 1987 through 1991.
You can see that the years vary considerably across the firms so this is an unbalanced panel.

For unbalanced panels the time index t = 1, ...,T denotes the full set of time periods. For example, in
the data set Invest1993 there are observations for the years 1960 through 1991, so the total number of
time periods is T = 32. Each individual is observed for a subset of Ti periods. The set of time periods for
individual i is denoted as Si so that individual-specific sums (over time periods) are written as

∑
t∈Si

.
The observed time periods for a given individual are typically contiguous (for example, in Table 17.1,

firm #32 is observed for each year from 1970 through 1977) but in some cases are non-continguous (if, for
example, 1973 was missing for firm #32). The total number of observations in the sample is n =∑N

i=1 Ti .

Table 17.1: Observations from Investment Data Set

Firm Code Number Year Ii t I i İi t Qi t Q i Q̇i t êi t

32 1970 0.122 0.155 -0.033 1.17 0.62 0.55 .
32 1971 0.092 0.155 -0.063 0.79 0.62 0.17 -0.005
32 1972 0.094 0.155 -0.061 0.91 0.62 0.29 -0.005
32 1973 0.116 0.155 -0.039 0.29 0.62 -0.33 0.014
32 1974 0.099 0.155 -0.057 0.30 0.62 -0.32 -0.002
32 1975 0.187 0.155 0.032 0.56 0.62 -0.06 0.086
32 1976 0.349 0.155 0.194 0.38 0.62 -0.24 0.248
32 1977 0.182 0.155 0.027 0.57 0.62 -0.05 0.081

209 1987 0.095 0.071 0.024 9.06 21.57 -12.51 .
209 1988 0.044 0.071 -0.027 16.90 21.57 -4.67 -0.244
209 1989 0.069 0.071 -0.002 25.14 21.57 3.57 -0.257
209 1990 0.113 0.071 0.042 25.60 21.57 4.03 -0.226
209 1991 0.034 0.071 -0.037 31.14 21.57 9.57 -0.283
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17.3 Notation

This chapter focuses on panel data regression models whose observations are pairs (Yi t , Xi t ) where
Yi t is the dependent variable and Xi t is a k-vector of regressors. These are the observations on individual
i for time period t .

It will be useful to cluster the observations at the level of the individual. We borrow the notation from
Section 4.23 to write Y i as the Ti ×1 stacked observations on Yi t for t ∈ Si , stacked in chronological order.
Similarly, we write X i as the Ti ×k matrix of stacked X ′

i t for t ∈ Si , stacked in chronological order.
We will also sometimes use matrix notation for the full sample. To do so, let Y = (Y ′

1, ...,Y ′
N )′ denote

the n ×1 vector of stacked Y i , and set X = (X ′
1, ..., X ′

N )′ similarly.

17.4 Pooled Regression

The simplest model in panel regresion is pooled regresssion

Yi t = X ′
i tβ+ei t

E [Xi t ei t ] = 0. (17.1)

where β is a k × 1 coefficient vector and ei t is an error. The model can be written at the level of the
individual as

Y i = X iβ+e i

E
[

X ′
i e i

]= 0

where e i is Ti ×1. The equation for the full sample is Y = Xβ+e where e is n ×1.
The standard estimator of β in the pooled regression model is least squares, which can be written as

β̂pool =
(

N∑
i=1

∑
t∈Si

Xi t X ′
i t

)−1 (
N∑

i=1

∑
t∈Si

Xi t Yi t

)

=
(

N∑
i=1

X ′
i X i

)−1 (
N∑

i=1
X ′

i Y i

)
= (

X ′X
)−1 (

X ′Y
)

.

In the context of panel data β̂pool is called the pooled regression estimator. The vector of residuals for
the i th individual is ê i = Y i −X i β̂pool.

The pooled regression model is ideally suited for the context where the errors ei t satisfy strict mean
independence:

E [ei t | X i ] = 0. (17.2)

This occurs when the errors ei t are mean independent of all regressors Xi j for all time periods j = 1, ...,T .
Strict mean independence is stronger than pairwise mean independence E [ei t | Xi t ] = 0 as well as pro-
jection (17.1). Strict mean independence requires that neither lagged nor future values of Xi t help to
forecast ei t . It excludes lagged dependent variables (such as Yi t−1) from Xi t (otherwise ei t would be
predictable given Xi t+1). It also requires that Xi t is exogenous in the sense discussed in Chapter 12.

We now describe some statistical properties of β̂pool under (17.2). First, notice that by linearity and
the cluster-level notation we can write the estimator as

β̂pool =
(

N∑
i=1

X ′
i X i

)−1 (
N∑

i=1
X ′

i

(
X iβ+e i

))=β+
(

N∑
i=1

X ′
i X i

)−1 (
N∑

i=1
X ′

i e i

)
.



CHAPTER 17. PANEL DATA 600

Using (17.2)

E
[
β̂pool | X

]=β+
(

N∑
i=1

X ′
i X i

)−1 (
N∑

i=1
X ′

iE [e i | X i ]

)
=β

so β̂pool is unbiased for β.
Under the additional assumption that the error ei t is serially uncorrelated and homoskedastic the

covariance estimator takes a classical form and the classical homoskedastic variance estimator can be
used. If the error ei t is heteroskedastic but serially uncorrelated then a heteroskedasticity-robust covari-
ance matrix estimator can be used.

In general, however, we expect the errors ei t to be correlated across time t for a given individual.
This does not necessarily violate (17.2) but invalidates classical covariance matrix estimation. The con-
ventional solution is to use a cluster-robust covariance matrix estimator which allows arbitrary within-
cluster dependence. Cluster-robust covariance matrix estimators for pooled regression equal

V̂ pool =
(

X ′X
)−1

(
N∑

i=1
X ′

i ê i ê ′
i X i

)(
X ′X

)−1 .

As in (4.50) this can be multiplied by a degree-of-freedom adjustment. The adjustment used by the Stata
regress command is

V̂ pool =
(

n −1

n −k

)(
N

N −1

)(
X ′X

)−1

(
N∑

i=1
X ′

i ê i ê ′
i X i

)(
X ′X

)−1 .

The pooled regression estimator with cluster-robust standard errors can be obtained using the Stata
command regress cluster(id) where id indicates the individual.

When strict mean independence (17.2) fails the pooled least squares estimator β̂pool is not necessarily
consistent for β. Since strict mean independence is a strong and undesirable restriction it is typically
preferred to adopt one of the alternative estimators described in the following sections.

To illustrate the pooled regression estimator consider the data set Invest1993 described earlier. We
consider a simple investment model

Ii t =β1Qi t−1 +β2Di t−1 +β3C Fi t−1 +β4Ti +ei t (17.3)

where I is investment/assets, Q is market value/assets, D is long term debt/assets, C F is cash flow/assets,
and T is a dummy variable indicating if the corporation’s stock is traded on the NYSE or AMEX. The
regression also includes 19 dummy variables indicating an industry code. The Q theory of investment
suggests that β1 > 0 while β2 = β3 = 0. Theories of liquidity constraints suggest that β2 < 0 and β3 > 0.
We will be using this example throughout this chapter. The values of I and Q for the first 13 observations
are also displayed in Table 17.1.

In Table 17.2 we present the pooled regression estimates of (17.3) in the first column with cluster-
robust standard errors.

17.5 One-Way Error Component Model

One approach to panel data regression is to model the correlation structure of the regression error
ei t . The most common choice is an error-components structure. The simplest takes the form

ei t = ui +εi t (17.4)
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Table 17.2: Estimates of Investment Equation

Pooled Random Effects Fixed Effects Two-Way Hausman-Taylor

Qi t−1
0.0024

(0.0010)
0.0019

(0.0009)
0.0017

(0.0008)
0.0016

(0.0008)
0.0017

(0.0008)

Di t−1
0.0096

(0.0041)
−0.0092
(0.0039)

−0.0139
(0.0049)

−0.0140
(0.0051)

0.0132
(0.0050)

C Fi t−1
0.0261

(0.0111)
0.0412

(0.0125)
0.0491

(0.0132)
0.0476

(0.0129)
0.0408

(0.0119)

Ti
−0.0167
(0.0024)

−0.0181
(0.0028)

−0.0348
(0.0048)

Industry Dummies Yes Yes No No Yes
Time Effects No No No Yes Yes

Cluster-robust standard errors in parenthesis.

where ui is an individual-specific effect and εi t are idiosyncratic (i.i.d.) errors. This is known as a one-
way error component model.

In vector notation we can write e i = 1i ui +εi where 1i is a Ti ×1 vector of 1’s.
The one-way error component regression model is

Yi t = X ′
i tβ+ui +εi t

written at the level of the observation, or Y i = X iβ+1i ui +εi written at the level of the individual.
To illustrate why an error-component structure such as (17.4) might be appropriate, examine Table

17.1. In the final column we have included the pooled regression residuals êi t for these observations.
(There is no residual for the first year for each firm due to the lack of lagged regressors for this obser-
vation.) What is quite striking is that the residuals for the second firm (#209) are all negative, clustering
around −0.25. While informal, this suggests that it may be appropriate to model these errors using (17.4),
expecting that firm #209 has a large negative value for its individual effect u.

17.6 Random Effects

The random effects model assumes that the errors ui and εi t in (17.4) are conditionally mean zero,
uncorrelated, and homoskedastic.

Assumption 17.1 Random Effects. Model (17.4) holds with

E [εi t | X i ] = 0 (17.5)

E
[
ε2

i t | X i
]=σ2

ε (17.6)

E
[
εi tε j s | X i

]= 0 (17.7)

E [ui | X i ] = 0 (17.8)

E
[
u2

i | X i
]=σ2

u (17.9)

E [uiεi t | X i ] = 0 (17.10)

where (17.7) holds for all s 6= t .
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Assumption 17.1 is known as a random effects specification. It implies that the vector of errors e i for
individual i has the covariance structure

E [e i | X i ] = 0

E
[
e i e ′

i | X i
]= 1i 1′

iσ
2
u + I iσ

2
ε

=


σ2

u +σ2
ε σ2

u · · · σ2
u

σ2
u σ2

u +σ2
ε · · · σ2

u
...

...
. . .

...
σ2

u σ2
u · · · σ2

u +σ2
ε


=σ2

εΩi ,

say, where I i is an identity matrix of dimension Ti . The matrix Ωi depends on i since its dimension
depends on the number of observed time periods Ti .

Assumptions 17.1.1 and 17.1.4 state that the idiosyncratic error εi t and individual-specific error ui

are strictly mean independent so the combined error ei t is strictly mean independent as well.
The random effects model is equivalent to an equi-correlation model. That is, suppose that the error

ei t satisfies

E [ei t | X i ] = 0

E
[
e2

i t | X i
]=σ2

and
E [ei sei t | X i ] = ρσ2

for s 6= t . These conditions imply that ei t can be written as (17.4) with the components satisfying As-
sumption 17.1 withσ2

u = ρσ2 andσ2
ε = (1−ρ)σ2. Thus random effects and equi-correlation are identical.

The random effects regression model is

Yi t = X ′
i tβ+ui +εi t

or Y i = X iβ+1i ui +εi where the errors satisfy Assumption 17.1.
Given the error structure the natural estimator for β is GLS. Suppose σ2

u and σ2
ε are known. The GLS

estimator of β is

β̂gls =
(

N∑
i=1

X ′
iΩ

−1
i X i

)−1 (
N∑

i=1
X ′

iΩ
−1
i Y i

)
.

A feasible GLS estimator replaces the unknown σ2
u and σ2

ε with estimators. See Section 17.15.
We now describe some statistical properties of the estimator under Assumption 17.1. By linearity

β̂gls −β=
(

N∑
i=1

X ′
iΩ

−1
i X i

)−1 (
N∑

i=1
X ′

iΩ
−1
i e i

)
.

Thus

E
[
β̂gls −β | X

]= (
N∑

i=1
X ′

iΩ
−1
i X i

)−1 (
N∑

i=1
X ′

iΩ
−1
i E [e i | X i ]

)
= 0.

Thus β̂gls is conditionally unbiased for β. The conditional variance of β̂gls is

V gls =
(

n∑
i=1

X ′
iΩ

−1
i X i

)−1

. (17.11)
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Now let’s compare β̂gls with the pooled estimator β̂pool. Under Assumption 17.1 the latter is also
conditionally unbiased for β and has conditional variance

V pool =
(

n∑
i=1

X ′
i X i

)−1 (
n∑

i=1
X ′

iΩi X i

)−1 (
n∑

i=1
X ′

i X i

)−1

. (17.12)

Using the algebra of the Gauss-Markov Theorem we deduce that

V gls ≤V pool (17.13)

and thus the random effects estimator β̂gls is more efficient than the pooled estimator β̂pool under As-
sumption 17.1. (See Exercise 17.1.) The two variance matrices are identical when there is no individual-
specific effect (when σ2

u = 0) for then V gls =V pool =
(

X ′X
)−1

σ2
ε.

Under the assumption that the random effects model is a useful approximation but not literally true
then we may consider a cluster-robust covariance matrix estimator such as

V̂ gls =
(

N∑
i=1

X ′
iΩ

−1
i X i

)−1 (
N∑

i=1
X ′

iΩ
−1
i ê i ê ′

iΩ
−1
i X i

)(
n∑

i=1
X ′

iΩ
−1
i X i

)−1

(17.14)

where ê i = Y i −X i β̂gls. This may be re-scaled by a degree of freedom adjustment if desired.
The random effects estimator β̂gls can be obtained using the Stata command xtreg. The default

covariance matrix estimator is (17.11). For the cluster-robust covariance matrix estimator (17.14) use the
command xtreg vce(robust). (The xtset command must be used first to declare the group identifier.
For example, cusip is the group identifier in Table 17.1.)

To illustrate, in the second column of Table 17.2 we present the random effect regression estimates
of the investment model (17.3) with cluster-robust standard errors (17.14). The point estimates are rea-
sonably different from the pooled regression estimator. The coefficient on debt switches from positive
to negative (the latter consistent with theories of liquidity constraints) and the coefficient on cash flow
increases significantly in magnitude. These changes appear to be greater in magnitude than would be
expected if Assumption 17.1 were correct. In the next section we consider a less restrictive specification.

17.7 Fixed Effect Model

Consider the one-way error component regression model

Yi t = X ′
i tβ+ui +εi t (17.15)

or
Y i = X iβ+1i ui +εi . (17.16)

In many applications it is useful to interpret the individual-specific effect ui as a time-invariant unob-
served missing variable. For example, in a wage regression ui may be the unobserved ability of individual
i . In the investment model (17.3) ui may be a firm-specific productivity factor.

When ui is interpreted as an omitted variable it is natural to expect it to be correlated with the re-
gressors Xi t . This is especially the case when Xi t includes choice variables.

To illustrate, consider the entries in Table 17.1. The final column displays the pooled regression resid-
uals êi t for the first 13 observations which we interpret as estimates of the error ei t = ui+εi t . As described
before, what is particularly striking about the residuals is that they are all strongly negative for firm #209,
clustering around −0.25. We can interpret this as an estimate of ui for this firm. Examining the values
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of the regressor Q for the two firms we can see that firm #209 has very large values (in all time periods)
for Q. (The average value Q i for the two firms appears in the seventh column.) Thus it appears (though
we are only looking at two observations) that ui and Qi t are correlated. It is not reasonable to infer too
much from these limited observations, but the relevance is that such correlation violates strict mean
independence.

In the econometrics literature if the stochastic structure of ui is treated as unknown and possibly
correlated with Xi t then ui is called a fixed effect.

Correlation between ui and Xi t will cause both pooled and random effect estimators to be biased.
This is due to the classic problems of omitted variables bias and endogeneity. To see this in a generated
example view Figure 17.1. This shows a scatter plot of three observations (Yi t , Xi t ) from three firms.
The true model is Yi t = 9− Xi t +ui . (The true slope coefficient is −1.) The variables ui and Xi t are
highly correlated so the fitted pooled regression line through the nine observations has a slope close to
+1. (The random effects estimator is identical.) The apparent positive relationship between Y and X is
driven entirely by the positive correlation between X and u. Conditional on u, however, the slope is −1.
Thus regression techniques which do not control for ui will produce biased and inconsistent estimators.
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Figure 17.1: Scatter Plot and Pooled Regression Line

The presence of the unstructured individual effect ui means that it is not possible to identify β under
a simple projection assumption such as E [Xi tεt ] = 0. It turns out that a sufficient condition for identifi-
cation is the following.

Definition 17.1 The regressor Xi t is strictly exogenous for the error εi t if

E [Xi sεi t ] = 0 (17.17)

for all s = 1, ...,T .

Strict exogeneity is a strong projection condition, meaning that if Xi s for any s 6= t is added to (17.15)
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it will have a zero coefficient. Strict exogeneity is a projection analog of strict mean independence

E [εi t | X i ] = 0. (17.18)

(17.18) implies (17.17) but not conversely. While (17.17) is sufficient for identification and asymptotic
theory we will also use the stronger condition (17.18) for finite sample analysis.

While (17.17) and (17.18) are strong assumptions they are much weaker than (17.2) or Assumption
17.1, which require that the individual effect ui is also strictly mean independent. In contrast, (17.17)
and (17.18) make no assumptions about ui .

Strict exogeneity (17.17) is typically inappropriate in dynamic models. In Section 17.41 we discuss
estimation under the weaker assumption of predetermined regressors.

17.8 Within Transformation

In the previous section we showed that if ui and Xi t are correlated then pooled and random-effects
estimators will be biased and inconsistent. If we leave the relationship between ui and Xi t fully unstruc-
tured then the only way to consistently estimate the coefficient β is by an estimator which is invariant to
ui . This can be achieved by transformations which eliminate ui .

One such transformation is the within transformation. In this section we describe this transforma-
tion in detail.

Define the mean of a variable for a given individual as

Y i = 1

Ti

∑
t∈Si

Yi t .

We call this the individual-specific mean since it is the mean of a given individual. Contrarywise, some
authors call this the time-average or time-mean since it is the average over the time periods.

Subtracting the individual-specific mean from the variable we obtain the deviations

Ẏi t = Yi t −Y i .

This is known as the within transformation. We also refer to Ẏi t as the demeaned values or deviations
from individual means. Some authors refer to Ẏi t as deviations from time means. What is important is
that the demeaning has occured at the individual level.

Some algebra may also be useful. We can write the individual-specific mean as Y i =
(
1′

i 1i
)−1 1′

i Y i .
Stacking the observations for individual i we can write the within transformation using the notation

Ẏ i = Y i −1i Y i

= Y i −1i
(
1′

i 1i
)−1 1′

i Y i

= M i Y i

where M i = I i −1i
(
1′

i 1i
)−1 1′

i is the individual-specific demeaning operator. Notice that M i is an idem-
potent matrix.

Similarly for the regressors we define the individual-specific means and demeaned values:

X i = 1

Ti

∑
t∈Si

Xi t

Ẋi t = Xi t −X i

Ẋ i = M i X i .
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We illustrate demeaning in Table 17.1. In the fourth and seventh columns we display the firm-specific
means I i and Q i and in the fifth and eighth columns the demeaned values İi t and Q̇i t .

We can also define the full-sample within operator. Define D = diag
{

1T1 , ...,1TN

}
and M D = I n −

D
(
D ′D

)−1 D ′. Note that M D = diag{M 1, ..., M N }. Thus

M D Y = Ẏ =

 Ẏ 1
...

Ẏ N

 , M D X = Ẋ =

 Ẋ 1
...

Ẋ N

 . (17.19)

Now apply these operations to equation (17.15). Taking individual-specific averages we obtain

Y i = X
′
iβ+ui +εi (17.20)

where εi = 1
Ti

∑
t∈Si

εi t . Subtracting from (17.15) we obtain

Ẏi t = Ẋ ′
i tβ+ ε̇i t (17.21)

where ε̇i t = εi t −εi t . The individual effect ui has been eliminated!
We can alternatively write this in vector notation. Applying the demeaning operator M i to (17.16) we

obtain
Ẏ i = Ẋ iβ+ ε̇i . (17.22)

The individual-effect ui is eliminated since M i 1i = 0. Equation (17.22) is a vector version of (17.21).
The equation (17.21) is a linear equation in the transformed (demeaned) variables. As desired the

individual effect ui has been eliminated. Consequently estimators constructed from (17.21) (or equiva-
lently (17.22)) will be invariant to the values of ui . This means that the the endogeneity bias described in
the previous section will be eliminated.

Another consequence, however, is that all time-invariant regressors are also eliminated. That is, if
the original model (17.15) had included any regressors Xi t = Xi which are constant over time for each
individual then for these regressors the demeaned values are identically 0. What this means is that if
equation (17.21) is used to estimate β it will be impossible to estimate (or identify) a coefficient on any
regressor which is time invariant. This is not a consequence of the estimation method but rather a conse-
quence of the model assumptions. In other words, if the individual effect ui has no known structure then
it is impossible to disentangle the effect of any time-invariant regressor Xi . The two have observationally
equivalent effects and cannot be separately identified.

The within transformation can greatly reduce the variance of the regressors. This can be seen in
Table 17.1 where you can see that the variation between the elements of the transformed variables İi t

and Q̇i t is less than that of the untransformed variables since much of the variation is captured by the
firm-specific means.

It is not typically needed to directly program the within transformation, but if it is desired the follow-
ing Stata commands easily do so.

Stata Commands for Within Transformation

* x is the original variable
* id is the group identifier
* xdot is the within-transformed variable
egen xmean = mean(x), by(id)
gen xdot = x - xmean
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17.9 Fixed Effects Estimator

Consider least squares applied to the demeaned equation (17.21) or equivalently (17.22). This is

β̂fe =
(

N∑
i=1

∑
t∈Si

Ẋi t Ẋ ′
i t

)−1 (
N∑

i=1

∑
t∈Si

Ẋi t Ẏi t

)

=
(

N∑
i=1

Ẋ
′
i Ẋ i

)−1 (
N∑

i=1
Ẋ

′
i Ẏ i

)

=
(

N∑
i=1

X ′
i M i X i

)−1 (
N∑

i=1
X ′

i M i Y i

)
.

This is known as the fixed-effects or within estimator of β. It is called the fixed-effects estimator because
it is appropriate for the fixed effects model (17.15). It is called the within estimator because it is based on
the variation of the data within each individual.

The above definition implicitly assumes that the matrix
∑N

i=1 Ẋ
′
i Ẋ i is full rank. This requires that all

components of Xi t have time variation for at least some individuals in the sample.
The fixed effects residuals are

ε̂i t = Ẏi t − Ẋ ′
i t β̂fe

ε̂i = Ẏ i − Ẋ i β̂fe. (17.23)

Let us describe some of the statistical properties of the estimator under strict mean independence
(17.18). By linearity and the fact M i 1i = 0, we can write

β̂fe −β=
(

N∑
i=1

X ′
i M i X i

)−1 (
N∑

i=1
X ′

i M iεi

)
.

Then (17.18) implies

E
[
β̂fe −β | X

]= (
N∑

i=1
X ′

i M i X i

)−1 (
N∑

i=1
X ′

i M iE [εi | X i ]

)
= 0.

Thus β̂fe is unbiased for β under (17.18).
Let Σi = E

[
εiε

′
i | X i

]
denote the Ti ×Ti conditional covariance matrix of the idiosyncratic errors. The

variance of β̂fe is

V fe = var
[
β̂fe | X

]= (
N∑

i=1
Ẋ

′
i Ẋ i

)−1 (
N∑

i=1
Ẋ

′
iΣi Ẋ i

)(
N∑

i=1
Ẋ

′
i Ẋ i

)−1

. (17.24)

This expression simplifies when the idiosyncratic errors are homoskedastic and serially uncorrelated:

E
[
ε2

i t | X i
]=σ2

ε (17.25)

E
[
εi jεi t | X i

]= 0 (17.26)

for all j 6= t . In this case, Σi = I iσ
2
ε and (17.24) simplifies to

V 0
fe =σ2

ε

(
N∑

i=1
Ẋ

′
i Ẋ i

)−1

. (17.27)
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It is instructive to compare the variances of the fixed-effects and pooled estimators under (17.25)-
(17.26) and the assumption that there is no individual-specific effect ui = 0. In this case we see that

V 0
fe =σ2

ε

(
N∑

i=1
Ẋ

′
i Ẋ i

)−1

≥σ2
ε

(
N∑

i=1
X ′

i X i

)−1

=V pool. (17.28)

The inequality holds since the demeaned variables Ẋ i have reduced variation relative to the original
observations X i . (See Exercise 17.28.) This shows the cost of using fixed effects relative to pooled esti-
mation. The estimation variance increases due to reduced variation in the regressors. This reduction in
efficiency is a necessary by-product of the robustness of the estimator to the individual effects ui .

17.10 Differenced Estimator

The within transformation is not the only transformation which eliminates the individual-specific
effect. Another important transformation which does the same is first-differencing.

The first-differencing transformation is ∆Yi t = Yi t −Yi t−1. This can be applied to all but the first
observation (which is essentially lost). At the level of the individual this can be written as ∆Y i = D i Y i

where D i is the (Ti −1)×Ti matrix differencing operator

D i =


−1 1 0 · · · 0 0
0 −1 1 0 0
...

. . .
...

0 0 0 · · · −1 1

 .

Applying the transformation ∆ to (17.15) or (17.16) we obtain ∆Yi t =∆X ′
i tβ+∆εi t or

∆Y i =∆X iβ+∆εi . (17.29)

Least squares applied to the differenced equation is

β̂∆ =
(

N∑
i=1

∑
t≥2
∆Xi t∆X ′

i t

)−1 (
N∑

i=1

∑
t≥2
∆Xi t∆Yi t

)

=
(

N∑
i=1
∆X ′

i∆X i

)−1 (
N∑

i=1
∆X ′

i∆Y i

)

=
(

N∑
i=1

X ′
i D ′

i D i X i

)−1 (
N∑

i=1
X ′

i D ′
i D i Y i

)
. (17.30)

(17.30) is called the differenced estimator. For T = 2, β̂∆ = β̂fe equals the fixed effects estimator. See
Exercise 17.6. They differ, however, for T > 2.

When the errors εi t are serially uncorrelated and homoskedastic then the error ∆εi = D iεi in (17.29)
has covariance matrix Hσ2

ε where

H = D i D ′
i =


2 −1 0 0

−1 2
. . . 0

0
. . .

. . . −1
0 0 −1 2

 . (17.31)
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We can reduce estimation variance by using GLS, which is

β̂∆ =
(

N∑
i=1
∆X ′

i H−1∆X i

)−1 (
N∑

i=1
∆X ′

i H−1∆Y i

)

=
(

N∑
i=1

X ′
i D ′

i

(
D i D ′

i

)−1 D i X i

)−1 (
N∑

i=1
X ′

i D ′
i

(
D i D ′

i

)−1 D i Y i

)

=
(

N∑
i=1

X ′
i M i X i

)−1 (
N∑

i=1
X ′

i M i Y i

)

where M i = D ′
i

(
D i D ′

i

)−1 D i . Recall, the matrix D i is (Ti −1)×Ti with rank Ti −1 and is orthogonal to the
vector of ones 1i . This means M i projects orthogonally to 1i and thus equals the within transformation
matrix. Hence β̂∆ = β̂fe, the fixed effects estimator!

What we have shown is that GLS applied to the first-differenced equation precisely equals the fixed
effects estimator. Since the Gauss-Markov theorem shows that GLS has lower variance than least squares,
this means that the fixed effects estimator is more efficient than first differencing under the assumption
that εi t is i.i.d.

This argument extends to any other transformation which eliminates the fixed effect. GLS applied
after such a transformation is equal to the fixed effects estimator and is more efficient than least squares
applied after the same transformation. This shows that the fixed effects estimator is Gauss-Markov effi-
cient in the class of estimators which eliminate the fixed effect.

17.11 Dummy Variables Regression

An alternative way to estimate the fixed effects model is by least squares of Yi t on Xi t and a full set of
dummy variables, one for each individual in the sample. It turns out that this is algebraically equivalent
to the within estimator.

To see this start with the error-component model without a regressor:

Yi t = ui +εi t . (17.32)

Consider least squares estimation of the vector of fixed effects u = (u1, ...,uN )′. Since each fixed effect
ui is an individual-specific mean and the least squares estimate of the intercept is the sample mean it
follows that the least squares estimate of ui is ûi = Y i . The least squares residual is then ε̂i t = Yi t −Y i =
Ẏi t , the within transformation.

If you would prefer an algebraic argument, let di be a vector of N dummy variables where the i th

element indicates the i th individual. Thus the i th element of di is 1 and the remaining elements are
zero. Notice that ui = d ′

i u and (17.32) equals Yi t = d ′
i u +εi t . This is a regression with the regressors di

and coefficients u. We can also write this in vector notation at the level of the individual as Y i = 1i d ′
i u+εi

or using full matrix notation as Y = Du +εwhere D = diag
{

1T1 , ...,1TN

}
.

The least squares estimate of u is

û = (
D ′D

)−1 (
D ′Y

)
= diag

(
1′

i 1i
)−1 vec

(
1′

i Y i
)

= vec
((

1′
i 1i

)−1 1′
i Y i

)
= vec

(
Y i

)
.
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The least squares residuals are

ε̂=
(

I n −D
(
D ′D

)−1 D ′
)

Y = Ẏ

as shown in (17.19). Thus the least squares residuals from the simple error-component model are the
within transformed variables.

Now consider the error-component model with regressors, which can be written as

Yi t = X ′
i tβ+d ′

i u +εi t (17.33)

since ui = d ′
i u as discussed above. In matrix notation

Y = Xβ+Du +ε. (17.34)

We consider estimation of (β,u) by least squares and write the estimates as Y = X β̂+Dû+ ε̂. We call
this the dummy variable estimator of the fixed effects model.

By the Frisch-Waugh-Lovell Theorem (Theorem 3.5) the dummy variable estimator β̂ and residuals
ε̂ may be obtained by the least squares regression of the residuals from the regression of Y on D on the
residuals from the regression of X on D . We learned above that the residuals from the regression on D
are the within transformations. Thus the dummy variable estimator β̂ and residuals ε̂ may be obtained
from least squares regression of the within transformed Ẏ on the within transformed Ẋ . This is exactly
the fixed effects estimator β̂fe. Thus the dummy variable and fixed effects estimators of β are identical.

This is sufficiently important that we state this result as a theorem.

Theorem 17.1 The fixed effects estimator of β algebraically equals the dummy
variable estimator of β. The two estimators have the same residuals.

This may be the most important practical application of the Frisch-Waugh-Lovell Theorem. It shows
that we can estimate the coefficients either by applying the within transformation or by inclusion of
dummy variables (one for each individual in the sample). This is important because in some cases one
approach is more convenient than the other and it is important to know that the two methods are alge-
braically equivalent.

When N is large it is advisable to use the within transformation rather than the dummy variable ap-
proach. This is because the latter requires considerably more computer memory. To see this consider
the matrix D in (17.34) in the balanced case. It has T N 2 elements which must be created and stored in
memory. When N is large this can be excessive. For example, if T = 10 and N = 10,000, the matrix D
has one billion elements! Whether or not a package can technically handle a matrix of this dimension
depends on several particulars (system RAM, operating system, package version), but even if it can ex-
ecute the calculation the computation time is slow. Hence for fixed effects estimation with large N it is
recommended to use the within transformation rather than dummy variable regression.

The dummy variable formulation may add insight about how the fixed effects estimator achieves
invariance to the fixed effects. Given the regression equation (17.34) we can write the least squares esti-
mator of β using the residual regression formula:

β̂fe =
(

X ′M D X
)−1 (

X ′M D Y
)

= (
X ′M D X

)−1 (
X ′M D

(
Xβ+Du +ε))

=β+ (
X ′M D X

)−1 (
X ′M Dε

)
(17.35)

since M D D = 0. The expression (17.35) is free of the vector u and thus β̂fe is invariant to u. This is another
demonstration that the fixed effects estimator is invariant to the actual values of the fixed effects, and
thus its statistical properties do not rely on assumptions about ui .
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17.12 Fixed Effects Covariance Matrix Estimation

First consider estimation of the classical covariance matrix V 0
fe as defined in (17.27). This is

V̂
0
fe = σ̂2

ε

(
Ẋ

′
Ẋ

)−1
(17.36)

with

σ̂2
ε =

1

n −N −k

n∑
i=1

∑
t∈Si

ε̂2
i t =

1

n −N −k

n∑
i=1
ε̂′i ε̂i . (17.37)

The N +k degree of freedom adjustment is motivated by the dummy variable representation. You can
verify that σ̂2

ε is unbiased for σ2
ε under assumptions (17.18), (17.25) and (17.26). See Exercise 17.8.

Notice that the assumptions (17.18), (17.25), and (17.26) are identical to (17.5)-(17.7) of Assumption
17.1. The assumptions (17.8)-(17.10) are not needed. Thus the fixed effect model weakens the random
effects model by eliminating the assumptions on ui but retaining those on εi t .

The classical covariance matrix estimator (17.36) for the fixed effects estimator is valid when the er-
rors εi t are homoskedastic and serially uncorrelated but is invalid otherwise. A covariance matrix estima-
tor which allows εi t to be heteroskedastic and serially correlated across t is the cluster-robust covariance
matrix estimator, clustered by individual

V̂
cluster
fe =

(
Ẋ

′
Ẋ

)−1
(

N∑
i=1

Ẋ
′
i ε̂i ε̂

′
i Ẋ i

)(
Ẋ

′
Ẋ

)−1
(17.38)

where ε̂i as the fixed effects residuals as defined in (17.23). (17.38) was first proposed by Arellano (1987).

As in (4.50) V̂
cluster
fe can be multiplied by a degree-of-freedom adjustment. The adjustment recommended

by the theory of C. Hansen (2007) is

V̂
cluster
fe =

(
N

N −1

)(
Ẋ

′
Ẋ

)−1
(

N∑
i=1

Ẋ
′
i ε̂i ε̂

′
i Ẋ i

)(
Ẋ

′
Ẋ

)−1
(17.39)

and that corresponding to (4.50) is

V̂
cluster
fe =

(
n −1

n −N −k

)(
N

N −1

)(
Ẋ

′
Ẋ

)−1
(

N∑
i=1

Ẋ
′
i ε̂i ε̂

′
i Ẋ i

)(
Ẋ

′
Ẋ

)−1
. (17.40)

These estimators are convenient because they are simple to apply and allow for unbalanced panels.
In typical micropanel applications N is very large and k is modest. Thus the adjustment in (17.39)

is minor while that in (17.40) is approximately T /(T −1) where T = n/N is the average number of time
periods per individual. When T is small this can be a very large adjustment. Hence the choice between
(17.38), (17.39), and (17.40) can be substantial.

To understand if the degree of freedom adjustment in (17.40) is appropriate, consider the simplified
setting where the residuals are constructed with the true β but estimated fixed effects ui . This is a useful
approximation since the number of estimated slope coefficients β is small relative to the sample size n.
Then ε̂i = ε̇i = M iεi so Ẋ

′
i ε̂i = Ẋ

′
iεi and (17.38) equals

V̂
cluster
fe =

(
Ẋ

′
Ẋ

)−1
(

N∑
i=1

Ẋ
′
iεiε

′
i Ẋ i

)(
Ẋ

′
Ẋ

)−1

which is the idealized estimator with the true errors rather than the residuals. Since E
[
εiε

′
i | X i

] = Σi it

follows that E
[

V̂
cluster
fe | X

]
= V fe and V̂

cluster
fe is unbiased for V fe! Thus no degree of freedom adjustment
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is required. This is despite the fact that N fixed effects have been estimated. While this analysis concerns
the idealized case where the residuals have been constructed with the true coefficients β so does not
translate into a direct recommendation for the feasible estimator, it still suggests that the strong ad hoc
adjustment in (17.40) is unwarranted.

This (crude) analysis suggests that for the cluster robust covariance estimator for fixed effects re-
gression the adjustment recommended by C. Hansen (17.39) is the most appropriate. It is typically well
approximated by the unadjusted estimator (17.38). Based on current theory there is no justification for
the ad hoc adjustment (17.40). The main argument for the latter is that it produces the largest standard
errors and is thus the most conservative choice.

In current practice the estimators (17.38) and (17.40) are the most commonly used covariance matrix
estimators for fixed effects estimation.

In Sections 17.22 and 17.23 we discuss covariance matrix estimation under heteroskedasticity but no
serial correlation.

To illustrate, in Table 17.2 we present the fixed effect regression estimates of the investment model
(17.3) in the third column with cluster-robust standard errors. The trading indicator Ti and the industry
dummies cannot be included as they are time-invariant. The point estimates are similar to the random
effects estimates, though the coefficients on debt and cash flow increase in magnitude.

17.13 Fixed Effects Estimation in Stata

There are several methods to obtain the fixed effects estimator β̂fe in Stata.
The first method is dummy variable regression. This can be obtained by the Stata regress com-

mand, for example reg y x i.id, cluster(id) where id is the group (individual) identifier. In most
cases, as discussed in Section 17.11, this is not recommended due to the excessive computer memory
requirements and slow computation. If this command is done it may be useful to suppress display of
the full list of coefficient estimates. To do so, type quietly reg y x i.id, cluster(id) followed by
estimates table, keep(x _cons) be se . The second command will report the coefficient(s) on x

only, not those on the index variable id. (Other statistics can be reported as well.)
The second method is to manually create the within transformed variables as described in Section

17.8, and then use regress.
The third method is xtreg fe which is specifically written for panel data. This estimates the slope

coefficients using the partialling-out approach. The default covariance matrix estimator is classical
as defined in (17.36). The cluster-robust covariance matrix (17.38) can be obtained using the option
vce(robust) or r.

The fourth method is areg absorb(id). This command is an alternative implementation of partialling-
out regression. The default covariance matrix estimator is the classical (17.36). The cluster-robust covari-
ance matrix estimator (17.40) can be obtained using the cluster(id) option. The heteroskedasticity-
robust covariance matrix is obtained when r or vce(robust) is specified but this is not recommended
unless Ti is large as will be discussed in Section 17.22.

An important difference between the Stata xtreg and areg commands is that they implement dif-
ferent cluster-robust covariance matrix estimators: (17.38) in the case of xtreg and (17.40) in the case of
areg. As discussed in the previous section the adjustment used by areg is ad hoc and not well-justified
but produces the largest and hence most conservative standard errors.

Another difference between the commands is how they report the equation R2. This difference can
be huge and stems from the fact that they are estimating distinct population counter-parts. Full dummy
variable regression and the areg command calculate R2 the same way: the squared correlation between
Yi t and the fitted regression with all predictors including the individual dummy variables. The xtreg fe
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command reports three values for R2: within, between, and overall. The “within” R2 is identical to what
is obtained from a second stage regression using the within transformed variables. (The second method
described above.) The “overall” R2 is the squared correlation between Yi t and the fitted regression ex-
cluding the individual effects.

Which R2 should be reported? The answer depends on the baseline model before regressors are
added. If we view the baseline as an individual-specific mean, then the within calculation is appropriate.
If the baseline is a single mean for all observations then the full regression (areg) calculation is appropri-
ate. The latter (areg) calculation is typically much higher than the within calculation, as the fixed effects
typically “explain” a large portion of the variance. In any event as there is not a single definition of R2 it
is important to be explicit about the method if it is reported.

In current econometric practice both xtreg and areg are used, though areg appears to be the more
popular choice. Since the latter typically produces a much higher value of R2, reported R2 values should
be viewed skeptically unless their calculation method is documented by the author.

17.14 Between Estimator

The between estimator is calculated from the individual-mean equation (17.20)

Y i = X
′
iβ+ui +εi . (17.41)

Estimation can be done at the level of individuals or at the level of observations. Least squares ap-
plied to (17.41) at the level of the N individuals is

β̂be =
(

N∑
i=1

X i X
′
i

)−1 (
N∑

i=1
X i Y i

)
.

Least squares applied to (17.41) at the level of observations is

β̃be =
(

N∑
i=1

∑
t∈Si

X i X
′
i

)−1 (
N∑

i=1

∑
t∈Si

X i Y i

)
=

(
N∑

i=1
Ti X i X

′
i

)−1 (
N∑

i=1
Ti X i Y i

)
.

In balanced panels β̃be = β̂be but they differ on unbalanced panels. β̃be equals weighted least squares
applied at the level of individuals with weight Ti .

Under the random effects assumptions (Assumption 17.1) β̂be is unbiased for β and has variance

V be = var
[
β̂be | X

]= (
N∑

i=1
X i X

′
i

)−1 (
N∑

i=1
X i X

′
iσ

2
i

)(
N∑

i=1
X i X

′
i

)−1

where

σ2
i = var

[
ui +εi

]=σ2
u + σ2

ε

Ti

is the variance of the error in (17.41). When the panel is balanced the variance formula simplifies to

V be = var
[
β̂be | X

]= (
N∑

i=1
X i X

′
i

)−1 (
σ2

u + σ2
ε

T

)
.

Under the random effects assumption the between estimator β̂be is unbiased for β but is less effi-
cient than the random effects estimator β̂gls. Consequently there seems little direct use for the between
estimator in linear panel data applications.
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Instead, its primary application is to construct an estimate of σ2
u . First, consider estimation of

σ2
b = 1

N

N∑
i=1

σ2
i =σ2

u + 1

N

N∑
i=1

σ2
ε

Ti
=σ2

u + σ2
ε

T

where T = N /
∑N

i=1 T −1
i is the harmonic mean of Ti . (In the case of a balanced panel T = T .) A natural

estimator of σ2
b is

σ̂2
b = 1

N −k

N∑
i=1

ê2
bi . (17.42)

where êbi = Y i −X
′
i β̂be are the between residuals. (Either β̂be or β̃be can be used.)

From the relation σ2
b = σ2

u +σ2
ε/T and (17.42) we can deduce an estimator for σ2

u . We have already
described an estimator σ̂2

ε forσ2
ε in (17.37) for the fixed effects model. Since the fixed effects model holds

under weaker conditions than the random effects model, σ̂2
ε is valid for the latter as well. This suggests

the following estimator for σ2
u

σ̂2
u = σ̂2

b −
σ̂2
ε

T
. (17.43)

To summarize, the fixed effect estimator is used for σ̂2
ε, the between estimator for σ̂2

b , and σ̂2
u is con-

structed from the two.
It is possible for (17.43) to be negative. It is typical to use the constrained estimator

σ̂2
u = max

[
0, σ̂2

b −
σ̂2
ε

T

]
. (17.44)

(17.44) is the most common estimator for σ2
u in the random effects model.

The between estimator β̂be can be obtained using the Stata command xtreg be. The estimator β̃be

can be obtained by xtreg be wls.

17.15 Feasible GLS

The random effects estimator can be written as

β̂re =
(

N∑
i=1

X ′
iΩ

−1
i X i

)−1 (
N∑

i=1
X ′

iΩ
−1
i Y i

)
=

(
N∑

i=1
X̃

′
i X̃ i

)−1 (
N∑

i=1
X̃

′
i Ỹ i

)
(17.45)

where X̃ i =Ω−1/2
i X i and Ỹ i =Ω−1/2

i Y i . It is instructive to study these transformations.

Define P i = 1i
(
1′

i 1i
)−1 1′

i so that M i = I i −P i . Thus while M i is the within operator, P i can be called

the individual-mean operator since P i Y i = 1i Y i . We can write

Ωi = I i +1i 1′
iσ

2
u/σ2

ε = I i +
Tiσ

2
u

σ2
ε

P i = M i +ρ−2
i P i

where
ρi = σε√

σ2
ε+Tiσ

2
u

. (17.46)

Since the matrices M i and P i are idempotent and orthogonal we find thatΩ−1
i = M i +ρ2

i P i and

Ω−1/2
i = M i +ρi P i = I i −

(
1−ρi

)
P i . (17.47)
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Therefore the transformation used by the GLS estimator is

Ỹ i =
(

I i −
(
1−ρi

)
P i

)
Y i = Y i −

(
1−ρi

)
1i Y i

which is a partial within transformation.
The transformation as written depends on ρi which is unknown. It can be replaced by the estimator

ρ̂i = σ̂ε√
σ̂2
ε+Ti σ̂

2
u

(17.48)

where the estimators σ̂2
ε and σ̂2

u are given in (17.37) and (17.44). We obtain the feasible transformations

Ỹ i = Y i −
(
1− ρ̂i

)
1i Y i (17.49)

and
X̃ i = X i −

(
1− ρ̂i

)
1i X

′
i . (17.50)

The feasible random effects estimator is (17.45) using (17.49) and (17.50).
In the previous section we noted that it is possible for σ̂2

u = 0. In this case ρ̂i = 1 and β̂re = β̂pool.
What this shows is the following. The random effects estimator (17.45) is least squares applied to

the transformed variables X̃ i and Ỹ i defined in (17.50) and (17.49). When ρ̂i = 0 these are the within
transformations, so X̃ i = Ẋ i , Ỹ i = Ẏ i , and β̂re = β̂fe is the fixed effects estimator. When ρ̂i = 1 the data
are untransformed X̃ i = X i , Ỹ i = Y i , and β̂re = β̂pool is the pooled estimator. In general, X̃ i and Ỹ i can
be viewed as partial within transformations.

Recalling the definition ρ̂i = σ̂ε/
√
σ̂2
ε+Ti σ̂

2
u we see that when the idiosyncratic error variance σ̂2

ε

is large relative to Ti σ̂
2
u then ρ̂i ≈ 1 and β̂re ≈ β̂pool. Thus when the variance estimates suggest that the

individual effect is relatively small the random effect estimator simplifies to the pooled estimator. On the
other hand when the individual effect error variance σ̂2

u is large relative to σ̂2
ε then ρ̂i ≈ 0 and β̂re ≈ β̂fe.

Thus when the variance estimates suggest that the individual effect is relatively large the random effect
estimator is close to the fixed effects estimator.

17.16 Intercept in Fixed Effects Regression

The fixed effect estimator does not apply to any regressor which is time-invariant for all individuals.
This includes an intercept. Yet some authors and packages (e.g. Amemiya (1971) and xtreg in Stata)
report an intercept. To see how to construct an estimator of an intercept take the components regression
equation adding an explicit intercept

Yi t =α+X ′
i tβ+ui +εi t .

We have already discussed estimation of β by β̂fe. Replacing β in this equation with β̂fe and then esti-
mating α by least squares, we obtain

α̂fe = Y −X
′
β̂fe

where Y and X are averages from the full sample. This is the estimator reported by xtreg.
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17.17 Estimation of Fixed Effects

For most applications researchers are interested in the coefficients β not the fixed effects ui . But
in some cases the fixed effects themselves are interesting. This arises when we want to measure the
distribution of ui to understand its heterogeneity. It also arises in the context of prediction. As discussed
in Section 17.11 the fixed effects estimate û is obtained by least squares applied to the regression (17.33).
To find their solution, replace β in (17.33) with the least squares minimizer β̂fe and apply least squares.
Since this is the individual-specific intercept the solution is

ûi = 1

Ti

∑
t∈Si

(
Yi t −X ′

i t β̂fe
)= Y i −X

′
i β̂fe. (17.51)

Alternatively, using (17.34) this is

û = (
D ′D

)−1 D ′ (Y −X β̂fe
)

= diag
{
T −1

i

} N∑
i=1

di 1′
i

(
Y i −X i β̂fe

)
=

N∑
i=1

di

(
Y i −X

′
i β̂fe

)
= (û1, ..., ûN )′ .

Thus the least squares estimates of the fixed effects can be obtained from the individual-specific
means and does not require a regression with N +k regressors.

If an intercept has been estimated (as discussed in the previous section) it should be subtracted from
(17.51). In this case the estimated fixed effects are

ûi = Y i −X
′
i β̂fe − α̂fe. (17.52)

With either estimator when the number of time series observations Ti is small ûi will be an imprecise
estimator of ui . Thus calculations based on ûi should be interpreted cautiously.

The fixed effects (17.52) may be obtained in Stata after ivreg, fe using the predict u command
or after areg using the predict d command.

17.18 GMM Interpretation of Fixed Effects

We can also interpret the fixed effects estimator through the generalized method of moments.
Take the fixed effects model after applying the within transformation (17.21). We can view this as a

system of T equations, one for each time period t . This is a multivariate regression model. Using the
notation of Chapter 11 define the T ×kT regressor matrix

X i =

 Ẋ ′
i 1 0 · · · 0
... Ẋ ′

i 2

...
0 0 · · · Ẋ ′

i T

 . (17.53)

If we treat each time period as a separate equation we have the kT moment conditions

E
[

X
′
i

(
Ẏ i − Ẋ iβ

)]= 0.
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This is an overidentified system of equations when T ≥ 3 as there are k coefficients and kT moments.
(However, the moments are collinear due to the within transformation. There are k(T −1) effective mo-
ments.) Interpreting this model in the context of multivariate regression, overidentification is achieved
by the restriction that the coefficient vector β is constant across time periods.

This model can be interpreted as a regression of Ẏ i on Ẋ i using the instruments X i . The 2SLS esti-
mator using matrix notation is

β̂=
((

Ẋ
′
X

)(
X

′
X

)−1 (
X

′
Ẋ

))−1 ((
Ẋ

′
X

)(
X

′
X

)−1 (
X

′
Ẏ

))
.

Notice that

X
′
X =

n∑
i=1

 Ẋi 1 0 · · · 0
... Ẋi 2

...
0 0 · · · Ẋi T


 Ẋ ′

i 1 0 · · · 0
... Ẋ ′

i 2

...
0 0 · · · Ẋ ′

i T



=


∑n

i=1 Ẋi 1Ẋ ′
i 1 0 · · · 0

...
∑n

i=1 Ẋi 2Ẋ ′
i 2

...
0 0 · · · ∑n

i=1 Ẋi T Ẋ ′
i T

 ,

X
′
Ẋ =


∑n

i=1 Ẋi 1Ẋ ′
i 1

...∑n
i=1 Ẋi T Ẋ ′

i T

 ,

and

X
′
Ẏ =


∑n

i=1 Ẋi 1Ẏi 1
...∑n

i=1 Ẋi T Ẏi T

 .

Thus the 2SLS estimator simplifies to

β̂2sls =
(

T∑
t=1

(
n∑

i=1
Ẋi t Ẋ ′

i t

)(
n∑

i=1
Ẋi t Ẋ ′

i t

)−1 (
n∑

i=1
Ẋi t Ẋ ′

i t

))−1

×
(

T∑
t=1

(
n∑

i=1
Ẋi t Ẋ ′

i t

)(
n∑

i=1
Ẋi t Ẋ ′

i t

)−1 (
n∑

i=1
Ẋi t Ẏi t

))

=
(

T∑
t=1

n∑
i=1

Ẋi t Ẋ ′
i t

)−1 (
T∑

t=1

n∑
i=1

Ẋi t Ẏi t

)
= β̂fe

the fixed effects estimator!
This shows that if we treat each time period as a separate equation with its separate moment equa-

tion so that the system is over-identified, and then estimate by GMM using the 2SLS weight matrix, the
resulting GMM estimator equals the simple fixed effects estimator. There is no change by adding the
additional moment conditions.

The 2SLS estimator is the appropriate GMM estimator when the equation error is serially uncorre-
lated and homoskedastic. If we use a two-step efficient weight matrix which allows for heteroskedasticity



CHAPTER 17. PANEL DATA 618

and serial correlation the GMM estimator is

β̂gmm =
(

T∑
t=1

(
n∑

i=1
Ẋi t Ẋ ′

i t

)(
n∑

i=1
Ẋi t Ẋ ′

i t ê2
i t

)−1 (
n∑

i=1
Ẋi t Ẋ ′

i t

))−1

×
(

T∑
t=1

(
n∑

i=1
Ẋi t Ẋ ′

i t

)(
n∑

i=1
Ẋi t Ẋ ′

i t ê2
i t

)−1 (
n∑

i=1
Ẋi t Ẏi t

))

where êi t are the fixed effects residuals.
Notationally, this GMM estimator has been written for a balanced panel. For an unbalanced panel

the sums over i need to be replaced by sums over individuals observed during time period t . Otherwise
no changes need to be made.

17.19 Identification in the Fixed Effects Model

The identification of the slope coefficient β in fixed effects regression is similar to that in conven-
tional regression but somewhat more nuanced.

It is most useful to consider the within-transformed equation, which can be written as Ẏi t = Ẋ ′
i tβ+ε̇i t

or Ẏ i = Ẋ iβ+ ε̇i .
From regression theory we know that the coefficient β is the linear effect of Ẋi t on Ẏi t . The variable

Ẋi t is the deviation of the regressor from its individual-specific mean and similarly for Ẏi t . Thus the fixed
effects model does not identify the effect of the average level of Xi t on the average level of Yi t , but rather
the effect of the deviations in Xi t on Yi t .

In any given sample the fixed effects estimator is only defined if
∑N

i=1 Ẋ
′
i Ẋ i is full rank. The popula-

tion analog (when individuals are i.i.d.) is

E
[

Ẋ
′
i Ẋ i

]
> 0. (17.54)

Equation (17.54) is the identification condition for the fixed effects estimator. It requires that the re-
gressor matrix is full-rank in expectation after application of the within transformation. The regressors
cannot contain any variable which does not have time-variation at the individual level nor a set of re-
gressors whose time-variation at the individual level is collinear.

17.20 Asymptotic Distribution of Fixed Effects Estimator

In this section we present an asymptotic distribution theory for the fixed effects estimator in bal-
anced panels. Unbalanced panels are considered in the following section.

We use the following assumptions.
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Assumption 17.2

1. Yi t = X ′
i tβ+ui +εi t for i = 1, ..., N and t = 1, ...,T with T ≥ 2.

2. The variables (εi , X i ), i = 1, ..., N , are independent and identically dis-
tributed.

3. E [Xi sεi t ] = 0 for all s = 1, ...,T.

4. QT = E
[

Ẋ
′
i Ẋ i

]
> 0.

5. E
[
ε4

i t

]<∞.

6. E‖Xi t‖4 <∞.

Given Assumption 17.2 we can establish asymptotic normality for β̂fe.

Theorem 17.2 Under Assumption 17.2, as N → ∞,
p

N
(
β̂fe −β

) −→
d

N
(
0,V β

)
where V β =Q−1

T ΩT Q−1
T andΩT = E

[
Ẋ

′
iεiε

′
i Ẋ i

]
.

This asymptotic distribution is derived as the number of individuals N diverges to infinity while the
time number of time periods T is held fixed. Therefore the normalization is

p
N rather than

p
n (though

either could be used since T is fixed). This approximation is appropriate for the context of a large number
of individuals. We could alternatively derive an approximation for the case where both N and T diverge
to infinity but this would not be a stronger result. One way of thinking about this is that Theorem 17.2
does not require T to be large.

Theorem 17.2 may appear standard given our arsenal of asymptotic theory but in a fundamental
sense it is quite different from any other result we have introduced. Fixed effects regression is effectively
estimating N + k coefficients – the k slope coefficients β plus the N fixed effects u – and the theory
specifies that N → ∞. Thus the number of estimated parameters is diverging to infinity at the same
rate as sample size yet the the estimator obtains a conventional mean-zero sandwich-form asymptotic
distribution. In this sense Theorem 17.2 is new and special.

We now discuss the assumptions.
Assumption 17.2.2 states that the observations are independent across individuals i . This is com-

monly used for panel data asymptotic theory. An important implied restriction is that it means that we
exclude from the regressors any serially correlated aggregate time series variation.

Assumption 17.2.3 imposes that Xi t is strictly exogeneous for εi t . This is stronger than simple pro-
jection but is weaker than strict mean independence (17.18). It does not impose any condition on the
individual-specific effects ui .

Assumption 17.2.4 is the identification condition discussed in the previous section.
Assumptions 17.2.5 and 17.2.6 are needed for the central limit theorem.
We now prove Theorem 17.2. The assumptions imply that the variables (Ẋ i ,εi ) are i.i.d. across i and

have finite fourth moments. Thus by the WLLN

1

N

N∑
i=1

Ẋ
′
i Ẋ i −→

p
E
[

Ẋ
′
i Ẋ i

]
=QT .
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Assumption 17.2.3 implies

E
[

Ẋ
′
iεi

]
=

T∑
t=1

E
[

Ẋi tεi t
]= T∑

t=1
E [Xi tεi t ]−

T∑
t=1

T∑
j=1

E
[

Xi jεi t
]= 0

so they are mean zero. Assumptions 17.2.5 and 17.2.6 imply that Ẋ
′
iεi has a finite covariance matrixΩT .

The assumptions for the CLT (Theorem 6.3) hold, thus

1p
N

N∑
i=1

Ẋ
′
iεi −→

d
N(0,ΩT ) .

Together we find

p
N

(
β̂fe −β

)= (
1

N

N∑
i=1

Ẋ
′
i Ẋ i

)−1 (
1p
N

N∑
i=1

Ẋ
′
iεi

)
−→

d
Q−1

T N(0,ΩT ) = N
(
0,V β

)
as stated.

17.21 Asymptotic Distribution for Unbalanced Panels

In this section we extend the theory of the previous section to cover unbalanced panels under ran-
dom selection. Our presentation is built on Section 17.1 of Wooldridge (2010).

Think of an unbalanced panel as a shortened version of an idealized balanced panel where the short-
ening is due to “missing” observations due to random selection. Thus suppose that the underlying (po-
tentially latent) variables are Y i = (Yi 1, ...,Yi T )′ and X i = (Xi 1, ..., Xi T )′. Let si = (si 1, ..., si T )′ be a vector
of selection indicators, meaning that si t = 1 if the time period t is observed for individual i and si t = 0
otherwise. Then we can describe the estimators algebraically as follows.

Let S i = diag(si ) and M i = S i − si
(
s ′i si

)−1 s ′i , which is idempotent. The within transformations can
be written as Ẏ i = M i Y i and Ẋ i = M i X i . They have the property that if si t = 0 (so that time period t is
missing) then the t th element of Ẏ i and the t th row of Ẋ i are all zeros. The missing observations have
been replaced by zeros. Consequently, they do not appear in matrix products and sums.

The fixed effects estimator of β based on the observed sample is

β̂fe =
(

N∑
i=1

Ẋ
′
i Ẋ i

)−1 (
N∑

i=1
Ẋ

′
i Ẏ i

)
.

Centered and normalized,

p
N

(
β̂fe −β

)= (
1

N

N∑
i=1

Ẋ
′
i Ẋ i

)−1 (
1p
N

N∑
i=1

Ẋ
′
iεi

)
.

Notationally this appears to be identical to the case of a balanced panel but the difference is that the
within operator M i incorporates the sample selection induced by the unbalanced panel structure.

To derive a distribution theory for β̂fe we need to be explicit about the stochastic nature of si . That
is, why are some time periods observed and some not? We could take several approaches:

1. We could treat si as fixed (non-random). This is the easiest approach but the most unsatisfactory.
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2. We could treat si as random but independent of (Y i , X i ). This is known as “missing at random” and
is a common assumption used to justify methods with missing observations. It is justified when
the reason why observations are not observed is independent of the observations. This is appro-
priate, for example, in panel data sets where individuals enter and exit in “waves”. The statistical
treatment is not substantially different from the case of fixed si .

3. We could treat (Y i , X i , si ) as jointly random but impose a condition sufficient for consistent esti-
mation of β. This is the approach we take below. The condition turns out to be a form of mean
independence. The advantage of this approach is that it is less restrictive than full independence.
The disadvantage is that we must use a conditional mean restriction rather than uncorrelatedness
to identify the coefficients.

The specific assumptions we impose are as follows.

Assumption 17.3

1. Yi t = X ′
i tβ+ui +εi t for i = 1, ..., N with Ti ≥ 2.

2. The variables (εi , X i , si ), i = 1, ..., N , are independent and identically dis-
tributed.

3. E [εi t | X i , si ] = 0.

4. QT = E
[

Ẋ
′
i Ẋ i

]
> 0.

5. E
[
ε4

i t

]<∞.

6. E‖Xi t‖4 <∞.

The primary difference with Assumption 17.2 is that we have strengthened strict exogeneity to strict
mean independence. This imposes that the regression model is properly specified and that selection
does not affect the mean of εi t . It is less restrictive than full independence since si can affect other
moments of εi t and more importantly does not restrict the joint dependence between si and X i .

Given the above development it is straightforward to establish asymptotic normality.

Theorem 17.3 Under Assumption 17.3, as N → ∞,
p

N
(
β̂fe −β

) −→
d

N
(
0,V β

)
where V β =Q−1

T ΩT Q−1
T andΩT = E

[
Ẋ

′
iεiε

′
i Ẋ i

]
.

We now prove Theorem 17.3. The assumptions imply that the variables (Ẋ i ,εi ) are i.i.d. across i and
have finite fourth moments. By the WLLN

1

N

N∑
i=1

Ẋ
′
i Ẋ i −→

p
E
[

Ẋ
′
i Ẋ i

]
=QT .
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The random vectors Ẋ
′
iεi are i.i.d. The matrix Ẋ i is a function of (X i , si ) only. Assumption 17.3.3 and the

law of iterated expectations implies

E
[

Ẋ
′
iεi

]
= E

[
Ẋ

′
iE [εi | X i , si ]

]
= 0.

so that Ẋ
′
iεi is mean zero. Assumptions 17.3.5 and 17.3.6 and the fact that si is bounded implies that

Ẋ
′
iεi has a finite covariance matrix, which isΩT . The assumptions for the CLT hold, thus

1p
N

N∑
i=1

Ẋ
′
iεi −→

d
N(0,ΩT ) .

Together we obtain the stated result.

17.22 Heteroskedasticity-Robust Covariance Matrix Estimation

We have introduced two covariance matrix estimators for the fixed effects estimator. The classical
estimator (17.36) is appropriate for the case where the idiosyncratic errors εi t are homoskedastic and
serially uncorrelated. The cluster-robust estimator (17.38) allows for heteroskedasticity and arbitrary
serial correlation. In this and the following section we consider the intermediate case where εi t is het-
eroskedastic but serially uncorrelated.

Assume that (17.18) and (17.26) hold but not necessarily (17.25). Define the conditional variances

E
[
ε2

i t | X i
]=σ2

i t . (17.55)

Then Σi = E
[
εiε

′
i | X i

]= diag
(
σ2

i t

)
. The covariance matrix (17.24) can be written as

V fe =
(

Ẋ
′
Ẋ

)−1
(

N∑
i=1

∑
t∈Si

Ẋi t Ẋ ′
i tσ

2
i t

)(
Ẋ

′
Ẋ

)−1
. (17.56)

A natural estimator of σ2
i t is ε̂2

i t . Replacing σ2
i t with ε̂2

i t in (17.56) and making a degree-of-freedom
adjustment we obtain a White-type covariance matrix estimator

V̂ fe =
n

n −N −k

(
Ẋ

′
Ẋ

)−1
(

N∑
i=1

∑
t∈Si

Ẋi t Ẋ ′
i t ε̂

2
i t

)(
Ẋ

′
Ẋ

)−1
.

Following the insight of White (1980) it may seem appropriate to expect V̂ fe to be a reasonable esti-
mator of V fe. Unfortunately this is not the case as discovered by Stock and Watson (2008). The problem
is that V̂ fe is a function of the individual-specific means εi which are negligible only if the number of
time series observations Ti are large.

We can see this by a simple bias calculation. Assume that the sample is balanced and that the resid-
uals are constructed with the true β. Then

ε̂i t = ε̇i t = εi t − 1

T

T∑
t=1

εi j .

Using (17.26) and (17.55)

E
[
ε̂2

i t | X i
]= (

T −2

T

)
σ2

i t +
σ2

i

T
(17.57)
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where σ2
i = T −1 ∑T

t=1σ
2
i t . (See Exercise 17.10.) Using (17.57) and setting k = 0 we obtain

E
[
V̂ fe | X

]= T

T −1

(
Ẋ

′
Ẋ

)−1
(

N∑
i=1

∑
t∈Si

Ẋi t Ẋ ′
i tE

[
ε̂2

i t | X i
])(

Ẋ
′
Ẋ

)−1

=
(

T −2

T −1

)
V fe +

1

T −1

(
Ẋ

′
Ẋ

)−1
(

N∑
i=1

Ẋ
′
i Ẋ iσ

2
i

)(
Ẋ

′
Ẋ

)−1
.

Thus V̂ fe is biased of order O
(
T −1

)
. Unless T →∞ this bias will persist as N →∞. V̂ fe is unbiased in

two contexts. The first is when the errors εi t are homoskedastic. The second is when T = 2. (To show the
latter requires some algebra so is omitted.)

To correct the bias for the case T > 2, Stock and Watson (2008) proposed the estimator

Ṽ fe =
(

T −1

T −2

)
V̂ fe −

1

T −1
B̂ fe (17.58)

B̂ fe =
(

Ẋ
′
Ẋ

)−1
(

N∑
i=1

Ẋ
′
i Ẋ i σ̂

2
i

)(
Ẋ

′
Ẋ

)−1

σ̂2
i =

1

T −1

T∑
t=1

ε̂2
i t . (17.59)

You can check that E
[
σ̂2

i | X i
]=σ2

i and E
[
Ṽ fe | X i

]=V fe so Ṽ fe is unbiased for V fe. (See Exercise 17.11.)
Stock and Watson (2008) show that Ṽ fe is consistent with T fixed and N →∞. In simulations they

show that Ṽ fe has excellent performance.
Because of the Stock-Watson analysis Stata no longer calculates the heteroskedasticity-robust covari-

ance matrix estimator V̂ fe when the fixed effects estimator is calculated using the xtreg command. In-

stead, the cluster-robust estimator V̂
cluster
fe is reported when robust standard errors are requested. How-

ever, fixed effects is often implemented using the areg command which reports the biased estimator V̂ fe

if robust standard errors are requested. These leads to the practical recommendation that areg should
be used with the cluster(id) option.

At present the corrected estimator (17.58) has not been programmed as a Stata option.

17.23 Heteroskedasticity-Robust Estimation – Unbalanced Case

A limitation with the bias-corrected robust covariance matrix estimator of Stock and Watson (2008)
is that it was only derived for balanced panels. In this section we generalize their estimator to cover
unbalanced panels.

The estimator is

Ṽ fe =
(

Ẋ
′
Ẋ

)−1
Ω̃fe

(
Ẋ

′
Ẋ

)−1
(17.60)

Ω̃fe =
N∑

i=1

∑
t∈Si

Ẋi t Ẋ ′
i t

[(
Ti ε̂

2
i t − σ̂2

i

Ti −2

)
1 {Ti > 2}+

(
Ti ε̂

2
i t

Ti −1

)
1 {Ti = 2}

]

where

σ̂2
i =

1

Ti −1

∑
t∈Si

ε̂2
i t .

To justify this estimator, as in the previous section make the simplifying assumption that the residuals
are constructed with the true β. We calculate that
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E
[
ε̂2

i t | X i
]= (

Ti −2

Ti

)
σ2

i t +
σ2

i

Ti
(17.61)

E
[
σ̂2

i | X i
]=σ2

i . (17.62)

You can show that under these assumptions, E
[
Ṽ fe | X

] = V fe and thus Ṽ fe is unbiased for V fe. (See
Exercise 17.12.)

In balanced panels the estimator Ṽ fe simplifies to the Stock-Watson estimator (with k = 0).

17.24 Hausman Test for Random vs Fixed Effects

The random effects model is a special case of the fixed effects model. Thus we can test the null
hypothesis of random effects against the alternative of fixed effects. The Hausman test is typically used
for this purpose. The statistic is a quadratic in the difference between the fixed effects and random effects
estimators. The statistic is

H = (
β̂fe − β̂re

)′
v̂ar

[
β̂fe − β̂re

]−1 (
β̂fe − β̂re

)
= (

β̂fe − β̂re
)′ (

V̂ fe − V̂ re
)−1 (

β̂fe − β̂re
)

where both V̂ fe and V̂ re take the classical (non-robust) form.
The test can be implemented on a subset of the coefficients β. In particular this needs to be done if

the regressors Xi t contain time-invariant elements so that the random effects estimator contains more
coefficients than the fixed effects estimator. In this case the test should be implemented only on the
coefficients on the time-varying regressors.

An asymptotic 100α% test rejects if H exceeds the 1−αth quantile of the χ2
k distribution where k =

dim(β). If the test rejects this is evidence that the individual effect ui is correlated with the regressors so
the random effects model is not appropriate. On the other hand if the test fails to reject this evidence
says that the random effects hypothesis cannot be rejected.

It is tempting to use the Hausman test to select whether to use the fixed effects or random effects
estimator. One could imagine using the random effects estimator if the Hausman test fails to reject the
random effects hypothesis and using the fixed effects estimator otherwise. This is not, however, a wise
approach. This procedure – selecting an estimator based on a test – is known as a pretest estimator and
is biased. The bias arises because the result of the test is random and correlated with the estimators.

Instead, the Hausman test can be used as a specification test. If you are planning to use the random
effects estimator (and believe that the random effects assumptions are appropriate in your context) the
Hausman test can be used to check this assumption and provide evidence to support your approach.

17.25 Random Effects or Fixed Effects?

We have presented the random effects and fixed effects estimators of the regression coefficients.
Which should be used in practice? How should we view the difference?

The basic distinction is that the random effects estimator requires the individual error ui to satisfy
the conditional mean assumption (17.8). The fixed effects estimator does not require (17.8) and is robust
to its violation. In particular, the individual effect ui can be arbitrarily correlated with the regressors. On
the other hand the random effects estimator is efficient under random effects (Assumption 17.1).

Current econometric practice is to prefer robustness over efficiency. Consequently, current practice
is (nearly uniformly) to use the fixed effects estimator for linear panel data models. Random effects
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estimators are only used in contexts where fixed effects estimation is unknown or challenging (which
occurs in many nonlinear models).

The labels “random effects” and “fixed effects” are misleading. These are labels which arose in the
early literature and we are stuck with these labels today. In a previous era regressors were viewed as
“fixed”. Viewing the individual effect as an unobserved regressor leads to the label of the individual effect
as “fixed”. Today, we rarely refer to regressors as “fixed” when dealing with observational data. We view
all variables as random. Consequently describing ui as “fixed” does not make much sense and it is hardly
a contrast with the “random effect” label since under either assumption ui is treated as random. Once
again, the labels are unfortunate but the key difference is whether ui is correlated with the regressors.

17.26 Time Trends

In general we expect that economic agents will experience common shocks during the same time
period. For example, business cycle fluctations, inflation, and interest rates affect all agents in the econ-
omy. Therefore it is often desirable to include time effects in a panel regression model.

The simplest specification is a linear time trend

Yi t = X ′
i tβ+γt +ui +εi t .

For a introduction to time trends see Section 14.42. More flexible specifications (such as a quadratic) can
also be used. For estimation it is appropriate to include the time trend t as an element of the regressor
vector Xi t and then apply fixed effects.

In some cases the time trends may be individual-specific. Series may be growing or declining at dif-
ferent rates. A linear time trend specification only extracts a common time trend. To allow for individual-
specific time trends we need to include an interaction effect. This can be written as

Yi t = X ′
i tβ+γi t +ui +εi t .

In a fixed effects specification the coefficients (γi ,ui ) are treated as possibly correlated with the re-
gressors. To eliminate them from the model we treat them as unknown parameters and estimate all by
least squares. By the FWL theorem the estimator for β equals least squares of Ẏ on Ẋ where their ele-
ments are the residuals from the least squares regressions on a linear time trend fit separately for each
individual and variable.

17.27 Two-Way Error Components

In the previous section we discussed inclusion of time trends and individual-specific time trends.
The functional forms imposed by linear time trends are restrictive. There is no economic reason to expect
the “trend” of a series to be linear. Business cycle “trends” are cyclic. This suggests that it is desirable to
be more flexible than a linear (or even polynomial) specifications. In this section we consider the most
flexible specification where the trend is allowed to take any arbitrary shape but will require that it is
common rather than individual-specific.

The model we consider is the two-way error component model

Yi t = X ′
i tβ+ vt +ui +εi t . (17.63)

In this model ui is an unobserved individual-specific effect, vt is an unobserved time-specific effect, and
εi t is an idiosyncratic error.
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The two-way model (17.63) can be handled either using random effects or fixed effects. In a random
effects framework the errors vt and ui are modeled as in Assumption 17.1. When the panel is balanced
the covariance matrix of the error vector e = v ⊗1N +1T ⊗u +ε is

var[e] =Ω= (
I T ⊗1N 1′

N

)
σ2

v +
(
1T 1′

T ⊗ I N
)
σ2

u + I nσ
2
ε. (17.64)

When the panel is unbalanced a similar but cumbersome expression for (17.64) can be derived. This
variance (17.64) can be used for GLS estimation of β.

More typically (17.63) is handled using fixed effects. The two-way within transformation subtracts
both individual-specific means and time-specific means to eliminate both vt and ui from the two-way
model (17.63). For a variable Yi t we define the time-specific mean as follows. Let St be the set of individ-
uals i for which the observation t is included in the sample and let Nt be the number of these individuals.
Then the time-specific mean at time t is

Ỹt = 1

Nt

∑
i∈St

Yi t .

This is the average across all values of Yi t observed at time t .
For the case of balanced panels the two-way within transformation is

Ÿi t = Yi t −Y i − Ỹt +Y (17.65)

where Y = n−1 ∑N
i=1

∑T
t=1 Yi t is the full-sample mean. If Yi t satisfies the two-way component model

Yi t = vt +ui +εi t

then Y i = v +ui +εi , Ỹt = vt +u + ε̃t and Y = v +u +ε. Hence

Ÿi t = vt +ui +εi t −
(
v +ui +εi

)− (
vt +u + ε̃t

)+ v +u +ε
= εi t −εi − ε̃t +ε= ε̈i t

so the individual and time effects are eliminated.
The two-way within transformation applied to (17.63) yields

Ÿi t = Ẍ ′
i tβ+ ε̈i t (17.66)

which is invariant to both vt and ui . The two-way within estimator is least squares applied to (17.66).
For the unbalanced case there are two computational approaches to implement the estimator. Both

are based on the realization that the estimator is equivalent to including dummy variables for all time
periods. Let τt be a set of T dummy variables where the t th indicates the t th time period. Thus the t th

element of τt is 1 and the remaining elements are zero. Set v = (v1, ..., vT )′ as the vector of time fixed
effects. Notice that vt = τ′t v . We can write the two-way model as

Yi t = X ′
i tβ+τ′t v +ui +εi t . (17.67)

This is the dummy variable representation of the two-way error components model.
Model (17.67) can be estimated by one-way fixed effects with regressors Xi t and τt and coefficient

vectors β and v . This can be implemented by standard one-way fixed effects methods including xtreg

or areg in Stata. This produces estimates of the slopes β as well as the time effects v . To achieve identi-
fication one time dummy variable is omitted from τt so the estimated time effects are all relative to this
baseline time period. This is the most common method in practice to estimate a two-way fixed effects
model. As the number of time periods is typically modest this is a computationally attractive approach.
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The second computational approach is to eliminate the time effects by residual regression. This is
done by the following steps. First, subtract individual-specific means for (17.67). This yields

Ẏi t = Ẋ ′
i tβ+ τ̇′t v + ε̇i t .

Second, regress Ẏi t on τ̇t to obtain a residual Ÿi t and regress each element of Ẋi t on τ̇t to obtain a residual
Ẍi t . Third, regress Ÿi t on Ẍi t to obtain the within estimator of β. These steps eliminate the fixed effects
vt so the estimator is invariant to their value. What is important about this two-step procedure is that
the second step is not a within transformation across the time index but rather standard regression.

If the two-way within estimator is used then the regressors Xi t cannot include any time-invariant
variables Xi or common time series variables X t . Both are eliminated by the two-way within transfor-
mation. Coefficients are only identified for regressors which have variation both across individuals and
across time.

If desired the relevance of the time effects can be tested by an exclusion test on the coefficients v . If
the test rejects the hypothesis of zero coefficients then this indicates that the time effects are relevant in
the regression model.

The fixed effects estimator of (17.63) is invariant to the values of vt and ui , thus no assumptions need
to be made concerning their stochastic properties.

To illustrate, the fourth column of Table 17.2 presents fixed effects estimates of the investment equa-
tion, augmented to included year dummy indicators, and is thus a two-way fixed effects model. In this
example the coefficient estimates and standard errors are not greatly affected by the inclusion of the year
dummy variables.

17.28 Instrumental Variables

Take the fixed effects model
Yi t = X ′

i tβ+ui +εi t . (17.68)

We say Xi t is exogenous for εi t if E [Xi tεi t ] = 0, and we say Xi t is endogenous for εi t if E [Xi tεi t ] 6= 0.
In Chapter 12 we discussed several economic examples of endogeneity and the same issues apply in
the panel data context. The primary difference is that in the fixed effects model we only need to be
concerned if the regressors are correlated with the idiosyncratic error εi t , as correlation between Xi t and
ui is allowed.

As in Chapter 12 if the regressors are endogenous the fixed effects estimator will be biased and in-
consistent for the structural coefficient β. The standard approach to handling endogeneity is to specify
instrumental variables Zi t which are both relevant (correlated with Xi t ) yet exogenous (uncorrelated
with εi t ).

Let Zi t be an `× 1 instrumental variable where ` ≥ k. As in the cross-section case, Zi t may con-
tain both included exogenous variables (variables in Xi t that are exogenous) and excluded exogenous
variables (variables not in Xi t ). Let Z i be the stacked instruments by individual and Z be the stacked
instruments for the full sample.

The dummy variable formulation of the fixed effects model is Yi t = X ′
i tβ+d ′

i u + εi t where di is an
N ×1 vector of dummy variables, one for each individual in the sample. The model in matrix notation
for the full sample is

Y = Xβ+Du +ε. (17.69)

Theorem 17.1 shows that the fixed effects estimator for β can be calculated by least squares estimation
of (17.69). Thus the dummies D should be viewed as included exogenous variables.
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Consider 2SLS estimation of β using the instruments Z for X . Since D is an included exogenous
variable it should also be used as an instrument. Thus 2SLS estimation of the fixed effects model (17.68)
is algebraically 2SLS of the regression (17.69) of Y on (X ,D) using the pair (Z ,D) as instruments.

Since the dimension of D can be excessively large, as discussed in Section 17.11, it is advisable to use
residual regression to compute the 2SLS estimator as we now describe.

In Section 12.12, we described several alternative representations for the 2SLS estimator. The fifth
(equation (12.32)) shows that the 2SLS estimator for β equals

β̂2sls =
(

X ′M D Z
(

Z ′M D Z
)−1 Z ′M D X

)−1 (
X ′M D Z

(
Z ′M D Z

)−1 Z ′M D Y
)

where M D = I n −D
(
D ′D

)−1 D ′. The latter is the matrix within operator, thus M D Y = Ẏ , M D X = Ẋ , and
M D Z = Ż . It follows that the 2SLS estimator is

β̂2sls =
(

Ẋ
′
Ż

(
Ż

′
Ż

)−1
Ż

′
Ẋ

)−1 (
Ẋ

′
Ż

(
Ż

′
Ż

)−1
Ż

′
Ẏ

)
.

This is convenient. It shows that the 2SLS estimator for the fixed effects model can be calculated by
applying 2SLS to the within-transformed Yi t , Xi t , and Zi t . The 2SLS residuals are ê = Ẏ − Ẋ β̂2sls.

This estimator can be obtained using the Stata command xtivreg fe. It can also be obtained using
the Stata command ivregress after making the within transformations.

The presentation above focused for clarity on the one-way fixed effects model. There is no substantial
change in the two-way fixed effects model

Yi t = X ′
i tβ+ui + vt +εi t .

The easiest way to estimate the two-way model is to add T −1 time-period dummies to the regression
model and include these dummy variables as both regressors and instruments.

17.29 Identification with Instrumental Variables

To understand the identification of the structural slope coefficient β in the fixed effects model it is
necessary to examine the reduced form equation for the endogenous regressors Xi t . This is

Xi t = ΓZi t +Wi +ζi t

where Wi is a k ×1 vector of fixed effects for the k regressors and ζi t is an idiosyncratic error.
The coefficient matrix Γ is the linear effect of Zi t on Xi t holding the fixed effects Wi constant. Thus

Γ has a similar interpretation as the coefficient β in the fixed effects regression model. It is the effect of
the variation in Zi t about its individual-specific mean on Xi t .

The 2SLS estimator is a function of the within transformed variables. Applying the within transforma-
tion to the reduced form we find Ẋi t = ΓŻi t +ζ̇i t . This shows that Γ is the effect of the within-transformed
instruments on the regressors. If there is no time-variation in the within-transformed instruments or
there is no correlation between the instruments and the regressors after removing the individual-specific
means then the coefficient Γ will be either not identified or singular. In either case the coefficient β will
not be identified.

Thus for identification of the fixed effects instrumental variables model we need

E
[

Ż
′
i Ż i

]
> 0 (17.70)
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and
rank

(
E
[

Ż
′
i Ẋ i

])
= k. (17.71)

Condition (17.70) is the same as the condition for identification in fixed effects regression – the instru-
ments must have full variation after the within transformation. Condition (17.71) is analogous to the
relevance condition for identification of instrumental variable regression in the cross-section context
but applies to the within-transformed instruments and regressors.

Condition (17.71) shows that to examine instrument validity in the context of fixed effects 2SLS it is
important to estimate the reduced form equation using fixed effects (within) regression. Standard tests
for instrument validity (F tests on the excluded instruments) can be applied. However, since the correla-
tion structure of the reduced form equation is in general unknown it is appropriate to use a cluster-robust
covariance matrix, clustered at the level of the individual.

17.30 Asymptotic Distribution of Fixed Effects 2SLS Estimator

In this section we present an asymptotic distribution theory for the fixed effects estimator. We pro-
vide a formal theory for the case of balanced panels and discuss an extension to the unbalanced case.

We use the following assumptions for balanced panels.

Assumption 17.4

1. Yi t = X ′
i tβ+ui +εi t for i = 1, ..., N and t = 1, ...,T with T ≥ 2.

2. The variables (εi , X i , Z i ), i = 1, ..., N , are independent and identically dis-
tributed.

3. E [Zi sεi t ] = 0 for all s = 1, ...,T.

4. Q Z Z = E
[

Ż
′
i Ż i

]
> 0.

5. rank
(
Q Z X

)= k where Q Z X = E
[

Ż
′
i Ẋ i

]
.

6. E
[
ε4

i t

]<∞.

7. E‖Xi t‖2 <∞.

8. E‖Zi t‖4 <∞.

Given Assumption 17.4 we can establish asymptotic normality for β̂2sls.

Theorem 17.4 Under Assumption 17.4, as N →∞,
p

N
(
β̂2sls −β

)−→
d

N
(
0,V β

)
where

V β =
(
Q ′

Z XΩ
−1
Z Z Q Z X

)−1 (
Q ′

Z XΩ
−1
Z ZΩZεΩ

−1
Z Z Q Z X

)(
Q ′

Z XΩ
−1
Z Z Q Z X

)−1

ΩZε = E
[

Ż
′
iεiε

′
i Ż i

]
.
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The proof of the result is similar to Theorem 17.2 so is omitted. The key condition is Assumption
17.4.3, which states that the instruments are strictly exogenous for the idiosyncratic errors. The identifi-
cation conditions are Assumptions 17.4.4 and 17.4.5, which were discussed in the previous section.

The theorem is stated for balanced panels. For unbalanced panels we can modify the theorem as in
Theorem 17.3 by adding the selection indicators si and replacing Assumption 17.4.3 with E [εi t | Z i , si ] =
0, which states that the idiosyncratic errors are mean independent of the instruments and selection.

If the idiosyncratic errors εi t are homoskedastic and serially uncorrelated then the covariance matrix
simplifies to

V β =
(
Q ′

Z XΩ
−1
Z Z Q Z X

)−1
σ2
ε.

In this case a classical homoskedastic covariance matrix estimator can be used. Otherwise a cluster-
robust covariance matrix estimator can be used, and takes the form

V̂ β̂ =
(

Ẋ
′
Ż

(
Ż

′
Ż

)−1
Ż

′
Ẋ

)−1 (
Ẋ

′
Ż

)(
Ż

′
Ż

)−1
(

N∑
i=1

Ż
′
i ε̂i ε̂

′
i Ż i

)

×
(

Ż
′
Ż

)−1 (
Ż

′
Ẋ

)(
Ẋ

′
Ż

(
Ż

′
Ż

)−1
Ż

′
Ẋ

)−1

.

As for the case of fixed effects regression, the heteroskedasticity-robust covariance matrix estimator is
not recommended due to bias when T is small, and a bias-corrected version has not been developed.

The Stata command xtivreg, fe by default reports the classical homoskedastic covariance matrix
estimator. To obtain a cluster-robust covariance matrix use option vce(robust) or vce(cluster id).

17.31 Linear GMM

Consider the just-identified 2SLS estimator. It solves the equation Ż
′ (

Ẏ − Ẋβ
)= 0. These are sample

analogs of the population moment condition E
[

Ż
′
i

(
Ẏ i − Ẋ iβ

)] = 0. These population conditions hold

at the true β since Ż
′
u = Z ′MDu = 0 since u lies in the null space of D , and E

[
Ż

′
iε

]
= 0 is implied by

Assumption 17.4.3.
The population orthogonality conditions hold in the overidentified case as well. In this case an alter-

native to 2SLS is GMM. Let Ω̂i be an estimator of W = E
[

Ż
′
iεiε

′
i Ż i

]
, for example

Ŵ = 1

N

N∑
i=1

Ż
′
i ε̂i ε̂

′
i Ż i (17.72)

where ε̂i are the 2SLS fixed effects residuals. The GMM fixed effects estimator is

β̂gmm =
(

Ẋ
′
Ż Ŵ

−1
Ż

′
Ẋ

)−1 (
Ẋ

′
Ż Ŵ

−1
Ż

′
Ẏ

)
. (17.73)

The estimator (17.73)-(17.72) does not have a Stata command but can be obtained by generating the
within transformed variables Ẋ , Ż and Ẏ , and then estimating by GMM a regression of Ẏ on Ẋ using Ż
as instruments using a weight matrix clustered by individual.

17.32 Estimation with Time-Invariant Regressors

One of the disappointments with the fixed effects estimator is that it cannot estimate the effect of
regressors which are time-invariant. They are not identified separately from the fixed effect and are elim-
inated by the within transformation. In contrast, the random effects estimator allows for time-invariant
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regressors but does so only by assuming strict exogeneity which is stronger than typically desired in eco-
nomic applications.

It turns out that we can consider an intermediate case which maintains the fixed effects assumptions
for the time-varying regressors but uses stronger assumptions on the time-invariant regressors. For our
exposition we will denote the time-varying regressors by the k ×1 vector Xi t and the time-invariant re-
gressors by the `×1 vector Zi .

Consider the linear regression model

Yi t = X ′
i tβ+Z ′

iγ+ui +εi t .

At the level of the individual this can be written as

Y i = X iβ+Z iγ+ ı i ui +εi

where Z i = ı i Z ′
i . For the full sample in matrix notation we can write this as

Y = Xβ+Zγ+u +ε. (17.74)

We maintain the assumption that the idiosyncratic errors εi t are uncorrelated with both Xi t and Zi

at all time horizons:

E [Xi sεi t ] = 0 (17.75)

E [Ziεi t ] = 0. (17.76)

In this section we consider the case where Zi is uncorrelated with the individual-level error ui , thus

E [Zi ui ] = 0, (17.77)

but the correlation of Xi t and ui is left unrestricted. In this context we say that Zi is exogenous with
respect to the fixed effect ui while Xi t is endogenous with respect to ui . Note that this is a different
type of endogeneity than considered in the sections on instrumental variables: there endogeneity meant
correlation with the idiosyncratic error εi t . Here endogeneity means correlation with the fixed effect ui .

We consider estimation of (17.74) by instrumental variables and thus need instruments which are
uncorrelated with the error ui +εi t . The time-invariant regressors Zi satisfy this condition due to (17.76)
and (17.77), thus

E
[

Z ′
i

(
Y i −X iβ−Z iγ

)]= 0.

While the time-varying regressors Xi t are correlated with ui the within transformed variables Ẋi t are
uncorrelated with ui +εi t under (17.75), thus

E
[

Ẋ
′
i

(
Y i −X iβ−Z iγ

)]= 0.

Therefore we can estimate (β,γ) by instrumental variable regression using the instrument set (Ẋ , Z ).
Specifically, regression of Y on X and Z treating X as endogenous, Z as exogenous, and using the instru-
ment Ẋ . Write this estimator as (β̂, γ̂). This can be implemented using the Stata ivregress command
after constructing the within transformed Ẋ .

This instrumental variables estimator is algebraically equal to a simple two-step estimator. The first
step β̂ = β̂fe is the fixed effects estimator. The second step sets γ̂ = (

Z ′Z
)−1 (

Z ′û
)

, the least squares
coefficient from the regression of the estimated fixed effect ûi on Zi . To see this equivalence observe
that the instrumental variables estimator estimator solves the sample moment equations

Ẋ
′ (

Y −Xβ−Zγ
)= 0 (17.78)

Z ′ (Y −Xβ−Zγ
)= 0. (17.79)
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Notice that Ẋ
′
i Z i = Ẋ

′
i ı i Z ′

i = 0 so Ẋ
′
Z = 0. Thus (17.78) is the same as Ẋ

′ (
Y −Xβ

)= 0 whose solution is

β̂fe. Plugging this into the left-side of (17.79) we obtain

Z ′ (Y −X β̂fe −Zγ
)= Z ′

(
Y −X β̂fe −Zγ

)
= Z ′ (û −Zγ

)
where Y and X are the stacked individual means ı i Y i and ı i X

′
i . Set equal to 0 and solving we obtain the

least squares estimator γ̂ = (
Z ′Z

)−1 (
Z ′û

)
as claimed. This equivalence was first observed by Hausman

and Taylor (1981).
For standard error calculation it is recommended to estimate (β,γ) jointly by instrumental variable

regression and use a cluster-robust covariance matrix clustered at the individual level. Classical and
heteroskedasticity-robust estimators are misspecified due to the individual-specific effect ui .

The estimator (β̂, γ̂) is a special case of the Hausman-Taylor estimator described in the next section.
(For an unknown reason the above estimator cannot be estimated using Stata’s xthtaylor command.)

17.33 Hausman-Taylor Model

Hausman and Taylor (1981) consider a generalization of the previous model. Their model is

Yi t = X ′
1i tβ1 +X ′

2i tβ2 +Z ′
1iγ1 +Z ′

2iγ2 +ui +εi t

where X1i t and X2i t are time-varying and Z1i and Z2i are time-invariant. Let the dimensions of X1i t ,
X2i t , Z1i , and Z2i be k1, k2, `1, and `2, respectively.

Write the model in matrix notation as

Y = X 1β1 +X 2β2 +Z 1γ1 +Z 2γ2 +u +ε. (17.80)

Let X 1 and X 2 denote conformable matrices of individual-specific means and let Ẋ 1 = X 1 − X 1 and
Ẋ 2 = X 2 −X 2 denote the within-transformed variables.

The Hausman-Taylor model assumes that all regressors are uncorrelated with the idiosyncratic error
εi t at all time horizons and that X1i t and Z1i are exogenous with respect to the fixed effect ui so that

E [X1i t ui ] = 0

E [Z1i ui ] = 0.

The regressors X2i t and Z2i , however, are allowed to be correlated with ui .
Set X = (X 1, X 2, Z 1, Z 2) and β = (

β1,β2,γ1,γ2
)
. The assumptions imply the following population

moment conditions

E
[

Ẋ
′
1

(
Y −Xβ

)]= 0

E
[

Ẋ
′
2

(
Y −Xβ

)]= 0

E
[

X
′
1

(
Y −Xβ

)]= 0

E
[

Z ′
1

(
Y −Xβ

)]= 0.

There are 2k1+k2+`1 moment conditions and k1+k2+`1+`2 coefficients. Identification requires k1 ≥ `2:
that there are at least as many exogenous time-varying regressors as endogenous time-invariant regres-
sors. (This includes the model of the previous section where k1 = `2 = 0.)
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Given the moment conditions the coefficientsβ= (
β1,β2,γ1,γ2

)
can be estimated by 2SLS regression

of (17.80) using the instruments Z = (Ẋ 1, Ẋ 2, X 1, Z 1) or equivalently Z = (X 1, Ẋ 2, X 1, Z 1). This is 2SLS re-
gression treating X 1 and Z 1 as exogenous and X 2 and Z 2 as endogenous using the excluded instruments
Ẋ 2 and X 1.

It is recommended to use cluster-robust covariance matrix estimation clustered at the individual
level. Neither conventional nor heteroskedasticity-robust covariance matrix estimators should be used
as they are misspecified due to the individual-specific effect ui .

When the model is just-identified the estimators simplify as follows. β̂1 and β̂2 are the fixed effects
estimator. γ̂1 and γ̂2 equal the 2SLS estimator from a regression of ûi on Z1i and Z2i using X 1i as an
instrument for Z2i . (See Exercise 17.14.)

When the model is over-identified the equation can also be estimated by GMM with a cluster-robust
weight matrix using the same equations and instruments.

This estimator with cluster-robust standard errors can be calculated using the Stata ivregress cluster(id)

command after constructing the transformed variables Ẋ 2 and X 1.
The 2SLS estimator described above corresponds with the Hausman and Taylor (1981) estimator in

the just-identified case with a balanced panel.
Hausman and Taylor derived their estimator under the stronger assumption that the errors εi t and

ui are strictly mean independent and homoskedastic and consequently proposed a GLS-type estima-
tor which is more efficient when these assumptions are correct. Define Ω = diag(Ωi ) where Ωi = I i +
1i 1′

iσ
2
u/σ2

ε and σ2
ε and σ2

u are the variances of the error components εi t and ui . Define as well the trans-
formed variables Ỹ =Ω−1/2Y , X̃ =Ω−1/2X and Z̃ =Ω−1/2Z . The Hausman-Taylor estimator is

β̂ht =
(

X ′Ω−1Z
(

Z ′Ω−1Z
)−1

Z ′Ω−1X
)−1 (

X ′Ω−1Z
(

Z ′Ω−1Z
)−1

Z ′Ω−1Y
)

=
(

X̃
′
Z̃

(
Z̃

′
Z̃

)−1
Z̃

′
X̃

)−1 (
X̃

′
Z̃

(
Z̃

′
Z̃

)−1
Z̃

′
Ỹ

)
.

Recall from (17.47) thatΩ−1/2
i = M i +ρi P i where ρi is defined in (17.46). Thus

Ỹi = Yi −
(
1−ρi

)
Y i

X̃1i = X1i −
(
1−ρi

)
X 1i

X̃2i = X2i −
(
1−ρi

)
X 2i

Z̃1i = ρi Z1i

Z̃2i = ρi Z2i˜̇X1i = Ẋ1i˜̇X2i = Ẋ2i .

It follows that the Hausman-Taylor estimator can be calculated by 2SLS regression of Ỹ i on (X̃ 1i , X̃ 2i ,ρi Z 1i ,ρi Z 2i )

using the instruments
(

Ẋ 1i , Ẋ 2i ,ρi X 1i ,ρi Z 2i

)
.

When the panel is balanced the coefficients ρi all equal and scale out from the instruments. Thus
the estimator can be calculated by 2SLS regression of Ỹ i on (X̃ 1i , X̃ 2i , Z 1i , Z 2i ) using the instruments(

Ẋ 1i , Ẋ 2i , X 1i , Z 2i

)
.

In practice ρi is unknown. It can be estimated as in (17.48) with the modification that the error vari-
ance is estimated from the untransformed 2SLS regression. Under the homoskedasticity assumptions
used by Hausman and Taylor the estimator β̂ht has a classical asymptotic covariance matrix. When these
assumptions are relaxed the covariance matrix can be estimated using cluster-robust methods.
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The Hausman-Taylor estimator with cluster-robust standard errors can be implemented in Stata by
the command xthtaylor vce(robust). This Stata command, for an unknown reason, requires that
there is at least one exogenous time-invariant variable (`1 ≥ 1) and at least one exogenous time-varying
variable (k1 ≥ 1), even when the model is identified. Otherwise, the estimator can be implemented using
the instrumental variable method described above.

The Hausman-Taylor estimator was refined by Amemiya and MaCurdy (1986) and Breusch, Mizon
and Schmidt (1989) who proposed more efficient versions using additional instruments which are valid
under stronger orthogonality conditions. The observation that in the unbalanced case the instruments
should be weighted by ρi was made by Gardner (1998).

In the over-identified case it is unclear if it is preferred to use the simpler 2SLS estimator β̂2sls or
the GLS-type Hausman-Taylor estimator β̂ht. The advantages of β̂ht are that it is asymptotically efficient
under their stated homoskedasticity and serial correlation conditions and that there is an available pro-
gram in Stata. The advantage of β̂2sls is that it is much simpler to program (if doing so yourself), may
have better finite sample properties (since it avoids variance-component estimation), and is the natural
estimator from the the modern GMM viewpoint.

To illustrate, the final column of Table 17.2 contains Hausman-Taylor estimates of the investment
model treating Qi t−1, Di t−1, and Ti as endogenous for ui and C Fi t−1 and the industry dummies as ex-
ogenous. Relative to the fixed effects models this allows estimation of the coefficients on the trading
indicator Ti . The most interesting change relative to the previous estimates is that the coefficient on the
trading indicator Ti doubles in magnitude relative to the random effects estimate. This is consistent with
the hypothesis that Ti is correlated with the fixed effect and hence the random effects estimate is biased.

17.34 Jackknife Covariance Matrix Estimation

As an alternative to asymptotic inference the delete-cluster jackknife can be used for covariance ma-
trix calculation. In the context of fixed effects estimation the delete-cluster estimators take the form

β̂(−i ) =
(∑

j 6=i
Ẋ

′
j Ẋ j

)−1 (∑
j 6=i

Ẋ
′
j Ẏ j

)
= β̂fe −

(
N∑

i=1
Ẋ

′
i Ẋ i

)−1

Ẋ
′
i ẽ i .

where

ẽ i =
(

I i − Ẋ i

(
Ẋ

′
i Ẋ i

)−1
Ẋ

′
i

)−1

ê i

ê i = Ẏ i − Ẋ i β̂fe.

The delete-cluster jackknife estimator of the variance of β̂fe is

V̂
jack

β̂
= N −1

N

N∑
i=1

(
β̂(−i ) −β

)(
β̂(−i ) −β

)′
β= 1

N

N∑
i=1

β̂(−i ).

The delete-cluster jackknife estimator V̂
jack

β̂
is similar to the cluster-robust covariance matrix estimator.

For parameters which are functions θ̂fe = r (β̂fe) of the fixed effects estimator the delete-cluster jack-
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knife estimator of the variance of θ̂fe is

V̂
jack

θ̂
= N −1

N

N∑
i=1

(
θ̂(−i ) −θ

)(
θ̂(−i ) −θ

)′
θ̂(−i ) = r (β̂(−i ))

θ = 1

N

N∑
i=1

θ̂(−i ).

The estimator V̂
jack

θ̂
is similar to the delta-method cluster-robust covariance matrix estimator for θ̂.

As in the context of i.i.d. samples one advantage of the jackknife covariance matrix estimators is that
they do not require the user to make a technical calculation of the asymptotic distribution. A down-
side is an increase in computation cost as N separate regressions are effectively estimated. This can be
particularly costly in micro panels which have a large number N of individuals.

In Stata jackknife standard errors for fixed effects estimators are obtained by using either xtreg fe

vce(jackknife) or areg absorb(id) cluster(id) vce(jackknife) where id is the cluster vari-
able. For the fixed effects 2SLS estimator use xtivreg fe vce(jackknife).

17.35 Panel Bootstrap

Bootstrap methods can also be applied to panel data by a straightforward application of the pairs
cluster bootstrap which samples entire individuals rather than single observations. In the context of
panel data we call this the panel nonparametric bootstrap.

The panel nonparametric bootstrap samples N individual histories (Y i , X i ) to create the bootstrap
sample. Fixed effects (or any other estimation method) is applied to the bootstrap sample to obtain
the coefficient estimates. By repeating B times, bootstrap standard errors for coefficients estimates, or
functions of the coefficient estimates, can be calculated. Percentile-type and percentile-t confidence
intervals can be calculated. The BCa interval requires an estimator of the acceleration coefficient a which
is a scaled jackknife estimate of the third moment of the estimator. In panel data the delete-cluster
jackknife should be used for estimation of a.

In Stata, to obtain bootstrap standard errors and confidence intervals use either xtreg, vce(bootstrap,

reps(#))or areg, absorb(id) cluster(id) vce(bootstrap, reps(#))where id is the cluster vari-
able and # is the number of bootstrap replications. For the fixed effects 2SLS estimator use xtivreg, fe

vce(bootstrap, reps(#)).

17.36 Dynamic Panel Models

The models so far considered in this chapter have been static with no dynamic relationships. In many
economic contexts it is natural to expect that behavior and decisions are dynamic, explicitly depending
on past behavior. In our investment equation, for example, economic models predict that a firm’s invest-
ment in any given year will depend on investment decisions from previous years. These considerations
lead us to consider explicitly dynamic models.

The workhorse dynamic model in a panel framework is the p th-order autoregression with regressors
and a one-way error component structure. This is

Yi t =α1Yi ,t−1 +·· ·+αp Yi ,t−p +X ′
i tβ+ui +εi t . (17.81)

where α j are the autoregressive coefficients, Xi t is a k vector of regressors, ui is an individual effect,
and εi t is an idiosyncratic error. It is conventional to assume that the errors ui and εi t are mutually
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independent and the εi t are serially uncorrelated and mean zero. For the present we will assume that
the regressors Xi t are strictly exogenous (17.17). In Section 17.41 we discuss predetermined regressors.

For many illustrations we will focus on the AR(1) model

Yi t =αYi ,t−1 +ui +εi t (17.82)

The dynamics should be interpreted individual-by-individual. The coefficient α in (17.82) equals the
first-order autocorrelation. When α = 0 the series is serially uncorrelated (conditional on ui ). α > 0
means Yi t is positively serially correlated. α < 0 means Yi t is negatively serially correlated. An autore-
gressive unit root holds when α = 1, which means that Yi t follows a random walk with possible drift.
Since ui is constant for a given individual it should be treated as an individual-specific intercept. The
idiosyncratic error εi t plays the role of the error in a standard time series autoregression.

If |α| < 1 the model (17.82) is stationary. By standard autoregressive backwards recursion we calculate
that

Yi t =
∞∑

j=0
α j (ui +εi t ) = (1−α)−1 ui +

∞∑
j=0

α jεi ,t− j . (17.83)

Thus conditional on ui the mean and variance of Yi t are (1−α)−1 ui and
(
1−α2

)−1
σ2
ε, respectively. The

k th autocorrelation (conditional on ui ) is αk . Notice that the effect of cross-section variation in ui is to
shift the mean but not the variance or serial correlation. This implies that if we view time series plots
of Yi t against time for a set of individuals i , the series Yi t will appear to have different means but have
similar variances and serial correlation.

As with the case with time series data, serial correlation (large α) can proxy for other factors such
as time trends. Thus in applications it will often be useful to include time effects to eliminate spurious
serial correlation.

17.37 The Bias of Fixed Effects Estimation

To estimate the panel autoregression (17.81) it may appear natural to use the fixed effects (within)
estimator. Indeed, the within transformation eliminates the individual effect ui . The trouble is that the
within operator induces correlation between the AR(1) lag and the error. The result is that the within
estimator is inconsistent for the coefficients when T is fixed. A thorough explanation appears in Nickell
(1981). We describe the basic problem in this section focusing on the AR(1) model (17.82).

Applying the within operator to (17.82) we obtain

Ẏi t =αẎi t−1 + ε̇i t

for t ≥ 2. As expected the individual effect is eliminated. The difficulty is that E
[
Ẏi t−1ε̇i t

] 6= 0 since both
Ẏi t−1 and ε̇i t are functions of the entire time series.

To see this clearly in a simple example, suppose we have a balanced panel with T = 3. There are
two observed pairs (Yi t ,Yi t−1) per individual so the within estimator equals the differenced estimator.
Applying the differencing operator to (17.82) for t = 3 we find

∆Yi 3 =α∆Yi 2 +∆εi 3. (17.84)

Because of the lagged dependent variable and differencing there is effectively one observation per indi-
vidual. Notice that the individual effect has been eliminated.

The fixed effects estimator of α is equal to the least squares estimator applied to (17.84), which is

α̂fe =
(

N∑
i=1
∆Y 2

i 2

)−1 (
N∑

i=1
∆Yi 2∆Yi 3

)
=α+

(
N∑

i=1
∆Y 2

i 2

)−1 (
N∑

i=1
∆Yi 2∆εi 3

)
.
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The differenced regressor and error are negatively correlated. Indeed

E [∆Yi 2∆εi 3] = E [(Yi 2 −Yi 1) (εi 3 −εi 2)]

= E [Yi 2εi 3]−E [Yi 1εi 3]−E [Yi 2εi 2]+E [Yi 1εi 2]

= 0−0−σ2
ε+0

=−σ2
ε.

Using the variance formula for AR(1) models (assuming |α| < 1) we calculate that E
[
(∆Yi 2)2

] = 2σ2
ε/(1+

α). It follows that the probability limit of the fixed effects estimator α̂fe of α in (17.84) is

plim
N→∞

(α̂fe −α) = E [∆Yi 2∆εi 3]

E
[
(∆Yi 2)2

] =−1+α
2

. (17.85)

It is typical to call (17.85) the “bias” of α̂fe, though it is technically a probability limit.
The bias found in (17.85) is large. For α= 0 the bias is −1/2 and increases towards 1 as α→ 1. Thus

for any α< 1 the probability limit of α̂fe is negative! This is extreme bias.
From Nickell’s (1981) expressions and some algebra, we can calculate that the probability limit of the

fixed effects estimator for |α| < 1 and general T is

plim
N→∞

(α̂fe −α) = 1+α
2α

1−α − T −1

1−αT−1

. (17.86)

It follows that the bias is of order O(1/T ).
It is often asserted that it is okay to use fixed effects if T is sufficiently large, e.g. T ≥ 30. However,

from (17.86) we can calculate that for T = 30 the bias of the fixed effects estimator is −0.056 whenα= 0.5
and the bias is −0.15 when α = 0.9. For T = 60 and α = 0.9 the bias is −0.05. These magnitudes are
unacceptably large. This includes the longer time series encountered in macro panels. Thus the Nickell
bias problem applies to both micro and macro panel applications.

The conclusion from this analysis is that the fixed effects estimator should not be used for models
with lagged dependent variables even if the time series dimension T is large.

17.38 Anderson-Hsiao Estimator

Anderson and Hsiao (1982) made an important breakthrough by showing that a simple instrumental
variables estimator is consistent for the parameters of (17.81).

The method first eliminates the individual effect ui by first-differencing (17.81) for t ≥ p +1

∆Yi t =α1∆Yi ,t−1 +α2∆Yi ,t−2 +·· ·+αp∆Yi ,t−p +∆X ′
i tβ+∆εi t . (17.87)

This eliminates the individual effect ui . The challenge is that first-differencing induces correlation be-
tween ∆Yi t−1 and ∆εi t :

E
[
∆Yi ,t−1∆εi t

]= E[(
Yi ,t−1 −Yi ,t−2

)
(εi t −εi t−1)

]=−σ2
ε.

The other regressors are not correlated with ∆εi t . For s > 1, E [∆Yi t−s∆εi t ] = 0, and when Xi t is strictly
exogenous E [∆Xi t∆εi t ] = 0.

The correlation between∆Yi t−1 and∆εi t is endogeneity. One solution to endogeneity is to use an in-
strument. Anderson-Hsiao pointed out that Yi t−2 is a valid instrument since it is correlated with ∆Yi ,t−1

yet uncorrelated with ∆εi t .

E
[
Yi ,t−2∆εi t

]= E[
Yi ,t−2εi t

]−E[
Yi ,t−2εi t−1

]= 0. (17.88)
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The Anderson-Hsiao estimator is IV using Yi ,t−2 as an instrument for ∆Yi ,t−1. Equivalently, this is IV
using the instruments (Yi ,t−2, ...,Yi ,t−p−1) for (∆Yi ,t−1, ...,∆Yi ,t−p ). The estimator requires T ≥ p +2.

To show that this estimator is consistent, for simplicity assume we have a balanced panel with T = 3,
p = 1, and no regressors. In this case the Anderson-Hsiao IV estimator is

α̂iv =
(

N∑
i=1

Yi 1∆Yi 2

)−1 (
N∑

i=1
Yi 1∆Yi 3

)
=α+

(
N∑

i=1
Yi 1∆Yi 2

)−1 (
N∑

i=1
Yi 1∆εi 3

)
.

Under the assumption that εi t is serially uncorrelated, (17.88) shows that E [Yi 1∆εi 3] = 0. In general,
E [Yi 1∆Yi 2] 6= 0. As N →∞

α̂iv −→
p
α− E [Yi 1∆εi 3]

E [Yi 1∆Yi 2]
=α.

Thus the IV estimator is consistent for α.
The Anderson-Hsiao IV estimator relies on two critical assumptions. First, the validity of the instru-

ment (uncorrelatedness with the equation error) relies on the assumption that the dynamics are correctly
specified so that εi t is serially uncorrelated. For example, many applications use an AR(1). If instead the
true model is an AR(2) then Yi t−2 is not a valid instrument and the IV estimates will be biased. Second,
the relevance of the instrument (correlatedness with the endogenous regressor) requires E [Yi 1∆Yi 2] 6= 0.
This turns out to be problematic and is explored further in Section 17.40. These considerations suggest
that the validity and accuracy of the estimator are likely to be sensitive to these unknown features.

17.39 Arellano-Bond Estimator

The orthogonality condition (17.88) is one of many implied by the dynamic panel model. Indeed, all
lags Yi t−2,Yi t−3, ... are valid instruments. If T > p+2 these can be used to potentially improve estimation
efficiency. This was first pointed out by Holtz-Eakin, Newey and Rosen (1988) and further developed by
Arellano and Bond (1991).

Using these extra instruments has a complication that there are a different number of instruments
for each time period. The solution is to view the model as a system of T equations as in Section 17.18.

It will be useful to first write the model in vector notation. Stack the differenced regressors (∆Yi ,t−1, ...∆Yi ,t−p ,∆X ′
i t )

into a matrix∆X i and the coefficients into a vector θ. We can write (17.87) as∆Y i =∆X iθ+∆εi . Stacking
all N individuals this can be written as ∆Y =∆X θ+∆ε.

For period t = p +2 we have p +k valid instruments
[
Yi 1...,Yi p ,∆Xi ,p+2

]
. For period t = p +3 there

are p+1+k valid instruments
[
Yi 1...,Yi p+1,∆Xi ,p+3

]
. For period t = p+4 there are p+2+k instruments.

In general, for any t ≥ p +2 there are t −2 instruments
[
Yi 1, ...,Yi ,t−2,∆Xi t

]
. Similarly to (17.53) we can

define the instrument matrix for individual i as

Z i =



[
Yi 1...,Yi p ,∆X ′

i ,p+2

]
0 0

0
[

Yi 1...,Yi ,p+1,∆X ′
i ,p+3

]
0

. . .

0 0
[

Yi 1,Yi 2, ...,Yi ,T−2,∆X ′
i ,T

]

 . (17.89)

This is
(
T −p −1

)×` where `= k
(
T −p −1

)+(
(T −2)(T −1)− (

p −2
)(

p −1
))

/2. This instrument matrix
consists of all lagged values Yi ,t−2,Yi ,t−3, ... which are available in the data set plus the differenced strictly
exogenous regressors.

The ` moment conditions are
E
[

Z ′
i (∆Y i −∆X iα)

]= 0. (17.90)
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If T > p + 2 then ` > p and the model is overidentified. Define the `×` covariance matrix for the
moment conditions

Ω= E[
Z ′

i∆εi∆ε
′
i Z i

]
.

Let Z denote Z i stacked into a
(
T −p −1

)
N ×` matrix. The efficient GMM estimator of α is

α̂gmm = (
∆X ′ZΩ−1Z ′∆X

)−1 (
∆X ′ZΩ−1Z ′∆Y

)
.

If the errors εi t are conditionally homoskedastic then

Ω= E[
Z ′

i H Z i
]
σ2
ε

where H is given in (17.31). In this case set

Ω̂1 =
N∑

i=1
Z ′

i H Z i

as a (scaled) estimate ofΩ. Under these assumptions an asymptotically efficient GMM estimator is

α̂1 =
(
∆X ′Z Ω̂−1

1 Z ′∆X
)−1 (

∆X ′Z Ω̂−1
1 Z ′∆Y

)
. (17.91)

Estimator (17.91) is known as the one-step Arellano-Bond GMM estimator.
Under the assumption that the error εi t is homoskedastic and serially uncorrelated, a classical co-

variance matrix estimator for α̂1 is

V̂
0
1 =

(
∆X ′Z Ω̂−1

1 Z ′∆X
)−1

σ̂2
ε (17.92)

where σ̂2
ε is the sample variance of the one-step residuals ε̂i =∆Y i−∆X i α̂. A covariance matrix estimator

which is robust to violation of these assumptions is

V̂ 1 =
(
∆X ′Z Ω̂−1

1 Z ′∆X
)−1 (

∆X ′Z Ω̂−1
1 Z ′Ω̂2Z Ω̂−1

1 Z ′∆X
)(
∆X ′Z Ω̂−1

1 Z ′∆X
)−1

(17.93)

where

Ω̂2 =
N∑

i=1
Z ′

i ε̂i ε̂
′
i Z i

is a (scaled) cluster-robust estimator ofΩ using the one-step residuals.
An asymptotically efficient two-step GMM estimator which allows heterskedasticity is

α̂2 =
(
∆X ′Z Ω̂−1

2 Z ′∆X
)−1 (

∆X ′Z Ω̂−1
2 Z ′∆Y

)
. (17.94)

Estimator (17.94) is known as the two-step Arellano-Bond GMM estimator. An appropriate robust co-
variance matrix estimator for α̂2 is

V̂ 2 =
(
∆X ′Z Ω̂−1

2 Z ′∆X
)−1 (

∆X ′Z Ω̂−1
2 Z ′Ω̂3Z Ω̂−1

2 Z ′∆X
)(
∆X ′Z Ω̂−1

2 Z ′∆X
)−1

(17.95)

where

Ω̂3 =
N∑

i=1
Z ′

i ε̂i ε̂
′
i Z i

is a (scaled) cluster-robust estimator ofΩ using the two-step residuals ε̂i =∆Y i −∆X i α̂2. Asymptotically,
V̂ 2 is equivalent to

Ṽ 2 =
(
∆X ′Z Ω̂−1

2 Z ′∆X
)−1

. (17.96)
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The GMM estimator can be iterated until convergence to produce an iterated GMM estimator.
The advantage of the Arellano-Bond estimator over the Anderson-Hsiao estimator is that when T >

p+2 the additional (overidentified) moment conditions reduce the asymptotic variance of the estimator
and stabilize its performance. The disadvantage is that when T is large using the full set of lags as instru-
ments may cause a “many weak instruments” problem. The advised compromise is to limit the number
of lags used as instruments.

The advantage of the one-step Arellano-Bond estimator is that the weight matrix Ω̂1 does not depend
on residuals and is therefore less random than the two-step weight matrix Ω̂2. This can result in better
performance by the one-step estimator in small to moderate samples especially when the errors are
approximately homoskedastic. The advantage of the two-step estimator is that it achieves asymptotic
efficiency allowing for heteroskedasticity and is thus expected to perform better in large samples with
non-homoskedastic errors.

To summarize, the Arellano-Bond estimator applies GMM to the first-differenced equation (17.87)
using a set of available lags Yi ,t−2,Yi ,t−3, ... as instruments for ∆Yi ,t−1, ...,∆Yi ,t−p .

The Arellano-Bond estimator may be obtained in Stata using either the xtabond or xtdpd command.
The default setting is the one-step estimator (17.91) and non-robust standard errors (17.92). For the two-
step estimator and robust standard errors use the twostep vce(robust) options. Reported standard
errors in Stata are based on Windmeijer’s (2005) finite-sample correction to the asymptotic estimator
(17.96). The robust covariance matrix (17.95) nor the iterated GMM estimator are implemented.

17.40 Weak Instruments

Blundell and Bond (1998) pointed out that the Anderson-Hsiao and Arellano-Bond estimators suffer
from weak instruments. This can be seen easiest in the AR(1) model with the Anderson-Hsiao estimator
which uses Yi ,t−2 as an instrument for ∆Yi ,t−1. The reduced form equation for ∆Yi t−1 is

∆Yi ,t−1 = Yi ,t−2γ+ vi t .

The reduced form coefficient γ is defined by projection. Using ∆Yi ,t−1 = (α−1)Yi ,t−2 +ui + εi ,t−1 and
E
[
Yi t−2εi ,t−1

]= 0 we calculate that

γ= E
[
Yi ,t−2∆Yi ,t−1

]
E
[
Y 2

i t−2

] = (α−1)+ E
[
Yi ,t−2ui

]
E
[

Y 2
i ,t−2

] .

Assuming stationarity so that (17.83) holds,

E
[
Yi ,t−2ui

]= E[(
ui

1−α +
∞∑

j=0
α jεi ,t−2− j

)
ui

]
= σ2

u

1−α

and

E
[

Y 2
i ,t−2

]
= E

[(
ui

1−α +
∞∑

j=0
α jεi t−2− j

)2]
= σ2

u

(1−α)2 + σ2
ε(

1−α2
)

where σ2
u = E[

u2
i

]
and σ2

ε = E
[
ε2

i t

]
. Using these expressions and a fair amount of algebra, Blundell and

Bond (1998) found that the reduced form coefficient equals

γ= (α−1)

(
k

k +σ2
u/σ2

ε

)
(17.97)

where k = (1−α)/(1+α).
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The Anderson-Hsiao instrument Yi ,t−2 is weak if γ is close to zero. From (17.97) we see that γ = 0
when either α= 1 (a unit root) or σ2

u/σ2
ε =∞ (the idiosyncratic effect is small relative to the individual-

specific effect). In either case the coefficient α is not identified. We know from our earlier study of the
weak instruments problem (Section 12.36) that when γ is close to zero then α is weakly identified and
the estimators will perform poorly. This means that when the autoregressive coefficient α is large or the
individual-specific effect dominates the idiosyncratic effect these estimators will be weakly identified,
have poor performance, and conventional inference methods will be misleading. Since the value of α
and the relative variances are unknown a priori this means that we should generically treat this class of
estimators as weakly identified.

An alternative estimator which has improved performance is discussed in Section 17.42.

17.41 Dynamic Panels with Predetermined Regressors

The assumption that regressors are strictly exogenous is restrictive. A less restrictive assumption is
that the regressors are predetermined. Dynamic panel methods can be modified to handle predeter-
mined regressors by using their lags as instruments.

Definition 17.2 The regressor Xi t is predetermined for the error εi t if

E
[

Xi ,t−sεi t
]= 0 (17.98)

for all s ≥ 0.

The difference between strictly exogenous and predetermined regressors is that for the former (17.98)
holds for all s not just s ≥ 0. One way of interpreting a regression model with predetermined regressors
is that the model is a projection on the complete past history of the regressors.

Under (17.98), leads of Xi t can be correlated with εi t , that is E [Xi t+sεi t ] 6= 0 for s ≥ 1, or equivalently
Xi t can be correlated with lags of εi j , that is E [Xi tεi t−s] 6= 0 for s ≥ 1. This means that Xi t can respond
dynamically to past values of Yi t , as in, for example, an unrestricted vector autoregression.

Consider the differenced equation (17.87)

∆Yi t =α1∆Yi ,t−1 +α2∆Yi ,t−2 +·· ·+αp∆Yi ,t−p +∆X ′
i tβ+∆εi t .

When the regressors are predetermined but not strictly exogenous Xi t and εi t are uncorrelated but ∆Xi t

and ∆εi t are correlated. To see this,

E [∆Xi t∆εi t ] = E [Xi tεi t ]−E[
Xi ,t−1εi t

]−E[
Xi tεi ,t−1

]+E[
Xi ,t−1εi ,t−1

]
=−E[

Xi tεi ,t−1
] 6= 0.

This means that if we treat ∆Xi t as exogenous the coefficient estimates will be biased.
To solve the correlation problem we can use instruments for ∆Xi t . A valid instrument is Xi ,t−1 since

it is generally correlated with ∆Xi t yet uncorrelated with ∆εi t . Indeed, for any s ≥ 1

E
[

Xi ,t−s∆εi t
]= E[

Xi ,t−sεi t
]−E[

Xi ,t−sεi ,t−1
]= 0.

Consequently, Arellano and Bond (1991) recommend the instrument set (Xi 1, Xi 2, ..., Xi t−1). When the
number of time periods is large it is advised to limit the number of instrument lags to avoid the many
weak instruments problem.
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Algebraically, GMM estimation is the same as the estimators described in Section 17.39, except that
the instrument matrix (17.89) is modified to

Z i =



[
Yi 1, ...,Yi p , X ′

i 1, .., X ′
i ,p+1

]
0 0

0
[

Yi 1, ...,Yi ,p+1, X ′
i 1, .., X ′

i ,p+2

]
0

. . .

0 0
[

Yi 1, ...,Yi ,T−2, X ′
i 1, .., X ′

i ,T−1

]

 .

(17.99)
To understand how the model is identified we examine the reduced form equation for the regressor.

For t = p +2 and using the first lag as an instrument the reduced form is

∆Xi t = γ1Yi ,t−2 +Γ2Xi ,t−1 +ζi t .

The model is identified if Γ2 is full rank. This is valid (in general) when Xi t is stationary. Identification
fails, however, when Xi t has a unit root. This indicates that the model will be weakly identified when the
predetermined regressors are highly persistent.

The method generalizes to handle multiple lags of the predetermined regressors. To see this, write
the model explicitly as

Yi t =α1Yi ,t−1 +·· ·+αp Yi ,t−p +X ′
i tβ1 +·· ·+X ′

i ,t−qβq +ui +εi t .

In first differences the model is

∆Yi t =α1∆Yi ,t−1 +·· ·+αp∆Yi ,t−p +∆X ′
i tβ1 +·· ·+∆X ′

i ,t−qβq +∆εi t .

A sufficient set of instruments for the regressors are (Xi t−1,∆Xi ,t−1, ...,∆Xi ,t−q ) or equivalently (Xi ,t−1, Xi ,t−2, ..., Xi ,t−q−1).
In many cases it is more reasonable to assume that Xi t−1 is predetermined but not Xi t , since Xi t

and εi t may be endogenous. This, for example, is the standard assumption in vector autoregressions. In
this case the estimation method is modified to use the instruments (Xi ,t−2, Xi ,t−3, ..., Xi ,t−q−1). While this
weakens the exogeneity assumption it also weakens the instrument set as now the reduced form uses the
second lag Xi ,t−2 to predict ∆Xi t .

The advantage obtained by treating a regressor as predetermined (rather than strictly exogenous) is
that it is a substantial relaxation of the dynamic assumptions. Otherwise the parameter estimates will be
inconsistent due to endogeneity.

The major disadvantage of treating a regressor as predetermined is that it substantially reduces the
strength of identification especially when the predetermined regressors are highly persistent.

In Stata the xtabond command by default treats independent regressors as strictly exogenous. To
treat the regressors as predetermined use the option pre. By default all regressor lags are used as instru-
ments, but the number can be limited if specified.

17.42 Blundell-Bond Estimator

Arellano and Bover (1995) and Blundell and Bond (1998) introduced a set of orthogonality conditions
which reduce the weak instrument problem discussed in the Section 17.40 and improve performance in
finite samples.

Consider the levels AR(1) model with no regressors (17.82). Recall, least squares (pooled) regres-
sion is inconsistent because the regressor Yi ,t−1 is correlated with the error ui . This raises the question:
Is there an instrument Zi t which solves this problem in the sense that Zi t is correlated with Yi ,t−1 yet
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uncorrelated with ui t + εi t ? Blundell-Bond propose the instrument ∆Yi ,t−1. Clearly, ∆Yi ,t−1 and Yi ,t−1

are correlated so ∆Yi ,t−1 satisfies the relevance condition. Also, ∆Yi ,t−1 is uncorrelated with the idiosyn-
cratic error εi t when the latter is serially uncorrelated. Thus the key to the Blundell-Bond instrument is
whether or not

E [∆Yi t−1ui ] = 0. (17.100)

Blundell and Bond (1998) show that a sufficient condition for (17.100) is

E
[(

Yi 1 − ui

1−α
)

ui

]
= 0. (17.101)

Recall that ui /(1−α) is the conditional mean of Yi t under stationarity. Condition (17.101) states that
the deviation of the initial condition Yi 1 from this conditional mean is uncorrelated with the individual
effect ui . Condition (17.101) is implied by stationarity but is somewhat weaker.

To see that (17.101) implies (17.100), by applying recursion to (17.87) we find that

∆Yi ,t−1 =αt−3∆Yi 2 +
t−3∑
j=0

α j∆εi ,t−1− j .

Also,

∆Yi 2 = (α−1)Yi 1 +ui +εi 2 = (α−1)
(
Yi 1 − ui

1−α
)
+εi 2.

Hence

E
[
∆Yi ,t−1ui

]= E[(
αt−3 (α−1)

(
Yi 1 − ui

1−α
)
+αt−3εi 2 +

t−3∑
j=0

α j∆εi ,t−1− j

)
ui

]

=αt−3 (α−1)E
[(

Yi 1 − ui

1−α
)

ui

]
= 0

under (17.101), as claimed.
Now consider the full model (17.81) with predetermined regressors. Consider the assumption that

the regressors have constant correlation with the individual effect

E [Xi t ui ] = E [Xi sui ]

for all s. This implies
E [∆Xi t ui ] = 0 (17.102)

which means that the differenced predetermined regressors∆Xi t can also be used as instruments for the
level equation.

Using (17.100) and (17.102) Blundell and Bond propose the following moment conditions for GMM
estimation

E
[
∆Yi ,t−1

(
Yi t −α1Yi ,t−1 −·· ·−αp Yi ,t−p −X ′

i tβ
)]= 0 (17.103)

E
[
∆Xi ,t

(
Yi t −α1Yi ,t−1 −·· ·−αp Yi ,t−p −X ′

i tβ
)]= 0 (17.104)

for t = p +2, ...,T . Notice that these are for the levels (undifferenced) equation while the Arellano-Bond
(17.90) moments are for the differenced equation (17.87). We can write (17.103)-(17.104) in vector nota-
tion if we set Z 2i = diag(∆Yi 2, ...,∆Yi T−1,∆Xi 3, ...,∆Xi T ). Then (17.103)-(17.104) equals

E [Z 2i (Y i −X iθ)] = 0. (17.105)
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Blundell and Bond proposed combining the ` Arellano-Bond moments with the levels moments.
This can be done by stacking the moment conditions (17.90) and (17.105). Recall from Section 17.39
the variables ∆Y i , ∆X i , and Z i . Define the stacked variables Y i =

(
∆Y ′

i ,Y ′
i

)′, X i =
(
∆X ′

i , X ′
i

)′ and Z i =
diag(Z i , Z 2i ). The stacked moment conditions are

E
[

Z i

(
Y i −X iθ

)]
= 0.

The Blundell-Bond estimator is found by applying GMM to this equation. They call this a systems
GMM estimator. Let Y , X , and Z denote Y i , X i , and Z i stacked into matrices. Define H = diag(H , I T−2)
where H is from (17.31) and set

Ω̂1 =
N∑

i=1
Z

′
i H Z i .

The Blundell-Bond one-step GMM estimator is

θ̂1 =
(

X
′
Z Ω̂−1

1 Z
′
X

)−1 (
X

′
Z Ω̂−1

1 Z
′
Y

)
. (17.106)

The systems residuals are ε̂i = Y i −X i θ̂1. A robust covariance matrix estimator is

V̂ 1 =
(

X
′
Z Ω̂−1

1 Z
′
X

)−1 (
X

′
Z Ω̂−1

1 Z
′
Ω̂2Z Ω̂−1

1 Z
′
X

)(
X

′
Z Ω̂−1

1 Z
′
X

)−1
(17.107)

where

Ω̂2 =
N∑

i=1
Z

′
i ε̂i ε̂

′
i Z i .

The Blundell-Bond two-step GMM estimator is

θ̂2 =
(

X
′
Z Ω̂−1

2 Z
′
X

)−1 (
X

′
Z Ω̂−1

2 Z
′
Y

)
. (17.108)

The two-step systems residuals are ε̂i = Y i −X i θ̂2. A robust covariance matrix estimator is

V̂ 2 =
(

X
′
Z Ω̂−1

2 Z
′
X

)−1 (
X

′
Z Ω̂−1

2 Z
′
Ω̂3Z Ω̂−1

2 Z
′
X

)(
X

′
Z Ω̂−1

2 Z
′
X

)−1
(17.109)

where

Ω̂3 =
N∑

i=1
Z

′
i ε̂i ε̂

′
i Z i .

Asymptotically, V̂ 2 is equivalent to

Ṽ 2 =
(

X
′
Z Ω̂−1

2 Z
′
X

)−1
. (17.110)

The GMM estimator can be iterated until convergence to produce an iterated GMM estimator.
Simulation experiments reported in Blundell and Bond (1998) indicate that their systems GMM esti-

mator performs substantially better than the Arellano-Bond estimator, especially when α is close to one
or the variance ratioσ2

u/σ2
ε is large. The explanation is that the orthogonality condition (17.103) does not

suffer the weak instrument problem in these cases.
The advantage of the Blundell-Bond estimator is that the added orthogonality condition (17.103)

greatly improves performance relative to the Arellano-Bond estimator when the latter is weakly identi-
fied. A disadvantage of the Blundell-Bond estimator is that their orthogonality condition is justified by a
stationarity condition (17.101) and violation of the latter may induce estimation bias.

The advantages and disadvantages of the one-step versus two-step Blundell-Bond estimators are the
same as described for the Arellano-Bond estimator as described in Section 17.39. Also as described there
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when T is large it may be desired to limit the number of lags to use as instruments in order to avoid the
many weak instruments problem.

The Blundell-Bond estimator may be obtained in Stata using either the xtdpdsys or xtdpd com-
mand. The default setting is the one-step estimator (17.106) and non-robust standard errors. For the
two-step estimator and robust standard errors use the twostep vce(robust) options. Stata standard
errors are Windmeijer’s (2005) finite-sample correction to the asymptotic estimate (17.110). The robust
covariance matrix estimator (17.109) nor the iterated GMM estimator are implemented.

17.43 Forward Orthogonal Transformation

Arellano and Bover (1995) proposed an alternative transformation which eliminates the individual-
specific effect and may have advantages in dynamic panel models. The forward orthogonal transfor-
mation is

Y ∗
i t = ci t

(
Yi t − 1

Ti − t

(
Yi ,t+1 +·· ·+Yi Ti

))
(17.111)

where c2
i t = (Ti − t )/(Ti − t +1). This can be applied to all but the final observation (which is lost). Essen-

tially, Y ∗
i t subtracts from Yi t the average of the remaining values and then rescales so that the variance

is constant under the assumption of homoskedastic errors. The transformation (17.111) was originally
proposed for time-series observations by Hayashi and Sims (1983).

At the level of the individual this can be written as Y ∗
i = Ai Y i where Ai is the (Ti −1)×Ti orthogonal

deviation operator

Ai = diag

(√
Ti −1

Ti
, ...,

√
1

2

)


1 − 1
Ti−1 − 1

Ti−1 · · · − 1
Ti−1 − 1

Ti−1 − 1
Ti−1

0 1 − 1
Ti−2 · · · − 1

Ti−2 − 1
Ti−2 − 1

Ti−2
...

...
...

...
...

...
0 0 0 · · · 1 −1

2 −1
2

0 0
... 0 · · · 0 −1 1

 .

Important properties of the matrix Ai are that Ai 1i = 0 (so it eliminates individual effects), A′
i Ai = M i ,

and Ai A′
i = I Ti−1. These can be verified by direct multiplication.

Applying the transformation Ai to (17.81) we obtain

Y ∗
i t =α1Y ∗

i ,t−1 +·· ·+αp Y ∗
i ,t−p +X ∗′

i t β+ε∗i t . (17.112)

for t = p +1, ...,T −1. This is equivalent to first differencing (17.87) when T = 3 but differs for T > 3.
What is special about the transformed equation (17.112) is that under the assumption that εi t are

serially uncorrelated and homoskedastic the error vector ε∗i has variance σ2
εAi A′

i =σ2
εI Ti−1. This means

that ε∗i has the same covariance structure as εi . Thus the orthogonal transformation operator eliminates
the fixed effect while preserving the covariance structure. This is in contrast to (17.87) which has serially
correlated errors ∆εi t .

The transformed error ε∗i t is a function of εi t ,εi t+1, ...,εi T . Thus valid instruments are Yi t−1,Yi t−2, ....
Using the instrument matrix Z i from (17.89) in the case of strictly exogenous regressors or (17.99) with
predetermined regressors the ` moment conditions can be written using matrix notation as

E
[

Z ′
i

(
Y ∗

i −X ∗
i θ

)]= 0. (17.113)

Define the `×` covariance matrix
Ω= E[

Z ′
iε

∗
i ε

∗′
i Z i

]
.
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If the errors εi t are conditionally homoskedastic then Ω = E[
Z ′

i Z i
]
σ2
ε. Thus an asymptotically efficient

GMM estimator is 2SLS applied to the orthogonalized equation using Z i as an instrument. In matrix
notation,

θ̂1 =
(

X ∗′Z
(

Z ′Z
)−1 Z ′X ∗

)−1
Y ∗

This is the one-step GMM estimator.
Given the residuals ε̂i = Y ∗

i −X ∗
i θ̂1 the two-step GMM estimator which is robust to heteroskedasticity

and arbitrary serial correlation is

θ̂2 =
(

X ∗′Z Ω̂−1
2 Z ′X ∗)−1 (

X ∗′Z Ω̂−1
2 Z ′Y ∗)

where

Ω̂2 =
N∑

i=1
Z ′

i ε̂i ε̂
′
i Z i .

Standard errors for θ̂1 and θ̂2 can be obtained using cluster-robust methods.
Forward orthogonalization may have advantages over first differencing. First, the equation errors in

(17.112) have a scalar covariance structure under i.i.d. idiosyncratic errors which is expected to improve
estimation precision. It also implies that the one-step estimator is 2SLS rather than GMM. Second, while
there has not been a formal analysis of the weak instrument properties of the estimators after forward
orthogonalization it appears that if T > p +2 the method is less affected by weak instruments than first
differencing. The disadvantages of forward orthogonalization are that it treats early observations asym-
metrically from late observations, it is less thoroughly studied than first differencing, and is not available
with several popular estimation methods.

The Stata command xtdpd includes forward orthogonalization as an option but not when levels
(Blundell-Bond) instruments are included or if there are gaps in the data. An alternative is the down-
loadable Stata package xtabond2.

17.44 Empirical Illustration

We illustrate the dynamic panel methods with the investment model (17.3). Estimates from two
models are presented in Table 17.3. Both are estimated by Blundell-Bond two-step GMM with lags 2
through 6 as instruments, a cluster-robust weight matrix, and clustered standard errors.

The first column presents estimates of an AR(2) model. The estimates show that the series has a
moderate amount of positive serial correlation but appears to be well modeled as an AR(1) as the AR(2)
coefficient is close to zero. This pattern of serial correlation is consistent with the presence of investment
projects which span two years.

The second column presents estimates of the dynamic version of the investment regression (17.3)
excluding the trading indicator. Two lags are included of the dependent variable and each regressor. The
regressors are treated as predetermined in contrast to the fixed effects regressions which treated the re-
gressors as strictly exogenous. The regressors are not contemporaneous with the dependent variable but
lagged one and two periods. This is done so that they are valid predetermined variables. Contempora-
neous variables are likely endogenous so should not be treated as predetermined.

The estimates in the second column of Table 17.3 complement the earlier results. The evidence
shows that investment has a moderate degree of serial dependence, is positively related to the first lag of
Q, and is negatively related to lagged debt. Investment appears to be positively related to change in cash
flow, rather than the level. Thus an increase in cash flow in year t −1 leads to investment in year t .
_____________________________________________________________________________________________
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Table 17.3: Estimates of Dynamic Investment Equation

AR(2) AR(2) with Regressors

Ii t−1
0.3191

(0.0172)
0.2519

(0.0220)

Ii t−2
0.0309

(0.0112)
0.0137

(0.0125)

Qi t−1
0.0018

(0.0007)

Qi t−2
−0.0000
(0.0003)

Di t−1
−0.0154
(0.0058)

Di t−2
−0.0043
(0.0054)

C Fi t−1
0.0400

(0.0091)

C Fi t−2
−0.0290
(0.0051)

Two-step GMM estimates. Cluster-robust standard errors in parenthesis.

All regressions include time effects. GMM instruments include lags 2 through 6.

17.45 Exercises

Exercise 17.1

(a) Show (17.11) and (17.12).

(b) Show (17.13).

Exercise 17.2 Is E [εi t | Xi t ] = 0 sufficient for β̂fe to be unbiased for β? Explain why or why not.

Exercise 17.3 Show that var
[

Ẋi t
]≤ var[Xi t ].

Exercise 17.4 Show (17.24).

Exercise 17.5 Show (17.28).

Exercise 17.6 Show that when T = 2 the differenced estimator equals the fixed effects estimator.

Exercise 17.7 In Section 17.14 it is described how to estimate the individual-effect varianceσ2
u using the

between residuals. Develop an alternative estimator of σ2
u only using the fixed effects error variance σ̂2

ε

and the levels error variance σ̂2
e = n−1 ∑N

i=1

∑
t∈Si

ê2
i t where êi t = Yi t −X ′

i t β̂fe are computed from the levels
variables.

Exercise 17.8 Verify that σ̂2
ε defined in (17.37) is unbiased for σ2

ε under (17.18), (17.25) and (17.26).
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Exercise 17.9 Develop a version of Theorem 17.2 for the differenced estimator β̂∆. Can you weaken
Assumption 17.2.3? State an appropriate version which is sufficient for asymptotic normality.

Exercise 17.10 Show (17.57).

Exercise 17.11

(a) For σ̂2
i defined in (17.59) show E

[
σ̂2

i | X i
]=σ2

i .

(b) For Ṽ fe defined in (17.58) show E
[
Ṽ fe | X

]=V fe.

Exercise 17.12

(a) Show (17.61).

(b) Show (17.62).

(c) For Ṽ fe defined in (17.60) show E
[
Ṽ fe | X

]=V fe.

Exercise 17.13 Take the fixed effects model Yi t = Xi tβ1 + X 2
i tβ2 +ui + εi t . A researcher estimates the

model by first obtaining the within transformed Ẏi t and Ẋi t and then regressing Ẏi t on Ẋi t and Ẋ 2
i t . Is

the correct estimation method? If not, describe the correct fixed effects estimator.

Exercise 17.14 In Section 17.33 verify that in the just-identified case the 2SLS estimator β̂2sls simplifies
as claimed: β̂1 and β̂2 are the fixed effects estimator. γ̂1 and γ̂2 equal the 2SLS estimator from a regression
of û on Z 1 and Z 2 using X 1 as an instrument for Z 2.

Exercise 17.15 In this exercise you will replicate and extend the empirical work reported in Arellano and
Bond (1991) and Blundell and Bond (1998). Arellano-Bond gathered a dataset of 1031 observations from
an unbalanced panel of 140 U.K. companies for 1976-1984 and is in the datafile AB1991 on the textbook
webpage. The variables we will be using are log employment (N), log real wages (W ), and log capital (K ).
See the description file for definitions.

(a) Estimate the panel AR(1) Ki t =αKi t−1+ui +vt +εi t using Arellano-Bond one-step GMM with clus-
tered standard errors. Note that the model includes year fixed effects.

(b) Re-estimate using Blundell-Bond one-step GMM with clustered standard errors.

(c) Explain the difference in the estimates.

Exercise 17.16 This exercise uses the same dataset as the previous question. Blundell and Bond (1998)
estimated a dynamic panel regression of log employment N on log real wages W and log capital K. The
following specification1 used the Arellano-Bond one-step estimator, treating Wi ,t−1 and Ki ,t−1 as prede-
termined.

Ni t = .7075
(.0842)

Ni ,t−1 − .7088
(.1171)

Wi t + .5000
(.1113)

Wi ,t−1 + .4660
(.1010)

Ki t − .2151
(.0859)

Ki ,t−1. (17.114)

This equation also included year dummies and the standard errors are clustered.

1Blundell and Bond (1998), Table 4, column 3.
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(a) Estimate (17.114) using the Arellano-Bond one-step estimator treating Wi t and Ki t as strictly ex-
ogenous.

(b) Estimate (17.114) treating Wi ,t−1 and Ki ,t−1 as predetermind to verify the results in (17.114). What
is the difference between the estimates treating the regressors as strictly exogenous versus prede-
termined?

(c) Estimate the equation using the Blundell-Bond one-step systems GMM estimator.

(d) Interpret the coefficient estimates viewing (17.114) as a firm-level labor demand equation.

(e) Describe the impact on the standard errors of the Blundell-Bond estimates in part (c) if you forget
to use clustering. (You do not have to list all the standard errors, but describe the magnitude of the
impact.)

Exercise 17.17 Use the datafile Invest1993 on the textbook webpage. You will be estimating the panel
AR(1) Di t =αDi ,t−1 +ui +εi t for D =debt/assets (this is debta in the datafile). See the description file for
definitions.

(a) Estimate the model using Arellano-Bond twostep GMM with clustered standard errors.

(b) Re-estimate using Blundell-Bond twostep GMM.

(c) Experiment with your results, trying twostep versus onestep, AR(1) versus AR(2), number of lags
used as instruments, and classical versus robust standard errors. What makes the most difference
for the coefficient estimates? For the standard errors?

Exercise 17.18 Use the datafile Invest1993 on the textbook webpage. You will be estimating the model

Di t =αDi ,t−1 +β1Ii ,t−1 +β2Qi ,t−1 +β3C Fi ,t−1 +ui +εi t .

The variables are debta, inva, vala, and cfa in the datafile. See the description file for definitions.

(a) Estimate the above regression using Arellano-Bond two-step GMM with clustered standard errors
treating all regressors as predetermined.

(b) Re-estimate using Blundell-Bond two-step GMM treating all regressors as predetermined.

(c) Experiment with your results, trying two-step versus one-step, number of lags used as instruments,
and classical versus robust standard errors. What makes the most difference for the coefficient
estimates? For the standard errors?



Chapter 18

Difference in Differences

18.1 Introduction

One of the most popular ways to estimate the effect of a policy change is the method of difference
in differences, often called “diff in diffs”. Estimation is typically a two-way panel data regression with a
policy indicator as a regressor. Clustered variance estimation is generally recommended for inference.

In order to intrepret a difference in difference estimate as a policy effect there are three key condi-
tions. First, that the estimated regression is the correct conditional mean. In particular, this requires that
all trends and interactions are properly included. Second, that the policy is exogenous – it satisfies con-
ditional independence. Third, there are no other relevant unincluded factors coincident with the policy
change. If these assumptions are satisfied the difference in difference estimand is a valid causal effect.

18.2 Minimum Wage in New Jersey

The most well-known application of the difference in difference methodology is Card and Krueger
(1994) who investigated the impact of New Jersey’s 1992 increase of the minimum hourly wage from
$4.25 to $5.05. Classical economics teaches that an increase in the minimum wage will lead to decreases
in employment and increases in prices. To investigate the magnitude of this impact the authors surveyed
a panel of 331 fast food restaurants in New Jersey during the period 2/15/1992-3/4/1992 (before the en-
actment of the minimum wage increase) and then again during the period 11/5/1992-12/31/1992 (after
the enactment). Fast food restaurants were selected for investigation as they are a major employer of
minimum wage employees. Before the change about 30% of the sampled workers were paid the mini-
mum wage of $4.25.

Table 18.1: Average Employment at Fast Food Restaurants

New Jersey Pennsylvania Difference
Before Increase 20.43 23.38 2.95
After Increase 20.90 21.10 0.20
Difference 0.47 −2.28 2.75

The data file CK1994 is extracted from the original Card-Krueger data set and is posted on the text-
book webpage.

650
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Table 18.1 (first column) displays the mean number1 of full-time equivalent employees2 at New Jer-
sey fast food restaurants before and after the minimum wage increase. Before the increase the average
number of employees was 20.4. After the increase the average number of employees was 20.9. Contrary
to the predictions of conventional theory employment slightly increased (by 0.5 employees per restau-
rant) rather than decreased.

This estimate – the change in employment – could be called a difference estimator. It is the change
in employment coincident with the change in policy. A difficulty in interpretation is that all employment
change is attributed to the policy. It does not provide direct evidence of the counterfactual – what would
have happened if the minimum wage had not been increased.

A difference in difference estimator improves on a difference estimator by comparing the change in
the treatment sample with a comparable change in a control sample.

Card and Krueger selected eastern Pennsylvania for their control sample. The minimum wage was
constant at $4.25 an hour in the state of Pennsylvania during 1992. At the beginning of the year starting
wages at fast food restaurants in the two states were similar. The two areas (New Jersey and eastern
Pennsylvania) share further similarities. Any trends or economic shocks which affect one state are likely
to affect both. Therefore Card and Krueger argued that it is appropriate to treat eastern Pennsylvania as
a control. This means that in the absence of a minimum wage increase they expected the same changes
in employment to occur in both New Jersey and eastern Pennsylvania.

Card and Krueger surveyed a panel of 79 fast food restaurants in eastern Pennsylvania simultane-
ously while surveying the New Jersey restaurants. The average number of full-time equivalent employ-
ees is displayed in the second column of Table 18.1. Before the policy change the average number of
employees was 23.4. After the policy change the average number was 21.1. Thus in Pennsylvania average
employment decreased by 2.3 employees per restaurant.

Treating Pennsylvania as a control means comparing the change in New Jersey (0.5) with that in
Pennsylvnia (−2.3). The difference (2.75 employees per restaurant) is the difference-in-difference esti-
mate of the impact of the minimum wage increase. In complete contradiction to conventional economic
theory the estimate indicates an increase in employment rather than a decrease. This surprising estimate
has been widely discussed among economists3 and the popular press.

It is constructive to re-write the estimates from Table 18.1 in regression format. Let Yi t denote em-
ployment at restaurant i surveyed at time t . Let Statei be a dummy variable indicating the state, with
Statei = 1 for New Jersey and Statei = 0 for Pennsylvania. Let Timet be a dummy variable indicating
the time period, with Timet = 0 for the period before the policy change and Timet = 1 for the period
after the policy change. Let Di t denote a treatment dummy, with Di t = 1 if the minimum wage equals
$5.05 and Di t = 0 if the minimum wage equals $4.25. In this application it equals the interaction dummy
Di t =Statei Timet .

Table 18.1 is a saturated regression in the two dummy variables and can therefore be written as the
regression equation

Yi t =β0 +β1Statei +β2Timet +θDi t +εi t . (18.1)

Indeed the coefficients can be written in terms of Table 18.1 by the following correspondence:

1Our calculations drop restaurants if they were missing the number of full-type equivalent employees in either survey.
2Following Card and Krueger full-time equivalent employees is defined as the sum of the number of full-time employees,

managers, and assistant managers, plus one-half of the number of part-time employees.
3Most economists do not take the estimate literally – they do not believe that increasing the minimum wage will cause

employment increases. Instead it has been interpreted as evidence that small changes in the minimum wage may have only
minor impacts on employment levels.
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New Jersey Pennsylvania Difference
Before Increase β0 +β1 β0 β1

After Increase β0 +β1 +β2 +θ β0 +β2 β1 +θ
Difference β2 +θ β2 θ

We see that the coefficients in the regression (18.1) correspond to interpretable difference and differ-
ence in difference estimands. β1 is the difference estimand of the effect of “New Jersey vs. Pennsylvania”
in the period before the policy change. β2 is the difference estimand of the time effect in the control
state. θ is the difference in difference estimand – the change in New Jersey relative to the change in
Pennsylvania.

Our estimate of the regression (18.1) is

Yi t = 23.4
(1.4)

− 2.9
(1.5)

Statei − 2.3
(1.2)

Timet + 2.75
(1.34)

Di t +εi t . (18.2)

The standard errors are clustered by restaurant. As expected the coefficient θ̂ on the treatment dummy
precisely equals the difference in difference estimate from Table 18.1. The coefficient estimates can be
interpreted as described. The pre-change difference between New Jersey and Pennsylvania is −2.9 and
the time effect is −2.3. The difference in difference effect is 2.75. The t-statistic to test the hypothesis of
zero effect is just above 2 with an asymptotic p-value of 0.04.

Since the observations are divided into the groups Statei = 0 and Statei = 1 and Timet is equivalent
to a time index this regression is identical to a two-way fixed effects regression of Yi t on Di t with state
and time fixed effects. Furthermore, since the regressor Di t does not vary across individuals within the
state this fixed effects regression is unchanged if restaurant-level fixed effects are included instead of
state fixed effects. (Restaurant fixed effects are orthogonal to any variable demeaned at the state level.
See Exercise 18.1.) Thus the above regression is identical to the two-way fixed effects regression

Yi t = θDi t +ui + vt +εi t (18.3)

where ui is a restaurant fixed effect and vt is a time fixed effect. The simplest method to implement this
is by a one-way fixed effects regression with time dummies. The estimates are

Yi t = 2.75
(1.34)

Di t − 2.3
(1.2)

Timet +ui +εi t (18.4)

which are identical to the previous regression.
Equation (18.3) is the basic difference-in-difference model. It is a two-way fixed effects regression of

the response Yi t on a binary policy Di t . The coefficient θ corresponds to the double difference in sample
means and can be interpreted as the policy impact (also called the treatment effect) of D on Y . (We
discuss identification in the next section.) Our presentation (and the Card-Krueger example) focuses on
the basic case of two aggregate units (states) and two time periods. The regression formulation (18.3) is
convenient as it can be easily generalized to allow for multiple states and time periods. Doing so provides
more convincing evidence of an identified policy effect. The equation (18.3) can also be generalized by
changing the trend specification and by using a continuous treatment variable.

Another common generalization is to augment the regression with controls Xi t . This model is

Yi t = θDi t +X ′
i tβ+ui + vt +εi t (18.5)



CHAPTER 18. DIFFERENCE IN DIFFERENCES 653

Many empirical studies report estimates both of the basic model and regressions with controls. For
example we could augment the Card-Krueger regression to include the variable hoursopen, the number
of hours a day the restaurant is open. A restaurant with longer hours will tend to have more employees.

Yi t = 2.84
(1.31)

Di t − 2.2
(1.2)

Timet + 1.2
(0.4)

hoursopeni t +ui +εi t .

The estimated effect is that a restaurant employs an additional 1.2 employees for each hour open and
this effect is statistically significant. The estimated treatment effect is not meaningfully changed.

18.3 Identification

Consider the difference-in-difference equation (18.5) for i = 1, ..., N and t = 1, ...,T . We are interested
in conditions under which the coefficient θ is the causal impact of the treatment Di t on the outcome Yi t .
The answer can be found by applying Theorem 2.12 from Section 2.30.

In Section 2.30 we introduced the potential outcomes framework which writes the outcome as a
function of the treatment, controls, and unobservables. The outcome (e.g. employment at a restaurant)
is written as Y = h(D, X ,e) where D is treatment (minimum wage policy), X are controls, and e is a vector
of unobserved factors. Model (18.5) specifies that h(D, X ,e) is separable and linear in its arguments and
that the unobservables consist of individual-specific, time-specific, and idiosyncratic effects.

We now present sufficient conditions under which the coefficient θ can be interpreted as a causal
effect. Recall the two-way within transformation (17.65) and set Z̈i t =

(
D̈i t , Ẍ ′

i t

)′
.

Theorem 18.1 Suppose the following conditions hold:

1. Yi t = θDi t +X ′
i tβ+ui + vt +εi t .

2. E
[

Z̈i t Z̈ ′
i t

]> 0.

3. E [Xi tεi s] = 0 for all t and s.

4. Conditional on Xi 1, Xi 2, ..., Xi T the random variables Di t and εi s are sta-
tistically independent for all t and s.

Then the coefficient θ in (18.5) equals the average causal effect for D on Y con-
ditional on X .

Condition 1 states that the outcome equals the specified linear regression model which is additively
separable in the observables, individual effect, and time effect.

Condition 2 states that the two-way within transformed regressors have a non-singular design matrix.
This requires that all elements of Di t and Xi t vary across time and individuals.

Condition 3 is the standard exogeneity asumption for regressors in a fixed-effects model.
Condition 4 states that the treatment variable is conditionally independent of the idiosyncratic error.

This is the conditional independence assumption for fixed effects regression.
To show Theorem 18.1 apply the two-way within transformation (17.65) to (18.5). We obtain

Ÿi t = θD̈i t + Ẍ ′
i tβ+ ε̈i t .
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Under Condition 2 the projection coefficients (θ,β) are uniquely defined and under Conditions 3 and 4
they equal the linear regression coefficients. Thus θ is the regression derivative with respect to D . Con-
dition 4 implies that conditional on Ẍi t the random variables D̈i t and ε̈i s are statistically independent.
Theorem 2.12 shows that the regression derivative θ equals the average causal effect as stated.

The assumption that D and ε are independent is the fundamental exogeneity assumption. To in-
trepret θ as a treatment effect it is important that D is defined as the treatment and not simply as an
interaction (time and state) dummy. This is subtle. Examine equation (18.5) recalling that D is defined
as the treatment (an increase in the minimum wage). In this equation the error εi t contains all variables
and effects not included in the regression. Thus if there are other changes in New Jersey which are coin-
cident with the minimum wage increase the assumption that D and ε are independent means that those
coincident changes are independent of ε and thus do not affect employment. This is a strong assump-
tion. Once again, Condition 4 states that all other effects which are coincident with the minimum wage
increase have no effect on employment. Without this assumption it would not be possible to claim that
the diff-in-diff regression identifies the causal effect of the treatment.

Furthermore, independence of Di t and εi s means that neither can be affected by the other. This
means that the policy (treatment) was not enacted in response to knowledge about the response vari-
able in either period and it means that the outcome (employment) did not change in the first period in
anticipation of the upcoming policy change.

It is difficult to know if the exogeneity of D is a reasonable assumption. It is similar to instrument exo-
geneity in instrumental variable regression. Its validity hinges on a well-articulated structural argument.
An empirical investigation based on a difference-in-difference specification needs to make an explicit
case for exogeneity of D similar to that for IV regression.

In the case of the Card-Krueger application the authors argue that the policy was exogeneous because
it was adopted two years before taking effect. At the time of the passage of the legislation the economy
was in an expansion but by the time of adoption the economy has slipped into recession. This suggests
that it is credible to assume that the policy decision in 1990 was not affected by employment levels in
1992. Furthermore, concern about the impact of the increased minimum wage during a recession led
to a serious discussion about reversing the policy, meaning that there was uncertainty about whether
or not the policy would actually be enacted at the time of the first survey. It thus seems credible that
employment decisions at that time were not determined in anticipation of the upcoming minimum wage
increase.

The authors do not discuss, however, whether or not there were other coincident events in the New
Jersey or Pennsylvania economies during 1992 which could have affected employment differentially in
the two states. It seems plausible that there could have been many such coincident events. This seems
to be the greatest weakness in their identification argument.

Identification (the conditions for Theorem 18.1) also requires that the regression model is correctly
specified. This means that the true model is linear in the specified variables and all interactions are
included. Since the basic 2 × 2 specification is a saturated dummy variable model it is necessarily a
conditional mean and thus correctly specified. This is not the case in applications with more than two
states or time periods and thus model specification needs to be carefully considered in such cases.

18.4 Multiple Units

The basic difference-in-difference model has two aggregate units (e.g. states) and two time peri-
ods. Additional information can be obtained if there are multiple units or multiple time periods. In this
section we focus on the case of multiple units. There can be multiple treatment units, multiple control
units, or both. In this section we suppose that the number of periods is T = 2. Let N1 ≥ 1 be the number
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of untreated (control) units, and N2 ≥ 1 be the number of treated units, with N = N1 +N2.
The basic regression model

Yi t = θDi t +ui + vt +εi t

imposes two strong restrictions. First, that all units are equally affected by time as vt is common across
i . Second, that the treatment effect θ is common across all treated units.

The Card-Krueger data set only contains observations from two states but the authors did record
additional variables including the region of the state. They divided New Jersey into three regions (North,
Central, and South) and eastern Pennsylvania into two regions (1 for northeast Philadelphia suburbs and
2 for the remainder).

Table 18.2 displays the mean number of full-time equivalent employees by region, before and after
the minimum wage increase. We observe that two of the three New Jersey regions had nearly identical
increases in employment and all three changes are small. We can also observe that both of the Pennsyl-
vania regions had employment decreases though with different magnitudes.

We can test the assumption of equal treatment effect θ by a regression exclusion test. This can be
done by adding interaction dummies to the regression and testing for the exclusion of the interactions.
As there are three treated regions in New Jersey we include two of the three New Jersey region dummies
interacted with the time index. In general we would include N2 −1 such interactions. These coefficients
measure the treatment effect difference across regions. Testing that these two coefficients are zero we
obtain a p-value of 0.60 which is far from significant. Thus we accept the hypothesis that the treatment
effect θ is common across the New Jersey regions.

In contrast, when the treatment effect θ varies we call this a heterogeneous treatment effect. It is
not a violation of the treatment effect framework but it can be considerably more complicated to ana-
lyze. (A model which incorrectly imposes a homogeneous treatment effect is misspecified and produces
inconsistent estimates.)

A more serious problem arises if the control effect is heterogeneous. The control effect is the change
in the control group. Table 18.2 breaks down the estimated control effect across the two Pennsylvania
regions. While both estimates are negative they are somewhat different from one another. If the effects
are distinct there is not a homogeneous control effect. We can test the assumption of equal control effects
by a regression exclusion test. As there are two Pennsylvania regions we include the interaction of one
of the Pennsylvania regions with the time index. (In general we would include N1 −1 interactions.) This
coefficient measures the difference in the control effect across the regions. We test that this coefficient is
zero obtaining a t-statistic of 1.2 and a p-value of 0.23. It is not statistically significant, meaning that we
cannot reject the hypothesis that the control effect is homogeneous.

In contrast, if the control effect were heterogeneous then the difference-in-difference estimation
strategy is misspecified. The method relies on the ability to identify a credible control sample. Therefore
if a test for equal control effects rejects the hypothesis of homogeneous control effects this should be
taken as evidence against interpretation of the difference-in-difference parameter as a treatment effect.

Table 18.2: Average Employment at Fast Food Restaurants

South NJ Central NJ North NJ PA 1 PA 2
Before Increase 16.6 22.0 22.0 24.8 22.2
After Increase 17.3 21.4 22.7 21.0 21.2
Difference 0.7 −0.6 0.7 −3.8 −1.0
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18.5 Do Police Reduce Crime?

DiTella and Schargrodsky (2004) use a difference-in-difference approach to study the question of
whether the street presence of police officers reduces car theft. Rational crime models predict that the
the presence of an observable police force will reduce crime rates (at least locally) due to deterrence. The
causal effect is difficult to measure, however, as police forces are not allocated exogenously, but rather
are allocated in anticipation of need. A difference-in-difference estimator requires an exogenous event
which changes police allocations. The innovation in DiTella-Schargrodsky was to use the police response
to a terrorist attack as exogenous variation.

In July 1994 there was a horrific terrorist attack on the main Jewish center in Buenos Aires, Argentina.
Within two weeks the federal government provided police protection to all Jewish and Muslim buildings
in the country. DiTella and Schargrodsky (2004) hypothesized that their presence, while allocated to
deter a terror or reprisal attack, would also deter other street crimes such as automobile theft locally to
the deployed police. The authors collected detailed information on car thefts in selected neighborhoods
of Buenos Aires for April-December 1994, resulting in a panel for 876 city blocks. They hypothesized
that the terrorist attack and the government’s response were exogenous to auto thievery and is thus a
valid treatment. They postulated that the deterrence effect would be strongest for any city block which
contained a Jewish institution (and thus police protection). Potential car thiefs would be deterred from a
burglary due to the threat of being caught. The deterrence effect was expected to weaken as the distance
from the protected sites increased. The authors therefore proposed a difference-in-difference estimator
based on the average number of car thefts per block, before and after the terrorist attack, and between
city blocks with and without a Jewish institution. Their sample has 37 blocks with Jewish institutions (the
treatment sample) and 839 blocks without an institution (the control sample).

The data file DS2004 is a slightly revised version of the author’s AER replication file and is posted on
the textbook webpage.

Table 18.3: Number of Car Thefts by City Block

Same Block Not on Same Block Difference
April-June 0.112 0.095 −0.017
August-December 0.035 0.105 0.070
Difference −0.077 0.010 −0.087

Table 18.3 displays the average number of car thefts per block, separately for the months before the
July attack and the months after the July attack, and separately for city blocks which have a Jewish insti-
tution (and therefore received police protection starting in late July) and for other city blocks. We can see
that the average number of car thefts dramatically decreased in the protected city blocks, from 0.112 per
month to 0.035, while the average number in non-protected blocks was near-constant, rising from 0.095
to 0.105. Taking the difference in difference we find that the effect of police presence decreased car thefts
by 0.087, which is about 78%.

A general way to estimate a diff-in-diff model is a regression of the form (18.3) where Yi t is the num-
ber of car thefts on block i during month t , and ui and vt are block and month fixed effects. This regres-
sion4 yields the same estimate of 0.087 since the panel is balanced and there are no control variables.

The model (18.3) makes the strong assumption that the treatment effect is constant across the five
treated months. We investigate this assumption in Table 18.4 which breaks down the car thefts by month.
For the control sample the number of car thefts is near constant across the months. For seven of the eight

4We omit the observations for July as the car theft data is only for the first half of the month.



CHAPTER 18. DIFFERENCE IN DIFFERENCES 657

Table 18.4: Number of Car Thefts by City Block

Same Block Not on Same Block Difference
Pre-Attack April 0.112 0.110 −0.012

May 0.088 0.100 0.012
June 0.128 0.076 −0.052

Post-Attack August 0.047 0.111 0.064
September 0.014 0.099 0.085
October 0.061 0.108 0.047
November 0.027 0.100 0.073
December 0.027 0.106 0.079

months the average number per block ranges from 0.10 to 0.11, with only one month (June) a bit lower
at 0.08. In the treatment sample the average number of thefts per block in the three months before the
terrorist atack are similar to the averages in the control sample. But in the five months following the
attack the number of car thefts is uniformly reduced. The averages range from 0.014 to 0.061. In each
month after the attack the control sample has lower thefts with averages ranging from 0.047 to 0.085.
Given the small sample size (37) of the treatment sample this is strikingly uniform evidence.

We can formally test the homogeneity of the treatment effect by including four dummy variables for
the interactions of four post-attack months with the treatment sample and then testing the exclusion of
these variables. The p-value for this test is 0.81, exceedingly far from significant. Thus there is no reason
in the data to be suspicious of the homogeneity assumption.

The goal was to estimate the causal effect of police presence as a deterrence for crime. Let us evaluate
the case for identification. It seems reasonable to treat the terrorist attack as exogenous. The government
response also appears exogenous. Neither is reasonably related to the auto theft rate. We also observe
that the evidence in Tables 18.3 and 18.4 indicates that theft rates were similar in the pre-attack treatment
and control samples. Thus the additional police protection seems credibly provided for the purpose of
attack prevention rather than as an excuse for crime prevention. The general homogeneity of the theft
rate across months, once allowing for the treatment effect, gives credibility to the claim that the police
response was a causal effect. The terror attack itself did not reduce car theft rates as there seems to be no
measurable effect outside of the treatment sample. Finally, while the paper does not explicitly address
whether or not there was any other coincident event in July 1994 which may have effected these specific
city blocks it is difficult to conceive of an alternative explanation for such a large effect. Our conclusion
is that this is a strong identification argument. Police presence greatly reduces the incidence of car theft.

The authors asserted the inference that police presence deters crime more broadly. This is a tenuous
extension as the paper does not provide direct evidence of this claim. While it may seem reasonable we
should be cautious about making generalizations without supporting evidence.

Overall, DiTella and Schargrodsky (2004) is an excellent example of a well-articulated and credibly
identified difference-in-difference estimate of an important policy effect.

18.6 Trend Specification

Some applications (including the two introduced earlier in this chapter) apply to a short period of
time such as one year in which case we may not expect the variables to be trended. Other applications
cover many years or decades in which case the variables are likely to be trended. These trend can reflect
long-term growth, business cycle effects, changing tastes, or many other features. If trends are incor-
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rectly specified then the model will be misspecified and the estimated policy effect will be inconsistent
due to omitted variable bias. Consider the difference-in-difference equation (18.5). This model imposes
the strong assumption that the trends in Yi t are entirely explained by the included controls Xi t and the
common unobserved time component vt . This can be quite restrictive. It is reasonable to expect that
trends may differ across units and are not fully captured by observed controls.

One way to think about this is in terms of overidentification. For simplicity suppose there are no
controls and the panel is balanced. Then there are N T observations. The two-way model with a policy
effect has N +T coefficients. Unless N = T = 2 this model is overidentified. In addition to considering
heterogeneous treatment effects it is reasonable to consider heterogeneous trends.

One generalization is to include interactions of a linear trend with a control variable. This model is

Yi t = θDi t +X ′
i tβ+Z ′

iδt +ui + vt +εi t .

It specifies that the trend in Yi t differs across units depending on the controls Zi .
A broader generalization is to include unit-specific linear time trends. This model is

Yi t = θDi t +X ′
i tβ+ui + vt + t wi +εi t . (18.6)

In this model wi is a time trend fixed effect which varies across units. If there are no controls this model
has 2N +T coefficients and is identified as long as T ≥ 4.

Estimation of model (18.6) can be done one of three ways. If N is small (for example, applications
with state-level data) the regression can be estimated using the explicit dummy variable approach. Let
di and St be dummy variables indicating the i th unit and t th time period. Set di t = di t , the interaction
of the individual dummy with the time trend. The equation is estimated by regression of Yi t on Di t , Xi t ,
di , St , and di t . Equivalently, one can apply one-way fixed effects with regressors Di t , Xi t , St , and di t .

When N is large a computationally more efficient approach is to use residual regression. For each
unit i , estimate a time trend model for each variable Yi t , Di t , Xi t and St . That is, for each i estimate

Yi t = α̂0 + α̂1t + Ẏi t .

This is a generalized within transformation. The residuals Ẏi t are used in place of the original observa-
tions. Regress Ẏi t on Ḋi t , Ẋi t , and Ṡt to obtain the estimates of (18.6).

The relevance of the trend fixed effects vt can be assessed by a significance test. Specifically, the
hypothesis that the coefficients on the period dummies are zero can be tested using a standard exclusion
test. Similarly, trend interaction terms can be tested for significance using standard exclusion tests. If
the tests are statistically significant this indicates that their inclusion is relevant for correct specification.
Unfortunately, the unit-specific linear time trends cannot be tested for significance when the covariance
matrix is clustered at the unit level. This is similar to the problem of testing the significance of a dummy
variable with a single observation. The unit-specific time trends can only be tested for significance if the
covariance matrix is clustered at a finer level. Otherwise the covariance matrix estimate is singular and
biased downwards. Naïve tests will over-state significance.

18.7 Do Blue Laws Affect Liquor Sales?

Historically many U.S. states prohibited or limited the sale of alcoholic beverages on Sundays. These
laws are known as “blue laws”. In recent years these laws have been relaxed. Have these changes led
to increased consumption of alcoholic beverages? Bernheim, Meer and Novarro (2016) investigated this
question using a detailed panel on alcohol consumption and sales hours. It is possible that observed
changes coincident with changes in the law might reflect underlying trends. The fact that different states
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changed their laws during different years allows for a difference-in-difference methodology to identify
the treatment effect.

The paper focuses on distilled liquor sales though wine and beer sales are also included in their data.
An abridged version of their data set BMN2016 is posted on the textbook webpage. Liquor is measured
in per capita gallons of pure ethanol equivalent. The data are state-level for 47 U.S. states for the years
1970-2007, unbalanced.

The authors carefully gathered information on the allowable hours that alcohol can be sold on a Sun-
day. They make a distinction between off-premise sales (liquor stores, supermarkets) where consump-
tion is off-premise, and on-premise sales (restaurants, bars) where consumption is on-premise. Let Yi t

denote the natural logarithm of per-capita liquor sales in state i in year t . A simplified version of their
basic model is

Yi t = 0.011
(0.003)

OnHoursi t + 0.003
(0.003)

OffHoursi t − 0.013
(0.004)

URi t (18.7)

+ 0.029
(0.008)

OnOutFlowsi t − 0.000
(0.010)

OffOutFlowsi t +ui + vt +εi t .

OnHours and OffHours are the number of allowable Sunday on-premises and off-premises sale hours.
UR is the state unemploment rate. OnOutFlows (OffOutFlows) is the weighted number of on(off)-premises
sale hours less than neighbor states. These are added to adjust for possible cross-border transactions.
The model includes both state and year fixed effects. The standard errors are clustered by state.

The estimates indicate that increased on-premise sale hours lead to a small increase in liquor sales.
This is consistent with alcohol being a complementary good in social (restaurant and bar) settings. The
small and insignificant coefficient on OffHours indicates that increased off-premise sale hours does not
lead to an increase in liquor sales. This is consistent with rational consumers who adjust their purchases
to known hours. The negative effect of the unemployment rate means that liquor sales are pro-cyclical.

The authors were concerned whether their dynamic and trend specifications were correctly speci-
fied so tried some alternative specifications and interactions. To understand the trend issue we plot in
Figure 18.1 the time-series path of the log of per-capita liquor sales for three states: California, Iowa, and
New York. You can see that all three exhibit a downward trend from 1970 until about 1995 and then an
increasing trend. The slopes of the three trends, however, are not identical. This suggests that there is
both a national common component as well as a localized component.

If we augment the basic model to include state-specific linear trends the estimates are as follows.

Yi t = 0.000
(0.002)

OnHoursi t + 0.002
(0.002)

OffHoursi t − 0.015
(0.004)

URi t (18.8)

+ 0.005
(0.005)

OnOutFlowsi t − 0.005
(0.005)

OffOutFlowsi t + t wi +ui + vt +εi t .

The estimated coefficient for OnHours drops to zero and becomes insignificant. The other estimates do
not change meaningfully. The authors only discuss this regression in a footnote stating that adding state-
specific trends “demands a great deal from the data and leaves too little variation to identify the effects
of interest.” This is an unfortunate claim as actually the standard errors have decreased, not increased,
indicating that the effects are better identified. The trouble is that OnHours and OffHours are trended and
the trends vary by state. This means that these variables are correlated with the state-trend interaction.
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Figure 18.1: Log of Per-Capita Liquor Sales

Omitting the trend interaction induced omitted variable bias. That explains why the coefficient estimates
change when the trend specification changes.

Bernheim, Meer and Novarro (2016) is an excellent example of meticulous empirical work with care-
ful attention to detail and isolating a treatment strategy. It is also a good example of how attention to
trend specification can affect results.

18.8 Check Your Code: Does Abortion Impact Crime?

In a highly-discussed paper, Donohue and Levitt (2001) used a difference-in-difference approach
to develop an unusual theory. Crime rates fell dramatically throughout the United States in the 1990s.
Donohue and Levitt postulated that one contributing explanation was the landmark 1973 legalization
of abortion. The latter might affect the crime rate through two potential channels. First, it reduced the
cohort size of young males. Second, it reduced the cohort size of young males at risk for criminal behav-
ior. This suggests the substantial increase in abortions in the early 1970s will translate into a substantial
reduction in crime 20 years later.

As you might imagine this paper was controversial on several dimensions. The paper was also metic-
ulous in its empirical analysis, investigating the potential links using a variety of tools and differing levels
of granularity. The most detailed-oriented regressions were presented at the very end of the paper where
the authors exploited differences across age groups. These regressions took the form

log(Arrestsi tb) =βAbortioni b +ui +λtb +θi t +εi tb

where i , t , and b index state, year, and birth cohort. Arrests is the raw number of arrests for a given crime
and Abortion is the ratio of abortions per live births. The regression includes state fixed effects, cohort-
year interactions, and state-year interactions. By including all these interaction effects the regression is
estimating a triple-difference, and is identifying the abortion impact on within-state cross-cohort varia-
tion, which is a much stronger identification argument than a simple cross-state diff-in-diff regression.
Donohue and Levitt reported an estimate of β equalling −0.028 with a small standard error. Based on
these estimates Donohue and Levitt suggest that legalizing abortion reduced crime by about 15-25%.

Unfortunately, their estimates contained an error. In an attempt to replicate Donohue-Levitt’s work
Foote and Goetz (2008) discovered that Donohue-Levitt’s computer code inadvertently omitted the state-
year interactions θi t . This was an important omission as without θi t the estimates are based on a mix
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of cross-state and cross-cohort variation rather than just cross-cohort variation as claimed. Foote and
Goetz re-estimated the regression and found an estimate of β equalling −0.010. While still statistically
different from zero, the reduction in magnitude substantially decreased the estimated impact. Foote and
Gootz include more extensive empirical analysis as well.

Regardless of the errors and political ramifications the Donohue-Levitt paper is a very clever and cre-
ative use of the difference-in-difference method. It is unfortunate that this creative work was somewhat
overshadowed by a debate over computer code.

I believe there are two important messages from this episode. First, include the appropriate controls!
In the Donohue-Levitt regression they were correct to advocate for the regression which includes state-
year interactions as this allows the most precise measurement of the desired causal impact. Second,
check your code! Computation errors are pervasive in applied economic work. It is very easy to make
errors; it is very difficult to clean them out of lengthy code. Errors in most papers are ignored as the
details receive minor attention. Important and influential papers, however, are scrutinized. If you ever
are so blessed as to write a paper which receives significant attention you will find it most embarrassing
if a coding error is found after publication. The solution is to be pro-active and vigilant.

18.9 Inference

Many difference-in-difference applications use highly aggregate (e.g. state level) data because they
are investigating the impact of policy changes which occur at an aggregate level. It has become custom-
ary in the recent literature to use clustering methods to calculate standard errors with clustering applied
at a high level of aggregation.

To understand the motivation for this choice it is useful to review the traditional argument for clus-
tered variance estimation. Suppose that the error ei g for individual i in group g is independent of the
regressors, has variance σ2, and has correlation ρ across individuals within the group. If the number
of individuals in each group is N then the exact variance of the least squares estimator (recall equation
(4.48)) is

V β̂ =
(

X ′X
)−1

σ2 (
1+ρ (N −1)

)
as originally derived by Moulton (1990). This inflates the “usual” variance by the factor

(
1+ρ (N −1)

)
.

Even if ρ is very small, if N is huge then this inflation factor can be large as well.
The clustered variance estimator imposes no structure on the conditional variances and correlations

within each group. It allows for arbitrary relationships. The advantage is that the resulting variance esti-
mators are robust to a broad range of correlation structures. The disadvantage is that the estimators can
be much less precise. Effectively, clustered variance estimators should be viewed as constructed from
the number of groups. If you are using U.S. states as your groups (as is commonly seen in applications)
then the number of groups is (at most) 51. This means that you are estimating the covariance matrix
using 51 observations regardless of the number of “observations” in the sample. One implication is that
if you are estimating more than 51 coefficients the sample covariance matrix estimator will not be full
rank which can invalidate potentially relevant inference methods.

The case for clustered standard errors was made convincingly in an influential paper by Bertrand,
Duflo, and Mullainathan (2004). These authors demonstrated their point by taking the well-known CPS
dataset and then adding randomly generated regressors. They found that if non-clustered variance esti-
mators were used then standard errors would be much too small and a researcher would inappropriately
conclude that the randomly generated “variable” has a significant effect in a regression. The false rejec-
tions could be eliminated by using clustered standard errors, clustered at the state level. Based on the
recommendations from this paper, researchers in economics now routinely cluster at the state level.
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There are limitations, however. Take the Card-Krueger (1994) example introduced earlier. Their sam-
ple had only two states (New Jersey and Pennsylvania). If the standard errors are clustered at the state
level then there are only two effective observations available for standard error calculation, which is
much too few. For this application clustering at the state level is impossible. One implication might be
that this casts doubts on applications involving just a handful of states. If we cannot rule out clustered
dependence structures, and cannot use clustering methods due to the small number of states, then it
may be inappropriate to trust the reported standard errors.

Another challenge arises when treatment (Di t = 1) applies to only a small number of units. The most
extreme case is where there is only one treated unit. This could arise, for example, when you are inter-
ested in measuring the effect of a policy which only one state has adopted. This situation is particularly
treacherous and is algebraically identical to the problem of robust covariance matrix estimation with
sparse dummy variables. (See Section 4.18.) As we learned from that analysis, in the extreme case of
a single treated unit the robust covariance matrix estimator is singular and highly biased towards zero.
The problem is because the variance of the sub-group is estimated from a single observation.

The same analysis applies to cluster-variance estimators. If there is a single treated unit then the
standard clustered covariance matrix estimator will be singular. If you calculate a standard error for the
sub-group mean it will be algebraically zero despite being the most imprecisely estimated coefficient.
The treatment effect will have a non-zero reported standard error but it will be incorrect and highly
biased towards zero. For a more detailed analysis and recommendations for inference see Conley and
Taber (2011).
_____________________________________________________________________________________________

18.10 Exercises

Exercise 18.1 In the text it was claimed that in a balanced sample individual-level fixed effects are or-
thogonal to any variable demeaned at the state level.

(a) Show this claim.

(b) Does this claim hold in unbalanced samples?

(c) Explain why this claim implies that the regressions

Yi t =β0 +β1Statei +β2Timet +θDi t +εi t

and
Yi t = θDi t +ui +δt +εi t

yield identical estimates of θ.

Exercise 18.2 In regression (18.1) with T = 2 and N = 2 suppose the time variable is omitted. Thus the
estimating equation is

Yi t =β0 +β1Statei +θDi t +εi t .

where Di t =Statei Timet is the treatment indicator.

(a) Find an algebraic expression for the least squares estimator θ̂.

(b) Show that θ̂ is a function only of the treated sub-sample and is not a function of the untreated
sub-sample.
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(c) Is θ̂ a difference-in-difference estimator?

(d) Under which assumptions might θ̂ be an appropriate estimator of the treatment effect?

Exercise 18.3 Take the basic difference-in-difference model

Yi t = θDi t +ui +δt +εi t .

Instead of assuming that Di t and εi t are independent, assume we have an instrumental variable Zi t

which is independent of εi t but is correlated with Di t . Describe how to estimate θ.
Hint: Review Section 17.28.

Exercise 18.4 For the specification tests of Section 18.4 explain why the regression test for homoge-
neous treatment effects includes only N2 −1 interaction dummy variables rather than all N2 interaction
dummies. Also explain why the regression test for equal control effects includes only N1 −1 interaction
dummy variables rather than all N1 interaction dummies.

Exercise 18.5 An economist is interested in the impact of Wisconsin’s 2011“Act 10” legislation on wages.
(For background, Act 10 reduced the power of labor unions.) She computes the following statistics5 for
average wage rates in Wisconsin and the neighboring state of Minnesota for the decades before and after
Act 10 was enacted.

Years Average Wage
Wisconsin 2001-2010 15.23
Wisconsin 2010-2020 16.72
Minnesota 2001-2010 16.42
Minnesota 2010-2020 18.10

(a) Based on this information, what is her point estimate of the impact of Act 10 on average wages?

(b) The numbers in the above table were calculated as county-level averages. (The economist was
given the average wage in each county. She calculated the average for the state by taking the aver-
age across the counties.) Now suppose that she estimates the following linear regression, treating
individual counties as observations.

w ag e =α+βAct10+γWisconsin+δPost2010+e

The three regressors are dummy variables for “Act 10 in effect in the state”, “county is in Wisconsin”,
and “time period is 2011-2020.”

What value of β̂ does she find?

(c) What value of γ̂ does she find?

Exercise 18.6 Use the datafile CK1994 on the textbook webpage. Classical economics teaches that in-
creasing the minimum wage will increase product prices. You can therefore use the Card-Krueger diff-
in-diff methodology to estimate the effect of the 1992 New Jersey minimum wage increase on product
prices. The data file contains the variables priceentree, pricefry and pricesoda . Create the variable price
as the sum of these three, indicating the cost of a typical meal.

5This numbers are completely fictitious.
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(a) Some values of price are missing. Delete these observations. This will produce an unbalanced
panel as price may be missing for only one of the two surveys. Balance the panel by deleting the
paired observation. This can be accomplished in Stata by the commands:

• drop if price == .

• bys store: gen nperiods = [_N]

• keep if nperiods == 2

(b) Create an analog of Table 18.1 but with the price of a meal rather than the number of employees.
Interpret the results.

(c) Estimate an analog of regression (18.2) with price as the dependent variable.

(d) Estimate an analog of regression (18.4) with state fixed effects and price as the dependent variable.

(e) Estimate an analog of regression (18.4) with restaurant fixed effects and price as the dependent
variable.

(f) Are the results of these regressions the same?

(g) Create an analog of Table 18.2 for the price of a meal. Interpret the results.

(h) Test for homogeneous treatment effects across regions.

(i) Test for equal control effects across regions.

Exercise 18.7 Use the datafile DS2004 on the textbook webpage. The authors argued that an exogenous
police presence would deter automobile theft. The evidence presented in the chapter showed that car
theft was reduced for city blocks which received police protection. Does this deterrence effect extend
beyond the same block? The dataset has the dummy variable oneblock which indicates if the city block
is one block away from a protected institution.

(a) Calculate an analog of Table 18.3 which shows the difference between city blocks which are one
block away from a protected institution and those which are more than one block away from a
protected institution.

(b) Estimate a regression with block and month fixed effects which includes two treatment variables:
for city blocks which are on the same block as a protected institution, and for city blocks which are
one block away, both interacted with a post-July dummy. Exclude observations for July.

(c) Comment on your findings. Does the deterrence effect extend beyond the same city block?

Exercise 18.8 Use the datafile BMN2016 on the textbook webpage. The authors report results for liquor
sales. The data file contains the same information for beer and wine sales. For either beer or wine sales,
estimate diff-in-diff models similar to (18.7) and (18.8) and interpret your results. Some relevant vari-
ables are id (state identification), year, unempw (unemployment rate). For beer the relevant variables are
logbeer (log of beer sales), beeronsun (number of hours of allowed on-premise sales), beeroffsun (num-
ber of hours of allowed off-premise sales), beerOnOutflows, beerOffOutflows. For wine the variables have
similar names.
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Chapter 19

Nonparametric Regression

19.1 Introduction

We now turn to nonparametric estimation of the conditional expectation function

E [Y | X = x] = m(x).

Unless an economic model restricts the form of m(x) to a parametric function m(x) can take any nonlin-
ear shape and is therefore nonparametric. In this chapter we discuss nonparametric kernel smoothing
estimators of m(x). These are related to the nonparametric density estimators of Chapter 17 of Introduc-
tion to Econometrics. In Chapter 20 of this textbook we explore estimation by series and sieve methods.

There are many excellent monographs written on nonparametric regression estimation, including
Härdle (1990), Fan and Gijbels (1996), Pagan and Ullah (1999), and Li and Racine (2007).

To get started, suppose that there is a single real-valued regressor X . We consider the case of vector-
valued regressors later. The nonparametric regression model is

Y = m(X )+e

E [e | X ] = 0

E
[
e2 | X

]=σ2 (X ) .

We assume that we have n observations for the pair (Y , X ). The goal is to estimate m(x) either at a
single point x or at a set of points. For most of our theory we focus on estimation at a single point x which
is in the interior of the support of X .

In addition to the conventional regression assumptions we assume that both m(x) and f (x) (the
marginal density of X ) are continuous in x. For our theoretical treatment we assume that the observa-
tions are i.i.d. The methods extend to dependent observations but the theory is more advanced. See Fan
and Yao (2003). We discuss clustered observations in Section 19.20.

19.2 Binned Means Estimator

For clarity, fix the point x and consider estimation of m(x). This is the mean of Y for random pairs
(Y , X ) such that X = x. If the distribution of X were discrete then we could estimate m(x) by taking
the average of the sub-sample of observations Yi for which Xi = x. But when X is continuous then the
probability is zero that X exactly equals x. So there is no sub-sample of observations with X = x and
this estimation idea is infeasible. However, if m(x) is continuous then it should be possible to get a
good approximation by taking the average of the observations for which Xi is close to x, perhaps for the

666
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observations for which |Xi −x| ≤ h for some small h > 0. As for the case of density estimation we call h a
bandwidth. This binned means estimator can be written as

m̂(x) =

n∑
i=1
1 {|Xi −x| ≤ h}Yi

n∑
i=1
1 {|Xi −x| ≤ h}

. (19.1)

This is an step function estimator of the regression function m(x).
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Figure 19.1: Nadaraya-Watson and Local Linear Regression

To visualize, Figure 19.1(a) displays a scatter plot of 100 random pairs (Yi , Xi ) generated by simula-
tion. The observations are displayed as the open circles. The estimator (19.1) of m(x) at x = 1 with h = 1
is the average of the Yi for the observations such that Xi falls in the interval [0 ≤ Xi ≤ 2]. This estimator
is m̂(1) and is shown on Figure 19.1 by the first solid square. We repeat the calculation (19.1) for x = 3,
5, 7, and 9, which is equivalent to partitioning the support of X into the bins [0,2], [2,4], [4,6], [6,8], and
[8,10]. These bins are shown in Figure 19.1(a) by the vertical dotted lines and the estimates (19.1) by the
solid squares.

The binned estimator m̂(x) is the step function which is constant within each bin and equals the
binned mean. In Figure 19.1(a) it is displayed by the horizontal dashed lines which pass through the
solid squares. This estimate roughly tracks the central tendency of the scatter of the observations (Yi , Xi ).
However, the huge jumps at the edges of the partitions are disconcerting, counter-intuitive, and clearly
an artifact of the discrete binning.

If we take another look at the estimation formula (19.1) there is no reason why we need to evaluate
(19.1) only on a course grid. We can evaluate m̂(x) for any set of values of x. In particular, we can evaluate
(19.1) on a fine grid of values of x and thereby obtain a smoother estimate of the CEF. This estimator is
displayed in Figure 19.1(a) with the solid line. We call this estimator “Rolling Binned Means”. This is a
generalization of the binned estimator and by construction passes through the solid squares. It turns
out that this is a special case of the Nadaraya-Watson estimator considered in the next section. This
estimator, while less abrupt than the Binned Means estimator, is still quite jagged.
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19.3 Kernel Regression

One deficiency with the estimator (19.1) is that it is a step function in x even when evaluated on a fine
grid. That is why its plot in Figure 19.1 is jagged. The source of the discontinuity is that the weights are
discontinuous indicator functions. If instead the weights are continuous functions then m̂(x) will also
be continuous in x.

Definition 19.1 A (second-order) kernel function K (u) satisfies

1. 0 ≤ K (u) ≤ K <∞,

2. K (u) = K (−u),

3.
∫ ∞
−∞ K (u)du = 1,

4.
∫ ∞
−∞ |u|r K (u)du <∞ for all positive integers r .

Essentially, a kernel function is a bounded probability density function which is symmetric about
zero. Assumption 19.1.4 is not essential for most results but is a convenient simplification and does not
exclude any kernel function used in standard empirical practice. Some of the mathematical expressions
are simplified if we restrict attention to kernels whose variance is normalized to unity.

Definition 19.2 A normalized kernel function satisfies
∫ ∞
−∞ u2K (u)du = 1.

There are a large number of functions which satisfy Definition 19.1, and many are programmed as
options in statistical packages. We list the most important in Table 19.1 below: the Rectangular, Gaus-
sian, Epanechnikov, and Triangular kernels. In practice it is unnecessary to consider kernels beyond
these four. For nonparametric regression we recommend either the Gaussian or Epanechnikov kernel,
and either will give similar results. In Table 19.1 we express the kernels in normalized form.

For more discussion on kernel functions see Chapter 17 of Introduction to Econometrics.
A generalization of (19.1) is obtained by replacing the indicator function with a kernel function:

m̂nw(x) =

n∑
i=1

K

(
Xi −x

h

)
Yi

n∑
i=1

K

(
Xi −x

h

) . (19.2)

The estimator (19.2) is known as the Nadaraya-Watson estimator, the kernel regression estimator, or
the local constant estimator, and was introduced independently by Nadaraya (1964) and Watson (1964).

The rolling binned means estimator (19.1) is the Nadarya-Watson estimator with the rectangular
kernel. The Nadaraya-Watson estimator (19.2) can be used with any standard kernel and is typically
estimated using the Gaussian or Epanechnikov kernel. In general we recommend the Gaussian kernel
since it produces an estimator m̂nw(x) which possesses derivatives of all orders.

The bandwidth h plays a similar role in kernel regression as in kernel density estimation. Namely,
larger values of h will result in estimates m̂nw(x) which are smoother in x, and smaller values of h will
result in estimates which are more erratic. It might be helpful to consider the two extreme cases h → 0
and h →∞. As h → 0 we can see that m̂nw(Xi ) → Yi (if the values of Xi are unique), so that m̂nw(x) is sim-
ply the scatter of Yi on Xi . In contrast, as h →∞ then m̂nw(x) → Y , the sample mean. For intermediate
values of h, m̂nw(x) will smooth between these two extreme cases.

The estimator (19.2) using the Gaussian kernel and h = 1/
p

3 is also displayed in Figure 19.1 with the
long dashes. As you can see, this estimator appears to be much smoother than that using the binned
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Table 19.1: Common Normalized Second-Order Kernels

Kernel Formula RK

Rectangular K (u) =


1

2
p

3
if |u| <p

3

0 otherwise

1

2
p

3

Gaussian K (u) = 1p
2π

exp

(
−u2

2

)
1

2
p
π

Epanechnikov K (u) =


3

4
p

5

(
1− u2

5

)
if |u| <p

5

0 otherwise

3
p

5

25

Triangular K (u) =


1p
6

(
1− |u|p

6

)
if |u| <p

6

0 otherwise

p
6

9

estimator but tracks exactly the same path. The bandwidth h = 1/
p

3 for the Gaussian kernel is equiv-
alent to the bandwidth h = 1 for the binned estimator because the latter is a kernel estimator using the
rectangular kernel scaled to have a standard deviation of 1/3.

19.4 Local Linear Estimator

The Nadaraya-Watson (NW) estimator is often called a local constant estimator as it locally (about
x) approximates m(x) as a constant function. One way to see this is to observe that m̂(x) solves the
minimization problem

m̂nw(x) = argmin
m

n∑
i=1

K

(
Xi −x

h

)
(Yi −m)2 .

This is a weighted regression of Y on an intercept only.
This means that the NW estimator is making the local approximation m(X ) ' m(x) for X ' x, which

means it is making the approximation

Y = m(X )+e ' m(x)+e.

The NW estimator is a local estimator of this approximate model using weighted least squares.
This interpretation suggests that we can construct alternative nonparametric estimators of m(x) by

alternative local approximations. Many such local approximations are possible. A popular choice is
the Local Linear (LL) approximation. Instead of the approximation m(X ) ' m(x), LL uses the linear
approximation m(X ) ' m(x)+m′(x) (X −x). Thus

Y = m(X )+e ' m(x)+m′(x) (X −x)+e.



CHAPTER 19. NONPARAMETRIC REGRESSION 670

The LL estimator then applies weighted least squares similarly as in NW estimation.
One way to represent the LL estimator is as the solution to the minimization problem

{
m̂LL(x),m̂′

LL(x)
}= argmin

α,β

n∑
i=1

K

(
Xi −x

h

)(
Yi −α−β (Xi −x)

)2 .

Another is to write the approximating model as

Y ' Z (X , x)′β(x)+e

where β(x) = (
m(x),m′(x)

)′ and

Z (X , x) =
(

1
X −x

)
.

This is a linear regression with regressor vector Zi (x) = Z (Xi , x) and coefficient vector β(x). Applying
weighted least squares with the kernel weights we obtain the LL estimator

β̂LL(x) =
(

n∑
i=1

K

(
Xi −x

h

)
Zi (x)Zi (x)′

)−1 n∑
i=1

K

(
Xi −x

h

)
Zi (x)Yi

= (
Z ′K Z

)−1 Z ′K Y

where K = diag{K ((X1 −x)/h) , ...,K ((Xn −x)/h)}, Z is the stacked Zi (x)′, and Y is the stacked Yi . This
expression generalizes the Nadaraya-Watson estimator as the latter is obtained by setting Zi (x) = 1. No-
tice that the matrices Z and K depend on x and h.

The local linear estimator was first suggested by Stone (1977) and came into prominence through the
work of Fan (1992, 1993).

To visualize, Figure 19.1(b) displays the scatter plot of the same 100 observations from panel (a) di-
vided into the same five bins. A linear regression is fit to the observations in each bin. These five fitted
regression lines are displayed by the short dashed lines. This “binned regression estimator” produces a
flexible appromation for the mean function but has large jumps at the edges of the partitions. The mid-
points of each of these five regression lines are displayed by the solid squares and could be viewed as the
target estimate for the binned regression estimator. A rolling version of the binned regression estimator
moves these estimation windows continuously across the support of X and is displayed by the solid line.
This corresponds to the local linear estimator with a rectangular kernel and a bandwidth of h = 1/

p
3. By

construction this line passes through the solid squares. To obtain a smoother estimator we replace the
rectangular with the Gaussian kernel (using the same bandwidth h = 1/

p
3). We display these estimates

with the long dashes. This has the same shape as the rectangular kernel estimate (rolling binned regres-
sion) but is visually much smoother. We label this the “Local Linear” estimator since it is the standard
implementation.

One interesting feature is that as h →∞ the LL estimator approaches the full-sample least squares
estimator m̂LL(x) → α̂+β̂x. That is because as h →∞ all observations receive equal weight. In this sense
the LL estimator is a flexible generalization of the linear OLS estimator.

Another useful property of the LL estimator is that it simultaneously provides estimates of the regres-
sion function m(x) and its slope m′(x) at x.

19.5 Local Polynomial Estimator

The NW and LL estimators are both special cases of the local polynomial estimator. The idea is to
approximate the regression function m(x) by a polynomial of fixed degree p, and then estimate locally
using kernel weights.
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The approximating model is a p th order Taylor series approximation

Y = m(X )+e

' m(x)+m′(x) (X −x)+·· ·+m(p)(x)
(X −x)p

p !
+e

= Z (X , x)′β(x)+ei

where

Z (X , x) =


1

X −x
...

(X −x)p

p !

 β(x) =


m(x)
m′(x)

...
m(p)(x)

 .

The estimator is

β̂LP(x) =
(

n∑
i=1

K

(
Xi −x

h

)
Zi (x)Zi (x)′

)−1 (
n∑

i=1
K

(
Yi −x

h

)
Zi (x)Yi

)
= (

Z ′K Z
)−1 Z ′K Y

where Zi (x) = Z (Xi , x) Notice that this expression includes the Nadaraya-Watson and local linear esti-
mators as special cases with p = 0 and p = 1, respectively.

There is a trade-off between the polynomial order p and the local smoothing bandwidth h. By in-
creasing p we improve the model approximation and thereby can use a larger bandwidth h. On the
other hand, increasing p increases estimation variance.

19.6 Asymptotic Bias

Since E [Y | X = x] = m(x), the conditional mean of the Nadaraya-Watson estimator is

E [m̂nw(x) | X ] =

n∑
i=1

K

(
Xi −x

h

)
E [Yi | Xi ]

n∑
i=1

K

(
Xi −x

h

) =

n∑
i=1

K

(
Xi −x

h

)
m(Xi )

n∑
i=1

K

(
Xi −x

h

) . (19.3)

We can simplify this expression as n →∞.
The following regularity conditions will be maintained through the chapter. Let f (x) denote the

marginal density of X and let σ2(x) = E[
e2 | X = x

]
denote the conditional variance of e = Y −m(X ).

Assumption 19.1

1. h → 0.

2. nh →∞.

3. m(x), f (x), and σ2(x) are continuous in some neighborhood N of x.

4. f (x) > 0.
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These conditions are similar to those used for the asymptotic theory for kernel density estimation.
The assumptions h → 0 and nh →∞ means that the bandwidth gets small yet the number of observa-
tions in the estimation window diverges to infinity. Assumption 19.1.3 are minimal smoothness condi-
tions on the conditional mean m(x), marginal density f (x), and conditional varianceσ2(x). Assumption
19.1.4 specifies that the marginal density is non-zero. This is required since we are estimating the condi-
tional mean at x, so there needs to be a non-trivial number of observations for Xi near x.

Theorem 19.1 Suppose Assumption 19.1 holds and m′′(x) and f ′(x) are con-
tinuous in N . Then

1. E [m̂nw(x) | X ] = m(x)+h2Bnw(x)+op
(
h2

)+Op

(√
h
n

)
where

Bnw(x) = 1

2
m′′(x)+ f (x)−1 f ′(x)m′(x).

2. E [m̂LL(x) | X ] = m(x)+h2BLL(x)+op
(
h2

)+Op

(√
h
n

)
where

BLL(x) = 1

2
m′′(x).

The proof for the Nadaraya-Watson estimator is presented in Section 19.26. For a proof for the local
linear estimator see Fan and Gijbels (1996).

We call the terms h2Bnw(x) and h2BLL(x) the asymptotic bias of the estimators.
Theorem 19.1 shows that the asymptotic bias of the Nadaraya-Watson and local linear estimators is

proportional to the squared bandwidth h2 (the degree of smoothing) and to the functions Bnw(x) and
BLL(x). The asymptotic bias of the local linear estimator depends on the curvature (second derivative) of
the CEF function m(x) similarly to the asymptotic bias of the kernel density estimator in Theorem 17.1
of Introduction to Econometrics. When m′′(x) < 0 then m̂LL(x) is downwards biased. When m′′(x) > 0
then m̂LL(x) is upwards biased. Local averaging smooths m(x), inducing bias, and this bias is increasing
in the level of curvature of m(x). This is called smoothing bias.

The asymptotic bias of the Nadaraya-Watson estimator adds a second term which depends on the
first derivatives of m(x) and f (x). This is because the Nadaraya-Watson estimator is a local average. If
the density is upward sloped at x (if f ′(x) > 0) then there are (on average) more observations to the right
of x than to the left so a local average will be biased if m(x) has a non-zero slope. In contrast the bias of
the local linear estimator does not depend on the local slope m′ (x) since it locally fits a linear regression.
The fact that the bias of the local linear estimator has fewer terms than the bias of the Nadaraya-Watson
estimator (and is invariant to the slope m′(x)) justifies the claim that the local linear estimator has gener-
ically reduced bias relative to Nadaraya-Watson.

We illustrate asymptotic smoothing bias in Figure 19.2(a). The solid line is the true conditional mean
for the data displayed in Figure 19.1. The dashed lines are the asymptotic approximations to the expec-
tation m(x)+h2B(x) for bandwidths h = 1/2, h = 1, and h = 3/2. (The asymptotic biases of the NW and
LL estimators are the same since X has a uniform distribution.) You can see that there is minimal bias
for the smallest bandwidth but considerable bias for the largest. The dashed lines are smoothed versions
of the conditional mean, attenuating the peaks and valleys.
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Smoothing bias is a natural by-product of non-parametric estimation of nonlinear functions. It can
only be reduced by using a small bandwidth. As we see in the following section this will result in high
estimation variance.
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Figure 19.2: Asymptotic Bias

19.7 Asymptotic Variance

From (19.3) we deduce that

m̂nw(x)−E [m̂nw(x) | X ] =

n∑
i=1

K

(
Xi −x

h

)
ei

n∑
i=1

K

(
Xi −x

h

) .

Since the denominator is a function only of Xi and the numerator is linear in ei we can calculate that the
finite sample variance of m̂nw(x) is

var[m̂nw(x) | X ] =

n∑
i=1

K

(
Xi −x

h

)2

σ2(Xi )(
n∑

i=1
K

(
Xi −x

h

))2 . (19.4)

We can simplify this expression as n →∞. Let σ2(x) = E[
e2 | X = x

]
denote the conditional variance

of e = Y −m(X ).
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Theorem 19.2 Under Assumption 19.1,

1. var[m̂nw(x) | X ] = RKσ
2(x)

f (x)nh
+op

(
1

nh

)
.

2. var[m̂LL(x) | X ] = RKσ
2(x)

f (x)nh
+op

(
1

nh

)
.

In these expressions

RK =
∫ ∞

−∞
K (u)2du

is the roughness of the kernel K (u).

The proof for the Nadaraya-Watson estimator is presented in Section 19.26. For the local linear esti-
mator see Fan and Gijbels (1996).

We call the leading terms in Theorem 19.2 the asymptotic variance of the estimators. Theorem 19.2
shows that the asymptotic variance of the two estimators are identical. The asymptotic variance is pro-
portional to the roughness RK of the kernel K (u) and to the conditional variance σ2 (x) of the regression
error. It is inversely proportional to the effective number of observations nh and to the marginal density
f (x). This expression reflects the fact that the estimators are local estimators. The precision of m̂(x)
is low for regions where e has a large conditional variance and/or X has a low density (where there are
relatively few observations).

19.8 AIMSE

We define the asymptotic MSE (AMSE) of an estimator m̂(x) as the sum of its squared asymptotic
bias and asymptotic variance. Using Theorems 19.1 and 19.2 for the Nadaraya-Watson and local linear
estimators, we obtain

AMSE(x)
def= h4B(x)2 + RKσ

2(x)

nh f (x)

where B(x) = Bnw(x) for the Nadaraya-Watson estimator and B(x) = BLL(x) for the local linear estimator.
This is the asymptotic MSE for the estimator m̂(x) for a single point x.

A global measure of fit can be obtained by integrating AMSE(x). It is standard to weight the AMSE
by f (x)w(x) for some integrable weight function w(x). This is called the asymptotic integrated MSE
(AIMSE). Let S be the support of X (the region where f (x) > 0).

AIMSE
def=

∫
S

AMSE(x) f (x)w(x)d x =
∫

S

(
h4B(x)2 + RKσ

2(x)

nh f (x)

)
f (x)w(x)d x = h4B + RK

nh
σ2 (19.5)

where

B =
∫

S
B(x)2 f (x)w(x)d x

σ2 =
∫

S
σ2(x)w(x)d x.

The weight function w(x) can be omitted if S is bounded. Otherwise, a common choice is w(x) =
1 {ξ1 ≤ x ≤ ξ2}. An integrable weight function is needed when X has unbounded support to ensure that
σ2 <∞.
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The form of the AIMSE is similar to that for kernel density estimation (Theorem 17.3 of Introduction
to Econometrics). It has two terms (squared bias and variance). The first is increasing in the bandwidth
h and the second is decreasing in h. Thus the choice of h affects AIMSE with a trade-off between these
two components. Similarly to density estimation we can calculate the bandwidth which minimizes the
AIMSE. (See Exercise 19.2.) The solution is given in the following theorem.

Theorem 19.3 The bandwidth which minimizes the AIMSE (19.5) is

h0 =
(

RKσ
2

4B

)1/5

n−1/5. (19.6)

With h ∼ n−1/5 then AIMSE[m̂(x)] =O
(
n−4/5

)
.

This result characterizes the AIMSE-optimal bandwidth. This bandwidth satisfies the rate h = cn−1/5

which is the same rate as for kernel density estimation. The optimal constant c depends on the kernel
K (x), the weighted average squared bias B , and the weighted average variance σ2. The constant c is
different, however, from that for density estimation.

Inserting (19.6) into (19.5) plus some algebra we find that the AIMSE using the optimal bandwidth is

AIMSE0 ' 1.65
(
R4

K Bσ8
)1/5

n−4/5.

This depends on the kernel K (u) only through the constant RK . Since the Epanechnikov kernel has the
smallest value1 of RK it is also the kernel which produces the smallest AIMSE. This is true for both the
NW and LL estimators.

Theorem 19.4 The AIMSE (19.5) of the Nadaraya-Watson and Local Linear re-
gression estimators is minimized by the Epanechnikov kernel.

The efficiency loss by using the other standard kernels, however, is small. The relative efficiency2 of
estimation using the another kernel is

(
RK /RK

(
Epanechnikov

))2/5. Using the values of RK from Table
19.1 we calculate that the efficiency loss from using the Triangle, Gaussian, and Rectangular kernels are
1%, 2%, and 3%, respectively, which are minimal. Since the Gaussian kernel produces the smoothest es-
timates, which is important for estimation of marginal effects, our overall recommendation is the Gaus-
sian kernel.

19.9 Reference Bandwidth

The NW, LL and LP estimators depend on a bandwidth and without an empirical rule for selection
of h the methods are incomplete. It is useful to have a reference bandwith which mimics the optimal
bandwidth in a simplified setting and provides a baseline for further investigations.

1See Theorem 17.4 of Introduction to Econometrics.
2Measured by root AIMSE.
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Theorem 19.3 and a little re-writing reveals that the optimal bandwidth equals

h0 =
(

RK

4

)1/5
(
σ2

nB

)1/5

' 0.58

(
σ2

nB

)1/5

(19.7)

where the approximation holds for all single-peaked kernels by similar calculations3 as in Section 17.9 of
Introduction to Econometrics.

A reference approach can be used to develop a rule-of-thumb for regression estimation. In particular,
Fan and Gijbels (1996, Section 4.2) develop what they call the ROT (rule of thumb) bandwidth for the local
linear estimator. We now describe their derivation.

First, set w(x) =1 {ξ1 ≤ x ≤ ξ2}. Second, form a pilot or preliminary estimator of the regression func-
tion m(x) using a q th-order polynomial regression

m(x) =β0 +β1x +β2x2 +·· ·+βq xq

for q ≥ 2. (Fan and Gijbels (1996) suggest q = 4 but this is not essential.) By least squares we obtain the
coefficient estimates β̂0, ..., β̂q and implied second derivative m̂′′(x) = 2β̂2 +6β̂3x +12β̂4x2 + ·· ·+ q(q −
1)β̂q xq−2. Third, notice that B can be written as an expectation

B = E[
B(X )2w(X )

]= E[(
1

2
m′′(X )

)2

1 {ξ1 ≤ X ≤ ξ2}

]
.

A moment estimator is

B̂ = 1

n

n∑
i=1

(
1

2
m̂′′(Xi )

)2

1 {ξ1 ≤ Xi ≤ ξ2} . (19.8)

Third, assume that the regression error is homoskedastic E
[
e2 | X

]=σ2 so thatσ2 =σ2 (ξ2 −ξ1). Estimate
σ2 by the error variance estimate σ̂2 from the preliminary regression. Plugging these into (19.7) we obtain
the reference bandwidth

hrot = 0.58

(
σ̂2 (ξ2 −ξ1)

nB̂

)1/5

. (19.9)

Fan and Gijbels (1996) call this the Rule-of-Thumb (ROT) bandwidth.
Fan and Gijbels developed similar rules for higher-order odd local polynomial estimators but not for

the local constant (Nadaraya-Watson) estimator. However, we can derive a ROT for the NW as well by
using a reference model for the marginal density f (x). A convenient choice is the uniform density under
which f ′(x) = 0 and the optimal bandwidths for NW and LL coincide. This motivates using (19.9) as a
ROT bandwidth for both the LL and NW estimators.

As we mentioned above, Fan and Gijbels suggest using a 4th-order polynomial for the pilot estimator
but this specific choice is not essential. In applications it may be prudent to assess sensitivity of the ROT
bandwith to the choice of q and to examine the estimated pilot regression for precision of the estimated
higher-order polynomial terms.

We now comment on the choice of the weight region [ξ1,ξ2]. When X has bounded support then
[ξ1,ξ2] can be set equal to this support. Otherwise, [ξ1,ξ2] can be set equal to the region of interest for
m̂(x), or the endpoints can be set to equal fixed quantiles (e.g. 0.05 and 0.95) of the distribution of X .

To illustrate, take the data shown in Figure 19.1. If we fit a 4th order polynomial we find m̂(x) =
.49+ .70x − .28x2 − .033x3 − .0012x4 which implies m̂′′(x) = −.56− .20x − .014x2. Setting [ξ1,ξ2] = [0,10]
from the support of X we find B̂ = 0.00889. The residuals from the polynomial regression have variance
σ̂2 = 0.0687. Plugging these into (19.9) we find hrot = 0.551 which is similar that used in Figure 19.1.

3The constant (RK /4)1/5 is bounded between 0.58 and 0.59.
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19.10 Estimation at a Boundary

One advantage of the local linear over the Nadaraya-Watson estimator is that the LL has better per-
formance at the boundary of the support of X . The NW estimator has excessive smoothing bias near the
boundaries. In many contexts in econometrics the boundaries are of great interest. In such cases it is
strongly recommended to use the local linear estimator (or a local polynomial estimator with p ≥ 1).

To understand the problem it may be helpful to examine Figure 19.2(b). This shows a scatter plot of
100 observations generated as X ∼U [0,10] and Y ∼ N(X ,1) so that m(x) = x. Suppose we are interested
in the conditional mean m(0) at the lower boundary x = 0. The Nadaraya-Watson estimator equals a
weighted average of the Y observations for small values of |X |. Since X ≥ 0, these are all observations
for which m(X ) ≥ m(0), and therefore m̂nw(0) is biased upwards. Symmetrically, the Nadaraya-Watson
estimator at the upper boundary x = 10 is a weighted average of observations for which m(X ) ≤ m(10)
and therefore m̂nw(10) is biased downwards.

In contrast, the local linear estimators m̂LL(0) and m̂LL(10) are unbiased in this example since m(x)
is linear in x. The local linear estimator fits a linear regression line. Since the mean is correctly specified
there is no estimation bias.

The exact bias4 of the NW estimator is shown in Figure 19.2(b) by the dashed lines. The long dashes
is the mean E [m̂nw(x)] for h = 1 and the short dashes is the mean E [m̂nw(x)] for h = 2. We can see that
the bias is substantial. For h = 2 the bias is visible for all values of x. For the smaller bandwidth h = 1
the bias is minimal for x in the central range of the support, but is still quite substantial for x near the
boundaries.

To calculate the asymptotic smoothing bias we can revisit the proof of Theorem 19.1.1 which calcu-
lated the asymptotic bias at interior points. Equation (19.29) calculates the bias of the numerator of the
estimator expressed as an integral over the marginal density. Evaluated at a lower boundary the density
is positive only for u ≥ 0 so the integral is over the positive region [0,∞). This applies as well to equation
(19.31) and the equations which follow. In this case the leading term of this expansion is the first term
(19.32) which is proportional to h rather than h2. Completing the calculations we find the following.
Define m(x+) = lim

z↓x
m(z) and m(x−) = lim

z↑x
m(z).

Theorem 19.5 Suppose Assumption 19.1 holds. Set µK = 2
∫ ∞

0 K (u)du. Let the
support of X be S = [x,x].
If m′′(x+), σ2(x+) and f ′(x+) exist, and f (x+) > 0 then

E
[
m̂nw(x) | X

]= m(x)+hm′(x)µK +op (h)+Op

√
h

n

 .

If m′′(x−), σ2(x−) and f ′(x−) exist, and f (x−) > 0 then

E
[
m̂nw(x) | X

]= m(x)−hm′(x)µK +op (h)+Op

√
h

n

 .

Theorem 19.5 shows that the asymptotic bias of the NW estimator at the boundary is O(h) and de-
pends on the slope of m(x) at the boundary. When the slope is positive the NW estimator is upward

4Calculated by simulation from 10,000 simulation replications.
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biased at the lower boundary and downward biased at the upper boundary. The standard interpretation
of Theorem 19.5 is that the NW estimator has high bias near boundary points.

Similarly we can evaluate the performance of the LL estimator. We summarize the results without
derivation (as they are more technically challenging) and instead refer interested readers to Cheng, Fan
and Marron (1997) and Imbens and Kalyahnaraman (2012).

Define the kernel moments ν j =
∫ ∞

0 u j K (u)du, π j =
∫ ∞

0 u j K (u)2du, and projected kernel

K ∗(u) = [
1 0

][
ν0 ν1

ν1 ν2

]−1 [
1
u

]
K (u) = ν2 −ν1u

ν0ν2 −ν2
1

K (u).

Define its second moment

σ2
K ∗ =

∫ ∞

0
u2K ∗(u)du = ν2

2 −ν1ν3

ν0ν2 −ν2
1

and roughness

R∗
K =

∫ ∞

0
K ∗(u)2du = ν2

2π0 −2ν1ν2π1 +ν2
1π2(

ν0ν2 −ν2
1

)2 .

Theorem 19.6 Under the assumptions of Theorem 19.5, at a boundary point x

1. E
[
m̂LL(x) | X

]= m(x)+ h2m′′(x)σ2
K ∗

2
+op

(
h2

)+Op

(√
h
n

)
2. var

[
m̂LL(x) | X

]= R∗
Kσ

2(x)

f (x)nh
+op

(
1

nh

)

Theorem 19.6 shows that the asymptotic bias of the LL estimator at a boundary is O(h2), the same
as at interior points and is invariant to the slope of m(x). The theorem also shows that the asymptotic
variance has the same rate as at interior points.

Taking Theorems 19.1, 19.2, 19.5, and 19.6 together we conclude that the local linear estimator has
superior asymptotic properties relative to the NW estimator. At interior points the two estimators have
the same asymptotic variance. The bias of the LL estimator is invariant to the slope of m(x) and its
asymptotic bias only depends on the second derivative while the bias of the NW estimator depends on
both the first and second derivatives. At boundary points the asymptotic bias of the NW estimator is
O(h) which is of higher order than the O(h2) bias of the LL estimator. For these reasons we recommend
the local linear estimator over the Nadaraya-Watson estimator.

The asymptotic bias and variance of the LL estimator at the boundary is slightly different than in the
interior. The difference is that the bias and variance depend on the moments of the kernel-like function
K ∗(u) rather than the original kernel K (u).

An interesting question is to find the optimal kernel function for boundary estimation. By the same
calculations as for Theorem 19.4 we find that the optimal kernel K ∗(u) minimizes the roughness R∗

K
given the second moment σ2

K ∗ and as argued for Theorem 19.4 this is achieved when K ∗(u) equals a
quadratic function in u. Since K ∗(u) is the product of K (u) and a linear function this means that K (u)
must be linear in |u|, implying that the optimal kernel K (u) is the Triangular kernel. See Cheng, Fan,
and Marron (1997). Calculations similar to those following Theorem 19.4 show that efficiency loss5 of
estimation using the Epanechnikov, Gaussian, and Rectangular kernels are 1%, 1%, and 3%, respectively.

5Measured by root AIMSE.
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19.11 Nonparametric Residuals and Prediction Errors

Given any nonparametric regression estimator m̂(x) the fitted regression at x = Xi is m̂(Xi ) and the
fitted residual is êi = Yi − m̂(Xi ). As a general rule, but especially when the bandwidth h is small, it is
hard to view êi as a good measure of the fit of the regression. For the NW and LL estimators, as h → 0
then m̂(Xi ) → Yi and therefore êi → 0. This is clear overfitting as the true error ei is not zero. In general,
since m̂(Xi ) is a local average which includes Yi , the fitted value will be necessarily close to Yi and the
residual êi small, and the degree of this overfitting increases as h decreases.

A standard solution is to measure the fit of the regression at x = Xi by re-estimating the model exclud-
ing the i th observation. Let m̃−i (x) be the leave-one-out nonparametric estimator computed without
observation i . For example, for Nadaraya-Watson regression, this is

Ỹi = m̃−i (x) =

∑
j 6=i

K

(
X j −x

h

)
Y j

∑
j 6=i

K

(
X j −x

h

) .

Notationally, the “−i ” subscript is used to indicate that the i th observation is omitted.
The leave-one-out predicted value for Yi at x = Xi is Ỹi = m̃−i (Xi ) and the leave-one-out prediction

error is
ẽi = Yi − Ỹi . (19.10)

Since Ỹi is not a function of Yi there is no tendency for Ỹi to overfit for small h. Consequently, ẽi is a good
measure of the fit of the estimated nonparametric regression.

When possible the leave-one-out prediction errors should be used instead of the residuals êi .

19.12 Cross-Validation Bandwidth Selection

The most popular method in applied statistics to select bandwidths is cross-validation. The general
idea is to estimate the model fit based on leave-one-out estimation. Here we describe the method as
typically applied for regression estimation. The method applies to NW, LL, and LP estimation, as well as
other nonparametric estimators.

To be explicit about the dependence of the estimator on the bandwidth let us write an estimator of
m(x) with a given bandwidth h as m̂(x,h).

Ideally, we would like to select h to minimize the integrated mean-squared error (IMSE) of m̂(x,h)
as a estimator of m(x) :

IMSEn(h) =
∫

S
E
[
(m̂(x,h)−m(x))2] f (x)w(x)d x

where f (x) is the marginal density of X and w(x) is an integrable weight function. The weight w(x) is
the same as used in (19.5) and can be omitted when X has bounded support.

The difference m̂(x,h) − m(x) at x = Xi can be estimated by the leave-one-out prediction errors
(19.10)

ẽi (h) = Yi −m̃−i (Xi ,h)

where we are being explicit about the dependence on the bandwidth h. A reasonable estimator of IMSEn(h)
is the weighted average mean squared prediction errors

CV(h) = 1

n

n∑
i=1

ẽi (h)2w(Xi ). (19.11)
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This function of h is known as the cross-validation criterion. Once again, if X has bounded support then
the weights w(Xi ) can be omitted and this is typically done in practice.

It turns out that the cross-validation criterion is an unbiased estimator of the IMSE plus a constant
for a sample with n −1 observations.

Theorem 19.7
E [CV(h)] =σ2 + IMSEn−1(h) (19.12)

where σ2 = E[
e2w(X )

]
.

The proof of Theorem 19.7 is presented in Section 19.26.
Sinceσ2 is a constant independent of the bandwidth h, E [CV(h)] is simply a shifted version of IMSEn−1(h).

In particular, the h which minimizes E [CV(h)] and IMSEn−1(h) are identical. When n is large the band-
width which minimizes IMSEn−1(h) and IMSEn(h) are nearly identical so CV(h) is essentially unbiased
as an estimator of IMSEn(h)+σ2. This considerations lead to the recommendation to select h as the
value which minimizes CV(h).

The cross-validation bandwidth ĥ is the value which minimizes CV(h)

hcv = argmin
h≥h`

CV(h) (19.13)

for some h` > 0. The restriction h ≥ h` can be imposed so that CV(h) is not evaluated over unreasonably
small bandwidths.

There is not an explicit solution to the minimization problem (19.13), so it must be solved numer-
ically. One method is grid search. Create a grid of values for h, e.g. [h1,h2, ...,h J ], evaluate CV(h j ) for
j = 1, ..., J , and set

hcv = argmin
h∈[h1,h2,...,h J ]

CV(h).

Evaluation using a coarse grid is typically sufficient for practical application. Plots of CV(h) against h
are a useful diagnostic tool to verify that the minimum of CV(h) has been obtained. A computationally
more efficient method for obtaining the solution (19.13) is Golden-Section Search. See Section 12.4 of
Introduction to Econometrics.

It is possible for the solution (19.13) to be unbounded, that is, CV(h) is decreasing for large h so that
hcv =∞. This is okay. It simply means that the regression estimator simplifies to its full-sample version.
For Nadaraya-Watson estimator this is m̂nw(x) = Y . For the local linear estimator this is m̂LL(x) = α̂+ β̂x.

For NW and LL estimation, the criterion (19.11) requires leave-one-out estimation of the conditional
mean at each observation Xi . This is different from calculation of the estimator m̂(x) as the latter is
typically done at a set of fixed values of x for purposes of display.

To illustrate, Figure 19.3(a) displays the cross-validation criteria CV(h) for the Nadaraya-Watson and
Local Linear estimators using the data from Figure 19.1, both using the Gaussian kernel. The CV func-
tions are computed on a grid on [hrot/3,3hrot] with 200 gridpoints. The CV-minimizing bandwidths are
hnw = 0.830 for the Nadaraya-Watson estimator and hLL = 0.764 for the local linear estimator. These are
somewhat higher than the rule of thumb hrot = 0.551 value calculated earlier. Figure 19.3(a) shows the
minimizing bandwidths by the arrows.

The CV criterion can also be used to select between different nonparametric estimators. The CV-
selected estimator is the one with the lowest minimized CV criterion. For example, in Figure 19.3(a), you
can see that the LL estimator has a minimized CV criterion of 0.0699 which is lower than the minimum
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Figure 19.3: Bandwidth Selection

0.0703 obtained by the NW estimator. Since the LL estimator achieves a lower value of the CV criterion,
LL is the CV-selected estimator. The difference, however, is small, indicating that the two estimators
achieve similar IMSE.

Figure 19.3(b) displays the local linear estimates m̂(x) using the ROT and CV bandwidths along with
the true conditional mean m(x). The estimators track the true function quite well, and the difference
between the bandwidths is relatively minor in this application.

19.13 Asymptotic Distribution

We first provide a consistency result.

Theorem 19.8 Under Assumption 19.1, m̂nw(x) −→
p

m(x) and m̂LL(x) −→
p

m(x).

A proof for the Nadaraya-Watson estimator is presented in Section 19.26. For the local linear estima-
tor see Fan and Gijbels (1996).

Theorem 19.8 shows that the estimators are consistent for m(x) under mild continuity assumptions.
In particular, no smoothness conditions on m(x) are required beyond continuity.

We next present an asymptotic distribution result. The following shows that the kernel regression es-
timators are asymptotically normal with a non-parametric rate of convergence, a non-trivial asymptotic
bias, and a non-degenerate asymptotic variance.
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Theorem 19.9 Suppose Assumption 19.1 holds. Assume in addition that
m′′(x) and f ′(x) are continuous in N , that for some r > 2 and x ∈N ,

E
[|e|r | X = x

]≤σ<∞, (19.14)

and
nh5 =O(1). (19.15)

Then

p
nh

(
m̂nw(x)−m(x)−h2Bnw(x)

)−→
d

N

(
0,

RKσ
2(x)

f (x)

)
. (19.16)

Similarly,

p
nh

(
m̂LL(x)−m(x)−h2BLL(x)

)−→
d

N

(
0,

RKσ
2(x)

f (x)

)
.

A proof for the Nadaraya-Watson estimator appears in Section 19.26. For the local linear estimator
see Fan and Gijbels (1996).

Relative to Theorem 19.8, Theorem 19.9 requires stronger smoothness conditions on the conditional
mean and marginal density. There are also two technical regularity conditions. The first is a conditional
moment bound (19.14) (which is used to verify the Lindeberg condition for the CLT) and the second is the
bandwidth bound nh5 = O(1). The latter means that the bandwidth must decline to zero at least at the
rate n−1/5 and is used6 to ensure that higher-order bias terms do not enter the asymptotic distribution
(19.16).

There are several interesting features about the asymptotic distribution which are noticeably differ-
ent than for parametric estimators. First, the estimators converge at the rate

p
nh not

p
n. Since h → 0,p

nh diverges slower than
p

n, thus the nonparametric estimators converge more slowly than a paramet-
ric estimator. Second, the asymptotic distribution contains a non-negligible bias term h2B(x). Third, the
distribution (19.16) is identical in form to that for the kernel density estimator (Theorem 17.7 of Intro-
duction to Econometrics).

The fact that the estimators converge at the rate
p

nh has led to the interpretation of nh as the “ef-
fective sample size”. This is because the number of observations being used to construct m̂(x) is propor-
tional to nh, not n as for a parametric estimator.

It is helpful to understand that the nonparametric estimator has a reduced convergence rate relative
to parametric asymptotic theory because the object being estimated – m(x) – is nonparametric. This is
harder than estimating a finite dimensional parameter, and thus comes at a cost.

Unlike parametric estimation the asymptotic distribution of the nonparametric estimator includes
a term representing the bias of the estimator. The asymptotic distribution (19.16) shows the form of
this bias. It is proportional to the squared bandwidth h2 (the degree of smoothing) and to the function
Bnw(x) or BLL(x) which depends on the slope and curvature of the CEF m(x). Interestingly, when m(x) is
constant then Bnw(x) = BLL(x) = 0 and the kernel estimator has no asymptotic bias. The bias is essentially
increasing in the curvature of the CEF function m(x). This is because the local averaging smooths m(x),
and the smoothing induces more bias when m(x) is curved.

6This could be weakened if stronger smoothness conditions are assumed. For example, if m(4)(x) and f (3)(x) are continuous
then (19.15) can be weakened to nh9 =O(1), which means that the bandwidth must decline to zero at least at the rate n−1/9.
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The asymptotic variance of m̂(x) is inversely proportional to the marginal density f (x). This means
that m̂(x) has relatively low precision for regions where X has a low density. This makes sense since
these are regions where there are relatively few observations. An implication is that the nonparametric
estimator m̂(x) will be relatively inaccurate in the tails of the distribution of X .

19.14 Undersmoothing

The bias term in the asymptotic distribution of the kernel density estimator can be technically elim-
inated if the bandwidth is selected to converge to zero faster than the optimal rate n−1/5, thus h =
o

(
n−1/5

)
. This is called an under-smoothing bandwidth. By using a small bandwidth the bias is reduced

and the variance is increased. Thus the random component dominates the bias component (asymptoti-
cally). The following is the technical statement.

Theorem 19.10 Under the conditions of Theorem 19.9, and nh5 = o (1) ,

p
nh (m̂nw(x)−m(x)) −→

d
N

(
0,

RKσ
2(x)

f (x)

)
p

nh (m̂LL(x)−m(x)) −→
d

N

(
0,

RKσ
2(x)

f (x)

)
.

Theorem 19.10 has the advantage of no bias term. Consequently this theorem is popular with some
authors. There are also several disadvantages. First, the assumption of an undersmoothing bandwidth
does not really eliminate the bias, it simply assumes it away. Thus in any finite sample there is always
bias. Second, it is not clear how to set a bandwidth so that it is undersmoothing. Third, a undersmooth-
ing bandwidth implies that the estimator has increased variance and is inefficient. Finally, the theory is
simply misleading as a characterization of the distribution of the estimator.

19.15 Conditional Variance Estimation

The conditional variance is

σ2(x) = var[Y | X = x] = E[
e2 | X = x

]
.

There are a number of contexts where it is desirable to estimate σ2(x) including prediction intervals and
confidence intervals for the estimated mean function. In general the conditional variance function is
nonparametric as economic models rarely specify the form ofσ2(x). Thus estimation ofσ2(x) is typically
done nonparametrically.

Since σ2(x) is the CEF of e2 given X it can be estimated by nonparametric regression. For example,
the ideal NW estimator (if e were observed) is

σ2(x) =

n∑
i=1

K

(
Xi −x

h

)
e2

i

n∑
i=1

K

(
Xi −x

h

) .
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Since the errors e are not observed, we need to replace them with an estimator. A simple choice are
the residuals êi = Yi − m̂(Xi ). A better choice are the leave-one-out prediction errors ẽi = Yi − m̂−i (Xi ).
The latter are recommended for variance estimation as they are not subject to overfitting. With this
substitution the NW estimator of the conditional variance is

σ̂2(x) =

n∑
i=1

K

(
Xi −x

h

)
ẽ2

i

n∑
i=1

K

(
Xi −x

h

) . (19.17)

This estimator depends on a bandwidth h but there is no reason for this bandwidth to be the same
as that used to estimate the conditional mean. The ROT or cross-validation using ẽ2

i as the dependent
variable can be used to select the bandwidth for estimation of σ̂2(x) separately from the choice for esti-
mation of m̂(x).

There is one subtle difference between CEF and conditional variance estimation. The conditional
variance is inherently non-negative σ2(x) ≥ 0 and it is desirable for the estimator to satisfy this prop-
erty. The NW estimator (19.17) is necessarily non-negative since it is a smoothed average of the non-
negative squared residuals. The LL estimator, however, is not guaranteed to be non-negative for all x.
Furthermore, the NW estimator has as a special case the homoskedastic estimator σ̂2(x) = σ̂2 (full sam-
ple variance) which may be a relevant selection. For these reasons, the NW estimator may be preferred
for conditional variance estimation.

Fan and Yao (1998) derive the asymptotic distribution of the estimator (19.17). They obtain the sur-
prising result that the asymptotic distribution of the two-step estimator σ̂2(x) is identical to that of the
one-step idealized estimator σ2(x).

19.16 Variance Estimation and Standard Errors

It is relatively straightforward to calculate the exact conditional variance of the Nadaraya-Watson,
local linear, or local polynomial estimator. The estimators can be written as

β̂(x) = (
Z ′K Z

)−1 (
Z ′K Y

)= (
Z ′K Z

)−1 (
Z ′K m

)+ (
Z ′K Z

)−1 (
Z ′K e

)
where m is the n×1 vector of means m(Xi ). The first component is a function only of the regressors and
the second is linear in the error e. Thus conditionally on the regressors X ,

V β̂(x) = var
[
β̂ | X

]= (
Z ′K Z

)−1 (
Z ′K DK Z

)(
Z ′K Z

)−1

where D = diag
(
σ2(X1), ...σ2(Xn)

)
.

A White-type estimator can be formed by replacingσ2(Xi ) with the squared residuals ê2
i or prediction

errors ẽ2
i

V̂ β̂(x) = (
Z ′K Z

)−1

(
n∑

i=1
K

(
Xi −x

h

)2

Zi (x)Zi (x)′ẽ2
i

)(
Z ′K Z

)−1 . (19.18)

Alternatively, σ2(Xi ) could be replaced with an estimator such as (19.17) evaluated at σ̂2(Xi ) or σ̂2(x).
A simple option is the asymptotic formula

V̂m̂(x) =
RK σ̂

2(x)

nh f̂ (x)
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with σ̂2(x) from (19.17) and f̂ (x) a density estimator such as

f̂ (x) = 1

nb

n∑
i=1

K

(
Xi −x

b

)
(19.19)

where b is a bandwidth. (See Chapter 17 of Introduction to Econometrics.)
In general we recommend (19.18) calculated with prediction errors as this is the closest analog of the

finite sample covariance matrix.
For local linear and local polynomial estimators the estimator V̂m̂(x) is the first diagonal element of

the matrix V̂ β̂(x). For any of the variance estimators a standard error for m̂(x) is the square root of V̂m̂(x).

19.17 Confidence Bands

We can construct asymptotic confidence intervals. An 95% interval for m(x) is

m̂(x)±1.96
√

V̂m̂(x). (19.20)

This confidence interval can be plotted along with m̂(x) to assess precision.
It should be noted, however, that this confidence interval has two unusual properties. First, it is

pointwise in x, meaning that it is designed to have coverage probability at each x not uniformly across
x. Thus they are typically called pointwise confidence intervals.

Second, because it does not account for the bias it is not an asymptotically valid confidence inter-
val for m(x). Rather, it is an asymptotically valid confidence interval for the pseudo-true (smoothed)
value, e.g. m(x)+h2B(x). One way of thinking about this is that the confidence intervals account for the
variance of the estimator but not its bias. A technical trick which solves this problem is to assume an
undersmoothing bandwidth. In this case the above confidence intervals are technically asymptotically
valid. This is only a technical trick as it does not really eliminate the bias only assumes it away. The plain
fact is that once we honestly acknowledge that the true CEF is nonparametric it then follows that any
finite sample estimator will have finite sample bias and this bias will be inherently unknown and thus
difficult to incorporate into confidence intervals.

Despite these unusual properties we can still use the interval (19.20) to display uncertainty and as a
check on the precision of the estimates.

19.18 The Local Nature of Kernel Regression

The kernel regression estimators (Nadaraya-Watson, Local Linear, and Local Polynomial) are all es-
sentially local estimators in that given h the estimator m̂(x) is a function only of the sub-sample for which
X is close to x. The other observations do not directly affect the estimator. This is reflected in the dis-
tribution theory as well. Theorem 19.8 shows that m̂(x) is consistent for m(x) if the latter is continuous
at x. Theorem 19.9 shows that the asymptotic distribution of m̂(x) depends only on the functions m(x),
f (x) and σ2(x) at the point x. The distribution does not depend on the global behavior of m(x).

Global features do affect the estimator m̂(x), however, through the bandwidth h. The bandwidth
selection methods described here are global in nature as they attempt to minimize AIMSE. Local band-
widths (designed to minimize the AMSE at a single point x) can alternatively be employed but these are
less commonly used, in part because such bandwidth estimators have high imprecision. Picking local
bandwidths adds extra noise.

Furthermore, selected bandwidths may be meaningfully large so that the estimation window may be
a large portion of the sample. In this case estimation is neither local nor fully global.
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19.19 Application to Wage Regression

We illustrate the methods with an application to the the CPS data set. We are interested in the non-
parametric regression of log(wage) on experience. To illustrate we take the subsample of Black men with
12 years of education (high school graduates). This sample has 762 observations.

We first need to decide on the region of interest (range of experience) for which we will calculate the
regression estimator. We select the range [0,40] since most observations (90%) have experience levels
below 40 years.

To avoid boundary bias we use the local linear estimator.
We next calculate the Fan-Gijbels rule-of-thumb bandwidth (19.9) and find hrot = 5.14. We then cal-

culate the cross-validation criterion using the rule-of-thumb as a baseline. The CV criterion is displayed
in Figure 19.4(a). The minimizer is hcv = 4.32 which is somewhat smaller than the ROT bandwidth.

We calculate the local linear estimator using both bandwidths and display the estimates in Figure
19.4(b). The regression functions are increasing for experience levels up to 20 years and then become
flat. While the functions are roughly concave they are noticably different than a traditional quadratic
specification. Comparing the estimates, the smaller CV-selected bandwidth produces a regression esti-
mate which is a bit too wavy while the ROT bandwidth produces a regression estimate which is much
smoother yet captures the same essential features. Based on this inspection we select the estimate based
on the ROT bandwidth (the solid line in panel (b)).
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Figure 19.4: log(wage) regression on experience

We next consider estimation of the conditional variance function. We calculate the ROT bandwidth
for a regression using the squared prediction errors and find hrot = 6.77 which is larger than the band-
width used for conditional mean estimation. We next calculate the cross-validation functions for condi-
tional variance estimation (regression of squared prediction errors on experience) using both NW and LL
regression. The CV functions are displayed in Figure 19.5(a). The CV plots are quite interesting. For the
LL estimator the CV function has a local minimum around h = 5 but the global minimizer is unbounded.
The CV function for the NW estimator is globally decreasing with an unbounded minimizer. The NW also
achieves a considerably lower CV value than the LL estimator. This means that the CV-selected variance
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estimator is the NW estimator with h =∞, which is the simple full-sample estimator σ̂2 calculated with
the prediction errors.

We next compute standard errors for the regression function estimates using formula (19.18). In Fig-
ure 19.5(b) we display the estimated regression (the same as Figure 19.4 using the ROT bandwidth) along
with 95% asymptotic confidence bands computed as in (19.20). By displaying the confidence bands we
can see that there is considerable imprecision in the estimator for low experience levels. We can still see
that the estimates and confidence bands show that the experience profile is increasing up to about 20
years of experience and then flattens above 20 years. The estimates imply that for this population (Black
men who are high school graduates) the average wage rises for the first 20 years of work experience (from
18 to 38 years of age) and then flattens with no further increases in average wages for the next 20 years of
work experience (from 38 to 58 years of age).
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Figure 19.5: Confidence Band Construction

19.20 Clustered Observations

Clustered observations are (Yi g , Xi g ) for individuals i = 1, ...,ng in cluster g = 1, ...,G . The model is

Yi g = m
(
Xi g

)+ei g

E
[
ei g | X g

]= 0

where X g is the stacked Xi g . The assumption is that the clusters are mutually independent. Dependence
within each cluster is unstructured.

Write

Zi g (x) =
(

1
Xi g −x

)
.

Stack Yi g , ei g and Zi g (x) into cluster-level variables Y g , eg and Z g (x). Let K g (x) = diag

{
K

(
Xi g −x

h

)}
.
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The local linear estimator can be written as

β̂(x) =
(

G∑
g=1

ng∑
i=1

K

(
Xi g −x

h

)
Zi g (x)Zi g (x)′

)−1 (
G∑

g=1

ng∑
i=1

K

(
Xi g −x

h

)
Zi g (x)Yi g

)

=
(

G∑
g=1

Z g (x)′K g (x)Z g (x)

)−1 (
G∑

g=1
Z g (x)′K g (x)Y g

)
. (19.21)

The local linear estimator m̂(x) = β̂1(x) is the intercept in (19.21).
The natural method to obtain prediction errors is by delete-cluster regression. The delete-cluster

estimator of β is

β̃(−g )(x) =
( ∑

j 6=g
Z j (x)′K j (x)Z j (x)

)−1 ( ∑
j 6=g

Z j (x)′K j (x)Y j

)
. (19.22)

The delete-cluster estimator of m (x) is the intercept m̃1(x) = β̃1(−g )(x) from (19.22). The delete-cluster
prediction error for observation i g is

ẽi g = Yi g − β̃1(−g )(Xi g ). (19.23)

Let ẽg be the stacked ẽi g for cluster g .
The variance of (19.21), conditional on the regressors X , is

V β̂(x) =
(

G∑
g=1

Z g (x)′K g (x)Z g (x)

)−1 (
G∑

g=1
Z g (x)′K g (x)Sg (x)K g (x)Z g (x)

)(
G∑

g=1
Z g (x)′K g (x)Z g (x)

)−1

(19.24)
where Sg = E

[
eg e ′

g | X g

]
. The covariance matrix (19.24) can be estimated by replacing Sg with an es-

timator of eg e ′
g . Based on analogy with regression estimation we suggest the delete-cluster prediction

errors ẽg as they are not subject to over-fitting. This covariance matrix estimator using this choice is

V̂ β̂(x) =
(

G∑
g=1

Z g (x)′K g (x)Z g (x)

)−1 (
G∑

g=1
Z g (x)K g (x)ẽg ẽ ′

g K g (x)Z g (x)

)(
G∑

g=1
Z g (x)K g (x)Z g (x)

)−1

.

(19.25)
The standard error for m̂(x) is the square root of the first diagonal element of V̂ β̂(x).

There is no current theory on how to select the bandwidth h for nonparametric regression using
clustered observations. The Fan-Ghybels ROT bandwidth hrot is designed for independent observations
so is likely to be a crude choice in the case of clustered observations. Standard cross-validation has
similar limitations. A practical alternative is to select the bandwidth h to minimize a delete-cluster cross-
valiation criterion. While there is no formal theory to justify this choice, it seems like a reasonable option.
The delete-cluster CV criterion is

CV(h) = 1

n

G∑
g=1

ng∑
i=1

ẽ2
i g

where ẽi g are the delete-cluster prediction errors (19.23). The delete-cluster CV bandwidth is the value
which minimizes this function:

hcv = argmin
h≥h`

CV(h).

As for the case of conventional cross-validation, it may be valuable to plot CV(h) against h to verify that
the minimum has been obtained and to assess sensitivity.
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19.21 Application to Testscores

We illustrate kernel regression with clustered observations by using the Duflo, Dupas and Kremer
(2011) investigation of the effect of student tracking on testscores. Recall that the core question was effect
of the dummy variable tracking on the continuous variable testscore. A set of controls were included
including a continuous variable percentile which recorded the student’s initial test score (as a percentile).
We investigate the authors’ specification of this control using local linear regression.

We took the subsample of 1487 girls who experienced tracking and estimated the regression of testscores
on percentile. For this application we used unstandardized7 test scores which range from 0 to about 40.
We used local linear regression with a Gaussian kernel.

First consider bandwidth selection. The Fan-Ghybels ROT and conventional cross-validation band-
widths are hrot = 6.7 and hcv = 12.3. We then calculated the clustered cross-validation criterion which has
minimizer hcv = 6.2. To understand the differences we plot the standard and clustered cross-validation
functions in Figure 19.6(a). In order to plot on the same graph we normalize each by subtracting their
minimized value (so each is minimized at zero). What we can see from Figure 19.6(a) is that while the
conventional CV criterion is sharply minimized at h = 12.3, the clustered CV criterion is essentially flat
between 5 and 11. This means that the clustered CV criterion has difficulty discriminating between these
bandwidth choices
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Figure 19.6: TestScore as a Function of Initial Percentile

To compare the estimated regression functions, in Figure 19.6(b) we plot the estimated regression
functions which use the bandwidths selected by conventional and clustered cross-validation. Inspect-
ing the plots, the estimator using the conventional CV bandwidth is smoother than the estimator us-
ing the smaller clustered CV bandwidth. The most noticeable differences arises at the right end of the
plot which shows the expected test score for the students who had the very best preliminary test scores.
The estimator using the clustered CV bandwidth shows a meaningful upturn for students with initial
testscore percentile above 90%. Based on this evidence we select the local linear estimator m̂LL(x) using
the clustered cross-validation bandwidth hcv = 6.2.

Using this bandwidth we estimate the delete-cluster prediction errors ẽg and use these to calculate
the standard errors for the local linear estimator m̂LL(x) using formula (19.25). These standard errors are

7In Section 4.23, following Duflo, Dupas and Kremer (2011) the dependent variable was standardized testscores (normalized
to have mean zero and variance one).
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roughly twice as large as those calculated using the non-clustered formula. We use the standard errors
to calculate 95% asymptotic pointwise confidence bands as in (19.20).

Figure 19.6(c) shows our estimated regression function and pointwise 95% confidence bands. Also
plotted for comparison is an estimated linear regression line. The local linear estimator is similar to the
global linear regression estimator for initial percentiles below 80%. But for initial percentiles above 80%
the two lines diverge. The confidence bands suggest that these differences are statistically meaningful.
Students with initial testscores at the top of the initial distribution have higher final testscores on average
than predicted by a linear specification.

19.22 Multiple Regressors

Our analysis has focus on the case of real-valued X for simplicity, but the methods of kernel regres-
sion extend to the multiple regressor case at the cost of a reduced rate of convergence. In this section we
consider the case of estimation of the conditional expectation function E [Y | X = x] = m(x) where

X =

 X1
...

Xd

 ∈Rd .

For any evaluation point x and observation i define the kernel weights

Ki (x) = K

(
X1i −x1

h1

)
K

(
X2i −x2

h2

)
· · ·K

(
Xdi −xd

hd

)
,

a d-fold product kernel. The kernel weights Ki (x) assess if the regressor vector Xi is close to the evalua-
tion point x in the Euclidean space Rd .

These weights depend on a set of d bandwidths, h j , one for each regressor. Given these weights, the
Nadaraya-Watson estimator takes the form

m̂(x) =

n∑
i=1

Ki (x)Yi

n∑
i=1

Ki (x)

.

For the local-linear estimator, define

Zi (x) =
(

1
Xi −x

)
and then the local-linear estimator can be written as m̂(x) = α̂(x) where(

α̂(x)
β̂(x)

)
=

(
n∑

i=1
Ki (x)Zi (x)Zi (x)′

)−1 n∑
i=1

Ki (x)Zi (x)Yi

= (
Z ′K Z

)−1 Z ′K Y

where K = diag{K1(x), ...,Kn(x)}.
In multiple regressor kernel regression cross-validation remains a recommended method for band-

width selection. The leave-one-out residuals ẽi and cross-validation criterion CV(h1, ...,hd ) are defined
identically as in the single regressor case. The only difference is that now the CV criterion is a function
over the d bandwidths h1, ...,hd . This means that numerical minimization needs to be done more effi-
ciently than by a simple grid search.
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The asymptotic distribution of the estimators in the multiple regressor case is an extension of the
single regressor case. Let f (x) denote the marginal density of X , σ2(x) = E[

e2 | X = x
]

denote the condi-
tional variance of e = Y −m(X ), and set |h| = h1h2 · · ·hd .

Proposition 19.1 Let m̂(x) denote either the Nadarya-Watson or Local Linear
estimator of m(x). As n →∞ and h j → 0 such that n |h|→∞,

√
n |h|

(
m̂(x)−m(x)−

d∑
j=1

h2
j B j (x)

)
−→

d
N

(
0,

Rd
Kσ

2(x)

f (x)

)
.

For the Nadaraya-Watson estimator

B j (x) = 1

2

∂2

∂x2
j

m(x)+ f (x)−1 ∂

∂x j
f (x)

∂

∂x j
m(x)

and for the Local Linear estimator

B j (x) = 1

2

∂2

∂x2
j

m(x).

We do not provide regularity conditions or a formal proof but instead refer interested readers to Fan
and Gijbels (1996).

19.23 Curse of Dimensionality

The term “curse of dimensionality” is used to describe the phenomenon that the convergence rate of
nonparametric estimators slows as the dimension increases.

When X is vector-valued we define the AIMSE as the integral of the squared bias plus variance, inte-
grating with respect to f (x)w(x) where w(x) is an integrable weight function. For notational simplicity
consider the case that there is a single common bandwidth h. In this case the AIMSE of m̂(x) equals

AIMSE = h4
∫

S

(
d∑

j=1
B j (x)

)2

f (x)w(x)d x + Rd
K

nhd

∫
S
σ2(x)w(x)d x.

We see that the squared bias is of order h4, the same as in the single regressor case. The variance, how-
ever, is of larger order (nhd )−1.

If pick the bandwith to minimizing the AIMSE we find that it equals h = cn−1/(4+d) for some constant
c. This generalizes the formula for the one-dimensional case. The rate n−1/(4+d) is slower than the n−1/5

rate. This effectively means that with multiple regressors a larger bandwidth is required.
When the bandwidth is set as h = cn−1/(4+d) then the AIMSE is of order O

(
n−4/(4+d)

)
. This is a slower

rate of convergence than in the one-dimensional case.

Theorem 19.11 For vector-valued X the bandwidth which minimizes the
AIMSE is of order h ∼ n−1/(4+d). With h ∼ n−1/(4+d) then AIMSE =O

(
n−4/(4+d)

)
.
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See Exercise 19.6.
We see that the optimal AIMSE rate O

(
n−4/(4+d)

)
depends on the dimension d . As d increases this

rate slows. Thus the precision of kernel regression estimators worsens with multiple regressors. The
reason is the estimator m̂(x) is a local average of Y for observations such that X is close to x, and when
there are multiple regressors the number of such observations is inherently smaller.

This phenomenon – that the rate of convergence of nonparametric estimation decreases as the di-
mension increases – is called the curse of dimensionality. It is common across most nonparametric
estimation problems and is not specific to kernel regression.

The curse of dimensionality has led to the practical rule that most applications of non-parametric
regression have a single regressor. Some have two regressors; on occassion, three. More is uncommon.

19.24 Partially Linear Regression

To handle discrete regressors and/or reduce the dimensionality we can separate the regression func-
tion into a nonparametric and a parametric part. Let the regressors be partitioned as (X , Z ) where X and
Z are d- and k-dimensional, respectively. A partially linear regression model is

Y = m(X )+Z ′β+e (19.26)

E [e | X , Z ] = 0.

This model combines two elements. One, it specifies that the conditional mean is separable between X
and Z (there are no nonparametric interactions). Two, it specifies that the conditional mean is linear in
the regressors Z . These are assumptions which may be true or may be false. In practice it is best to think
of the assumptions as approximations.

When some regressors are discrete (as is common in econometric applications) they belong in Z .
The regressors X must be continuously distributed. In typical applications X is either scalar or two-
dimensional. This may not be a restriction in practice as many econometric applications only have a
small number of continuously distributed regressors.

The seminal contribution for estimation of (19.26) is Robinson (1988) who proposed a nonparma-
metric version of residual regression. His key insight was to see that the nonparametric component can
be eliminated by transformation. Take the expectation of equation (19.26) conditional on X . This is

E [Y | X ] = m(X )+E [Z | X ]′β.

Subtract this from (19.26), obtaining

Y −E [Y | X ] = (Z −E [Z | X ])′β+e.

The model is now a linear regression of the nonparametric regression error Y −E [Y | X ] on the vector of
nonparametric regression errors Z −E [Z | X ].

Robinson’s estimator replaces the infeasible regression errors by nonparametric counterparts. The
result is a three-step estimator.

1. Using nonparametric regression (NW or LL), regress Yi on Xi , Z1i on Xi , Z2i on Xi , . . . , and Zki on
Xi , obtaining the fitted values ĝ0i , ĝ1i , . . . , and ĝki .

2. Regress Yi − ĝ0i on Z1i − ĝ1i , . . . , Zki − ĝki to obtain the coefficient estimate β̂ and standard errors.

3. Use nonparametric regression to regress Yi − Z ′
i β̂ on Xi to obtain the nonparametric estimator

m̂(x) and confidence intervals.
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The resulting estimators and standard errors have conventional asymptotic distributions under spe-
cific assumptions on the bandwidths. A full proof is provided by Robinson (1988). Andrews (2004) pro-
vides a more general treatment with insight to the general structure of semiparametric estimators.

The most difficult challenge is to show that the asymptotic distribution β̂ is unaffected by the first
step estimation. Briefly, these are the steps of the argument. First, the first-step error Z−E [Z | X ] has zero
covariance with the regression error e. Second, the asymptotic distribution will be unaffected by the first-
step estimation if replacing (in this covariance) the expectation E [Z | X ] with its first-step nonparametric
estimator induces an error of order op

(
n−1/2

)
. Third, since the covariance is a product, this holds when

the first-step estimator has a convergence rate of op
(
n−1/4

)
. Fourth, this holds under Theorem 19.11 if

h ∼ n−1/(4+d) and d < 4.
The reason why the third step estimator has a conventional asymptotic distribution is a bit simpler

to explain. The estimator β̂ converges at a conventional Op
(
n−1/2

)
rate. The nonparametric estimator

m̂(x) converges at a rate slower than Op
(
n−1/2

)
. Thus the sampling error for β̂ is of lower order and does

not affect the first-order asymptotic distribution of m̂(x).
Once again, the theory is advanced so the above two paragraphs should not be taken as an explana-

tion. The good news is that the estimation method is straightforward.

19.25 Computation

Stata has two commands which implement kernel regression: lpoly and npregress. lpoly imple-
ments local polynomial estimation for any p, including Nadaraya-Watson (the default) and local linear
estimation, and selects the bandwidth using the Fan-Gijbels ROT method. It uses the Epanechnikov
kernel by default but the Gaussian can be selected as an option. The lpoly command automatically
displays the estimated mean function along with 95% confidence bands with standard errors computed
using (19.18).

The Stata command npregress estimates local linear (the default) or Nadaraya-Watson regression.
By default it selects the bandwidth by cross-validation. It uses the Epanechnikov kernel by default but
the Gaussian can be selected as an option. Confidence intervals may be calculated using the percentile
bootstrap. A display of the estimated mean and 95% confidence bands at specific points (computed
using the percentile bootstrap) may be obtained with the postestimation command margins.

There are several R packages which implement kernel regression. One flexible choice is npreg avail-
able in the np package. Its default method is Nadaraya-Watson estimation using a Gaussian kernel with
bandwidth selected by cross-validation. There are options which allow local linear and local polynomial
estimation, alternative kernels, and alternative bandwidth selection methods.

19.26 Technical Proofs*

For all technical proofs we make the simplifying assumption that the kernel function K (u) has bounded
support, thus K (u) = 0 for |u| > a. The results extend to the Gaussian kernel but with addition technical
arguments.

Proof of Theorem 19.1.1. Equation (19.3) shows that

E [m̂nw(x) | X ] = m(x)+ b̂(x)

f̂ (x)
(19.27)
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where f̂ (x) is the kernel density estimator (19.19) of f (x) with b = h and

b̂(x) = 1

nh

n∑
i=1

K

(
Xi −x

h

)
(m(xi )−m(x)) . (19.28)

Theorem 17.6 of Introduction to Econometrics established that f̂ (x) −→
p

f (x). The proof is completed by

showing that b̂(x) = h2 f (x)Bnw(x)+op

(
h2 +1/

p
nh

)
.

Since b̂(x) is a sample average it has the expectation

E
[
b̂(x)

]= 1

h
E

[
K

(
X −x

h

)
(m(X )−m(x))

]
=

∫ ∞

−∞
1

h
K

( v −x

h

)
(m(v)−m(x)) f (v)d v

=
∫ ∞

−∞
K (u) (m(x +hu)−m(x)) f (x +hu)du. (19.29)

The second equality writes the expectation as an integral with respect to the density of X . The third uses
the change-of-variables v = x +hu. We next use the two Taylor series expansions

m(x +hu)−m(x) = m′(x)hu + 1

2
m′′(x)h2u2 +o(h2) (19.30)

f (x +hu) = f (x)+ f ′(x)hu +o(h).

Inserted into (19.29) we find that (19.29) equals∫ ∞

−∞
K (u)

(
m′(x)hu + 1

2
m′′(x)h2u2 +o(h2)

)(
f (x)+ f ′(x)hu +o(h)

)
du (19.31)

= h

(∫ ∞

−∞
uK (u)du

)
m′(x)

(
f (x)+o(h)

)
(19.32)

+h2
(∫ ∞

−∞
u2K (u)du

)(
1

2
m′′(x) f (x)+m′(x) f ′(x)

)
+h3

(∫ ∞

−∞
u3K (u)du

)
1

2
m′′(x) f ′(x)+o(h2)

= h2
(

1

2
m′′(x) f (x)+m′(x) f ′(x)

)
+o(h2)

= h2Bnw(x) f (x)+o(h2).

The second equality uses the fact that the kernel K (x) integrates to one, its odd moments are zero, and
the kernel variance is one. We have shown that E

[
b̂(x)

]= Bnw(x) f (x)h2 +o(h2).
Now consider the variance of b̂(x). Since b̂(x) is a sample average of independent components and

the variance is smaller than the second moment

var
[
b̂(x)

]= 1

nh2 var

[
K

(
X −x

h

)
(m(X )−m(x))

]
≤ 1

nh2 E

[
K

(
X −x

h

)2

(m(X )−m(x))2
]

= 1

nh

∫ ∞

−∞
K (u)2 (m(x +hu)−m(x))2 f (x +hu)du (19.33)

= 1

nh

∫ ∞

−∞
u2K (u)2 du

(
m′(x)

)2 f (x)
(
h2 +o(1)

)
≤ h

n
K

(
m′(x)

)2 f (x)+o

(
h

n

)
.
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The second equality writes the expectation as an integral. The third uses (19.30). The final inequality
uses K (u) ≤ K from Definition 19.1.1 and the fact that the kernel variance is one. This shows that

var
[
b̂(x)

]≤O

(
h

n

)
.

Together we conclude that

b̂(x) = h2 f (x)Bnw(x)+o
(
h2)+Op

√
h

n


and

b̂(x)

f̂ (x)
= h2Bnw(x)+op

(
h2)+Op

√
h

n

 . (19.34)

Together with (19.27) this implies Theorem 19.1.1. ■

Proof of Theorem 19.2.1. Equation (19.4) states that

nh var[m̂nw(x) | X ] = v̂(x)

f̂ (x)2

where

v̂(x) = 1

nh

n∑
i=1

K

(
Xi −x

h

)2

σ2(Xi )

and f̂ (x) is the estimator (19.19) of f (x). Theorem 17.6 of Introduction to Econometrics established
f̂ (x) −→

p
f (x). The proof is completed by showing v̂(x) −→

p
RKσ

2(x) f (x).

First, writing the expectation as an integral with respect to f (x), making the change-of-variables
v = x +hu, and appealing to the continuity of σ2(x) and f (x) at x,

E [v̂(x)] =
∫ ∞

−∞
1

h
K

( v −x

h

)2
σ2(v) f (v)d v

=
∫ ∞

−∞
K (u)2σ2(x +hu) f (x +hu)du

=
∫ ∞

−∞
K (u)2σ2(x) f (x)+o(1)

= RKσ
2(x) f (x).

Second, since v̂(x) is an average of independent random variables and the variance is smaller than
the second moment

nh var[v̂(x)] = 1

h
var

[
K

(
X −x

h

)2

σ2(X )

]
≤ 1

h

∫ ∞

−∞
K

( v −x

h

)4
σ4(v) f (v)d v

=
∫ ∞

−∞
K (u)4σ4(x +hu) f (x +hu)du

≤ K
2

Rkσ
4(x) f (x)+o(1)

so var[v̂(x)] → 0.
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We deduce from Markov’s inequality that v̂(x) −→
p

RKσ
2(x) f (x), completing the proof. ■

Proof of Theorem 19.7. Observe that m(Xi )− m̃−i (Xi ,h) is a function only of (X1, ..., Xn) and (e1, ...,en)
excluding ei , and is thus uncorrelated with ei . Since ẽi (h) = m(Xi )−m̃−i (Xi ,h)+ei , then

E [CV(h)] = E(
ẽi (h)2w(Xi )

)
= E[

e2
i w(Xi )

]+E[
(m̃−i (Xi ,h)−m(Xi ))2 w(Xi )

]
+2E [(m̃−i (Xi ,h)−m(Xi )) w(Xi )ei ]

=σ2 +E[
(m̃−i (Xi ,h)−m(Xi ))2 w(Xi )

]
. (19.35)

The second term is an expectation over the random variables Xi and m̃−i (x,h), which are independent
as the second is not a function of the i th observation. Thus taking the conditional expectation given
the sample excluding the i th observation, this is the expectation over Xi only, which is the integral with
respect to its density

E−i
[
(m̃−i (Xi ,h)−m(Xi ))2 w(Xi )

]= ∫
(m̃−i (x,h)−m(x))2 f (x)w(x)d x.

Taking the unconditional expecation yields

E
[
(m̃−i (Xi ,h)−m(Xi ))2 w(Xi )

]= E[∫
(m̃−i (x,h)−m(x))2 f (x)w(x)d x

]
= IMSEn−1(h)

where this is the IMSE of a sample of size n −1 as the estimator m̃−i uses n −1 observations. Combined
with (19.35) we obtain (19.12), as desired. ■

Proof of Theorem 19.8. We can write the Nadaraya-Watson estimator as

m̂nw(x) = m(x)+ b̂(x)

f̂ (x)
+ ĝ (x)

f̂ (x)
(19.36)

where f̂ (x) is the estimator (19.19), b̂(x) is defined in (19.28), and

ĝ (x) = 1

nh

n∑
i=1

K

(
Xi −x

h

)
ei . (19.37)

Since f̂ (x) −→
p

f (x) > 0 by Theorem 17.6 of Introduction to Econometrics, the proof is completed by show-

ing b̂(x) −→
p

0 and ĝ (x) −→
p

0.

Take b̂(x). From (19.29) and the continuity of m(x) and f (x)

E
[
b̂(x)

]= ∫ ∞

−∞
K (u) (m(x +hu)−m(x)) f (x +hu)du = o(1)

as h →∞. From (19.33),

nh var
[
b̂(x)

]≤ ∫ ∞

−∞
K (u)2 (m(x +hu)−m(x))2 f (x +hu)du = o(1)

as h →∞. Thus var
[
b̂(x)

]−→ 0. By Markov’s inequality we conclude b̂(x)
p−→ 0.
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Take ĝ (x). Since ĝ (x) is linear in ei and E [e | X ] = 0, we find E
[
ĝ (x)

] = 0. Since ĝ (x) is an average
of independent random variables, the variance is smaller than the second moment, and the definition
σ2(X ) = E[

e2 | X
]

nh var
[
ĝ (x)

]= 1

h
var

[
K

(
X −x

h

)
e

]
≤ 1

h
E

[
K

(
X −x

h

)2

e2
]

= 1

h
E

[
K

(
X −x

h

)2

σ2(X )

]
=

∫ ∞

−∞
K (u)2σ2(x +hu) f (x +hu)du

= RKσ
2(x) f (x)+o(1) (19.38)

since σ2(x) and f (x) are continuous in x. Thus var
[
ĝ (x)

] −→ 0. By Markov’s inequality we conclude
ĝ (x) −→

p
0, completing the proof. ■

Proof of Theorem 19.9. From (19.36), Theorem 17.6 of Introduction to Econometrics, and (19.34) we have

p
nh

(
m̂nw(x)−m(x)−h2Bnw(x)

)=p
nh

(
ĝ (x)

f̂ (x)

)
+
p

nh

(
b̂(x)

f̂ (x)
−h2Bnw(x)

)

=
p

nh

(
ĝ (x)

f (x)

)(
1+op (1)

)+p
nh

op
(
h2)+Op

√
h

n


=
p

nh

(
ĝ (x)

f (x)

)(
1+op (1)

)+ (
op

(√
nh5

)
+Op (h)

)
=
p

nh

(
ĝ (x)

f (x)

)
+op (1)

where the final equality holds since
p

nhĝ (x) = Op (1) by (19.38) and the assumption nh5 = O(1). The
proof is completed by showing

p
nhĝ (x) −→

d
N

(
0,RKσ

2(x) f (x)
)
.

Define Yni = h−1/2K
(

Xi−x
h

)
ei which are independent and mean zero. We can write

p
nhĝ (x) =p

nY

as a standardized sample average. We verify the conditions for the Lindeberg CLT (Theorem 6.4). In the

notation of Theorem 6.4, set σ2
n = var

[p
nY

]
→ RK f (x)σ2(x) as h → 0. The CLT holds if we can verify the

Lindeberg condition.
This is an advanced calculation and will not interest most readers. It is provided for those interested

in a complete derivation.
Fix ε> 0 and δ> 0. Since K (u) is bounded we can write K (u) ≤ K . Let nh be sufficiently large so that(

εnh

K
2

)(r−2)/2

≥ σ

δ
.
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The conditional moment bound (19.14) implies that for x ∈N ,

E

[
e21

{
e2 > εnh

K
2

}∣∣∣∣ X = x

]
= E

[ |e|r
|e|r−21

{
e2 > εnh

K
2

}∣∣∣∣ X = x

]

≤ E

 |e|r(
εnh/K

2
)(r−2)/2

∣∣∣∣∣∣∣ X = x


≤ δ.

Since Y 2
ni ≤ h−1K

2
e2

i we find

E
[
Y 2

ni1
{
Y 2

ni > εn
}]≤ 1

h
E

[
K

(
X −x

h

)2

e21

{
e2 > εnh

K
2

}]
= 1

h
E

[
K

(
X −x

h

)2

E

(
e21

{
e2 > εnh

K
2

}∣∣∣∣ X

)]
=

∫ ∞

−∞
K (u)2E

[
e21

{
e2 > εnh/K

2
}∣∣∣ X = x +hu

]
f (x +hu)du

≤ δ
∫ ∞

−∞
K (u)2 f (x +hu)du

= δRK f (x)+o(1)

= o(1)

since δ is arbitrary. This is the Lindeberg condition (6.2). The Lindeberg CLT (Theorem 6.4) shows that
p

nhĝ (x) =p
nY −→

d
N

(
0,RKσ

2(x) f (x)
)

.

This completes the proof. ■
_____________________________________________________________________________________________

19.27 Exercises

Exercise 19.1 For kernel regression suppose you rescale Y , for example replace Y with 100Y . How
should the bandwidth h change? To answer this, first address how the functions m(x) and σ2(x) change
under rescaling, and then calculate how B and σ2 change. Deduce how the optimal h0 changes due to
rescaling Y . Does your answer make intuitive sense?

Exercise 19.2 Show that (19.6) minimizes the AIMSE (19.5).

Exercise 19.3 Describe in words how the bias of the local linear estimator changes over regions of con-
vexity and concavity in m(x). Does this make intuitive sense?

Exercise 19.4 Suppose the true regression function is linear m(x) =α+βx and we estimate the function
using the Nadaraya-Watson estimator. Calculate the bias function B(x). Suppose β > 0. For which re-
gions is B(x) > 0 and for which regions is B(x) < 0? Now suppose that β< 0 and re-answer the question.
Can you intuitively explain why the NW estimator is positively and negatively biased for these regions?

Exercise 19.5 Suppose m(x) =α is a constant function. Find the AIMSE-optimal bandwith (19.6) for NW
estimation? Explain.
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Exercise 19.6 Prove Theorem 19.11: Show that when d ≥ 1 the AIMSE optimal bandwidth takes the form
h0 = cn−1/(4+d) and AIMSE is O

(
n−4/(4+d)

)
.

Exercise 19.7 Take the DDK2011 dataset and the subsample of boys who experienced tracking. As in
Section 19.21 use the Local Linear estimator to estimate the regression of testscores on percentile but
now with the subsample of boys. Plot with 95% confidence intervals. Comment on the similarities and
differences with the estimate for the subsample of girls.

Exercise 19.8 Take the cps09mar dataset and the subsample of individuals with education=20 (profes-
sional degree or doctorate), with experience between 0 and 40 years.

(a) Use Nadaraya-Watson to estimate the regression of log(wage) on experience, separately for men
and women. Plot with 95% confidence intervals. Comment on how the estimated wage profiles
vary with experience. In particular, do you think the evidence suggests that expected wages fall for
experience levels above 20 for this education group?

(b) Repeat using the Local Linear estimator. How do the estimates and confidence intervals change?

Exercise 19.9 Take the Invest1993 dataset and the subsample of observations with Q ≤ 5. (In the
dataset Q is the variable vala.)

(a) Use Nadaraya-Watson to estimate the regression of I on Q. (In the dataset I is the variable inva.)
Plot with 95% confidence intervals.

(b) Repeat using the Local Linear estimator.

(c) Is there evidence to suggest that the regression function is nonlinear?

Exercise 19.10 The RR2010 dataset is from Reinhart and Rogoff (2010). It contains observations on an-
nual U.S. GDP growth rates, inflation rates, and the debt/gdp ratio for the long time span 1791-2009.
The paper made the strong claim that gdp growth slows as debt/gdp increases and in particular that this
relationship is nonlinear with debt negatively affecting growth for debt ratios exceeding 90%. Their full
dataset includes 44 countries. Our extract only includes the United States.

(a) Use Nadaraya-Watson to estimate the regression of gdp growth on the debt ratio. Plot with 95%
confidence intervals.

(b) Repeat using the Local Linear estimator.

(c) Do you see evidence of nonlinearity and/or a change in the relationship at 90%?

(d) Now estimate a regression of gdp growth on the inflation rate. Comment on what you find.

Exercise 19.11 We will consider a nonlinear AR(1) model for gdp growth rates

Yt = m(Yt−1)+et

Yt = 100

((
GDPt

GDPt−1

)4

−1

)
(a) Create GDP growth rates Yt . Extract the level of real U.S. GDP (gdpc1) from FRED-QD and make the

above transformation to growth rates.

(b) Use Nadaraya-Watson to estimate m(x). Plot with 95% confidence intervals.

(c) Repeat using the Local Linear estimator.

(d) Do you see evidence of nonlinearity?



Chapter 20

Series Regression

20.1 Introduction

Chapter 19 studied nonparametric regression by kernel smoothing methods. In this chapter we study
an alternative class of nonparametric regression methods known as series regression.

The basic model is identical to that examined in Chapter 19. We assume that there are random
variables (Y , X ) such that E

[
Y 2

]<∞ and satisfy the regression model

Y = m(X )+e (20.1)

E [e | X ] = 0

E
[
e2 | X

]=σ2 (X ) .

The goal is to estimate the conditional mean function m(x). We start with the simple setting where X is
scalar and consider more general cases later.

A series regression model is a sequence K = 1,2, ..., of approximating models mK (x) with K param-
eters. In this chapter we exclusively focus on linear series models, and in particular polynomials and
splines. This is because these are simple, convenient, and cover most applications of series methods
in applied economics. Other series models include trigonometric polynomials, wavelets, orthogonal
wavelets, B-splines, and neural networks. For a detailed review see Chen (2007).

Linear series regression models take the form

Y = X ′
KβK +eK (20.2)

where XK = XK (X ) is a vector of regressors obtained by making transformations of X and βK is a coeffi-
cient vector. There are multiple possible definitions of the coefficient βK . We define1 it by projection

βK = E[
XK X ′

K

]−1
E [XK Y ] = E[

XK X ′
K

]−1
E [XK m(X )] . (20.3)

The series regression error eK is defined by (20.2) and (20.3), is distinct from the regression error e in
(20.1), and is indexed by K since it depends on the regressors XK . The series approximation to m(x) is

mK (x) = XK (x)′βK . (20.4)

The coefficient is typically2 estimated by least squares

β̂K =
(

n∑
i=1

XK i X ′
K i

)−1 (
n∑

i=1
XK i Yi

)
= (

X ′
K X K

)−1 (
X ′

K Y
)

. (20.5)

1An alternative is to define βK as the best uniform approximation as in (20.8). It is not critical so long as we are careful to be
consistent with our notation.

2Penalized estimators have also been recommended. We do not review these methods here.

700
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The estimator for m(x) is
m̂K (x) = XK (x)′β̂K . (20.6)

The difference between specific models arises due to the different choices of transformations XK (x).
The theoretical issues we will explore in this chapter are: (1) Approximation properties of polynomi-

als and splines; (2) Consistent estimation of m(x); (3) Asymptotic normal approximations; (4) Selection
of K ; (5) Extensions.

For a textbook treatment of series regression see Li and Racine (2007). For an advanced treatment see
Chen (2007). Two seminal contributions are Andrews (1991a) and Newey (1997). Two recent important
papers are Belloni, Chernozhukov, Chetverikov, and Kato (2015) and Chen and Christensen (2015).

20.2 Polynomial Regression

The prototypical series regression model for m(x) is a p th order polynomial

mK (x) =β0 +β1x +β2x2 +·· ·+βp xp .

We can write it in vector notation as (20.4) where

XK (x) =


1
x
...

xp

 .

The number of parameters is K = p+1. Notice that we index XK (x) and βK by K as their dimensions and
values vary with K .

The implied polynomial regression model for the random pair (Y , X ) is (20.2) with

XK = XK (X ) =


1
X
...

X p

 .

The degree of flexibility of a polynomial regression is controlled by the polynomial order p. A larger
p yields a more flexible model while a smaller p typically results in a estimator with a smaller variance.

In general, a linear series regression model takes the form

mK (x) =β1τ1(x)+β2τ2(x)+·· ·+βK τK (x)

where the functions τ j (x) are called the basis transformations. The polynomial regression model uses
the power basis τ j (x) = x j−1. The model mK (x) is called a series regression because it is obtained by
sequentially adding the series of variables τ j (x).

20.3 Illustrating Polynomial Regression

Consider the cps09mar dataset and a regression of log wages on experience for women with a college
education (education= 16), separately for white women and Black women. The classical Mincer model
uses a quadratic in experience. Given the large sample sizes (4682 for white women and 517 for Black
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women) we can consider higher order polynomials. In Figure 20.1 we plot least squares estimates of the
conditional mean functions using polynomials of order 2, 4, 8, and 12.

Examine panel (a) which shows the estimates for the sub-sample of white women. The quadratic
specification appears mis-specified with a shape noticably different from the other estimates. The dif-
ference between the polynomials of order 4, 8, and 12 is relatively minor, especially for experience levels
below 20.

Now examine panel (b) which shows the estimates for the sub-sample of Black women. This panel
is quite different from panel (a). The estimates are erratic and increasingly so as the polynomial order
increases. Assuming we are expecting a concave (or nearly concave) experience profile the only estimate
which satisfies this is the quadratic.

Why the difference between panels (a) and (b)? The most likely explanation is the different sample
sizes. The sub-sample of Black women has much fewer observations so the mean function is much less
precisely estimated, giving rise to the erratic plots. This suggests (informally) that it may be preferred to
use a smaller polynomial order p in the second sub-sample, or equivalently to use a larger p when the
sample size n is larger. The idea that model complexity – the number of coefficients K – should vary with
sample size n is an important feature of series regression.

The erratic nature of the estimated polynomial regressions in Figure 20.1(b) is a common feature of
higher-order estimated polynomial regressions. Better results can sometimes be obtained by a spline
regression which is described in Section 20.5.
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Figure 20.1: Polynomial Estimates of Experience Profile, College-Educated Women

20.4 Orthogonal Polynomials

Standard implementation of the least squares estimator (20.5) of a polynomial regression may return
a computational error message when p is large. (See Section 3.24.) This is because the moments of X j

can be highly heterogeneous across j and because the variables X j can be highly correlated. These two
factors imply in practice that the matrix X ′

K X K can be ill-conditioned (the ratio of the largest to smallest

eigenvalue can be quite large) and some packages will return error messages rather than compute β̂K .
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In most cases the condition of X ′
K X K can be dramatically improved by rescaling the observations.

As discussed in Section 3.24 a simple method for non-negative regressors is to rescale each by its sam-

ple mean, e.g. replace X j
i with X j

i /
(
n−1 ∑n

i=1 X j
i

)
. Even better conditioning can often be obtained by

rescaling Xi to lie in [−1,1] before applying powers. In most applications one of these methods will be
sufficient for a well-conditioned regression.

A computationally more robust implementation can be obtained by using orthogonal polynomials.
These are linear combinations of the polynomial basis functions and produce identical regression esti-
mators (20.6). The goal of orthogonal polynomials is to produce regressors which are either orthogonal
or close to orthogonal and have similar variances so that X ′

K X K is close to diagonal with similar diago-
nal elements. These orthogonalized regressors X ∗

K = AK XK can be written as linear combinations of the
original variables XK . If the regressors are orthogonalized then the regression estimator (20.6) is modi-
fied by replacing XK (x) with X ∗

K (x) = AK XK (x).

One approach is to use sample orthogonalization. This is done by a sequence of regressions of X j
i on

the previously orthogonalized variables and then rescaling. This will result in perfectly orthogonalized
variables. This is what is implemented in many statistical packages under the label “orthogonal poly-
nomials”, for example, the function poly in R. If this is done then the least squares coefficients have no
meaning outside this specific sample and it is not convenient for calculation of m̂K (x) for values of x
other than sample values. This is the approach used for the examples presented in the previous section.

Another approach is to use an algebraic orthogonal polynomial. This is a polynomial which is or-
thogonal with respect to a known weight function w(x). Specifically, it is a sequence p j (x), j = 0,1,2, ...,
with the property that

∫
p j (x)p`(x)w(x)d x = 0 for j 6= `. This means that if w(x) = f (x), the marginal

density of X , then the basis transformations p j (X ) will be mutually orthogonal (in expectation). Since
we do now know the density of X this is not feasible in practice, but if w(x) is close to the density of X
then we can expect that the basis transformations will be close to mutually orthogonal. To implement an
algebraic orthogonal polynomial you first should rescale your X variable so that it satisfies the support
for the weight function w(x).

The following three choices are most relevant for economic applications.

Legendre Polynomial. These are orthogonal with respect to the uniform density on [−1,1]. (So
should be applied to regressors scaled to have support in [−1,1].)

p j (x) = 1

2 j

j∑
`=0

(
j

`

)2

(x −1) j−` (x +1)` .

For example, the first four are p0(x) = 1, p1(x) = x, p2(x) = (
3x2 −1

)
/2, and p3(x) = (

5x3 −3x
)

/2. The
best computational method is the recurrence relationship

p j+1(x) =
(
2 j +1

)
xp j (x)− j p j−1(x)

j +1
.

Laguerre Polynomial. These are orthogonal with respect to the exponential density e−x on [0,∞).
(So should be applied to non-negative regressors scaled if possible to have approximately unit mean
and/or variance.)

p j (x) =
j∑

`=0

(
j

`

)
(−x)`

`!
.

For example, the first four are p0(x) = 1, p1(x) = 1−x, p2(x) = (
x2 −4x +2

)
/2, and p3(x) = (−x3 +9x2 −18x +6

)
/6.

The best computational method is the recurrence relationship

p j+1(x) =
(
2 j +1−x

)
p j (x)− j p j−1(x)

j +1
.
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Hermite Polynomial. These are orthogonal with respect to the standard normal density on (−∞,∞).
(So should be applied to regressors scaled to have mean zero and variance one.)

p j (x) = j !
b j /2c∑
`=0

(−1/2)` x`−2 j

`!
(

j −2`!
) .

For example, the first four are p0(x) = 1, p1(x) = x, p2(x) = x2 −1, and p3(x) = x3 −3x. The best compu-
tational method is the recurrence relationship

p j+1(x) = xp j (x)− j p j−1(x).

The R package orthopolynom provides a convenient set of commands to compute many orthogonal
polynomials including the above.

20.5 Splines

A spline is a piecewise polynomial. Typically the order of the polynomial is pre-selected to be linear,
quadratic, or cubic. The flexibility of the model is determined by the number of polynomial segments.
The join points between the segments are called knots.

To impose smoothness and parsimony it is common to constrain the spline function to have con-
tinuous derivatives up to the order of the spline. Thus a linear spline is constrained to be continuous, a
quadratic spline is constrained to have a continuous first derivative, and a cubic spline is constrained to
have continuous first and second derivatives.

A simple way to construct a regression spline is as follows. A linear spline with one knot τ is

mK (x) =β0 +β1x +β2 (x −τ)1 {x ≥ τ} .

To see that this is a linear spline, observe that for x ≤ τ the function mK (x) =β0+β1x is linear with slope
β1; for x ≥ τ the function mK (x) is linear with slope β1+β2 ; and the function is continuous at x = τ. Note
that β2 is the change in the slope at τ. A linear spline with two knots τ1 < τ2 is

mK (x) =β0 +β1x +β2 (x −τ1)1 {x ≥ τ2}+β3 (x −τ2)1 {x ≥ τ2} .

A quadratic spline with one knot is

mK (x) =β0 +β1x +β2x2 +β3 (x −τ)21 {x ≥ τ} .

To see that this is a quadratic spline, observe that for x ≤ τ the function is the quadratic β0 +β1x +β2x2

with second derivative m′′
K (τ) = 2β2; for x ≥ τ the second derivative is m′′

K (τ) = 2
(
β2 +β3

)
; so 2β3 is the

change in the second derivative at τ. The first derivative at x = τ is the continuous function m′
K (τ) =

β1 +2β2τ.
In general, a p th-order spline with N knots τ1 < τ2 < ·· · < τN is

mK (x) =
p∑

j=0
β j x j +

N∑
k=1

βp+k (x −τk )p 1 {x ≥ τk }

which has K = N +p +1 coefficients.



CHAPTER 20. SERIES REGRESSION 705

The implied spline regression model for the random pair (Y , X ) is (20.2) where

XK = XK (X ) =



1
X
...

X p

(X −τ1)p 1 {X ≥ τ1}
...

(X −τN )p 1 {X ≥ τN }


.

In practice a spline will depend critically on the choice of the knots τk . When X is bounded with
an approximately uniform distribution it is common to space the knots evenly so all segments have the
same length. When the distribution of X is not uniform an alternative is to set the knots at the quantiles
j /(N +1) so that the probability mass is equalized across segments. A third alternative is to set the knots
at the points where m(x) has the greatest change in curvature (see Schumaker (2007), Chapter 7). In all
cases the set of knots τ j can change with K . Therefore a spline is a special case of an approximation of
the form

mK (x) =β1τ1K (x)+β2τ2K (x)+·· ·+βK τK K (x)

where the basis transformations τ j K (x) depend on both j and K . Many authors call such approxima-
tions a sieve rather than a series because the basis transformations change with K . This distinction is
not critical to our treatment so for simplicity we refer to splines as series regression models.

20.6 Illustrating Spline Regression

In Section 20.3 we illustrated regressions of log wages on experience for white and Black women with
a college education. Now we consider a similar regression for Black men with a college education, a
sub-sample with 394 observations.

We use a quadratic spline with four knots at experience levels of 10, 20, 30, and 40. This is a regres-
sion model with seven coefficients. The estimated regression function is displayed in Figure 20.2(a). An
estimated 6th order polynomial regression is also displayed for comparison (a 6th order polynomial is an
appropriate comparison because it also has seven coefficients).

While the spline is a quadratic over each segment, what you can see is that the first two segments
(experience levels between 0-10 and 10-20 years) are essentially linear. Most of the curvature occurs in
the third and fourth segments (20-30 and 30-40 years) where the estimated regression function peaks
and twists into a negative slope. The estimated regression function is smooth.

A quadratic or cubic spline is useful when it is desired to impose smoothness as in Figure 20.2(a). In
contrast, a linear spline is useful when it is desired to allow for sharp changes in slope.

To illustrate we consider the data set CHJ2004 which is a sample of 8684 urban Phillipino house-
holds from Cox, B. E. Hansen, and Jimenez (2004). This paper studied the crowding-out impact of a
family’s income on non-governmental (e.g., extended family) income transfers3. A model of altruistic
transfers predicts that extended families will make gifts (transfers) when the recipient family’s income
is sufficiently low, but will not make transfers if the recipient family’s income exceeds a threshold. A
pure altruistic model predicts that the regression of transfers received on family income should have a
slope of −1 up to this threshold and be flat above this threshold. We estimated this regression (including

3Defined as the sum of transfers received domestically, from abroad, and in-kind, less gifts.
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Figure 20.2: Spline Regression Estimates

the same controls as the authors4) using a linear spline with knots at 10000, 20000, 50000, 100000, and
150000 pesos. These knots were selected to give flexibility for low income levels where there are more
observations. This model has a total of 22 coefficients.

The estimated regression function (as a function of household income) is displayed in Figure 20.2(b).
For the first two segments (incomes levels below 20000 pesos) the regression function is negatively sloped
as predicted with a slope about −0.7 from 0 to 10000 pesos, and −0.3 from 10000 to 20000 pesos. The esti-
mated regression function is effectively flat for income levels above 20000 pesos. This shape is consistent
with the pure altruism model. A linear spline model is particularly well suited for this application as it
allows for discontinuous changes in slope.

Linear spline models with a single knot have been recently popularized by Card, Lee, Pei, and Weber
(2015) with the label regression kink design.

20.7 The Global/Local Nature of Series Regression

Recall from Section 19.18 that we described kernel regression as inherently local in nature. The
Nadaraya-Watson, Local Linear, and Local Polynomial estimators of the conditional mean m(x) are
weighted averages of Yi for observations for which Xi is close to x.

In contrast, series regression is typically described as global in nature. The estimator m̂K (x) = XK (x)′β̂K

is a function of the entire sample. The coefficients of a fitted polynomial (or spline) are affected by the
global shape of the function m(x) and thus affect the estimator m̂K (x) at any point x.

While this description has some merit it is not a complete description. As we now show, series regres-
sion estimators share the local smoothing property of kernel regression. As the number of series terms
K increase a series estimator m̂K (x) = XK (x)′β̂K also becomes a local weighted average estimator.

4The controls are: age of household head, education (5 dummy categories), married, female, married female, number of
children (3 dummies), size of household, employment status (2 dummies).
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To see this, observe that we can write the estimator as

m̂K (x) = XK (x)′
(

X ′
K X K

)−1 (
X ′

K Y
)

= 1

n

n∑
i=1

XK (x)′Q̂−1
K XK (Xi )Yi

= 1

n

n∑
i=1

ŵK (x, Xi )Yi

where Q̂K = n−1X ′
K X K and ŵK (x,u) = xK (x)′Q̂−1

K xK (u). Thus m̂K (x) is a weighted average of Yi using
the weights ŵK (x, Xi ). The weight function ŵK (x, Xi ) appears to be maximized at Xi = x, so m̂(x) puts
more weight on observations for which Xi is close to x, similarly to kernel regression.
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Figure 20.3: Kernel Representation of Polynomial Weight Function

To see this more precisely, observe that since Q̂K will be close in large samples to QK = E
[

XK X ′
K

]
,

ŵK (x,u) will be close to the deterministic weight function

wK (x,u) = XK (x)′Q−1
K XK (u).

Take the case X ∼ U [0,1]. In Figure 20.3 we plot the weight function wK (x,u) as a funtion of u for x =
0.5 (panel (a)) and x = 0.25 (panel (b)) for p = 4, 8, 12 in panel (a) and p = 4, 12 in panel (b). First,
examine panel (a). Here you can see that the weight function w(x,u) is symmetric in u about x. For
p = 4 the weight function appears similar to a quadratic in u, and as p increases the weight function
concentrates its main weight around x. However, the weight function is not non-negative. It is quite
similar in shape to what are known as higher-order (or bias-reducing) kernels, which were not reviewed
in the previous chapter but are part of the kernel estimation toolkit. Second, examine panel (b). Again
the weight function is maximized at x, but now it is asymmetric in u about the point x. Still, the general
features from panel (a) carry over to panel (b). Namely, as p increases the polynomial estimator puts
most weight on observations for which X is close to x (just as for kernel regression), but is different from
conventional kernel regression in that the weight function is not non-negative. Qualitatively similar plots
are obtained for spline regression.
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There is little formal theory (of which I am aware) which makes a formal link between series regres-
sion and kernel regression so the comments presented here are illustrative5. However, the point is that
statements of the form “Series regession is a global method; Kernel regression is a local method” may
not be complete. Both are global in nature when h is large (kernels) or K is small (series), and are local
in nature when h is small (kernels) or K is large (series).

20.8 Stone-Weierstrass and Jackson Approximation Theory

A good series approximation mK (x) has the property that it gets close to the true CEF m(x) as the
complexity K increases. Formal statements can be derived from the mathematical theory of the approx-
imation of functions.

An elegant and famous theorem is the Stone-Weierstrass Theorem (Weierstrass, 1885, Stone, 1948)
which states that any continuous function can be uniformly well approximated by a polynomial of suffi-
ciently high order. Specifically, the theorem states that if m(x) is continuous on a compact set S then for
any ε> 0 there is some K sufficiently large such that

inf
β

sup
x∈S

∣∣m(x)−XK (x)′β
∣∣≤ ε. (20.7)

Thus the true unknown m(x) can be arbitrarily well approximated by selecting a suitable polynomial.
Jackson (1912) strengthened this result to give convergence rates which depend on the smoothness

of m(x). The basic result has been extended to spline functions. The following notation will be useful.
Define the β which minimizes the left-side of (20.7) as

β∗
K = argmin

β

sup
x∈S

∣∣m(x)−XK (x)′β
∣∣ , (20.8)

define the approximation error
r∗

K (x) = m(x)−XK (x)′β∗
K , (20.9)

and define the minimized value of (20.7)

δ∗K
def= inf

β
sup
x∈S

∣∣m(x)XK (x)′β
∣∣= sup

x∈S

∣∣m(x)−XK (x)′β∗
K

∣∣= sup
x∈S

∣∣r∗
K (x)

∣∣ . (20.10)

Theorem 20.1 If for someα≥ 0, m(α)(x) is uniformly continuous on a compact
set S and XK (x) is either a polynomial basis or a spline basis (with uniform knot
spacing) of order s ≥α, then as K →∞

δ∗K ≤ o
(
K −α)

. (20.11)

Furthermore, if m(2)(x) is uniformly continuous on S and XK (x) is a linear
spline basis, then δ∗K ≤O

(
K −2

)
.

For a proof for the polynomial case see Theorem 4.3 of Lorentz (1986) or Theorem 3.12 of Schumaker
(2007) plus his equations (2.119) and (2.121). For the spline case see Theorem 6.27 of Schumaker (2007)

5Similar connections are made in the appendix of Chen, Liao, and Sun (2012).
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plus his equations (2.119) and (2.121). For the linear spline case see Theorem 6.15 of Schumaker, equa-
tion (6.28).

Theorem 20.1 is more useful than the classic Stone-Weierstrass Theorem as it gives an approximation
rate which depends on the smoothness order α. The rate o(K −α) in (20.11) means that the approxima-
tion error (20.10) decreases as K increases and decreases at a faster rate when α is large. The standard
interpretation is that when m(x) is smoother it is possible to approximate it with fewer terms.

It will turn out that for our distribution theory it is sufficient to consider the case that m(2)(x) is
uniformly continuous. For this case Theorem 20.1 shows that polynomials and quadratic/cubic splines
achieve the rate o(K −2) and linear splines achieve the rate O(K −2). For most of of our results the latter
bound will be sufficient.

More generally, Theorem 20.1 makes a distinction between polynomials and splines as polynomials
achieve the rate o (K −α) adaptively (without input from the user) while splines achieve the rate o (K −α)
only if the spline order s is appropriately chosen. This is an advantage for polynomials. However, as
emphasized by Schumaker (2007), splines simultaneously approximate the derivatives m(q)(x) for q <
α. Thus, for example, a quadratic spline simultaneously approximates the function m(x) and its first
derivative m′(x). There is no comparable result for polynomials. This is an advantage for quadratic and
cubic splines. Since economists are often more interested in marginal effects (derivatives) than in levels
this may be a good reason to prefer splines over polynomials.

Theorem 20.1 is a bound on the best uniform approximation error. The coefficient β∗
K which mini-

mizes (20.11) is not, however, the projection coefficient βK as defined in (20.3). Thus Theorem 20.1 does
not directly inform us concerning the approximation error obtained by series regression. It turns out,
however, that the projection error can be easily deduced from (20.11).

Definition 20.1 The projection approximation error is

rK (x) = m(x)−XK (x)′βK (20.12)

where the coefficient βK is the projection coefficient (20.3). The realized pro-
jection approximation error is rK = rK (X ). The expected squared projection
error is

δ2
K = E[

r 2
K

]
. (20.13)

The projection approximation error is similar to (20.9) but evaluated using the projection coefficient
rather than the minimizing coefficient β∗

K (20.8). Assuming that X has compact support S the expected
squared projection error satisfies

δK =
(∫

S

(
m(x)−XK (x)′βK

)2 dF (x)

)1/2

≤
(∫

S

(
m(x)−XK (x)′β∗

K

)2 dF (x)

)1/2

≤
(∫

S
δ∗2

K dF (x)

)1/2

= δ∗K . (20.14)

The first inequality holds since the projection coefficient βK minimizes the expected squared projection
error (see Section 2.25). The second inequality is the definition of δ∗K . Combined with Theorem 20.1 we
have established the following result.
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Theorem 20.2 If X has compact support S, for someα≥ 0 m(α)(x) is uniformly
continuous on S, and XK (x) is either a polynomial basis or a spline basis of
order s ≥α, then as K →∞

δK ≤ δ∗K ≤ o
(
K −α)

.

Furthermore, if m(2)(x) is uniformly continuous on S and XK (x) is a linear
spline basis, then δK ≤O

(
K −2

)
.

The available theory of the approximation of functions goes beyond the results described here. For
example, there is a theory of weighted polynomial approximation (Mhaskar, 1996) which provides an
analog of Theorem 20.2 for the unbounded real line when X has a density with exponential tails.

20.9 Regressor Bounds

The approximation result in Theorem 20.2 assumes that the regressors X have bounded support S.
This is conventional in series regression theory as it greatly simplifies the analysis. Bounded support
implies that the regressor function XK (x) is bounded. Define

ζK (x) = (
XK (x)′Q−1

K XK (x)
)1/2

(20.15)

ζK = sup
x
ζK (x) (20.16)

where QK = E[
XK X ′

K

]
is the population design matrix given the regressors XK . This implies that for all

realizations of XK (
X ′

K Q−1
K XK

)1/2 ≤ ζK . (20.17)

The constant ζK (x) is the normalized length of the regressor vector XK (x). The constant ζK is the
maximum normalized length. Their values are determined by the basis function transformations and
the distribution of X . They are invariant to rescaling XK or linear rotations.

For polynomials and splines we have explicit expressions for the rate at which ζK grows with K .

Theorem 20.3 If X has compact support S with a strictly positive density f (x)
on S then

1. ζK ≤O (K ) for polynomials

2. ζK ≤O
(
K 1/2

)
for splines

For a proof of Theorem 20.3 see Newey (1997, Theorem 4).
Furthermore, when X is uniformly distributed then we can explicitly calculate for polynomials that

ζK = K , so the polynomial bound ζK ≤O (K ) cannot be improved.
To illustrate, we plot in Figure 20.4(a) the values ζK (x) for the case X ∼ U [0,1]. We plot ζK (x) for a

polynomial of degree p = 9 and a quadratic spline with N = 7 knots (both satisfy K = 10). You can see that
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the values of ζK (x) are close to 3 for both basis transformations and most values of x, but ζK (x) increases
sharply for x near the boundary. The maximum values are ζK = 10 for the polynomial and ζK = 7.4 for the
quadratic spline. While Theorem 20.3 shows the two have different rates for large K , we see for moderate
K that the differences are relatively minor.
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Figure 20.4: Normalized Regressor Lengths and Integrated Squared Error

20.10 Matrix Convergence

One of the challenges which arise when developing a theory for the least squares estimator is how to
describe the large-sample behavior of the sample design matrix

Q̂K = 1

n

n∑
i=1

XK i X ′
K i

as K →∞. The difficulty is that its dimension changes with K so we cannot apply a standard WLLN.
It turns out to be convenient if we first rotate the regressor vector so that the elements are orthogonal

in expectation. Thus we define the standardized regressors and design matrix as

X̃K i =Q−1/2
K XK i (20.18)

Q̃K = 1

n

n∑
i=1

X̃K i X̃ ′
K i .

Note that E
[

X̃K X̃ ′
K

]= I K . The standardized regressors are not used in practice; they are introduced only
to simplify the theoretical derivations.

Our convergence theory will require the following fundamental rate bound on the number of coeffi-
cients K .
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Assumption 20.1

1. λmin
(
QK

)≥λ> 0

2. ζ2
K log(K )/n → 0 as n,K →∞.

Assumption 20.1.1 ensures that the transformation (20.18) is well defined6. Assumption 20.1.2 states
that the squared maximum regressor length ζ2

K grows slower than n. Since ζK increases with K this is a
bound on the rate at which K can increase with n. By Theorem 20.2 the rate in Assumption 20.1.2 holds
for polynomials if K 2 log(K )/n → 0 and for splines if K log(K )/n → 0. In either case, this means that the
number of coefficients K is growing at a rate slower than n.

We are now in a position to describe a convergence result for the standardized design matrix. The
following is Lemma 6.2 of Belloni, Chernozhukov, Chetverikov, and Kato (2015).

Theorem 20.4 If Assumption 20.1 holds then∥∥Q̃K − I K
∥∥ p−→ 0. (20.19)

A proof of Theorem 20.4 using a stronger condition than Assumption 20.1 can be found in Section
20.31. The norm in (20.19) is the spectral norm

‖A‖ = (
λmax

(
A′A

))1/2

where λmax (B ) denotes the largest eigenvalue of the matrix B . For a full description see Section A.23.
For the least squares estimator what is particularly important is the inverse of the sample design

matrix. Fortunately we can easily deduce consistency of its inverse from (20.19) when the regressors
have been orthogonalized as described.

Theorem 20.5 If Assumption 20.1 holds then∥∥∥Q̃
−1
K − I K

∥∥∥ p−→ 0 (20.20)

and
λmax

(
Q̃

−1
K

)
= 1/λmin

(
Q̃K

) p−→ 1. (20.21)

The proof of Theorem 20.5 can be found in Section 20.31.

6Technically, what is required is that λmin

(
B K QK B ′

K

)
≥λ> 0 for some K ×K sequence of matrices B K , or equivalently that

Assumption 20.1.1 holds after replacing XK with B K XK .
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20.11 Consistent Estimation

In this section we give conditions for consistent estimation of m(x) by the series estimator m̂K (x) =
XK (x)′β̂K .

We know from standard regression theory that for any fixed K , β̂K
p−→βK and thus m̂K (x) = XK (x)′β̂K

p−→
XK (x)′βK as n →∞. Furthermore, from the Stone-Weierstrass Theorem we know that XK (x)′βK → m(x)

as K → ∞. It therefore seems reasonable to expect that m̂K (x)
p−→ m(x) as both n → ∞ and K → ∞

together. Making this argument rigorous, however, is technically challenging, in part because the di-
mensions of β̂K and its components are changing with K .

Since m̂K (x) and m(x) are functions, convergence should be defined with respect to an appropriate
metric. For kernel regression we focused on pointwise convergence (for each value of x separately) as
that is the simplest to analyze. For series regression it turns out to be simplest to describe convergence
with respect to integrated squared error (ISE). We define the latter as

ISE(K ) =
∫

(m̂K (x)−m(x))2 dF (x) (20.22)

where F is the marginal distribution of X . ISE(K ) is the average squared distance between m̂K (x) and
m(x), weighted by the marginal distribution of X . The ISE is random, depends on both sample size n
and model complexity K , and its distribution is determined by the joint distribution of (Y , X ). We can
establish the following.

Theorem 20.6 Under Assumption 20.1 and δK = o(1), then as n,K →∞,

ISE(K ) = op (1) . (20.23)

The proof of Theorem 20.6 can be found in Section 20.31.
Theorem 20.6 shows that the series estimator m̂K (x) is consistent in the ISE norm under mild con-

ditions. The assumption δK = o(1) holds for polynomials and splines if K → ∞ and m(x) is uniformly
continuous. This result is analogous to Theorem 19.8 which showed that kernel regression estimator is
consistent if m(x) is continuous.

20.12 Convergence Rate

We now give a rate of convergence.

Theorem 20.7 Under Assumption 20.1 and σ2 (x) ≤σ2 <∞, then as n,K →∞,

ISE(K ) ≤Op

(
δ2

K + K

n

)
(20.24)

where δ2
K is the expected squared prediction error (20.13). Furthermore, if

m′′(x) is uniformly continuous then for polynomial or spline basis functions

ISE(K ) ≤Op

(
K −4 + K

n

)
. (20.25)
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The proof of Theorem 20.7 can be found in Section 20.31. It is based on Newey (1997).
The bound (20.25) is particularly useful as it gives an explicit rate in terms of K and n. The result

shows that the integrated squared error is bounded in probability by two terms. The first K −4 is the
squared bias. The second K /n is the estimation variance. This is analogous to the AIMSE for kernel
regression (19.5). We can see that increasing the number of series terms K affects the integrated squared
error by decreasing the bias but increasing the variance. The fact that the estimation variance is of order
K /n can be intuitively explained by the fact that the regression model is estimating K coefficients.

For polynomials and quadratic splines the bound (20.25) can be written as op
(
K −4

)+Op (K /n).
We are interested in the sequence K which minimizes the trade-off in (20.25). By examining the first-

order condition we find that the sequence which minimizes this bound is K ∼ n1/5. With this choice we
obtain the optimal integrated squared error ISE(K ) ≤ Op

(
n−4/5

)
. This is the same convergence rate as

obtained by kernel regression under similar assumptions.
It is interesting to contrast the optimal rate K ∼ n1/5 for series regression with h ∼ n−1/5 for kernel re-

gression. Essentially, one can view K −1 in series regression as a “bandwidth” similar to kernel regression,
or one can view 1/h in kernel regression as the effective number of coefficients.

The rate K ∼ n1/5 means that the optimal K increases very slowly with the sample size. For example,
doubling your sample size implies a 15% increase in the optimal number of coefficients K . To obtain a
doubling in the optimal number of coefficients you need to multiply the sample size by 32.

To illustrate, Figure 20.4(b) displays the ISE rate bounds K −4 +K /n as a function of K for n = 10,
30, 150. The filled circles mark the ISE-minimizing K , which are K = 2, 3, and 4 for the three functions.
Notice that the ISE functions are steeply downward sloping for small K and nearly flat for large K (when
n is large). This is because the bias term K −4 dominates for small values of K while the variance term
K /n dominates for large values of K and the latter flattens as n increases.

20.13 Asymptotic Normality

Take a parameter θ = a (m) which is a real-valued linear function of the regression function. This
includes the regression function m(x) at a given point x, derivatives of m(x), and integrals over m(x).
Given m̂K (x) = XK (x)′β̂K as an estimator for m(x), the estimator for θ is θ̂K = a (m̂K ) = a′

K β̂K for some

K ×1 vector of constants aK 6= 0. (The relationship a (m̂K ) = a′
K β̂K follows since a is linear in m and m̂K

is linear in β̂K .)
If K were fixed as n →∞ then by standard asymptotic theory we would expect θ̂K to be asymptot-

ically normal with variance VK = a′
K Q−1

K ΩK Q−1
K aK where ΩK = E[

XK X ′
K e2

]
. The standard justification,

however, is not valid in the nonparametric case. This is in part because VK may diverge as K →∞, and
in part due to the finite sample bias due to the approximation error. Therefore a new theory is required.
Interestingly, it turns out that in the nonparametric case θ̂K is still asymptotically normal and VK is still
the appropriate variance for θ̂K . The proof is different than the parametric case as the dimensions of
the matrices are increasing with K and we need to be attentive to the estimator’s bias due to the series
approximation.
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Assumption 20.2 In addition to Assumption 20.1

1. lim
B→∞

sup
x
E
[
e21

{
e2 > B

} | X = x
]= 0

2. E
[
e2 | X

]≥σ2 > 0

3. ζKδK = o(1) as K →∞

Assumption 20.2.1 is conditional square integrability. It implies that the conditional variance E
[
e2 | X

]
is bounded. It is used to verify the Lindeberg condition for the CLT.

Assumption 20.2.2 states that the conditional variance is nowhere degenerate. Thus there is no X for
which Y is perfectly predictable. This is a technical condition used to bound VK from below.

Assumption 20.2.3 states that approximation error δK declines faster than the maximal regressor
length ζK . For polynomials a sufficient condition for this assumption is that m′′(x) is uniformly contin-
uous. For splines a sufficient condition is that m′(x) is uniformly continuous.

Theorem 20.8 Under Assumption 20.2, as n →∞,

p
n

(
θ̂K −θ+a (rK )

)
V 1/2

K

−→
d

N(0,1) . (20.26)

The proof of Theorem 20.8 can be found in Section 20.31.
Theorem 20.8 shows that the estimator θ̂K is approximately normal with bias −a (rK ) and variance

VK /n. The variance is the same as in the parametric case. The asymptotic bias is similar to that found in
kernel regression.

One useful message from Theorem 20.8 is that the classical variance formula VK for θ̂K applies to
series regression. This justifies conventional estimators for VK as will be discussed in Section 20.18.

Theorem 20.8 shows that the estimator θ̂K has a bias a (rK ) . What is this? It is the same transforma-
tion of the function rK (x) as θ = a (m) is of the regression function m(x). For example, if θ = m(x) is the
regression at a fixed point x then a (rK ) = rK (x), the approximation error at the same point. If θ = m′(x)
is the regression derivative then a (rK ) = r ′

K (x) is the derivative of the approximation error.

This means that the bias in the estimator θ̂K for θ shown in Theorem 20.8 is simply the approximation
error transformed by the functional of interest. If we are estimating the regression function then the bias
is the error in approximating the regression function; if we are estimating the regression derivative then
the bias is the error in the derivative in the approximation error for the regression function.

20.14 Regression Estimation

A special yet important example of a linear estimator is the regression function at a fixed point x.
In the notation of the previous section, a (m) = m(x) and aK = XK (x). The series estimator of m(x) is
θ̂K = m̂K (x) = XK (x)′β̂K . As this is a key problem of interest we restate the asymptotic result of Theorems
20.8 for this estimator.
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Theorem 20.9 Under Assumption 20.2, as n →∞,

p
n (m̂K (x)−m(x)+ rK (x))

V 1/2
K (x)

−→
d

N(0,1) (20.27)

where VK (x) = XK (x)′Q−1
K ΩK Q−1

K XK (x).

There are several important features about the asymptotic distribution (20.27).
First, as mentioned in the previous section it shows that the classical variance formula VK (x) applies

for the series estimator m̂K (x). Second, (20.27) shows that the estimator has the asymptotic bias rK (x).
This is due to the fact that the finite order series is an approximation to the unknown regression function
m(x) and this results in finite sample bias.

There is another fascinating connection between the asymptotic variance of Theorem 20.9 and the
regression lengths ζK (x) of (20.15). Under conditional homoskedasticity we have the simplification
VK (x) =σ2ζK (x)2. Thus the asymptotic variance of the regression estimator is proportional to the squared
regression lengths. From Figure 20.4(a) we learned that the regression length ζK (x) is much higher at the
edge of the support of the regressors, especially for polynomials. This means that the precision of the
series regression estimator is considerably degraded at the edge of the support.

20.15 Undersmoothing

An unpleasant aspect about Theorem 20.9 is the bias term. An interesting trick is that this bias term
can be made asymptotically negligible if we assume that K increases with n at a sufficiently fast rate.

Theorem 20.10 Under Assumption 20.2, if in addition nδ∗2
K → 0 then

p
n (m̂K (x)−m(x))

V 1/2
K (x)

−→
d

N(0,1) . (20.28)

The condition nδ∗2
K → 0 implies that the squared bias converges faster than the estimation variance

so the former is asymptotically negligible. If m′′(x) is uniformly continuous then a sufficient condition
for polynomials and quadratic splines is K ∼ n1/4. For linear splines a sufficient condition is for K to
diverge faster than K 1/4. The rate K ∼ n1/4 is somewhat faster than the ISE-optimal rate K ∼ n1/5.

The assumption nδ∗2
K → 0 is often stated by authors as an innocuous technical condition. This is

misleading as it is a technical trick and should be discussed explicitly. The reason why the assumption
eliminates the bias from (20.28) is that the assumption forces the estimation variance to dominate the
squared bias so that the latter can be ignored. This means that the estimator itself is inefficient.

Because nδ∗2
K → 0 means that K is larger than optimal we say that m̂K (x) is undersmoothed relative

to the optimal series estimator.
Many authors like to focus their asymptotic theory on the assumptions in Theorem 20.10 as the

distribution (20.28) appears cleaner. However, it is a poor use of asymptotic theory. There are three
problems with the assumption nδ∗2

K → 0 and the approximation (20.28). First, the estimator m̂K (x) is
inefficient. Second, while the assumption nδ∗2

K → 0 makes the bias of lower order than the variance it
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only makes the bias of slightly lower order, meaning that the accuracy of the asymptotic approximation
is poor. Effectively, the estimator is still biased in finite samples. Third, nδ∗2

K → 0 is an assumption not
a rule for empirical practice. It is unclear what the statement “Assume nδ∗2

K → 0” means in a practical
application. From this viewpoint the difference between (20.26) and (20.28) is in the assumptions not
in the actual reality nor in the actual empirical practice. Eliminating a nuisance (the asymptotic bias)
through an assumption is a trick not a substantive use of theory. My strong view is that the result (20.26)
is more informative than (20.28). It shows that the asymptotic distribution is normal but has a non-trivial
finite sample bias.

20.16 Residuals and Regression Fit

The fitted regression at x = Xi is m̂K (Xi ) = X ′
K i β̂K and the fitted residual is êK i = Yi − m̂K (Xi ). The

leave-one-out prediction errors are

ẽK i = Yi −m̂K ,−i (Xi ) = Yi −X ′
K i β̂K ,−i

where β̂K ,−i is the least squares coefficient with the i th observation omitted. Using (3.44) we have the
simple computational formula

ẽK i = êK i (1−X ′
K i

(
X ′

K X K
)−1 XK i )−1. (20.29)

As for kernel regression the prediction errors ẽK i are better estimators of the errors than the fitted
residuals êK i as the former do not have the tendency to over-fit when the number of series terms is large.

20.17 Cross-Validation Model Selection

A common method for selection of the number of series terms K is cross-validation. The cross-
validation criterion is sum7 of squared prediction errors

CV(K ) =
n∑

i=1
ẽ2

K i =
n∑

i=1
ê2

K i (1−X ′
K i

(
X ′

K X K
)−1 XK i )−2. (20.30)

The CV-selected value of K is the integer which minimizes CV(K ).
As shown in Theorem 19.7 CV(K ) is an approximately unbiased estimator of the integrated mean-

squared error (IMSE), which is the expected integrated squared error (ISE). The proof of the result is
the same for all nonparametric estimators (series as well as kernels) so does not need to be repeated
here. Therefore, finding the K which produces the smallest value of CV(K ) is a good indicator that the
estimator m̂K (x) has small IMSE.

For practical implementation we first designate a set of models (sets of basis transformations and
number of variables K ) over which to search. (For example, polynomials of order 1 through Kmax for
some pre-selected Kmax.) For each, there is a set of regressors XK which are obtained by transformations
of the original variables X . For each set we estimate the regression by least squares, calculate the leave-
one-out prediction errors, and the CV criterion. Since the errors are a linear operation this is a simple
calculation. The CV-selected K is the integer which produces the smallest value of CV(K ). Plots of CV(K )
against K can aid assessment and interpretation. Since the model order K is an integer the CV criterion
for series regression is a discrete function, unlike the case of kernel regression.

If it is desired to produce an estimator m̂K (x) with reduced bias it may be preferred to select a value
of K slightly higher than that selected by CV alone.

7Some authors define CV(K ) as the average rather than the sum.
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Figure 20.5: Cross-Validation Functions for Polynomial Estimates of Experience Profile, College-
Educated Women

To illustrate, in Figure 20.5 we plot the cross-validation functions for the polynomial regression es-
timates from Figure 20.1. The lowest point marks the polynomial order which minimizes the cross-
validation function. In panel (a) we plot the CV function for the sub-sample of white women. Here we
see that the CV-selected order is p = 3, a cubic polynomial. In panel (b) we plot the CV function for the
sub-sample of Black women, and find that the CV-selected order is p = 2, a quadratic. As expected from
visual examination of Figure 20.1, the selected model is more parsimonious for panel (b), most likely be-
cause it has a substantially smaller sample size. What may be surprising is that even for panel (a), which
has a large sample and smooth estimates, the CV-selected model is still relatively parsimonious.

A user who desires a reduced bias estimator might increase the polynomial orders to p = 4 or even
p = 5 for the subsample of white women and to p = 3 or p = 4 for the subsample of Black women. Both
CV functions are relatively similar across these values.

20.18 Variance and Standard Error Estimation

The exact conditional variance of the least squares estimator β̂K under independent sampling is

V β̂ =
(

X ′
K X K

)−1

(
n∑

i=1
XK i X ′

K iσ
2 (Xi )

)(
X ′

K X K
)−1 . (20.31)

The exact conditional variance for the conditional mean estimator m̂K (x) = XK (x)′β̂K is

VK (x) = XK (x)′
(

X ′
K X K

)−1

(
n∑

i=1
XK i X ′

K iσ
2 (Xi )

)(
X ′

K X K
)−1 XK (x).

Using the notation of Section 20.7 this equals

1

n2

n∑
i=1

ŵK (x, Xi )2σ2 (Xi ) .
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In the case of conditional homoskedasticity the latter simplifies to

1

n
ŵK (x, x)σ2 ' 1

n
ζK (x)2σ2.

where ζK (x) is the normalized regressor length defined in (20.15). Under conditional heteroskedasticty,
large samples, and K large (so that ŵK (x, Xi ) is a local kernel) it approximately equals

1

n
wK (x, x)σ2(x) = 1

n
ζK (x)2σ2(x).

In either case we find that the variance is approximately

VK (x) ' 1

n
ζK (x)2σ2(x).

This shows that the variance of the series regression estimator is a scale of ζK (x)2 and the conditional
variance. From the plot of ζK (x) shown in Figure 20.4 we can deduce that the series regression estimator
will be relatively imprecise at the boundary of the support of X .

The estimator of (20.31) recommended by Andrews (1991a) is the HC3 estimator

V̂ β̂ =
(

X ′
K X K

)−1

(
n∑

i=1
XK i X ′

K i ẽ2
K i

)(
X ′

K X K
)−1 (20.32)

where ẽK i is the leave-one-out prediction error (20.29). Alternatives include the HC1 or HC2 estimators.
Given (20.32) a variance estimator for m̂K (x) = XK (x)′β̂K is

V̂K (x) = XK (x)′
(

X ′
K X K

)−1

(
n∑

i=1
XK i X ′

K i ẽ2
K i

)(
X ′

K X K
)−1 XK (x). (20.33)

A standard error for m̂(x) is its square root.

20.19 Clustered Observations

Clustered observations are (Yi g , Xi g ) for individuals i = 1, ...,ng in cluster g = 1, ...,G . The model is

Yi g = m
(
Xi g

)+ei g

E
[
ei g | X g

]= 0

where X g is the stacked Xi g . Stack Yi g and ei g into cluster-level variables Y g and eg .
The series regression model using cluster-level notation is Y g = X gβK +eK g . We can write the series

estimator as

β̂K =
(

G∑
g=1

X ′
g X g

)−1 (
G∑

g=1
X ′

g Y g

)
.

The cluster-level residual vector is êg = Y g −X g β̂K .
As for parametric regression with clustered observations the standard assumption is that the clusters

are mutually independent but dependence within each cluster is unstructured. We therefore use the
same variance formulae as used for parametric regression. The standard estimator is

V̂
CR1
β̂ =

(
G

G −1

)(
X ′

K X K
)−1

(
G∑

g=1
X ′

g êg ê ′
g X g

)(
X ′

K X K
)−1 .
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An alternative is to use the delete-cluster prediction error ẽg = Y g −X g β̃K ,−g where

β̃K ,−g =
( ∑

j 6=g
X ′

j X j

)−1 ( ∑
j 6=g

X ′
j Y j

)

leading to the estimator

V̂
CR3
β̂ = (

X ′
K X K

)−1

(
G∑

g=1
X ′

g ẽg ẽ ′
g X g

)(
X ′

K X K
)−1 .

There is no current theory on how to select the number of series terms K for clustered observations.
A reasonable choice is to minimize the delete-cluster cross-validation criterion CV(K ) =∑G

g=1 ẽ ′
g ẽg .

20.20 Confidence Bands

When displaying nonparametric estimators such as m̂K (x) it is customary to display confidence in-
tervals. An asymptotic pointwise 95% confidence interval for m(x) is m̂K (x)±1.96V̂ 1/2

K (x). These confi-
dence intervals can be plotted along with m̂K (x).

To illustrate, Figure 20.6 plots polynomial estimates of the regression of log(wage) on experience using
the selected estimates from Figure 20.1, plus 95% confidence bands. Panel (a) plots the estimate for the
subsample of white women using p = 5. Panel (b) plots the estimate for the subsample of Black women
using p = 3. The standard errors are calculated using the formula (20.33). You can see that the confidence
bands widen at the boundaries. The confidence bands are tight for the larger subsample of white women,
and significantly wider for the smaller subsample of Black women. Regardless, both plots indicate that
the average wage rises for experience levels up to about 20 years and then flattens for experience levels
above 20 years.
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Figure 20.6: Polynomial Estimates with 95% Confidence Bands, College-Educated Women

There are two deficiencies with these confidence bands. First, they do not take into account the
bias rK (x) of the series estimator. Consequently, we should interpret the confidence bounds as valid for
the pseudo-true regression (the best finite K approximation) rather than the true regression function
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m(x). Second, the above confidence intervals are based on a pointwise (in x) asymptotic distribution
theory. Consequently we should interpret their coverage as having pointwise validity and be cautious
about interpreting global shapes from the confidence bands.

20.21 Uniform Approximations

Since m̂K (x) is a function it is desirable to have a distribution theory which applies to the entire
function, not just the estimator at a point. This can be used, for example, to construct confidence bands
with uniform (in x) coverage properties.

For those familiar with empirical process theory, it might be hoped that the stochastic process

ηK (x) =
p

n (m̂K (x)−m(x))

V 1/2
K (x)

might converge to a stochastic (Gaussian) process, but this is not the case. Effectively, the process ηK (x)
is not stochastically equicontinuous so conventional empirical process theory does not apply.

To develop a uniform theory, Belloni, Chernozhukov, Chetverikov, and Kato (2015) have introduced
what are known as strong approximations. Their method shows that ηK (x) is equal in distribution to a
sequence of Gaussian processes plus a negligible error. Their theory (Theorem 4.4) takes the following
form. Under stronger conditions than Assumption 20.2

ηK (x) =d
XK (x)′

(
Q−1

K ΩK Q−1
K

)1/2

V 1/2
K (x)

GK +op (1)

uniformly in x, where “=d ” means “equality in distribution” and GK ∼ N(0, I K ).
This shows the distributional result in Theorem 20.10 can be interpreted as holding uniformly in x.

It can also be used to develop confidence bands (different from those from the previous section) with
asymptotic uniform coverage.

20.22 Partially Linear Model

A common use of a series regression is to allow m(x) to be nonparametric with respect to one variable
yet linear in the other variables. This allows flexibility in a particular variable of interest. A partially linear
model with vector-valued regressor X1 and real-valued continuous X2 takes the form

m (x1, x2) = x ′
1β1 +m2(x2).

This model is common when X1 are discrete (e.g. binary) and X2 is continuously distributed.
Series methods are convenient for partially linear models as we can replace the unknown function

m2(x2) with a series expansion to obtain

m (X ) ' mK (X ) = X ′
1β1 +X2K (X2)′β2K = X ′

KβK

where X2K = X2K (x2) are basis transformations of x2 (typically polynomials or splines). After transfor-
mation the regressors are XK = (X ′

1, X ′
2K ) with coefficients βK = (β′

1,β′
2K )′.
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20.23 Panel Fixed Effects

The one-way error components nonparametric regression model is

Yi t = m(Xi t )+ui +εi t

for i = 1, ..., N and t = 1, ...,T . It is standard to treat the individual effect ui as a fixed effect. This model
can be interpreted as a special case of the partially linear model from the previous section though the
dimension of ui is increasing with N .

A series estimator approximates the function m(x) with mK (x) = XK (x)′βK as in (20.4). This leads to
the series regression model Yi t = X ′

K i tβK +ui +εK i t where XK i t = XK (Xi t ).
The fixed effects estimator is the same as in linear panel data regression. First, the within transfor-

mation is applied to Yi t and to the elements of the basis transformations XK i t . These are Ẏi t = Yi t −Y i

and ẊK i t = XK i t − X K i t . The transformed regression equation is Ẏi t = Ẋ ′
K i tβK + ε̇K i t . What is important

about the within transformation for the regressors is that it is applied to the transformed variables ẊK i t

not the original regressor Xi t . For example, in a polynomial regression the within transformation is ap-

plied to the powers X j
i t . It is inappropriate to apply the within transformation to Xi t and then construct

the basis transformations.
The coefficient is estimated by least squares on the within transformed variables

β̂K =
(

n∑
i=1

T∑
t=1

ẊK i t Ẋ ′
K i t

)−1 (
n∑

i=1

T∑
t=1

ẊK i t Ẏi t

)
.

Variance estimators should be calculated using the clustered variance formulas, clustered at the level of
the individual i , as described in Section 20.19.

For selection of the number of series terms K there is no current theory. A reasonable method is to
use delete-cluster cross-validation as described in Section 20.19.

20.24 Multiple Regressors

Suppose X ∈ Rd is vector-valued and continuously distributed. A multivariate series approximation
can be obtained as follows. Construct a set of basis transformations for each variable separately. Take
their tensor cross-products. Use these as regressors. For example, a p th-order polynomial is

mK (x) =β0 +
p∑

j1=1
· · ·

p∑
jd=1

x j1

1 · · ·x jd

d β j1,..., jd K .

This includes all powers and cross-products. The coefficient vector has dimension K = 1+pd .
The inclusion of cross-products greatly increases the number of coefficients relative to the univariate

case. Consequently series applications with multiple regressors typically require large sample sizes.

20.25 Additively Separable Models

As discussed in the previous section, when X ∈ Rd a full series expansion requires a large number of
coefficients, which means that estimation precision will be low unless the sample size is quite large. A
common simplification is to treat the regression function m (x) as additively separable in the individual
regressors. This means that

m (x) = m1 (x1)+m2 (x2)+·· ·+md (xd ) .
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We then apply series expansions (polynomials or splines) separately for each component m j
(
x j

)
.

Essentially, this is the same as the expansions discussed in the previous section but omitting the interac-
tion terms.

The advantage of additive separability is the reduction in dimensionality. While an unconstrained
p th order polynomial has 1+pd coefficients, an additively separable polynomial model has only 1+d p
coefficients. This is a major reduction.

The disadvantage of additive separability is that the interaction effects have been eliminated. This is
a substantive restriction on m (x).

The decision to impose additive separability can be based on an economic model which suggests the
absence of interaction effects, or can be a model selection decision similar to the selection of the number
of series terms.

20.26 Nonparametric Instrumental Variables Regression

The basic nonparametric instrumental variables (NPIV) model takes the form

Y = m(X )+e (20.34)

E [e | Z ] = 0

where Y , X and Z are real valued. Here, Z is an instrumental variable and X an endogenous regressor.
In recent years there have been many papers in the econometrics literature examining the NPIV

model, exploring identification, estimation, and inference. Many of these papers are mathematically ad-
vanced. Two important and accessible contributions are Newey and Powell (2003) and Horowitz (2011).
Here we describe some of the primary results.

A series estimator approximates the function m(x) with mK (x) = XK (x)′βK as in (20.4). This leads to
the series structural equation

Y = X ′
KβK +eK (20.35)

where XK = XK (X ). For example, if a polynomial basis is used then XK = (1, X , ..., X K−1).
Since X is endogenous so is the entire vector XK . Thus we need at least K instrumental varibles. It is

useful to consider the reduced form equation for X . A nonparametric specification is

X = g (Z )+u

E [u | Z ] = 0.

We can appropriate g (z) by the series expansion

g (z) ' gL(z) = ZL(z)′γL

where ZL(z) is an L×1 vector of basis transformations and γL is an L×1 coefficient vector. For example,
if a polynomial basis is used then ZL(z) = (1, z, ..., zL−1). Most of the literature for simplicity focuses on
the case L = K , but this is not essential to the method.

If L ≥ K we can then use ZL = ZL(Z ) as instruments for XK . The 2SLS estimator β̂K ,L of βK is

β̂K ,L =
(

X ′
K Z L

(
Z ′

L Z L
)−1 Z ′

L X K

)−1 (
X ′

K Z L
(

Z ′
L Z L

)−1 Z ′
LY

)
.

The estimator of m(x) is m̂K (x) = XK (x)′β̂K ,L . If L > K the linear GMM estimator can be similarly defined.
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One way to think about the choice of instruments is to realize that we are actually estimating reduced
form equations for each element of XK . The reduced form system is

XK = Γ′K ZL +uK

ΓK = E[
ZL Z ′

L

]−1
E
[

ZL X ′
K

]
.

For example, suppose we use a polynomial basis with K = L = 3. Then the reduced form system (ignoring
intercepts) is  X

X 2

X 3

=
 Γ11 Γ21 Γ31

Γ12 Γ22 Γ32

Γ13 Γ13 Γ23

 Z
Z 2

Z 3

+
 u1

u2

u3

 . (20.36)

This is modeling the conditional mean of X , X 2 and X 3 as linear functions of Z , Z 2 and Z 3.
To understand if the coefficientβK is identified it is useful to consider the simple reduced form equa-

tion X = γ0 +γ1Z +u. Assume that γ1 6= 0 so that the equation is strongly identified and assume for sim-
plicity that u is independent of Z with mean zero and variance σ2

u . The identification properties of the
reduced form are invariant to rescaling and recentering X and Z so without loss of generality we can set
γ0 = 0 and γ1 = 1. Then we can calculate that the coefficient matrix in (20.36) is Γ11 Γ21 Γ31

Γ12 Γ22 Γ32

Γ13 Γ13 Γ23

=
 1 0 0

0 1 0
3σ2

u 0 1

 .

Notice that this is lower triangular and full rank. It turns out that this property holds for any values of
K = L so the coefficient matrix in (20.36) is full rank for any choice of K = L. This means that identi-
fication of the coefficient βK is strong if the reduced form equation for X is strong. Thus to check the
identification condition for βK it is sufficient to check the reduced form equation for X . A critically im-
portant caveat, however, as discussed in the following section, is that identification of βK does not mean
that the structural function m(x) is identified.

A simple method for pointwise inference is to use conventional methods to estimate VK ,L = var
[
β̂K ,L

]
and then estimate var[m̂K (x)] by XK (x)′V̂K ,L XK (x) as in series regression. Bootstrap methods are typi-
cally advocated to achieve better coverage. See Horowitz (2011) for details. For state-of-the-art inference
methods see Chen and Pouzo (2015) and Chen and Christensen (2018).

20.27 NPIV Identification

In the previous section we discussed identication of the pseudo-true coefficient βK . In this section
we discuss identification of the structural function m(x). This is considerably more challenging.

To understand how the function m(x) is determined, apply the expectation operator E [· | Z = z] to
(20.34). We find

E [Y | Z = z] = E [m(X ) | Z = z]

with the remainder equal to zero because E [e | Z ] = 0. We can write this equation as

µ(z) =
∫

m(x) f (x | z)d x (20.37)

where µ(z) = E [Y | Z = z] is the conditional mean of Y given Z = z and f (x | z) is the conditional density
of X given Z . These two functions are identified8 from the joint distribution of (Y , X , Z ). This means

8Technically, if E |Y | <∞, the joint density of (Z , X ) exists, and the marginal density of Z is positive.
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that the unknown function m(x) is the solution to the integral equation (20.37). Conceptually, you can
imagine estimating µ(z) and f (x | z) using standard techniques and then finding the solution m(x). In
essence, this is how m(x) is defined and is the nonparametric analog of the classical relationship between
the structural and reduced forms.

Unfortunately the solution m(x) may not be unique even in situations where a linear IV model is
strongly identified. It is related to what is known as the ill-posed inverse problem. The latter means
that the solution m(x) is not necessarily a continuous function of µ(z). Identification requires restricting
the class of allowable functions f (x | z). This is analogous to the linear IV model where identification re-
quires restrictions on the reduced form equations. Specifying and understanding the needed restrictions
is more subtle than in the linear case.

The function m(x) is identified if it is the unique solution to (20.37). Equivalently, m(x) is not identi-
fied if we can replace m(x) in (20.37) with m(x)+δ(x) for some non-trivial function δ(x) yet the solution
does not change. The latter occurs when ∫

δ(x) f (x | z)d x = 0 (20.38)

for all z. Equivalently, m(x) is identified if (and only if) (20.38) holds only for the trivial function δ(x) = 0.
Newey and Powell (2003) defined this fundamental condition as completeness.

Proposition 20.1 Completeness. m(x) is identified if (and only if) the com-
pleteness condition holds: (20.38) for all z implies δ(x) = 0.

Completeness is a property of the reduced form conditional density f (x | z). It is unaffected by the
structural equation m(x). This is analogous to the linear IV model where identification is a property of
the reduced form equations, not a property of the structural equation.

As we stated above, completeness may not be satisfied even if the reduced form relationship is strong.
This may be easiest to see by a constructed example9. Suppose that the reduced form is X = Z +u,
var[Z ] = 1, u is independent of Z , and u is distributed U [−1,1]. This reduced form equation has R2 =
0.75 so is strong. The reduced form conditional density is f (x | z) = 1/2 on [−1 + z,1 + z]. Consider
δ(x) = sin(x/π). We calculate that∫

δ(x) f (x | z)d x =
∫ 1+z

−1+z
sin(x/π)d x = 0

for every z, since sin(x/π) is periodic on intervals of length 2 and integrates to zero over [−1,1]. This
means that equation (20.37) holds10 for m(x)+ sin(x/π). Thus m(x) is not identified. This is despite the
fact that the reduced form equation is strong.

While identification fails for some conditional distributions f (x | z), it does not fail for all distribu-
tions. Andrews (2017) provides classes of distributions which satisfy the completeness condition and
shows that these distribution classes are quite general.

What does this mean in practice? If completeness fails then the structural equation is not identified
and cannot be consistently estimated. Furthermore, by analogy with the weak instruments literature,
we expect that if the conditional distribution is close to incomplete then the structural equation will be

9This example was suggested by Joachim Freyberger.
10In fact, (20.38) holds for m(x)+δ(x) for any function δ(x) which is periodic on intervals of length 2 and integrates to zero

on [−1,1].
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poorly identified and our estimators will be imprecise. Since whether or not the conditional distribution
is complete is unknown (and more difficult to assess than in the linear model) this is troubling for empir-
ical research. Effectively, in any given application we do not know whether or not the structural function
m(x) is identified.

A partial answer is provided by Freyberger (2017). He shows that the joint hypothesis of incomplete-
ness and small asymptotic bias can be tested. By applying the test proposed in Freyberger (2017) a user
can obtain evidence that their NPIV estimator is well-behaved in the sense of having low bias. Unlike
Stock and Yogo (2005), however, Freyberger’s result does not address inference.

20.28 NPIV Convergence Rate

As described in Horowitz (2011) the convergence rate of m̂K (x) for m(x) is

|m̂K (x)−m(x)| =Op

(
K −s +K r

(
K

n

)1/2
)

(20.39)

where s is the smoothness11 of m(x) and r is the smoothness of the joint density fX Z (x, z) of (X , Z ). The
first term K −s is the bias due to the approximation of m(x) by mK (x) and takes the same form as for series
regression. The second term K r (K /n)1/2 is the standard deviation of m̂K (x). The component (K /n)1/2 is
the same as for series regression. The extra component K r is due to the ill-posed inverse problem (see
the previous section).

From the rate (20.39) we can calculate that the optimal number of series terms is K ∼ n1/(2r+2s+1).
Given this rate the best possible convergence rate in (20.39) is Op

(
n−s/(2r+2s+1)

)
. For r > 0 these rates

are slower than for series regression. If we consider the case s = 2 these rates are K ∼ n1/(2r+5) and
Op

(
n−2/(2r+5)

)
, which are slower than the K ∼ n1/5 and Op

(
n−2/5

)
rates obtained by series regression.

A very unusual aspect of the rate (20.39) is that smoothness of fX Z (x, z) adversely affects the conver-
gence rate. Larger r means a slower rate of convergence. The limiting case as r →∞ (for example, joint
normality of X and Z ) results in a logarithmic convergence rate. This seems very strange. The reason
is that when the density fX Z (x, z) is very smooth the data contain little information about the function
m(x). This is not intuitive and requires a deeper mathematical treatment.

A practical implication of the convergence rate (20.39) is that the number of series terms K should
be much smaller than for regression estimation. Estimation variance increases quickly as K increases.
Therefore K should not be taken to be too large. In practice, however, it is unclear how to select the series
order K as standard cross-validation methods do not apply.

20.29 Nonparametric vs Parametric Identification

One of the insights from the nonparametric identification literature is that it is important to under-
stand which features of a model are nonparametrically identified, meaning which are identified with-
out functional form assumptions, and which are only identified based on functional form assumptions.
Since functional form assumptions are dubious in most economic applications the strong implication is
that researchers should strive to work only with models which are nonparametrically identified.

Even if a model is determined to be nonparametrically identified a researcher may estimate a linear
(or another simple parametric) model. This is valid because it can be viewed as an approximation to the
nonparametric structure. If, however, the model is identified only under a parametric assumption, then
it cannot be viewed as an approximation and it is unclear how to interpret the model more broadly.

11The number of bounded derivatives.
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For example, in the regression model Y = m(X )+ e with E [e | X ] = 0 the conditional mean is non-
parametrically identified by Theorem 2.14. This means that researchers who estimate linear regressions
(or other low-dimensional regressions) can interpret their estimated model as an approximation to the
underlying conditional mean function.

As another example, in the NPIV model where E [e | Z ] = 0 the structural function m(x) is identified
under the completeness condition. This means that researchers who estimate linear 2SLS regressions
can interpret their estimated model as an approximation to m(x) (subject to the caveat that it is difficult
to know if completeness holds).

But the analysis can also point out simple yet subtle mistakes. Take the simple IV model with one
exogenous regressor X1 and one endogenous regressor X2

Y =β0 +β1X1 +β2X2 +e (20.40)

E [e | X1] = 0

with no additional instruments. Suppose that an enterprising researcher suggests using the instrument
X 2

1 for X2, using the reasoning that the assumptions imply that E
[

X 2
1 e

] = 0 so X 2
1 is a valid instrument.

The trouble is that the basic model is not nonparametrically identified. If we write (20.40) as a partially
linear nonparametric IV problem

Y = m(X1)+β2X2 +e (20.41)

E [e | X1] = 0

then we can see that this model is not identified. We need a valid excluded instrument Z . Since (20.41)
is not identified, then (20.40) cannot be viewed as a valid approximation. The apparent identification of
(20.40) critically rests on the unknown truth of the linearity in (20.40).

The point of this example is that (20.40) should never be estimated by 2SLS using the instrument X 2
1

for X2, fundamentally because the nonparametric model (20.41) is not identified.
Another way to describe the mistake is to observe that X 2

1 is a valid instrument in (20.40) only if it
is a valid exclusion restriction from the structural equation (20.40). Viewed in the context of (20.41) we
can see that this is a functional form restriction. As stated above, identification based on functional form
restrictions alone is highly undesirable since functional form assumptions are dubious.

20.30 Example: Angrist and Lavy (1999)

To illustrate nonparametric instrumental variables in practice we follow Horowitz (2011) by extend-
ing the empirical work reported in Angrist and Lavy (1999). Their paper is concerned with measuring the
causal effect of the number of students in an elementary school classroom on academic achievement.
They address this using a sample of 4067 Israeli 4th and 5th grade classrooms. The dependent variable
is the classroom average score on an achievement test. Here we consider the reading score avgverb. The
explanatory variables are the number of students in the classroom (classize), the number of students
in the grade at the school (enrollment), and a school-level index of students’ socioeconomic status that
the authors call percent disadvantaged. The variables enrollment and disadvantaged are treated as ex-
ogenous but classize is treated as endogenous since wealthier schools may be able to offer smaller class
sizes.

The authors suggest the following instrumental variable for classsize. Israeli regulations specify that
class sizes must be capped at 40. This means that classize should be perfectly predictable from enroll-
ment. If the regulation is followed a school with up to 40 students will have one classroom in the grade
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and schools with 41-80 students will have two classrooms. The precise prediction is that classsize equals

p = enrollment

1+b1−enrollment/40c (20.42)

where bac is the integer part of a. Angrist and Lavy use p as an instrumental variable for classize.
They estimate several specifications. We focus on equation (6) from their Table VII which specifies

avgverb as a linear function of classize, disadvantaged, enrollment, grade4, and the interaction of classize
and disadvantaged, where grade4 is a dummy indicator for 4th grade classrooms. The equation is esti-
mated by instrumental variables, using p and p×disadvantaged as instruments. The observations are
treated as clustered at the level of the school. Their estimates show a negative and statistically significant
impact of classsize on reading test scores.

We are interested in a nonparametric version of their equation. To keep the specification reasonably
parsimonious yet flexible we use the following equation.

avgverb =β1

(
classize

40

)
+β2

(
classize

40

)2

+β3

(
classize

40

)3

+β4

(
disadvantaged

14

)
+β5

(
disadvantaged

14

)2

+β6

(
disadvantaged

14

)3

+β7

(
classize

40

)(
disadvantaged

14

)
+β8enrollment +β9grade4+β10 +e.

This is a cubic equation in classize and disadvantaged, with a single interaction term, and linear in enroll-
ment and grade4. The cubic in disadvantaged was selected by a delete-cluster cross-validation regression
without classize. The cubic in classize was selected to allow for a minimal degree of nonparametric flexi-
bility without overparameterization. The variables classize and disadvantaged were scaled by 40 and 14,
respectively, so that the regression is well conditioned. The scaling for classize was selected so that the
variable essentially falls in [0,1] and the scaling for disadvantaged was selected so that its mean is 1.

The equation is estimated by 2SLS using (p/40), (p/40)2, (p/40)3 and (p/40)× (disadvantaged/14)
as instruments for the four variables involving classize. The parameter estimates are reported in Table
20.1. The standard errors are clustered at the level of the school. Most of the individual coefficients do
not have interpretable meaning except the positive coefficient on enrollment shows that larger schools
achieve slightly higher testscores, and the negative coefficient on grade4 shows that 4th grade students
have somewhat lower testscores than 5th grade students.

To obtain a better interpretation of the results we display the estimated regression functions in Figure
20.7. Panel (a) displays the estimated effect of classize on reading test scores. Panel (b) displays the
estimated effect of disadvantaged. In both figures the other variables are set at their sample means12.

In panel (a) we can see that increasing class size decreases the average test score. This is consistent
with the results from the linear model estimated by Angrist and Lavy (1999). The estimated effect is
remarkably close to linear.

In panel (b) we can see that increasing the percentage of disadvantaged students greatly decreases
the average test score. This effect is substantially greater in magnitude than the effect of classsize. The
effect also appears to be nonlinear. The effect is precisely estimated with tight pointwise confidence
bands.

We can also use the estimated model for hypothesis testing. The question addressed by Angrist and
Lavy was whether or not classsize has an effect on test scores. Within the nonparametric model esti-
mated here this hypothesis holds under the linear restriction H0 : β1 = β2 = β3 = β7 = 0. Examining the
individual coefficient estimates and standard errors it is unclear if this is a significant effect as none of

12If they are set at other values it does not change the qualitative nature of the plots.



CHAPTER 20. SERIES REGRESSION 729

Table 20.1: Nonparametric Instrumental Variable Regression for Reading Test Score

classize/40 34.2
(33.4)

(classize/40)2 −61.2
(53.0)

(classize/40)3 29.0
(26.8)

disadvantaged/14 −12.4
(1.7)

(disadvantaged/14)2 3.33
(0.54)

(disadvantaged/14)3 −0.377
(0.078)

(classize/40)(disadvantaged/14) 0.81
(1.77)

enrollment 0.015
(0.007)

grade 4 −1.96
(0.16)

Intercept 77.0
(6.9)

these four coefficient estimates is statistically different from zero. This hypothesis is better tested by a
Wald test (using cluster-robust variance estimates). This statistic is 12.7 which has an asymptotic p-value
of 0.013. This suppports the hypothesis that class size has a negative effect on student performance.

We can also use the model to quantify the impact of class size on test scores. Consider the impact of
increasing a class from 20 to 40 students. In the above model the predicted impact on test scores is

θ = 1

2
β1 + 3

4
β2 + 7

8
β3 + 1

2
β4.

This is a linear function of the coefficients. The point estimate is θ̂ =−2.96 with a standard error of 1.21.
(The point estimate is identical to the difference between the endpoints of the estimated function shown
in panel (a).) This is a small but substantive impact.

20.31 Technical Proofs*

Proof of Theorem 20.4. We provide a proof under the stronger assumption ζ2
K K /n → 0. (The proof

presented by Belloni, Chernozhukov, Chetverikov, and Kato (2015) requires a more advanced treatment.)
Let ‖A‖F denote the Frobenius norm (see Section A.23), and write the j th element of X̃K i as X̃ j K i . Using
(A.18), ∥∥Q̃K − I K

∥∥2 ≤ ∥∥Q̃K − I K
∥∥2

F =
K∑

j=1

K∑
`=1

(
1

n

n∑
i=1

(
X̃ j K i X̃`K i −E

[
X̃ j K i X̃`K i

]))2

.



CHAPTER 20. SERIES REGRESSION 730

20 25 30 35 40

65
70

75
80

Class Size

R
ea

di
ng

 T
es

t S
co

re

(a) Effect of Classize

0 10 20 30 40 50

65
70

75
80

Percentage Disadvantaged

R
ea

di
ng

 T
es

t S
co

re

(b) Effect of Percent Disadvantaged

Figure 20.7: Nonparametric Instrumental Variables Estimates of the Effect of Classize and Disadvantaged
on Reading Test Scores

Then

E
[∥∥Q̃K − I K

∥∥2
]
≤

K∑
j=1

K∑
`=1

var

[
1

n

n∑
i=1

X̃ j K i X̃`K i

]

= 1

n

K∑
j=1

K∑
`=1

var
[

X̃ j K i X̃`K i
]

≤ 1

n
E

[
K∑

j=1
X̃ 2

j K i

K∑
`=1

X̃ 2
`K i

]

= 1

n
E
[(

X̃ ′
K i X̃K i

)2
]

≤ ζ2
K

n
E
[

X̃ ′
K i X̃K i

]= ζ2
K K

n
→ 0

where final lines use (20.17), E
[

X̃ ′
K i X̃K i

]= K , and ζ2
K K /n → 0. Markov’s inequality implies (20.19). ■

Proof of Theorem 20.5. By the spectral decomposition we can write Q̃K = H ′ΛH where H ′H = I K and
Λ= diag(λ1, ...,λK ) are the eigenvalues. Then∥∥Q̃K − I K

∥∥= ∥∥H ′ (Λ− I K ) H
∥∥= ‖Λ− I K ‖ = max

j≤K

∣∣λ j −1
∣∣−→

p
0
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by Theorem 20.4. This implies min
j≤K

∣∣λ j
∣∣−→

p
1 which is (20.21). Similarly

∥∥∥Q̃
−1
K − I K

∥∥∥= ∥∥H ′ (Λ−1 − I K
)

H
∥∥

= ∥∥Λ−1 − I K
∥∥

= max
j≤K

∣∣∣λ−1
j −1

∣∣∣
≤ max j≤K

∣∣1−λ j
∣∣

min j≤K
∣∣λ j

∣∣ −→
p

0.

■

Proof of Theorem 20.6. Using (20.12) we can write

m̂K (x)−m(x) = XK (x)′
(
β̂K −βK

)− rK (x). (20.43)

Since eK = rK + e is a projection error it satisfies E [XK eK ] = 0. Since e is a regression error it satisfies
E [XK e] = 0. We deduce E [XK rK ] = 0. Hence

∫
XK (x)rK (x) f (x)d x = E [XK rK ] = 0. Also observe that∫

XK (x)XK (x)′dF (x) =QK and
∫

rK (x)2dF (x) = E[
r 2

K

]= δ2
K . Then

ISE(K ) =
∫ (

XK (x)′
(
β̂K −βK

)− rK (x)
)2

dF (x)

= (
β̂K −βK

)′ (∫
XK (x)XK (x)′dF (x)

)(
β̂K −βK

)
−2

(
β̂K −βK

)′ (∫
XK (x)rK (x)dF (x)

)
+

∫
rK (x)2dF (x)

= (
β̂K −βK

)′
QK

(
β̂K −βK

)+δ2
K . (20.44)

We calculate that (
β̂K −βK

)′
QK

(
β̂K −βK

)= (
e ′

K X K
)(

X ′
K X K

)−1 QK
(

X ′
K X K

)−1 (
X ′

K eK
)

= (
e ′

K X̃ K
)(

X̃
′
K X̃ K

)−1 (
X̃

′
K X̃ K

)−1 (
X̃

′
K eK

)
= n−2 (

e ′
K X̃ K

)
Q̃

−1
K Q̃

−1
K

(
X̃

′
K eK

)
≤

(
λmax

(
Q̃

−1
K

))2 (
n−2e ′

K X̃ K X̃
′
K eK

)
≤Op (1)

(
n−2e ′

K X K Q−1
K X ′

K eK
)

(20.45)

where X̃ K and Q̃K are the orthogonalized regressors as defined in (20.18). The first inequality is the
Quadratic Inequality (B.18), the second is (20.21).

Using the fact that XK eK are mean zero and uncorrelated, (20.17), E
[
e2

K

]≤ E[
Y 2

]<∞, and Assump-
tion 20.1.2,

E
[
n−2e ′

K X K Q−1
K X ′

K eK
]= n−1E

[
X ′

K Q−1
K XK e2

K

]
(20.46)

≤ ζ2
K

n
E
[
e2

K

]≤ o(1).

This shows that (20.45) is op (1). Combined with (20.44) we find ISE(K ) = op (1) as claimed. ■
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Proof of Theorem 20.7. The assumption σ2 (x) ≤σ2 implies that

E
[
e2

K | X
]= E[

(rK +e)2 | X
]= r 2

K +σ2(X ) ≤ r 2
K +σ2.

Thus (20.46) is bounded by

n−1E
[

X ′
K Q−1

K XK r 2
K

]+n−1E
[

X ′
K Q−1

K XK
]
σ2 ≤ ζ2

K

n
E
[
r 2

K

]+n−1E
[
tr

(
Q−1

K XK X ′
K

)]
σ2

= ζ2
K

n
δ2

K +n−1 tr(I K )σ2

≤ o
(
δ2

K

)+ K

n
σ2

where the inequality is Assumption 20.1.2. This implies (20.45) is op
(
δ2

K

)+Op (K /n). Combined with
(20.44) we find ISE(K ) =Op

(
δ2

K +K /n
)

as claimed. ■

Proof of Theorem 20.8. Using (20.12) and linearity

θ = a (m) = a
(
ZK (x)′βK

)+a (rK ) = a′
KβK +a (rK ) .

Thus √
n

VK

(
θ̂K −θ+a (rK )

)=√
n

VK
a′

K

(
β̂K −βK

)
=

√
1

nVK
a′

K Q̂
−1
K X ′

K eK

= 1p
nVK

a′
K Q−1

K X ′
K e (20.47)

+ 1p
nVK

a′
K

(
Q̂

−1
K −Q−1

K

)
X ′

K e (20.48)

+ 1p
nVK

a′
K Q̂

−1
K X ′

K r K (20.49)

where we have used eK = e + r K . We take the terms in (20.47)-(20.49) separately. We show that (20.47) is
asymptotically normal and (20.48)-(20.49) are asymptotically negligible.

First, take (20.47). We can write

1p
nVK

a′
K Q−1

K X ′
K e = 1p

n

n∑
i=1

1p
VK

a′
K Q−1

K XK i ei . (20.50)

Observe that a′
K Q−1

K XK i ei /
p

VK are independent across i , mean zero, and have variance 1. We will apply
Theorem 6.4, for which it is sufficient to verify Lindeberg’s condition: For all ε> 0

E

[(
a′

K Q−1
K XK e

)2

VK
1

{(
a′

K Q−1
K XK e

)2

VK
≥ nε

}]
→ 0. (20.51)

Pick η > 0. Set B sufficiently large so that E
[
e21

{
e2 > B

} | X
] ≤ σ2η which is feasible by Assumption

20.2.1. Pick n sufficiently large so that ζ2
K /n ≤ εσ2/B , which is feasible under Assumption 20.1.2.
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By Assumption 20.2.2

VK = E
[(

a′
K Q−1

K XK
)2

e2
]

= E
[(

a′
K Q−1

K XK
)2
σ(X 2)

]
≥ E

[(
a′

K Q−1
K XK

)2
σ2

]
= a′

K Q−1
K E

[
XK X ′

K

]
Q−1

K aKσ
2

= a′
K Q−1

K aKσ
2. (20.52)

Then by the Schwarz Inequality, (20.17), (20.52), and ζ2
K /n ≤ εσ2/B(

a′
K Q−1

K XK
)2

VK
≤

(
a′

K Q−1
K aK

)(
X ′

K Q−1
K XK

)
VK

≤ ζ2
K

σ2 ≤ ε

B
n.

Then the left-side of (20.51) is smaller than

E

[(
a′

K Q−1
K XK

)2

VK
e21

{
e2 ≥ B

}]= E
[(

a′
K Q−1

K XK
)2

VK
E
[
e21

{
e2 ≥ B

} | X
]]

≤ E
[(

a′
K Q−1

K XK
)2

VK

]
σ2η

≤ a′
K Q−1

K aK

VK
σ2η≤ η

the final inequality by (20.52). Since η is arbitrary this verifies (20.51) and we conclude

1p
nVK

a′
K Q−1

K X ′
K e −→

d
N(0,1) . (20.53)

Second, take (20.48). Assumption 20.2 implies E
[
e2 | X

] ≤ σ2 < ∞. Since E [e | X ] = 0, applying
E
[
e2 | X

]≤σ2, the Schwarz and Norm Inequalities, (20.52), and Theorems 20.4 and 20.5,

E

[(
1p

nVK
a′

K

(
Q̂

−1
K −Q−1
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)(
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∥∥I K −Q̃K

∥∥∥∥∥Q̃
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K − I K
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≤ σ2

σ2 op (1).

This establishes that (20.48) is op (1).
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Third, take (20.49). By the Cauchy-Schwarz inequality, the Quadratic Inequality, (20.52), and (20.21),(
1p

nvK
a′

K Q̂
−1
K X ′

K r K

)2

≤ a′
K Q−1

K aK

nvK
r ′
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K X ′
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−1
K

)2 1

n
r ′

K X K Q−1
K X ′

K r K

≤Op (1)
1

n
r ′

K X K Q−1
K X ′

K r K . (20.54)

Observe that since the observations are independent, E [XK rK ] = 0, X ′
K i Q−1

K XK i ≤ ζ2
K , and E

[
r 2

K

]= δ2
K ,

E

[
1

n
r ′

K X K Q−1
K X ′

K r K

]
= E

[
1

n

n∑
i=1

rK i X ′
K i Q−1

K

n∑
i j=1

XK j rK j

]
= E[

X ′
K Q−1

K XK r 2
K

]
≤ ζ2

K E
[
r 2

K

]= ζ2
Kδ

2
K = o(1)

under Assumption 20.2.3. Thus
1

n
r ′

K X K Q−1
K X ′

K r K = op (1), (20.54) is op (1), and (20.49) is op (1).

Together, we have shown that √
n

VK

(
θ̂K −θK +a (rK )

)−→
d

N(0,1)

as claimed. ■

Proof of Theorem 20.10. It is sufficient to show that
p

n

V 1/2
K (x)

rK (x) = o(1). (20.55)

Notice that by Assumption 20.2.2

VK (x) = XK (x)′Q−1
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Using the definitions for β∗
K , r∗

K (x), and δ∗K from Section 20.8, note that

rK (x) = m(x)−X ′
K (x)βK = r∗

K (x)+X ′
K (x)

(
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K −βK
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.

By the Triangle Inequality, the definition (20.10), the Schwarz Inequality, and definition (20.15)
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The coefficients satisfy the relationship
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The first inequality is because E
[
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K X ′
K

]
E
[

XK X ′
K
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E
[

XK r∗
K

]
is a projection. The second inequality fol-

lows from the definition (20.10). We deduce that

|rK (x)| ≤ (1+ζK (x))δ∗K ≤ 2ζK (x)δ∗K . (20.57)

Equations (20.56), (20.57), and nδ∗2
K = o(1) together imply that

n

VK (x)
r 2

K (x) ≤ 4

σ2 nδ∗2
K = o(1)

which is (20.55), as required. ■
_____________________________________________________________________________________________

20.32 Exercises

Exercise 20.1 Take the estimated model

Y =−1+2X +5(X −1)1 {X ≥ 1}−3(X −2)1 {X ≥ 2}+e.

What is the estimated marginal effect of X on Y for X = 3?

Exercise 20.2 Take the linear spline with three knots

mK (x) =β0 +β1x +β2 (x −τ1)1 {x ≥ τ1}+β3 (x −τ2)1 {x ≥ τ2}+β4 (x −τ3)1 {x ≥ τ3} .

Find the inequality restrictions on the coefficients β j so that mK (x) is non-decreasing.

Exercise 20.3 Take the linear spline from the previous question. Find the inequality restrictions on the
coefficients β j so that mK (x) is concave.

Exercise 20.4 Take the quadratic spline with three knots

mK (x) =β0 +β1x +β2x3 +β3 (x −τ1)21 {x ≥ τ1}+β4 (x −τ2)21 {x ≥ τ2}+β5 (x −τ3)21 {x ≥ τ3} .

Find the inequality restrictions on the coefficients β j so that mK (x) is concave.

Exercise 20.5 Consider spline estimation with one knot τ. Explain why the knot τ must be within the
sample support of X . [Explain what happens if you estimate the regression with the knot placed outside
the support of X ].

Exercise 20.6 You estimate the polynomial regression model:

m̂K (x) = β̂0 + β̂1x + β̂2x2 +·· ·+ β̂p xp .

You are interested in the regression derivative m′(x) at x.
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(a) Write out the estimator m̂′
K (x) of m′(x).

(b) Is m̂′
K (x) is a linear function of the coefficient estimates?

(c) Use Theorem 20.8 to obtain the asymptotic distribution of m̂′
K (x).

(d) Show how to construct standard errors and confidence intervals for m̂′
K (x).

Exercise 20.7 Does rescaling Y or X (multiplying by a constant) affect the CV(K ) function? The K which
minimizes it?

Exercise 20.8 Take the NPIV approximating equation (20.35) and error eK .

(a) Does it satisfy E [eK | Z ] = 0?

(b) If L = K can you define βK so that E [ZK eK ] = 0?

(c) If L > K does E [ZK eK ] = 0?

Exercise 20.9 Take the cps09mar dataset (full sample).

(a) Estimate a 6th order polynomial regression of log(wage) on experience. To reduce the ill-conditioned
problem first rescale experience to lie in the interval [0,1] before estimating the regression.

(b) Plot the estimated regression function along with 95% pointwise confidence intervals.

(c) Interpret the findings. How do you interpret the estimated function for experience levels above 65?

Exercise 20.10 Continuing the previous exercise, compute the cross-validation function (or alterna-
tively the AIC) for polynomial orders 1 through 8.

(a) Which order minimizes the function?

(b) Plot the estimated regression function along with 95% pointwise confidence intervals.

Exercise 20.11 Take the cps09mar dataset (full sample).

(a) Estimate a 6th order polynomial regression of log(wage) on education. To reduce the ill-conditioned
problem first rescale education to lie in the interval [0,1].

(b) Plot the estimated regression function along with 95% pointwise confidence intervals.

Exercise 20.12 Continuing the previous exercise, compute the cross-validation function (or alterna-
tively the AIC) for polynomial orders 1 through 8.

(a) Which order minimizes the function?

(b) Plot the estimated regression function along with 95% pointwise confidence intervals.

Exercise 20.13 Take the cps09mar dataset (full sample).

(a) Estimate quadratic spline regressions of log(wage) on experience. Estimate four models: (1) no
knots (a quadratic); (2) one knot at 20 years; (3) two knots at 20 and 40; (4) four knots at 10, 20, 30,
& 40. Plot the four estimates. Intrepret your findings.
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(b) Compare the four splines models using either cross-validation or AIC. Which is the preferred spec-
ification?

(c) For your selected specification plot the estimated regression function along with 95% pointwise
confidence intervals. Intrepret your findings.

(d) If you also estimated a polynomial specification do you prefer the polynomial or the quadratic
spline estimates?

Exercise 20.14 Take the cps09mar dataset (full sample).

(a) Estimate quadratic spline regressions of log(wage) on education. Estimate four models: (1) no
knots (a quadratic); (2) one knot at 10 years; (3) three knots at 5, 10, and 15; (4) four knots at 4, 8,
12, & 16. Plot the four estimates. Intrepret your findings.

(b) Compare the four splines models using either cross-validation or AIC. Which is the preferred spec-
ification?

(c) For your selected specification plot the estimated regression function along with 95% pointwise
confidence intervals. Intrepret your findings.

(d) If you also estimated a polynomial specification do you prefer the polynomial or the quadratic
spline estimates?

Exercise 20.15 The RR2010 dataset is from Reinhart and Rogoff (2010). It contains observations on an-
nual U.S. GDP growth rates, inflation rates, and the debt/gdp ratio for the long time span 1791-2009. The
paper made the strong claim that GDP growth slows as debt/gdp increases, and in particular that this
relationship is nonlinear with debt negatively affecting growth for debt ratios exceeding 90%. Their full
dataset includes 44 countries, our extract only includes the United States. Let Yt denote GDP growth and
let D t denote debt/gdp. We will estimate the partially linear specification

Yt =αYt−1 +m(D t−1)+et

using a linear spline for m(D).

(a) Estimate (1) linear model; (2) linear spline with one knot at D t−1 = 60; (3) linear spline with two
knots at 40 and 80. Plot the three estimates.

(b) For the model with one knot plot with 95% confidence intervals.

(c) Compare the three splines models using either cross-validation or AIC. Which is the preferred
specification?

(d) Interpret the findings.

Exercise 20.16 Take the DDK2011 dataset (full sample). Use a quadratic spline to estimate the regression
of testscore on percentile.

(a) Estimate five models: (1) no knots (a quadratic); (2) one knot at 50; (3) two knots at 33 and 66;
(4) three knots at 25, 50 & 75; (5) knots at 20, 40, 60, & 80. Plot the five estimates. Intrepret your
findings.
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(b) Select a model. Consider using leave-cluster-one CV.

(c) For your selected specification plot the estimated regression function along with 95% pointwise
confidence intervals. [Use cluster-robust standard errors.] Intrepret your findings.

Exercise 20.17 The CHJ2004 dataset is from Cox, Hansen and Jimenez (2004). As described in Section
20.6 it contains a sample of 8684 urban Phillipino households. This paper studied the crowding-out
impact of a family’s income on non-governmental transfers. Estimate an analog of Figure 20.2(b) using
polynomial regression. Regress transfers on a high-order polynomial in income, and possibly a set of
regression controls. Ideally, select the polynomial order by cross-validation. You will need to rescale the
variable income before taking polynomial powers. Plot the estimated function along with 95% pointwise
confidence intervals. Comment on the similarities and differences with Figure 20.2(b). For the regression
controls consider the following options: (a) Include no additional controls; (b) Follow the original paper
and Figure 20.2(b) by including the variables 12-26 listed in the data description file; (c) Make a different
selection, possibly based on cross-validation.

Exercise 20.18 The AL1999 dataset is from Angrist and Lavy (1999). It contains 4067 observations on
classroom test scores and explanatory variables including those described in Section 20.30. In Section
20.30 we report a nonparametric instrumental variables regression of reading test scores (avgverb) on
classize, disadvantaged, enrollment, and a dummy for grade=4, using the Angrist-Levy variable (20.42)
as an instrument. Repeat the analysis but instead of reading test scores use math test scores (avgmath)
as the dependent variable. Comment on the similarities and differences with the results for reading test
scores.



Chapter 21

Regression Discontinuity

21.1 Introduction

One of the core goals in applied econometrics is estimation of treatment effects. A major barrier is
that in observational data treatment is rarely exogenous. Techniques discussed so far in this textbook
to deal with potential endogeneity include instrumental variables, fixed effects, and difference in dif-
ferences. Another important method arises in the context of the regression discontinuity design. This
is a rather special situation (not at the control of the econometrician) where treatment is determined
by a threshold crossing rule. For example: (1) Do political incumbants have an advantage in elections?
An incumbant is the winner of the previous election, which means their vote share exceeded a thresh-
old. (2) What is the effect of college attendence? College students are admitted based on an admission
exam, which means their exam score exceeded a specific threshold. In these contexts the treatment (in-
cumbancy, college attendence) can be viewed as randomly assigned for individuals near the cut-off. (In
the examples, for candidates who had vote shares near the winning threshold and for students who had
admission exam scores near the cut-off threshold.) This setting is called the Regression Discontinuity
Design (RDD). When it applies there are simple techniques for estimation of the causal effect of treat-
ment.

The first use of regression discontinuity is attributed to Thistlethwaite and Campbell (1960). It was
popularized in economics by Black (1999), Ludwig and Miller (2007), and Lee (2008). Important reviews
include Imbens and Leimieux (2008), Lee and Leimieux (2010), and Cattaneo, Idrobo, and Titiunik (2020,
2021).

The core model is sharp regression discontinuity where treatment is a discontinuous determinis-
tic rule of an observable. Most applications, however, concern fuzzy regression discontinuity where
the probability of treatment is discontinuous in an observable. We start by reviewing sharp regression
discontinuity and then cover fuzzy regression discontinuity.

21.2 Sharp Regression Discontinuity

Take the potential outcomes framework. An individual is untreated if D = 0 and is treated if D = 1.
The individual has outcome Y0 if untreated and Y1 if treated. The treatment effect for an individual is
θ = Y1 −Y0, which is random. An observable covariate is X . The conditional Average Treatment Effect
(ATE) for the subpopulation with X = x is θ(x) = E [θ | X = x].

The sharp regression discontinuity design occurs when treatment is determined by a threshold func-
tion of X , e.g. D = 1 {X ≥ c}. In most applications the threshold c is determined by policy or rule. The
covariate X which determines treatment is typically called the running variable. The threshold c is often

739
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called the “cut-off”.
It may be helpful to discuss a specific example. Ludwig and Miller (2007) used a sharp regression dis-

continuity design to evaluate a U.S. federal anti-poverty program called Head Start. Head Start was es-
tablished in 1965 to provide preschool, health, and other social services to poor children age three to five
and their families. Head Start funding was awarded to local municipalities through a competitive grant
application. Due to a worry that poor regions may not apply at the same rate as well-funded regions,
during the spring of 1965 the federal government provided grant-writing assistance to the 300 poorest
counties in the United States. The 300 counties were selected based on the poverty rate as measured by
the 1960 U.S. census.

As Ludwig and Miller document, the result was a surge in applications from the assisted counties
with a resulting surge in program funding. 80% of the 300 treated counties received Head Start support
while only 43% of the remaining counties received support. Thus it seems reasonable to conclude that
these counties received a substantial exogenous increase in funding.

Ludwig and Miller were interested to see if this increase in Head Start funding led to measurable
changes in outcomes. Their paper examined both mortality and education. We will focus exclusively
on mortality. Specifically, they were interested in the impact on mortality for children in the age range
5-9, for deaths they coded as “Head Start Related” (for example, tuberculosis) meaning that a goal of the
Head Start program was to reduce these events. They were also interested in the long-term effects of this
intervention so focused on mortality rates in the 1973-1983 period which is eight to eighteen years after
the grant-writing intervention. A subset of their data (assembled by Cattaneo, Titiunik, and Vazquez-
Bare (2017)) is posted on the textbook website as LM2007.

To summarize, the question addressed by Ludwig and Miller was whether grant-writing assistance in
1965 to the 300 U.S. counties selected on a poverty index had a measurable effect on childhood mortality
eight to eighteen years later in the same counties, relative to counties which did not receive the grant-
writing assistance.

In this application the unit of measurement is a U.S. county. The outcome variable Y is the county
mortality rate in 1973-1983. The running variable X is the county poverty rate (percentage of the popu-
lation below the poverty line) in 1960. The cut-off c is 59.1984. (The later is simply due to the fact that
there were 300 counties with poverty rates equal or above this cut-off.)

21.3 Identification

In this section we present the core identification theorem for the regression discontinuity model.
Recall that θ is the random individual treatment effect and θ(x) = E [θ | X = x] is the conditional ATE. Set
θ = θ(c), the conditional ATE for the subpopulation at the cut-off. This is the subpopulation affected at
the margin by the decision to set the cut-off at c. The core identification theorem states that θ is identified
by the regression discontinuity design under mild assumptions.

Let m(x) = E [Y | X = x], m0(x) = E [Y0 | X = x], and m1(x) = E [Y1 | X = x]. Note that θ(x) = m1(x)−
m0(x). Set m(x+) = lim

z↓x
m(z) and m(x−) = lim

z↓x
m(z).

The following is the core identification theorem for the regression discontinuity design. It is due to
Hahn, Todd, and Van der Klaauw (2001).

Theorem 21.1 Assume that treatment is assigned as D = 1 {X ≥ c}. Suppose
that m0(x) and m1(x) are continuous at x = c. Then θ = m (c+)−m (c−).
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The conditions for Theorem 21.1 are minimal. The continuity of m0(x) and m1(x) means that the
conditional expectation of the untreated and treated outcome are continuously affected by the running
variable. Take the Head Start example. m0(x) is the average mortality rate given the poverty rate for
counties which received no grant-writing assistance. m1(x) is the average mortality rate for counties
which received grant-writing assistance. There is no reason to expect a discontinuity in either function.

The intuition for the theorem can be seen in Figure 21.1(a). The two continuous functions plotted are
the conditional means m0(x) and m1(x). The vertical distance between these functions is the conditional
ATE function θ(x). Since the treatment rule assigns all counties with X ≥ c to treatment and all counties
with X < c to non-treatment the conditional mean of the observed outcome m(x) is the solid line, which
equals m0(x) for x < c and m1(x) for x ≥ 0. The discontinuity in m(x) at x = c equals the RDD treatment
effect θ.

The plot in Figure 21.1(a) was designed to mimic what we might expect in the Head Start application.
We have plotted both m0(x) and m1(x) as increasing functions of x, meaning that the mortality rate is
increasing in the poverty rate. We also have plotted the functions so that m1(x) lies below m0(x) as we
expect that grant-writing assistance should reduce mortality.

We know from regression theory that the conditional mean m(x) is generically identified. Thus so is
the RDD treatment effect θ = m (c+)−m (c−). This is the key take-away from the identification theorem.
The regression discontinuity design identifies the conditional ATE at the treatment cut-off. In the Head
Start example this is the ATE for a county with a poverty rate of 59%. Use of θ to infer the ATE for other
counties is extrapolation. As displayed in Figure 21.1(a) all that is identified is the solid line, the dashed
lines are not identified. Thus a limitation of the RDD approach is that it estimates a narrowly-defined
treatment effect though broader effects are typically of interest.

Identification of the RDD treatment effect is intertwined with nonparametric treatment of the func-
tions m0(x) and m1(x). If parametric (e.g. linear) forms are imposed, then the best-fitting approxi-
mations for x < c and x ≥ c will generically have a discontinuity even if the true conditional mean is
continuous. Thus a nonparametric treatment is essential to preclude falsely labeling nonlinearity as a
discontinuity.

A formal proof of Theorem 21.1 is simple. We can write the observed outcome as Y = Y01 {X < c}+
Y11 {X ≥ c}. Taking expectations conditional on X = x we find

m(x) = m0(x)1 {x < c}+m1(x)1 {x ≥ c} . (21.1)

Since m0(x) and m1(x) are continuous at x = c, we deduce m(c+) = m1(c) and m(c−) = m0(c). Thus
m(c+)−m(c−) = m1(c)−m0(c) = θ(c), as claimed.

21.4 Estimation

Our goal is estimation of the conditional ATE θ given observations {Yi , Xi } and known cut-off c. The
conditional ATE can be calculated from the conditional mean m(x). Estimation of the conditional mean
nonparametrically allowing for a discontinuity is the same as separately estimating the conditional mean
for the untreated observations Xi < c and the treated observations Xi ≥ c. The estimator for θ is the
difference between the adjoining estimated endpoints.

The previous two chapters have studied nonparametric kernel and series regression. One of the find-
ings is that for boundary estimation the preferred method is local linear (LL) regression (Section 19.4).
In contrast, the Nadaraya-Watson estimator is biased at a boundary point (see Section 19.10), and se-
ries estimators have high variance at the boundary (see Section 20.14 and Gelman and Imbens (2019)).
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Figure 21.1: Sharp Regression Discontinuity Design

Consequently, local linear estimation is preferred and is the most widely used technique1 for regression
discontinuity designs.

To describe the estimator set

Zi (x) =
(

1
Xi −x

)
.

Let K (u) be a kernel function and h a bandwidth. The LL coefficient estimator for x < c is

β̂0 (x) =
(

n∑
i=1

K

(
Xi −x

h

)
Zi (x)Zi (x)′1 {Xi < c}

)−1 (
n∑

i=1
K

(
Xi −x

h

)
Zi (x)Yi1 {Xi < c}

)

and for x ≥ c is

β̂1 (x) =
(

n∑
i=1

K

(
Xi −x

h

)
Zi (x)Zi (x)′1 {Xi ≥ c}

)−1 (
n∑

i=1
K

(
Xi −x

h

)
Zi (x)Yi1 {Xi ≥ c}

)
.

The estimator of the conditional mean is the first element of the coefficient vectors

m̂(x) = [
β̂0(x)

]
11 {x < c}+ [

β̂1(x)
]

11 {x ≥ c} .

The estimator of θ is the difference at x = c

θ̂ = [
β̂1(c)

]
1 −

[
β̂0(c)

]
1 = m̂ (c+)−m̂ (c−) . (21.2)

For efficient estimation at boundary points the Triangular kernel is recommended. However, the
Epanechnikov and Gaussian have similar efficiencies (see Section 19.10). Some authors have made a
case for the Rectangular kernel as this permits standard regression software to be used. There is an
efficiency loss (3% in root AMSE) in return for this convenience.

1Some authors use polynomials in addition to local linear estimation as an appeal to “robustness”. This should be discour-
aged as argued in Gelman and Imbens (2019).
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The conditional mean estimate m̂(x) should be plotted to give a visual inspection of the regression
function and discontinuity. Many authors plot the conditional mean only over the support near x = c
to emphasize the local nature of the estimation. Confidence bands should be calculated and plotted as
described in Section 19.17. These are calculated separately for the non-treatment and treatment sub-
samples but otherwise are identical to those described in Section 19.17.

To illustrate, Figure 21.1(b) displays our estimates of the Ludwig-Miller (2007) Head Start RDD model
for childhood mortality due to HS-related causes. We use a normalized Triangular kernel and a band-
width of h = 8. This bandwidth choice is described in Section 21.6. The x-axis is the 1960 poverty rate.
The cut-off is 59.2%. Counties below the cut-off did not receive grant-writing assistance, counties above
the cut-off received assistance. The mortality rate is on the y-axis (deaths per 100,000). The estimates
show that the mortality rate is increasing in the poverty rate (nearly linear) with a substantial downward
discontinuity at the 59% cut-off. The discontinuity is about 1.5 deaths per 100,000. The confidence bands
indicate that the estimated conditional means have a fair amount of uncertainty at the boundaries. The
conditional mean in the treated sample appears nonlinear and the confidence bands are very wide.

There is a custom in the applied economics literature to display Figure 21.1(b) somewhat differently.
Rather than displaying confidence intervals along with the local linear estimates they display binned
means. The binned means are displayed by squares or triangles and are meant to indicate a raw estimate
of the nonparametric shape of the conditional mean. This custom is a poor choice, a bad habit, and
should be avoided. Binned means are simply an inaccurate nonparametric estimator. Binned means is
the same as the Nadaraya-Watson estimator using a Rectangular kernel and only evalutated at a grid of
points rather than continuously. Local linear estimation is superior to the Nadaraya-Watson, any kernel
is superior to the Rectangular, and there is no reason to evaluate only on an arbitrary grid. Plots of binned
means gives the false visual impression of a scatter plot of raw data. They are not raw data, however, so
this visual impression is misleading. These plots are not “best practice”; rather, they are a bad habit.
The best practice is to plot the best possible nonparametric estimator and to plot confidence intervals to
convey uncertainty.

21.5 Inference

As described in Theorems 19.6 and 19.9, the LL estimator m̂(x) is asymptotically normal under stan-
dard regularity conditions. This extends to the RDD estimator θ̂. It has asymptotic bias

bias
[
θ̂
]= h2σ2

K ∗

2

(
m′′(c+)−m′′(c−)

)
and variance

var
[
θ̂
]= R∗

K

nh

(
σ2(c+)

f (c+)
+ σ2(c−)

f (c−)

)
.

The asymptotic variance can be estimated by the sum of the asymptotic variance estimators of the
two boundary regression estimators as described in Section 19.16. Let ẽi be the leave-one-out prediction
error and set

Zi =
(

1
Xi − c

)
Ki = K

(
Xi − c

h

)
.
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The covariance matrix estimators are

V̂ 0 =
(

n∑
i=1

Ki Zi Z ′
i1 {Xi < c}

)−1 (
n∑

i=1
K 2

i Zi Z ′
i ẽ2

i 1 {Xi < c}

)(
n∑

i=1
Ki Zi Z ′

i1 {Xi < c}

)−1

V̂ 1 =
(

n∑
i=1

Ki Zi Z ′
i1 {Xi ≥ c}

)−1 (
n∑

i=1
K 2

i Zi Z ′
i ẽ2

i 1 {Xi ≥ c}

)(
n∑

i=1
Ki Zi Z ′

i1 {Xi ≥ c}

)−1

.

The asymptotic variance estimator for θ̂ is the sum of the first diagonal element from these two co-
variance matrix estimators,

[
V̂ 0

]
11 +

[
V̂ 0

]
11. The standard error for θ̂ is the square root of the variance

estimator.
Inferential statements about the treatment effect θ are affected by bias just as in any nonparametric

estimation context. In general the degree of bias is uncertain. There are two recommendations which
may help to reduce the finite sample bias. First, use a common bandwidth for estimation of the LL
regression on each sub-sample. When m(x) has a continuous second derivative at x = c this will result
in a zero first-order asymptotic bias. Second, use a bandwidth which is smaller than the AMSE-optimal
bandwidth. This reduces the bias at the cost of increased variance and standard errors. Overall this leads
to more honest inference statements.

Table 21.1: RDD Estimates of the Effect of Head Start Assistance on Childhood Mortality

Baseline Covariates
θ̂ −1.51 −1.56
s(θ̂) (0.71) (0.71)
% Black 0.027
s(β̂1) (0.007)
% Urban −0.0094
s(β̂2) (0.0046)

To illustrate, Table 21.1 presents the RDD estimate of the Head Start treatment effect (the effect of
grant-writing assistance on a county with poverty rate at the policy cut-off). This equals the vertical
distance between the estimated conditional means from Figure 21.1(b). The point estimate is −1.51
with a standard error of 0.71. The t-statistic for a test of no effect has a p-value of 3%, consistent with
statistical significance at conventional levels. The estimated policy impact is large. It states that federal
grant-writing assistance, and the resulting surge in spending on the Head Start program, led to a long-
term decrease in targeted mortality by about 1.5 children per 100,000. Given that the estimated untreated
mortality rate is 3.3 children per 100,000 at the cut-off this is a near 50% decrease in the mortality rate.

21.6 Bandwidth Selection

In nonparametric estimation the most critical choice is the bandwidth. This is especially important
in RDD estimation as there is not broad agreement on the best bandwidth selection method. It therefore
is prudent to calculate several data-based bandwidth rules before estimation. I will describe two simple
approaches based on the global fit of the RDD estimator.

Our first suggestion is the Rule-of-Thumb (ROT) bandwidth (19.9) of Fan and Gijbels (1996) modified
to allow for a discontinuity at x = c. The method requires a reference model. A modest extension of Fan-
Gijbels’ approach is a q th order polynomial plus a level shift discontinuity. This model is

m(x) =β0 +β1x +β2x2 +·· ·+βq xq +βq+1D
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where D = 1 {x ≥ c}. Estimate this model by least squares, obtain coefficient estimates and the variance
estimate σ̂2. From the coefficient estimates calculate the estimated second derivative

m̂′′(x) = 2β̂2 +6β̂3x +12β̂4x2 +·· ·+q(q −1)β̂q xq−2.

The constant B in (19.9) is estimated by

B̂ = 1

n

n∑
i=1

(
1

2
m̂′′(Xi )

)2

1 {ξ1 ≤ Xi ≤ ξ2}

where [ξ1,ξ2] is the region of evaluation (and can be set to equal to the support of X when the latter is
bounded). The reference bandwidth (19.9) is then

hrot = 0.58

(
σ̂2 (ξ2 −ξ1)

B̂

)1/5

n−1/5. (21.3)

Fan-Gijbels recommend q = 4 but other choices can be used for the polynomial order. The ROT band-
width (21.3) is appropriate for any normalized (variance one) kernel. For the unnormalized rectangular
kernel K (u) = 1/2 for |u| ≤ 1 replace the constant 0.58 with 1.00. For the unnormalized Triangular kernel
K (u) = 1−|u| for |u| ≤ 1 replace the constant 0.58 with 1.42.

Another useful method is cross-validation. CV for the RDD estimator is essentially the same as for
any other nonparametric estimator. For each bandwidth the leave-one-out residuals are calculated and
their sum of squares recorded. The bandwidth which minimizes this criterion is the CV-selected choice.
Plots of the CV criterion as a function of h can aid in determinining the sensitivity of the fit with respect
to the bandwidth.

These two proposals aim to produce a bandwidth h with global accuracy. An alternative is a band-
width selection rule which aims at accuracy at or near the cut-off. The advantage of the global approach
is that it is a simpler estimation problem and thus more accurate and less variable. Bandwidth estima-
tion is a hard problem. Noise in estimation of the bandwidth will translate into estimation noise for the
RDD estimate. On the other hand, methods which aim at accuracy at the cut-off are targeted at the ob-
ject of interest. This is a challenging estimation issue so I will not review it further. For specific proposals
see Imbens and Kalyanaraman (2012), Arai and Ichimura (2018), and Cattaneo, Idrobo, Titiunik (2020).

A compromise is calculate the CV criteria with the region of evaluation [ξ1,ξ2] a subset of the full sup-
port of X centered close to the cut-off. Several of the early review papers recommended this approach.
The challenge with this approach is that the CV criteria is a noisy estimator and by restricting the region
of evaluation we are increasing its estimation variance. This increases noise.

In applications I recommend that you start by calculating the Fan-Gijbels ROT bandwidth for several
values of polynomial order q . When comparing the results pay attention to the precision of the coeffi-
cients in the polynomial regression. If the high-order powers are imprecisely estimated the bandwidth
estimates may be noisy as well. Second, find the bandwidth which minimizes the cross-validation cri-
terion. Plot the CV criterion. If it is relatively flat this informs you that it is difficult to rank bandwidths.
Combine the above information to select an AMSE-minimizing bandwidth. Then reduce this bandwidth
somewhat (perhaps 25%) to reduce estimation bias.

Some robustness checking (estimation with alternative bandwidths) is prudent, but narrowly so. A
rather odd implication of the robustness craze is to desire results which do not change with bandwidths.
Contrariwise, if the true regression function is nonlinear then results will change with bandwidths. What
you should expect is that as you reduce the bandwidth the estimated function will reveal a combina-
tion of shape and noise accompanied by wider confidence bands. As you increase the bandwidth the
estimates will straighten out and the confidence bands will narrow. The narrowness means that the esti-
mates have reduced variance but this comes at the cost of increased (and uncertain) bias.
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Figure 21.2: RDD Diagnostics

We illustrate using the Ludwig-Miller (2007) Head Start application. We calculated the modified Fan-
Gijbels ROT using q = 2, 3, and 4, obtaining bandwidths of hrot(q = 2) = 24.6, hrot(q = 3) = 11.0, and
hrot(q = 4) = 5.2. These results are sensitive to the choice of polynomial. Examining these polynomial
regressions we see that the third and fourth coefficient estimates have large standard errors so are noisy.
We next evalulated the cross-validation criterion on the region [1,30], plotted in Figure 21.2(a). We see
that the CV criterion is monotonically decreasing with h, though quite flat for h ≥ 20. Essentially the
CV criterion recommends an infinite bandwidth which means using all observations equally weighted.
Since we want a bandwidth which is smaller than AMSE-optimal, we lean towards smaller bandwidths
and take a rough average of the ROT bandwidths with q = 3 and q = 4 to obtain h = 8. This is the band-
width used in the empirical results shown in this chapter.

Larger bandwidths result in flatter (more linear) estimated conditional mean functions and a smaller
estimated Head Start effect. Smaller bandwidths result in more curvature in the estimated conditional
mean functions, in particular for the section above the cut-off.

21.7 RDD with Covariates

A powerful implication of Theorem 21.1 is that covariates are not necessary to identify the condi-
tional ATE. This implies that augmenting the regression model to include covariates is not necessary for
estimation and inference. The precision of estimation, however, will be affected. Inclusion of relevant
covariates can reduce the equation error. It is therefore prudent to consider the addition of relevant
covariates when available.

Denote the variables as (Y , X , Z ) where Z is a vector of covariates. Again consider the potential out-
comes framework where Y0 and Y1 are the outcome with and without treatment. Assume that the con-
ditional means take the partially linear form

E [Y0 | X = x, Z = z] = m0(x)+β′z
E [Y1 | X = x, Z = z] = m1(x)+β′z.

For simplicity we assume that the linear coefficients are the same in the two equations. This is not es-
sential but simplifies the estimation strategy. It follows that the conditional mean for Y equals

m(x, z) = m0(x)1 {x,c}+m1(x)1 {x ≥ c}+β′z.
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A minor extension of Theorem 21.1 shows that the conditional ATE is θ = m (c+, z)−m (c−, z).
Different authors have suggested different methods for estimation of the RDD with covariates model.

The preferred method is the estimator of Robinson (1988). See Section 19.24. (It is preferred because
Robinson demonstrated that it is semiparametrically efficient while the other suggestions have no effi-
ciency justification.) The estimation method is as follows.

1. Use the RDD local linear estimator to regress Yi on Xi to obtain the first-step fitted values m̂i =
m̂ (Xi ).

2. Using LL regression, regress Zi 1 on Xi , Zi 2 on Xi , . . . , and Zi k on Xi , obtaining the fitted values for
the covariates, say ĝ1i , . . . , ĝki .

3. Regress Yi −m̂i on Z1i − ĝ1i , . . . , Zki − ĝki to obtain the coefficient estimate β̂ and standard errors.

4. Construct the residual êi = Yi −Z ′
i β̂.

5. Use the RDD local linear estimator to regress êi on Xi to obtain the nonparametric estimator m̂(x),
conditional ATE θ̂, and associated standard errors.

As shown by Robinson (1988) and discussed in Section 19.24, the above estimator is semiparametri-
cally efficient, the conventional asymptotic theory valid, and conventional inference is valid. Thus the
estimators can be used to assess the conditional ATE.

As mentioned above, inclusion of covariates does not alter the conditional ATE parameter θ under
correct specification. Inclusion of covariates can, however, affect the conditional mean function m(x)
at points x away from the discontinuity. Covariates will also affect the precision of the estimator and
standard errors.

To illustrate, we augment the Ludwig-Miller Head Start estimates with two covariates: the county-
level Black population percentage, and the county-level urban population percentage. These variables
can be viewed as proxies for income. We estimate the model using the Robinson estimator. The esti-
mated nonlinear function m(x) is displayed in Figure 21.2(b), the coefficient estimates in Table 21.1.

Comparing Figure 21.2(b) with Figure 21.1(b) it appears that the estimated conditional ATE (the treat-
ment effect of the policy) is about the same but the shape of m (x) is different. With the covariates in-
cluded m (x) is considerably flatter. Examining Table 21.1 we can see that the estimated treatment effect
is nearly the same as in the baseline model without covariates. We also see that the coefficient on the
Black percentage is positive and that on the urban percentage is negative, consistent with the view that
these are serving as proxies for income.

21.8 A Simple RDD Estimator

A simple RDD estimator can be implement by a standard regression using conventional software. It
is equivalent to a LL estimator with a Rectangular bandwidth. Estimate the regression

Y =β0 +β1X +β3(X − c)D +θD +e (21.4)

for the subsample of observations such that |X − c| ≤ h. The coefficient estimate θ̂ is the estimated con-
ditional ATE and inference can proceed conventionally using regression standard errors. The most im-
portant choice is the bandwidth. The ROT choice is (21.3) with 1.00 replacing the constant 0.58.

To illustrate, take the Head Start sample. For the normalized Triangular kernel we had used a band-
width of h = 8. This is consistent with a bandwidth of h = 8

p
3 ' 13.8 for the Rectangular kernel. We took
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the subsample of 482 with poverty rates in the interval 59.2±13.8 = [45.4,72.0] and estimated equation
(21.4) by least squares. The estimates are

Ŷ = −3.11
(9.13)

+ 0.11
(0.17)

X + 0.18
(0.23)

(X −59.2)D − 2.20
(1.06)

D. (21.5)

The point estimate −2.2 of the conditional ATE is larger than those reported in Table 21.1 but within
sampling variation. The standard error for the effect is also larger, consistent with our expectation that
the rectangular kernel estimator is less accurate.

21.9 Density Discontinuity Test

The core identification theorem assumes that the conditional means m0(x) and m1(x) are continu-
ous at the cut-off. These assumptions may be violated if the running variable is manipulated by individ-
uals seeking or avoiding treatment. Manipulation to obtain treatment is likely to lead to bunching of the
running variable just above or below the cut-off. If there is no manipulation we expect the density of X
to be continuous at x = c, but if there is manipulation we expect that there might be a discontinuity in
the density of X at x = c.

A reasonable specification check is to assess if the density f (x) of X is continuous at x = c. Some
care needs to be exercised in implementation, however, as conventional density estimators smooth over
discontinuities and conventional density estimators are biased at boundary points (similarly to the bias
of the Nadaraya-Watson estimator at boundary points).

A simple visual check is the histogram of the running variable with narrow bins, carefully constructed
so that no bin spans the cut-off. If the histogram bins display no evidence of bunching at one side of
the cut-off this is consistent with the hypothesis that the density is continuous at the cut-off; on the
other hand if there is a noticable spike on either side this is inconsistent with the hypothesis of correct
specification.

In the Head Start example it is not credible that the running variable was manipulated by the individ-
ual counties since it was constructed from the 1960 census by a federal agency in 1965. Never-the-less we
can examine the evidence. In Figure 21.2(c) we display a histogram of frequency counts for the running
variable (county poverty rate), with bins of width 2, constructed so that one of the bin endpoints falls
exactly at the cut-off (the solid line). The histogram appears to be continuously decreasing throughout
its support. In particular there is no visual evidence of bunching around the cut-off.

McCrary (2008) implements a formal test for continuity of the density at the cut-off. I only give a
brief summary here; see his paper for details. The first step is a fine histogram estimator, similar to Fig-
ure 21.2(c) but with more narrow bin widths. The second step is to apply the RDD local linear estimator
treating the histogram heights as the outcome variable and the bin midpoints at the running variable.
This is a local linear density estimator and is not subject to the boundary bias problems of the conven-
tional kernel density estimator. The RDD conditional ATE is the difference in the density at the cut-off.
McCrary derives the asymptotic distribution of the estimator of the density difference and proposes an
appropriate t-statistic for testing the hypothesis of a continuous density. If the statistic is large this is
evidence against the assumption of no manipulation, suggesting that the RDD design is not appropriate.

21.10 Fuzzy Regression Discontinuity

The sharp regression discontinuity requires that the cut-off perfectly separates treatment from non-
treatment. An alternative context is where this separation is imperfect but the conditional probability of
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treatment is discontinuous at the cut-off. This is called fuzzy regression discontinuity (FRD).
Again consider the potential outcomes framework, where Y0 and Y1 are the outcomes without treat-

ment and with treatment, θ = Y1 −Y0 is the treatment effect, X is the running variable, the conditional
average treatment effect at the cutoff is θ = E [θ | X = c], and D = 1 indicates treatment. Define the con-
ditional probability of treatment

p (x) =P [D = 1 | X = x] .

and the left and right limits at the cut-off p (c+) and p (c−). The FRD applies when p (c+) 6= p (c−).
This siutation is illustrated in Figure 21.3(a). This displays the conditional probability of treatment

as a function of the running variable X with a discontinuity at X = c.
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Figure 21.3: Fuzzy Regression Discontinuity Design

The following is the core identification theorem for the regression discontinuity design. It is due to
Hahn, Todd, and Van der Klaauw (2001).

Theorem 21.2 Suppose that m0(x) and m1(x) are continuous at x = c, p(x) is
discontinuous at x = c, and D is independent of θ for X near c. Then

θ = m (c+)−m (c−)

p (c+)−p (c−)
. (21.6)

Theorem 21.2 is a more substantial identification result than Theorem 21.1 as it is inherently surpris-
ing. It states that the conditional ATE is identified by the ratio of the discontinuities in the conditional
mean and conditional probability functions under the stated assumptions. This broadens the scope for
potential application of the regression discontinuity framework beyond the sharp RDD.

In addition to the discontinuity of p(x), the key additional assumption relative to Theorem 21.1 is
that treatment D is independent of the treatment effect θ at X = x. This is a strong assumption. It means
that treatment assignment is randomly assigned for individuals with X near c. This does not allow, for
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example, for individuals to select into treatment, for then individuals with high treatment effects θ are
more likely to seek treatment than individuals with low treatment effects θ.

A display of the outcomes is given in Figure 21.3(b). The two dashed lines are the mean potential
outcomes m0(x) and m1(x). The realized conditional mean m(x) is the probability weighted average of
these two functions using the probability function displayed in panel (a). Since the probability function
is discontinuous at x = c the conditional mean m(x) also is discontinuous at x = c. The discontinu-
ity, however, is not the full conditional ATE θ. The important contribution of Theorem 21.2 is that the
conditional ATE equals the ratio of the discontinuities in panels (b) and (a).

To prove the Theorem, first observe that the observed conditional mean is

m(x) = (
1−p(x)

)
m0(x)+p(x)m1(x) = m0(x)+p(x) (m1(x)−m0(x)) .

It’s left and right limits at c are

m(c+) = m0(c)+p(c+)θ

m(c−) = m0(c)+p(c−)θ.

Taking the difference and re-arranging we establish the theorem.

21.11 Estimation of FRD

As displayed in (21.2) the LL estimator of the discontinuity m (c+)−m (c−) is obtained by local linear
regression of Y on X on the two sides of the cut-off, leading to

m̂ (c+)−m̂ (c−) = [
β̂1(c)

]
1 −

[
β̂0(c)

]
1 .

Similarly, a LL estimator p̂ (c+)− p̂ (c−) of the discontinuity p (c+)−p (c−) can obtained by local linear
regression of Y on D on the two sides of the cut-off. Dividing we obtain the estimator of the conditional
ATE

θ̂ = m̂ (c+)−m̂ (c−)

p̂ (c+)− p̂ (c−)
. (21.7)

This generalizes the sharp RDD estimator, for in that case p (c+)−p (c−) = 1.
This estimator bears a striking resemblance to the Wald expression (12.27) for the structural coeffi-

cient and estimator (12.28) in an IV regression with a binary instrument. In fact, θ̂ can be thought of as a
locally weighted IV estimator of a regression of Y on X with instrument D . However, the easiest way to
implement estimation is using the expression for θ̂ above.

The estimator (21.7) requires four LL regressions. It is unclear if common bandwidths should be used
for the numerator and denominator or if different bandwidths is a better choice. Bandwidth selection is
critically important. In addition to assessing the fit of the regression of Y on X , it is important to check
the fit of the regression of D on X for the estimator p̂ (x). The latter is the reduced form of the IV model.
Identification rests on its precision.

The identification of the FRD conditional ATE depends on the magnitude of the discontinuity in the
conditional probability p(x) at x = c. A small discontinuity will lead to a weak instruments problem.

Standard errors can be calculated similar to IV regression. Let s
(
θ̂
)

be a standard error m̂ (c+) −
m̂ (c−). Then a standard error for θ̂ is s

(
θ̂
)

/
∣∣p̂ (c+)− p̂ (c−)

∣∣.
In FRD applications it is recommended to plot the estimated functions m̂ (x) and p̂ (x) along with

confidence bands to assess precision. You are looking for evidence that the discontinuity in p(x) is
real and meaningful so that the conditional ATE θ is identified. A discontinuity in m(x) is an indica-
tor whether or not the conditional ATE is non-zero. If there is no discontinuity in m(x) then θ = 0. The
estimate of the conditional ATE is the ratio of these two estimated discontinuities.
_____________________________________________________________________________________________
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21.12 Exercises

Exercise 21.1 We have described the RDD when treatment occurs for D = 1 {X ≥ c}. Suppose instead
that treatment occurs for D =1 {X ≤ c}. Describe the differences (if any) involved in estimating the con-
ditional ATE θ.

Exercise 21.2 Suppose treatment occurs for D = 1 {c1 ≤ X ≤ c2} where both c1 and c2 are in the interior
of the support of X . What treatment affects are identified?

Exercise 21.3 Show that (21.1) is obtained by taking the conditional expectation as described.

Exercise 21.4 Explain why equation (21.4) estimated on the subsample for which |X − c| ≤ h is identical
to a local linear regression with a Rectangular bandwidth.

Exercise 21.5 Use the datafile LM2007 on the textbook webpage. Replicate the regresssion (21.5) using
a Rectangular kernel and a bandwidth of 13.8 (as described in the text). Repeat with a bandwidth of 7
and 20. Report your estimates of the conditional ATE and standard error. The dependent variable is
mort_age59_related_postHS. (The running variable is povrate60.)

Exercise 21.6 Use the datafile LM2007 on the textbook webpage. Replicate the baseline RDD estimate
as reported in Table 21.1. Repeat with a bandwidth of h = 4 and h = 12. Report your estimates of the
conditional ATE and standard error.

Exercise 21.7 Use the datafile LM2007 on the textbook webpage. Ludwig and Miller (2007) shows that
similar RDD estimates for other forms of mortality do not display similar discontinuities. Perform a
similar check. Estimate the conditional ATE using the dependent variable mort_age59_injury_postHS
(mortality due to injuries in the 5-9 age group).

Exercise 21.8 Do a similar estimation as in the previous exercise, but using the dependent variable
mort_age25plus_related_postHS (mortality due to HS-related causes in the 25+ age group).

Exercise 21.9 Do a similar estimation as in the previous exercise, but using the dependent variable
mort_age59_related_preHS (mortality due to HS-related causes in the 5-9 age group during 1959-1964,
before the Head Start program was started).
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Chapter 22

M-Estimators

22.1 Introduction

So far in this textbook we have primarily focused on estimators which have explicit algebraic ex-
pressions. However, many econometric estimators need to be calculated by numerical methods. These
estimators are collectively described as nonlinear. Many fall in a broad class known as m-estimators. In
this part of the textbook we describe a number of m-estimators in wide use in econometrics. They have
a common structure which allows for a unified treatment of estimation and inference.

An m-estimator is defined as a minimizer of a sample average

θ̂ = argmin
θ∈Θ

Sn(θ)

Sn(θ) = 1

n

n∑
i=1

ρ (Yi , Xi ,θ)

where ρ (Y , X ,θ) is some function of (Y , X ) and a parameter θ ∈Θ. The function Sn(θ) is called the crite-
rion function or objective function. For notational simplicity set ρi (θ) = ρ (Yi , Xi ,θ).

This includes maximum likelihood when ρi (θ) is the negative log-density function. “m-estimators”
are a broader class; the prefix “m” stands for “maximum likelihood-type”.

The issues we focus on in this chaper are: (1) identification; (2) estimation; (3) consistency; (4)
asymptotic distribution; and (5) covariance matrix estimation.

22.2 Examples

There are many m-estimators in common econometric usage. Some examples include the following.

1. Ordinary Least Squares: ρi (θ) = (
Yi −X ′

iθ
)2.

2. Nonlinear Least Squares: ρi (θ) = (Yi −m (Xi ,θ))2 (Chapter 23).

3. Least Absolute Deviations: ρi (θ) = ∣∣Yi −X ′
iθ

∣∣ (Chapter 24).

4. Quantile Regression: ρi (θ) = (
Yi −X ′

iθ
)(
τ−1{(

Yi −X ′
iθ

)< 0
})

(Chapter 24).

5. Maximum Likelihood: ρi (θ) =− log f (Yi | Xi ,θ).

753
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The final category – Maximum Likelihood Estimation – includes many estimators as special cases.
This includes many standard estimators of limited-dependent-variable models (Chapters 25-27). To il-
lustrate, the probit model for a binary dependent variable is

P [Y = 1 | X ] =Φ(
X ′θ

)
where Φ (u) is the normal cumulative distribution function. We will study probit estimation in detail in
Chapter 25. The negative log-density function is

ρi (θ) =−Yi log
(
Φ

(
X ′

iθ
))− (1−Yi ) log

(
1−Φ(

X ′
iθ

))
.

Not all nonlinear estimators are m-estimators. Examples include method of moments, GMM, and
minimum distance.

22.3 Identification and Estimation

A parameter vector θ is identified if it is uniquely determined by the probability distribution of the
observations. This is a property of the probability distribution, not of the estimator.

However, when discussing a specific estimator it is common to describe identification in terms of the
criterion function. Assume E

∣∣ρ (Y , X ,θ)
∣∣<∞. Define

S(θ) = E [Sn(θ)] = E[
ρ (Y , X ,θ)

]
and its population minimizer

θ0 = argmin
θ∈Θ

S(θ).

We say that θ is identified (or point identified) by S(θ) if the minimizer θ0 is unique.
In nonlinear models it is difficult to provide general conditions under which a parameter is identified.

Identification needs to be examined on a model-by-model basis.
An m-estimator θ̂ by definition minimizes Sn(θ). When there is no explicit algebraic expression for

the solution the minimization is done numerically. Such numerical methods are reviewed in Chapter 12
of Introduction to Econometrics.

We illustrate using the probit model of the previous section. We use the CPS dataset for Y equal to an
indicator that the individual is married1, and set the regressors equal to years of education, age, and age
squared. We obtain the following estimates

P [married = 1] =Φ
 0.031

(.002)
education+ 16.4

(0.3)

( age

100

)
− 16.7

(0.4)

( age

100

)2
+ 3.73

(0.07)

 .

Standard error calculation will be discussed in Section 22.8. In this application we see that the probability
of marriage is increasing in years of education and is an increasing yet concave function of age.

22.4 Consistency

It seems reasonable to expect that if a parameter is identified then we should be able to estimate the
parameter consistently. For linear estimators we demonstrated consistency by applying the WLLN to the

1We define married=1 if marital equals 1, 2, or 3.
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explicit algebraic expressions for the estimators. This is not possible for nonlinear estimators since they
do not have explicit algebraic expressions.

Instead, what is available to us is that an m-estimator minimizes the criterion function Sn (θ) which is
itself a sample average. For any given θ the WLLN shows that Sn (θ) −→

p
S (θ). It is intuitive that the min-

imizer of Sn (θ) (the m-estimator θ̂) will converge in probability to the minimizer of S (θ) (the parameter
θ0). However, the WLLN by itself is not sufficient to make this extension.

S(θ)
Sn1

(θ)
Sn2

(θ)
Sn3

(θ)

θ0 θ̂n1
θ̂n2

θ̂n3

(a) Non-Uniform Convergence

S(θ) + ε

S(θ) − ε

S(θ)

Sn(θ)

(b) Uniform Convergence

●

●

●

●

S(θ0)

Sn(θ0)

Sn(θ̂)

S(θ̂)

(c) Consistency

Figure 22.1: Consistency of m-Estimators

To see the problem examine Figure 22.1(a). This displays a sequence of functions Sn(θ) (the dashed
lines) for three values of n. What is illustrated is that for each θ the function Sn(θ) converges towards the
limit function S(θ). However for each n the function Sn(θ) has a severe dip in the right-hand region. The
result is that the sample minimizer θ̂n converges to the right-limit of the parameter space. In contrast,
the minimizer θ0 of the limit criterion S(θ) is in the interior of the parameter space. What we observe is
that Sn(θ) converges to S(θ) for each θ but the minimizer θ̂n does not converge to θ0.

A sufficient condition to exclude this pathological behavior is uniform convergence – uniformity over
the parameter spaceΘ. As we show in Theorem 22.1, uniform convergence in probability of Sn (θ) to S (θ)
is sufficient to establish that the m-estimator θ̂ is consistent for θ0.

Definition 22.1 Sn (θ) converges in probability to S (θ) uniformly over θ ∈Θ if

sup
θ∈Θ

|Sn (θ)−S (θ)| −→
p

0

as n →∞.

Uniform convergence excludes erratic wiggles in Sn (θ) uniformly across θ and n (e.g., what occurs
in Figure 22.1(a)). The idea is illustrated in Figure 22.1(b). The heavy solid line is the function S (θ).
The dashed lines are S (θ)+ε and S (θ)−ε. The thin solid line is the sample criterion Sn (θ). The figure
illustrates a situation where the sample criterion satisifes supθ∈Θ |Sn (θ)−S (θ)| < ε. The sample criterion
as displayed weaves up and down but stays within ε of S(θ). Uniform convergence holds if the event
shown in Figure 22.1(b) holds with high probability for n sufficiently large, for any arbitrarily small ε.
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Theorem 22.1 θ̂ −→
p
θ0 as n →∞ if

1. Sn (θ) converges in probability to S (θ) uniformly over θ ∈Θ.

2. θ0 uniquely minimizes S(θ) in the sense that for all ε> 0,

inf
θ:‖θ−θ0‖≥ε

S(θ) > S(θ0).

Theorem 22.1 shows that an m-estimator is consistent for its population parameter. There are only
two conditions. First, the criterion function converges uniformly in probability to its expected value, and
second, the minimizer θ0 is unique. The assumption excludes the possibility that lim j S(θ j ) = S(θ0) for
some sequence θ j ∈Θ not converging to θ0.

The proof of Theorem 22.1 is provided in Section 22.9.

22.5 Uniform Law of Large Numbers

The uniform convergence of Definition 22.1 is a high-level assumption. In this section we provide
lower level sufficient conditions.

Theorem 22.2 Uniform Law of Large Numbers (ULLN) Assume

1. (Yi , Xi ) are i.i.d.

2. ρ (Y , X ,θ) is continuous in θ ∈Θwith probability one.

3.
∣∣ρ (Y , X ,θ)

∣∣≤G(Y , X ) where E [G(Y , X )] <∞.

4. Θ is compact.

Then supθ∈Θ |Sn (θ)−S (θ)| −→
p

0.

Theorem 22.2 is established in Theorem 18.2 of Introduction to Econometrics.
Assumption 2 holds if ρ

(
y, x,θ

)
is continuous in θ, or if the discontinuities occur at points of zero

probability. This allows for most relevant applications in econometrics. Theorem 18.2 of Introduc-
tion to Econometrics also provides conditions based on finite bracketing or covering numbers which
allow for more generality. Assumption 3 is a slight strengthening of the finite-expectation condition
E
[
ρ(Y , X ,θ)

]<∞. The function G(Y , X ) is called an envelope.
The ULLN extends to time series and clustered samples. See B. E. Hansen and S. Lee (2019) for clus-

tered samples.
Combining Theorems 22.1 and 22.2 we obtain a set of conditions for consistent estimation.
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Theorem 22.3 θ̂ −→
p
θ0 as n →∞ if

1. (Yi , Xi ) are i.i.d.

2. ρ (Y , X ,θ) is continuous in θ ∈Θwith probability one.

3.
∣∣ρ (Y , X ,θ)

∣∣≤G(Y , X ) where E [G(Y , X )] <∞.

4. Θ is compact.

5. θ0 uniquely minimizes S(θ).

22.6 Asymptotic Distribution

We now establish an asymptotic distribution theory. We start by an informal demonstration, present
a general result under high-level conditions, and then discuss the assumptions and conditions. Define

ψ (Y , X ,θ) = ∂

∂θ
ρ (Y , X ,θ)

ψn (θ) = ∂

∂θ
Sn (θ)

ψ (θ) = ∂

∂θ
S (θ) .

Also define ψi (θ) =ψ (Yi , Xi ,θ) and ψi =ψi (θ0).
Since the m-estimator θ̂ minimizes Sn (θ) it satisfies2 the first-order condition 0 =ψn

(
θ̂
)
. Expand the

right-hand side as a first order Taylor expansion about θ0. This is valid when θ̂ is in a neighborhood of
θ0, which holds for n sufficiently large by Theorem 22.1. This yields

0 =ψn

(
θ̂
)'ψn (θ0)+ ∂2

∂θ∂θ′
Sn (θ0)

(
θ̂−θ0

)
. (22.1)

Rewriting, we obtain
p

n
(
θ̂−θ0

)'−
(

∂2

∂θ∂θ′
Sn (θ0)

)−1 (p
nψn (θ0)

)
.

Consider the two components. First, by the WLLN

∂2

∂θ∂θ′
Sn (θ0) = 1

n

n∑
i=1

∂2

∂θ∂θ′
ρ (Yi , Xi ,θ0) −→

p
E

[
∂2

∂θ∂θ′
ρi (Y , X ,θ0)

]
def= Q .

Second,
p

nψn (θ0) = 1p
n

n∑
i=1

ψi . (22.2)

Since θ0 minimizes S (θ) = E[
ρi (θ)

]
it satisfies the first-order condition

0 =ψ (θ0) = E[
ψ (Y , X ,θ0)

]
. (22.3)

2If θ̂ is an interior solution. Since θ̂ is consistent this occurs with probability approaching one if θ0 is in the interior of the
parameter spaceΘ.
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Thus the summands in (22.2) are mean zero. Applying a CLT this sum converges in distribution to N(0,Ω)
whereΩ= E[

ψiψ
′
i

]
. We deduce that

p
n

(
θ̂−θ0

)−→
d

Q−1N(0,Ω) = N
(
0,Q−1ΩQ−1) .

The technical hurdle to make this derivation rigorous is justifying the Taylor expansion (22.1). This
can be done through smoothness of the second derivative of ρi (θ0). An alternative (more advanced)
argument based on empirical process theory uses weaker assumptions. Set

Q (θ) = ∂2

∂θ∂θ′
S (θ)

Q =Q (θ0) .

Let N be some neighborhood of θ0.

Theorem 22.4 Assume the conditions of Theorem 22.1 hold, plus

1. E
∥∥ψ (Y , X ,θ0)

∥∥2 <∞.

2. Q > 0.

3. Q (θ) is continuous in θ ∈N .

4. For all θ1,θ2 ∈ N ,
∥∥ψ (Y , X ,θ1)−ψ (Y , X ,θ2)

∥∥ ≤ B (Y , X )‖θ1 −θ2‖ where
E
[
B (Y , X )2

]<∞.

5. θ0 is in the interior ofΘ.

Then as n →∞,
p

n
(
θ̂−θ0

)−→
d

N(0,V ) where V =Q−1ΩQ−1.

The proof of Theorem 22.4 is presented in Section 22.9.
In some cases the asymptotic covariance matrix simplifies. The leading case is correctly specified

maximum likelihood estimation, where Q =Ω so V =Q−1 =Ω−1.
Assumption 1 states that the scores ψ (Y , X ,θ0) have a finite second moment. This is necessary in

order to apply the CLT. Assumption 2 is a full-rank condition and is related to identification. A sufficient
condition for Assumption 3 is that the scores ψ (Y , X ,θ) are continuously differentiable but this is not
necessary. Assumption 3 is broader, allowing for discontinuous ψ (Y , X ,θ), so long as its expectation is
continuous and differentiable. Assumption 4 states thatψ (Y , X ,θ) is Lipschitz-continuous for θ near θ0.
Assumption 5 is required in order to justify the application of the mean-value expansion.

22.7 Asymptotic Distribution Under Broader Conditions*

Assumption 4 in Theorem 22.4 requires that ψ (Y , X ,θ) is Lipschitz-continuous. While this holds in
most applications, it is violated in some important applications including quantile regression. In such
cases we can appeal to alternative regularity conditions. These are more flexible, but less intuitive.

The following result is a simple generalization of Lipschitz-continuity.
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Theorem 22.5 The results of Theorem 22.4 hold if Assumption 4 is replaced
with the following condition: For all δ> 0 and all θ1 ∈N ,(

E

[
sup

‖θ−θ1‖<δ

∥∥ψ (Y , X ,θ)−ψ (Y , X ,θ1)
∥∥2

])1/2

≤Cδψ (22.4)

for some C <∞ and 0 <ψ<∞.

See Theorem 18.5 of Introduction to Econometrics or Theorem 5 of Andrews (1994).
The bound (22.4) holds for many examples with discontinuous ψ (Y , X ,θ) when the discontinuities

occur with zero probability.
We next present a set of flexible results.

Theorem 22.6 The results of Theorem 22.4 hold if Assumption 4 is replaced
with the following. First, for θ ∈N ,

∥∥ψ (Y , X ,θ)
∥∥≤G (Y , X ) with E

[
G (Y , X )2

]<
∞. Second, one of the following holds.

1. ψ
(
y, x,θ

)
is Lipschitz-continuous.

2. ψ
(
y, x,θ

)= h(θ′ψ(x)) where h(u) has finite total variation.

3. ψ
(
y, x,θ

)
is a combination of functions of the form in parts 1 and 2 ob-

tained by addition, multiplication, minimum, maximum, and composi-
tion.

4. ψ
(
y, x,θ

)
is a Vapnik-Červonenkis (VC) class.

See Theorem 18.6 of Introduction to Econometrics or Theorems 2 and 3 of Andrews (1994).
The function h in part 2 allows for discontinuous functions, including the indicator and sign func-

tions. Part 3 shows that combinations of smooth (Lipschitz) functions and discontinuous functions sat-
isfying the condition of part 2 are allowed. This covers many relevant applications, including quantile
regression. Part 4 states a general condition, that ψ

(
y, x,θ

)
is a VC class. As we will not be using this

property in this textbook we will not discuss this further, but refer the interested reader to any textbook
on empirical processes.

Theorems 22.5 and 22.6 provide alternative conditions onψ
(
y, x,θ

)
(other than Lipschitz-continuity)

which can be used to establish asymptotic normality of an m-estimator.

22.8 Covariance Matrix Estimation

The standard estimator for V takes the sandwich form. We estimateΩ by

Ω̂= 1

n

n∑
i=1

ψ̂i ψ̂
′
i .
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where ψ̂i = ∂
∂θρi

(
θ̂
)
. When ρi (θ) is twice differentiable an estimator of Q is

Q̂ = 1

n

n∑
i=1

∂2

∂θ∂θ′
ρi

(
θ̂
)

.

When ρi (θ) is not second differentiable then estimators of Q are constructed on a case-by-case basis.
Given Ω̂ and Q̂ an estimator for V is

V̂ = Q̂
−1
Ω̂Q̂

−1
. (22.5)

It is possible to adjust V̂ by multiplying by a degree-of-freedom scaling such as n/(n − k) where k =
dim(θ). There is no formal guidance.

For maximum likelihood estimators the standard covariance matrix estimator is V̂ = Q̂
−1

. This choice
is not robust to misspecification. Therefore it is recommended to use the robust version (22.5), for ex-
ample by using the “,r” option in Stata. This is unfortunately not uniformly done in practice.

For clustered and time-series observations the estimator Q̂ is unaltered but the estimator Ω̂ changes.
For clustered samples it is

Ω̂= 1

n

G∑
g=1

(
ng∑
`=1

ψ̂`g

)(
ng∑
`=1

ψ̂`g

)′
.

For time-series data the estimator Ω̂ is unaltered if the scores ψi are serially uncorrelated (which occurs
when a model is dynamically correctly specified). Otherwise a Newey-West covariance matrix estimator
can be used and equals

Ω̂=
M∑

`=−M

(
1− |`|

M +1

)
1

n

∑
1≤t−`≤n

ψ̂t−`ψ̂′
t .

Standard errors for the parameter estimates are formed by taking the square roots of the diagonal
elements of n−1V̂ .

22.9 Technical Proofs*

Proof of Theorem 22.1 The proof proceeds in two steps. First, we show that S(θ̂) −→
p

S(θ). Second we

show that this implies θ̂ −→
p
θ.

Since θ0 minimizes S(θ), S (θ0) ≤ S
(
θ̂
)
. Hence

0 ≤ S
(
θ̂
)−S(θ0)

= S
(
θ̂
)−Sn

(
θ̂
)+Sn (θ0)−S (θ0)+Sn

(
θ̂
)−Sn (θ0)

≤ 2sup
θ∈Θ

‖Sn(θ)−S(θ)‖ −→
p

0.

The second inequality uses the fact that θ̂ minimizes Sn(θ) so Sn
(
θ̂
)≤ Sn(θ0) and replaces the other two

pairwise comparisons by the supremum. The final convergence is the assumed uniform convergence in
probability.

The preceeding argument is illustrated in Figure 22.1(c). The figure displays the expected criterion
S(θ) with the solid line, and the sample criterion Sn(θ) is displayed with the dashed line. The distances
between the two functions at the true value θ0 and the estimator θ̂ are marked by the two dash-dotted
lines. The sum of these two lengths is greater than the vertical distance between S

(
θ̂
)

and S (θ0) because
the latter distance equals the sum of the two dash-dotted lines plus the vertical height of the thick section
of the dashed line (between Sn (θ0) and Sn

(
θ̂
)
) which is positive since Sn

(
θ̂
)≤ Sn (θ0). The lengths of the
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dotted lines converge to zero under the assumption of uniform convergence. Hence S
(
θ̂
)

converges to
S (θ0). This completes the first step.

In the second step of the proof we show θ̂ −→
p
θ. Fix ε> 0. The unique minimum assumption implies

there is a δ > 0 such that ‖θ0 −θ‖ > ε implies S(θ) − S(θ0) ≥ δ. This means that
∥∥θ0 − θ̂

∥∥ > ε implies
S

(
θ̂
)−S (θ0) ≥ δ. Hence

P
[∥∥θ0 − θ̂

∥∥> ε]≤P[
S

(
θ̂
)−S (θ0) ≥ δ]

.

The right-hand-side converges to zero since S
(
θ̂
)−→

p
S(θ). Thus the left-hand-side converges to zero as

well. Since ε is arbitrary this implies that θ̂ −→
p
θ as stated.

To illustrate, again examine Figure 22.1(c). We see S
(
θ̂
)

marked on the graph of S(θ). Since S
(
θ̂
)

converges to S (θ0) this means that S
(
θ̂
)

slides down the graph of S(θ) towards the minimum. The only
way for θ̂ to not converge to θ0 would be if the function S(θ) were flat at the minimum. This is excluded
by the assumption of a unique minimum. ■

Proof of Theorem 22.4 Expanding the population first-order condition 0 =ψ (θ0) around θ = θ̂ using the
mean value theorem we find

0 =ψ(
θ̂
)+Q(θ∗n)

(
θ0 − θ̂

)
where θ∗n is intermediate3 between θ0 and θ̂. Solving, we find

p
n

(
θ̂−θ0

)=Q(θ∗n)−1pnψ
(
θ̂
)

.

The assumption thatψ(θ) is continuously differentiable means that Q (θ) is continuous in N . Since θ∗n is
intermediate between θ0 and θ̂ and the latter converges in probability to θ0, it follows that θ∗n converges
in probability to θ0 as well. Thus by the continuous mapping theorem Q

(
θ∗n

)−→
p

Q (θ0) =Q .

We next examine the asymptotic distribution of
p

nψ
(
θ̂
)
. Define

vn (θ) =p
n

(
ψn (θ)−ψ (θ)

)
.

An implication of the sample first-order condition ψn
(
θ̂
)= 0 is

p
nψ

(
θ̂
)=p

n
(
ψ

(
θ̂
)−ψn

(
θ̂
))=−vn

(
θ̂
)=−vn (θ0)+ rn

where rn = vn (θ0)− vn
(
θ̂
)
.

Since ψi is mean zero (see (22.3)) and has a finite covariance matrix Ω by assumption it satisfies the
multivariate central limit theorem. Thus

p
nψn (θ) = 1p

n

n∑
i=1

ψi −→
d

N(0,Ω) .

The final step is to show that rn = op (1). Pick any η > 0 and ε > 0. As shown by Theorem 18.5 of
Introduction to Econometrics, Assumption 4 implies that vn (θ) is asymptotically equicontinuous, which
means that (see Definition 18.7 in Introduction to Econometrics) given ε and η there is a δ> 0 such that

limsup
n→∞

P

[
sup

‖θ−θ0‖≤δ
‖vn (θ0)− vn (θ)‖ > η

]
≤ ε. (22.6)

3Technically, sinceψ
(
θ̂
)

is a vector, the expansion is done separately for each element of the vector so the intermediate value
varies by the rows of Q(θ∗n ). This doesn’t affect the conclusion.
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Theorem 22.1 implies that θ̂ −→
p
θ0 or

limsup
n→∞

P
[∥∥θ̂−θ0

∥∥> δ]≤ ε. (22.7)

We calculate that

limsup
n→∞

P
[
rn > η]≤ limsup

n→∞
P

[∥∥vn (θ0)− vn
(
θ̂
)∥∥> η,

∥∥θ̂−θ0
∥∥≤ δ]+ limsup

n→∞
P

[∥∥θ̂−θ0
∥∥> δ]

≤ limsup
n→∞

P

[
sup

‖θ−θ0‖≤δ
‖vn (θ0)− vn (θ)‖ > η

]
+ε≤ 2ε.

The second inequality is (22.7) and the final inequality is (22.6). Since η and ε are arbitrary we deduce
that rn = op (1). We conclude that

p
nψ

(
θ̂
)=−vn (θ0)+ rn −→

d
N(0,Ω) .

Together, we have shown that
p

n
(
θ̂−θ0

)=Q(θ∗n)−1pnψ
(
θ̂
)−→

d
Q−1N(0,Ω) ∼ N

(
0,Q−1ΩQ−1)

as claimed. ■
_____________________________________________________________________________________________

22.10 Exercises

Exercise 22.1 Take the model Y = X ′θ+ e where e is independent of X and has known density function
f (e) which is continuously differentiable.

(a) Show that the conditional density of Y given X = x is f
(
y −x ′θ

)
.

(b) Find the functions ρ(Y , X ,θ) and ψ(Y , X ,θ).

(c) Calculate the asymptotic covariance matrix.

Exercise 22.2 Take the model Y = X ′θ+ e. Consider the m-estimator of θ with ρ(Y , X ,θ) = g
(
Y −X ′θ

)
where g (u) is a known function.

(a) Find the functions ρ(Y , X ,θ) and ψ(Y , X ,θ).

(b) Calculate the asymptotic covariance matrix.

Exercise 22.3 For the estimator described in Exercise 22.2 set g (u) = 1
4 u4.

(a) Sketch g (u). Is g (u) continuous? Differentiable? Second differentiable?

(b) Find the functions ρ(Y , X ,θ) and ψ(Y , X ,θ).

(c) Calculate the asymptotic covariance matrix.

Exercise 22.4 For the estimator described in Exercise 22.2 set g (u) = 1−cos(u).

(a) Sketch g (u). Is g (u) continuous? Differentiable? Second differentiable?

(b) Find the functions ρ(Y , X ,θ) and ψ(Y , X ,θ).

(c) Calculate the asymptotic covariance matrix.



Chapter 23

Nonlinear Least Squares

23.1 Introduction

A nonlinear regression model is a parameteric regression function m (x,θ) = E [Y | X = x] which is
nonlinear in the parameters θ ∈Θ. We write the model as

Y = m (X ,θ)+e

E [e | X ] = 0.

In nonlinear regression the ordinary least squares estimator does not apply. Instead the parameters are
typically estimated by nonlinear least squares (NLLS). NLLS is an m-estimator which requires numerical
optimization.

We illustrate nonlinear regression with three examples.
Our first example is the Box-Cox regression model. The Box-Cox transformation (Box and Cox, 1964)

for a strictly positive variable x > 0 is

x(λ) =


xλ−1

λ
, if λ 6= 0

log(x), if λ= 0.

(23.1)

The Box-Cox transformation continuously nests linear (λ= 1) and logarithmic (λ= 0) functions. Figure
23.1(a) displays the Box-Cox transformation (23.1) over x ∈ (0,2] for λ = 2, 1, 0, 0.5, 0, and −1. The
parameter λ controls the curvature of the function.

The Box-Cox regression model is
Y =β0 +β1X (λ) +e

which has parameters θ = (β0,β1,λ). The regression function is linear in (β0,β1) but nonlinear in λ.
To illustrate we revisit the reduced form regression (12.87) of risk on log

(
mortality

)
from Acemoglu,

Johnson and Robinson (2001). A reasonable question is why the authors specified the equation as a
regression on log

(
mortality

)
rather than on mortality. The Box-Cox regression model allows both as

special cases, and equals
risk =β0 +β1mortality(λ) +e. (23.2)

Our second example is a Constant Elasticity of Substitution (CES) production function, which was
introduced by Arrow, Chenery, Minhas, and Solow (1961) as a generalization of the popular Cobb-Douglass

763
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production function. The CES function for two inputs is

Y =


A

(
αX ρ

1 + (1−α) X ρ
2

)ν/ρ
, if ρ 6= 0

A
(

Xα
1 X (1−α)

2

)ν
, if ρ = 0.

where A is heterogeneous (random) productivity, ν > 0, α ∈ (0,1), and ρ ∈ (−∞,1]. The coefficient ν is
the elasticity of scale. The coefficient α is the share parameter. The coefficient ρ is a re-writing1 of the
elasticity of substitution σ between the inputs and satisfies σ= 1/(1−ρ). The elasticity satisfies σ> 1 if
ρ > 0, and σ < 1 if ρ < 0. At ρ = 0 we obtain the unit elastic Cobb-Douglas function. Setting ρ = 1 and
ν= 1 we obtain a linear production function. Taking the limit ρ→−∞ we obtain the Leontief production
function.

To illustrate, Figure 23.1(b) displays the isoquants (level sets of the production function) for the CES
production function with parameters set to the estimates from the example discussed below.

Set log A =β+e. The framework implies the regression model

logY =β+ ν

ρ
log

(
αX ρ

1 + (1−α) X ρ
2

)+e (23.3)

with parameters θ = (ρ,ν,α,β).
We illustrate CES production function estimation with a modification of Papageorgiou, Saam, and

Schulte (2017). These authors estimate a CES production function for electricity production where X1

is generation capacity using “clean” technology and X2 is generation capacity using “dirty” technology.
They estimate the model using a panel of 26 countries for the years 1995 to 2009. Their goal was to mea-
sure the elasticity of substitution between clean and dirty electrical generation. The data file PPS2017 is
an extract of the authors’ dataset.

Our third example is the regression kink model. This is essentially a piecewise continuous linear
spline where the knot is treated as a free parameter. The model used in our application is the nonlinear
AR(1) model

Yt =β1 (X t−1 − c)−+β2 (X t−1 − c)++β3Yt−1 +β4 +et (23.4)

where (a)− and (a)+ are the negative-part and positive-part functions, c is the kink point, and the slopes
are β1 and β2 on the two sides of the kink. The parameters are θ = (β1,β2,β3,β4,c). The regression
function is linear in (β1,β2,β3,β4) and nonlinear in c.

To illustrate, Figure 23.1(c) displays a regression kink function from the application discussed below.
The kink c = 44 is marked by the square. You can see that the function is upward sloped for X < c and
downward sloped for X > c.

We illustrate the regression kink model with an application from B. E. Hansen (2017) which is a for-
malization of Reinhart and Rogoff (2010). The data are a time-series of annual observations on U.S. real
GDP growth Yt and the ratio of federal debt to GDP X t for the years 1791-2009. Reinhart-Rogoff were in-
terested in the hypothesis that the growth rate of GDP slows when the level of debt exceeds a threshold.

23.2 Identification

The regression model m (x,θ) is correctly specified if there exists a parameter value θ0 such that
m (x,θ0) = E [Y | X = x]. The parameter is point identified if θ0 is unique. In correctly-specified nonlinear
regression models the parameter is point identified if there is a unique true parameter.

1It is tempting to write the model as a function of the elasticity of substitution σ rather than its transformation ρ. However
this is unadvised as it renders the regression function more nonlinear and difficult to optimize.
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(c) Regression Kink Model

Figure 23.1: Nonlinear Regression Models

Assume E
[
Y 2

] <∞. Since the conditional mean is the best mean-squared predictor it follows that
the true parameter θ0 satisfies the optimization expression

θ0 = argmin
θ∈Θ

S(θ) (23.5)

where
S(θ) = E[

(Y −m (X ,θ))2]
is the expected squared error. This expresses the parameter as a function of the distribution of (Y , X ).

The regression model is mis-specified if there is no θ such that m (x,θ) = E [Y | X = x]. In this case
we define the pseudo-true value θ0 as the best-fitting parameter (23.5). It is difficult to give general
conditions under which the solution is unique. Hence identification of the pseudo-true value under
mis-specification is typically assumed rather than deduced.

23.3 Estimation

The analog estimator of the expected squared error S(θ) is the sample average of squared errors

Sn(θ) = 1

n

n∑
i=1

(Yi −m (Xi ,θ))2 .

Since θ0 minimizes S(θ) its analog estimator minimizes Sn(θ)

θ̂nlls = argmin
θ∈Θ

Sn(θ).

This is called the Nonlinear Least Squares (NLLS) estimator. It includes OLS as the special case when
m (Xi ,θ) is linear in θ. It is an m-estimator with ρi (θ) = (Yi −m (Xi ,θ))2.

As Sn(θ) is a nonlinear function of θ in general there is no explicit algebraic expression for the solution
θ̂nlls. Instead it is found by numerical minimization. Chapter 12 of Introduction to Econometrics provides
an overview. The NLLS residuals are êi = Yi −m

(
Xi , θ̂nlls

)
.

In some cases, including our first and third examples in Section 23.1, the model m (x,θ) is linear in
most of the parameters. In these cases a computational shortcut is to use nested minimization (also
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known as concentration or profiling). Take Example 1 (Box-Cox Regression). Given the Box-Cox param-
eter λ the regression is linear. The coefficients

(
β0,β1

)
can be estimated by least squares, obtaining the

residuals and sample concentrated average of squared errors S∗
n(λ). The latter can be minimized using

one-dimensional methods. The minimizer λ̂ is the NLLS estimator of λ. Given λ̂nlls, the NLLS coefficient

estimators
(
β̂0, β̂1

)
are found by OLS regression of Yi on a constant and X (λ̂)

i .
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Figure 23.2: Sum of Squared Errors Functions

We illustrate with our three examples.
Figure 23.2(a) displays the concentrated average of squared errors S∗

n(λ) for the Box-Cox regression
model applied to (23.2), displayed as a function of the Box-Cox parameter λ. You can see that S∗

n(λ) is
neither quadratic nor globally convex, but has a well-defined minimum at λ̂=−0.77. This is a parameter
value which produces a regression model considerably more curved than the logarithm specification
used by Acemoglou et. al.

Figure 23.2(b) displays the average of squared errors for the CES production function application,
displayed as a function of (ρ,α) with the other parameters set at the minimizer. You can see that the
minimum is obtained at (ρ̂, α̂) = (.36, .39). We have displayed the function Sn(ρ,α) by its contour sur-
faces. A quadratic function has elliptical contour surfaces. You can see that the function appears to be
close to quadratic near the minimum but becomes increasingly non-quadratic away from the minimum.

Figure 23.2(c) displays the concentrated average of squared errors S∗
n(c) for the regression kink ap-

plication. You can see that the function appears similar to a quadratic only local to the minimum. Away
from the minimum it is close to linear, and for distant values is concave.

The parameter estimates and standard errors for the three models are presented in Table 23.1. Stan-
dard error calculation will be discussed in Section 23.5. The standard errors for the Box-Cox and Regres-
sion Kink models were calculated using the heteroskedasticity-robust formula, and those for the CES
production function were calculated by the cluster-robust formula, clustering by country.

Take the Box-Cox regression. The estimate λ̂=−0.77 shows that the estimated relationship between
risk and mortality has stronger curvature than the logarithm function, and the estimate β̂1 = −17 is
negative as predicted. The large standard error for β̂1, however, indicates that the slope coefficient is not
precisely estimated.

Take the CES production function. The estimate ρ̂ = 0.36 is positive, indicating that the clean and
dirty technologies are substitutes. The implied elasticity of substitution σ= 1/(1−ρ) is σ̂= 1.57, with its
standard error calculated by the delta method. The estimated elasticity of scale ν̂= 1.05 is slightly above
one, consistent with increasing returns to scale. The share parameter for clean technology α̂ = 0.39 is
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Table 23.1: NLLS Estimates of Example Models

Parameter Estimate Standard Error
Box-Cox Regression β0 27.5 12.4

β1 −17.0 15.3
λ −0.77 0.28

CES Production Function ρ 0.36 0.29
ν 1.05 0.03
α 0.39 0.06
β 1.66 0.31
σ 1.57 0.46

Regression Kink Regression β1 0.033 0.026
β2 −0.067 0.046
β3 0.28 0.09
β4 3.78 0.68
c 43.9 11.8

somewhat less than one-half, indicating that dirty technology is the dominating input.
Take the regression kink function. The estimated slope of GDP growth for low debt levels β̂1 = 0.03

is positive, and the estimated slope for high debt levels β̂2 = −0.07 is negative. This is consistent with
the Reinhart-Rogoff hypothesis that high debt levels lead to a slowdown in economic growth. The esti-
mated kink point is ĉ = 44% which is considerably lower than the postulated 90% kink point suggested
by Reinhart-Rogoff based on their informal analysis.

Interpreting conventional t-ratios and p-values in nonlinear models should be done thoughtfully.
This is a context where the annoying empirical custom of appending asterisks to all “significant” coef-
ficient estimates is particularly inappropriate. Take, for example, the CES estimates in Table 23.1. The
“t-ratio” for ν is for the test of the hypothesis that ν = 0, which is a meaningless hypothesis. Similarly
the t-ratio for α is for an uninteresting hypothesis. It does not make sense to append asterisks to these
estimates and describe them as “significant” as there is no reason to take 0 as an interesting value for
the parameter. Similarly in the Box-Cox regression there is no reason to take λ = 0 as an important hy-
pothesis. In the Regression Kink model the hypothesis c = 0 is generally meaningless and could easily lie
outside the parameter space.

23.4 Asymptotic Distribution

We first consider the consistency of the NLLS estimator. We appeal to Theorems 22.3 and 22.4 for
m-estimators.
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Assumption 23.1

1. (Yi , Xi ) are i.i.d.

2. m (X ,θ) is continuous in θ ∈Θwith probability one.

3. E
[
Y 2

]<∞.

4. |m (X ,θ)| ≤ m(X ) with E
[
m (X )2

]<∞.

5. Θ is compact.

6. For all θ 6= θ0, S(θ) > S(θ0).

Assumptions 1-4 are fairly standard. Assumption 5 is not essential but simplifies the proof. Assump-
tion 6 is critical. It states that the minimizer θ0 is unique.

Theorem 23.1 Consistency of NLLS Estimator
If Assumption 23.1 holds then θ̂ −→

p
θ0 as n →∞.

We next discuss the asymptotic distribution for differentiable models. We first present the main
result, then discuss the assumptions. Set mθ (x,θ) = ∂

∂θm (x,θ), mθθ (x,θ) = ∂2

∂θ∂θ′ m (x,θ), and mθi =
mθ (Xi ,θ0). Define Q = E

[
mθi m

′
θi

]
andΩ= E

[
mθi m

′
θi e2

i

]
.

Assumption 23.2 For some neighborhood N of θ0,

1. E [e | X ] = 0.

2. E
[
Y 4

]<∞.

3. m (x,θ) and mθ (X ,θ) are differentiable in θ ∈N .

4. E |m (X ,θ)|4 <∞, E‖mθ (X ,θ)‖4 <∞, and E‖mθθ (X ,θ)‖4 <∞ for θ ∈N .

5. Q = E
[

mθi m
′
θi

]
> 0.

6. θ0 is in the interior ofΘ.

Assumption 1 imposes that the model is correctly specified. If we relax this assumption the asymp-
totic distribution is still normal but the covariance matrix changes. Assumption 2 is a moment bound
needed for asymptotic normality. Assumption 3 states that the regression function is second-order dif-
ferentiable. This can be relaxed but with a complication of the conditions and derivation. Assumption
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4 are moment bounds on the regression function and its derivatives. Assumption 5 states that the “lin-
earized regressor” mθi has a full rank population design matrix. If this assumption fails then mθi will
be multicollinear. Assumption 6 requires that the parameters are not on the boundary of the parameter
space. This is important as otherwise the sampling distribution will be asymmetric.

Theorem 23.2 Asymptotic Normality of NLLS Estimator
If Assumptions 23.1 and 23.2 hold then

p
n

(
θ̂−θ0

)−→
d

N(0,V ) as n →∞, where

V =Q−1ΩQ−1.

Theorem 23.2 shows that under general conditions the NLLS estimator has an asymptotic distribu-
tion with similar structure to that of the OLS estimator. The estimator converges at a conventional rate to
a normal distribution with a sandwich-form covariance matrix. Furthermore, the asymptotic variance is
identical to that in a hypothetical OLS regression with the linearized regressor mθi . Thus, asymptotically,
the distribution of NLLS is identical to a linear regression.

The asymptotic distribution simplifies under conditional homoskedasticity. If E
[
e2 | X

] = σ2 then
the asymptotic variance is V = σ2Q−1.

23.5 Covariance Matrix Estimation

The asymptotic covariance matrix V is estimated similarly to linear regression with the adjustment
that we use an estimate of the linearized regressor mθi . This estimate is

m̂θi = mθ

(
Xi , θ̂

)= ∂

∂θ
m

(
Xi , θ̂

)
.

It is best if the derivative is calculated algebraically but a numerical derivative (a discrete derivative) can
substitute.

Take, for example, the Box-Cox regression model for which m(x,β0,β1,λ) =β0+β1x(λ) . We calculate
that for λ 6= 0

mθ

(
x,β0,β1,λ

)=


∂
∂β0

(
β0 +β1x(λ)

)
∂
∂β1

(
β0 +β1x(λ)

)
∂
∂βλ

(
β0 +β1x(λ)

i

)
=


1

x(λ)

xλ log(x)−x(λ)

λ

 .

For λ= 0 the third entry is log2(x)/2. The estimate is obtained by replacing λwith the estimator λ̂. Hence
for λ̂ 6= 0

m̂θi =


1

x(λ̂)

1−xλ̂+λxλ̂ log(x)

λ̂2

 .

The covariance matrix components are estimated as

Q̂ = 1

n

n∑
i=1

m̂θi m̂′
θi

Ω̂= 1

n

n∑
i=1

m̂θi m̂′
θi ê2

i

V̂ = Q̂
−1
Ω̂Q̂

−1
(23.6)
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where êi = Yi −m
(
Xi , θ̂

)
are the NLLS residuals. Standard errors are calculated conventionally as the

square roots of the diagonal elements of n−1V̂ .
If the error is homoskedastic the covariance matrix can be estimated using the formula

V̂
0 = Q̂

−1
σ̂2

σ̂2 = 1

n

n∑
i=1

ê2
i .

If the observations satisfy cluster dependence then a standard cluster variance estimator can be used,
again treating the linearized regressor estimate m̂θi as the effective regressor.

To illustrate, standard errors for our three estimated models are displayed in Table 23.1. The standard
errors for the first and third models were calculated using the formula (23.6). The standard errors for the
CES model were clustered by country.

In small samples the standard errors for NLLS may not be reliable. An alternative is to use bootstrap
methods for inference. The nonparametric bootstrap draws with replacement from the observation pairs
(Yi , Xi ) to create bootstrap samples, to which NLLS is applied to obtain bootstrap parameter estimates
θ̂∗. From θ̂∗ we can calculate bootstrap standard errors and/or bootstrap confidence intervals, for ex-
ample by the bias-corrected percentile method.

23.6 Panel Data

Consider the nonlinear regression model with an additive individual effect

Yi t = m (Xi t ,θ)+ui +εi t

E [εi t | Xi t ] = 0.

To eliminate the individual effect we can apply the within or first-differencing transformations. Ap-
plying the within transformation we obtain

Ẏi t = ṁ (Xi t ,θ)+ ε̇i t (23.7)

where

ṁ (Xi t ,θ) = m (Xi t ,θ)− 1

Ti

∑
t∈Si

m (Xi t ,θ)

using the panel data notation. Thus ṁ (Xi t ,θ) is the within transformation applied to m (Xi t ,θ). It is
not m

(
Ẋi t ,θ

)
. Equation (23.7) is a nonlinear panel model. The coefficient can be estimated by NLLS.

The estimator is appropriate when Xi t is strictly exogenous, as ṁ (Xi t ,θ) is a function of Xi s for all time
periods.

An alternative is to apply the first-difference transformation. Thus yields

∆Yi t =∆m (Xi t ,θ)+∆εi t (23.8)

where ∆m (Xi t ,θ) = m (Xi t ,θ)−m
(
Xi ,t−1,θ

)
. Equation (23.8) can be estimated by NLLS. Again this re-

quires that Xi t is strictly exogenous for consistent estimation.
If the regressors Xi t contains a lagged dependent variable Yi ,t−1 then NLLS is not an appropriate

estimator. GMM can be applied to (23.8) similar to linear dynamic panel regression models.
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23.7 Threshold Models

An extreme example of nonlinear regression is the class of threshold regression models. These are
discontinuous regression models where the kink points are treated as free parameters. They have been
used succesfully in economics to model threshold effects and tipping points. They are also the core tool
for the modern machine learning methods of regression trees and random forests. In this section we
provide a review.

A threshold regression model takes the form

Y =β′
1X1 +β′

2X21
{
Q ≥ γ}+e

E [e | X ] = 0

where X1 and X2 are k1×1 and k2×1, respectively, and Q is scalar. The variable Q is called the threshold
variable and γ is called the threshold.

Typically, both X1 and X2 contain an intercept, and X2 and Q are subsets of X1. In the latter case
β2 is the change in the slope at the threshold. The threshold variable Q should be either continuously
distributed or ordinal.

In a full threshold specification X1 = X2 = X . In this case all coefficients switch at the threshold. This
regression can alternatively be written as

Y =


θ′1X +e, Q < γ

θ′2X +e, Q ≥ γ

where θ1 =β1 and θ2 =β1 +β2.
A simple yet full threshold model arises when there is only a single regressor X . The regression can

be written as
Y =α1 +β1X +α21

{
X ≥ γ}+β2X1

{
X ≥ γ}+e.

This resembles a Regression Kink model, but is more general as it allows for a discontinuity at X = γ. The
Regression Kink model imposes the restriction α+βγ= 0.

A threshold model is most suitable for a context where an economic model predicts a discontinuity in
the conditional mean. It can also be used as a flexible approximation for a context where it is believed the
conditional mean has a sharp nonlinearity with respect to one variable, or has sharp interaction effects.
The Regression Kink model, for example, does not allow for kink interaction effects.

The threshold model is critically dependent on the choice of threshold variable Q. This variable
controls the ability of the regression model to display nonlinearity. In principle this can be generalized
by incorporating multiple thresholds in potentially different variables but this generalization is limited
by sample size and information.

The threshold model is linear in the coefficients β= (
β1,β2

)
and nonlinear in γ. The parameter γ is

of critical importance as it determines the model’s nonlinearity – the sample split.
Many empirical applications estimate threshold models using informal ad hoc methods. What you

may see is a splitting of the sample into “subgroups” based on regressor characteristics. When the latter
split is based on a continuous regressor the split point is exactly a threshold parameter. When you see
such tables it is prudent to be skeptical. How was this threshold parameter selected? Based on intuition?
Or based on data exploration? If the former do you expect the results to be informative? If the latter
should you trust the reported tests?

To illustrate threshold regression we review an influential paper by Card, Mas and Rothstein (2008).
They were interested in the process of racial segregation in U.S. cities. A common hypothesis concerning
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the behavior of white Americans is that they are only comfortable living in a neighborhood if it has a
small percentage of minority residents. A simple model of this behavior (explored in their paper) predicts
that this preference leads to an unstable mixed-race equilibrium in the fraction of minorities. They call
this equilibrium the tipping point. If the minority fraction exceeds this tipping point the outcome will
change discontinuously. The economic mechanism is that if minorities move into a neighborhood at a
roughly continuous rate, when the tipping point is reached there will be a surge in exits by white residents
who elect to move due to their discomfort. This predicts a threshold regression with a discontinuity at
the tipping point. The data file CMR2008 is an abridged version of the authors’ dataset.
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Figure 23.3: Threshold Regression – Card-Mas-Rothstein (2008) Model

The authors use a specification similar to the following

∆Wci t = δ01
{

Mci t−1 ≥ γ
}+δ1

(
Mci t−1 −γ

)
1

{
Mci t−1 ≥ γ

}
+β1Mci t−1 +β2M 2

ci t−1 +θ′Xci t−1 +α+uc +eci t (23.9)

where c is the city (MSA)2, i is a census tract within the city, t is the time period (decade), ∆Wci t is the
white population percentage change in the tract over the decade, Mci t is the fraction of minorties in the
tract, uc is a fixed effect for the city, and Xci t are tract-level regression controls. The sample is based
on Census data which is collected at ten-year intervals. They estimate models for three decades; we
focus on 1970-1980. Thus ∆Wci t is the change in white population over the period 1970-1980 and the
remaining variables are for 1970. The controls used in the regression are the unemployment rate, the
log mean family income, housing vacancy rate, renter share, fraction of homes in single-unit buildings,
and fraction of workers who commute by public transport. This model has n = 35,656 observations
and N = 104 cities. This specification allows the relationship between ∆W and M to be nonlinear (a
quadratic) with a discontinuous shift in the intercept and slope at the threshold. The authors’ major
prediction is that δ0 should be large and negative. The threshold parameter γ is the minority fraction
which triggers discontinuous white outward migration.

As the threshold regression model is an explicit nonlinear regression the appropriate estimation
method is NLLS. Since the model is linear in all coefficients except for γ the best computational tech-
nique is concentrated least squares. For each γ the model is linear and the coefficients can be esti-
mated by least squares. This produces a concentrated average of squared errors S∗

n(γ) which can be
minimized to find the NLLS estimator γ̂. To illustrate, the concentrated least squares criterion for the

2Metropolitan Statistical Area (MSA). The authors use the 104 MSAs with at least 100 census tracts.
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Card-Mas-Rothstein dataset3 is displayed in Figure 23.3(a). As you can see, the criterion S∗
n(γ) is highly

non-smooth. This is typical in threshold applications. Consequently, the criterion needs to be mini-
mized by grid search. The criterion is a step function with a step at each observation. A full search would
calculate S∗

n(γ) for γ equalling each value of Mci t−1 in the sample. A simplification (which we employ)
is to calculate the criterion at a smaller number of gridpoints. In our illustration we use 100 gridpoints
equally-spaced between the 0.1 and 0.9 quantiles4 of Mci t−1. (These quantiles are the boundaries of the
displayed graph.) What you can see is that the criterion is generally lower for values of γ between 0.05
and 0.25, and especially lower for values of γ near 0.2. The minimum is obtained at γ̂ = 0.198. This is
the NLLS estimator. In the context of the application this means that the point estimate of the tipping
point is 20%, which means that when the neighborhood minority fraction exceeds 20% white households
discontinuously change their behavior. The remaining NLLS estimates are obtained by least squares re-
gression (23.9) setting γ= γ̂.

Our estimates are reported in Table 23.2. Following Card, Mas, and Rothstein (2008) the standard
errors are clustered5 by city (MSA). Examining Table 23.2 we can see that the estimates suggest that
neighborhood declines in the white population were increasing in the minority fraction, with a sharp
and accelerating decline above the tipping point of 20%. The estimated discontinuity is −11.6%. This is
nearly identical to the estimate obtained by Card, Mas and Rothstein (2008) using a different estimation
method.

The white population was also decreasing in response to the unemployment rate, the renter share,
and the use of public transportation, but increasing in response to the vacancy rate. Another interesting
observation is that despite the fact that the sample has a very large (35,656) number of observations the
standard errors for the parameter estimates are rather large indicating considerable imprecision. This is
mostly due to the clustered covariance matrix calculation as there are only N = 104 clusters.

The asymptotic theory of threshold regression is non-standard. Chan (1993) showed that under cor-
rect specification the threshold estimator γ̂ converges in probability to γ at the fast rate Op (n−1) and that
the other parameter estimators have conventional asymptotic distributions, justifying the standard er-
rors as reported in Table 23.2. He also showed that the threshold estimator γ̂ has a non-standard asymp-
totic distribution which cannot be used for confidence interval construction.

B. E. Hansen (2000) derived the asymptotic distribution of γ̂ and associated test statistics under a
“small threshold effect” asymptotic framework for a continuous threshold variable Q. This distribution
theory permits simple construction of an asymptotic confidence interval for γ. In brief, he shows that
under correct specification, independent observations, and homoskedasticity, the F statistic for testing
the hypothesis H0 : γ= γ0 has the asymptotic distribution

n
(
S∗

n

(
γ0

)−S∗
n

(
γ̂
))

S∗
n
(
γ̂
) −→

d
ξ

where P [ξ≤ x] = (
1−exp(−x/2)

)2. The 1−α quantile of ξ can be found by solving
(
1−exp(−c1−α/2)

)2 =
1−α, and equals c1−α =−2log(1−p

1−α). For example, c.95 = 7.35 and c.99 = 10.6.

3Using the 1970-1980 sample and model (23.9).
4It is important that the search be constrained to values of γwhich lie well within the support of the threshold variable. Oth-

erwise the regression may be infeasible. The required degree of trimming (away from the boundaries of the support) depends
on the individual application.

5It is not clear to me whether clustering is appropriate in this application. One motivation for clustering is inclusion of fixed
effects as this induces correlation across observations within a cluster. However in this case the typical number of observations
per cluster is several hundred so this correlation is near zero. Another motivation for clustering is that the regression error eci t
(the unobserved factors for changes in white population) is correlated across tracts within a city. While it may be expected that
attitudes towards minorities among whites may be correlated within a city, it seems less clear that we should expect uncondi-
tional correlation in population changes.
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Table 23.2: Threshold Estimates: Card-Mas-Rothstein (2008) Model

Variable Estimate Standard Error
Intercept Change −11.6 3.7

Slope Change −74.1 42.6
Minority Fraction −54.4 28.8

Minority Fraction2 142.3 23.9
Unemployment Rate −81.1 38.8

log
(
Mean Family Income

)
3.4 3.6

Housing Vacancy Rate 324.9 40.2
Renter Share −62.7 13.6

Fraction Single-Unit −4.8 9.5
Fraction Public Transport −91.6 24.5

Intercept 14.8 na
MSA Fixed Effects yes

Threshold 0.198
99% Confidence Interval [0.198, 0.209]

N =Number of MSAs 104
n =Number of observations 35,656

Based on test inversion a valid 1−α asymptotic confidence interval for γ is the set of F statistics which
are less than c1−α and equals

C1−α =
{
γ :

n
(
S∗

n

(
γ
)−S∗

n

(
γ̂
))

S∗
n
(
γ̂
) ≤ c1−α

}
=

{
γ : S∗

n

(
γ
)≤ S∗

n

(
γ̂
)(

1+ c1−α
n

)}
.

This is constructed numerically by grid search. In our example C0.99 = [0.198, 0.209]. This is a narrow
confidence interval. However, this interval does not take into account clustered dependence. Based on
Hansen’s theory we can expect that under cluster dependence the asymptotic distribution ξ needs to
be re-scaled. This will result in replacing 1+ c1−α/n in the above formula with 1+ρc1−α/n for some
adjustment factor ρ. This will widen the confidence interval. Based on the shape of Figure 23.3(a) the
adjusted confidence interval may not be too wide. However this is a conjecture as the theory has not
been worked out so we cannot estimate the adjustment factor ρ.

Empirical practice and simulation results suggest that threshold estimates tend to be quite imprecise
unless a moderately large sample (e.g., n ≥ 500) is used. The threshold parameter is identified by obser-
vations close to the threshold, not by observations far from the threshold. This requires large samples
to ensure that there are a sufficient number of observations near the threshold in order to be able to pin
down its location

Given the coefficient estimates the regression function can be plotted along with confidence intervals
calculated conventionally. In Figure 23.3(b) we plot the estimated regression function with 95% asymp-
totic confidence intervals calculated based on the covariance matrix for the estimates (β̂1, β̂2, δ̂1, δ̂2). The
estimate θ̂ does not contribute if the regression function is evaluated at mean values. We ignore estima-
tion of the intercept α̂ as its variance is not identified under clustering dependence and we are primarily
interest in the magnitude of relative comparisons. What we see in Figure 23.3(b) is that the regression
function is generally downward sloped, indicating that the change in the white population is generally
decreasing as the minority fraction increases, as expected. The tipping effect is visually strong. When the
fraction minority crosses the tipping point there are sharp decreases in both the level and the slope of
the regression function. The level of the estimated regression function also indicates that the expected
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change in the white population switches from positive to negative at the tipping point, consistent with
the segregation hypothesis. It is instructive to observe that the confidence bands are quite wide despite
the large sample. This is largely due to the decision to use a clustered covariance matrix estimator. Con-
sequently there is considerable uncertainty in the location of the regression function. The confidence
bands are widest at the estimated tipping point.

The empirical results presented in this section are distinct from, yet similar to, those reported in
Card, Mas, and Rothstein (2008). This is an influential paper as it used the rigor of an economic model to
give insight about segregation behavior, and used a rich detailed dataset to investigate the strong tipping
point prediction.

23.8 Testing for Nonlinear Components

Identification can be tricky in nonlinear regression models. Suppose that

m(X ,θ) = X ′β+X (γ)′δ

where X
(
γ
)

is a function of X and an unknown parameter γ. Examples for X
(
γ
)

include the Box-Cox
transformation and X1

{
X > γ}

. The latter arises in the Regression Kink and threshold regression models.
The model is linear when δ= 0. This is often a useful hypothesis (sub-model) to consider. For exam-

ple, in the Card-Mas-Rothstein (2008) application this is the hypothesis of no tipping point which is the
key issue explored in their paper.

In this section we consider tests of the hypothesis H0 : δ = 0. Under H0 the model is Y = X ′β+ e
and both δ and γ have dropped out. This means that under H0 the parameter γ is not identified. This
renders standard distribution theory invalid. When the truth is δ = 0 the NLLS estimator of

(
β,δ,γ

)
is

not asymptotically normally distributed. Classical tests excessively over-reject H0 if applied with con-
ventional critical values.

As an example consider the threshold regression (23.9). The hypothesis of no tipping point corre-
sponds to the joint hypothesis δ0 = 0 and δ1 = 0. Under this hypothesis the parameter γ is not identified.

To test the hypothesis a standard test is to reject for large values of the F statistic

F = n
(
S̃n −S∗

n

(
γ̂
))

S∗
n
(
γ̂
)

where S̃n = n−1 ∑n
i=1

(
Yi −X ′

i β̂
)2

and β̂ is the least squares coefficient from the regression of Y on X . This
is the difference between the error variance estimators based on estimates calculated under the null (S̃n)
and alternative (S∗

n

(
γ̂
)
).

The F statistic can be written as
F = max

γ
Fn(γ) = Fn(γ̂)

where

Fn(γ) = n
(
S̃n −S∗

n

(
γ
))

S∗
n
(
γ
) .

The statistic Fn(γ) is the classical F statistic for a test of H0 : δ= 0 when γ is known. We can see from this
representation that F is non-standard as it is the maximum over a potentially large number of statistics
Fn(γ).

To illustrate, Figure 23.3(c) plots the test statistic Fn(γ) as a function ofγ. You can see that the function
is erratic, similar to the concentrated criterion S∗

n

(
γ
)
. This is sensible, since Fn(γ) is an affine function
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of the inverse of S∗
n

(
γ
)
. The statistic is maximized at γ̂ because of this duality. The maximum value is

F = Fn(γ̂). In this application we find F = 62.4. This is extremely high by conventional standards.
The asymptotic theory of the test has been worked out by Andrews and Ploberger (1994) and B. E.

Hansen (1996). In particular, Hansen shows the validity of the multiplier bootstrap for calculation of
p-values for independent observations. The method is as follows.

1. On the observations (Yi , Xi ) calculate the F test statistic for H0 against H1 (or any other standard
statistic such as a Wald or likelihood ratio).

2. For b = 1, ...,B :

(a) Generate n random variables ξ∗i with mean zero and variance 1 (standard choices are normal
and Rademacher).

(b) Set Y ∗
i = êiξ

∗
i where êi are the NLLS residuals.

(c) On
(
Y ∗

i , Xi
)

calculate the F statistic F∗
b for H0 against H1.

3. The multiplier bootstrap p-value is p∗
n = 1

B

∑B
b=11

{
F∗

b > F
}
.

4. If p∗
n <α the test is significant at level α.

5. Critical values can be calcualted as empirical quantiles of the bootstrap statistics F∗
b .

In step 2b you can alternatively set Y ∗
i = β̂′Zi + êiξ

∗
i . Tests on δ are invariant to the bootstrap value

of δ. What is important is that the bootstrap data satisfy the null hypothesis.
For clustered samples we need to make a minor modification. Write the regression by cluster as

Y g = X gβ+X g (γ)δ+eg .

The bootstrap method is modified by altering steps 2a and 2b above. Let N denote the number of clus-
ters. The modified algorithm uses the following steps.

1. (a) Generate N random variables ξ∗g with mean zero and variance 1.

(b) Set Y ∗
g = êgξ

∗
g .

To illustrate we apply this test to the threshold regression (23.9) estimated with the Card-Mas-Rothstein
(2008) data. We use B = 10,000 bootstrap replications. Applying the first algorithm (suitable for indepen-
dent observations) the bootstrap p-value is 0%. The 99% critical value is 16.7, so the observed value of
F = 62.4 far exceeds this threshold. Applying the second algorithm (suitable under cluster dependence)
the bootstrap p-value is 2.6%. The 95% critical value is 55.3 and the 99% is 75.2. Thus the observed value
of F = 62.4 is “significant” at the 5% but not the 1% level. For a sample of size n = 35,656 this is surpris-
ingly mild significance. These critical values are indicated on Figure 23.3(c) by the dashed lines. The F
statistic process breaks the 90% and 95% critical values but not the 99%. Thus despite the visually strong
evidence of a tipping effect from the previous section the statistical evidence of this effect is strong but
not overwhelming.
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23.9 Computation

Stata has a built-in command nl for NLLS estimation. You need to specify the nonlinear equation
and give starting values for the numerical search. It is prudent to try several starting values since the
algorithm is not guaranteed to converge to the global minimum.

Estimation of NLLS in R or MATLAB requires a bit more programming but is straightforward. You
write a function which calculates the average squared error Sn (θ) (or concentrated average squared er-
ror) as a function of the parameters. You then call a numerical optimizer to minimize this function. For
example, in R for vector-valued parameters the standard optimizer is optim . For scalar parameters use
optimize.

23.10 Technical Proofs*

Proof of Theorem 23.1. We appeal to Theorem 22.3 which holds under five conditions. Conditions 1, 2,
4, and 5 are satisfied directly by Assumption 23.1, parts 1, 2, 5, and 6. To verify condition 3, observe that
by the cr inequality (B.5) and |m(X ,θ)| ≤ m(X )

(Y −m (X ,θ))2 ≤ 2Y 2 +2m (X )2 .

The right side has finite expectation under Assumptions 23.1, parts 3 and 4. We conclude that θ̂ −→
p
θ0 as

stated. ■

Proof of Theorem 23.2. We appeal to Theorem 22.4 which holds under five conditions (in addition to
consistency, which was established in Theorem 23.1). It is convenient to rescale the criterion so that
ρi (θ) = 1

2 (Yi −m (Xi ,θ))2. Then ψi =−mθi ei .
To show condition 1, by the Cauchy-Schwarz inequality (B.32) and Assumption 23.2.2 and 23.2.4

E
∥∥ψi

∥∥2 = E‖mθi ei‖2 ≤ (
E‖mθi‖4E

[
e4

i

])1/2 <∞.

We next show condition 3. Using Assumption 23.2.1, we calculate that

S (θ) = E[
ρi (θ)

]= 1

2
E
[
e2]+ 1

2
E
[
(m (X ,θ0)−m (X ,θ))2] .

Thus

ψ (θ) = ∂

∂θ
S (θ) =−E [mθ (X ,θ) (m (X ,θ0)−m (X ,θ))]

with derivative

Q (θ) =− ∂

∂θ′
E [mθ (X ,θ) (m (X ,θ0)−m (X ,θ))]

= E[
mθ (X ,θ)mθ (X ,θ)′

]−E [mθθ (X ,θ0) (m (X ,θ0)−m (X ,θ))] . (23.10)

This exists and is continuous for θ ∈N under Assumption 23.2.4.
Evaluating (23.10) at θ0 we obtain

Q =Q (θ0) = E[
mθi m′

θi

]> 0

under Assumption 23.2.5. This verifies condition 2.
Condition 4 holds if ψ (Y , X ,θ) = mθ(X ,θ) (Y −m(X ,θ)) is Lipschitz-continuous in θ ∈N . This holds

because both mθ(X ,θ) and m(X ,θ) are differentiable in the compact set θ ∈ N , and bounded fourth
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moments (Assumptions 23.2.2 and 23.2.4) implies that the Lipschitz bound for ψ (Y , X ,θ) has a finite
second moment.

Condition 5 is implied by Assumption 23.2.6.
Together, the five conditions of Theorem 22.4 are satisfied and the stated result follows. ■

_____________________________________________________________________________________________

23.11 Exercises

Exercise 23.1 Take the model Y = exp(θ)+e with E [e] = 0.

(a) Is the conditional mean linear or nonlinear in θ? Is this a nonlinear regression model?

(b) Is there a way to estimate the model using linear methods? If so, explain how to obtain an estimator
θ̂ for θ.

(c) Is your answer in part (b) the same as the NLLS estimator, or different?

Exercise 23.2 Take the model Y (λ) =β0+β1X +e with E [e | X ] = 0 where Y (λ) is the Box-Cox transforma-
tion of Y .

(a) Is this a nonlinear regression model in the parameters (λ,β0,β1)? (Careful, this is tricky.)

Exercise 23.3 Take the model Y = β1

β2 +β3X
+e with E [e | X ] = 0.

(a) Are the parameters (β1,β2,β3) identified?

(b) If not, what parameters are identified? How would you estimate the model?

Exercise 23.4 Take the model Y =β1 exp
(
β2X

)+e with E [e | X ] = 0.

(a) Are the parameters (β1,β2) identified?

(b) Find an expression to calculate the covariance matrix of the NLLS estimatiors (β̂1, β̂2).

Exercise 23.5 Take the model Y = m(X ,θ)+e with e | X ∼ N(0,σ2). Find the MLE for θ and σ2.

Exercise 23.6 Take the model Y = exp
(
X ′θ

)+e with E [Z e] = 0, where X is k ×1 and Z is `×1.

(a) What relationship between ` and k is necessary for identification of θ?

(b) Describe how to estimate θ by GMM.

(c) Describe an estimator of the asymptotic covariance matrix.

Exercise 23.7 Suppose that Y = m(X ,θ)+e with E [e | X ] = 0, θ̂ is the NLLS estimator, and V̂ the estimator
of var

[
θ̂
]

. You are interested in the conditional mean function E [Y | X = x] = m(x) at some x. Find an
asymptotic 95% confidence interval for m(x).

Exercise 23.8 The file PSS2017 contains a subset of the data from Papageorgiou, Saam, and Schulte
(2017). For a robustness check they re-estimated their CES production function using approximated
capital stocks rather than capacities as their input measures. Estimate the model (23.3) using this al-
ternative measure. The variables for Y , X1, and X2 are EG_total, EC_c_alt, and EC_d_alt, respectively.
Compare the estimates with those reported in Table 23.1.
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Exercise 23.9 The file RR2010 contains the U.S. observations from the Reinhart and Rogoff (2010). The
data set has observations on real GDP growth, debt/GDP, and inflation rates. Estimate the model (23.4)
setting Y as the inflation rate and X as the debt ratio.

Exercise 23.10 In Exercise 9.26, you estimated a cost function on a cross-section of electric companies.
Consider the nonlinear specification

logT C =β1 +β2 logQ +β3
(
logPL+ logPK + logPF

)+β4
logQ

1+exp
(−(

logQ −γ)) +e. (23.11)

This model is called a smooth threshold model. For values of logQ much below γ, the variable logQ has
a regression slope of β2. For values much above β7, the regression slope is β2 +β4. The model imposes a
smooth transition between these regimes.

(a) The model works best when γ is selected so that several values (in this example, at least 10 to 15)
of logQi are both below and above γ. Examine the data and pick an appropriate range for γ.

(b) Estimate the model by NLLS using a global numerical search over (β1,β2,β3,β4,γ).

(c) Estimate the model by NLLS using a concentrated numerical search over γ. Do you obtain the
same results?

(d) Calculate standard errors for all the parameters estimates (β1,β2,β3,β4,γ).



Chapter 24

Quantile Regression

24.1 Introduction

This chapter introduces median regression (least absolute deviations) and quantile regression. An
excellent monograph on the subject is Koenker (2005).

A conventional goal in econometrics is estimation of impact of a variable X on another variable Y .
We have discussed projections and conditional means but these are not the only measures of impact.
Alternative measures include the conditional median and conditional quantile. We will focus on the
case of continuously-distributed Y where quantiles are uniquely defined.

24.2 Median Regression

Recall that the median of Y is the value m = med[Y ] such that P [Y ≤ m] = P [Y ≥ m] = 0.5. The
median can be thought of the “typical realization”. For example, the median wage $19.23 in the CPS
dataset can be interpreted as the wage of a “typical wage-earner”. One-half of wage earners have wages
less than $19 and one-half have wages greater than $19.

When a distribution is symmetric then the median equals the mean but when the distribution is
asymmetric they differ.

Throughout this textbook we have primarily focused on conditional relationships. For example, the
conditional mean is the expected value within a sub-population. Similarly we define the conditional
median as the median of a sub-population.

Definition 24.1 The conditional median of Y given X = x is the value m(x) =
med[Y | X = x] such that P [Y ≤ m(x) | X = x] = 0.5.

For example, in the CPS sample the median wage for men is $21.15 and the median wage for women
is $16.83. These are the wages of a “typical” man and woman.

We can write the relationship between Y and X as the median regression model:

Y = m(X )+e

med[e | X ] = 0.

780
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As stated this is simply a definitional framework. m(X ) is the conditional median given the random vari-
able X . The error e is the deviation of Y from its conditional median and by definition has a conditional
median of zero.

We call m(x) the median regression function. In general it can take any shape. However, for practical
convenience we focus on models which are linear in parameters m(x) = x ′β. (This is not fundamentally
restrictive as it allows series approximations.) This gives rise to the linear median regression model:

Y = X ′β+e (24.1)

med[e | X ] = 0.

Equivalently, the model states that med[Y | X ] = X ′β. As in the case of regression the true median re-
gression function is not necessarily linear, so the assumption of linearity is a meaningful assumption.
The model resembles the linear regression model but is different. The coefficients β in the median and
mean regression models are not necessarily equal to one another.

To estimate β it is useful to characterize β as a function of the distribution. Recall that the least
squares estimator is derived from the foundational property that the mean minimizes the expected
squared loss, that is, µ= argminθ E

[
(Y −θ)2]. We now present analogous properties of the median.

Define the sign function

d

d x
|x| = sgn(x) =

{
1 {x > 0}−1 {x < 0} , x 6= 0

0 x = 0.

Theorem 24.1 Assume Y is continuously distributed. Then the median m sat-
isfies

E
[
sgn(Y −m)

]= 0. (24.2)

If in addition E |Y | <∞ it satisfies

m = argmin
θ

E |Y −θ| . (24.3)

If the conditional distribution F (y | x) of Y given X = x is continuous in y the
conditional median error e = Y −m(X ) satisfies

E
[
sgn(e) | X

]= 0. (24.4)

If in addition E |Y | <∞ the conditional median satisfies

m(x) = argmin
θ

E [|Y −θ| | X = x] . (24.5)

If (Y , X ) satisfy the linear median regression model (24.1) and E |Y | < ∞ then
the coefficient β satisfies

β= argmin
b

E
∣∣Y −X ′b

∣∣ . (24.6)

The proof is in Section 24.16.
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Expression (24.6) is foundational. It shows that the median regression coefficient β minimizes the
expected absolute difference between Y and the predicted value X ′β. This is foundational as it expresses
the coefficient as a function of the probability distribution. This result is a direct analog of the property
that the mean regression coefficient minimizes the expected squared loss. The difference between the
two is the loss function – the measure of the magnitude of a prediction error. To visualize, Figure 24.1(a)
displays the two loss functions. Comparing the two, squared loss puts small penalty on small errors yet
large penalty on large errors. Both are symmetric and so treat positive and negative errors identically.

In applications the linear assumption X ′β is unlikely to be valid except in a saturated dummy variable
regression. Thus in practice we should view a linear model as a useful approximation rather than a literal
truth. To allow the model to be an approxiamtion we define the coefficient β as the best linear median
predictor

β
def= argmin

b
E
∣∣Y −X ′b

∣∣ . (24.7)

This equals the true conditional median coefficient when the conditional median is linear, but is defined
for general distributions satisfying E |Y | <∞. The first order condition for minimization implies that

E
[

X sgn(e)
]= 0. (24.8)

The facts that (24.4) holds for median regression and (24.8) for the best linear median predictor are
analogs to the relationships E [e | X ] = 0 and E [X e] = 0 in the conditional mean and linear projection
models.

24.3 Least Absolute Deviations

Theorem 24.1 shows that in the linear median regression model the median regression coefficient
minimizes M(β) = E ∣∣Y −X ′β

∣∣, the expected absolute error. The sample estimator of this function is the
average of absolute errors

Mn(β) = 1

n

n∑
i=1

∣∣Yi −X ′
iβ

∣∣ .

This is similar to the classical average of squared errors function but instead is the average of absolute er-
rors. By not squaring the errors, Mn(β) puts less penalty on large errors relative to the average of squared
errors function.

Since β minimizes M(β) which is estimated by Mn(β) the m-estimator for β is the minimizer of
Mn(β):

β̂= argmin
β

Mn(β).

This is called the Least Absolute Deviations (LAD) estimator of β as it minimizes the sum of absolute
“deviations” of Yi from the fitted value X ′

iβ. The function m̂(x) = x ′β̂ is the median regression estimator.

The LAD estimator β̂ does not has a closed form solution so must be found by numerical minimization.
The LAD residuals are êi = Yi −X ′

i β̂. They approximately satisfy the property

1

n

n∑
i=1

Xi sgn(êi ) ' 0.

The approximation holds exactly if êi 6= 0 for all i which can occur when Y is continuously distributed.
This is the sample version of (24.8).

The criterion Mn(β) is globally continuous and convex. Its surface resembles the surface of an in-
verted cut gemstone, as it is covered by a network of flat facets. The facets are joined at the n lines where
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sgn
(
Yi −X ′

iβ
)= 0. To illustrate, Figure 24.1(b) displays the LAD criterion Mn(β) for seven observations1

with a single regressor and no intercept. The LAD estimator is the minimizer.
Since the criterion is faceted the minimum may be a set. Furthermore, since the criterion has dis-

continuous derivatives classical minimization methods fail. The minimizer can be defined by a set of
linear constraints so linear programming methods are appropriate. Fortunately for applications good
estimation algorithms are available and simple to use.

x

x

x2

(a) Quadratic and Absolute Loss Func-
tions

●

●

●

●

●

●

●

β
0.17 0.18 0.19 0.20 0.21 0.22

Mn(β)

(b) LAD Criterion with n = 7

β
0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25 0.26

Mn(β)

(c) LAD Criterion with n = 50,742

Figure 24.1: LAD Criterion

In large samples when Y has a continuous distribution the criterion approaches a smooth function.
To illustrate Figure 24.1(c) displays the LAD criterion Mn(β) for the full n = 50,742 sample. This criterion
Mn(β) has 11,248 facets (the number is less than the number of observations since there are ties in the
wage observations) but the large number makes the criterion visually smooth and close to quadratic.

In Stata, LAD is implemented by qreg. In R, LAD is implemented by rq in the quantreg package.

24.4 Quantile Regression

The mean and median are measures of the central tendency of a distribution. A measure of the
spread of the distribution is its quantiles. Recall that for τ ∈ [0,1] the τth quantile qτ of Y is defined as
the value such that P

[
Y ≤ qτ

]= τ. The median is the special case τ= 0.5. It will be convenient to define
the quantile operator Qτ[Y ] as the solution to the equation

P [Y ≤Qτ[Y ]] = τ.

As an example, take the distribution of wages from the CPS dataset. The median wage is $21.14. This
tells us the “typical” wage rate but not the range of typical values. The 0.2 quantile is $11.65 and the 0.8
quantile is $31.25. This shows us that 20% of wage earners had wages of $11.65 or below and 20% had
wages of $31.25 and above.

We are also interested in the quantiles of conditional distributions. Continuing the above example,
consider the distribution of wages among men and women. The 0.2, 0.5, and 0.8 quantiles are displayed
in Table 24.1. We see that the differences between men’s and women’s wages are increasing by quantile.

1These are seven of the twenty observations from Table 3.1.
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Table 24.1: Quantiles of Wage Distribution

q.2 q.5 q.8

All $11.65 $19.23 $31.25
Men $12.82 $21.14 $35.90

Women $10.58 $16.83 $26.44

Definition 24.2 The conditional quantile of Y given X = x is the value qτ(x)
such that P

[
Y ≤ qτ(x) | X = x

]= τ.

Given this notation we define the conditional quantile operators Qτ [Y | X = x] and Qτ [Y | X ]. The
function qτ(x) is also called the quantile regression function.

The conditional quantile function qτ(x) can take any shape with respect to x. It is monotonically
increasing in τ, thus if τ1 < τ2 then qτ1 (x) ≤ qτ2 (x) for all x.
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Figure 24.2: Quantile Regressions

To illustrate we display in Figure 24.2(a) the conditional quantile function of U.S. wages2 as a func-
tion of education, for τ = 0.1, 0.3, 0.5, 0.7, and 0.9. The five lines plotted are the quantile regression
functions qτ(x) with wage on the y-axis and education on the x-axis. For each level of education the
conditional quantiles qτ(x) are strictly ranked in τ, though for low levels of education they are close to
one another. The five quantile regression functions are (generally) increasing in education, though not
monotonically. The quantile regression functions also spread out as education increases; thus the gap
between the quantiles increases with education. These quantile regression functions provide a summary
of the conditional distribution of wages given education.

A useful feature of quantile regression is that it is equivariant to monotone transformations. If Y2 =
φ(Y1) where φ(y) is nondecreasing then Qτ [Y2 | X = x] = φ (Qτ [Y1 | X = x]). Alternatively, if q1

τ(x) and
q2
τ(x) are the quantile functions of Y1 and Y2 then q2

τ(x) =φ(
q1
τ(x)

)
. For example, the quantile regression

of log wages on education is the logarithm of the quantile regression of wages on eduction. This is dis-
played in Figure 24.2(b). Interestingly, the quantile regression functions of log wages are roughly parallel
with one another and are roughly linear in education for levels above 12 years.

2Calculated using the full cps90mar dataset.
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We define the quantile regression model analogously to the median regression model:

Y = qτ(X )+e

Qτ [e | X ] = 0.

An important feature of the quantile regression model is that the error e is not centered at zero. Instead
it is centered so that its τth quantile is zero. This is a normalization but it points out that the meaning
of the intercept changes when we move from mean regression to quantile regression and as we move
between quantiles. The linear quantile regression model is

Y = X ′βτ+e (24.9)

Qτ [e | X ] = 0.

Recall that the mean minimizes the squared error loss and the median minimizes the absolute error
loss. There is an analog for the quantile. Define the tilted absolute loss function:

ρτ (x) =
{ −x (1−τ) x < 0

xτ x ≥ 0
(24.10)

= x (τ−1 {x < 0}) .

For τ = 0.5 this is the scaled absolute loss 1
2 |x|. For τ < 0.5 the function is tilted to the right. For τ > 0 it

is tilted to the left. To visualize, Figure 24.2(c) displays the functions ρτ (x) for τ = 0.5 and τ = 0.2. The
latter function is a tilted version of the former. The function ρτ(x) has come to be known as the check
function because it resembles a check mark (X).

Letψτ(x) = d
d xρτ(x) = τ−1 {x < 0} for x 6= 0. We now describe some properties of the quantile regres-

sion function.

Theorem 24.2 Assume Y is continuously distributed. Then the quantile qτ
satisfies

E
[
ψτ

(
Y −qτ

)]= 0. (24.11)

If in addition E |Y | <∞ it satisfies

qτ = argmin
θ

E
[
ρτ (Y −θ)

]
. (24.12)

If the conditional distribution F (y | x) of Y given X = x is continuous in y the
conditional quantile error e = Y −qτ(X ) satisfies

E
[
ψτ (e) | X

]= 0. (24.13)

If in addition E |Y | <∞ the conditional quantile function satisfies

qτ(x) = argmin
θ

E
[
ρτ (Y −θ) | X = x

]
. (24.14)

If (Y , X ) satisfy the linear quantile regression model (24.9) and E |Y | <∞ then
the coefficient β satisfies

β= argmin
b

E
[
ρτ

(
Y −X ′b

)]
. (24.15)
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The proof is in Section 24.16.
Expression (24.15) shows that the quantile regression coefficient β minimizes the expected check

function distance between Y and the predicted value X ′β. This connects quantile regression with me-
dian and mean regression.

As for mean and median regression we should think of the linear model X ′β as an approximation. In
general we therefore define the coefficient β as the best linear quantile predictor

βτ
def= argmin

b
E
[
ρτ

(
Y −X ′b

)]
. (24.16)

This equals the true conditional quantile coefficient when true function is linear. The first order condi-
tion for minimization implies that

E
[

Xψτ (e)
]= 0.

Unlike the best linear predictor we do not have an explicit expression for βτ. However from its definition
we can see that βτ will produce an approximation x ′βτ to the true conditional quantile function qτ(x)
with the approximation weighted by the probability distribution of X .

24.5 Example Quantile Shapes

x

q0.1(x)

q0.3(x)

q0.5(x)

q0.7(x)

q0.9(x)

(a) Linear

x

q0.1(x)

q0.3(x)
q0.5(x)

q0.7(x)

q0.9(x)

(b) Parallel

x

q0.1(x)

q0.3(x)

q0.5(x)

q0.7(x)

q0.9(x)

(c) Coefficient Heterogeneity

Figure 24.3: Quantile Shapes

Linear Quantile Functions
The linear quantile regression model implies that the the quantile functions qτ(x) are linear in x. An

example is shown in Figure 24.3(a). Here we plot linear quantile regression functions for τ= 0.1, 0.3, 0.5,
0.7, and 0.9. In this example the slopes are positive and increasing with τ.

Linear quantile regressions are convenient as they are simple to estimate and report. Sometimes lin-
earity can be induced by judicious choice of variable transformation. Compare the quantile regressions
in Figure 24.2(a) and Figure 24.2(b). The quantile regression functions for the level of wages appear to
be concave; in contrast the quantile regression functions for log wages are close to linear for education
above 12 years.

Parallel Quantile Functions
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Consider the model Y = m(X )+ e with e independent of X . Let zτ be the τth quantile of e. In this
case the conditional quantile function for Y is qτ(x) = m(x)+ zτ. This implies that the functions qτ1 (x)
and qτ2 (x) are parallel so all of the quantile regression functions are mutually parallel.

An example is shown in Figure 24.3(b). Here we plot a set of quantile regression functions which are
mutually parallel.

In this context – when e is independent of X and/or the quantile regression functions are parallel –
there is little gained by quantile regression analysis relative to mean regression or median regression. The
models have the same slope coefficients and only differ by their intercepts. Furthermore, a regression
with e independent of X is a homoskedastic regression. Thus parallel quantile functions is indicative of
conditional homoskedasticity.

Once again examine the quantile regression functions for log wages displayed in Figure 24.2(b).
These functions are visually close to parallel shifts of one another. Thus it appears that the log(wage)
regression is close to a homoskedastic regression and slope coefficients should be relatively robust to
estimation by least squares, LAD, or quantile regression. This is a strong motivation for applying the
logarithmic transformation for a wage regression.

Coefficient Heterogeneity
Consider the process Y = η′X where η ∼ N(β,Σ) is independent of X . We described this earlier as

a random coefficient model, as the coefficients η are specific to the individual. In this setting the con-
ditional distribution of Y given X = x is N(x ′β, x ′Σx) so the conditional quantile functions are qτ(x) =
x ′β+zτ

p
x ′Σx where zτ is the τth quantile of N(0,1). These quantile functions are parabolic. An example

is shown in Figure 24.3(c).

24.6 Estimation

Theorem 24.2 shows that in the linear quantile regression model the coefficientβτ minimizes M(β;τ) =
E
[
ρτ

(
Y −X ′β

)]
, the expected check function loss. The estimator of this function is the sample average

Mn(β;τ) = 1

n

n∑
i=1

ρτ
(
Yi −X ′

iβ
)

.

Since βτ minimizes M(β;τ) which is estimated by Mn(β;τ) the m-estimator for βτ is the minimizer
of Mn(β;τ):

β̂τ = argmin
β

Mn(β;τ).

This is called the Quantile Regression estimator of βτ. The coefficient β̂τ does not have a closed form
solution so must be found by numerical minimization. The minimization techniques are identical to
those used for median regression; hence typical software packages treat the two together.

The quantile regression residuals êi (τ) = Yi −X ′
i β̂τ satisfy the approximate property

1

n

n∑
i=1

Xiψτ (êi (τ)) ' 0. (24.17)

As for LAD, (24.17) holds exactly if êi (τ) 6= 0 for all i , which occurs with high probability if Y is continu-
ously distributed.

In Stata, quantile regression is implemented by qreg. In R, quantile regression is implemented by rq
in the quantreg package.
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24.7 Asymptotic Distribution

We first provide conditions for consistent estimation. Let βτ be defined in (24.16), e = Y −X ′βτ, and
fτ (e | x) denote the conditional density of e given X = x.

Theorem 24.3 Consistency of Quantile Regression Estimator
Assume that (Yi , Xi ) are i.i.d., E |Y | <∞ , E

[‖X ‖2
]<∞ , fτ (e | x) exists and sat-

isfies fτ (e | x) ≤ D < ∞, and the parameter space for β is compact. For any
τ ∈ (0,1) such that

Qτ
def= E

[
X X ′ fτ (0 | X )

]> 0 (24.18)

then β̂τ −→
p
βτ as n →∞.

The proof is provided in Section 24.16.
Theorem 24.3 shows that the quantile regression estimator is consistent for the best linear quantile

predictor coefficient under broad assumptions.
A technical condition is (24.18) which is used to establish uniqueness of the coefficient βτ. One

sufficient condition for (24.18) occurs when the conditional density fτ (e | x) doesn’t depend on x at e = 0,
thus fτ (0 | x) = fτ(e) and

Qτ = E
[

X X ′] fτ(0). (24.19)

In this context, (24.18) holds if E
[

X X ′] > 0 and fτ(0) > 0. The assumption that fτ (e | x) doesn’t depend
on x at e = 0 (we call this quantile independence) is a traditional assumption in the early median re-
gression/quantile regression literature, but does not make sense outside the narrow context where e is
independent of X . Thus we should avoid (24.19) whenever possible, and if not view it as a convenient
simplification rather than a literal truth. The assumption that fτ(0) > 0 means that there are a non-trivial
set of observations for which the error e is near zero, or equivalently for which Y is close to X ′βτ. These
are the observations which provide the decisive information to pin down βτ.

A weaker way to obtain a sufficient condition for (24.18) is to assume that for some bounded set X

in the support of X , that (a) E
[

X X ′ | X ∈X
] > 0 and (b) fτ (0 | x) ≥ c > 0 for x ∈ X . This is the same as

stating that if we truncate the regressor X to a bounded set that the design matrix is full rank and the
conditional density of the error at zero is bounded away from zero. These conditions are rather abstract
but mild.

We now provide the asymptotic distribution.

Theorem 24.4 Asymptotic Distribution of Quantile Regression Estimator
In addition to the assumptions of Theorem 24.3, assume that fτ(e | x) is con-
tinuous in e, and βτ is in the interior of the parameter space. Then as n →∞

p
n

(
β̂τ−βτ

)−→
d

N(0,V τ)

where V τ =Q−1
τ ΩτQ−1

τ andΩτ = E
[

X X ′ψ2
τ

]
for ψτ = τ−1

{
Y < X ′βτ

}
.
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The proof is provided in Section 24.16.
Theorem 24.4 shows that the quantile regression estimator is asymptotically normal with a sandwich

asymptotic covariance matrix. Asymptotic normality does not rely on correct model specification, and
therefore applies broadly for practical applications where linear models are approximations rather than
literal truths. The proof of the asymptotic distribution relies on the theory for general m-estimators
(Theorem 22.4). Theorem 24.4 includes the least absolute deviations estimator as the special case τ= 0.5.

The asymptotic covariance matrix in Theorem 24.4 simplifies under correct specification. IfQτ [Y | X ] =
X ′βτ then E

[
ψ2
τ | X

]= τ(1−τ). It follows thatΩτ = τ(1−τ)Q where Q = E[
X X ′].

Combined with (24.19) we have three levels of asymptotic covariance matrices.

1. General: V τ =Q−1
τ ΩτQ−1

τ

2. Correct Specification: V c
τ = τ(1−τ)Q−1

τ QQ−1
τ

3. Quantile Independence: V 0
τ =

τ(1−τ)

fτ(0)2 Q−1

The quantile independence case V 0
τ is similar to the homoskedastic least squares covariance matrix.

While V τ is the generally appropriate covariance matrix formula, the simplified formula V 0
τ is eas-

ier to interpret to obtain intuition about the precision of the quantile regression estimator. Similarly
to the least squares estimator the covariance matrix is a scale multiple of

(
E
[

X X ′])−1. Thus it inherits
the related properties of the least-squares estimator: β̂τ is more efficient when X has greater variance
and is less collinear. The covariance matrix V 0

τ is inversely proportional to fτ(0)2. Thus β̂τ is more ef-
ficient when the density is high at 0 which means that there are many observations near the τth quan-
tile of the conditional distribution. If there are few observations near the τth quantile then fτ(0) will
be small and V 0

τ large. We can also express this relationship in terms of the standard deviation σ of
e. Let u = e/σ be the error scaled to have a unit variance, which has density gτ(x) = σ fτ(σu). Then

V 0
τ =

τ(1−τ)

gτ(0)2 σ2
(
E
[

X X ′])−1, which is a scale of the homoskedastic least squares covariance matrix.

24.8 Covariance Matrix Estimation

There are multiple methods to estimate the asymptotic covariance matrix V τ. The easiest is based
on the quantile independence assumption, leading to

V̂
0
τ = τ(1−τ) f̂τ(0)−2Q̂

−1

Q̂ = 1

n

n∑
i=1

Xi X ′
i .

where f̂τ(0)−2 is a nonparametric estimator of fτ(0)−2. For the latter there are several proposed methods.
One uses a difference in the distribution function of Y . A second uses a nonparametric estimator of fτ(0).

An estimator of V c
τ assuming correct specification is

V̂
c
τ = τ(1−τ)Q̂

−1
τ Q̂Q̂

−1
τ

where Q̂τ is a nonparametric estimator of Qτ. A feasible choice given a bandwidth h is

Q̂τ =
1

2nh

n∑
i=1

Xi X ′
i1 {|êi | < h} .
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An estimator of V τ allowing misspecification is

V̂ τ = Q̂
−1
τ Ω̂τQ̂

−1
τ

Ω̂τ = 1

h

n∑
i=1

Xi X ′
i ψ̂

2
iτ

ψ̂iτ = τ−1
{
Yi < X ′

i β̂τ
}

.

Of the three covariance matrix methods introduced above (V̂
0
τ, V̂

c
τ, and V̂ τ) the classical estimator

V̂
0
τ should be avoided for the same reasons why we avoid classical homoskedastic covariance matrix

estimators for least squares estimation. Of the two robust estimators the better choice is V̂ τ (since it
does not require correct specification) but unfortunately it is not programmed in standard packages.
This means that in practice the estimator V̂

c
τ is recommended.

The most common method for estimation of quantile regression covariance matrices, standard er-
rors, and confidence intervals is the bootstrap. The conventional nonparametric bootstrap is appropri-
ate for the general model allowing for misspecification, and the bootstrap variance is an estimator for
V̂ τ. As we have learned in our study of bootstrap methods, it is generally advised to use a large num-
ber B of bootstrap replications (at least 1000, with 10,000 preferred). This is somewhat computationally
costly in large samples but this should not be a barrier to implementation as the full bootstrap calcula-
tion only needs to be done for the final calculation. Also, as we have learned, for confidence intervals
percentile-based intervals are greatly preferred over the normal-based intervals (which use bootstrap
standard errors multiplied by normal quantiles). I recommend the BC percentile intervals. This requires
changing the default settings in common programs such as Stata.

In Stata, quantile regression is implemented using qreg. The default standard errors are V̂
0
τ. Use

vce(robust) for V̂
c
τ. The covariance matrix estimator V̂ τ is not implemented. For bootstrap standard

errors and confidence intervals use bootstrap, reps(#): qreg y x. The bootstrap command fol-
lowed by estat bootstrap produces BC percentile confidence intervals.

In R, quantile regression is implemented by the function rq in the quantreg package. The default
standard errors are V̂

c
τ. The covariance matrix estimator V̂ τ is not implemented. For bootstrap standard

errors one method is to use the option se=�boot�with the summary command. At present, the quantreg
package does not include bootstrap percentile confidence intervals.

24.9 Clustered Dependence

Under clustered dependence the asymptotic covariance matrix changes. In the formula V τ =Q−1
τ ΩτQ−1

τ

the matrix Qτ is unaltered butΩτ changes to

Ωcluster
τ = lim

n→∞
1

n

G∑
g=1

E

[(
ng∑
`=1

X`gψ`gτ

)(
ng∑
`=1

X`gψ`gτ

)′]
.

This can be estimated as

Ω̂cluster
τ = 1

n

G∑
g=1

[(
ng∑
`=1

X`g ψ̂`gτ

)(
ng∑
`=1

X`g ψ̂`gτ

)′]
.

This leads to the cluster-robust asymptotic covariance matrix estimator V̂
cluster
τ = Q̂

−1
τ Ω̂

cluster
τ Q̂

−1
τ .

The cluster-robust estimator V̂
cluster
τ is not implemented in Stata nor in the R quantreg package.

Instead, the clustered bootstrap (sampling clusters with replacement) is recommended.
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In Stata, the clustered bootstrap can be accomplished by: bootstrap, reps(#) cluster(id):

qreg y x, followed by estat bootstrap.
In R, the clustered bootstrap is included as an option in the quantreg package for calculation of stan-

dard errors.
We illustrate the application of clustered quantile regression using the Duflo, Dupas and Kremer

(2011) school tracking application. (See Section 4.23.) Recall, the question was whether or not tracking
(separating students into classrooms based on an initial test) influenced average end-of-year scores. We
repeat the analysis using quantile regression. Parameter estimates and bootstrap standard errors (calcu-
lated by clustered bootstrap using 10,000 replications, clustered by school) are reported in Table 24.2.

The results are mixed. The point estimates suggest that there is a stronger effect of tracking at higher
quantiles than lower quantiles. This is consistent with the premise that tracking affects students hetero-
geneously, has no negative effects, and has the greatest impact on the upper end. The standard errors
and confidence intervals, however, are also larger for the higher quantiles, such that the quantile re-
gression coefficients at high quantiles are imprecisely estimated. Using the t test, two of the five slope
coefficients are (borderline) statistically significant at the 5% level and one at the 10% level. In apparant
contradiction, all five of the 95% BC percentile intervals include 0. Overall the evidence that tracking
affects student performance is weak.

Table 24.2: Quantile Regressions of Student Testscores on Tracking

τ= 0.1 τ= 0.3 τ= 0.5 τ= 0.7 τ= 0.9
tracking 0.069 0.136 0.125 0.185 0.151
bootstrap standard error (0.045) (0.069) (0.074) (0.127) (0.126)
95% confidence interval [−0.02, .15] [−0.01, .27] [−0.01, .28] [−0.06, .44] [−0.11, .40]

24.10 Quantile Crossings

A property of the quantile regression functions qτ(x) is that they are monotonically increasing in τ.
This means that quantile functions for different quantiles, e.g. qτ1 (x) and qτ2 (x) for τ1 6= τ2, cannot cross
each other. However a property of linear functions x ′β with differing slopes is that they will necessarily
cross if the support for X is sufficiently large. This is a potential problem in applications as practical uses
of estimated quantile functions may require monotonicity in τ (for example if they are to be inverted to
obtain a conditional distribution function).

This is only a problem in practical applications if estimated quantile functions actually cross. If they
do not this issue can be ignored. However when estimated quantile regression functions cross one an-
other it can be prudent to address the issue.

To illustrate examine Figure 24.4(a). This shows estimated linear quantile regressions of wage on
education in the full cps09mar data set. These are linear projection approximations to the plots in Figure
24.2(a). Since the actual quantile regression functions are convex the estimated linear models cross one
another at low education levels. This is the quantile regression crossing phenomenon.

When quantile regressions cross one another there are several possible remedies.
First, you could re-specify the model. In the example of Figure 24.4(a) the problem arises in part be-

cause the true quantile regression functions are convex and poorly approximated by linear functions. In
this example we know that an improved approximation is obtained through a logarithmic transformation
for wages. After a log transformation the quantile regression functions are much better approximated by
linearity. Indeed, such estimates (obtained by quantile regression of log wages on education, and then
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(b) Logarithmic Model
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(c) Linear Spline

Figure 24.4: Quantile Crossings

applying the exponential transformation to return to the original units) are displayed in Figure 24.4(b).
These functions are smooth approximations and are strictly monotonic in τ. Problem solved.

While the logarithmic/exponential transformation works well for a wage regression, it is not a generic
solution. If the underlying quantile regressions are non-linear in X , an improved approximation (and
possible elimination of the quantile crossing) may be obtained by a nonlinear or simple series approxi-
mation. A visual examination of Figure 24.2(a) suggests that the functions may be piecewise linear with
a kink at 11 years of education. This suggests a linear spline with a single knot at x = 11. The results
from fitting this model are displayed in Figure 24.4(c). The fitted quantile regression functions exhibit a
substantial change in slope at the kink point and are strictly monotonic in τ. Problem solved.

A second approach is to reassess the empirical task. Examining Figure 24.4(a) we see that the crossing
phenomenon occurs at very low levels of education (4 years) for which there are very few observations.
This may not be viewed as an empirical interesting region. A solution is to truncate the data to eliminate
observations with low education levels.

A third approach is to constrain the estimated functions to satisfy monotonicity. Examine Figure
24.4(a). The five regression functions are increasing with increasing slopes and the support for X is [0,20]
so it is necessary and sufficient to constrain the five intercepts to be monotonically ranked. This can be
imposed on this example by sequentially imposing cross-equation equality constraints. The R function
rq has an option to impose parameter contraints. This approach may be feasible if the quantile crossing
problem is mild.

A final approach is rearrangement. For each x take the five estimated quantile regression functions
as displayed in Figure 24.4(a) and rearrange the estimates so that they satisfy the monotonicity require-
ment. This does not alter the coefficient estimates, only the estimated quantile regressions. This ap-
proach is flexible and works in general contexts without the need for model re-specification. For details
see Chernozhukov, Fernandez-Val, and Galichon (2010). The R package quantreg includes the option
rearrange to implement their procedure.

Of these four approaches, my recommendation is to start with a careful and thoughtful re-specification
of the model.
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24.11 Quantile Causal Effects

One question which frequently arises in the study of quantile regression is “Can we interpret the
quantile regression causally?” We can partially answer this question in the treatment response frame-
work by providing conditions under which the quantile regression derivatives equal quantile treatment
effects.

Recall that the treatment response model is Y = h (D, X ,U ) where Y is the outcome, D is the treat-
ment variable, X are controls, and U is an unobserved structural random error. For simplicity take the
case that D is binary. For concreteness let Y be wage, D college attendence, and U unobserved ability.

In this framework, the causal effect of D on Y is

C (X ,U ) = h(1, X ,U )−h(0, X ,U ).

In general this is heterogeneous. While the average causal effect is the expectation of this random vari-
able, the quantile treatment effect is its τth conditional quantile

Qτ(x) =Qτ [C (X ,U ) | X = x] .

In Section 2.30 we presented an example of a population of Jennifers and Georges who had differential
wage effects from college attendence. In this example the unobserved effect U is a person’s type (Jennifer
or George). The quantile treatment effect Qτ traces out the distribution of the causal effect of college
attendence and is therefore more informative than the average treatment effect alone.

From observational data we can estimate the quantile regression function

qτ (d , x) =Qτ [Y | D = d , X = x] =Qτ [h (D, X ,U ) | D = d , X = x]

and its implied effect of D on Y :
Dτ(x) = qτ (1, x)−qτ (0, x) .

The question is: Under what condition does Dτ = Qτ? That is, when does quantile regression measure
the causal effect of D on Y ?

Assumption 24.1 Conditions for Quantile Causal Effect

1. The error U is real valued.

2. The causal effect C (x,u) is monotonically increasing in u.

3. The treatment response h (D, X ,u) is monotonically increasing in u.

4. Conditional on X the random variables D and U are independent.

Assumption 24.1.1 excludes multi-dimensional unobserved heterogeneity. Assumptions 24.1.2 and
24.1.3 are known as monotonicity conditions. A single monotonicity assumption is not restrictive (it
is similar to a normalization) but the two conditions together are a substantive restriction. Take, for
example, the case of the impact of college attendence on wages. Assumption 24.1.2 requires that the
wage gain from attending college is increasing in latent ability U (given X ). Assumption 24.1.3 further
requires that wages are increasing in latent ability U whether or not an individual attends college. In
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our Jennifer and George example these assumptions require that Jennifer receives a higher wage than
George if they both are high school graduates, if they are both college graduates, and that Jennifer’s gain
from attending college exceeds George’s gain. These conditions were satisfied in the example of Section
2.30 but with a tweak we can change the model so that one of the monotonicity conditions is violated.

Assumption 24.1.4 is the traditional conditional independence assumption. This assumption is crit-
ical for the causal effect interpretation. The idea is that by conditioning on a sufficiently rich set of vari-
ables X any endogeneity between D and U has been eliminated.

Theorem 24.5 Quantile Causal Effect If Assumption 24.1 holds then Dτ(x) =
Qτ(x), the quantile regression derivative equals the quantile treatment effect.

The proof is in Section 24.16.
Theorem 24.5 provides conditions under which quantile regression is a causal model. Under the

conditional independence and monotonicity assumptions the quantile regression coefficients are the
marginal causal effects of the treatment variable D upon the distribution of Y . The coefficients are not
the marginal causal effects for specific individuals, rather they are the causal effect for the distribution.
Theorem 24.5 shows that under suitable assumptions we can learn more than just the average treatment
effect – we can learn the distribution of treatment effects.

24.12 Random Coefficient Representation

For some theoretical purposes it is convenient to write the quantile regression model using a random
coefficient representation. This also provides an alternative interpretation of the coefficients.

Recall that when Y has a continuous and invertible distribution function F (y) the probability integral
transformation is U = F (Y ) ∼U [0,1]. As the inverse of the distribution function is the quantile function,
this implies that we can write Y = qU , the quantile function evaluated at the random variable U . The
intuition is that U is the “relative rank” of Y .

Similarly when the conditional distribution F
(
y | x

)
of Y given X is invertible, the probability integral

transformation is U = F (Y | X ) ∼ U [0,1] which is independent of X . Here, U is the relative rank of Y
within the conditional distribution. Inverting we obtain Y = qU (X ). There is no additional error term
e as the randomness is captured by U . The equation Y = qU (X ) is a representation of the conditional
distribution of Y given X , not a structural model. However it does imply a mechanism by which we can
generate Y . First, draw U ∼U [0,1]. Second, draw X from its marginal distibution. Third, set Y = qU (X ).

If we interpret Y = qU (X ) as a structural model (that is, take U as a structural unobservable variable,
not merely a derivation based on the probability integral transformation) then we can view U as an in-
dividual’s latent relative rank which is invariant to X . Each person is identified with a specific U = τ. In
this framework the quantile slope (the derivative of the quantile regression) is the quantile causal effect
of X on Y . This representation satisfies the conditions of Theorem 24.5 since U is independent of X .

In the linear quantile regression model Qτ [Y | X ] = X ′βτ, the random coefficient3 representation is
Y = X ′βU .

3The coefficients depends on U so are random, but the model is different from the random coefficient model where each
individual’s coefficient is a random vector.
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24.13 Nonparametric Quantile Regression

As emphasized in Section 24.10, quantile regression functions are undoubtedly nonlinear with un-
known functional form and hence nonparametric. Quantile regression functions may be estimated using
standard nonparametric methods. This is a potentially large subject. For brevity we briefly discuss series
methods which have the advantage that they are easily implemented with conventional software.

The nonparametric quantile regression model is

Y = qτ(X )+e

Qτ [e | X ] = 0.

The function qτ(x) can be approximated by a series regression as described in Chapter 20. For example,
a polynomial approximation is

Y =β0 +β1X +β2X 2 +·· ·+βK X K +eK

Qτ [eK | X ] ' 0.

A spline approximation is defined similarly.
For any K the coefficients and regression function qτ(x) can be estimated by quantile regression.

As in series regression the model order K should be selected to trade off flexibility (bias reduction) and
parsimony (variance reduction). Asymptotic theory requires that K →∞ as n →∞ but at a slower rate.

An important practical question is how to select K in a given application. Unfortunately, standard
information criterion (such as the AIC) do not apply for quantile regression and it is unclear if cross-
validation is an appropriate model selection technique. Undoubtedly these questions are an important
topic for future study.

To illustrate we revisit the nonparametric polynomial estimates of the experience profile for college-
educated women earlier displayed in Figure 20.1. We estimate4 log wage quantile regressions on a 5th-
order polynomial in experience and display the estimates in Figure 24.5. There are two notable features.
First, the τ= 0.1 quantile function peaks at a low level of experience (about 10 years) and then declines
substantially with experience. This is likely an indicator of the wage-path of women on the low end of
the pay scale. Second, even though this is in a logarithmic scale the gaps betwen the quantile functions
substantially widen with experience. This means that heterogeneity in wages increases more than pro-
portionately as experience increases.

24.14 Panel Data

Given a panel data structure {Yi t , Xi t } it is natural to consider a panel data quantile regression esti-
mator. A linear model with an individual effect αiτ is

Qτ [Yi t | Xi t ,αi ] = X ′
i tβτ+αiτ.

It seems natural to consider estimation by one of our standard methods: (1) Remove the individual ef-
fect by the within transformation; (2) Remove the invidual effect by first differencing; (3) Estimate a
full quantile regression model using the dummy variable representation. However, all of these meth-
ods fail. The reason why methods (1) and (2) fail are the same: The quantile operator Qτ is not a linear
operator. The within transformation of Qτ [Yi t | Xi t ,αiτ] does not equal Qτ

[
Ẏi t | Xi t ,αiτ

]
, and similarly

∆Qτ [Yi t | Xi t ,αiτ] 6=Qτ [∆Yi t | Xi t ,αiτ]. The reason why (3) fails is the incidental parameters problem. A

4The sample is the n = 5199 observations of women with a college degree (16 years of education).
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Figure 24.5: log(wage)/experience Profile Quantile Regressions for College-Educated Women

dummy variable model has the number of parameters proportional to sample size and in this context
nonlinear estimators (including quantile regression) are inconsistent.

There have been several proposals to deal with this issue but none are particularly satisfactory. We
present here a method due to Canay (2011) which has the advantage of simplicity and wide applicability.
The substantive assumption is that the individual effect is common across quantiles: αiτ = αi . Thus αi

shifts the quantile regressions up and down uniformly. This is a sensible assumption whenαi represents
omitted time-invariant variables with coefficients which do not vary across quantiles.

Given this assumption we can write the quantile regression model as

Yi t = X ′
i tβ(τ)+αi +ei t .

We can also use the random coefficient representation of Section 24.12 to write

Yi t = X ′
i tβ(Uiτ)+αi

where Uiτ ∼U [0,1] is independent of (Xi t ,αi ). Taking conditional expectations we obtain the model

Yi t = X ′
i tθ+αi +ui t

where θ = E
[
β(Uiτ)

]
and ui t is conditionally mean zero. The coefficient θ is a weighted average of the

quantile regression coefficients β(τ).
Canay’s estimator takes the following steps.

1. Estimate αi by fixed effects α̂i as in (17.51). [Estimate θ by the within estimator θ̂ and αi by taking
averages of Yi t −X ′

i t θ̂ for each individual.]

2. Estimate β(τ) by quantile regression of Yi t − α̂i on Xi t .

The key to Canay’s estimator is that the assumption that the fixed effect αi does not vary across the
quantiles τ, which means that the fixed effects can be estimated by conventional fixed effects. Once
eliminated we can apply conventional quantile regression. The primary disadvantage of this approach
is that the assumption that αi does not vary across quantiles is restrictive. In general the topic of panel
quantile regression is a potentially important topic for further econometric research.
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24.15 IV Quantile Regression

As we studied in Chapter 12, in many structural economic models some regressors are potentially
endogenous, meaning jointly dependent with the regression error. This situation equally arises in quan-
tile regression models. A standard method to handle endogenous regressors is instrumental variables
regression which relies on a set of instruments Z which satisfy an uncorrelatedness or independence
condition. Similar methods can be applied in quantile regression though the techniques are computa-
tionally more difficult, the theory less well developed, and applications limited.

The model is

Y = X ′βτ+e

Qτ [e | Z ] = 0

where X and βτ are k ×1, Z is `×1, amd `≥ k. The difference with the conventional quantile regression
model is that the second equation is conditional on Z rather than X .

The assumption on the error implies that E
[
ψτ (e) | Z

] = 0. This holds by the same derivation as for
the quantile regression model. This is a conditional moment equation. It implies the unconditional
moment equation5 E

[
Zψτ (e)

]= 0. Written as a function of the observations and parameters

E
[

Zψτ

(
Y −X ′βτ

)]= 0.

This is a set of ` moment equations for k parameters. A suitable estimation method is GMM. A com-
putational challenge is that the moment condition functions are discontinuous in βτ so conventional
minimization techniques fail.

The method of IV quantile regression was articulated by Chernozhukov and C. Hansen (2005), which
should be consulted for further details.

24.16 Technical Proofs*

Proof of Theorem 24.1: Since P [Y = m] = 0,

E
[
sgn(Y −m)

]= E [1 {Y > m}]−E [1 {Y < m}] =P [Y > m]−P [Y < m] = 1

2
− 1

2
= 0

which is (24.2).
Exchanging integration and differentiation

d

dθ
E |Y −θ| = E

[
d

dθ
|Y −θ|

]
= E[

sgn(Y −θ)
]= 0,

the final equality at θ = m by (24.2). This is the first order condition for an optimum. Since E
[
sgn(Y −θ)

]=
1−2P [Y < θ] is globally decreasing in θ, the second order condition shows that m is the unique mini-
mizer. This is (24.3).

(24.4) and (24.5) follow by similar arguments using the conditional distribution. (24.6) follows from
(24.5) under the assumption that med[Y | X ] = X ′β. ■

Proof of Theorem 24.2: Since P
[
Y = qτ

]= 0,

E
[
ψτ

(
Y −qτ

)]= τ−P[
Y < qτ

]= 0

5In fact, the assumptions imply E
[
φ(Z )ψτ (e)

] = 0 for any function φ. We assume that the desired instruments have been
selected and are incorporated in the vector Z as denoted.
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which is (24.11).
Exchanging integration and differentiation

d

dθ
E
[
ρτ (Y −θ)

]= E[
ψτ (Y −θ)

]= 0,

the final equality at θ = qτ by (24.11). This is the first order condition for an optimum. Since E
[
ψτ (Y −θ)

]=
τ−P [Y < θ] is globally decreasing in θ, the second order condition shows that qτ is the unique minimizer.
This is (24.12).

(24.13) and (24.14) follow by similar arguments using the conditional distribution. (24.15) follows
from (24.14) under the assumption that Qτ [Y | X ] = X ′β. ■

Proof of Theorem 24.3: The quantile regression estimator is an m-estimator, so we appeal to Theorem
22.3, which holds under five conditions. Conditions 1 and 4 are satisfied by assumption, and condition
2 holds since ρτ

(
Y −X ′β

)
is continuous in β as ρτ (u) is a continuous function. For condition 3, observe

that
∣∣ρτ (

Y −X ′β
)∣∣ ≤ |Y | +β‖X ‖ where β = supβ∈B

∥∥β∥∥. The right side has finite expectation under the
assumptions.

For condition 5 we need to show that βτ uniquely minimizes M(β;τ). It is a minimizer by (24.16). It
is unique because M

(
β;τ

)
is a convex function and

∂2

∂β∂β′ M
(
βτ;τ

)= E[
X X ′ fτ (0 | X )

]> 0. (24.20)

The inequality holds by assumption; we now establish the equality.
Exchanging integration and differentiation, using ψτ(x) = d

d xρτ(x) = τ−1 {x < 0}, the law of iterated
expectations, and the conditional distribution function Fτ(u | x) = E [1 {e < u} | X ]

∂

∂β
M

(
β;τ

)=−E[
Xψτ

(
Y −X ′β

)]
=−τE [X ]+E[

XE
[
1

{
Y < X ′ (β−βτ

)} | X
]]

=−τE [X ]+E[
X Fτ

(
X ′ (β−βτ

) | X
)]

. (24.21)

Hence
∂2

∂β∂β′ M
(
β;τ

)= ∂

∂β′ E
[

X Fτ
(
X ′ (β−βτ

) | X
)]= E[

X X ′ fτ
(
X ′ (β−βτ

) | X
)]

. (24.22)

The right-hand-side of (24.22) is bounded below E
[

X X ′]D which has finite elements under the assump-
tions. (24.22) is also positive semi-definite for all β so M

(
β;τ

)
is globally convex. Evaluated at βτ, (24.22)

equals (24.20). This shows that M
(
β;τ

)
is strictly convex at the minimumβτ. Thus the latter is the unique

minimizer.
Together we have established the five conditions of Theorem 22.3 as needed. ■

Proof of Theorem 24.4: Since β̂τ is an m-estimator with a discontinuous score we verify the conditions of
Theorem 22.6, which holds under conditions 1, 2, 3, and 5 of Theorem 22.4,

∥∥Xψτ

(
Y −X ′β

)∥∥ ≤G(Y , X )
with E

[
G(Y , X )2

]<∞, plus one of the four listed categories.
It is useful to observe that since ψτ (u) ≤ 1,∥∥Xψτ

(
Y −X ′β

)∥∥≤ ‖X ‖ . (24.23)

We verify conditions 1, 2, 3, and 5 of Theorem 22.4. Condition 1 holds since (24.23) implies E
[‖X ‖2ψ2

τ

]≤
E‖X ‖2 <∞. Condition 2 holds by (24.18). Equation (24.22) shows that ∂2

∂β∂β′ M
(
β;τ

)
is continuous under

the assumption that fτ(e | x) is continuous in e, implying condition 3. Condition 5 holds by assumption.
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The upper bound (24.23) satisfies E‖X ‖2 <∞, as needed. It remains to verify one of the four listed
categories of Theorem 22.6. Observe that ψτ (u) is a function of bounded variation, so ψτ

(
Y −X ′β

)
is in

the second category. The score Xψτ

(
Y −X ′β

)
is the product of the Lipschitz-continuous function X and

ψτ

(
Y −X ′β

)
, and thus falls in the third category. This shows that Theorem 22.6 can be applied.

We have verified the conditions for Theorem 22.6 so asymptotic normality follows. For the covariance
matrix we calculate that

E
[(

Xψτ

)(
Xψτ

)′]= E[
X X ′ψ2

τ

]=Ωτ.

■

Proof of Theorem 24.5: By the definition of the quantile treatment effect, monotonicity of causal effect
(Assumption 24.1.2), definition of the causal effect, monotonicity of the treatment response (Assumption
24.1.3), and the definition of the quantile regression function, we find that

Qτ(x) =Qτ [C (X ,U ) | X = x]

=C (x,Qτ[U | X = x])

= h(1, x,Qτ[U | X = x])−h(0, x,Qτ[U | X = x])

=Qτ[h(1, X ,U ) | X = x]−Qτ[h(0, X ,U ) | X = x]

= qτ (1, x)−qτ (0, x)

= Dτ(x)

as claimed. ■
_____________________________________________________________________________________________

24.17 Exercises

Exercise 24.1 Prove (24.4) in Theorem 24.1.

Exercise 24.2 Prove (24.5) in Theorem 24.1.

Exercise 24.3 Define ψ(x) = τ−1 {x < 0}. Let θ satisfy E
[
ψ(Y −θ)

]= 0. Is θ a quantile of the distribution
of Y ?

Exercise 24.4 Take the model Y = X ′β+e where the distribution of e given X is symmetric about zero.

(a) Find E [Y | X ] and med[Y | X ].

(b) Do OLS and LAD estimate the same coefficient β or different coefficients?

(c) Under which circumstances would you prefer LAD over OLS? Under which circumstances would
you prefer OLS over LAD? Explain.

Exercise 24.5 You are interested in estimating the equation Y = X ′β+ e. You believe the regressors are
exogenous, but you are uncertain about the properties of the error. You estimate the equation both by
least absolute deviations (LAD) and OLS. A colleague suggests that you should prefer the OLS estimate,
because it produces a higher R2 than the LAD estimate. Is your colleague correct?

Exercise 24.6 Prove (24.13) in Theorem 24.2.
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Exercise 24.7 Prove (24.14) in Theorem 24.2.

Exercise 24.8 Suppose X is binary. Show that Qτ[Y | X ] is linear in X .

Exercise 24.9 Suppose X1 and X2 are binary. Find Qτ[Y | X1, X2].

Exercise 24.10 Show (24.19).

Exercise 24.11 Show under correct specification that Ωτ = E
[

X X ′ψ2
τ

]
satisfies the simplification Ωτ =

τ(1−τ)Q .

Exercise 24.12 Take the treatment response setting of Theorem 24.5. Suppose h(0, X2,U ) = 0, meaning
that the response variable Y is zero whenever there is no treatment. Show that Assumption 24.1.3 is not
necessary for Theorem 24.5.

Exercise 24.13 Using the cps09mar dataset take the sample of Hispanic men with education 11 years or
higher. Estimate linear quantile regression functions for log wages on education. Interpret your findings.

Exercise 24.14 Using the cps09mar dataset take the sample of Hispanic women with education 11 years
or higher. Estimate linear quantile regression functions for log wages on education. Interpret.

Exercise 24.15 Take the Duflo, Dupas and Kremer (2011) dataset DDK2011 and the subsample of stu-
dents for which tracking=1. Estimate linear quantile regressions of totalscore on percentile (the latter is
the student’s test score before the school year). Calculate standard errors by clustered bootstrap. Do the
coefficients change meaningfully by quantile? How do you interpret these results?

Exercise 24.16 Using the cps09mar dataset estimate similarly to Figure 24.5 the quantile regressions
for log wages on a 5th- order polynomial in experience for college-educated Black women. Repeat for
college-educated white women. Interpret your findings.



Chapter 25

Binary Choice

25.1 Introduction

This and the next two chapters treat what are known as limited dependent variables. These are
variables which have restricted support (a subset of the real line) and this restriction has consequences
for econometric modeling. This chapter concerns the simplest case where Y is binary, meaning that it
takes two values. Without loss of generality these are taken as zero and one, thus Y has support {0,1}. In
econometrics we typically call this class of models binary choice.

Examples of binary dependent variables include: Purchase of a single item; Market entry; Partici-
pation; Approval of an application/patent/loan. The dependent variable may be recorded as Yes/No,
True/False, or 1/−1, but can always be written as 1/0.

The goal in binary choice analysis is estimation of the conditional or response probabilityP [Y = 1 | X ]
given a set of regressors X . We may be interested in the response probability or some transformation
such as its derivative – the marginal effect. A traditional approach to binary choice modeling (and lim-
ited dependent variable models in general) is parametric with estimation by maximum likelihood. There
is also a substantial literature on semiparametric estimation. In recent years, applied practice has tilted
towards linear probability models estimated by least squares.

For more detailed treatments see Maddala (1983), Cameron and Trivedi (2005) and Wooldridge (2010).

25.2 Binary Choice Models

Let (Y , X ) be random with Y ∈ {0,1} and X ∈Rk . The response probability of Y with respect to X is

P (x) =P [Y = 1 | X = x] = E [Y | X = x] .

The response probability completely describes the conditional distribution. The marginal effect is

∂

∂x
P (x) = ∂

∂x
P [Y = 1 | X = x] = ∂

∂x
E [Y | X = x] .

This equals the regression derivative. Economic applications often focus on the marginal effect.
To illustrate, consider the probability of marriage given age. We use the cps09mar dataset, take the

subset of men with a college degree (n = 6441), set Y = 1 if the individual is married or widowed but
not separated or divorced1 and set Y = 0 otherwise. The regressor is age which takes values in [19,80].
In Figure 25.1(a) we plot two estimates of P (x). The filled circles are nonparametric estimates – the

1marital equals 1, 2, 3, or 4.

801



CHAPTER 25. BINARY CHOICE 802

empirical marriage frequency for each age – and the solid line is our preferred specification (a probit
spline model, described below). What seems apparant is that the probability of marriage is near zero
for age = 19, increases linearly to 80% around age = 35, remains roughly flat at 80% for ages 40-65, and
increases for higher ages.
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Figure 25.1: Probability of Marriage Given Age for College Educated Men

The variables satisfy the regression framework

Y = P (X )+e

E [e | X ] = 0.

The error e is not “classical”. It has the two-point conditional distribution

e =
{

1−P (X ), with probability P (X )
P (X ), with probability 1−P (X ).

(25.1)

It is also highly heteroskedastic with conditional variance

var[e | X ] = P (X ) (1−P (X )) . (25.2)

Regression scatterplots are unusual. For example, in Figure 25.1(b) we plot a random subsample of 250
observations from the CPS sample (marked by the ×’s) along with the estimated response probability.
Since all observations lie on the line y = 0 or on y = 1 the scatterplot has little interpretive value.

25.3 Models for the Response Probability

We now describe the most common models used for the response probability P (x).

Linear Probability Model: P (x) = x ′β where β is a coefficient vector. In this model the response
probability is a linear function of the regressors. The linear probability model has the advantage that it
is simple to interpret. The coefficients β equal the marginal effects (when X does not include nonlinear
transformations). Since the response probability equals the conditional mean this model equals the lin-
ear regression model. Linearity means that estimation is simple as least squares can be used to estimate
the coefficients. In more complicated settings (e.g. panel data with fixed effects or endogenous variables
with instruments) standard estimators can be employed.
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A disadvantage of the linear probability model is that it does not respect the [0,1] boundary. Fit-
ted and predicted values from estimated linear probability models frequently violate these boundaries
producing nonsense results.

To illustrate, in Figure 25.1(c) we plot with the dotted line the linear probability model fit to the ob-
servations in the sample described in the previous section. The fitted values are a poor approximation to
the response probabilities. They also violate the [0,1] boundary for men above the age of 67. According
to the model an 80-year-old is married with probability 113%!

Overall, the linear probability model is a poor choice for calculation of probabilities.

Index Models: P (x) =G(x ′β) where G(u) is a link function and β is a coefficient vector. This frame-
work is also called a single index model where x ′β is a linear index function. In binary choice models
G(u) is distribution function which respects the probability bounds 0 ≤ G(u) ≤ 1. In economic applica-
tions G(u) is typically the normal or logistic distribution function, both of which are symmetric about
zero so that G(−u) = 1−G(u). We assume throughout this chapter that this symmetry condition holds.
Let g (u) = ∂

∂u G(u) denote the density function of G(u). In an index model the marginal effect function is

∂

∂x
P (x) =βg

(
x ′β

)
.

Index models are only slightly more complicated than the linear probability model but have the advan-
tage of respecting the [0,1] boundary. The two most common index models are the probit and logit.

Probit Model: P (x) =Φ(x ′β) where Φ(u) is the standard normal distribution function. This is a tra-
ditional workhorse model for binary choice analysis. It is simple, easy to use, easy to interpret, and is
based on the classical normal distribution.

Logit Model: P (x) = Λ(x ′β) where Λ(u) = (
1+exp(−u)

)−1 is the logistic distribution function. This
is an alternative workhorse model for binary choice analysis. The logistic and normal distribution func-
tions (appropriately scaled) have similar shapes so the probit and logit models typically produce similar
estimates for the response probabilities and marginal effects. One advantage of the logit model is that
the distribution function is available in closed form which speeds computation.

Linear Series Model: P (x) = x ′
KβK where xK = xK (x) is a vector of transformations of x and βK is a

coefficient vector. A series expansion has the ability to approximate any continuous function including
the response probability P (x). The advantage of a linear series model is that its linear form allows the
application of linear econometric methods. It is not guaranteed, however, to be boundary-respecting.

Index Series Model: P (x) = G
(
x ′

KβK
)

where G(u) is a distribution function (either normal or logis-
tic in practice), xK = xK (x) is a vector of transformations of x, and βK is a coefficient vector. A series
expansion has the ability to approximate any continuous function including the transformed response
probability G−1

(
p(x)

)
. This means that the index series model has the ability to approximate any con-

tinuous response probability. In addition, the model is boundary-respecting.

To illustrate the approximating capabilities of the models view Figure 25.1(c) which plots four esti-
mated response probability functions: (1) Linear; (2) Probit; (3) Linear Series; (4) Probit Series. The first
two models are specified as linear in age. The two series models use a quadratic spline in age with kinks
at 40 and 60.

As discussed earlier, in this application the linear probability model is a particularly poor fit. It over-
predicts the probability for men under 30 and over 50, under-predicts the others, and violates the [0,1]
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boundary. The simple probit model is also quite poor. It produces an estimated response probability
function which is similar to the linear probability model for ages up to 60. Its advantage is that for ages
over 60 it does not violate the [0,1] boundary. In contrast, the two series models produce excellent fitted
response probability functions. The two estimates are nearly identical for ages above 25. The main
difference between the estimated functions is that the probit series model provides a globally excellent
fit, while the linear series model fails for ages less than 25, severely violating the [0,1] boundary. The
linear series model estimates that a 19-year-old is married with negative probability: −27%!

To summarize, a probit series model has several excellent features. It is simple, based on a popu-
lar link function, globally approximates any continuous response probability function, and respects the
[0,1] boundary. A linear series model is also a reasonable candidate, but has the disadvantage of not
necessarily respecting the [0,1] boundary.

Probit and Logit

The intruiging labels probit and logit have a long history in statisti-
cal analysis. The term probit was coined by Chester Bliss in 1934 as a
contraction of “probability unit”. The logistic function was introduced
by Pierre Franï£¡ois Verhulst in 1938 as a modified exponential growth
model. It is speculated that he used the term logistic as a contrast to log-
arithmic. In 1944 Joseph Berkson proposed a binary choice model based
on the logistic distribution function. He motivated the logistic as a con-
venient computational approximation to the normal. As his model was
an analog of the probit Berkson called his model the logit.

25.4 Latent Variable Interpretation

An index model can be interpreted as a latent variable model. Consider

Y ∗ = X ′β+e

e ∼G (e)

Y =1{
Y ∗ > 0

}= {
1 if Y ∗ > 0

0 otherwise.

In this model the observables are (Y , X ). The variable Y ∗ is latent, linear in X and an error e, with the
latter drawn from a symmetric distribution G . The observed binary variable Y equals 1 if the latent
variable Y ∗ exceeds zero and equals 0 otherwise.

The event Y = 1 is the same as Y ∗ > 0, which is the same as

X ′β+e > 0. (25.3)

This means that the response probability is

P (x) =P[
e >−x ′β

]= 1−G
(−x ′β

)=G
(
x ′β

)
.

The final equality uses the assumption that G(u) is symmetric about zero. This shows that the response
probability is P (x) =G(x ′β) which is an index model with link function G(u).
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This latent variable model corresponds to a choice model where Y ∗ is an individual’s relative utility
(or profit) of the options Y = 1 and Y = 0, and the individual selects the option with the higher utility.
We see that this structural choice model is identical to an index model with link function equalling the
distribution of the error. It is a probit model if the error e is standard normal and is a logit model if e is
logistically distributed.

You may have noticed that we have discussed cases where the error e is either standard normal or
standard logistic, that is, their scale is fixed. This is because the scale of the error distribution is not
identified. To see this, suppose that e =σε where ε has a distribution G (u) with unit variance. Then the
response probability is

P [Y = 1 | X = x] =P[
σe >−x ′β

]=G

(
x ′β
σ

)
=G

(
x ′β∗)

where β∗ = β/σ. This is an index model with coefficient β∗. This means that β and σ are not separately
identified; only the ratio β∗ = β/σ is identified. The standard solution is to normalize σ to a convenient
value. The probit and logit models use the normalizations σ= 1 and σ=π/

p
3 ' 1.8, respectively.

Two consequences of the above analysis are that (1) interpretation of the coefficient vector β cannot
be separated from the scale of the error; and (2) the coefficients of probit and logit models cannot be
compared without rescaling. In general, it is best to interpret the coefficient of a probit model as β/σ,
the structural coefficient scaled by the stuctural standard deviation, and to interpret the coefficient of a
logit model as β/v , the structural coefficient scaled by the structural logistic scale parameter v =σp3/π.
For a rough comparison2 of probit and logit coefficients multiply the probit coefficients by 1.8 or divide
the logit coefficients by 1.8.

While the coefficient β is not identified the following parameters are identified:

1. Scaled coefficients: β∗ =β/σ.

2. Ratios of coefficients: β1/β2 =β∗
1 /β∗

2 .

3. Marginal effects: ∂
∂x P (x) = β

σg
(

x ′β
σ

)
=β∗g

(
x ′β∗)

.

These only depend on β∗ so are identified.
Concerning identification, if we take a broader nonparametric view the error distribution G(u) is not

identified. To see this, write the structural equation nonparametrically as Y ∗ = m(X )+ e. The response
probability is

P (x) = 1−G (−m(x)) . (25.4)

The joint distribution identifies P (x). If G(e) and m(x) are nonparametric they cannot be separately
identified from the response probability. Only the composite (25.4) is identified.

An important implication is that there is no loss of generality in setting G(u) equal to a specific para-
metric distribution such as the normal so long as the function m(x) is treated nonparametrically.

25.5 Likelihood

Probit and logit models are typically estimated by maximum likelihood. To construct the likelihood
we need the distribution of an individual observation. Recall that if Y is Bernoulli, such thatP [Y = 1] = p
and P [Y = 0] = 1−p, then Y has the probability mass function

π(y) = p y (1−p)1−y , y = 0,1.

2This produces only a rough comparison as this normalization only puts the coefficients on the same scale. They are not
equal since the models are different.
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In the index model P [Y = 1 | X ] = G
(
X ′β

)
, Y is conditionally Bernoulli, so its conditional probability

mass function is

π (Y | X ) =G
(
X ′β

)Y (
1−G

(
X ′β

))1−Y =G
(
X ′β

)Y G
(−X ′β

)1−Y =G
(
Z ′β

)
(25.5)

where

Z =
{

X if Y = 1
−X if Y = 0.

Taking logs and summing across observations we obtain the log-likelihood function:

`n(β) =
n∑

i=1
logG

(
Z ′

iβ
)

.

For the probit and logit models this is

`
probit
n (β) =

n∑
i=1

logΦ
(
Z ′

iβ
)

`
logit
n (β) =

n∑
i=1

logΛ
(
Z ′

iβ
)

.

Define the first and (negative) second derivatives of the log distribution function: h(x) = d
d x logG(x)

and H(x) =− d 2

d x2 logG(x). For the logit model these equal (See Exercise 25.5)

hlogit(x) = 1−Λ(x)

Hlogit(x) =Λ(x) (1−Λ(x))

and for the probit model (See Exercise 25.6)

hprobit(x) = φ(x)

Φ(x)
def= λ(x)

Hprobit(x) =λ(x) (x +λ(x)) .

The function λ(x) =φ(x)/Φ(x) is known as the inverse Mills ratio.
Both the logit and probit have the property that H(x) > 0. This is easily seen for the logit case since

it is the product of the distribution function and its complement, but less so for the probit case. Here we
make use of a convenient property of log concave3 functions: if a density f (x) is log concave then the
distribution function F (x) is log concave. The standard normal density φ(x) is log concave4, implying
thatΦ(x) is log concave, implying Hprobit(x) > 0 as desired.

The likelihood score and Hessian are

Sn(β) = ∂

∂β
`n(β) =

n∑
i=1

Zi h
(
Z ′

iβ
)

(25.6)

Hn(β) =− ∂2

∂β∂β′`n(β) =
n∑

i=1
Xi X ′

i H
(
Z ′

iβ
)

. (25.7)

Examining (25.7) we can see that H(x) > 0 implies that Hn(β) > 0 globally in β. This in turn implies that
the log-likelihood `n(β) is globally concave. Since both Hlogit(x) > 0 and Hprobit(x) > 0 we deduce that

the probit and logit log likelihood functions `probit
n (β) and `logit

n (β) are globally concave in β.

3A function f (x) is log concave if log f (x) is concave.
4logφ(x) =− log(2π)−x2/2 is concave.
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The MLE is the value which maximizes `n(β). We write this as

β̂probit = argmax
β

`
probit
n (β)

β̂logit = argmax
β

`
logit
n (β).

Since the probit and logit log-likelihoods are globally concave β̂probit and β̂logit are unique. There is no
explicit solution so they need to be found numerically. As the log likelihoods are smooth, concave, with
known first and second derivatives, numerical optimization is straightforward.

In Stata, use the commands probit and logit to obtain the MLE. In R, use the commands

glm(Y~X,family=binomial(link="probit"))

glm(Y~X,family=binomial(link="logit")).

25.6 Pseudo-True Values

The expected log mass function is

`(β) = E[
logG

(
Z ′β

)]
.

The model is correctly specified if there is a coefficient β0 such that P [Y = 1 | X ] = G
(
X ′β0

)
. When this

holds then β0 has the property that it maximizes `(β) and thus satisfies

β0 = argmax
β

`(β). (25.8)

We say that the model is misspecified if there is no β such that P [Y = 1 | X ] =G
(
X ′β

)
. In this case we

view the model G
(
X ′β

)
as an approximation to the response probability and define the pseudo-true co-

efficientβ0 as the value which satisfies (25.8). By construction, (25.8) equals the true coefficient when the
model is correctly specified and otherwise produces the best-fitting model with respect to the expected
log mass function.

When the distribution function G(x) is log concave (as it is for the probit and logit models) then `(β)
is globally concave. To see this define

Q(β) =− ∂2

∂β∂β′`(β) = E[
X X ′H

(
Z ′β

)]
and observe that H(x) > 0 (by log concavity), which implies Q(β) ≥ 0, which implies that `(β) is globally
concave. Furthermore, the minimizer (25.8) is unique under the full rank condition

E
[

X X ′H
(
X ′β0

)]> 0. (25.9)

It is important to note that the concavity of `(β) and uniqueness of the maximizer β0 are properties of
the model G

(
X ′β

)
not the true distribution.

For specificity, for the probit and logit models define the population criterions

`probit(β) = E[
logΦ

(
Z ′β

)]
`logit(β) = E[

logΛ
(
Z ′β

)]
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and the pseudo-true values

βprobit = argmax
β

`probit(β)

βlogit = argmax
β

`logit(β).

We now describe the full rank condition (25.9) for the logit and probit models. For the probit model
Hlogit(−x) = Hlogit(x) is symmetric about zero, so Hlogit

(
Z ′β

) = Hlogit
(
X ′β

) = Λ(
X ′β

)(
1−Λ(

X ′β
))

. We
deduce that (25.9) is the same as

Q logit
def= E

[
X X ′Λ

(
X ′βlogit

)(
1−Λ

(
X ′βlogit

))]
> 0. (25.10)

For the probit model the condition (25.9) is

Qprobit
def= E

[
X X ′Hprobit

(
Z ′βprobit

)]
> 0. (25.11)

When (25.10) and/or (25.11) hold the population minimizers βprobit and/or βlogit are unique.

25.7 Asymptotic Distribution

We first provide conditions for consistent estimation. Let B be the parameter space for β.

Theorem 25.1 Consistency of Logit Estimation. If (1) (Yi , Xi ) are i.i.d.; (2)
E‖X ‖ <∞; (3) Q logit > 0; and (4) B is compact; then β̂logit −→

p
βlogit as n →∞.

Theorem 25.2 Consistency of Probit Estimation. If (1) (Yi , Xi ) are i.i.d.; (2)
E‖X ‖2 < ∞; (3) Qprobit > 0; and (4) B is compact; then β̂probit −→

p
βprobit as

n →∞.

The proofs are in Section 25.14. To derive the asymptotic distributions we appeal to Theorem 22.4
for m-estimators which shows that the asymptotic distribution is normal with a covariance matrix V =
Q−1ΩQ−1 where Q is defined in (25.10) for the logit model and is defined in (25.11) for the probit model.

The variance of the score isΩ= E
[

X X ′h
(
Z ′β

)2
]

. In the logit model we have the simplification

Ωlogit = E
[

X X ′
(
Y −Λ

(
X ′βlogit

))2
]

(25.12)

(explained below). We do not have a similar simplification for the probit model (except under correct
specification, discussed below) and thus define

Ωprobit = E
[

X X ′λ
(

Z ′βprobit
)2

]
. (25.13)
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To see (25.12), with some algebra you can show that

h
(
Z ′β

)2 = g
(
X ′β

)2

G
(
X ′β

)2 Y + g
(
X ′β

)2(
1−G

(
X ′β

))2 (1−Y ) = g
(
X ′β

)2 (
Y −G

(
X ′β

))2

G
(
X ′β

)2 (
1−G

(
X ′β

))2 . (25.14)

In the logit model the right side simplifies to
(
Y −Λ(

X ′β
))2. This implies

Ωlogit = E
[

X X ′hlogit
(
Z ′β

)2
]
= E

[
X X ′

(
Y −Λ

(
X ′βlogit

))2
]

as claimed.

Theorem 25.3 If the conditions of Theorem 25.1 hold plus E‖X ‖4 < ∞ and
βlogit is in the interior of B ; then as n →∞

p
n

(
β̂logit −βlogit

)
−→

d
N

(
0,V logit

)
where V logit =Q−1

logitΩlogitQ−1
logit.

Theorem 25.4 If the conditions of Theorem 25.2 hold plus E‖X ‖4 < ∞ and
βprobit is in the interior of B ; then as n →∞

p
n

(
β̂probit −βprobit

)
−→

d
N

(
0,V probit

)
where V probit =Q−1

probitΩprobitQ−1
probit.

The proofs are in Section 25.14.
Under correct specification the information matrix equality implies the simplifications V logit =Q−1

logit

and V probit =Q−1
probit. We also have the simplification

Ωprobit =Qprobit = E
[

X X ′λ
(

X ′βprobit
)
λ

(
−X ′βprobit

)]
. (25.15)

This follows from (25.14), which for the probit model can be written as

λ
(
Z ′β

)2 =λ(
X ′β

)
λ

(−X ′β
) (

Y −Φ(
X ′β

))2

Φ
(
X ′β

)(
1−Φ(

X ′β
)) .

Under correct specification E [Y | X ] = Φ(X ′β) and E
[(

Y −Φ(
X ′β

))2 | X
]
= Φ(X ′β)

(
1−Φ(X ′β)

)
. Taking

expectations given X the above expression simplifies to λ
(
X ′β

)
λ

(−X ′β
)
. Inserted into (25.13) yields

(25.15).
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25.8 Covariance Matrix Estimation

For the logit model define Λ̂i =Λ
(
X ′

i β̂
logit

)
and

Q̂ logit =
1

n

n∑
i=1

Xi X ′
i Λ̂i

(
1− Λ̂i

)
Ω̂logit =

1

n

n∑
i=1

Xi X ′
i

(
Yi − Λ̂i

)2
.

The sandwich covariance matrix estimator for V logit is V̂ logit = Q̂
−1
logitΩ̂logitQ̂

−1
logit. Under the assumption

of correct specification we may alternatively use V̂
0
logit = Q̂

−1
logit.

For the probit model define µ̂i = Z ′
i β̂

probit, λ̂i =λ
(
µ̂i

)
, and

Q̂probit =
1

n

n∑
i=1

Xi X ′
i λ̂i

(
µ̂i + λ̂i

)
Ω̂probit =

1

n

n∑
i=1

Xi X ′
i λ̂

2
i .

The sandwich covariance matrix estimator for V probit is V̂ probit = Q̂
−1
probitΩ̂probitQ̂

−1
probit. Under the as-

sumption of correct specification we may alternatively use

Q̂
0
probit =

1

n

n∑
i=1

Xi X ′
iλ

(
X ′β̂probit

)
λ

(
−X ′β̂probit

)

and V̂
0
probit =

(
Q̂

0
)−1

.

In Stata and R the default covariance matrix and standard errors are calculated by V̂
0
logit and V̂

0
probit.

For the robust covariance matrix estimation and standard errors V̂ logit and V̂ probit, in Stata use the option
vce(robust). In R use the package sandwich which has options for the HC0, HC1, and HC2 (and other)
covariance matrix estimators.

25.9 Marginal Effects

As we mentioned before it is common to focus on marginal effects rather than coefficients as the
latter are difficult to interpret. In this section we describe marginal effects in more detail and describe
common estimators.

Take the index model P [Y = 1 | X = x] =G
(
x ′β

)
when x does not include nonlinear transformations.

In this case the marginal effects are

δ(x) = ∂

∂x
P (x) =βg

(
x ′β

)
.

This varies with x. For example, in Figure 25.1 we see that the marginal effect of age on marriage proba-
bility is about 0.06 per year for ages between 20 and 30, but is close to zero for ages above 40.

For reporting it is typical to calculate an “average” value. There are more than one way to do so. The
most common is the average marginal effect

AME = E [δ(X )] =βE[
g (X ′β)

]
.
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An estimator of δ(x) is δ̂(x) = β̂g
(
x ′β̂

)
. An estimator of the AME is

�AME = 1

n

n∑
i=1

δ̂ (Xi ) = β̂ 1

n

n∑
i=1

g
(
X ′

i β̂
)

.

When the vector X includes nonlinear transformations the marginal effects need to be carefully de-
fined. For example, in the model P [Y = 1 | X = x] =G

(
β0 +β1x +·· ·+βp xp

)
the marginal effect is

δ(x) = (
β1 +·· ·+pβp xp−1)g

(
β0 +β1x +·· ·+βp xp)

.

An estimator of δ(x) is

δ̂(x) = (
β̂1 +·· ·+pβ̂p xp−1)g

(
β̂0 + β̂1x +·· ·+ β̂p xp)

.

An estimator of the AME is �AME = 1
n

∑n
i=1 δ̂(Xi ).

In Stata, marginal effects can be estimated with margins,dydx(*).

25.10 Application

We illustrate with an application to the probability of marriage using the cps09mar dataset. We use
the subsample of men with ages up to 35 (n = 9137). We include as regressors an individual’s age, edu-
cation, and indicators for Black, Asian, Hispanic, and three regions. We estimate linear logit and linear
probit models, calculate coefficients and average marginal effects, and report robust standard errors.
The results are reported in Table 25.1.

Reading the tables you will see that the logit and probit coefficient estimates all have the same signs
but the logit coefficients are larger in magnitude. We see that the probability of marriage is increasing in
age, is lower for Black individuals, and varies across geographic regions. The coefficients themselves are
difficult to intepret so it is better to focus on the estimated marginal effects. Doing so, we see that the
logit and probit estimates are essentially identical. This is a common finding in empirical applications
when both provide good approximations to the response probability. Examining the coefficients further
we see that the probability of marriage increases about 4.5% for each year of age. The point estimate
of the impact of education is 0.3% per year of education, which is a small magnitude. Black men are
married with a reduced probability of 15% relative to the omitted category (men who are not Black,
Asian, nor Hispanic). The estimated marginal effects for Asian and Hispanic men are small (1% and −2%,
respectively) relative to the omitted category. Comparing regions we see that marriage rates are about 6-
8% higher in the Midwest, South, and West relative to the NorthEast (the omitted category). Equivalently,
men in the NorthEast have a reduced probability of about 7% relative to the rest of the country.

Two messages from this application are that the choice of logit versus probit is unimportant and that
it is better to focus on marginal effects than coefficients. A hidden message is that (as for all econometric
applications) model specification is critically important. The estimates in Table 25.1 are for men with
ages 19-35. This choice was made so that the response probability would be well modeled with a single
linear term in age. If instead the estimates were calculated on the full sample (and still using a linear
specification) then the estimated marginal effect of age would have been 1% per year rather than 4.5%, a
large mis-estimate of the effect of age on marriage probability.

25.11 Semiparametric Binary Choice

The semiparametric binary choice model is

P [Y = 1 | X ] =G
(
X ′β

)
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Table 25.1: Binary Choice Regressions for Marriage

Logit Probit
Coefficient AME Coefficient AME

age 0.217 0.044 0.132 0.045
(0.006) (0.001) (0.003) (0.001)

education 0.014 0.003 0.009 0.003
(0.010) (0.002) (0.006) (0.002)

Black −0.767 −0.156 −0.454 −0.153
(0.092) (0.018) (0.054) (0.018)

Asian 0.033 0.007 0.025 0.008
(0.103) (0.021) (0.063) (0.021)

Hispanic −0.084 −0.017 −0.048 −0.017
(0.063) (0.013) (0.038) (0.013)

MidWest 0.272 0.056 0.165 0.056
(0.074) (0.011) (0.045) (0.015)

South 0.338 0.069 0.203 0.069
(0.070) (0.014) (0.043) (0.014)

West 0.383 0.078 0.228 0.077
(0.072) (0.015) (0.044) (0.015)

Intercept −6.45 −3.93
(0.21) (0.12)

where G(x) is unknown. Interest typically focuses on the coefficients β.
In the latent variable framework G(x) is the distribution function of a latent error e. As it is not

credible that the distribution G(x) is known, the semiparametric model treats G(x) as unknown. The
goal is to estimate the coefficient β while agnostic about G(x).

There are many contributions to this literature. Two of the most influential are Manski (1975) and
Klein and Spady (1993). Both use the latent variable framework Y ∗ = X ′β+e.

Manksi (1975) shows that β is identified up to scale if med[e | X ] = 0. He proposes a clever maximum
score estimator is which is consistent for β up to scale under this weak condition. His method, however,
does not permit estimation of the response probabilities nor marginal effects since his assumptions are
insufficient to identify G(x).

Klein and Spady (1993) add the assumption that e is independent of X which implies identification
of G(x). They propose simultaneous estimation of β and G(x) based on the following two properties:
(1) If G(x) is known then β can be estimated by maximum likelihood; (2) If β is known then G(x) can
be estimated by nonparametric regression of Y on X ′β. Combining these two properties into a nested
criterion, they produce a consistent, asymptotically normal, and efficient estimator of β.

While the ideas of Manski and Klein-Spady are quite clever, the trouble is that model G(x ′β) relies
on the parametric linear index assumption. Suppose we relax the latter to a nonparametric function
m(x) but assume that e is independent of X . Then the response probability is 1−G(−m(x)). In this
case neither G(x) nor m(x) is identifed; only the composite function G(−m(x)) is identified. This means
that estimation of m(x) while agnostic about G(x) is impossible without a parametric assumption on
m(x). Consequently, the modern view is to take P (x) = P [Y = 1 | X = x] as nonparametrically identified.
Consistent estimation can be achieved through a series approximation, either using a linear, probit, or
logit link. From this viewpoint there is no gain from the restriction to the function form G(x ′β), and
hence no gain from the semiparametric approach.
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25.12 IV Probit

A latent variable structural equation model is

Y ∗
1 = X ′β1 +Y2β2 +e1

Y2 = X ′γ1 +Z ′γ2 +e2

Y1 =1
{
Y ∗

1 > 0
}

.

In this model, Y2 is scalar, endogenous, and continuously distributed, X are included exogenous regres-
sors, and Z are excluded exogenous instruments.

The standard estimation method is maximum likelihood based on the assumption that the errors are
jointly normal (

e1

e2

)∣∣∣∣ (X , Z ) ∼ N

((
0
0

)
,

(
1 σ12

σ21 σ2
2

))
.

The likelihood is derived as follows. The regression of e1 on e2 equals

e1 = ρe2 +ε
ρ = σ12

σ2
2

ε∼ N
(
0,σ2

ε

)
σ2
ε = 1− σ2

12

σ2
2

.

Using these relationships we can write the structural equation as

Y ∗
1 =µ(θ)+ε (25.16)

µ(θ) = X ′β1 +Y2β2 +ρ
(
Y2 −X ′γ1 −Z ′γ2

)
.

The error ε is independent of e2 and hence of Y2. Thus the conditional distribution of Y ∗
1 is N

(
µ (θ) ,σ2

ε

)
.

It follows that the joint density for (Y1,Y2) is

Φ

(
µ(θ)

σε

)Y1
(
1−Φ

(
µ(θ)

σε

))1−Y1 1

σ2
φ

(
Y2 −X ′γ1 −Z ′γ2

σ2

)
.

The parameter vector is θ = (
β1,β2,γ1,γ2,ρ,σ2

ε,σ2
2

)
.

The joint log-likelihood for a random sample {Y1i ,Y2i , Xi , Zi } is

`n(θ) =
n∑

i=1

[
Y1i logΦ

(
µi (θ)

σε

)
+ (1−Y1i ) log

(
1−Φ

(
µi (θ)

σε

))]
− n

2
log(2π)− n

2
logσ2

2 −
1

2σ2
2

n∑
i=1

(
Y2i −X ′

iγ1 −Z ′
iγ2

)2 .

The maximum likelihood estimator θ̂ is found by numerically maximizing `n(θ).
The probit assumption (the treatment of (e1,e2) as jointly normal) is important for this derivation as it

allows a simple factorization of the joint distribution into the conditional distribution of Y1 given Y2 and
the marginal distribution of Y2. A similar factorization is not easily accomplished in a logit framework.

In Stata this estimator can be implemented with the ivprobit command.
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25.13 Binary Panel Data

A binary choice panel model is typically written as

Y ∗
i t = X ′

i tβ+ui +ei t

Yi t =1
{
Y ∗

i t > 0
}

.

Here, the observations are (Yi t , Xi t ) for i = 1, ...,n and t = 1, ...,T with Yi t binary. For example, Yi t could
denote the decision of individual i to make a purchase in period t . The individual effect ui is intended
to capture the feature that some individuals i make purchases more (or less) frequently than can be
explained by the regressors.

As in linear models there is a distinction between treating the individual effect ui as random (mean-
ing that it is independent of the regressors) or fixed (meaning that it is correlated with the regressors).

Under the random effects assumption the model can be estimated by maximum likelihood. This is
called random effects probit or random effects logit depending on the error distribution.

Allowing for fixed effects is more complicated. The individual effect cannot be eliminated by a linear
operation since Yi t is a nonlinear function of ui . For example, the transformation

∆Yi t =1
{
Y ∗

i t > 0
}−1{

Y ∗
i ,t−1 > 0

}
does not eliminate ui .

Consequently there is no fixed effects estimator for the probit model. However, for the logit model
Chamberlain (1980, 1984) developed a fixed effects estimator based on a conditional likelihood. He
showed that a feature of the logistic distribution is that the individual effect can be eliminated via odds
ratios, allowing the calculation of the likelihood conditional on the sum of the dependent variable.

We illustrate the construction of the likelihood for the case T = 2. Let Yi 1,Yi 2 denote the outcomes
and Ni = Yi 1 +Yi 2 denote their sum. We calculate the conditional distribution of (Yi 1,Yi 2) given Ni . This
is the distribution of the choices given the total number of choices.

When Ni = 0 or Ni = 2 the likelihood is trivial. That is,

P [Yi t = 0 | Ni = 0] = 0

P [Yi t = 1 | Ni = 2] = 1.

This does not depend on β, so does not affect estimation. Thus we focus exclusively on the case Ni = 1.
The choice probabilities are

P [Yi t = 0] = exp
(−X ′

i tβ−ui
)

1+exp
(−X ′

i tβ−ui
)

P [Yi t = 1] = 1

1+exp
(−X ′

i tβ−ui
) .

Their ratio is
P [Yi t = 0]

P [Yi t = 1]
= exp

(−X ′
i tβ−ui

)
.

Taking a further ratio for t = 1 and t = 2 we obtain

P [Yi 1 = 0]

P [Yi 1 = 1]

P [Yi 2 = 1]

P [Yi 2 = 0]
= exp

(−X ′
1tβ−ui

)
exp

(−X ′
2tβ−ui

) = exp
(
(X2t −X1t )′β

)
.
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This does not depend on the fixed effect ui . It is a function only of the change in the regressors ∆Xi =
Xi 2 −Xi 1.

This is effectively a nonlinear within transformation. This odds ratio eliminates dependence on the
individual effect due to the exponential structure of the logistic distribution. This is special to the logit
model and allows construction of a conditional likelihood function which is free of ui .

Consider the choice probability for period 1 given Ni = 1. It is

P [Yi 1 = 1 | Ni = 1] = P [Yi 1 = 1,Yi 2 = 0]

P [Yi 1 = 1,Yi 2 = 0]+P [Yi 1 = 0,Yi 2 = 1]

= P [Yi 1 = 1]P [Yi 2 = 0]

P [Yi 1 = 1]P [Yi 2 = 0]+P [Yi 1 = 0]P [Yi 2 = 1]

= 1

1+ P[Yi 1=0]
P[Yi 1=1]

P[Yi 2=1]
P[Yi 2=0]

= 1

1+exp
(
∆X ′

iβ
)

= 1−Λ(
∆X ′

iβ
)

.

Similarly P [Yi 1 = 0 | Ni = 1] =Λ(
∆X ′

iβ
)
. Together the log-likelihood function is

`n(β) =
n∑

i=1
1 {Ni = 1}

[
(1−Yi 1)Y2i logΛ

(
∆X ′

iβ
)+Yi 1 (1−Yi 2) log

(
1−Λ(

∆X ′
i tβ

))]
.

This conditional likelihood is free of the individual effect. Since the conditional likelhood can be com-
puted it can be maximized to obtain the conditional likelihood estimator.

In order for the likelihood to be a non-degenerate function of β it is necessary for there to be individ-
uals who are switchers (select Y = 0 in one period and Y = 1 in the other period) and that switchers have
time-varying regressors. Coefficients for time-invariant regressors are not identified.

Our derivation focused on T = 2. The extension to T > 2 is similar but is algebraically complicated.
In Stata, random effects probit is implemented with xtoprobit and random effects logit with xtologit.

Fixed effects probit can be implemented with xtologit,fe or clogit.

25.14 Technical Proofs*

Proof of Theorem 25.1: The MLE β̂logit is an m-estimator so we appeal to Theorem 22.3, which shows
that β̂logit is consistent under five conditions. Conditions 1 and 4 hold by assumption. Condition 5 (βlogit

uniquely minimizes `logit(β)) holds under the assumption Q logit > 0. The log-likelihood components
logΛ

(
Z ′β

)
are continuous over any compact set B so condition 2 holds. Finally,∣∣logΛ(t )

∣∣=− logΛ(t ) = log
(
1+exp(−t )

)≤ log
(
1+exp(|t |))≤ log(2)+|t | .

Thus ∣∣logΛ(Z ′β)
∣∣≤ log(2)+ ∣∣X ′β

∣∣≤ log(2)+∥∥β∥∥‖X ‖ ≤ log(2)+β‖X ‖
where β= supβ∈B

∥∥β∥∥. The right side has finite expectation since E‖X ‖ <∞ by assumption. This estab-
lishes condition 3. Together, the conditions of Theorem 22.3 are satisfied. ■

Proof of Theorem 25.2: Following the proof of Theorem 25.1, we need to show that
∣∣logΦ

(
Z ′β

)∣∣≤G(Z )
with E |G(Z )| <∞.

Theorem 5.7.6 of Introduction to Econometrics states that
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d

d t
logΦ(t ) =λ(t ) = φ(t )

Φ(t )
≤ 1+|t | . (25.17)

This implies

∣∣logΦ (t )
∣∣=− logΦ (t ) ≤ log

(p
2π

)
+ t 2

2
+ log(1+|t |) ≤ log

(p
2π

)
+ t 2

2
+|t | .

Using the Schwarz (B.12) inequality

∣∣logΦ
(
Z ′β

)∣∣≤ log
(p

2π
)
+ 1

2

∣∣X ′β
∣∣2 + ∣∣X ′β

∣∣≤ 2log
(p

2π
)
+ 1

2
β

2 ‖X ‖2 +β‖X ‖

where β= supβ∈B

∥∥β∥∥. The right side has finite expectation since E‖X ‖2 <∞. ■

Proof of Theorem 25.3: Since β̂logit is an m-estimator we verify the five conditions for Theorem 22.4.
Conditions 2 and 5 hold by assumption.

Since
∣∣hlogit(t )

∣∣≤ 1, we see that E
[∥∥Z hlogit

(
Z ′βlogit

)∥∥2
]
≤ E‖X ‖2 <∞. Thus condition 1 holds.

The function Q logit(β) is bounded and Λ(x) is continuous. Q logit(β) is thus continuous in β and con-
dition 3 holds.

As shown in Exercise 25.5(d),
∣∣Hlogit(t )

∣∣≤ 1. Then

E

[
sup
β

∥∥∥∥ ∂

∂β
Z hlogit

(
X ′β

)∥∥∥∥2
]
≤ E‖X ‖4 sup

t

∣∣Hlogit (t )
∣∣<∞

which implies condition 4.
We have verified the five conditions for Theorem 22.4 as needed. ■

Proof of Theorem 25.4: The proof follows the same lines as Theorem 25.3, by verifying conditions 1, 3,
and 4 of Theorem 22.4.

Using (25.17)

E
∥∥∥Zλ

(
Z ′βprobit

)∥∥∥2 ≤ E
(
‖X ‖

(
1+

∣∣∣X ′βprobit
∣∣∣))2 ≤ E‖X ‖2 +

∥∥∥βprobit
∥∥∥2
E‖X ‖4 <∞

implying condition 1.
The function Qprobit(β) is bounded and Hprobit(x) is continuous. Thus Qprobit(β) is continuous in β

and condition 3 holds.
Theorem 5.7.7 of Introduction to Econometrics states that

∣∣Hprobit(t )
∣∣≤ 1. Thus by the same argument

as in the proof of Theorem 25.3 we can verify condition 4.
We have verified the conditions for Theorem 22.4 as needed. ■

_____________________________________________________________________________________________

25.15 Exercises

Exercise 25.1 Emily estimates a probit regression setting her dependent variable to equal Y = 1 for a
purchase and Y = 0 for no purchase. Using the same data and regressors, Jacob estimates a probit re-
gression setting the dependent variable to equal Y = 1 if there is no purchase and Y = 0 for a purchase.
What is the difference in their estimated slope coefficients?
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Exercise 25.2 Jackson estimates a logit regression where the primary regressor is measured in dollars.
Julie esitmates a logit regression with the same sample and dependent variable, but measures the pri-
mary regressor in thousands of dollars. What is the difference in the estimated slope coefficients?

Exercise 25.3 Show (25.1) and (25.2).

Exercise 25.4 Verify (25.5), that π (Y | X ) =G
(
Z ′β

)
.

Exercise 25.5 For the logistic distributionΛ(x) = (
1+exp(−x)

)−1 verify that

(a) d
d xΛ(x) =Λ(x)(1−Λ(x)).

(b) hlogit(x) = d
d x logΛ(x) = 1−Λ(x).

(c) Hlogit(x) =− d 2

d x2 logΛ(x) =Λ(x) (1−Λ(x)) .

(d)
∣∣Hlogit(x)

∣∣≤ 1.

Exercise 25.6 For the normal distributionΦ(x) verify that

(a) hprobit(x) = d
d x logΦ(x) =λ(x) where λ(x) =φ(x)/Φ(x).

(b) Hprobit(x) =− d 2

d x2 logΦ(x) =λ(x) (x +λ(x)).

Exercise 25.7

(a) Verify equations (25.6) and (25.7).

(b) Verify the assertion that H(x) > 0 implies that Hn(β) > 0 globally in β.

(c) Verify the assertion that part (b) implies that `n(β) is globally concave in β.

Exercise 25.8 Find the first-order condition for β0 from the population maximization problem (25.8).

Exercise 25.9 Find the first-order condition for the logit MLE β̂logit.

Exercise 25.10 Find the first-order condition for the probit MLE β̂probit.

Exercise 25.11 Show (25.14). In the logit model show that the right hand side of (25.14) simplies to(
Y −Λ(

X ′β
))2.

Exercise 25.12 Show how to use NLLS to estimate a probit model.

Exercise 25.13 Take the endogenous probit model of Section 25.12.

(a) Verify equation (25.16).

(b) Explain why ε is independent of e2 and Y2.

(c) Verify that the conditional distribution of Y ∗
1 is N

(
µ (θ) ,σ2

ε

)
.
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Exercise 25.14 Take the heteroskedastic nonparametric binary choice model

Y ∗ = m (X )+e

e | X ∼ N
(
0,σ2 (X )

)
Y = Y ∗1

{
Y ∗ > 0

}
.

The observables are {Yi , Xi : i = 1, ...,n}. The functions m(x) and σ2(x) are nonparametric.

(a) Find a formula for the response probability .

(b) Are m(x) and σ2(x) both identified? Explain.

(c) Find a normalization which achieves identification.

(d) Given your answer to part (c), does it make sense to “allow for heteroskedasticity” in the binary
choice model? Explain?

Exercise 25.15 Use the cps09mar dataset and the subset of men. Set Y = 1 if the individual is a member
of a labor union (union=1) and Y = 0 otherwise. Estimate a probit model as a linear function of age, edu-
cation, and indicators for Black individuals and for Hispanic individuals. Report the coefficient estimates
and standard errors. Interpret the results.

Exercise 25.16 Replicate the previous exercise but with the subset of women. Interpret the results.

Exercise 25.17 Use the cps09mar dataset and the subset of women with a college degree. Set Y = 1 if
marital equals 1, 2, or 3, and set Y = 0 otherwise. Estimate a binary choice model for Y as a possibly
nonlinear function of age. Describe the motivation for the model you use. Plot the estimated response
probability. How do the estimates compare with those for men from Figure 25.1?

Exercise 25.18 Use the cps09mar dataset and the subset of men. Set Y as in the previous question.
Estimate a binary choice model for Y as a possibly nonlinear function of age, a linear function of educa-
tion, and including indicators for Black individuals and for Hispanic individuals. Report the coefficient
estimates and standard errors. Interpret the results.

Exercise 25.19 Replicate the previous exercise but with the subset of women. Interpret the results.



Chapter 26

Multiple Choice

26.1 Introduction

This chapter surveys multinomial models. This includes multinomial response, multinomial logit,
conditional logit, nested logit, mixed logit, multinomial probit, ordered response, count data, and the
BLP demand model.

For more detailed treatments see Maddala (1983), Cameron and Trivedi (1998), Cameron and Trivedi
(2005), Train (2009), and Wooldridge (2010).

26.2 Multinomial Response

A multinomial random variable Y takes values in a finite set, typically written as Y ∈ {1,2, ..., J }. The
elements of the set are often called alternatives. In most applications the alternatives are categorical
(car, bicycle, airplane, train) and unordered. When there are no regressors the model is fully described
by the J probabilities P j =P

[
Y = j

]
.

We typically describe the pair (Y , X ) as multinomial response when Y is multinomial and X ∈Rk are
regressors. The conditional distribution of Y given X is summarized by the response probability

P j (x) =P[
Y = j | X = x

]
.

The response probabilities are nonparametrically identified and can be arbitrary functions of x.
We illustrate by extending the marriage status example of the previous chapter. The CPS variable

marital records seven categories. We partition these into four alternatives: “married”1, “divorced”, “sep-
arated”, and “never married”. Let X be age. P j (x) for j = 1, ...,4 is the probability of each marriage status
as a function of age. For our illustration we take the population of college-educated women.

Since the response probabilities P j (x) are nonparametrically identified a simple estimation method
is binary response separately for each category. We plot in Figure 26.1(a) logit estimates using a quadratic
spline in age and a single knot at age 40. The estimates show that the probability of “never married” de-
creases monotonically with age, that for “married” increases until around 38 and then decreases slowly,
the probability of “divorced” increases monotonically with age, and the probability of “separated” is low
for all age groups.

A defect of the estimates of Figure 26.1(a) is that the sum of the four estimated probabilities (dis-
played with the dotted line) does not equal one. This shows that separate estimation of the response
probabilities neglects system information.

1marital =1,2,3,4, which includes widowed.

819
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(a) Binary Response Estimates

Age

20 30 40 50 60 70 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Never Married
Married
Divorced
Separated

(b) Multinomial Logit

Figure 26.1: Probability of Marital Status Given Age for College Educated Women

Multinomial response is typically motivated and derived from a model of latent utility. The utility of
alternative j is assumed to equal

U∗
j = X ′β j +ε j (26.1)

where β j are coefficients and ε j is an alternative-specific error. The coefficients β j describe how the
variable X affects an individual’s utility of alternative j . The error ε j is individual-specific and contains
unobserved factors affecting an individual’s utility. In the marriage status example (where X is age) the
coefficientsβ j describe how the utility of each marriage status varies with age, while the error ε j contains
the individual factors which are not captured by age.

In the latent utility model an individual is assumed to select the alternative with the highest utility
U∗

j . Thus Y = j if U∗
j ≥ U∗

`
for all `. In model (26.1) this choice is unaltered if we add X ′γ to each

utility. This means that the coefficients β j are not separately identified, at best the differences between
alternatives β j −β` are identified. Identification is achieved by imposing a normalization; the standard
choice is to set β j = 0 for a base alternative j , often taken as the last category J . Reported coefficients β j

should be interpreted as differences relative to the base alternative.
The choice is also unchanged if each utility (26.1) is multiplied by positive constant. This means that

the scale of the coefficients β j is not identified. To achieve identification it is typical to fix the scale of the
errors ε j . Consequently the scale of the coefficients β j has no interpretive meaning.

Two classical multinomial response models are logit and probit. We introduce multinomial logit in
the next section and multinomial probit in Section 26.8.

26.3 Multinomial Logit

The simple multinomial logit model is

P j (x) = exp
(
x ′β j

)
J∑

`=1
exp

(
x ′β`

) . (26.2)

The model includes binary logit (J = 2) as a special case. We call (26.2) the simple multinomial logit to
distinguish it from the conditional logit model of the next section.

The multinomial logit arises from the latent utility model (26.1) for the following error distributions.
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Definition 26.1 The Type I Extreme Value distribution function is

F (ε) = exp
(−exp(−ε)

)
.

Definition 26.2 The Generalized Extreme Value (GEV) joint distribution is

F
(
ε1,ε2, ...,εJ

)= exp

(
−

[
J∑

j=1
exp

(
−ε j

τ

)]τ)
(26.3)

for 0 < τ≤ 1.

For J = 1 the GEV distribution (26.3) equals the Type I extreme value. For J > 1 and τ = 1 the GEV
distribution equals the product of independent Type I extreme value distributions. For J > 1 and τ < 1
GEV random variables are dependent with correlation equal to 1−τ2 (see Kotz and Nadarajah (2000)).
The parameter τ is known as the dissimilarity parameter. The distribution (26.3) is a special case of the
“GEV distribution” introduced by McFadden (1981). Furthermore, there is heterogeneity among authors
regarding the choice of notation and labeling. The notation used above is consistent with the Stata man-
ual. In contrast, McFadden (1978, 1981) used 1−σ in place of τ and called σ the similarity parameter.
Cameron and Trivedi (2005) used ρ instead of τ and called ρ the scale parameter.

The following result is due to McFadden (1978, 1981).

Theorem 26.1 Assume the utility of alternative j is U∗
j = X ′β j +ε j and the er-

ror vector (ε1, ...,εJ ) has GEV distribution (26.3). Then the response probabili-
ties equal

P j (X ) = exp
(
X ′β j /τ

)
J∑

`=1
exp

(
X ′β`/τ

) .

The proof is in Section 26.13. The response probabilities in Theorem 26.1 are multinomial logit (26.2)
with coefficients β∗

j =β j /τ. The dissimilarity parameter τ only affects the scale of the coefficients, which
is not identified. Thus GEV errors imply a multinomial logit model and τ is not identified.

As discussed above, when τ= 1 the GEV distribution (26.3) specializes to i.i.d. Type I extreme value.
Thus a special case of Theorem 26.1 is the following: If the errors ε j are i.i.d. Type I extreme value then the
response probabilities are multinomial logit (26.2) with coefficients β j . This is the most commonly-used
and commonly-stated implication of Theorem 26.1.

In contemporary choice modelling a commonly-used assumption is that utility is extreme value dis-
tributed. This is done so that Theorem 26.1 can be invoked to deduce that the choice probabilities are
multinomial logit. A reasonable deduction is that this assumption is made for algebraic convenience,
not because anyone believes that utility is actually extreme valued distributed.
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The likelihood function given a random sample {Yi , Xi } is straightforward to construct. Write the
response probabilities P j (X | β) as functions of the parameter vector β = (β1, ...,βJ ). The probability
mass function for Y is

π(Y | X ,β) =
J∏

j=1
P j (X |β)1{Y = j}.

The log-likelihood function is

`n
(
β
)= n∑

i=1

J∑
j=1

1
{
Yi = j

}
logP j (Xi |β).

The maximum likelihood estimator (MLE) is:

β̂= argmax
β

`n(β).

There is no algebraic solution so β̂ needs to be found numerically. The log-likelihood function is globally
concave so maximization is numerically straightforward.

To illustrate, we estimate the marriage status example of the previous section using multinomial logit
and display the estimated response probabilities in Figure 26.1(b). The estimates are similar to the binary
choice estimates in panel (a) but by construction sum to one.

The coefficients of a multinomial choice model can be difficult to interpret. Therefore in applications
it may be useful to examine and report marginal effects. We can calculate2 that the marginal effects are

δ j (x) = ∂

∂x
P j (x) = P j (x)

(
β j −

J∑
`=1

β`P`(x)

)
. (26.4)

This is estimated by

δ̂ j (x) = P̂ j (x)

(
β̂ j −

J∑
`=1

β̂`P̂`(x)

)
.

The average marginal effect AME j = E
[
δ j (X )

]
can be estimated by

�AME j = 1

n

n∑
i=1

δ̂ j (Xi ). (26.5)

In Stata, multinomial logit can be implemented using the mlogit command. Probabilities can be
calculated by predict and average marginal effects by margins,dydx. In R, multinomial logit can be
implemented using the mlogit command.

26.4 Conditional Logit

In the simple multinomial logit model of the previous section the regressors X (e.g., age) are specific
to the individual but not the alternative (they do not have a j subscript). In most applications, however,
there are regressors which vary across alternatives. A typical example is the price or cost of an alterna-
tive. In a latent utility model it is reasonable to assume that these alternative-specific regressors only
affect an individual’s utility if that specific alternative is selected. A choice model which allows for re-
gressors which differ across alternatives was developed by McFadden in the 1970s, which he called the
Conditional Logit model.

2See Exercise 26.3.
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An example will help illustrate the setting. Suppose you (a student) need to select a mode of travel
from your apartment to the university. Travel alternatives may include: walk, bicycle, bus, train, or car.
Which will you select? Your choice will undoubtedly depend on a number of factors, and of particular
importance is the cost3 of each alternative. We can model this by specifying that the utility Y ∗

j (26.1) of
alternative j is a function of its cost X j .

As a concrete example consider the dataset Koppelman on the textbook webpage. This is an abridged
version of the dataset ModeCanada distributed with the R package mlogit, and used in the papers Fori-
nash and Koppelman (1993), Koppelman and Wen (2000), and Wen and Koppelman (2001). The data
are responses to a survey4 of Canadian business travelers concerning their actual travel choices in the
Toronto-Montreal corridor. Each observation (n = 2779) is a specific individual making a specific trip.
Four travel alternatives were considered: train, air, bus, and car. Available regressors include the cost of
each alternative, the in-vehicle travel time (intime) of each alternative, household income, and an indi-
cator if one of the trip endpoints is an urban center.

The conditional logit model posits that the utility of alternative j is a function of regressors X j which
vary across alternative j :

U∗
j = X ′

jγ+ε j . (26.6)

Here, γ are coefficients and ε j is an alternative-specific error. Notice that in contrast to (26.1) that X j

varies across j while the coefficients γ are common. For example, in the Koppelman data set the variables
cost and intime are recorded for each individual/alternative pair. (For example, the first observation in
the sample is a traveler who could have selected train travel for $58.25 and a travel time of 215 minutes,
air travel for $142.80 and 56 minutes, bus travel for $27.52 and 301 minutes, or car travel for $71.63 and
262 minutes. This traveler selected to travel by air.)

To understand the difference between the multinomial logit and the conditional logit models, (26.1)
describes how the utility of a specific alternative (e.g. married or divorced) is affected by a variable such
as age. This requires a separate coefficient for each alternative to have an impact. In contrast, (26.6)
describes how the utility of an alternative (e.g. train or car) is affected by factors such as cost and time.
These variables have common meanings across alternatives so the restriction that the coefficients are
common appears reasonable.

More generally the conditional logit model allows some regressors X j to vary across alternatives
while other regressors W do not vary across j . This model is

U∗
j =W ′β j +X ′

jγ+ε j . (26.7)

For example, in the Koppelman dataset the variables cost and intime are components of X j while the
variables income and urban are components of W .

In model (26.7) the coefficients γ and coefficient differences β j −β` are identified up to scale. Iden-
tification is achieved by normalizing the scale of ε j and setting βJ = 0 for a base alternative J .

The conditional logit model is (26.6) or (26.7) plus the assumption that the errors ε j are distributed
i.i.d. Type I extreme value5. From Theorem 26.1 we deduce that the probability response functions equal

P j (w, x) =
exp

(
w ′β j +x ′

jγ
)

J∑
`=1

exp
(
w ′β`+x ′

`
γ
) . (26.8)

3Cost can be multi-dimensional, for example including monetary cost and travel time.
4The survey was conducted by the Canadian national rail carrier to assess the demand for high-speed rail.
5The model is unaltered if the errors are jointly GEV with dissimilarity parameter τ. However, τ is not identified so without

loss of generality it is assumed that τ= 1.
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This is multinomial logit but with regressors and coefficients W ′β j +X ′
jγ.

Let θ = (
β1, ...βJ ,γ

)
. Given the observations {Yi ,Wi , Xi } where Xi = {X1i , ..., X Ji }, the log-likelihood

function is

`n (θ) =
n∑

i=1

J∑
j=1

1
{
Yi = j

}
logP j (Wi , Xi | θ).

The maximum likelihood estimator (MLE) θ̂ maximizes `n (θ). There is no algebraic solution so θ̂ needs
to be found numerically.

Using the Koppelman dataset we estimate a conditional logit model. Estimates are reported in Table
26.1. Included as regressors are cost, intime, income and urban. The base alternative is travel by train.
The first two coefficient estimates are negative, meaning that the probability of selecting any mode of
transport is decreasing in the monetary and time cost of this mode of travel. The income and urban
variables are not alternative-specific so have coefficients which vary by alternative. The urban coefficient
for air is positive and that for car is negative, indicating that the probability of air travel is increased
relative to train travel if an endpoint is urban, and conversely for car travel. The income coefficient is
positive for air travel and negative for bus travel, indicating that transportation choice is affected by a
traveler’s income in the expected way.

As discussed previously, coefficient estimates can be difficult to interpret. It may be useful to calcu-
late transformations such as average marginal effects. The average marginal effects with respect to the
input W are estimated as in (26.5) with P̂`(Xi ) replaced by P̂`(Wi , Xi ). For the inputs X j we calculate6

that

δ j j (w, x) = ∂

∂x j
P j (w, x) = γP j (w, x)

(
1−P j (w, x)

)
(26.9)

and for j 6= `
δ j`(w, x) = ∂

∂x`
P j (w, x) =−γP j (w, x)P`(w, x). (26.10)

Note that these are double indexed ( j and `). For example for X =cost, j =train and ` =air, δ j` is the
marginal effect of a change in the cost of air travel on the probability of train travel. In the conditional
logit model, calculation (26.10) implies the symmetric response δ j`(w, x) = δ` j (w, x). This means that
the marginal effect of (for example) air cost on train travel equals the marginal effect of train cost on air
travel7. The average marginal effects AME j` = E

[
δ j`(W, X )

]
can be estimated by the analogous sample

averages as in (26.5). One useful implication of (26.9) and (26.10) is that the components of AME j j have
the same signs as the components of γ and the components of AME j` have the opposite signs. Thus, for
example, if the coefficient γ on a cost variable is negative then the own-price effect is negative and the
cross-price effects are positive.

To illustrate, we report a set of estimated AME of cost and time factors on the probability of train
travel in Table 26.2. We focus on train travel since the demand for high-speed rail was the focus of the
original study. We calculate and report the AME of the monetary cost and travel time of train, air, and car
travel. To convert the AME into approximate elasticities (which may be easier to interpret), divide each
AME by the probability of train travel (0.17) and multiply by the sample mean of the factor, reported in
the first column. You can calculate that the estimated approximate elasticity of train travel with respect
to train cost is −0.9, with respect to train travel time is −2.5, with respect to air cost is 1.0, with respect
to air travel time is 0.25, with respect to car cost is 0.6, and with respect to car travel time is 1.5. These
estimates indicate that train travel is sensitive to its travel time, is sensitive with respect to its monetary
cost and that of airfare, and is sensitive to the travel time of car travel. We can use the estimated AME

6See Exercise 26.5.
7This symmetry breaks down if nonlinear transformations are included in the model.
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Table 26.1: Multinomial Models for Transportation Choice

Variable Cond. Logit Nested Logit Mixed Logit Simple Multi. Probit Multi. Probit

Cost
−0.022
(0.003)

−0.011
(0.002)

−0.023
(0.004)

−0.018
(0.002)

−0.005
(0.002)

Intime
−0.015
(0.001)

−0.005
(0.001)

−0.014
(0.001)

−0.011
(0.001)

−0.005
(0.001)

σ(Intime)
0.0048

(0.0011)

Air Income
0.036

(0.004)
0.024

(0.003)
0.040

(0.004)
0.027

(0.003)
0.018

(0.002)

Urban
0.29

(0.09)
0.28

(0.09)
0.35

(0.11)
0.29

(0.07)
−0.38
(0.07)

Constant
−2.15
(0.45)

−0.46
(0.35)

−2.72
(0.53)

−1.51
(0.32)

0.32
(0.23)

Bus Income
−0.051
(0.018)

−0.049
(0.018)

−0.050
(0.018)

−0.019
(0.008)

−0.008
(0.007)

Urban
−0.23
(0.44)

−0.21
(0.45)

−0.24
(0.44)

−0.13
(0.21)

−0.14
(0.17)

Constant
−1.79
(0.79)

−1.55
(0.77)

−1.82
(0.79)

−1.45
(0.40)

−0.23
(0.59)

Car Income
0.008

(0.003)
0.017

(0.003)
0.008

(0.003)
0.006

(0.002)
0.013

(0.003)

Urban
−0.99
(0.09)

−0.58
(0.08)

−1.01
(0.09)

−0.73
(0.07)

−0.79
(0.10)

Constant
1.86

(0.19)
1.19

(0.17)
1.89

(0.19)
1.44

(0.14)
1.51

(0.20)

τ (Car,Air)
0.24

(0.05)

τ (Train,Bus)
1.00
(NA)

Log likelihood −2100.6 −2044.4 −2095.5 −2109.3 −2017.4

to calculate the rough effects of cost and travel time changes. For example, suppose high-speed rail
reduces train travel time by 33% – an average reduction of 75 minutes – while price is unchanged. The
estimates imply this will increase train travel probability by 0.14, that is, from 17% to 31%, which is close
to a doubling of usage.

In many cases it is natural to expect that the coefficients γ will vary across individuals. We discuss
models with random γ in Section 26.7. A simpler specification is to allow γ to vary with the individual
characteristic W . For example in the transportation application the opportunity cost of travel time is
likely related to an individual’s wage which can be proxied by household income. We can write this as
γ= γ1 +γ2X . Substituted into (26.7) we obtain the model

U∗
j =Wβ j +X jγ1 +X j W γ2 +ε j

where for simplicity we assume W and X j are scalar. This can be written in form (26.7) by redefining X j

as (X j , X j W ) and the same estimation methods apply. In our application this model yields a negative
estimate for γ2, indicating that the cost of travel time is indeed increasing in income.
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Table 26.2: AME of Cost and Time on Train Travel

Effect of Mean Cond. Logit Mixed Logit Simple Multi. Probit Multi. Probit

Train Cost ($) 56
−0.27
(0.04)

−0.28
(0.05)

−0.32
(0.04)

−0.08
(0.03)

Train Time (min.) 224
−0.19
(0.01)

−0.20
(0.01)

−0.19
(0.01)

−0.09
(0.01)

Air Cost ($) 153
0.11

(0.02)
0.11

(0.02)
0.13

(0.02)
0.05

(0.02)

Air Time (min.) 54
0.08

(0.01)
0.08

(0.01)
0.08

(0.01)
0.06

(0.01)

Car Cost ($) 65
0.16

(0.01)
0.17

(0.03)
0.18

(0.02)
0.02

(0.01)

Car Time (min.) 232
0.11

(0.01)
0.12

(0.01)
0.11

(0.01)
0.02

(0.01)

Note: For ease of reading, the reported AME estimates have been multiplied by 100.

In Stata, model (26.7) can be estimated using cmclogit. Probabilities can be calculated by predict,
and marginal effects by margins. In R, use mlogit.

26.5 Independence of Irrelevant Alternatives

The multinomial logit model has an undesirable restriction. For fixed parameters and regressors the
ratio of the probability of two alternatives is

P j (W, X | θ)

P`(W, X | θ)
=

exp
(
W ′β j +X ′

jγ
)

exp
(
W ′β`+X ′

`
γ
) . (26.11)

This odds ratio is a function only of the inputs X j and X`, does not depend on any of the inputs specific
to the other alternatives, and is unaltered by the presence of other alternatives. This property is called
independence of irrelevant alternatives (IIA), meaning that the choice between option j and ` is inde-
pendent of the other alternatives and hence the latter are irrelevant to the bivariate choice. This property
is strongly tied to the multinomial logit model as the latter was derived axiomatically by Luce (1959) from
an IIA assumption.

To understand why IIA may be problematic it is helpful to think through specific examples. Take the
transportation choice problem of the previous section. The IIA condition means that the ratio of the
probability of selecting train to that of selecting car is unaffected by the price of an airplane ticket. This
may make sense if individuals view the set of choices as similarly substitutable, but does not make sense
if train and air are close substitutes. In this latter setting a low airplane ticket may make it highly unlikely
that an individual will select train travel while unaffecting their likelihood of selecting car travel.

A famous example of this problem is the following setting. Suppose the alternatives are car and bus
and suppose that the probability of the alternatives is split 50%-50%. Now suppose that we can split
the bus alternative into “red bus” and “blue bus” so there are a total of three alternatives. Suppose the
blue bus and red bus are close equivalents: they have similar schedules, convenience, and cost. In this
context most individuals would be near indifferent between the blue and red bus so these alternatives
would receive similar probabilities. It would thus seem reasonable to expect that the probabilities of
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these three choices would be close to 50%-25%-25%. The IIA condition, however, implies that the ratio
of the first two probabilities must remain 1, so this implies that the probabilities of the three choices
would be 33%-33%-33%. We deduce that the multinomial logit model implies that adding “red bus” to
the choice list results in the reduction of car usage from 50% to 33%. This doesn’t make sense; it is an
unreasonable implication. This example is known as the “red bus/blue bus puzzle”.

The source of the problem is that the IIA structure and multinomial logit model exclude differenti-
ated substitutability among the alternatives. This may be appropriate when the alternatives (e.g. bus,
train, and car) are clearly differentiated and have reasonably similar degrees of substitutability. It is not
appropriate when a subset of alternatives (e.g. red bus and blue bus) are close substitutes.

Part of the problem is due to the restrictive correlation pattern imposed on the errors by the gener-
alized extreme value distribution. To allow for cases such as red bus/blue bus we require a more flexible
correlation structure which allows subsets of alternatives to have differential correlations.

26.6 Nested Logit

The nested logit model circumvents the IIA problem described in the previous section by separating
the alternatives into groups. Alternatives within groups are allowed to be correlated but are assumed
uncorrelated across groups.

The model posits that there are J groups each with K j alternatives. We use j to denote the group, k to
denote the alternative within a group, and “ j k” to denote a specific alternative. Let W denote individual-
specific regressors and X j k denote regressors which vary by alternative. The utility of the j k th alternative
is a function of the regressors plus an error:

U∗
j k =W ′β j k +X ′

j kγ+ε j k . (26.12)

The model assumes that the individual selects the alternative j k with the highest utility U∗
j k .

McFadden’s Nested Logit model assumes that the errors have the following GEV joint distribution

F
(
ε11, ...,εJK J

)= exp

(
−

J∑
j=1

[
K j∑

k=1
exp

(
−ε j k

τ j

)]τ j )
. (26.13)

This is a generalization of the GEV distribution (26.3). The distribution (26.13) is the product of J GEV
distributions (26.3) each with dissimilarity parameter τ j , which means that the errors within each group
are GEV distributed with dissimilarity parameter τ j . Across groups the errors are independent. When
τ j = 1 for all j the errors are mutually independent and the joint model equals conditional logit. When
τ j < 1 for some j the errors within group j are correlated but not with the other errors. If a group has a
single alternative its dissimilarity parameter is not identified so should be set to one.

The nested logit model (26.12)-(26.13) is structurally identical to the conditional logit model except
that the error distribution is (26.13) instead of (26.3). The coefficients β j k and γ have the same interpre-
tation as in the conditional logit model.

As written, (26.12) allows the coefficients β j k to vary across alternatives j k while the coefficients γ
are common across j and k. Other specifications are possible. For example, the model can be altered to
allow the coefficients β j and/or γ j to vary across groups but not alternatives. The degree of variability is
a modeling choice with a flexibility/parsimony trade-off. It is also possible (but less common in practice)
to have variables W j which vary by group but not by alternative. These can be included in the model with
common coefficients.

The partition of alternatives into groups is a modeling decision. Alternatives with a high degree of
substitutability should be placed in the same group. Alternatives with a low degree of substitutability
should be placed in different groups.
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To illustrate, consider a consumer choice of an automobile purchase. For simplicity suppose there
are four choices: Honda Civic, Ford Fusion, Honda CR-V, and Ford Escape. The first two are compact
cars and the last two are sports utility vehicles (SUVs). Consequently it is reasonable to think of the first
two as substitutes and the last two as substitutes. We display this nesting as a tree diagram as in Figure
26.2(a). This shows the division of the decision “Car” into “Compact” and “Sports Utility Vehicle” and the
further division by model.

Only the differences between the coefficients β j k are identified. Identification is achieved by setting
one alternative j k as the base alternative. If the coefficients β j are constrained to vary by by group then
identification is achieved by setting a base group. The scale of the coefficients is not identified separately
from the scaling of the errors implicit in the GEV distribution (26.13).

Some authors interpret model (26.12) as a nested sequential choice. An individual first selects a
group and second selects the best option within the group. For example, in the car choice example you
could imagine first deciding on the style of car (compact or SUV) and then deciding on the specific car
within each category (e.g. Civic vs. Fusion or CR-V vs. Escape). The sequential choice interpretation
may help structure the groupings. However, sequential choice should be used cautiously as it is not
technically correct. The correct interpretation is degree of substitutability not the timing of decisions.

If the coefficientsβ j on W are constrained to only vary across groups (this, for example, is the default
in Stata) then the effect W ′β j in (26.12) shifts the utilities of all alternatives within a group, and thus does
not affect the choice of an alternative within a group. In this case the variable W can be described as
“affecting the choice of group”.

We now describe the nested logit response probabilities.

Theorem 26.2 Assume the utility of alternative j k is U∗
j k = µ j k + ε j k and the

error vector has distribution function (26.13). Then the response probabilities
equal P j k = Pk| j P j where

Pk| j =
exp

(
µ j k /τ j

)
K j∑

m=1
exp

(
µ j m/τ j

)
and

P j =

(
K j∑

m=1
exp

(
µ j m/τ j

))τ j

J∑
`=1

(
K∑̀

m=1
exp

(
µ`m/τ`

))τ` .

Theorem 26.2 shows that the response probabilities equal the product of two terms: Pk| j and P j .
The first, Pk| j , is the conditional probability of alternative k given the group j and takes the standard
conditional logit form. The second, P j , is the probability of group j .

Let θ be the parameters. The log-likelihood function is

`n (θ) =
n∑

i=1

J∑
j=1

K j∑
k=1

1
{
Yi = j k

}(
logPk| j (Wi , Xi | θ)+ logP j (Wi , Xi | θ)

)
.

The MLE θ̂ maximizes `n (θ). There is no algebraic solution so θ̂ needs to be found numerically.
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Because the probability structure of a nested logit model is more complicated than the conditional
logit model it may be difficult to interpret the coefficient estimates. Marginal effects can (in principle) be
calculated but these are complicated functions of the coefficients.

To illustrate, we estimate a nested logit model of transportation choice using the Koppelman dataset.
To facilitate comparisons we estimate the same specification as for conditional logit. The difference is
that we use the GEV distribution (26.13) with the groupings {car, air} and {train, bus}. This adds two
dissimilarity parameters. The results are reported in the second column of Table 26.1.

The dissimilarity parameter estimate for {car, air} is 0.24 which is small. It implies a correlation of 0.94
between the car and air utility shocks. This suggests that the conditional logit model – which assumes
the utility errors are independent – is misspecified. The dissimilarity parameter estimate for {train, bus}
is on the boundary8 1.00 so has no standard error.

Nested logit modeling is limited by the necessity of selecting the groupings. Typically there is not a
unique obvious structure; consequently any proposed grouping is subject to misspecification.

In this section we described the nested logit model with one nested layer. The model extends to
multiple nesting layers. The difference is that the joint distribution (26.13) is modified to allow higher
levels of interactions with additional dissimilarity parameters. An applied example is Goldberg (1995)
who used a five-level nested logit model to estimate the demand for automobilies. The levels used in her
analysis were (1) Buy/Not Buy; (2) New/Used; (3) Car Class; (4) Foreign/Domestic; and (5) Car Model.

In Stata, nested logit models can be estimated by nlogit.
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Figure 26.2: Nested Choice and Ordered Choice

26.7 Mixed Logit

A generalization of the conditional logit model which allows the coefficients γ on the alternative-
varying regressors to be random across individuals is known as mixed logit. The model is also known as
conditional mixed logit and random parameters logit.

8The uncontrained maximizer exceeds one which violates the parameter space so the the model is effectively estimated
constraining this dissimilarity parameter to equal one.



CHAPTER 26. MULTIPLE CHOICE 830

Recall that the conditional logit model is U∗
j = W ′β j + X ′

jγ+ ε j with ε j i.i.d. extreme value. Now
replace γ with an individual-specific random variable η with distribution F (η | α) and parameters α.
This model is

U∗
j =W ′β j +X ′

jη+ε j

η∼ F
(
η |α)

.

For example, in our transportation choice application the variables X j are the cost and travel time of
each alternative. The above model allows the effect of cost and time on utility to be heterogeneous across
individuals.

The most common distributional assumption for η is N
(
γ,D

)
with diagonal covariance matrix D .

Other common specifications include N
(
γ,Σ

)
with unconstrained covariance matrixΣ, and log-normally-

distributed η to enforce η≥ 0. (A constraint η≤ 0 can be imposed by first multiplying the relevant regres-
sor X j by −1.) It is also common to partition X j so that some variables have random coefficients and
others have fixed coefficients. The reason why these constraints may be desirable is parsimony and sim-
pler computation.

Under the normality specifications η ∼ N
(
γ,D

)
and η ∼ N

(
γ,Σ

)
the mean γ equals the average ran-

dom coefficient in the population and has a similar interpretation to the coefficient γ in the conditional
logit model. The variances in D or Σ control the dispersion of the distribution of η in the population.
Smaller variances mean that η is mildly dispersed; larger variances mean high dispersion and hetero-
geneity.

A useful feature of the mixed logit model is that the random coefficients induce correlation among
the alternatives. To see this, write γ= E[

η
]

and V j = X ′
j (η−γ)+ε j . Then the model can be written as

Y ∗
j =W ′β j +X ′

jγ+V j

which is the conventional random utility framework but with errors V j instead of ε j . An important dif-
ference is that these errors are conditionally heteroskedastic and correlated across alternatives:

E
[
V j V` | X j , X`

]= X ′
j var

[
η
]

X`.

This non-zero correlation means that the IIA property is partially broken, giving the mixed logit model
more flexibility than the conditional logit model to capture choice behavior.

Conditional on η the response probabilities follow from (26.8)

P j (w, x | η) =
exp

(
w ′β j +x ′

jη
)

J∑
`=1

exp
(
w ′β`+x ′

`
η
) .

The unconditional response probabilities are found by integration.

P j (w, x) =
∫

P j (w, x | η)dF (η |α). (26.14)

The log-likelihood function is

`n (θ) =
n∑

i=1

J∑
j=1

1
{
Yi = j

}
logP j (Wi , Xi | θ) (26.15)

where θ is the list of all parameters including η.
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The integral in (26.14) is not available in closed form. A standard numerical implementation9 is
Monte Carlo integration (estimation by simulation). This technique works as follows.Let {η1, ...,ηG } be a
set of i.i.d. pseudo-random draws from F (η |α). The simulation estimator of (26.14) is

P̃ j (w, x) = 1

G

G∑
g=1

P j (w, x | ηg ).

As G increases this converges in probability to (26.14). Monte Carlo integration is computationally more
efficient than numerical integration when the dimension of η is three or larger, but is considerably more
computationally intensive than non-random conditional logit.

To illustrate, we estimate a mixed logit model for the transportation application treating the coeffi-
cient on travel time as a normal random variable. The coefficient estimates are reported in Table 26.1
with estimated marginal effects in Table 26.2. The results are similar to the conditional logit model. The
coefficient on travel time has a mean −0.014 which is nearly identical to the conditional logit estimate
and a standard deviation of 0.005 which is about one-third of the value of the mean. This suggests that
the coefficient is mildly heterogenous among travelers. An interpretation of this random coefficient is
that travelers have heterogeneous costs associated with travel time.

In Stata, mixed logit can be estimated by cmmixlogit.

26.8 Simple Multinomial Probit

The simple multinomial probit and simple conditional multinomial probit models combine the
latent utility model

U∗
j =W ′β j +ε j (26.16)

or
U∗

j =W ′β j +X ′
jγ+ε j (26.17)

with the assumption that ε j is i.i.d. N(0,1). These are identical to the simple multinomial logit model of
Section 26.3 and the conditional logit model of Section 26.4 except that the error distribution is normal
instead of extreme value.

Simple multinomial probit does not precisely satisfy IIA but its properties are similar to IIA. The
model assumes that the errors are independent and thus does not allow two alternatives, e.g. “red bus”
and “blue bus”, to be close substitutes. This means that in practice the simple multinomial probit will
produce results which are similar to simple multinomial logit.

Identification is identical to multinomial logit. The coefficients β j and γ are only identified up to
scale and the coefficients β j are only identified relative to a base alternative.

The response probability P j (W, X ) is not available in closed form. However, it can be expressed as a
one-dimensional integral, as we now show.

Theorem 26.3 In the simple multinomial probit and simple conditional multi-
nomial probit models the response probabilities equal

P j (W, X ) =
∫ ∞

−∞

∏
`6= j
Φ

(
W ′ (β j −β`

)+ (
X j −X`

)′
γ+ v

)
φ (v)d v (26.18)

whereΦ(v) and φ(v) are the normal distribution and density functions.

9If the random coefficient η is scalar a computationally more efficient method is integration by quadrature.



CHAPTER 26. MULTIPLE CHOICE 832

The proof is presented in Section 26.13. Theorem 26.3 shows that the response probability is a one-
dimensional normal integral over the J −1-fold product of normal distribution functions. This integral
(26.18) is straightforward to numerically evaluate by quadrature methods.

Let θ = (
β1, ...βJ ,γ

)
denote the parameters. Given the sample {Yi ,Wi , Xi } the log-likelihood is

`n (θ) =
n∑

i=1

J∑
j=1

1
{
Yi = j

}
logP j (Wi , Xi | θ).

The maximum likelihood estimator (MLE) θ̂ maximizes `n (θ).
To illustrate, we estimate a simple conditional multinomial probit model for transportation choice

using the same specification as before. The results are reported in the fourth column of Table 26.1. We
report average marginal effects in Table 26.2. We see that the estimated AME are very close to those of
the conditional logit model.

In Stata, simple multivariate probit can be estimated by mprobit. The response probabilities and log-
likelihood are calculated by applying quadrature to the integral (26.18). Simple conditional multinomial
probit can be estimated by cmmprobit. The latter uses the method of simulated maximum likelihood
(discussed in the next section) even though numerical calculation could be implemented efficiently us-
ing the one-dimensional integral (26.18).

26.9 General Multinomial Probit

A model which avoids the correlation constraints of multinomial and nested logit is general multi-
nomial probit, which is (26.17) with the error vector ε∼ N(0,Σ) and unconstrained Σ.

Identification of the coefficients is the same as multinomial logit. The coefficients β j and γ are only
identified up to scale, and the coefficients β j are only identified relative to a base alternative J .

Identification of the covariance matrix Σ requires more attention. It turns out to be useful to rewrite
the model in terms of differenced utility, where differences are taken with respect to the base alternative
J . The differenced utilities are

U∗
j −U∗

J =W ′ (β j −βJ
)+ (

X j −X J
)′
γ+ε j J (26.19)

where ε j J = ε j −εJ . Let ΣJ be the covariance matrix of ε j J for j = 1, ..., J −1. For example, suppose that
the errors ε j are i.i.d. N(0,1). In this case ΣJ equals

ΣJ =


2 1 · · · 1
1 2 · · · 1
...

...
. . .

...
1 1 · · · 2

 . (26.20)

The scale of (26.19) is not identified so ΣJ is normalizing by fixing one diagonal element of ΣJ . In Stata,
for example, cmmprobit normalizes the variance of one element – the “scale alternative” – to 2, in order
to match the case (26.20). Consequently, ΣJ has (J −1)J/2−1 free covariance parameters.

Multinomial probit with a general covariance matrix ΣJ is more flexible than conditional logit and
nested logit. This flexibility allows general multinomial probit to escape the IIA restrictions.

The response probabilities do not have a closed-form expressions but can be written as J −1 dimen-
sional integrals. Numerical evaluation of integrals in dimensions three and greater is computationally
prohibitive. A feasible alternative is numerical simulation. The idea, roughly, is to simulate a large num-
ber of random draws from the model and count the frequency which satisfy the desired inequality. This
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gives a simulation estimate of the response probability. Brute force implementation of this idea can be
inefficient, so clever tricks have been introduced to produce computationally efficient estimates. The
standard implementation was developed in a series of papers by Geweke, Hajivassiliou, and Keane, and
is known as the GHK simulator. See Train (2009) for a description and references. The GHK simulator
provides a feasible method to estimate the likelihood function and is known as simulated maximum
likelihood. While feasible, simulated maximum likelihood is computationally intensive so optimizat-
ing the likelihood to find the MLE is computationally slow. Furthermore the likelihood is not concave
in the parameters so convergence can be difficult to obtain in some applications. Consequently it may
be prudent to use simpler methods such as conditional and nested logit for exploratory analysis and
multinomial probit for final-stage estimation.

To illustrate, we estimate the general multinomial probit model for the transportation application.
We set the base alternative to train and the scale alternative to air. The coefficient estimates are reported
in Table 26.1 and marginal effects in Table 26.2. We see that the estimated marginal effects with respect to
cost and travel time are considerably smaller than in the conditional logit model. This indicates greatly
reduced price elasticity (−0.3) and travel time elasticity (−1.1). Suppose (as we considered in Section
26.4) that high-speed rail reduces train travel time by 33%. The multinomial probit estimates imply that
this increases train travel from 17% to 24% – about a 40% increase. This is substantial but one-half of the
increase estimated by conditional logit.

A multinomial probit model with four alternatives has five covariance parameters. The estimates for
the transportation application are reported in the following 3×3 table. The diagonal elements are the
variance estimates, the off-diagonal elements are the correlation estimates. One interesting finding is
that the estimated correlation between air and car travel is 0.99, which is similar to the estimate from
the nested logit model. In both frameworks the estimates indicate a high correlation between air and car
travel, implying that specifications with independent errors are misspecified. σ̂2

Air = 2
ρ̂Air,Bus = 0.60 σ̂2

Bus = 0.41
ρ̂Air,Car = 0.99 ρ̂Car,Bus = 0.60 σ̂2

Car = 3.8


In Stata, multivariate probit can be estimated by cmmprobit. It uses GHK simulated maximum like-

lihood as described above.

26.10 Ordered Response

A multinomial Y is ordered if the alternatives have ordinal (ordered) interpretation. For example, a
student may be asked to “rate your [econometrics] professor” with possible responses: poor, fair, average,
good, or excellent, coded as {1,2,3,4,5}. These responses are categorical but are also ordinally related. We
could use standard multinomial methods (e.g. multinomial logit or probit) but this ignores the ordinal
structure and is therefore inefficient.

The standard approach to ordered response is based on the latent variable framework

U∗ = X ′β+ε
ε∼G

where X does not include an intercept. The model specifies that the response Y is determined by U∗
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crossing a series of ordered thresholds α1 <α2 < ·· · <αJ−1. Thus

Y = 1 if U∗ ≤α1

Y = 2 if α1 <U∗ ≤α2
...

...
...

Y = J −1 if αJ−2 <U∗ ≤αJ−1

Y = J if αJ−1 <U∗.

Writing α0 =−∞ and αJ =∞ we can write these J equations more compactly as Y = j if α j−1 <U∗ ≤α j .
When J = 2 this model specializes to binary choice.

The standard interpretation is that U∗ is a latent continuous response and Y is a discretized version.
Consider again the example of “rate your professor”. In the model, U∗ is a student’s true assessment.
The response Y is a discretized version. The threshold crossing model postulates that responses are
increasing in the latent variable and are determined by the thresholds.

In the standard ordered response framework the distribution G(x) of the error ε is assumed known; in
practice either the normal or logistic distribution is used. When ε is normal the model is called ordered
probit. When ε is logistic the model is called ordered logit. The coefficients and thresholds are only
identified up to scale; the standard normalization is to fix the scale of the distribution of ε.

The response probabilities are

P j (x) =P[
Y = j | X = x

]
=P[

α j−1 <U∗ ≤α j | X = x
]

=P[
α j−1 −X ′β< ε≤α j −X ′β | X = x

]
=G

(
α j −x ′β

)−G
(
α j−1 −x ′β

)
.

It may be easier to interpret the cumulative response probabilities

P
[
Y ≤ j | X = x

]=G
(
α j −x ′β

)
.

The marginal effects are
∂

∂x
P j (x) =β(

g
(
α j−1 −x ′β

)− g
(
α j −x ′β

))
and marginal cumulative effects are

∂

∂x
P

[
Y ≤ j | X = x

]=−βg
(
α j −x ′β

)
.

To illustrate, Figure 26.2(b) displays how the response probabilities are determined. The figure plots
the distribution function of latent utility U∗ with four thresholds α1, α2, α3 and α4 displayed on the x-
axis. The response Y is determined by U∗ crossing each threshold. Each threshold is mapped to a point
on the y-axis. The probability of each outcome is marked on the y-axis as the difference between each
probability crossing.

The parameters are θ = (β,α1, ...αJ−1). Given the sample {Yi , Xi } the log-likelihood is

`n (θ) =
n∑

i=1

J∑
j=1

1
{
Yi = j

}
logP j (Xi | θ) .

The maximum likelihood estimator (MLE) θ̂ maximizes `n (θ).
In Stata, ordered probit and logit can be estimated by oprobit and ologit.
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26.11 Count Data

Count data refers to situations where the dependent variable is the number of “events” recorded as
positive integers Y ∈ {0,1,2, ...}. Examples include the number of doctor visits, the number of accidents,
the number of patent registrations, the number of absences, or the number of bank failures. Count data
models are typically employed in contexts where the counts are small integers.

A count data model specifies the response probabilities P j (x) =P[
Y = j | x

]
for j = 0,1,2, ..., with the

property
∑∞

j=0 P j (x) = 1.
The baseline model is Poisson regression. This model specifies that Y is conditionally Poisson dis-

tributed with a Poisson parameter λ written as an exponential link of a linear function of the regressors.
The exponential link is used to ensure that the Poisson parameter is strictly positive. This model is

P j (x) = exp(−λ(x))λ(x) j

j !

λ(x) = exp(x ′β).

The Poisson distribution has the property that its mean and variance equal the Poisson parameter λ.
Thus

E [Y | X ] = exp(X ′β)

var[Y | X ] = exp(X ′β).

The first equation shows that the conditional mean (e.g., the regression function) equals exp(X ′β). This
is why the model is called Poisson regression.

The log-likelihood function is

`n(β) =
n∑

i=1
logPYi

(
Xi |β

)= n∑
i=1

(−exp(X ′
iβ)+Yi X ′

iβ− log(Yi !)
)

.

The MLE β̂ is the value β which maximizes `n(β). Its first and second derivatives are

∂

∂β
`n(β) =

n∑
i=1

Xi
(
Yi −exp(X ′

iβ)
)

∂2

∂β∂β′`n(β) =−
n∑

i=1
Xi X ′

i exp(X ′
iβ).

Since the second derivative is globally negative definite the log-likelihood function is globally concave.
Hence numerical optimization to find the MLE is computationally straightforward.

In general there is no reason to expect the Poisson model to be correctly specified. Hence we should
view the parameter β as the best-fitting pseudo-true value. From the first-order condition for maximiza-
tion we find that this value satisfies

E
[

X
(
Y −exp(X ′β)

)]= 0.

This holds under the conditional mean assumption E [Y | X ] = exp(X ′β). If the latter is correctly speci-
fied, Poisson regression correctly identifies the coeffiicent β, the MLE is consistent for this value, and the
estimated response probabilities are consistent for the true response probabilities.

To explore this concept further, suppose the true conditional mean is nonparametric. Since it is
non-negative we can write it using an exponential link10 as E [Y | X ] = exp(m(x)). The function m(x) is

10Or, equivalently, m(x) = log(E [Y | X ]).
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nonparametrically identified and can be approximated by a series x ′
KβK . Thus E [Y | X ] ' exp

(
X ′

KβK
)
.

What this shows is that if Poisson regression is implemented using a flexible set of regressors (as in series
regression) the model will approximate the true conditional mean and hence will consistently estimate
the true response probabilities. This is a broad justification for Poisson regression in count data applica-
tions if suitable attention is paid to the functional form for the included regressors.

Since the model is an approximation, however, the conventional covariance matrix estimator will be
inconsistent. Consequently it is advised to use the robust formula for covariance matrix and standard
error estimation.

For a greater degree of flexibility the Poisson model can be generalized. One approach, similar to
mixed logit, is to treat the parameters as random variables, thereby obtaining a mixed probit model.
One particular mixed model of importance is the negative binomial model which can be obtained as
a mixed model as follows. Specify the Poisson parameter as λ(X ) = V exp(X ′β) where V is a random
variable with a Gamma distribution. This is equivalent to treating the regression intercept as random
with a log-Gamma distribution. Integrating out V , the resulting conditional distribution for Y is Negative
Binomial. The Negative Binomial is a popular model for count data regression and has the advantage that
the conditional mean and variance are separately varying.

For more detail see the excellent monograph on count data models by Cameron and Trivedi (1998).
In Stata, Poisson and Negative Binomial regression can be estimated by poisson and nbreg. Gener-

alizations to allow truncation, fixed effects, and random effects are also available.

26.12 BLP Demand Model

A major development in the 1990s was the extension of conditional logit to models of aggregate mar-
ket demand. Many of the ideas were developed in the seminal papers of Berry (1994) and Berry, Levin-
sohn, and Pakes (1995). For a review see Ackerberg, Benkard, Berry, and Pakes (2007). This model –
widely known as the BLP model – has become popular in applied industrial organization. To discuss
implementation we use as examples the applications in Berry, Levinsohn, and Pakes (1995) and Nevo
(2001).

The context is market-level observations. A “market” is typically a time period matched with a loca-
tion. For example, a market in Berry, Levinsohn, and Pakes (1995) is the United States for one calendar
year. A market in Nevo (2001) is one of 65 U.S. cities for one quarter of a year. An observation contains
a set of J goods. In Berry, Levinsohn, and Pakes (1995) the goods are 997 distinct automobile models. In
Nevo (2001) the goods are 25 ready-to-eat breakfast cereals. Observations typically include the price and
sale quantities of each good, a set of characteristics of each good, and possibly information on demo-
graphic characteristics of the market population.

The model is derived from a conditional logit specification of individual behavior. The standard as-
sumption is that each individual in the market purchases one of the J goods or makes no purchase (the
latter is called the outside alternative). This requires taking a stand on the number of individuals in the
market. For example, in Berry, Levinsohn, and Pakes (1995) the number of individuals is the entire U.S.
population. Their assumption is that each individual makes at most one automobile purchase during
each calendar year. In Nevo (2001) the population is the number of individuals in each city. He assumes
that each individual purchases a one-quarter (91-day) supply of one brand of breakfast cereal, or pur-
chases no breakfast cereal (the outside alternative). By explicitly including the outside option as a choice
these authors model aggregate demand. Alternatively, they could have excluded the outside option and
examined choice among the J goods. This would have modelled market shares (percentages of total pur-
chases) but not aggregate demand. The trade-off is the need to take a stand on the number of individuals
in the market.
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The model is that each individual purchases one of a set of J goods indexed j = 1, ..., J or an unob-
served outside good. The utility from good j takes a mixed logit form:

U∗
j = X ′

jη+ξ j +ε j (26.21)

where X j includes the price and characteristics of good j . The coefficient η is random (specific to an
individual) as in the mixed logit model. The variables ξ j and ε j are unobserved errors. ξ j is market-level
and ε j is specific to the individual.

The market error ξ j may contain unobserved product characteristics so is likely correlated with prod-
uct price. Identification requires a vector of instruments Z j which satisfy

E
[

Z jξ j
]= 0. (26.22)

Berry, Levinsohn, and Pakes (1995) recommend as instruments the non-price characteristics in X j , the
sum of characteristics of goods sold by the same firm, and the sum of characteristics of goods sold by
other firms. Nevo (2001) also included the prices of goods in other markets which is valid if demand
shocks are uncorrelated across markets. There is considerable attention in the literature given to the
choice and construction of instruments.

Write γ = E[
η
]
, V = η−γ, and assume that V has distribution F (V | α) with parameters α (typically

N(0,Σ)). Set
δ j = X ′

jγ+ξ j . (26.23)

Since the model is mixed logit, (26.14) shows that the response probabilities given δ= (δ1, ...,δJ ) are

P j (δ,α) =
∫ exp

(
δ j +X ′

j V
)

J∑
`=1

exp
(
δ`+X ′

`
V

)dF (V |α)dV.

As discussed in Section 26.7 the integral in (26.14) is typically evaluated by numerical simulation. Let
{V1, ...,VG } be i.i.d. pseudo-random draws from F (V |α). The simulation estimator is

P̃ j (δ,α) = 1

G

G∑
g=1

exp
(
δ j +X ′

j Vg

)
J∑

`=1
exp

(
δ`+X ′

`
Vg

) . (26.24)

In each market we observe the quantity purchased Q j of each good and we are assumed to know the
number of individuals M . The market share of good j is defined as S j =Q j /M which is a direct estimate
of the probability P j . If the number of individuals M is large then S j approximately equals P j by the
WLLN. The BLP approach assumes that M is large enough that we can treat these two as equal. This
implies the set of J equalities

S j = P̃ j (δ,α) (26.25)

where S = (S1, ...,S J ). The left side of (26.25) is the observed market share of good j (that is, the ratio of
sales to individuals in the market). The right side is the estimated probability that the good is selected
given the market attributes and parameters. As there are J elements in each of δ and S (and P̃ j (δ,α) is
monotonically increasing in each element of δ) there is a one-to-one and invertible mapping between
δ and S. Thus given the market shares S and parameters α we can numerically calculate the elements
δ which solve the J equations (26.25). Berry, Levinsohn, and Pakes (1995) show that the solution can be
obtained by iterating on

δi
j = δi−1

j + logS j − log P̃ j

(
δi−1,α

)
. (26.26)
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The solution is an implicit set of J equations δ j = δ j (S,α).
We combine δ j = δ j (S,α) with (26.23) to obtain the regression-like expression δ j (S,α) = X ′

jγ+ ξ j .
Combined with (26.22) we obtain the moment equations

E
[

Z j

(
δ j (S,α)−X ′

jγ
)]

= 0

for j = 1, ..., J .
Estimation is by nonlinear GMM. The observations are markets indexed t = 1, ...,T , including quan-

tities Q j t , prices and characteristics X j t , and instruments Z j t . Market shares are S j t = Q j t /Mt , where
Mt is the number of individuals in the market. Let St = (S1t , ...,S J t ). The moment equation is

g (γ,α) = 1

T J

T∑
t=1

J∑
j=1

Z j t

(
δ j t (St ,α)−X ′

j tγ
)

.

The GMM estimator
(
γ̂, α̂

)
minimizes the criterion g (γ,α)′W g (γ,α) for a weight matrix W .

We mentioned earlier that observations may include demographic information. This can be incor-
porated as follows. We can add individual characteristics (e.g. income) to the utility model (26.21) as
interactions with the product characteristics X j . Since individual characteristics are unobserved they
can be treated as random but with a known distribution (taken from the known market-level demo-
graphic data). For example, Berry, Levinsohn, and Pakes (1995) treat individual income as log-normally
distributed. These random variables are then treated jointly with the random coefficients with no effec-
tive change in the estimation method.

An asymptotic theory developed by Berry, Linton, and Pakes (2004) shows that this GMM estima-
tor is consistent and asymptotically normal as J →∞ under certain assumptions. This means that the
estimator can be applied in contexts with small T and large J , as well as in contexts with large T .

To estimate a BLP model in Stata there is an add-on command blp. In R there is a package BLPestimatoR.
In Python there is a package PyBLP.

26.13 Technical Proofs*

Proof of Theorem 26.1: Define µ j` = X ′ (β j −β`
)
. It will useful to observe that

P j (X ) = exp
(
X ′β j /τ

)
J∑

`=1
exp

(
X ′β`/τ

) =
(

J∑
`=1

exp

(
−µ j`

τ

))−1

.

Define

F j
(
ε1, ...,εJ

)= ∂

∂ε j
F

(
ε1, ...,εJ

)
= exp

(
−

[
J∑

`=1
exp

(
−ε`
τ

)]τ)[
J∑

`=1
exp

(
−ε`
τ

)]τ−1

exp
(
−ε j

τ

)
.

The event Y = j occurs if U∗
j ≥U∗

`
for all `, which occurs when ε` ≤ ε j +µ j`. The probabilityP

[
Y = j

]
is the integral of the joint density f

(
ε1, ...,εJ

)
over the region ε` ≤ ε j +µ j`. This is

P
[
Y = j

]=P[
ε` ≤ ε j +µ j`, all `

]= ∫ ∞

−∞

[∫ ε j+µ j 1

−∞
· · ·

∫ εJ+µ j J

−∞
f
(
ε1, ...,εJ

)
dε1dε2 · · ·dεJ

]
dε j
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where the outer integral is over ε j . The J −1 inner set of integrals equals F j
(
ε j +µ j 1, ...,ε j +µ j J

)
. Thus

P
[
Y = j

]= ∫ ∞

−∞
F j

(
ε j +µ j 1, ...,ε j +µ j J

)
dε j . (26.27)

Next, we substute the above expression for F j and collect terms to find that (26.27) equals∫ ∞

−∞
exp

(
−

[
J∑

`=1
exp

(
−ε`+µ j`

τ

)]τ)[
J∑

`=1
exp

(
−ε`+µ j`

τ

)]τ−1

exp
(
−ε j

τ

)
dε j

=
∫ ∞

−∞
exp

(−exp
(−ε j

)
P j (X )−τ

)
P j (X )1−τ exp

(
−ε j

τ

)τ−1
exp

(
−ε j

τ

)
dε j

=
∫ ∞

−∞
exp

(−exp
(−ε j − logP j (X )τ

))
P j (X )1−τ exp

(−ε j
)

dε j

= P j (X )1−τ
∫ ∞

−∞
exp

(−exp
(−ε j − logP j (X )τ

))
exp

(−ε j
)

dε j

= P j (X )
∫ ∞

−∞
exp

(−exp(−u)
)

exp(−u)du

= P j (X ).

The second-to-last equality makes the change of variables u = ε j + logP j (X )τ. The final uses the fact
that exp

(−exp(−u)
)

exp(−u) is the Type I extreme value density which integrates to one. This shows
P

[
Y = j

]= P j (X ), as claimed. ■
Proof of Theorem 26.2: The proof method is similar to that of Theorem 26.1. The joint distribution of
the errors is

F
(
ε11, ...,εJK J

)= exp

(
−

J∑
`=1

[
K∑̀

m=1
exp

(
−ε`m

τ`

)]τ`)
.

The derivative with respect to ε j k is

F j k
(
ε11, ...,εJK J

)= ∂

∂ε j k
F

(
ε11, ...,εJK J

)
= exp

(
−

J∑
`=1

[
K∑̀

m=1
exp

(
−ε`m

τ`

)]τ`)[
K j∑

m=1
exp

(
−ε j m

τ j

)]τ j−1

exp

(
−ε j k

τ j

)
.

The event Y j k = 1 occurs if U∗
j k ≥U∗

`m for all ` and m, which occurs when ε`m ≤ ε j k +µ j k −µlm . Setting

I j =
K j∑

m=1
exp

(
µ j m/τ j

)
and I =∑J

`=1 I τ`
`

we find that

P
[
Y j k = 1

]= ∫ ∞

−∞
F j k

(
v +µ j k −µ11, ..., v +µ j k −µJK J

)
d v

=
∫ ∞

−∞
exp

(
−

J∑
`=1

[
K∑̀

m=1
exp

(
−v +µ j k −µ`m

τ`

)]τ`)[
K j∑

m=1
exp

(
−v +µ j k −µ j m

τ j

)]τ j−1

exp

(
− v

τ j

)
d v

= I
τ j−1
j

(
exp

(−µ j k
)) τ j −1

τ j

∫ ∞

−∞
exp

(
−exp

(−v −µ j k
) J∑
`=1

I τ`
`

)
exp(−v)d v

=
exp

(
µ j k /τ j

)
I
τ j−1
j

I

∫ ∞

−∞
exp

(−exp
(−v −µ j k + log I

))
exp

(−v −µ j k + log I
)

d v

=
exp

(
µ j k /τ j

)
I
τ j−1
j

I
= Pk| j P j
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as claimed. ■

Proof of Theorem 26.3: We follow the proof of Theorem 26.1 through (26.27), where in this case µ j` =
X ′ (β j −β`

)+ (
Z j −Z`

)′
γ and

F j
(
ε1, ...,εJ

)= ∂

∂ε j
F

(
ε1, ...,εJ

)= ∏
`6= j
Φ

(
µ j`+ε j

)
φ(ε j )

Thus

P
[
Y = j

]= ∫ ∞

−∞

∏
`6= j
Φ

(
µ j`+ v

)
φ(v)d v

as claimed. ■
_____________________________________________________________________________________________

26.14 Exercises

Exercise 26.1 For the multinomial logit model (26.2) show that 0 ≤ P j (x) ≤ 1 and
∑J

j=1 P j (x) = 1.

Exercise 26.2 Show that P j (x) in the multinomial logit model (26.2) only depends on the coefficient
differences β j −βJ .

Exercise 26.3 For the multinomial logit model (26.2) show that the marginal effects equal (26.4).

Exercise 26.4 Show that (26.8) holds for the conditional logit model.

Exercise 26.5 For the conditional logit model (26.8) show that the marginal effects are (26.9) and (26.10).

Exercise 26.6 Show that P j (w, x) in the conditional logit model (26.8) only depends on the coefficient
differences β j −βJ and variable differences x j −x J .

Exercise 26.7 In the conditional logit model find an estimator for AME j j .

Exercise 26.8 Show (26.11).

Exercise 26.9 In the conditional logit model with no alternative-invariant regressors W show that (26.11)

implies P j (x)/P`(x) = exp
((

x j −x`
)′
γ
)
.

Exercise 26.10 Take the nested logit model. If k and ` are alternatives in the same group j , show that
the ratio P j k /P j` is independent of variables in the other groups. What does this mean?

Exercise 26.11 Take the nested logit model. For groups j and `, show that the ratio P j /P` is independent
of variables in the other groups. What does this mean?

Exercise 26.12 Use the cps09mar dataset and the subset of men. Estimate a multinomial logit model for
marriage status similar to Figure 26.1 as a function of age. How do your findings compare with those for
women?

Exercise 26.13 Use the cps09mar dataset and the subset of women with ages up to 35. Estimate a multi-
nomial logit model for marriage status as linear functions of age and education. Interpret your results.
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Exercise 26.14 Use the cps09mar dataset and the subset of women. Estimate a nested logit model for
marriage status as a function of age. Describe how you decide on the grouping of alternatives.

Exercise 26.15 Use the Koppelman dataset. Estimate conditional logit models similar to those reported
in Table 26.1 but with the following modifications. For each case report the estimated coefficients and
standard errors for the cost and time variables, the log-likelihood, and describe how the results change.

(a) Replicate the results of Table 26.1 for conditional logit with the same variables. Note: the regressors
used in Table 26.1 are cost, intime, income, and urban.

(b) Add the variable outtime, which is out-of-vehicle time.

(c) Replace intime with time=intime+outtime.

(d) Replace cost and intime with log(cost) and log(intime).

Exercise 26.16 Use the Koppelman dataset. Estimate a nested logit model similar to those reported in
Table 26.1 but with the following modifications. For each case report the estimated coefficients and
standard errors for the cost and time variables, the log-likelihood, and describe how the results change.

(a) Replicate the results of Table 26.1 for nested logit with the same variables. Note: You will need to
constrain the dissimilarity parameter for {train, bus}.

(b) Replace cost and intime with log(cost) and log(intime).

(c) Use the groupings {car} and {train, bus, air}. Why (or why not) might this nesting make sense?

(d) Use the groupings {air} and {train, bus, car}.Why (or why not) might this nesting make sense?

Exercise 26.17 Use the Koppelman dataset. Estimate a mixed logit model similar to that reported in
Table 26.1 but with the following modifications. For each case report the estimated coefficients and
standard errors for the cost and time variables, the log-likelihood, and describe how the results change.

(a) Replicate the results of Table 26.1 for mixed logit with the same variables.

(b) Replace intime with time=intime+outtime.

(c) Treat the coefficient on intime as the negative of a lognormal random variable. (Replace intime
with nintime=-intime and treat the coefficient as lognormally distributed.) How do you compare
the results of the estimated models?

Exercise 26.18 Use the Koppelman dataset. Estimate a general multinomial probit model similar to that
reported in Table 26.1 but with the following modifications. For each case report the estimated coef-
ficients and standard errors for the cost and time variables, the log-likelihood, and describe how the
results change.

(a) Replicate the results of Table 26.1 for multinomial probit with the same variables.

(b) Replace cost and intime with log(cost) and log(intime).



Chapter 27

Censoring and Selection

27.1 Introduction

Censored regression occurs when the dependent variable is constrained, resulting in a pile-up of
observations on a boundary. Selection occurs when sampling is endogenous. Under either censoring or
selection, conventional (e.g. least squares) estimators are biased for the population parameters of the
uncensored/unselected distributions. Methods have been developed to circumvent this bias, including
the Tobit, CLAD, and sample selection estimators.

For more detail see Maddala (1983), Amemiya (1985), Gourieroux (2000), Cameron and Trivedi (2005),
and Wooldridge (2010).

27.2 Censoring

It is common in economic applications for a dependent variable to have a mixed discrete/continuous
distribution, where the discrete component is on the boundary of support. Most commonly this bound-
ary occurs at 0. For example, Figure 27.1(a) displays the density of tabroad (transfers from abroad) from
the data file CHJ2004. This variable is the amount1 of remittances received by a Philippino household
from a foreign source. For 80% of households this variable equals 0. The associated mass point is dis-
played by the bar at zero. For 20% of households tabroad is positive and continuously distributed with a
thick right tail. The associated density is displayed by the line graph.

Given such observations it is unclear how to proceed with a regression analysis. Should we use the
full sample including the 0’s? Should we use only the sub-sample excluding the 0’s? Or should we do
something else?

To answer these questions it is useful to have a statistical model. A classical framework is cen-
sored regression, which posits that the observed variable is a censored version of a latent continuously-
distributed variable. Without loss of generality we focus on the case of censoring from below at zero.

The censored regression model was proposed by Tobin (1958) to explain household consumption of
durable goods. Tobin observed that in survey data, durable good consumption is zero for a positive frac-
tion of households. He proposed treating the observations as censored realizations from a continuous

1In thousands of Philippino pesos.

842
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(a) Transfers from Abroad – CHJ2004 data set
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(b) Censoring Process

Figure 27.1: Censored Distributions

distribution. His model is

Y ∗ = X ′β+e

e | X ∼ N(0,σ2)

Y = max
(
Y ∗,0

)
. (27.1)

This model is known as Tobit regression or censored regression. It is also known as the Type 1 Tobit
model. The variable Y ∗ is latent (unobserved). The observed variable Y is censored from below at zero.
This means that positive values are uncensored and negative values are transformed to 0. This censoring
model replicates the observed phenomenon of a pile-up of observations at 0.

The Tobit model can be justified by a latent choice framework where an individual’s optimal (un-
constrained) continuously distributed choice is Y ∗. Feasible choices, however, are constrained to satisfy
Y ≥ 0. (For example, negative purchases are not allowed.) Consequently the realized value Y is a cen-
sored version of Y ∗. To justify this interpretation of the model we need to envisage a context where de-
sired choices include negative values. This may be a strained interpretation for consumption purchases,
but may be reasonable when negative values make economic sense.

The censoring process is depicted in Figure 27.1(b). The latent variable Y ∗ has a normal density cen-
tered at X ′β. The portion for Y ∗ > 0 is maintained while the portion for Y ∗ < 0 is transformed to a point
mass at zero. The location of the density and the degree of censoring are controlled by the conditional
mean X ′β. As X ′β moves to the right the amount of censoring is decreased. As X ′β moves to the left the
amount of censoring is increased.

A common “remedy” to the censoring problem is deletion of the censored observations. This creates
a truncated distribution which is defined by the following transformation

Y # =
{

Y if Y > 0
missing if Y = 0.

In Figure 27.1(a) and Figure 27.1(b) the truncated distribution is the continuous portion above 0 with the
mass point at 0 omitted.
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The censoring and truncation processes are depicted in Figure 27.2(a) which plots 100 random2

draws (Y ∗, X ). The uncensored variables are marked by the open circles and squares. The open squares
are the realizations for which Y ∗ > 0 and the open circles are the realizations for which Y ∗ < 0. The cen-
sored distribution replaces the negative values of Y ∗ with 0, and thus replaces the open with the filled
circles. The censored distribution thus consists of the open squares and filled circles. The truncated
distribution is obtained by deleting the censored observations so consists of just the open squares.

X
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Figure 27.2: Properties of Censored Distributions

To summarize: we distinguish between three distributions and variables: uncensored (Y ∗), cen-
sored (Y ), and truncated (Y #).

The censored regression model (27.1) makes several strong assumptions: (1) linearity of the condi-
tional mean; (2) independence of the error; (3) normal distribution. The linearity assumption is not crit-
ical as we can interpret X ′β as a series expansion or similar flexible approximation. The independence
assumption, however, is quite important as its violation (e.g. heteroskedasticity) changes the properties
of the censoring process. The normality assumption is also quite important, yet difficult to justify from
first principles.

27.3 Censored Regression Functions

We can calculate some properties of the conditional distribution of the censored random variable.
The conditional probability of censoring is

P
[
Y ∗ < 0 | X

]=P[
e <−X ′β

∣∣ X
]=Φ(

−X ′β
σ

)
.

We illustrate in Figure 27.2(b). This plots the censoring probability as a function of X for the example
from Figure 27.2(a). The censoring probability is 98% for X =−3, 50% for X =−1 and 2% for X = 1.

2 X ∼U [−3,3] and Y ∗ | X ∼ N(1+X ,1).
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The conditional mean of the uncensored, censored, and truncated distributions are

m∗(X ) = E[
Y ∗ | X

]= X ′β,

m(X ) = E [Y | X ] = X ′βΦ
(

X ′β
σ

)
+σφ

(
X ′β
σ

)
(27.2)

m#(X ) = E[
Y # | X

]= X ′β+σλ
(

X ′β
σ

)
. (27.3)

The function λ(x) = φ(x)/Φ(x) in (27.3) is called the inverse Mills ratio. To obtain (27.2) and (27.3) see
Theorems 5.8.2 and 5.7.6 of Introduction to Econometrics and Exercise 27.1.

Since Y ∗ ≤ Y ≤ Y # it follows that
m∗(x) ≤ m(x) ≤ m#(x)

with strict inequality if the censoring probability is positive. This shows that the conditional means of
the truncated and censored distributions are biased for the uncensored conditional mean.

We illustrate in Figure 27.2(a). The uncensored mean m∗(x) is marked by the straight line, the cen-
sored mean m(x) is marked with the dashed line, and the truncated mean m#(x) is marked with the long
dashes. The functions are strictly ranked with the truncated mean exhibiting the highest bias.

27.4 The Bias of Least Squares Estimation

If the observations (Y , X ) are generated by the censored model (27.1) then least squares estimation
using either the full sample including the censored observations or the truncated sample excluding the
censored observations will be biased. Indeed, an estimator which is consistent for the conditional mean
(such as a series estimator) will estimate the censored mean m(x) or truncated mean m#(x) in the cen-
sored and truncated samples, respectively, not the latent conditional mean m∗(x).

It is also interesting to consider the properties of the best linear predictor of Y on X , which is the
estimand of the least squares estimator. In general, this depends on the marginal distribution of the
regressors. However, when the regressors are normally distributed it takes a simple form as discovered
by Greene (1981). Write the model with an explicit intercept as Y ∗ =α+X ′β+e and assume X ∼ N(0,Σ).
Greene showed that the best linear predictor slope coefficient is

βBLP =β (1−π) (27.4)

where π= P [Y = 0] is the censoring probability. We derive (27.4) at the end of this section.
Greene’s formula (27.4) shows that the least squares slope coefficients are shrunk towards zero pro-

portionately with the censoring percentage. While Greene’s formula is special to normal regressors it
gives a baseline estimate of the bias due to censoring. The censoring proportion π is easily estimated
from the sample (e.g. π= 0.80 in our transfers example) allowing a quick calculation of the expected bias
due to censoring. This can be used as a rule of thumb. If the expected bias is sufficiently small (e.g. less
than 5%) the resulting expected estimation bias (e.g. 5%) may be acceptable, leading to conventional
least squares estimation using the full sample without an explicit treatment of censoring. However, if
the censoring proportion π is sufficiently high (e.g. 10%) then estimation methods which correct for
censoring bias may be desired.

We close this section by deriving (27.4). The calculation is simplified by a trick suggested by Gold-
berger (1981). Notice that Y ∗ ∼ N(α,σ2

Y ) with σ2
Y = σ2 +β′Σβ. Using the moments of the truncated

normal distribution (Introduction to Econometrics, Theorems 5.7.6 and 5.7.8) and setting λ = λ(α/σY )
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we can calculate that

E
[(

Y ∗−α)
Y ∗ | Y ∗ > 0

]= var
[
Y ∗ | Y ∗ > 0

]+ (
E
[
Y ∗ | Y ∗ > 0

]−α)
E
[
Y ∗ | Y ∗ > 0

]
=σ2

Y

(
1− α

σY
λ−λ2

)
+σY λ (α+σY λ) =σ2

Y .

The projection of X on Y ∗ is X = E [X Y ∗]σ−2
Y (Y ∗−α)+u where u is independent of Y ∗. This implies

E
[

X Y ∗ | Y ∗ > 0
]= E[(

E
[

X Y ∗]
σ−2

Y

(
Y ∗−α)+u

)
Y ∗ | Y ∗ > 0

]
= E[

X Y ∗]
σ−2

Y E
[(

Y ∗−α)
Y ∗ | Y ∗ > 0

]
= E[

X Y ∗]
.

Hence

βBLP = E[
X X ′]−1

E [X Y ]

= E[
X X ′]−1

E
[

X Y ∗ | Y ∗ > 0
]

(1−π)

= E[
X X ′]−1

E
[

X Y ∗]
(1−π)

=β (1−π)

which is (27.4) as claimed.

27.5 Tobit Estimator

Tobin (1958) proposed estimation of the censored regression model (27.1) by maximum likelihood.
The censored variable Y has a conditional distribution function which is a mixture of continuous

and discrete components:

F
(
y | x

)=


0, y < 0

Φ

(
y −x ′β
σ

)
, y ≥ 0.

The associated density3 function is

f
(
y | x

)=Φ(
−x ′β
σ

)1{y=0} [
σ−1φ

(
y −x ′β
σ

)]1{y>0}
.

The first component is the probability of censoring and the second component is the normal regression
density.

The log-likelihood is the sum of the log density functions evaluated at the observations:

`n
(
β,σ2)= n∑

i=1
log f (Yi | Xi )

=
n∑

i=1

(
1 {Yi = 0}log f (Yi | Xi )+1 {Yi > 0}log

[
σ−1φ

(
Yi −X ′

iβ

σ

)])

= ∑
Yi=0

logΦ

(
−X ′

iβ

σ

)
− 1

2

∑
Yi>0

(
log

(
2πσ2)+ 1

σ2

(
Yi −X ′

iβ
)2

)
.

3Since the distribution function is discontinuous at y = 0 the density is technically the derivative with respect to a mixed
continuous/discrete measure.
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The first component is the same as in a probit model, and the second component is the same as for the
normal regression model.

The MLE
(
β̂, σ̂2

)
are the values which maximize the log-likelihood `n

(
β,σ2

)
. This estimator was

nicknamed “Tobit” by Goldberger because of its connection with the probit estimator. Amemiya (1973)
established its asymptotic normality.

Computation is improved, as shown by Olsen (1978), if we transform the parameters to γ= β/σ and
v = 1/σ. Then the reparameterized log-likelihood equals

`n
(
γ,ν

)= ∑
Yi=0

logΦ
(−X ′

iγ
)+ ∑

Yi>0
log

(
ν/

p
2π

)
+

(
−1

2

) ∑
Yi>0

(
Yiν−X ′

iγ
)2 . (27.5)

This is the sum of three terms, each of which is globally concave in (γ,ν) (as we now discuss), so `n
(
γ,ν

)
is globally concave in (γ, v) ensuring global convergence of Newton-based optimizers. Indeed, the third
term in (27.5) is the negative of a quadratic in (γ, v), so is concave. The second term in (27.5) is logarith-
mic in ν, which is concave. The first term in (27.5) is a function only of γ and has second derivative

∂2

∂γ∂γ′
∑

Yi=0
logΦ

(−X ′
iγ

)= ∑
Yi=0

Xi X ′
iλ

′ (−X ′
iγ

)
which is negative definite since the Mills ratio satisfies λ′ (u) < 0 (see Theorem 5.7.7 in Introduction to
Econometrics). Hence the first term in (27.5) is concave.

In Stata, Tobit regression can be estimated with the tobit command. In R there are several options
including the tobit command in the AER package.

James Tobin

James Tobin (1918-2002) of the United States was one of the leading macroe-
conomists of the mid-twentieth century and winner of the 1981 Nobel Memorial
Prize in Economic Sciences. His 1958 paper introduced censored regression and
its MLE, typically called the Tobit estimator. As a fascinating coincidence, the
name “Tobit” also arises in the 1951 novel The Caine Mutiny, set on a U.S. Navy
destroyer during World War II. At one point in the novel the author describes
a crew member named “Tobit” who had “a mind like a sponge” because of his
strong intellect. It turns out the author (Herman Wouk) and James Tobin served
on the same Navy destroyer during WWII. Go figure!

27.6 Identification in Tobit Regression

The Tobit model (27.1) makes several strong assumptions. Which are critical? To investigate this
question consider the nonparametric censored regression framework

Y ∗ = m(X )+e

E [e] = 0

Y = max
(
Y ∗,0

)
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where e ∼ F independent of X , and the regression function m(x) and distribution function F (e) are un-
known. What is identified?

Suppose that the random variable m(X ) has unbounded support on the real line (as occurs when
m(X ) = X ′β and X has an unbounded distribution such as the normal). Then we can find a set X ⊂ Rk

such that for x ∈ X , P [Y = 0 | X = x] = F (−m(x)) ' 0. We can then imagine taking the subsample of ob-
servations for which X ∈ X . The function m(x) is identified for x ∈ X , permitting the identification of
the distribution F (e). As the censoring probability P [Y = 0 | X = x] = F (−m(x)) is globally identified the
function m(x) is globally identified as well. This discussion shows that so long as we maintain the as-
sumption that X and e are independent, the regression function m(x) and distribution function F (e) are
nonparametrically identified when the mean m(X ) has full support. These two assumptions, however,
are essential as we now discuss.

Suppose the full support condition fails in the sense that the regression function is bounded m(X ) ≤
m at a value such that P [Y = 0 | X = x] = F (−m) > 0. In this case the error distribution F (e) is not identi-
fied for e ≤−m. This means that the distribution function can take any shape for e ≤−m so long as it is
weakly increasing. This implies that the mean E [e] is not identified so the location of m(x) (the intercept
of the regression) is not identified.

The second important assumption is that e is independent of X . This assumption has been relaxed
by Powell (1984, 1986) in the conditional quantile framework. The model is

Y ∗ = qτ(X )+eτ

Qτ [eτ | X ] = 0

Y = max
(
Y ∗,0

)
for some τ ∈ (0,1). This model defines qτ(x) as the τth conditional quantile function. Since quantiles are
equivariant to monotone transformations we have the relationship

Qτ [Y | X = x] = max
(
qτ(x),0

)
.

Thus the conditional quantile function of Y is the censored quantile function of Y ∗. The function
Qτ [Y | X = x] is identified from the joint distribution of (Y , X ). Consequently the function qτ(x) is iden-
tified for any x such that qτ(x) > 0. This is an important conceptual breakthrough. Powell’s result shows
that identification of qτ(x) does not require the error to be independent of X nor have a known distri-
bution. The key insight is that quantiles, not means, are nonparametrically identified from a censored
distribution.

A limitation with Powell’s result is that the function qτ(x) is only identifed on sub-populations for
which censoring does not exceed τ%.

To illustrate, Figure 27.3(a) displays the conditional quantile functions qτ(x) for τ= 0.3, 0.5, 0.7, and
0.9 for the conditional distribution Y ∗ | X ∼ N

(p
x − 3

2 ,2+x
)
. The portions above zero (which are identi-

fied from the censored distribution) are plotted with solid lines. The portions below zero (which are not
identified from the censored distribution) are plotted with dashed lines. We can see that in this example
the quantile function q.9(x) is identified for all values of x, the quantile function q.3(x) is not identified
for any values of x, and the quantile functions q.7(x) and q.5(x) are identified for a subset of values of x.
The explanation is that for any fixed value of X = x we only observe the censored distribution Y and so
only observe the quantiles above the censoring point. There is no nonparametric information about the
distribution of Y ∗ below the censoring point.
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Figure 27.3: Censored Regression Quantiles

27.7 CLAD and CQR Estimators

Powell (1984, 1986) applied the quantile identification strategy described in the previous section to
develop straightforward censored regression estimators.

The model in Powell (1984) is censored median regression:

Y ∗ = X ′β+e

med[e | X ] = 0

Y = max
(
Y ∗,0

)
.

In this model Y ∗ is latent with med[Y ∗ | X ] = X ′β and Y is censored at zero. As described in the previous
section the equivariance property of the median implies that the conditional median of Y equals

med[Y | X ] = max
(
X ′β,0

)
.

This is a parametric but nonlinear median regression model for Y .
The appropriate estimator for median regression is least absolute deviations (LAD). The censored

least absolute deviations (CLAD) criterion is

Mn(β) = 1

n

n∑
i=1

∣∣Yi −max
(
X ′

iβ,0
)∣∣ .

The CLAD estimator minimizes Mn(β)

β̂CLAD = argmin
β

Mn(β).

The CLAD criterion Mn(β) has similar properties as LAD criterion, namely that it is continuous,
faceted, and has discontinuous first derivatives. An important difference, however, is that Mn(β) is not
globally convex, so minimization algorithms may converge to a local rather than a global minimum.
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Powell (1986) extended CLAD to censored quantile regression (CQR). The model is

Y ∗ = X ′β+e

Qτ [e | X ] = 0

Y = max
(
Y ∗,0

)
for τ ∈ (0,1). The equivariance property implies that the conditional quantile function for Y is

Qτ [Y | X ] = max
(
X ′β,0

)
.

The CQR criterion is

Mn(β;τ) = 1

n

n∑
i=1

ρτ
(
Yi −max

(
X ′

iβ,0
))

where ρτ(u) is the check function (24.10). The CQR estimator minimizes this criterion

β̂CQR(τ) = argmin
β

Mn(β;τ).

As for CLAD, the criterion is not globally concave so numerical minimization is not guarenteed to con-
verge to the global minimum.

Powell (1984, 1986) shows that the CLAD and CQR estimators are asymptotically normal by similar
arguments as for quantile regression. An important technical difference with quantile regression is that
the CLAD and CQR estimators require stronger conditions for identification. As we discussed in the pre-
vious section the quantile function X ′β is only identified for regions where it is positive. This means
that we require a positive fraction of the population to satisfy X ′β> 0. Furthermore, the relevant design
matrix (24.18) is defined on this sub-population, and must be full rank for conventional inference. Es-
sentially, there must be sufficient variation in the regressors over the region of the sample space where
there is no censoring.

CLAD can be estimated in Stata with the add-on package clad. In R, CLAD and CQR can be estimated
with the crq command in the package quantreg.

27.8 Illustrating Censored Regression

To illustrate the methods we revisit of the applications reported in Section 20.6, where we used a
linear spline to estimate the impact of income on non-governmental transfers for a sample of 8684
Phillipino households. The least squares estimates indicated a sharp discontinuity in the conditional
mean around 20,000 pesos. The dependent variable is the sum of transfers received domestically, from
abroad, and in-kind, less gifts. Each of these four sub-variables is non-negative. If we apply the model
to any of these sub-variables there is substantial censoring. To illustrate, we set the dependent variable
to equal the sum of transfers received domestically, from abroad, and in-kind, for which the censoring
proportion is 18%. This proportion is sufficiently high that we should expect significant censoring bias if
censoring is ignored.

We estimate the same model as reported in Section 20.6 and displayed in Figure 20.2(b), which is
a linear spline in income with 5 knots and 15 additional control regressors. We estimated the equation
using four methods: (a) least squares; (b) Tobit regression; (c) LAD; (d) CLAD. We display the estimated
regression as a function of income (with remaining regressors set at sample means) in Figure 27.3(b).

The basic insight – that the regression has a slope close to −1 for low income levels and is flat for high
income levels with a sharp discontinuity at an income level of 20,000 pesos – is remarkably robust across
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the four estimates. What is noticably different, however, is the level of the regression function. The least
squares estimate is several thousand pesos above the others. The fact that the LAD and CLAD estimates
have a meaningfully different level should not be surprising. The dependent variable is highly skewed,
so the mean and median are quite different (the unconditional mean and median are 7700 and 1200,
respectively). This implies a level shift of the regression function. This does not explain, however, why
the Tobit estimate also is substantially shifted down. Instead, this can be explained by censoring bias.
Since the regression function is negatively sloped the censoring probability is increasing in income, so
the bias of the least squares estimator is positive and increasing in the income level. The LAD and CLAD
estimates are quite similar even though the LAD estimates do not account for censoring. Overall, the
CLAD estimates are the preferred choice because they are robust to both censoring and non-normality.

27.9 Sample Selection Bias

While econometric models typically assume random sampling, actual observations are typically gath-
ered non-randomly. This can induce estimation bias if selection (presence in the sample) is endoge-
neous. The following are examples of potential sample selection.

1. Wage regression. Wages are only observed for individuals who have wage income, which means
that the individual is a member of the labor force and has a wage-paying job. The decision to work
may be endogenously related to the person’s observed and unobserved characteristics.

2. Program evaluation. The goal is to measure the impact of a program such as workforce training
through a pilot program. Endogenous selection arises when individuals volunteer to participate
(rather than being randomly assigned). Individuals who volunteer for a training program may have
abilities which are correlated with outcomes.

3. Surveys. While a survey may be randomly distributed the act of completing the survey is non-
random. Most surveys have low response rates. Endogenous selection arises when the decision to
complete and return the survey is correlated with the survey responses.

4. Ratings. We are routinely asked to rate products, services, and experiences. Most people do not
respond to the request. Endogenous selection arises when the decision to rate the product is cor-
related with the response.

To understand the effect of sample selection it is useful to view sampling as a two-stage process. In
the first stage the random variables (Y , X ) are drawn. In the second stage the pair is either selected into
the sample (S = 1) or unobserved (S = 0). The sample then consists of the pairs (Y , X ) for which S = 1.
Suppose that the variables satisfy the latent regression model Y = X ′β+ e with E [e | X ] = 0. Then the
conditional mean in the observed (selected) sample is

E [Y | X ,S = 1] = X ′β+E [e | X ,S = 1] .

Selection bias occurs when the second term is non-zero. To understand this further suppose that se-
lection can be modelled as S = 1

{
X ′γ+u > 0

}
for some error u. This is consistent with a latent utility

framework where X ′γ+u is the latent utility of participation. Given this framework we can write the
conditional mean of Y in the selected sample as

E [Y | X ,S = 1] = X ′β+E[
e | u >−X ′γ

]
.
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Let e = ρu +ε be the projection of e on u. Suppose that the errors are independent of X , and u and ε are
mutually independent. Then the above expression equals

E [Y | X ,S = 1] = X ′β+ρE[
u | u >−X ′γ

]= X ′β+ρg
(
X ′γ

)
for some function g (u). When u ∼ N(0,1), g (u) =φ(u)/Φ(u) = λ(u) (see Exercise 27.7) so the expression
equals

E [Y | X ,S = 1] = X ′β+ρλ(
X ′γ

)
. (27.6)

This is the same as (27.3) in the special case ρ =σ and γ=β/σ. This, as shown in Figure 27.2(a), deviates
from the latent conditional mean X ′β.

One way to interpret this effect is that the regression function (27.6) contains two components: X ′β
and ρλ

(
X ′γ

)
. A linear regression on X omits the second term and thus inherits omitted variables bias as

X and λ
(
X ′γ

)
are correlated. The extent of omitted variables bias depends on the magnitude of ρ which

is the coefficient from the projection of e on u. When the errors e and u are independent (when selection
is exogenous) then ρ = 0 and (27.6) simplifies to X ′β and there is no omitted term. Thus sample selection
bias arises if (and only if) selection is correlated with the equation error.

Furthermore, the omitted selection term λ
(
X ′γ

)
only impacts estimated marginal effects if the slope

coefficientsγ are non-zero. In contrast suppose that X ′γ= γ0, a constant. Then (27.6) equals E [Y | X ,S = 1] =
X ′β+ρλ(

γ0
)

so the impact of selection is an intercept shift. If our focus is on marginal effects sample
selection bias only arises when the selection equation has non-trivial dependence on the regressors X .

In Figure 27.2(a) we saw that censoring attenuates (flattens) the regression function. While the se-
lection mean (27.6) takes a similar form it is broader and can have a different impact. In contrast to
the censoring case, selection can both steepen as well as flatten the regression function. In general it is
difficult to predict the effect of selection on regression functions.

As we have shown, endogenous selection changes the conditional mean. If samples are generated by
endogenous selection then estimation will be biased for the parameters of interest. Without information
on the selection process there is little that can be done to “correct” the bias other than to be aware of its
presence. In the next section we discuss one approach which corrects for sample selection bias when we
have information on the selection process.

27.10 Heckman’s Model

Heckman (1979) showed that sample selection bias can be corrected if we have a sample which in-
cludes the non-selected observations. Suppose that the observations {Yi , Xi , Zi } are a random sample
where Y is a selected variable (such as wage, which is only observed if a person has wage income). Heck-
man’s approach is to build a joint model of the full sample (not just the selected sample) and use this to
estimate the model parameters.

Heckman’s model is

Y ∗ = X ′β+e

S∗ = Z ′γ+u

S =1{
S∗ > 0

}
Y =

{
Y ∗ if S = 1

missing if S = 0

with (
e
u

)
∼ N

(
0,

(
σ2 σ21

σ21 1

))
.
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The model specifies that the latent variables Y ∗ and S∗ are linear in regressors X and Z with structural
errors e and u. The variable S indicates selection and follows a probit equation. The variable Y equals
the latent variable Y ∗ if selected (S = 1) and otherwise is missing. The model specifies that the errors are
jointly normal with covariance σ21. The variance of u is not identified so is normalized to equal 1.

In Heckman’s classic example, Y ∗ is the wage (or log(wage)) an individual would receive if they were
employed, S is employment status, and Y is observed wage. The coefficients β are those of the wage
regression; the coefficients γ are those which determine employment status. The error e is unobserved
ability and other unobserved factors which determine an individual’s wages; the error u is the unob-
served factors which determine employment status; and the two are likely to be correlated.

Based on the same calculations as discussed in the previous section, the conditional mean of Y in
the selected sample is

E [Y | X , Z ,S = 1] = X ′β+σ21λ
(
Z ′γ

)
(27.7)

where λ(x) is the inverse Mills ratio.
Heckman proposed a two-step estimator of the coefficients. The insight is that the coefficient γ is

identified by the probit regression of S on Z . Given γ the coefficients β and σ21 are identified by least
squares regression of Y on

(
X ,λ(Z ′γ)

)
using the selected sample. The steps are as follows.

1. Construct (if necessary) the binary variable S from the observed series Y .

2. Estimate the coefficient γ̂ by probit regression of S on Z .

3. Construct the variables λ̂i =λ
(
Z ′

i γ̂
)
.

4. Estimate the coefficients (β̂, σ̂21) by least-squares regression of Yi on (Xi , λ̂i ) using the sub-sample
with Si = 1.

Heckman showed that the estimator β̂ is consistent and asymptotically normal. The variable λ̂i is
a generated regressor (see Section 12.26) which affects covariance matrix estimation. The method is
sometimes called “Heckit” as it is an analog of probit, logit, and Tobit regression.

As a by-product we also obtain an estimator of the covariance σ21. This parameter indicates the
magnitude of sample selection endogeneity. If selection is exogenous then σ21 = 0. The null hypothesis
of exogenous selection can be tested by examining the t-statistic for σ̂21.

An alternative to two-step estimation is joint maximum likelihood. The joint density of S and Y is

f (s, y | x, z) =P [S = 0 | x, z]1−s f
(
y,S = 1 | x, z

)s .

The selection probability is P [S = 0 | x, z] = 1−Φ(
z ′γ

)
. The conditional density component is

f
(
y,S = 1, | x, z

)= ∫ ∞

0
f
(
y, s∗ | x, z

)
d s∗

=
∫ ∞

0
f
(
s∗ | y, x, z

)
f
(
y | x, z

)
d s∗

= (
1−F

(
s∗ | y, x, z

))
f
(
y | x, z

)
.

The first equality holds since S = 1 is the same as S∗ > 0. The second factors the joint density into
the product of the conditional of S∗ given Y and the marginal of Y . The marginal density of Y is
σ−1φ

(
(y −x ′β)/σ

)
. The conditional distribution of S∗ given Y is N

(
Z ′γ+ σ21

σ2

(
Y −X ′β

)
,1− σ21

σ2

)
. Mak-

ing these substitutions we obtain the joint mixed density

f (s, y | x, z) = (
1−Φ(

z ′γ
))1−s

Φ
 z ′γ+ σ21

σ2

(
y −x ′β

)√
1− σ21

σ2

 1

σ
φ

(
y −x ′β
σ

)
s

.
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Evaluated at the observations we obtain the log-likelihood function

`n
(
β,γ,σ2,σ21

)= ∑
Si=0

log
(
1−Φ(

Z ′
iγ

))+ ∑
Si=1

logΦ

 Z ′
iγ+ σ21

σ2

(
Yi −X ′

iβ
)√

1− σ21
σ2

− 1

2
log

(
2πσ2)− 1

2σ2

(
Yi −X ′

iβ
)2

 .

The maximum likelihood estimator
(
β̂, γ̂, σ̂2, σ̂21

)
maximizes the log-likelihood.

The MLE is the preferred estimation method for final reporting. It can be computationally demand-
ing in some applications, however, so the two-step estimator can be useful for preliminary analysis.

In Stata the two-step estimator and joint MLE can be obtained with the heckman command.

27.11 Nonparametric Selection

A nonparametric selection model is

Y ∗ = m(X )+e

S∗ = g (Z )+u

S =1{
S∗ > 0

}
Y =

{
Y ∗ if S = 1

missing if S = 0

where the distribution of (e,u) is unknown. For simplicity we assume that (e,u) are independent of
(X , Z ).

Selection occurs if u >−g (Z ). This is unaffected by monotonically increasing transformations. There-
fore the distribution of u is not separately identified from the function g (Z ). Consequently we can nor-
malize the distribution of u to a convenient form. Here we use the normal distribution: u ∼Φ(x).

Since the functions m(X ) and g (Z ) are nonparametric we can use series methods to approximate
them by linear models of the form m(X ) = X ′β and g (Z ) = Z ′γ after suitable variable transformation.
We will use this latter notation to link the models to estimation methods.

The conditional probability of selection is

p(Z ) =P [S = 1 | Z ] =P[
u >−Z ′γ | Z

]=Φ(
Z ′γ

)
.

The probability p(Z ) is known as the propensity score; it is nonparametrically identified from the joint
distribution of (S, Z ), so the function g (Z ) = Z ′γ is identified. The coefficient γ and propensity score can
be estimated by binary choice methods, for example by a series probit regression.

The conditional mean of Y given selection is

E [Y | X , Z ,S = 1] = X ′β+h1
(
Z ′γ

)
(27.8)

where h1(x) = E [e | u >−x]. In general h1(x) can take a range of possible shapes. When (e,u) are jointly
normal with covariance σ21 then h1(x) =σ21λ(x) where λ(x) =φ(x)/Φ(x) is the inverse Mills ratio. There
are two alternative representations of the conditional mean which are potentially useful. Since g (Z ) =
Φ−1

(
p(Z )

)
we have the representation

E [Y | X , Z ,S = 1] = X ′β+h2
(
p(Z ))

)
(27.9)

where h2(x) = h1
(
Φ−1 (x)

)
. Also, since λ(x) is invertible we have the representation

E [Y | X , Z ,S = 1] = X ′β+h3
(
λ(Z ′γ)

)
(27.10)
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where h3(x) = h1
(
λ−1(x)

)
.

The three equations (27.8)-(27.10) suggest three two-step approaches to nonparametric estimation
which we now describe. Each is based on a first-step binary choice estimator γ̂ of γ.

Equation (27.8) suggests a regression of Y on X and a series expansion in Z ′γ̂, for example a low-
order polynomial in Z ′γ̂.

Equation (27.9) suggests a regression of Y on X and a series expansion in the propensity score p̂ =
Φ

(
Z ′γ̂

)
, for example a low-order polynomial in p̂.

Equation (27.10) suggests a regression of Y on X and a series expansion in λ̂=λ(
Z ′γ̂

)
, for example a

low-order polynomial in λ̂.
The advantage of expansions based on (27.10) is that it will be first-order accurate in the leading

case of the normal distribution. This means that for distributions close to the normal, series expansions
will be accurate even with a small number of terms. The advantage of expansions based on (27.9) is
interpretability: The regression is expressed as a function of the propensity score.

Das, Newey, and Vella (2003) provide a detailed asymptotic theory for this class of estimators focusing
on those based on (27.9). They provide conditions under which the models are identified, the estimators
consistent, and asymptotically normally distributed.

These nonparametric selection estimators are two-step estimators with generated regressors (see
Section 12.26). Therefore conventional covariance matrix estimators and standard errors are inconsis-
tent. Asymptotically valid covariance matrix estimators can be constructed using GMM. An alternative
is to use bootstrap methods. The latter should be implemented as an explicit two-step estimator so that
the first-step estimation is treated by the bootstrap distribution.

A standard recommendation is that the regressors Z in the selection equation should include at least
one relevant variable which is a valid exclusion from the regressors X in the main equation. The reason
is that otherwise the series expansions for m(x) and h(Z ′γ) can be highly collinear and not separately
identified. This insight applies to the parametric case as well. One difficulty is that in applications it may
be challenging to identify variables which affect selection S∗ but not the outcome Y ∗.

27.12 Panel Data

A panel censored regression (panel Tobit) equation is

Y ∗
i t = X ′

i tβ+ui +ei t

Yi t = max
(
Y ∗

i t ,0
)

.

The individual effect ui can be treated as a random effect (uncorrelated with the errors) or a fixed effect
(unstructured correlation).

A random effects estimator can be derived under the assumption of joint normality of the errors.
This is implemented in the Stata command xttobit. The advantage is that the procedure is simple to
implement. The disadvantages are those typically associated with random effects estimators.

A fixed effects estimator was developed by Honoré (1992). His key insight is the following, which
we illustrate assuming T = 2. If the errors (ei 1,ei 2) are independent of (Xi 1, Xi 2,ui ) then the distri-
bution of (Y ∗

i 1,Y ∗
i 2) conditional on (Xi 1, Xi 2) is symmetric about the 45 degree line through the point

(∆X ′β,0) in (Y1,Y2) space. This distribution does not depend on the fixed effect ui . From this symme-
try and the censoring rules Honoré derived moment conditions which identify the coefficients β and
allow estimation by GMM. Honoré (1992) provides a complete asymptotic distribution theory. Honoré
has provided a Stata command Pantob which implements his estimator and is available on his website.
https://www.princeton.edu/~honore/stata/.
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A panel sample selection model is

Y ∗
i t = X ′

i tβ+ui +ei t

S∗
i t = Z ′

i tγ+ηi + vi t

Si t =1
{
S∗

i t > 0
}

Yi t =
{

Y ∗
i t if Si t = 1

missing if Si t = 0
.

A method to estimated this model is presented in Kyriazidou (1997). Again for exposition we focus on
the T = 2 case. Her estimator is motivated by the observation that β could be consistently estimated
by least squares applied to the sub-sample where Si 1 = Si 2 = 1 (both observations are selected) and
Z ′

i 1γ= Z ′
i 2γ (both observations have same probability of selection). The parameter γ is identified up to

scale by the selection equation so can be estimated as γ̂ by the methods described in Section 25.13 (e.g.
Chamberlain (1980, 1984)). Given γ̂ we estimate β by kernel-weighted least squares on the sub-sample
with Si 1 = Si 2 = 1, with kernel weights depending on (Zi 1 −Zi 2)′ γ̂. Kyriazidou (1997) provides a complete
distribution theory.
_____________________________________________________________________________________________

27.13 Exercises

Exercise 27.1 Derive (27.2) and (27.3). Hint: Use Theorems 5.7 and 5.8 of Introduction to Econometrics.

Exercise 27.2 Take the model

Y ∗ = X ′β+e

e ∼ N
(
0,σ2)

Y =
{

Y ∗ if Y ∗ ≤ τ
missing if Y ∗ > τ .

In this model, we say that Y is capped from above. Suppose you regress Y on X . Is OLS consistent for β?
Describe the nature of the effect of the mis-measured observation on the OLS estimator.

Exercise 27.3 Take the model

Y = X ′β+e

e ∼ N
(
0,σ2) .

Let β̂ denote the OLS estimator for β based on an available sample.

(a) Suppose that an observation is in the sample only if X1 > 0 where X1 is an element of X . Is β̂
consistent for β? Obtain an expression for its probability limit.

(b) Suppose that an observation is in the sample only if Y > 0. Is β̂ consistent for β̂? Obtain an expres-
sion for its probability limit.

Exercise 27.4 For the censored conditional mean (27.2) propose a NLLS estimator of (β,σ).

Exercise 27.5 For the truncated conditional mean (27.3) propose a NLLS estimator of (β,σ).
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Exercise 27.6 A latent variable Y ∗ is generated by

Y ∗ =β0 +Xβ1 +e

e | X ∼ N
(
0,σ2(X )

)
σ2(X ) = γ0 +X 2γ1

Y = max
(
Y ∗,0

)
.

where X is scalar. Assume γ0 > 0 and γ1 > 0. The parameters are β,γ0,γ1. Find the log-likelihood func-
tion for the conditional distribution of Y given X .

Exercise 27.7 Take the model

S =1{
X ′γ+u > 0

}
Y =

{
X ′β+e if S = 1
missing if S = 0(

e
u

)
∼ N

(
0,

(
σ2 σ21

σ21 1

))
Show E [Y | X ,S = 1] = X ′β+σ21λ

(
X ′γ

)
.

Exercise 27.8 Show (27.7).

Exercise 27.9 Take the CHJ2004 dataset. The variables tinkind and income are household transfers re-
ceived in-kind and household income, respectively. Divide both variables by 1000 to standardize. Create
the regressor Dincome=(income-1)×1 {income > 1}.

(a) Estimate a linear regression of tinkind on income and Dincome. Interpret the results.

(b) Calculate the percentage of censored observations (the percentage for which tinkind= 0. Do you
expect censoring bias to be a problem in this example?

(c) Suppose you try and fix the problem by omitting the censored observations. Estimate the regres-
sion on the subsample of observations for which tinkind> 0.

(d) Estimate a Tobit regression of of tinkind on income and Dincome.

(e) Estimate the same regression using CLAD.

(f) Interpret and explain the differences between your results in (a)-(e).

Exercise 27.10 Take the cps09mar dataset and the subsample of individuals with at least 12 years of
education. Create wage=earnings/(hours×weeks) and lwage=log(wage).

(a) Estimate a linear regression of lwage on education and education^2. Interpret the results.

(b) Suppose the wage data had been capped about $30/hour. Create a variable cwage which is lwage
capped at 3.4. Estimate a linear regression of cwage on education and education^2. How would
you interpret these results if you were unaware that the dependent variable was capped?

(c) Suppose you try and fix the problem by omitting the capped observations. Estimate the regression
on the subsample of observations for which cwage is less than 3.4.
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(d) Estimate a Tobit regression of cwage on education and education^2 with upper censoring at 3.4.

(e) Estimate the same regression using CLAD. You may need to impose an upper censoring of 3.3.

(f) Interpret and explain the differences between your results in (a)-(e).

Exercise 27.11 Take the DDK2011 dataset. Create a variable testscore which is totalscore standardized to
have mean zero and variance one. The variable tracking is a dummy indicating that the students were
tracked (separated by initial test score). The varible percentile is the student’s percentile in the initial
distribution. For the following regressions cluster by school.

(a) Estimate a linear regression of testscore on tracking, percentile, and percentile^2. Interpret the re-
sults.

(b) Suppose the scores were censored from below. Create a variable ctest which is testscore censored
at 0. Estimate a linear regression of ctest on tracking, percentile, and percentile^2. How would you
interpret these results if you were unaware that the dependent variable was censored?

(c) Suppose you try and fix the problem by omitting the censored observations. Estimate the regres-
sion on the subsample of observations for which ctest is positive.

(d) Interpret and explain the differences between your results in (a), (b), and (c).



Chapter 28

Model Selection, Stein Shrinkage, and
Model Averaging

28.1 Introduction

The chapter reviews model selection, James-Stein shrinkage, and model averaging.
Model selection is a tool for selecting one model (or estimator) out of a set of models. Different model

selection methods are distinguished by the criteria used to rank and compare models.
Model averaging is a generalization of model selection. Models and estimators are averaged using

data-dependent weights.
James-Stein shrinkage modifies classical estimators by shrinking towards a reasonable target. Shrink-

ing reduces mean squared error.
Two excellent monographs on model selection and averaging are Burnham and Anderson (1998) and

Claeskens and Hjort (2008). James-Stein shrinkage theory is thoroughly covered in Lehmann and Casella
(1998). See also Efron (2010) and Wasserman (2006).

28.2 Model Selection

In the course of an applied project an economist will routinely estimate multiple models. Indeed,
most applied papers include tables displaying the results from different specifications. The question
arises: Which model is best? Which should be used in practice? How can we select the best choice? This
is the question of model selection.

Take, for example, a wage regression. Suppose we want a model which conditions on education,
experience, region, and marital status. How should we proceed? Should we estimate a simple linear
model plus a quadratic in experience? Should education enter linearly, a simple spline as in Figure 2.6(a),
or with separate dummies for each education level? Should marital status enter as a simple dummy
(married or not) or allowing for all recorded categories? Should interactions be included? Which? How
many? Taken together we need to select the specific regressors to include in the regression model.

Model “selection” may be mis-named. It would be more appropriate to call the issue “estimator se-
lection”. When we examine a table containing the results from multiple regressions we are comparing
multiple estimates of the same regression. One estimator may include fewer variables than another; that
is a restricted estimator. One may be estimated by least squares and another by 2SLS. Another could
be nonparametric. The underlying model is the same; the difference is the estimator. Regardless, the
literature has adopted the term “model selection” and we will adhere to this convention.

859
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To gain some basic understanding it may be helpful to start with a stylzed example. Suppose that
we have a K ×1 estimator θ̂ which has mean θ and known covariance matrix V . An alternative feasible
estimator is θ̃ = 0. The latter may seem like a silly estimator but it captures the feature that model se-
lection typically concerns exclusion restrictions. In this context we can compare the accuracy of the two
estimators by their weighted mean-squared error (WMSE). For a given weight matrix W define

wmse
[
θ̂
]= tr

(
E
[(
θ̂−θ)(

θ̂−θ)′]
W

)
= E

[(
θ̂−θ)′

W
(
θ̂−θ)]

.

The calculations simplify by setting W =V −1 which we do for our remaining calculations.
For our two estimators we calculate that

wmse
[
θ̂
]= K (28.1)

wmse
[
θ̃
]= θ′V −1θ

def= λ. (28.2)

(See Exercise 28.1) The WMSE of θ̂ is smaller if K < λ and the WMSE of θ̃ is smaller if K > λ. One insight
from this simple analysis is that we should prefer smaller (simpler) models when potentially omitted
variables have small coefficients relative to estimation variance, and should prefer larger (more compli-
cated) models when these variables have large coefficients relative to estimation variance.

The comparison between (28.1) and (28.2) is a basic bias-variance trade-off. The estimator θ̂ is un-
biased but has a variance contribution of K . The estimator θ̃ has zero variance but has a squared bias
contribution λ. The WMSE combines these two components.

Selection based on WMSE suggests that we should select the estimator θ̂ if K < λ and select θ̃ if
K > λ. This is infeasible since λ is unknown. It can be estimated by replacing θ̂ with θ. This estimator is
λ̂= θ̂′V −1θ̂ =W , the Wald statistic for the test of θ = 0. However, the estimator λ̂ has expectation

E
[
λ̂
]= E[

θ̂′V −1′θ̂
]= θ′V −1′θ+E

[(
θ̂−θ)′

V −1 (
θ̂−θ)]=λ+K

so is biased itself. An unbiased estimator is λ̃ = λ̂−K . Notice that λ̃ > K is the same as W > 2K . This
leads to the model-selection rule: Use θ̂ if W > 2K and use θ̃ otherwise.

This is an overly-simplistic setting but highlights the fundamental ingredients of criterion-based
model selection. Comparing the MSE of different estimators typically involves a trade-off between the
bias and variance with more complicated models exhibiting less bias but increased estimation variance.
The actual trade-off is unknown since the bias depends on the unknown true parameters. The bias,
however, can be estimated, giving rise to empirical estimates of the MSE and empirical model selection
rules.

A large number of model selection criteria have been proposed. We list here those most frequently
used in applied econometrics.

We first list selection criteria for the linear regression model Y = X ′β+e withσ2 = E[
e2

]
and a k×1 co-

efficient vector β. Let β̂ be the least squares estimator, êi the least squares residual, and σ̂2 = n−1 ∑n
i=1 ê2

i
the variance estimator. The number of estimated parameters (β and σ2) is K = k +1.

Bayesian Information Criterion

BIC = n +n log
(
2πσ̂2)+K log(n). (28.3)

Akaike Information Criterion

AIC = n +n log
(
2πσ̂2)+2K . (28.4)
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Cross-Validation

CV =
n∑

i=1
ẽ2

i (28.5)

where ẽi are the least squares leave-one-out prediction errors.

We next list two commonly-used selection criteria for likelihood-based estimation. Let f (y,θ) be a
parametric density with a K ×1 parameter θ. The likelihood Ln(θ) =∏n

i=1 f (Yi ,θ) is the density evaluated

at the observations. The maximum likelihood estimator θ̂ maximizes `n(θ) = logLn(θ).

Bayesian Information Criterion

BIC =−2`n(θ̂)+K log(n). (28.6)

Akaike Information Criterion
AIC =−2`n(θ̂)+2K . (28.7)

In the following sections we derive and discuss these and other model selection criteria.

28.3 Bayesian Information Criterion

The Bayesian Information Criterion (BIC), also known as the Schwarz Criterion, was introduced by
Schwarz (1978). It is appropriate for parametric models estimated by maximum likelihood and is used
to select the model with the highest approximate probability of being the true model.

Let f (y,θ) be the parametric model density, and let π(θ) be the prior density for θ. The joint density
of Y and θ is f (y,θ)π(θ). The marginal density of Y is

p(y) =
∫

f (y,θ)π(θ)dθ.

The marginal density p(Y ) evaluated at the observations is known as the marginal likelihood.
Schwarz (1978) established the following approximation.

Theorem 28.1 Schwarz. If the model f (y,θ) satisfies standard regularity con-
ditions and the prior π(θ) is diffuse then

−2log p(Y ) =−2`n(θ̂)+K log(n)+O(1)

where the O(1) term is bounded as n →∞.

A heuristic proof for normal linear regression is given in Section 28.32. A “diffuse” prior is one which
distributes weight uniformly over the parameter space.

Schwarz’s theorem shows that the marginal likelihood approximately equals the maximized likeli-
hood multiplied by an adjustment depending on the number of estimated parameters and the sample
size. The approximation (28.6) is commonly called the Bayesian Information Criterion or BIC. The BIC
is a penalized log likelihood. The term K log(n) can be interpreted as an over-parameterization penalty.
The multiplication of the log likelihood by −2 is traditional as it puts the criterion into the same units as
a log-likelihood statistic.
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In the context of normal linear regression we have calculated in (5.6) that

`n(θ̂) =−n

2

(
log(2π)+1

)− n

2
log

(
σ̂2)

where σ̂2 is the residual variance estimate. Hence BIC equals (28.3) with K = k +1.
Since n log(2π)+n does not vary across models this term is often omitted. It is better, however, to

define the BIC as described above so that different parametric families are comparable. It is also useful
to know that some authors define the BIC by dividing the above expression by n (e.g. BIC = log

(
2πσ̂2

)+
K log(n)/n) which does not change the rankings between models. However, this is an unwise choice
because it alters the scaling, making it difficult to compare the degree of difference between models.

Now suppose that we have two models M1 and M2 which have marginal likelihoods p1(Y ) and p2(Y ).
Assume that both models have equal prior probability. Bayes Theorem states that the probability that a
model is true given the data is proportional to its marginal likelihood. Specifically

P [M1 | Y ] = p1(Y )

p1(Y )+p2(Y )

P [M2 | Y ] = p2(Y )

p1(Y )+p2(Y )
.

Bayes selection picks the model with highest probability. Thus if p1(Y ) > p2(Y ) we select M1. If
p1(Y ) < p2(Y ) we select M2.

Finding the model with highest marginal likelihood is the same as finding the model with lowest
value of −2log p(Y ). Theorem 28.1 shows that the latter approximately equals the BIC. BIC selection
picks the model with the lowest1 value of BIC. Thus BIC selection is approximate Bayes selection.

The above discussion concerned two models but applies to any number of models. BIC selection
picks the model with the smallest BIC. For implementation you simply estimate each model, calculate
its BIC, and compare.

The BIC may be obtained in Stata by using the command estimates stats after an estimated
model.

28.4 Akaike Information Criterion for Regression

The Akaike Information Criterion (AIC) was introduced by Akaike (1973). It is used to select the
model whose estimated density is closest to the true density. It is designed for parametric models esti-
mated by maximum likelihood.

Let f̂ (y) be an estimate of the unknown density g (y) of the observation vector Y = (Y1, ...,Yn). For
example, the normal linear regression estimate of g (y) is f̂ (y) =∏n

i=1φσ̂
(
Yi −X ′

i β̂
)
.

To measure the distance between densities g and f Akaike used the Kullback-Leibler information
criterion (KLIC)

KLIC(g , f ) =
∫

g (y) log

(
g (y)

f (y)

)
d y.

Notice that KLIC(g , f ) = 0 when f (y) = g (y). By Jensen’s inequality,

KLIC(g , f ) =−
∫

g (y) log

(
f (y)

g (y)

)
d y ≥− log

∫
f (y)d y = 0.

Thus KLIC(g , f ) is a non-negative measure of the deviation of f from g , with small values indicating a
smaller deviation.

1When the BIC is negative this means taking the most negative value.
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g(x)
f(x)

(a) f (x) and g (x) (b) log( f (x)/g (x))

Figure 28.1: Kullback-Leibler Distance Measure

To illustrate, in Figure 28.1 we display two densities and their log ratio. In panel (a) we display two
densities f (x) and g (x). For concreteness, the density g (x) is the nonparametric estimate of the log wage
density displayed in Figure 2.1. The density f (x) is the MLE of a log-normal parametric model. You
can see that the two densites are quite similar and have the same general shape. The parametric model,
however, is somewhat lower at the peak, and may over-state the right tail of the density. In panel (b) you
see the log ratio log( f (x)/g (x)). The dashed line is 0 for reference. If the two densities were the same then
the plot would equal the zero line. Negative values indicate regions where f (x) < g (x). Positive values
indicate regions where f (x) > g (x). In this plot we see that the largest percentage deviations are in the
right tail. The KLIC is the weighted integral of this log ratio function. It is a weighted average with weights
given by the density g (x). Since g (x) puts most probability mass in the left-middle of the plot this is the
region emphasized by the KLIC calcuation. Thus while the right tail has the largest deviations it does not
receive a large weight in the KLIC because the density g (x) has little probability mass there.

The KLIC distance between the true and estimated densities is

KLIC(g , f̂ ) =
∫

g (y) log

(
g

(
y
)

f̂
(
y
))

d y

=
∫

g (y) log
(
g

(
y
))

d y −
∫

g (y) log
(

f̂
(
y
))

d y.

This is random as it depends on the estimator f̂ . Akaike proposed the expected KLIC distance

E
[
KLIC(g , f̂ )

]= ∫
g (y) log

(
g

(
y
))

d y −E
[∫

g (y) log
(

f̂
(
y
))

d y

]
. (28.8)

The first term in (28.8) does not depend on the model. So minimization of expected KLIC distance is
minimization of the second term. Multiplied by 2 (similarly to the BIC) this is

T =−2E

[∫
g (y) log

(
f̂ (y)

)
d y

]
. (28.9)
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The expectation is over the random estimator f̂ .
An alternative interpretation is to notice that the integral in (28.9) is an expectation over Y with re-

spect to the true data density g (y). Thus we can write (28.9) as

T =−2E
[
log

(
f̂
(
Ỹ

))]
(28.10)

where Ỹ is an independent copy of Y . The key to understand this expression is that both the estimator
f̂ and the evaluation points Ỹ are random and independently distributed. This is the expected log-
likelihood fit using the estimated model f̂ of an out-of-sample realization Ỹ . Thus T can be interpreted
as an expected predictive log likelihood. Models with low values of T have good fit based on the out-of-
sample log-likelihood.

To gain further understanding we consider the simple case of the normal linear regression model
with K regressors. The log density of the model for the observations is

log f (Y , X ,θ) =−n

2
log

(
2πσ2)− 1

2σ2

n∑
i=1

(
Yi −X ′

iβ
)2 . (28.11)

The expected value at the true parameter values is −n
2 log

(
2πσ2

)− n
2 . This means that the idealized value

of T is T0 = n log
(
2πσ2

)+n. This would be the value obtained if there were no estimation error.
We now add the assumption that the variance σ2 is known. This is not realistic but simplifies the

calculations.

Theorem 28.2 Suppose f̂ (y) is an estimated normal linear regression model
with K regressors and a known variance σ2. Suppose that the true density g (y)
is a conditionally homoskedastic regression with variance σ2. Then

T = n log
(
2πσ2)+n +K = T0 +K (28.12)

E
[−2`n(θ̂)

]= n log
(
2πσ2)+n −K = T0 −K . (28.13)

The proof is given in Section 28.32.
These expressions are interesting. Expression (28.12) shows that the expected KLIC distance T equals

the idealized value T0 plus K . The latter is the cost of parameter estimation, measured in terms of ex-
pected KLIC distance. By estimating parameters (rather than using the true values) the expected KLIC
distance increases linearly with K .

Expression (28.13) shows the converse story. It shows that the sample log-likelihood function is
smaller than the idealized value T0 by K . This is the cost of in-sample over-fitting. The sample log-
likelihood is an in-sample measure of fit and therefore understates the population log-likelihood. The
two expressions together show that the sample log-likelihood is smaller than the target value T by 2K .
This is the combined cost of over-fitting and parameter estimation.

Combining these expressions we can suggest an unbiased estimator for T . In the normal regression
model we use (28.4). Since n log(2π)+n does not vary across models it are often omitted. Thus for linear
regression it is common to use the definition AIC = n log

(
σ̂2

)+2K .
Interestingly the AIC takes a very similar form to the BIC. Both the AIC and BIC are penalized log like-

lihoods, and both penalties are proportional to the number of estimated parameters K . The difference
is that the AIC penalty is 2K while the BIC penalty is K log(n). Since 2 < log(n) if n ≥ 8 the BIC uses a
stronger parameterization penalty.
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Selecting a model by the AIC is equivalent to calculating the AIC for each model and selecting the
model with the lowest2 value.

Theorem 28.3 Under the assumptions of Theorem 28.2, E [AIC] = T . AIC is
thus an unbiased estimator of T .

One of the interesting features of these results are that they are exact – there is no approximation
error – and they do not require that the true error is normally distributed. The critical assumption is
conditional homoskedasticity. If homoskedasticity fails then the AIC loses its validity. In more general
contexts these results do not hold exactly but instead hold as approximations (as discussed in the next
section).

The AIC may be obtained in Stata by using the command estimates stats after an estimated
model.

28.5 Akaike Information Criterion for Likelihood

For the general likelihood context Akaike proposed the criterion (28.7). Here, θ̂ is the maximum
likelihood estimator, `n(θ̂) is the maximized log-likelihood function, and K is the number of estimated
parameters. This specializes to (28.4) for the case of a normal linear regression model.

As for regression, AIC selection is performed by estimating a set of models, calculating AIC for each,
and selecting the model with the smallest AIC.

The advantages of the AIC are that it is simple to calculate, easy to implement, and straightforward
to interpret. It is intuitive as it is a simple penalized likelihood.

The disadvantage is that its simplicity may be deceptive. The proof shows that the criterion is based
on a quadratic approximation to the log likelihood and an asymptotic chi-square approximation to the
classical Wald statistic. When these conditions fail then the AIC may not be accurate. For example,
if the model is an approximate (quasi) likelihood rather than a true likelihood then the failure of the
information matrix equality implies that the classical Wald statistic is not asymptotically normal. In
this case the accuracy of AIC fails. Another problem is that many nonlinear models have parameter
regions where parametric identification fails. In these models the quadratic approximation to the log
likelihood function fails to hold uniformly in the parameter space so the accuracy of the AIC fails. These
qualifications point to challenges in interpretation of the AIC in nonlinear models.

The following is an analog of Theorem 28.3.

Theorem 28.4 Under standard regularity conditions for maximum likelihood
estimation, plus the assumption that certain statistics (identified in the proof)
are uniformly integrable, E [AIC] = T +O

(
n1/2

)
. AIC is thus an approximately

unbiased estimator of T .

A sketch of the proof is given in Section 28.32.
This result shows that the AIC is, in general, a reasonable estimator of the KLIC fit of an estimated

parametric model. The theorem holds broadly for maximum likelihood estimation and thus the AIC can
be used in a wide variety of contexts.

2When the AIC is negative this means taking the most negative value.
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28.6 Mallows Criterion

The Mallows Criterion was proposed by Mallows (1973) and is often called the Cp criterion. It is
appropriate for linear estimators of homoskedastic regression models.

Take the homoskedastic regression framework

Y = m +e

m = m(X )

E [e | X ] = 0

E
[
e2 | X

]=σ2.

Write the first equation in vector notation for the n observations as Y = m + e. Let m̂ = AY be a linear
estimator of m, meaning that A is some n ×n function of the regressor matrix X only. The residuals are
ê = Y −m̂. The class of linear estimators includes least squares, weighted least squares, kernel regression,
local linear regression, and series regression. For example, the least squares estimator using a regressor
matrix Z is the case A = Z

(
Z ′Z

)−1 Z ′.
Mallows (1973) proposed the criterion

Cp = ê ′ê +2σ̃2 tr(A) (28.14)

where σ̃2 is a preliminary estimator of σ2 (typically based on fitting a large model). In the case of least
squares regression with K coefficients this simplifies to

Cp = nσ̂2 +2K σ̃2. (28.15)

The Mallows crierion can be used similarly to the AIC. A set of regression models are estimated and
the criterion Cp calculated for each. The model with the smallest value of Cp is the Mallows-selected
model.

Mallows designed the criterion Cp as an unbiased estimator of the following measure of fit

R = E
[

n∑
i=1

(m̂i −mi )2

]
.

This is the expected squared difference between the estimated and true regression evaluated at the ob-
servations.

An alternative motivation for R is in terms of prediction accuracy. Consider an independent set of
observations Ỹi , i = 1, ...,n, which have the same regressors Xi as those in sample. Consider prediction
of Ỹi given Xi and the fitted regression. The least squares predictor is m̂i . The sum of expected squared
prediction errors is

MSFE =
n∑

i=1
E
[(

Ỹi −m̂i
)2

]
.

The best possible (infeasible) value of this quantity is

MSFE0 =
n∑

i=1
E
[(

Ỹi −mi
)2

]
.

The difference is the prediction accuracy of the estimator:

MSFE−MSFE0 =
n∑

i=1
E
[(

Ỹi −m̂i
)2

]
−

n∑
i=1

E
[(

Ỹi −mi
)2

]
= E

[
n∑

i=1
(m̂i −mi )2

]
= R
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which equals Mallows’ measure of fit. Thus R can be viewed as a measure of prediction accuracy.
We stated that the Mallows criterion is an unbiased estimator of R. More accurately, the adjusted

criterion C∗
p = Cp − e ′e is unbiased for R. When comparing models Cp and C∗

p are equivalent so this
substitution has no consequence for model selection.

Theorem 28.5 If m̂ = AY is a linear estimator, the regression error is condi-
tionally mean zero and homoskedastic, and σ̃2 is unbiased for σ2, then

E
[
C∗

p

]
= R

so the adjusted Mallows criterion C∗
p is an unbiased estimator of R.

The proof is given in Section 28.32.

28.7 Hold-Out Criterion

Dividing the sample into two parts, one for estimation and the second for evaluation, creates a simple
device for model evaluation and selection. This procedure is often labelled hold-out evaluation. In the
recent machine learning literature the data division is typically described as a training sample and a test
sample.

The sample is typically divided randomly so that the estimation (training) sample has N observa-
tions, the evaluation (test) sample has P observations, where N +P = n. There is no universal rule for the
choice of N & P , but N = P = n/2 is a standard choice.

For more complicated procedures, such as the evaluation of model selection methods, it is desirable
to make a tripartite division of the sample into (1) training, (2) model selection, and (3) final estimation
and assessment. This can be particularly useful when it is desired to obtain a parameter estimator whose
distribution is not distorted by the model selection process. Such divisions are most suited for a context
of an extremely large sample.

Take the standard case of a bipartite division where 1 ≤ i ≤ N is the estimation sample and N +1 ≤
i ≤ N +P is the evaluation sample. On the estimation sample we construct the parameter estimates, for
example the least squares coefficients

β̃N =
(

N∑
i=1

Xi X ′
i

)−1 (
N∑

i=1
Xi Yi

)
.

Combining this coefficient with the evaluation sample we calculate the prediction errors ẽN ,i = Yi −X ′
i β̃N

for i ≥ N +1.
In Section 4.14 we defined the mean squared forecast error (MSFE) based on a estimation sample of

size N as the expectation of the squared out-of-sample prediction error MSFEN = E
[

ẽ2
N ,i

]
. The hold-out

estimator of the MSFE is the average of the squared prediction errors

σ̃2
N ,P = 1

P

N+P∑
i=N+1

ẽ2
N ,i .

We can see that σ̃2
N ,P is unbiased for MSFEN .
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When N = P we can improve estimation of the MSFE by flipping the procedure. Exchanging the
roles of estimation and evaluation samples we obtain a second MSFE estimator, say ω̃2

N ,P . The global

estimator is their mean σ̃∗2
N ,P =

(
σ̃2

N ,P + ω̃2
N ,P

)
/2. This estimator also has expectation MSFEN but has

reduced variance.
The estimated MSFE σ̃2

N ,P can be used for model selection. The quantity σ̃2
N ,P is calculated for a

set of proposed models. The selected model is the one with the smallest value of σ̃2
N ,P . The method is

intuitive, general, and flexible, and does not rely on technical assumptions.
The hold-out method has two disadvantages. First, if our goal is estimation using the full sample,

our desired estimate is MSFEn , not MSFEN . Hold-out estimation provides an estimator of the MSFE
based on estimation using a substantially reduced sample size, and is thus biased for the MSFE based
on estimation using the full sample. Second, the estimator σ̃2

N ,P is sensitive to the random sorting of
the observations into the estimation and evaluation samples. This affects model selection. Results can
depend on the initial sample sorting and are therefore partially arbitrary.

28.8 Cross-Validation Criterion

In applied statistics and machine learning the default method for model selection and tuning pa-
rameter selection is cross-validation. We have introduced some of the concepts throughout the text-
book, and review and unify the concepts at this point. Cross-validation is closely related to the hold-out
criterion introduced in the previous section.

In Section 3.20 we defined the leave-one-out estimator as that obtained by applying an estimation
formula to the sample omitting the i th observation. This is identical to the hold-out problem as de-
scribed previously, where the estimation sample is N = n − 1 and the evaluation sample is P = 1. The
estimator obtained omitting observation i is written as β̂(−i ). The prediction error is ẽi = Yi − X ′

i β̂(−i ).
The out-of-sample mean squared error “estimate” is ẽ2

i . This is repeated n times, once for each observa-
tion i , and the MSFE estimate is the average of the n squared prediction errors

CV = 1

n

n∑
i=1

ẽ2
i .

The estimator CV is called the cross-validation (CV) criterion. It is a natural generalization of the
hold-out criterion and eliminates the two disadvantages described in the previous section. First, the
CV criterion is an unbiased estimator of MSFEn−1, which is essentially the same as MSFEn . Thus CV
is essentially unbiased for model selection. Second, the CV criterion does not depend on a random
sorting of the observations. As there is no random component the criterion takes the same value in any
implementation.

In least squares estimation the CV criterion has a simple computational implementation. Theorem
3.7 shows that the leave-one-out least squares estimator (3.42) equals

β̂(−i ) = β̂− 1

(1−hi i )

(
X ′X

)−1 Xi êi

where êi are the least squares residuals and hi i are the leverage values. The prediction error thus equals

ẽi = Yi −X ′
i β̂(−i ) = (1−hi i )−1 êi

where the second equality is from Theorem 3.7. Consequently the CV criterion is

CV = 1

n

n∑
i=1

ẽ2
i =

1

n

n∑
i=1

(1−hi i )−2 ê2
i .
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Recall as well that in our study of nonparametric regression (Section 19.12) we defined the cross-
validation criterion for kernel regression as the weighted average of the squared prediction errors

CV = 1

n

n∑
i=1

ẽ2
i w(Xi ).

Theorem 19.7 showed that CV is approximately unbiased for the integrated mean squared error (IMSE),
which is a standard measure of accuracy for nonparametric regression. These results show that CV is an
unbiased estimator for both the MSFE and IMSE, showing a close connection between these measures
of accuracy.

In Section 20.17 and equation (20.30) we defined the CV criterion for series regression as in (28.5).
Selecting variables for series regression is identical to model selection. The results as described above
show that the CV criterion is an estimator for the MSFE and IMSE of the regression model and is therefore
a good candidate for assessing model accuracy. The validity of the CV criterion is much broader than the
AIC as the theorems for CV do not require conditional homoskedasticity. This is not an artifact of the
proof method; cross-validation is inherently more robust than AIC or BIC.

Implementation of CV model selection is the same as for the other criteria. A set of regression models
are estimated. For each the CV criterion is calculated. The model with the smallest value of CV is the CV-
selected model.

The CV method is also much broader in concept and potential application. It applies to any esti-
mation method so long as a “leave one out” error can be calculated. It can also be applied to other loss
functions beyond squared error loss. For example, a cross-validation estimate of absolute loss is

CV = 1

n

n∑
i=1

|ẽi | .

Computationally and conceptually it is straightforward to select models by minimizing such criterion.
However, the properties of applying CV to general criterion is not known.

Stata does not have a standard command to calculate the CV criterion for regression models.

28.9 K-Fold Cross-Validation

There are two deficiencies with the CV criterion which can be alleviated by the closely related K-fold
cross-valiation criterion. The first deficiency is that CV calculation can be computationally costly when
sample sizes are very large or the estimation method is other than least squares. For estimators other
than least squares it may be necessary to calculate n separate estimations which can be computationally
prohibitive in some contexts. A second deficiency is that the CV criterion, viewed as an estimator of
MSFEn , has a high variance. The source is that the leave-one-out estimators β̂(−i ) have minimal variation
across i and are therefore highly correlated.

An alternative is is to split the sample into K groups (or “folds”) and treat each group as a hold-out
sample. This effectively reduces the number of estimations from n to K . (This K is not the number of
estimated coefficients. I apologize for the possible confusion in notation but this is the standard label.)
A common choice is K = 10, leading to what is known as 10-fold cross-validation.

The method works by the following steps. This description is for estimation of a regression model
Y = g (X ,θ)+e with estimator θ̂.

1. Randomly sort the observations.

2. Split the observations into folds k = 1, ...,K of (roughly) equal size nk ' n/K . Let Ik denote the
observations in fold k.
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3. For k = 1, ..,K

(a) Exclude fold Ik from the dataset. This produces a sample with n −nk observations.

(b) Calculate the estimator θ̂(−k) on this sample.

(c) Calculate the prediction errors ẽi = Yi − g (Xi , θ̂(−k)) for i ∈ Ik .

(d) Calculate CVk = n−1
k

∑
i∈Ik

ẽ2
i

4. Calculate CV = K −1 ∑K
k=1 CVk .

If K = n the method is identical to leave-one-out cross validation.
A useful feature of K-fold CV is that we can calculate an approximate standard error. It is based

on the approximation var(CV) ' K −1 var(CVk ) which is based on the idea that CVk are approximately
uncorrelated acros folds. This leads to the standard error

s (CV) =
√√√√ 1

K (K −1)

K∑
k=1

(CVk −CV)2.

This is similar to a clustered variance formula, where the folds are treated as clusters. The standard error
s (CV) can be reported to assess the precision of CV as an estimate of the MSFE.

One disadvantage of K-fold cross-validation is that CV can be sensitive to the initial random sorting
of the observations, leading to partially arbitrary results. This problem can be reduced by a technique
called repeated CV, which repeats the K-fold CV algorithm M times (each time with a different random
sorting), leading to M values of CV. These are averaged to produce the repeated CV value. As M increases
the randomness due to sorting is eliminated. An associated standard error can be obtained by taking the
square root of the average squared standard errors.

CV model selection is typically implemented by selecting the model with the smallest value of CV.
An alternative implementation is known as the one standard error (1se) rule and selects the most par-
simonious model whose value of CV is within one standard error of the minimum CV. The (informal)
idea is that models whose value of CV is within one standard error of one another are not statistically
distinguishable, and all else held equal we should lean towards parsimony. The 1se rule is the default,
for example, in the popular cv.glmnet R function. The 1se rule is an oversmoothing choice, meaning
that it leans towards higher bias and reduced variance. In contrast, for inference many econometricians
recommend undersmoothing bandwidths, which means selecting a less parsimonious model than the
CV minimizing choice.

28.10 Many Selection Criteria are Similar

For the linear regression model many selection criteria have been introduced. However, many of
these alternative criteria are quite similar to one another. In this section we review some of these con-
nections. The following discussion is for the standard regression model Y = X ′β+e with n observations,
K estimated coefficients, and least squares variance estimator σ̂2.

Shibata (1980) proposed the criteria

Shibata = σ̂2
(
1+ 2K

n

)
as an estimator of the MSFE. Recalling the Mallows criterion for regression (28.15) we see that Shibata =
Cp /n if we replace the preliminary estimator σ̃2 with σ̂2. Thus the two are quite similar in practice.
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Taking logarithms and using the approximation log(1+x) ' x for small x

n log(Shibata) = n log
(
σ̂2)+n log

(
1+ 2K

n

)
' n log

(
σ̂2)+2K = AIC.

Thus minimization of Shibata’s criterion and AIC are similar.
Akaike (1969) proposed the Final Prediction Error Criteria

FPE = σ̂2
(

1+K /n

1−K /n

)
.

Using the expansions (1−x)−1 ' 1+x and (1+x)2 ' 1+2x we see that FPE ' Shibata.
Craven and Wahba (1979) proposed Generalized Cross Validation

GCV = nσ̂2

(n −K )2 .

By the expansion (1−x)−2 ' 1+2x we find that

nGCV = σ̂2

(1−K /n)2 ' σ̂2
(
1+ 2K

n

)
= Shibata.

The above calculations show that the WMSE, AIC, Shibata, FPE, GCV, and Mallows criterion are all
close approximations to one another when K /n is small. Differences arise in finite samples for large K .
However, the above analysis shows that there is no fundamental difference between these criteria. They
are all estimating the same target. This is in contrast to BIC which uses a different parameterization
penalty and is asymptotically distinct.

Interestingly there also is a connection between CV and the above criteria. Again using the expansion
(1−x)−2 ' 1+2x we find that

CV =
n∑

i=1
(1−hi i )−2 ê2

i

'
n∑

i=1
ê2

i +
n∑

i=1
2hi i ê2

i

= nσ̂2 +2
n∑

i=1
X ′

i

(
X ′X

)−1 Xi ê2
i

= nσ̂2 +2tr

((
X ′X

)−1

(
n∑

i=1
Xi X ′

i ê2
i

))
' nσ̂2 +2tr

((
E
[

X X ′])−1 (
E
[

X X ′e2]))
= nσ̂2 +2Kσ2

' Shibata.

The third-to-last line holds asymptotically by the WLLN. The following equality holds under conditional
homoskedasiticity. The final approximation replaces σ2 by the estimator σ̂2. This calculation shows that
under the assumption of conditional homoskedasticity the CV criterion is similar to the other criteria. It
differs under heteroskedasticity, however, which is one of its primary advantages.
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28.11 Relation with Likelihood Ratio Testing

Since the AIC and BIC are penalized log-likelihoods, AIC and BIC selection are related to likelihood
ratio testing. Suppose we have two nested models M1 and M2 with log-likelihoods `1n

(
θ̂1

)
and `2n

(
θ̂2

)
and K1 < K2 estimated parameters. AIC selects M1 if AIC(K1) < AIC(K2) which occurs when

−2`1n
(
θ̂1

)+2K1 <−2`2n
(
θ̂2

)
)+2K2

or
LR = 2

(
`2n

(
θ̂2

)−`1n
(
θ̂1

))< 2r

where r = K2 −K1. Thus AIC selection is similar to selection by likelihood ratio testing with a different
critical value. Rather than using a critical value from the chi-square distribution the “critical value” is 2r .
This is not to say that AIC selection is testing (it is not). But rather that there is a similar structure in the
decision.

There are two useful practical implications. One is that when test statistics are reported in their F
form (which divide by the difference in coefficients r ) then the AIC “critical value” is 2. The AIC selects
the restricted (smaller) model if F < 2. It selects the unrestricted (larger) model if F > 2.

Another useful implication is in the case of considering a single coefficient (when r = 1). AIC selects
the coefficient (the larger model) if LR > 2. In contrast a 5% significance test “selects” the larger model
(rejects the smaller) if LR > 3.84. Thus AIC is more generous in terms of selecting larger models. An
equivalent way of seeing this is that AIC selects the coefficient if the t-ratio exceeds 1.41 while the 5%
significance test selects if the t-ratio exceeds 1.96.

Similar comments apply to BIC selection though the effective critical values are different. For com-
paring models with coefficients K1 < K2 the BIC selects M1 if LR < log(n)r . The “critical value” for an F
statistic is log(n). Hence BIC selection becomes stricter as sample sizes increase.

28.12 Consistent Selection

An important property of a model selection procedure is whether it selects a true model in large
samples. We call such a procedure consistent.

To discuss this further we need to thoughtfully define what is a “true” model. The answer depends
on the type of model.

When a model is a parametric density or distribution f (y,θ) with θ ∈Θ (as in likelihood estimation)
then the model is true if there is some θ0 ∈ Θ such that f (y,θ0) equals the true density or distribution.
Notice that it is important in this context both that the function class f (y,θ) and parameter space Θ are
appropriately defined.

In a semiparametric conditional moment condition model which states E
[
g (Y , X ,θ) | X

] = 0 with
θ ∈ Θ then the model is true if there is some θ0 ∈ Θ such that E

[
g (Y , X ,θ0) | X

] = 0. This includes the
regression model Y = m (X ,θ)+e with E [e | X ] = 0 where the model is true if there is some θ0 ∈Θ such that
m (X ,θ0) = E [Y | X ]. It also includes the homoskedastic regression model which adds the requirement
that E

[
e2 | X

]=σ2 is a constant.
In a semiparametric unconditional moment condition model E

[
g (Y , X ,θ)

] = 0 then the model is
true if there is some θ0 ∈Θ such that E

[
g (Y , X ,θ0)

]= 0. A subtle issue here is that when the model is just
identified andΘ is unrestricted then this condition typically holds and so the model is typically true. This
includes least squares regression interpreted as a projection and just-identified instrumental variables
regression.

In a nonparametric model such as Y ∼ f ∈F where F is some function class (such as second-order
differentiable densities) then the model is true if the true density is a member of the function class F .
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A complication arises that there may be multiple true models. This cannot occur when models are
strictly non-nested (meaning that there is no common element in both model classes) but strictly non-
nested models are rare. Most models have non-trivial intersections. For example, the linear regression
models Y = α+ X ′

1β1 + e and Y = α+ X ′
2β2 + e with X1 and X2 containing no common elements may

appear non-nested but they intersect when β1 = 0 and β2 = 0. As another example consider the linear
model Y =α+X ′β+e and log-linear model log(Y ) =α+X ′β+e. If we add the assumption that e ∼ N(0,σ2)
then the models are non-intersecting. But if we relax normality and instead use the conditional mean
assumption E [e | X ] = 0 then the models are intersecting when β1 = 0 and β2 = 0.

The most common type of intersecting models are nested. In regression this occurs when the two
models are Y = X ′

1β1 + e and Y = X ′
1β1 + X ′

2β2 + e. If β2 6= 0 then only the second model is true. But if
β2 = 0 then both are true models.

In general, given a set of models M = {M1, ...,MM } a subset M
∗

are true models (as described above)
while the remainder are not true models.

A model selection rule M̂ selects one model from the set M . We say a method is consistent if it
asymptotically selects a true model.

Definition 28.1 A model selection rule is model selection consistent if
P

[
M̂ ∈M

∗]
→ 1 as n →∞.

This states that the model selection rule selects a true model with probability tending to 1 as the
sample size diverges.

A broad class of model selection methods satisfy this definition of consistency. To see this consider
the class of information criteria

IC =−2`n
(
θ̂
)+ c(n,K ).

This includes AIC (c = 2K ), BIC (c = K log(n)), and testing-based selection (c equals a fixed quantile of
the χ2

K distribution).

Theorem 28.6 Under standard regularity conditions for maximum likelihood
estimation, selection based on IC is model selection consistent if c(n,K ) = o(n)
as n →∞.

The proof is given in Section 28.32.
This result covers AIC, BIC and testing-based selection. Thus all are model selection consistent.
A major limitation with this result is that the definition of model selection consistency is weak. A

model may be true but over-parameterized. To understand the distinction consider the models Y =
X ′

1β1 + e and Y = X ′
1β1 + X ′

2β2 + e. If β2 = 0 then both M1 and M2 are true, but M1 is the preferred
model as it is more parsimonious. When two nested models are both true models it is conventional to
think of the more parsimonious model as the correct model. In this context we do not describe the larger
model as an incorrect model but rather as over-parameterized. If a selection rule asymptotically selects
an over-parameterized model we say that it “over-selects”.
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Definition 28.2 A model selection rule asymptotically over-selects if there are

models M1 ⊂M2 such that liminfn→∞P
[
M̂ =M2 |M1

]
> 0.

The definition states that over-selection occurs when two models are nested and the smaller (short)
model is true (so both models are true models but the smaller model is more parsimonious) if the larger
model is asymptotically selected with positive probability.

Theorem 28.7 Under standard regularity conditions for maximum likelihood
estimation, selection based on IC asymptotically over-selects if c(n,K ) = O(1)
as n →∞.

The proof is given in Section 28.32.
This result includes both AIC and testing-based selection. Thus these procedures over-select. For

example, if the models are Y = X ′
1β1+e and Y = X ′

1β1+X ′
2β2+e and β2 = 0 holds, then these procedures

select the over-parameterized regression with positive probability.
Following this line of reasoning, it is useful to draw a distinction between true and parsimonious

models. We define the set of parsimonious models M
0 ⊂ M

∗
as the set of true models with the fewest

number of parameters. When the models in M
∗

are nested then M
0

will be a singleton. In the regres-
sion example with β2 = 0 then M1 is the unique parsimonious model among {M1,M2}. We introduce a
stronger consistency definition for procedures which asymptotically select parsimonious models.

Definition 28.3 A model selection rule is consistent for parsimonious models

if P
[
M̂ ∈M

0
]
→ 1 as n →∞.

Of the methods we have reviewed, only BIC selection is consistent for parsimonious models, as we
now show.

Theorem 28.8 Under standard regularity conditions for maximum likelihood
estimation, selection based on IC is consistent for parsimonious models if for
all K2 > K1

c(n,K2)− c(n,K1) →∞ (28.16)

as n →∞, yet c(n,K ) = o(n) as n →∞.

The proof is given in Section 28.32.
The condition includes BIC since c(n,K2)− c(n,K1) = (K2 −K1) log(n) →∞ if K2 > K1.
Some economists have interpreted Theorem 28.8 as indicating that BIC selection is preferred over

the other methods. This is an incorrect deduction. In the next section we show that the other selection
procedures are asymptotically optimal in terms of model fit and in terms of out-of-sample forecasting.
Thus consistent model selection is only one of several desirable statistical properties.
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28.13 Asymptotic Selection Optimality

Regressor selection by the AIC/Shibata/Mallows/CV class turns out to be asymptotically optimal with
respect to out-of-sample prediction under quite broad conditions. This may appear to conflict with
the results of the previous section but it does not as there is a critical difference between the goals of
consistent model selection and accurate prediction.

Our analysis will be in the homoskedastic regression model conditioning on the regressor matrix X .
We write the regression model as

Y = m +e

m =
∞∑

j=1
X jβ j

E [e | X ] = 0

E
[
e2 | X

]=σ2

where X = (X1, X2, ...). We can also write the regression equation in matrix notation as Y = m +e.
The K th regression model uses the first K regressors XK = (X1, X2, ..., XK ). The least squares estimates

in matrix notation are
Y = X K β̂K + êK .

As in Section 28.6 define the fitted values m̂ = X K β̂K and regression fit (sum of expected squared predic-
tion errors) as

Rn(K ) = E[
(m̂ −m)′ (m̂ −m) | X

]
(28.17)

though now we index R by sample size n and model K for precision.
In any sample there is an optimal model K which minimizes Rn(K ):

K opt
n = argmin

K
Rn(K ).

Model K opt
n obtains the minimized value of Rn(K )

Ropt
n = Rn(K opt

n ) = min
K

Rn(K ).

Now consider model selection using the Mallow’s criterion for regression models

Cp (K ) = ê ′
K êK +2σ2K

where we explicitly index by K , and for simplicity we assume the error varianceσ2 is known. (The results
are unchanged if it is replaced by a consistent estimator.) Let the selected model be

K̂n = argmin
K

Cp (K ).

Prediction accuracy using the Mallows-selected model is Rn(K̂n). We say that a selection procedure is
asymptotically optimal if the prediction accuracy is asymptotically equivalent with the infeasible opti-
mum. This can be written as

Rn(K̂n)

Ropt
n

−→
p

1. (28.18)

We consider convergence in (28.18) in terms of the risk ratio since Ropt
n diverges as the sample size in-

creases.
Li (1987) established the asymptotic optimality (28.18). His result depends on the following condi-

tions.
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Assumption 28.1

1. The observations (Yi , X i ), i = 1, ...,n, are independent and identically dis-
tributed.

2. E [e | X ] = 0.

3. E
[
e2 | X

]=σ2.

4. E
[|e|4r | X

]≤ B <∞ for some r > 1.

5. Ropt
n →∞ as n →∞.

6. The estimated models are nested.

Assumptions 28.1.2 and 28.1.3 state that the true model is a conditionally homoskedastic regression.
Assumption 28.1.4 is a technical condition, that a conditional moment of the error is uniformly bounded.
Assumption 28.1.5 is subtle. It effectively states that there is no correctly specified finite-dimensional
model. To see this, suppose that there is a K such that the model is correctly specified, meaning that
mi = ∑K

j=1 X j iβ j . In this case we can show that Rn(K ) = 0, violating Assumption 28.1.5. Assumption
28.1.6 is a technical condition that restricts the number of estimated models. Non-nested models can be
allowed but then an alternative restriction on the number of estimated models is needed.

Theorem 28.9 Assumption 28.1 implies (28.18). Thus Mallows selection is
asymptotically equivalent to using the infeasible optimal model.

The proof is given in Section 28.32.
Theorem 28.9 states that Mallows selection in a conditional homoskedastic regression is asymptot-

ically optimal. The key assumptions are homoskedasticity and that all finite-dimensional models are
misspecified (incomplete), meaning that there are always omitted variables. The latter means that re-
gardless of the sample size there is always a trade-off between omitted variables bias and estimation
variance. The theorem as stated is specific for Mallows selection but extends to AIC, Shibata, GCV, FPE,
and CV with some additional technical considerations. The primary message is that the selection meth-
ods discussed in the previous section asymptotically select a sequence of models which are best-fitting
in the sense of minimizing the prediction error.

Using a similar argument Andrews (1991c) showed that selection by cross-validation satisfies the
same asymptotic optimality condition without requiring conditional homoskedasticity. The treatment
is a bit more technical so we do not review it here. This indicates an important advantage for cross-
validation selection over the other methods.

28.14 Focused Information Criterion

Claeskens and Hjort (2003) introduced the Focused Information Criterion (FIC) as an estimator
of the MSE of a scalar parameter. The criterion is appropriate in correctly-specified likelihood models
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when one of the estimated models nests the other models. Let f (y,θ) be a parametric model density
with a K ×1 parameter θ.

The class of models (sub-models) allowed are those defined by a set of differentiable restrictions
r (θ) = 0. Let θ̃ be the restricted MLE which maximizes the likelihood subject to r (θ) = 0.

A key feature of the FIC is that it focuses on a real-valued parameter µ = g (θ) where g is some dif-
ferentiable function. Claeskens and Hjort call µ the target parameter. The choice of µ is made by the
researcher and is a critical choice. In most applications µ is the key coefficient in the application (for
example, the returns to schooling in a wage regression). The unrestricted MLE for µ is µ̂ = g (θ̂), the
restricted MLE is µ̃= g (θ̃).

Estimation accuracy is measured by the MSE of the estimator of the target parameter, which is the
squared bias plus the variance:

mse
[
µ̃
]= E[(

µ̃−µ)2
]
= (
E
[
µ̃
]−µ)2 +var

[
µ̃
]

.

It turns out to be convenient to normalize the MSE by that of the unrestricted estimator. We define this
as the Focus

F = mse
[
µ̃
]−mse

[
µ̂
]

.

The Claeskens-Hjort FIC is an estimator of F. Specifically,

FIC = (
µ̃− µ̂)2 −2Ĝ

′
V̂ θ̂R̂

(
R̂

′
V̂ θ̂R̂

)−1
R̂

′
V̂ θ̂Ĝ

where V̂ θ̂ , Ĝ and R̂ are estimators of var
[
θ̂
]
, G = ∂

∂θ′ g (θ) and R = ∂
∂θ′ r (θ).

In a least squares regression Y = Xβ+ e with a linear restriction R ′β = 0 and linear parameter of
interest µ=G ′β the FIC equals

FIC =
(
G ′R

(
R ′ (X ′X

)−1 R
)−1

R ′ (X ′X
)−1

β̂

)2

−2σ̂2G ′ (X ′X
)−1 R

(
R ′ (X ′X

)−1 R
)−1

R ′ (X ′X
)−1 G .

The FIC is used similarly to AIC. The FIC is calculated for each sub-model of interest and the model
with the lowest value of FIC is selected.

The advantage of the FIC is that it is specifically targeted to minimize the MSE of the target parameter.
The FIC is therefore appropriate when the goal is to estimate a specific target parameter. A disadvantage
is that it does not necessarily produce a model with good estimates of the other parameters. For example,
in a linear regression Y = X1β1 + X2β2 + e, if X1 and X2 are uncorrelated and the focus parameter is β1

then the FIC will tend to select the sub-model without X2, and thus the selected model will produce a
highly biased estimate of β2. Consequently when using the FIC it is dubious if attention should be paid
to estimates other than those of µ.

Computationally it may be convenient to implement the FIC using an alternative formulation. De-
fine the adjusted focus

F∗ = n
(
F+2mse

[
µ̂
])= n

(
mse

[
µ̃
]+mse

[
µ̂
])

.

This adds the same quantity to all models and therefore does not alter the minimizing model. Multipli-
cation by n puts the FIC in units which are easier for reporting. The estimate of the adjusted focus is an
adjusted FIC and can be written as

FIC∗ = n
(
µ̃− µ̂)2 +2nV̂ µ̃ (28.19)

= n
(
µ̃− µ̂)2 +2ns

(
µ̃
)2 (28.20)
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where

V̂ µ̃ = Ĝ
′
(

I k − V̂ θ̂R̂
(
R̂

′
V̂ θ̂R̂

)−1
R̂

′
V̂ θ̂

)
Ĝ

is an estimator of var
[
µ̃
]

and s
(
µ̃
)= V̂

1/2
µ̃ is a standard error for µ̃.

This means that FIC∗ can be easily calculated using conventional software without additional pro-
gramming. The estimator µ̂ can be calculated from the full model (the long regression) and the estimator
µ̃ and its standard error s

(
µ̃
)

from the restricted model (the short regression). The formula (28.20) can
then be applied to obtain FIC∗.

The formula (28.19) also provides an intuitive understanding of the FIC. When we minimize FIC∗ we
are minimizing the variance of the estimator of the target parameter (V̂ µ̃) while not altering the estimate
µ̃ too much from the unrestricted estimate µ̂.

When selecting from amongst just two models, the FIC selects the restricted model if
(
µ̃− µ̂)2+2V̂ µ̃ <

0 which is the same as
(
µ̃− µ̂)2 /V̂ µ̃ < 2. The statistic to the left of the inequality is the squared t-statistic

in the restricted model for testing the hypothesis that µ equals the unrestricted estimator µ̂ but ignoring
the estimation error in the latter. Thus a simple implementation (when just comparing two models) is
to estimate the long and short regressions, take the difference in the two estimates of the coefficient of
interest, and compute a t-ratio using the standard error from the short (restricted) regression. If this
t-ratio exceeds 1.4 the FIC selects the long regression estimate. If the t-ratio is smaller than 1.4 the FIC
selects the short regression estimate.

Claeskens and Hjort motivate the FIC using a local misspecification asymptotic framework. We use a
simpler heuristic motivation. First take the unrestricted MLE. Under standard conditions µ̂ has asymp-
totic variance G ′V θG where V θ =I−1. As the estimator is asymptotically unbiased it follows that

mse
[
µ̂
]' var

[
µ̂
]' n−1G ′V θG .

Second take the restricted MLE. Under standard conditions µ̃ has asymptotic variance

G ′
(
V θ−V θR

(
R ′V θR

)−1 RV θ

)
G .

µ̃ also has a probability limit, say µR , which (generally) differs from µ. Together we find that

mse
[
µ̃
]' B +n−1G ′

(
V θ−V θR

(
R ′V θR

)−1 RV θ

)
G

where B = (
µ−µR

)2. Subtracting, we find that the Focus is

F ' B −n−1G ′V θR
(
R ′V θR

)−1 RV θG .

The plug-in estimator B̂ = (
µ̂− µ̃)2 of B is biased since

E
[
B̂

]= (
E
[
µ̂− µ̃])2 +var

[
µ̂− µ̃]

' B +var
[
µ̂
]−var

[
µ̃
]

' B +n−1G ′V θR
(
R ′V θR

)−1 RV θG .

It follows that an approximately unbiased estimator for F is

B̂ −2n−1G ′V θR
(
R ′V θR

)−1 RV θG .

The FIC is obtained by replacing the unknown G , R , and n−1V θ by estimates.
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28.15 Best Subset and Stepwise Regression

Suppose that we have a set of potential regressors {X1, ..., XK } and we want to select a subset of the
regressors to use in a regression. Let Sm denote a subset of the regressors, and let m = 1, ..., M denote
the set of potential subsets. Given a model selection criterion (e.g. AIC, Mallows, or CV) the best subset
model is the one which minimizes the criterion across the M models. This is implemented by estimating
the M models and comparing the model selection criteria.

If K is small it is computationally feasible to compare all subset models but it is not feasible when K
is large. This is because the number of potential subsets is M = 2K which increases quickly with K . For
example, K = 10 implies M = 1024, K = 20 implies M ≥ 1,000,000, and K = 40 implies M exceeds one
trillion. It simply does not make sense to contemplate estimating all subset regressions!

If the goal is to find the set of regressors which produces the smallest selection criterion it seems
likely that we should be able to find an approximating set of regressors at much reduced computation
cost. Some specific algorithms to implement this goal are as called stepwise, stagewise, and least angle
regression. None of these procedures are believed to actually achieve the goal of minimizing any specific
selection criterion; rather they are viewed as useful computational approximations. There is also some
potential confusion as different authors seem to use the same terms for somewhat different implemen-
tations. We use the terms here as described in Hastie, Tibshirani, and Friedman (2008).

In the following descriptions we use SSE(m) to refer to the sum of squared residuals from a fitted
model and C (m) to refer to the selection criterion used for model comparison (AIC is most typically
used).

Backward Stepwise Regression

1. Start with all regressors {X1, ..., XK } included in the “active set”.

2. For m = 0, ...,K −1

(a) Estimate the regression of Y on the active set.

(b) Identify the regressor whose omission will have the smallest impact on C (m).

(c) Put this regressor in slot K −m and delete from the active set.

(d) Calculate C (m) and store in slot K −m.

3. The model with the smallest value of C (m) is the selected model.

Backware stepwise regression requires K < n so that regression with all variables is feasible. It pro-
duces an ordering of the regressors from “most relevant” to “least relevant”. A simplified version is to
exit the loop when C (m) increases. (This may not yield the same result as completing the loop.) For the
case of AIC selection, step (b) can be implemented by calculating the classical (homoskedastic) t-ratio
for each active regressor and find the regressor with the smallest absolute t-ratio. (See Exercise 28.3.)

Forward Stepwise Regression

1. Start with the null set {∅} as the “active set” and all regressors {X1, ..., XK } as the “inactive set”.

2. For m = 1, ...,min(n −1,K )

(a) Estimate the regression of Y on the active set.

(b) Identify the regressor in the inactive set whose inclusion will have the largest impact on C (m).
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(c) Put this regressor in slot m and move it from the inactive to the active set.

(d) Calculate C (m) and store in slot m.

3. The model with the smallest value of C (m) is the selected model.

A simplified version is to exit the loop when C (m) increases. (This may not yield the same answer as
completing the loop.) For the case of AIC selection step (b) can be implemented by finding the regressor
in the inactive set with the largest absolute correlation with the residual from step (a). (See Exercise 28.4.)

There are combined algorithms which check both forward and backward movements at each step.
The algorithms can also be implemented with the regressors organized in groups (so that all elements are
either included or excluded at each step). There are also old-fashioned versions which use significance
testing rather than selection criterion (this is generally not advised).

Stepwise regression based on old-fashioned significance testing can be implemented in Stata using
the stepwise command. If attention is confined to models which include regressors one-at-a-time, AIC
selection can be implemented by setting the significance level equal to p = 0.32. Thus the command
stepwise, pr(.32) implements backward stepwise regression with the AIC criterion, and stepwise,

pe(.32) implements forward stepwise regression with the AIC criterion.
Stepwise regression can be implemented in R using the lars command.

28.16 The MSE of Model Selection Estimators

Model selection can lead to estimators with poor sampling performance. In this section we show that
the mean squared error of estimation is not necessarily improved, and can be considerably worsened,
by model selection.

To keep things simple consider an estimator with an exact normal distribution and known covariance
matrix. Normalizing the latter to the identity we consider the setting

θ̂ ∼ N(θ, I K )

and the class of model selection estimators

θ̂pms =
{
θ̂ if θ̂′θ̂ > c
0 if θ̂′θ̂ ≤ c

for some c. AIC sets c = 2K , BIC sets c = K log(n), and 5% significance testing sets c to equal the 95%
quantile of the χ2

K distribution. It is common to call θ̂pms a post-model-selection (PMS) estimator

We can explicitly calculate the MSE of θ̂pms.

Theorem 28.10 If θ̂ ∼ N(θ, I K ) then

mse
[
θ̂pms

]= K + (2λ−K )FK+2 (c,λ)−λFK+4 (c,λ)

where Fr (x,λ) is the non-central chi-square distribution function with r de-
grees of freedom and non-centrality parameter λ= θ′θ.

The proof is given in Section 28.32.
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The MSE is determined only by K , λ, and c. λ = θ′θ turns out to be an important parameter for the
MSE. As the squared Euclidean length, it indexes the magnitude of the coefficient θ.

We can see the following limiting cases. If λ= 0 then mse
[
θ̂pms

]= K (1−FK+2 (c,0)). As λ→∞ then
mse

[
θ̂pms

] → K . The unrestricted estimator obtains if c = 0, in which case mse
[
θ̂pms

] = K . As c →∞,
mse

[
θ̂pms

]→λ. The latter fact implies that the PMS estimator based on the BIC has MSE →∞ as n →∞.
Using Theorem 28.10 we can numerically calculate the MSE. In Figure 28.2(a) and (b) we plot the MSE

of a set of estimators for a range of values of
p
λ. Panel (a) is for K = 1, panel (b) is for K = 5. The dash-

dotted line marks the MSE of the unselected estimator θ̂ which is invariant to λ. The other estimators
plotted are AIC selection (c = 2K ), 5% significance testing selection (chi-square critical value), and BIC
selection (c = K log(n)) for n = 200 and n = 1000.
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Figure 28.2: MSE and Coverage of Post-Model-Selection Estimators

In the plots you can see that the PMS estimators have lower MSE than the unselected estimator
roughly for λ < K but higher MSE for λ > K . The AIC estimator has MSE which is least distorted from
the unselected estimator, reaching a peak of about 1.5 for K = 1. The BIC estimators, however, have very
large MSE for larger values of λ, and the distortion is growing as n increases. The MSE of the selection
estimators increases with λ until it reaches a peak and then slowly decreases and asymptotes back to K .
Furthermore, the MSE of BIC is unbounded as n diverges. Thus for very large sample sizes the MSE of
a BIC-selected estimator can be a very large multiple of the MSE of the unselected estimator. The plots
show that if λ is small there are advantages to model selection as MSE can be greatly reduced. However if
λ is large then MSE can be greatly increased if BIC is used, and moderately increased if AIC is used. A sen-
sible reading of the plots leads to the practical recommendation to not use the BIC for model selection,
and use the AIC with care.

The numerical calculations show that MSE is reduced by selection when λ is small but increased
when λ is moderately large. What does this mean in practice? λ is small when θ is small which means
the compared models are similar in terms of estimation accuracy. In these contexts model selection
can be valuable as it helps select smaller models to improve precision. However when λ is moderately
large (which means that θ is moderately large) the smaller model has meaningful omitted variable bias,
yet the selection criteria have difficulty detecting which model to use. The conservative BIC selection
procedure tends to select the smaller model and thus incurs greater bias resulting in high MSE. These
considerations suggest that it is better to use the AIC when selecting among models with similar estima-
tion precision. Unfortunately it is impossible to known a priori the appropriate models.

The results of this section may appear to contradict Theorem 28.8 which showed that the BIC is con-
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sistent for parsimonious models as for all λ> 0 in the plots the correct parsimonious model is the larger
model. Yet BIC is not selecting this model with sufficient frequency to produce a low MSE. There is no
contradiction. The consistency of the BIC appears in the lower portion of the plots where the MSE of
the BIC estimator is the approximately straight line MSE =λ. This is the MSE of the restricted estimator.
Thus for small λ the BIC properly selects the true model. The fact that the MSE of the AIC estimator
somewhat exceeds that of the BIC in this region is illustrating the over-selection property of the AIC.

28.17 Inference After Model Selection

Economists are typically interested in inferential questions such as hypothesis tests and confidence
intervals. If an econometric model has been selected by a procedure such as AIC or CV what are the
properties of statistical tests applied to the selected model?

To be concrete consider the regression model Y = X1β1 + X2β2 + e and selection of the variable X2.
That is, we compare Y = X1β1 + e with Y = X1β1 + X2β2 + e. It is not too deep a realization that in
this context it is inappropriate to conduct conventional inference for β2 in the selected model. If we
select the smaller model there is no estimate of β2. If we select the larger it is because the t-ratio for β2

exceeds the critical value. The distribution of the t-ratio, conditional on exceeding a critical value, is not
conventionally distributed and there seems little point to push this issue further.

The more interesting and subtle question is the impact on inference concerning β1. This indeed is
a context of typical interest. An economist is interested in the impact of X1 on Y given a set of controls
X2. It is common to select across these controls to find a suitable empirical model. Once this has been
obtained we want to make inferential statements about β1. Has selection over the controls impacted
inference?

We illustrate the issue numerically. Suppose that (X1, X2) are jointly normal with unit variances and
correlation ρ, e is independent and standard normal, and n = 30. We estimate the long regression of Y
on (X1, X2) and the short regression of Y on X1 alone. We construct the t-statistic3 for β2 = 0 in the long
regression and select the long regression if the t-statistic is significant at the 5% level and select the short
regression if the t-statistic is not significant. We construct the standard 95% confidence interval4 for
β1 in the selected regression. These confidence intervals will have exact 95% coverage when there is no
selection and the estimated model is correct, so deviations from 95% are due to model selection and mis-
specification. We calculate the actual coverage probability by simulation using one million replications,
varying5 β2 and ρ.

We display in Figure 28.2(c) the coverage probabilities as a function of β2 for several values of ρ. If
the regressors are uncorrelated (ρ = 0) then the actual coverage probability equals the nominal level of
0.95. This is because the t-statistic for β2 is independent of those for β1 in this normal regression model
and the coefficients on X1 in the short and long regression are identical.

This invariance breaks down for ρ 6= 0. As ρ increases the coverage probability of the confidence
intervals fall below the nominal level. The distortion is strongly affected by the value of β2. For β2 = 0
the distortion is mild. The reason is that when β2 = 0 the selection t-statistic selects the short regression
with high probability (95%) which leads to approximately valid inference. Also, as β2 →∞ the coverage
probability converges to the nominal level. The reason is that for large β2 the selection t-statistic selects
the long regression with high probability, again leading to approximately valid inference. The distortion
is large, however, for intermediate values of β2. For ρ = 0.5 the coverage probability falls to 88%, and

3Using the homoskedastic variance formula and assuming the error variance is known. This is done to focus on the selection
issue rather than covariance matrix estimation.

4Using the homoskedastic variance formula and assuming the correct error variance is known.
5The coverage probability is invariant to β1.
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for ρ = 0.8 the probability is low as 62%. The reason is that for intermediate values of β2 the selection
t-statistic selects both models with meaningful probability, and this selection decision is correlated with
the t-statistics for β1. The degree of under-coverage is enormous and greatly troubling.

The message from this display is that inference after model selection is problematic. Conventional
inference procedures do not have conventional distributions and the distortions are potentially un-
bounded.

28.18 Empirical Illustration

We illustrate the model selection methods with an application. Take the CPS dataset and the sub-
sample of Asian women which has n = 1149 observations. Consider a log wage regression with primary
interest on the return to experience measured as the percentage difference between expected wages
between 0 and 30 years of experience. We consider and compare nine least squares regressions. All
include an indicator for married and three indicators for the region. The estimated models range in
complexity concerning the impact of education and experience.

Table 28.1: Estimates of Return to Experience among Asian Women

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9
Return 13% 22% 20% 29% 40% 37% 33% 47% 45%
s.e. 7 8 7 11 11 11 17 18 17
BIC 956 907 924 964 913 931 977 925 943
AIC 915 861 858 914 858 855 916 860 857
CV 405 387 386 405 385 385 406 387 386
FIC 86 48 53 58 32 34 86 71 68
Education College Spline Dummy College Spline Dummy College Spline Dummy
Experience 2 2 2 4 4 4 6 6 6

Terms for experience:

• Models 1-3 include include experience and its square.

• Models 4-6 include powers of experience up to power 4.

• Models 7-9 include powers of experience up to power 6.

Terms for education:

• Models 1, 4, and 7 include a single dummy variable college indicating that years of education is 16
or higher.

• Models 2, 5, and 8 include a linear spline in education with a single knot at education=9.

• Models 3, 6, and 9 include six dummy variables, for education equalling 12, 13, 14, 16, 18, and 20.

Table 28.1 reports key estimates from the nine models. Reported are the estimate of the return to ex-
perience as a percentage wage difference, its standard error (HC1), the BIC, AIC, CV, and FIC∗, the latter
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treating the return to experience as the focus. What we can see is that the estimates vary meaningfully,
ranging from 13% to 47%. Some of the estimates also have moderately large standard errors. (In most
models the return to experience is “statistically significant”, but by large standard errors we mean that
it is difficult to pin down the precise value of the return to experience.) We can also see that the most
important factors impacting the magnitude of the point estimate is going beyond the quadratic specifi-
cation for experience, and going beyond the simplest specification for education. Another item to notice
is that the standard errors are most affected by the number of experience terms.

The BIC picks a parsimonious model with the linear spline in education and a quadratic in experi-
ence. The AIC and CV select a less parsimonious model with the full dummy specification for education
and a 4th order polynomial in experience. The FIC selects an intermediate model, with a linear spline in
education and a 4th order polynomial in experience.

When selecting a model using information criteria it is useful to examine several criteria. In applica-
tions decisions should be made by a combination of judgment as well as the formal criteria. In this case
the cross-validation criterion selects model 6 which has the estimate of 37%, but near-similar values of
the CV criterion are obtained by models 3 and 9 which have the estimates 20% and 45%. The FIC, which
focuses on this specific coefficient, selects model 5 which has the point estimate 40% which is similar to
the CV-selected model. Overall based on this evidence the CV-selected model and its point estimate of
37% seems an appropriate choice. However, the uncertainty reflected by the flatness of the CV criterion
suggests that uncertainty remains in the choice of specification.

28.19 Shrinkage Methods

Shrinkage methods are a broad class of estimators which reduce variance by moving an estimator θ̂
towards a pre-selected point such as the zero vector. In high dimensions the reduction in variance more
than compensates for the increase in bias resulting in improved efficiency when measured by mean
squared error. This and the next few sections review material presented in Chapter 15 of Introduction to
Econometrics.

The simplest shrinkage estimator takes the form θ̃ = (1−w) θ̂ for some shrinkage weight w ∈ [0,1].
Setting w = 0 we obtain θ̃ = θ̂ (no shrinkage) and setting w = 1 we obtain θ̃ = 0 (full shrinkage). It is
straightforward to calculate the MSE of this estimator. Assume θ̂ ∼ (θ,V ). Then θ̃ has bias

bias
[
θ̃
]= E[

θ̃
]−θ =−wθ, (28.21)

variance
var

[
θ̃
]= (1−w)2 V , (28.22)

and weighted mean squared error (using the weight matrix W =V −1)

wmse
[
θ̃
]= K (1−w)2 +w2λ (28.23)

where λ= θ′V −1θ.

Theorem 28.11 If θ̂ ∼ (θ,V ) and θ̃ = (1−w) θ̂ then

1. wmse
[
θ̃
]< wmse

[
θ̂
]

if 0 < w < 2K /(K +λ).

2. wmse
[
θ̃
]

is minimized by the shrinkage weight w0 = K /(K +λ).

3. The minimized WMSE is wmse
[
θ̃
]= Kλ/(K +λ).
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For the proof see Exercise 28.6.
Part 1 of the theorem shows that the shrinkage estimator has reduced WMSE for a range of values

of the shrinkage weight w . Part 2 of the theorem shows that the WMSE-minimizing shrinkage weight
is a simple function of K and λ. The latter is a measure of the magnitude of θ relative to the estimation
variance. When λ is large (the coefficients are large) then the optimal shrinkage weight w0 is small; when
λ is small (the coefficients are small) then the optimal shrinkage weight w0 is large. Part 3 calculates the
associated optimal WMSE. This can be substantially less than the WMSE of the original estimator θ̂. For
example, if λ= K then wmse

[
θ̃
]= K /2, one-half the WMSE of the original estimator.

To construct the optimal shrinkage weight we need the unknown λ. An unbiased estimator is λ̂ =
θ̂′V −1θ̂−K (see Exercise 28.7) implying the shrinkage weight

ŵ = K

θ̂′V −1θ̂
. (28.24)

Replacing K with a free parameter c (which we call the shrinkage coefficient) we obtain

θ̃ =
(
1− c

θ̂′V −1θ̂

)
θ̂. (28.25)

This class of estimators is often called a Stein-Rule estimator.
This estimator has many appealing properties. It can be viewed as a smoothed selection estimator.

The quantity θ̂′V −1θ̂ is a Wald statistic for the hypothesis H0 : θ = 0. Thus when this Wald statistic is
large (when the evidence suggests the hypothesis of a zero coefficient is false) the shrinkage estimator
is close to the original estimator θ̂. However when this Wald statistic is small (when the evidence is
consistent with the hypothesis of a zero coefficient) then the shrinkage estimator moves the original
estimator towards zero.

28.20 James-Stein Shrinkage Estimator

James and Stein (1961) made the following discovery.

Theorem 28.12 Assume that θ̂ ∼ N(θ,V ), θ̃ is defined in (28.25), and K > 2.

1. If 0 < c < 2(K −2) then wmse
[
θ̃
]< wmse

[
θ̂
]

.

2. The WMSE is minimized by setting c = K −2 and equals

wmse
[
θ̃
]= K − (K −2)2E

[
Q−1

K

]
where QK ∼χ2

K (λ).

See Theorem 15.3 of Introduction to Econometrics.
This result stunned the world of statistics. Part 1 shows that the shrinkage estimator has strictly

smaller WMSE for all values of the parameters and thus dominates the original estimator. The latter
is the MLE so this result shows that the MLE is dominated and thus inadmissible. This is a stunning
result because it had previously been assumed that it would be impossible to find an estimator which
dominates the MLE.
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Theorem 28.12 critically depends on the condition K > 2. This means that shrinkage achieves uni-
form improvements only in dimensions three or larger.

The minimizing choice for the shrinkage coefficient c = K −2 leads to what is commonly known as
the James-Stein estimator

θ̃ =
(
1− K −2

θ̂′V −1θ̂

)
θ̂.

In practice V is unknown so we substitute an estimator V̂ . This leads to

θ̃JS =
(
1− K −2

θ̂′V̂ −1
θ̂

)
θ̂

which is fully feasible as it does not depend on unknowns or tuning parameters. The substitution of V̂
for V can be justified by finite sample or asymptotic arguments.

28.21 Interpretation of the Stein Effect

The James-Stein Theorem appears to conflict with classical statistical theory. The original estimator
θ̂ is the maximum likelihood estimator. It is unbiased. It is minimum variance unbiased. It is Cramer-
Rao efficient. How can it be that the James-Stein shrinkage estimator achieves uniformly smaller mean
squared error?

Part of the answer is that classical theory has caveats. The Cramer-Rao Theorem, for example, re-
stricts attention to unbiased estimators and thus precludes consideration of shrinkage estimators. The
James-Stein estimator has reduced MSE, but is not Cramer-Rao efficient since it is biased. Therefore the
James-Stein Theorem does not conflict with the Cramer-Rao Theorem. Rather, they are complementary
results. On the one hand, the Cramer-Rao Theorem describes the best possible variance when unbiased-
ness is an important property for estimation. On the other hand, the James-Stein Theorem shows that
if unbiasedness is not a critical property but instead MSE is important, then there are better estimators
than the MLE.

The James-Stein Theorem may also appear to conflict with our results from Section 28.16 which
showed that selection estimators do not achieve uniform MSE improvements over the MLE. This may
appear to be a conflict since the James-Stein estimator has a similar form to a selection estimator. The
difference is that selection estimators are hard threshold rules – they are discontinuous functions of the
data – while the James-Stein estimator is a soft threshold rule – it is a continuous function of the data.
Hard thresholding tends to result in high variance; soft thresholding tends to result in low variance. The
James-Stein estimator is able to achieve reduced variance because it is a soft threshold function.

The MSE improvements achieved by the James-Stein estimator are greatest when λ is small. This
occurs when the parameters θ are small in magnitude relative to the estimation variance V . This means
that the user needs to choose the centering point wisely.

28.22 Positive Part Estimator

The simple James-Stein estimator has the odd property that it can “over-shrink”. When θ̂′V −1θ̂ < K−2
then θ̃ has opposite sign with θ̂. This does not make sense and suggests that further improvements can
be made. The standard solution is to use “positive-part” trimming by bounding the shrinkage weight
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(28.24) below one. This estimator can be written as

θ̃+ =
{
θ̃, θ̂′V −1θ̂ ≥ K −2
0, θ̂′V −1θ̂ < K −2

=
(
1− K −2

θ̂′V −1θ̂

)
+
θ̂

where (a)+ = max[a,0] is the “positive-part” function. Alternatively, it can be written as

θ̃+ = θ̂−
(

K −2

θ̂′V −1θ̂

)
1
θ̂

where (a)1 = min[a,1]
The positive part estimator simultaneously performs “selection” as well as “shrinkage”. If θ̂′V −1θ̂ is

sufficiently small, θ̃+ “selects” 0. When θ̂′V −1θ̂ is of moderate size, θ̃+ shrinks θ̂ towards zero. When
θ̂′V −1θ̂ is very large, θ̃+ is close to the original estimator θ̂.

Consistent with our intuition the positive part estimator has uniformly lower WMSE than the unad-
justed James-Stein estimator.

Theorem 28.13 Under the assumptions of Theorem 28.12

wmse
[
θ̃+

]< wmse
[
θ̃
]

. (28.26)

For a proof see Theorem 15.6 of Introduction to Econometrics. Theorem 15.7 of Introduction to Econo-
metrics provides an explicit numerical evaluation of the MSE for the positive-part estimator.

In Figure 28.3(a) we plot wmse
[
θ̃+

]
/K as a function of λ/K for K = 4, 6, 12, and 48. The plots are uni-

formly below 1 (the normalized WMSE of the MLE) and substantially so for small and moderate values of
λ. The WMSE functions fall as K increases, demonstrating that the MSE reductions are more substantial
when K is large.
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Figure 28.3: James-Stein Estimator

In summary, the positive-part transformation is an important improvement over the unadjusted
James-Stein estimator. It is more reasonable and reduces the mean squared error. The broader mes-
sage is that imposing boundary conditions can improve estimation efficiency.
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28.23 Shrinkage Towards Restrictions

The classical James-Stein estimator does not have direct use in applications because it is rare that we
wish to shrink an entire parameter vector towards a specific point. Rather, it is more common to wish to
shrink a parameter vector towards a set of restrictions. Here are a few examples:

1. Shrink a long regression towards a short regression.

2. Shrink a regression towards an intercept-only model.

3. Shrink the regression coefficients towards a set of restrictions.

4. Shrink a set of estimates (or coefficients) towards their common mean.

5. Shrink a set of estimates (or coefficients) towards a parametric model.

6. Shrink a nonparametric series model towards a parametric model.

The way to think generally about these applications it that the researcher wants to allow for generality
with the large model but believes that the smaller model may be a useful approximation. A shrinkage
estimator allows the data to smoothly select between these two options depending on the strength of
information for the two specifications.

Let θ̂ ∼ N(θ,V ) be the original estimator, for example a set of regression coefficient estimates. The
normality assumption is used for the exact theory but can be justified based on an asymtotic approxi-
mation as well. The researcher considers a set of q > 2 linear restrictions which can be written as R ′θ = r
where R is K ×q and r is q ×1. A minimum distance estimator for θ is

θ̂R = θ̂−V R
(
R ′V R

)−1 (
R ′θ̂− r

)
.

The James-Stein estimator with positive-part trimming is

θ̃+ = θ̂−
(

q −2(
θ̂− θ̂R

)′
V −1

(
θ̂− θ̂R

)
)

1

(
θ̂− θ̂R

)
.

The function (a)1 = min[a,1] bounds the shrinkage weight below one.

Theorem 28.14 Under the assumptions of Theorem 28.12, if q > 2 then

wmse
[
θ̃+

]< wmse
[
θ̃
]

.

The shrinkage estimator achieves uniformly smaller MSE if the number of restrictions is three or
greater. The number of restrictions q plays the same role as the number of parameters K in the classical
James-Stein estimator. Shrinkage achieves greater gains when there are more restrictions q , and achieves
greater gains when the restrictions are close to being satisfied in the population. If the imposed restric-
tions are far from satisfied then the shrinkage estimator will have similar performance as the original
estimator. It is therefore important to select the restrictions carefully.

In practice the covariance matrix V is unknown so it is replaced by an estimator V̂ . Thus the feasible
version of the estimators equal

θ̂R = θ̂− V̂ R
(
R ′V̂ R

)−1 (
R ′θ̂− r

)
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and

θ̃+ = θ̂−
(

q −2

J

)
1

(
θ̂− θ̂R

)
(28.27)

where
J = (

θ̂− θ̂R
)′

V̂
−1 (

θ̂− θ̂R
)

.

It is insightful to notice that J is the minimum distance statistic for the test of the hypothesis H0 :
R ′θ = r against H1 : R ′θ 6= r . Thus the degree of shrinkage is a smoothed version of the standard test of
the restrictions. When J is large (so the evidence indicates that the restrictions are false) the shrinkage
estimator is close to the unrestricted estimator θ̂. When J is small (so the evidence indicates that the re-
strictions could be correct) the shrinkage estimator equals the restricted estimator θ̂R . For intermediate
values of J the shrinkage estimator shrinks θ̂ towards θ̂R .

We can substitute for J any similar asymptotically chi-square statistic, including the Wald, Likelihood
Ratio, and Score statistics. We can also use the F statistic (which is commonly produced by statistical soft-
ware) if we multiply by q . These substitutions do not produce the same exact finite sample distribution
but are asymptotically equivalent.

In linear regression we have some very convenient simplifications available. In general, V̂ can be a
heteroskedastic-robust or cluster-robust covariance matrix estimator. However, if the dimension K of
the unrestricted estimator is quite large or has sparse dummy variables then these covariance matrix
estimators are ill-behaved and it may be better to use a classical covariance matrix estimator to perform
the shrinkage. If this is done then V̂ = (

X ′X
)−1 s2, θ̂R is the constrained least squares estimator (in most

applications the least squares estimator of the short regression) and J is a conventional (homoskedastic)
Wald statistic for a test of the restrictions. We can write the latter in F statistic form

J = n
(
σ̂2

R − σ̂2
)

s2 (28.28)

where σ̂2
R and σ̂2 are the least squares error variance estimators from the restricted and unrestricted

models. The shrinkage weight ((q −2)/J )1 can be easily calculated from standard regression output.

28.24 Group James-Stein

The James-Stein estimator can be applied to groups (blocks) of parameters. Suppose we have the pa-
rameter vector θ = (θ1,θ2, ...,θG ) partitioned into G groups each of dimension Kg ≥ 3. We have a standard
estimator θ̂ = (

θ̂1, θ̂2, ..., θ̂G
)

(for example, least squares regression or MLE) with covariance matrix V . The
group James-Stein estimator is

θ̃ = (
θ̃1, θ̃2, ..., θ̃G

)
θ̃g = θ̂g

(
1− Kg −2

θ̂′g V −1
g θ̂g

)
+

where V g is the g th diagonal block of V . A feasible version of the estimator replaces V with V̂ and V g

with V̂ g .
The group James-Stein estimator separately shrinks each block of coefficients. The advantage rela-

tive to the classical James-Stein estimator is that this allows the shrinkage weight to vary across blocks.
Some parameter blocks can use a large amount of shrinkage while others a minimal amount. Since the
positive-part trimming is used the estimator simultaneously performs shrinkage and selection. Blocks
with small effects will be shrunk to zero and eliminated. The disadvantage of the estimator is that the
benefits of shrinkage may be reduced since the shrinkage dimension is reduced. The trade-off between
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these factors will depend on how heterogeneous the optimal shrinkage weight varies across the param-
eters.

The groups should be selected based on two criteria. First, they should be selected so that the groups
separate variables by expected amount of shrinkage. Thus coefficients which are expected to be “large”
relative to their estimation variance should be grouped together and coefficients which are expected to
be “small” should be grouped together. This will allow the estimated shrinkage weights to vary according
to the group. For example, a researcher may expect high-order coefficients in a polynomial regression to
be small relative to their estimation variance. Hence it is appropriate to group the polynomial variables
into “low order” and “high order”. Second, the groups should be selected so that the researcher’s loss
(utility) is separable across groups of coefficients. This is because the optimality theory (given below)
relies on the assumption that the loss is separable. To understand the implications of these recommen-
dations consider a wage regression. Our interpretation of the education and experience coefficients are
separable if we use them for separate purposes, such as for estimation of the return to education and the
return to experience. In this case it is appropriate to separate the education and experience coefficients
into different groups.

For an optimality theory we define weighted MSE with respect to the block-diagonal weight matrix
W = diag(V −1

1 , ...,V −1
G ).

Theorem 28.15 Under the assumptions of Theorem 28.12, if WMSE is defined
with respect to W = diag(V −1

1 , ...,V −1
G ) and Kg > 2 for all g = 1, ...,G then

wmse
[
θ̃
]< wmse

[
θ̂
]

.

The proof is a simple extension of the classical James-Stein theory. The block diagonal structure of
W means that the WMSE is the sum of the WMSE of each group. The classical James-Stein theory can
be applied to each group finding that the WMSE is reduced by shrinkage group-by-group. Thus the total
WMSE is reduced by shrinkage.

28.25 Empirical Illustrations

We illustrate James-Stein shrinkage with three empirical applications.
The first application is to the sample used in Section 28.18, the CPS dataset with the subsample of

Asian women (n = 1149) focusing on the return to experience profile. We consider shrinkage of Model 9
(6th order polynomial in experience) towards Model 3 (2nd order polynomial in experience). The differ-
ence in the number of estimated coefficients is 4. We set V̂ to equal the HC1 covariance matrix estimator.
The shrinkage weight is 0.46, meaning that the Stein Rule estimator is approximately an equal weighted
average of the estimates from the two models. The estimated experience profiles are displayed in Figure
28.3(b).

The two least squares estimates are visually distinct. The 6th order polynomial (Model 9) shows a
steep return to experience for the first 10 years, then a wobbly experience profile up to 40 years, and
declining above that. It also shows a dip around 25 years. The quadratic specification misses some of
these features. The James-Stein estimator is essentially an average of the two profiles. It retains most
features of the quartic specification, except that it smooths out the unappealing 25-year dip.

The second application is to the Invest1993 data set used in Chapter 17. This is a panel data set
of annual observations on investment decisions by corporations. We focus on the firm-specific effects.
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These are of interest when studying firm heterogeneity and is of particular importance for firm-specific
forecasting. Accurate estimation of firm effects is challenging when the number of time series observa-
tions per firm is small.

To keep the analysis focused we restrict attention to firms which are traded on either the NYSE or
AMEX and to the last ten years of the sample (1982-1991). Since the regressors are lagged this means that
there are at most nine time-series observations per firm. The sample has a total of N = 786 firms and
n = 5692 observations for estimation. Our baseline model is the two-way fixed effects linear regression
as reported in the fourth column of Table 17.2. Our restricted model replaces the firm fixed effects with
19 industry-specific dummy variables. This is similar to the first column of Table 17.2 except that the
trading dummy is omitted and time dummies are added. The Stein Rule estimator thus shrinks the fixed
effects model towards the industry effects model. The latter will do well if most of the fixed effects are
explained by industry rather than firm-specific variation.

Due to the large number of estimated coefficients in the unrestricted model we use the homoskedas-
tic weight matrix as a simplification. This allows the calculation of the shrinkage weight using the simple
formula (28.28) for the statistic J . The heteroskedastic covariance matrix is not appropriate and the
cluster-robust covariance matrix will not be reliable due to the sparse dummy specification.

The estimated shrinkage weight is 0.35 which means that the Stein Rule estimator puts about 1/3
weight on the industry-effect specification and 2/3 weight on the firm-specific specification.

To report our results we focus on the distribution of the firm-specific effects. For the fixed effects
model these are the estimated fixed effects. For the industry-effect model these are the estimated in-
dustry dummy coefficients (for each firm). For the Stein Rule estimates they are a weighted average of
the two. We estimate6 the densities of the estimated firm-specific effects from the fixed-effects and Stein
Rule estimators, and plot them in Figure 28.3(c).

You can see that the fixed-effects estimate of the firm-specific density is more dispersed while the
Stein estimator is sharper and more peaked indicating that the fixed effects estimator attributes more
variation in firm-specific factors than the Stein estimator. The Stein estimator pulls the fixed effects
towards their common mean, adjusting for the randomness due to their estimation. Our expectation is
that the Stein estimates, if used for an application such as firm-specific forecasting, will be more accurate
because they will have reduced variance relative to the fixed effects estimates.

The third application uses the CPS dataset with the subsample of Black men (n = 2413) focusing on
the return to education across U.S. regions (Northeast, Midwest, South, West). Suppose you are asked to
flexibly estimate the return to education for Black men allowing for the return to education to vary across
the regions. Given the model selection information from Section 28.18 a natural baseline is model 6 aug-
mented to allow for greater variation across regions. A flexible specification interacts the six education
dummy variables with the four regional dummies (omitting the intercept), which adds 18 coefficients
and allows the return to education to vary without restriction in each region.

The least squares estimate of the return to education by region is displayed in Figure 28.4(a). For sim-
plicity we label the omitted education group (less than 12 years education) as “11 years”. The estimates
appear noisy due to the small samples. One feature which we can see is that the four lines track one
another for years of education between 12 and 18. That is, they are roughly linear in years of education
with the same slope but different intercepts.

To improve the precision of the estimates we shrink the four profiles towards Model 6. This means
that we are shrinking the profiles not towards each other but towards the model with the same effect
of education but regional-specific intercepts. Again we use the HC1 covariance matrix estimate. The
number of restrictions is 18. The shrinkage weight is 0.49 which means that the Stein Rule estimator

6The two densities are estimated with a common bandwidth to aid comparison. The bandwidth was selected to compromise
between those selected for the two samples.
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Figure 28.4: Stein Rule Estimation of Education Profiles Across Regions

puts equal weight on the two models.
The Stein Rule estimates are displayed in Figure 28.4(b). The estimates are less noisy than panel (a)

and it is easier to see the patterns. The four lines track each other and are approximately linear over 12-
18. For 20 years of education the four lines disperse which seems likely due to small samples. In panel
(b) it is easier to see the patterns across regions. It appears that the northeast region has the highest
wages (conditional on education) while the west region has the lowest wages. This ranking is constant
for nearly all levels of education.

While the Stein Rule estimates shrink the nonparametric estimates towards the common-education-
factor specification it does not impose the latter specification. The Stein Rule estimator has the ability to
put near zero weight on the common-factor model. The fact that the estimates put 1/2 weight on both
models is the choice selected by the Stein Rule and is thus data-driven.

The message from these three applications is that the James-Stein shrinkage approach can be con-
structively used to reduce estimation variance in economic applications. These applications illustrate
common forms of potential applications: Shrinkage of a flexible specification towards a simpler speci-
fication; Shrinkage of heterogeneous estimates towards homogeneous estimates; Shrinkage of fixed ef-
fects towards group dummy estimates. These three applications also employed moderately large sample
sizes (n = 1149, 2413, and 5692) yet found shrinkage weights near 50%. This shows that the benefits of
Stein shrinkage are not confined to “small” samples but rather can be constructive used in moderately
large samples with complicated structures.

28.26 Model Averaging

Recall that the problem of model selection is how to select a single model from a general set of mod-
els. The James-Stein shrinkage estimator smooths between two nested models by taking a weighted
average of two estimators. More generally we can take an average of an arbitrary number of estimators.
These estimators are known as model averaging estimators. The key issue for estimation is how to select
the averaging weights.
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Suppose we have a set of M models M = {M1, ...,MM }. For each model there is an estimator θ̂m of the
parameter θ. The natural way to think about multiple models, parameters, and estimators is the same as
for model selection. All models are subsets of a general superset (overlapping) model which contains all
submodels as special cases.

Corresponding to the set of models we introduce a set of weights w = {w1, ..., wM }. It is common
to restrict the weights to be non-negative and sum to one. The set of such weights is called the RM

probability simplex.

Definition 28.4 Probability Simplex. The set S ⊂ RM of vectors such that∑M
m=1 wm = 1 and wi ≥ 1 for i = 1, ..., M .

The probability simplex in R2 and R3 is shown in the two panels of Figure 28.5. The simplex in R2

(the left panel) is the line between the vertices (1,0) and (0,1). An example element is the point (.7, .3)
indicated by the dot. This is the weight vector which puts weight 0.7 on model 1 and weight 0.3 on
model 2. The vertice (1,0) is the weight vector which puts all weight on model 1, corresponding to model
selection, and similarly the vertice (0,1) is the weight vector which puts all weight on model 2.

The simplex in R3 (the right panel) is the equilateral triangle formed between (1,0,0), (0,1,0), and
(0,0,1). An example element is the point (.1, .5, .4) indicated by the dot. The edges are weight vectors
which are averages between two of the three models. For example the bottom edge are weight vectors
which divide the weight between models 1 and 2, placing no weight on model 3. The vertices are weight
vectors which put all weight on one of the three models and correspond to model selection.
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Figure 28.5: Probability Simplex in R2 and R3

Since the weights on the probability simplex sum to one, an alternative representation is to elim-
inate one weight by substitution. Thus we can set wM = 1 −∑M−1

m=1 wm and define the set of vectors
w = {w1, ..., wM−1} which lie in the RM−1 unit simplex, which is the region bracketed by the probabil-
ity simplex and the origin.

Given a weight vector we define the averaging estimator

θ̂ (w) =
M∑

m=1
wm θ̂m . (28.29)
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Selection estimators emerge as the special case where the weight vector w is a unit vector, e.g. the ver-
tices in Figure 28.5.

It is not absolutely necessary to restrict the weight vector of an averaging estimator to lie in the
probability simplex S , but in most cases it is a sensible restriction which improves performance. The
unadjusted James-Stein estimator, for example, is an averaging estimator which does not enforce non-
negativity of the weights. The positive-part version, however, imposes non-negativity and achieves re-
duced MSE as a result.

In Section 28.19 and Theorem 28.11 we explored the MSE of a simple shrinkage estimator which
shrinks an unrestricted estimator towards the zero vector. This is the same as a model averaging esti-
mator where one of the two estimators is the zero vector. In Theorem 28.11 we showed that the MSE
of the optimal shrinkage (model averaging) estimator is less than the unrestricted estimator. This result
extends to the case of averaging between an arbitrary number of estimators. The MSE of the optimal
averaging estimator is less than the MSE of the estimator of the full model in any given sample.

The optimal averaging weights, however, are unknown. A number of methods have been proposed
for selection of the averaging weights.

One simple method is equal weighting. This is achieved by setting wm = 1/M and results in the
estimator

θ̂∗ = 1

M

M∑
m=1

θ̂m .

The advantages of equal weighting are that it is simple, easy to motivate, and no randomness is intro-
duced by estimation of the weights. The variance of the equal weighting estimator can be calculated
since the weights are fixed. Another important advantage is that the estimator can be constructed in
contexts where it is unknown how to construct empirical-based weights, for example when averaging
models from completely different probability families. The disadvantages of equal weighting are that
the method can be sensitive to the set of models considered, there is no guarantee that the estimator will
perform better than the unrestricted estimator, and sample information is inefficiently used. In practice,
equal weighting is best used in contexts where the set of models have been pre-screened so that all are
considered “reasonable” models. From the standpoint of econometric methodology equal weighting is
not a proper statistical method as it is an incomplete methodology.

Despite these concerns equal weighting can be constructively employed when summarizing infor-
mation for a non-technical audience. The relevant context is when you have a small number of rea-
sonable but distinct estimates typically made using different assumptions. The distinct estimates are
presented to illustrate the range of possible results and the average taken to represent the “consensus”
or “recommended” estimate.

As mentioned above, a number of methods have been proposed for selection of the averaging weights.
In the following sections we outline four popular methods: Smoothed BIC, Smoothed AIC, Mallows av-
eraging, and Jackknife averaging.

28.27 Smoothed BIC and AIC

Recall that Schwarz’s Theorem 28.1 states that for a probability model f (y,θ) and a diffuse prior the
marginal likelihood p(Y ) satisfies

−2log p(Y ) '−2`n
(
θ̂
)+K log(n) = BIC.

This has been been interpreted to mean that the model with the highest value of the right-hand-side
approximately has the highest marginal likelihood and is thus the model with the highest probability of
being the true model.
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There is another interpretation of Schwarz’s result. The marginal likelihood is approximately propor-
tional to the probability that the model is true, conditional on the data. Schwarz’s Theorem implies that
this is approximately

p(Y ) ' exp(−BIC/2)

which is a simple exponential transformation of the BIC. Weighting by posterior probability can be
achieved by setting model weights proportional to this transformation. These are known as BIC weights
and produce the smoothed BIC estimator.

To describe the method completely, we have a set of models M = {M1, ...,MM }. Each model fm(y,θm)
depends on a Km × 1 parameter vector θm which is estimated by the maximum likelihood. The maxi-
mized likelihood is Lm(θ̂m) = fm(Y , θ̂m). The BIC for model m is BICm =−2logLm(θ̂m)+Km log(n).

The BIC weights are

wm = exp(−BICm/2)∑M
j=1 exp

(−BIC j /2
) .

Some properties of the BIC weights are as follows. They are non-negative so all models receive pos-
itive weight. Some models can receive weight arbitrarily close to zero and in practice many estimated
models may receive BIC weight that is essentially zero. The model which is selected by BIC receives the
greatest weight and models which have BIC values close to the minimum receive weights closest to the
largest weight. Models whose BIC is not close to the minimum receive weight near zero.

The Smoothed BIC (SBIC) estimator is

θ̂sbic =
M∑

m=1
wm θ̂m .

The SBIC estimator is a smoother function of the data than BIC selection as there are no discontinuous
jumps across models.

An advantage of the smoothed BIC weights and estimator is that it can be used to combine models
from different probability families. As for the BIC it is important that all models are estimated on the
same sample. It is also important that the full formula is used for the BIC (no omission of constants)
when combining models from different probability families.

Computationally it is better to implement smoothed BIC with what are called “BIC differences” rather
than the actual values of the BIC, as the formula as written can produce numerical overflow problems.
The difficulty is due to the exponentiation in the formula. This problem can be eliminated as follows. Let

BIC∗ = min
1≤m≤M

BICm

denote the lowest BIC among the models and define the BIC differences

∆BICm = BICm −BIC∗.

Then

wm = exp(−BICm/2)∑M
j=1 exp

(−BIC j /2
)

= exp(−BICm/2)exp(BIC∗/2)∑M
j=1 exp

(−BIC j /2
)

exp(BIC∗/2)

= exp(−∆BICm/2)∑M
j=1 exp

(−∆BIC j /2
) .
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Thus the weights are algebraically identically whether computed on BICm or∆BICm . Since∆BICm are of
smaller magnitude than BICm overflow problems are less likely to occur.

Because of the properties of the exponential, if ∆BICm ≥ 10 then wm ≤ 0.01. Thus smoothed BIC
typically concentrates weight on models whose BIC values are close to the minimum. This means that
in practice smoothed BIC puts effective non-zero weight on a small number of models.

Burnham and Anderson (1998) follow a suggestion they credit to Akaike that if we make the same
transformation to the AIC as to the BIC to obtain the smoothed BIC weights we obtain frequentist ap-
proximate probabilities for the models. Specifically they propose the weights

wm = exp(−AICm/2)∑M
j=1 exp

(−AIC j /2
) .

They do not provide a strong theoretical justification for this specific choice of transformation but it
seems natural given the smoothed BIC formula and works well in simulations.

The algebraic properties of the AIC weights are similar to those of the BIC weights. All models receive
positive weight though some receive weight which is arbitrarily close to zero. The model with the smallest
AIC receives the greatest AIC weight, and models with similar AIC values receive similar AIC weights.

Computationally the AIC weights should be computed using AIC differences. Define

AIC∗ = min
1≤m≤M

AICm

∆AICm = AICm −AIC∗.

The AIC weights algebraically equal

wm = exp(−∆AICmAICm/2)∑M
j=1 exp

(−∆AIC j /2
) .

As for the BIC weights wm ≤ 0.01 if ∆AICm ≥ 10 so the AIC weights will concentrated on models whose
AIC values are close to the minimum. However, in practice it is common that the AIC criterion is less
concentrated than the BIC criterion as the AIC puts a smaller penalty on large penalizations. The AIC
weights tend to be more spread out across models than the corresponding BIC weights.

The Smoothed AIC (SAIC) estimator is

θ̂saic =
M∑

m=1
wm θ̂m .

The SAIC estimator is a smoother function of the data than AIC selection.
Recall that both AIC selection and BIC selection are model selection consistent in the sense that as

the sample size gets large the probability that the selected model is a true model is arbtrarily close to one.
Furthermore, BIC is consistent for parsimonious models and AIC asymptotically over-selects.

These properties extend to SBIC and SAIC. In large samples SAIC and SBIC weights will concentrate
exclusively on true models; the weight on incorrect models will asymptotically approach zero. However,
SAIC will asymptotically spread weight across both parsimonious true models and overparameterized
true models, while SBIC asymptotically concentrates weight only on parsimonious true models.

An interesting property of the smoothed estimators is the possibility of asymptotically spreading
weight across equal-fitting parsimonious models. Suppose we have two non-nested models with the
same number of parameters and the same KLIC value so they are equal approximations. In large sam-
ples both SBIC and SAIC will be weighted averages of the two estimators rather than simply selecting one
of the two.
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28.28 Mallows Model Averaging

In linear regression the Mallows criterion (28.14) applies directly to the model averaging estimator
(28.29). The homoskedastic regression model is

Y = m +e

m = m(X )

E [e | X ] = 0

E
[
e2 | X

]=σ2.

Suppose that there are M models for m(X ), each which takes the form β′
m Xm for some Km ×1 regression

vector Xm . The mth model estimator of the coefficient is β̂m = (
X ′

m X m
)−1 X ′

mY , and the estimator of

the vector m is m̂m = P mY where P m = X m
(

X ′
m X m

)−1 X ′
m . The corresponding residual vector is êm =

(I n −P m)Y .
The model averaging estimator for fixed weights is

m̂m (w) =
M∑

m=1
wmP mY = P (w)Y

where

P (w) =
M∑

m=1
wmP m .

The model averaging residual is

ê (w) = (I n −P (w))Y =
M∑

m=1
wm (I n −P m)Y .

The estimator m̂m (w) is linear in Y so the Mallows criterion can be applied. It equals

C (w) = ê (w)′ ê (w)+2σ̃2 tr(P (w))

= ê (w)′ ê (w)+2σ̃2
M∑

m=1
wmKm

where σ̃2 is a preliminary7 estimator of σ2.
In the case of model selection the Mallows penalty is proportional to the number of estimated coeffi-

cients. In the model averaging case the Mallows penalty is the average number of estimated coefficients.
The Mallows-selected weight vector is that which minimizes the Mallows criterion. It equals

ŵmma = argmin
w∈S

C (w) . (28.30)

Computationally it is useful to observe that C (w) is a quadratric function in w . Indeed, by defining
the n ×M matrix Ê = [ê1, ..., êM ] of residual vectors and the M ×1 vector K = [K1, ...,KM ] the criterion is

C (w) = w ′Ê ′
Ê w +2σ̃2K ′w.

The probability simplex S is defined by one equality and 2M inequality constraints. The minimiza-
tion problem (28.30) falls in the category of quadratic programming which means optimization of a

7It is typical to use the bias-corrected least squares variance estimator from the largest model.
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quadratic subject to linear equality and inequality constraints. This is a well-studied area of numeri-
cal optimization and numerical solutions are widely available. In R use the command solve.QP in the
package quadprog. In MATLAB use the command quadprog.

Figure 28.6 illustrates the Mallows weight computation problem. Displayed is the probability simplex
S in R3. The axes are the weight vectors. The ellipses are the contours of the unconstrained sum of
squared errors as a function of the weight vectors projected onto the constrained set

∑M
m=1 wm = 1. This is

the extension of the probability simplex as a two-dimensional plane in R3. The midpoint of the contours
is the minimizing weight vector allowing for weights outside [0,1]. The point where the lowest contour
ellipse hits the probability simplex is the solution (28.30), the Mallows selected weight vector. In the left
panel is displayed an example where the solution is the vertex (0,1,0) so the selected weight vector puts
all weight on model 2. In the right panel is displayed an example where the solution lies on the edge
between (1,0,0) and (0,0,1), meaning that the selected weight vector averages models 1 and 3 but puts
no weight on model 2. Since the contour sets are ellipses and the constraint set is a simplex, solution
points tend to be on edges and vertices meaning that some models receive zero weight. In fact, where
there are a large number of models a generic feature of the solution is that most models receive zero
weight; the selected weight vector puts positive weight on a small subset of the eligible models.

●

●

w1 w2

w3

w1 w2

w3

●

●

Figure 28.6: Mallows Weight Selection

Once the weights ŵ are obtained the model averaging estimator of the coefficients are found by
averaging the model estimates β̂m using the weights.

In the special case of two nested models the Mallows criterion can be written as

C (w) = (w,1−w)

(
ê ′

1ê1 ê ′
1ê2

ê ′
2ê1 ê ′

2ê2

)(
w

1−w

)
+2σ̃2 (wK1 + (1−w)K2)

= (w,1−w)

(
ê ′

1ê1 ê ′
2ê2

ê ′
2ê2 ê ′

2ê2

)(
1−w

w

)
+2σ̃2 (wK1 + (1−w)K2)

= w2 (
ê ′

1ê1 − ê ′
2ê2

)+ ê ′
2ê2 −2σ̃2 (K2 −K1) w +2σ̃2

where we assume K1 < K2 so that ê ′
1ê2 = Y ′ (I n −P 1) (I n −P 2)Y = Y ′ (I n −P 2)Y = ê ′

2ê2. The minimizer
of this criterion is

ŵ =
(
σ̃2 (K2 −K1)

ê ′
1ê1 − ê ′

2ê2

)
1

.

This is the same as the Stein Rule weight (28.27) with a slightly different shrinkage constant. Thus the
Mallows averaging estimator for M = 2 is a member of the Stein Rule family. Hence for M > 2 the Mallows
averaging estimator is a generalization of the James-Stein estimator to multiple models.
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Based on the latter observation, B. E. Hansen (2014) shows that the MMA estimator has lower WMSE
than the unrestricted least squares estimator when the models are nested linear regressions, the errors
are homoskedastic, and the models are separated by 4 coefficients or greater. The latter condition is
analogous to the conditions for improvements in the Stein Rule theory.

B. E. Hansen (2007) showed that the MMA estimator asymptotically achieves the same MSE as the in-
feasible optimal best weighted average using the theory of Li (1987) under similar conditions. This shows
that using model selection tools to select the averaging weights is asymptotically optimal for regression
fitting and point forecasting.

28.29 Jackknife (CV) Model Averaging

A disadvantage of Mallows selection is that the criterion is valid only when the errors are condi-
tionally homoskedastic. In constrast, selection by cross-validation does not require homoskedasticity.
Therefore it seems sensible to use cross-validation rather than Mallows to select the weight vectors. It
turns out that this is a simple extension with excellent finite sample performance. In the Machine Learn-
ing literature this method is called stacking.

A fitted averaging regression (with fixed weights) can be written as

Yi =
M∑

m=1
wm X ′

mi β̂m + êi (w)

where β̂m are the least squares coefficient estimates from Model m. The corresponding leave-one-out
equation is

Yi =
M∑

m=1
wm X ′

mi β̂m,(−i ) + ẽi (w)

where β̂m,(−i ) are the least squares coefficient estimates from Model m when observation i is deleted.
The leave-one-out prediction errors satisfy the simple relationship

ẽi (w) =
M∑

m=1
wm ẽmi

where ẽmi are the leave-one-out prediction errors for model m. In matrix notation ẽ (w) = Ẽ w where Ẽ
is the n ×M matrix of leave-one-out prediction errors.

This means that the jackknife estimate of variance (or equivalently the cross-validation criterion)
equals

CV(w) = w ′Ẽ ′
Ẽ w

which is a quadratic function of the weight vector. The cross-validation choice for weight vector is the
minimizer

ŵjma = argmin
w∈S

CV(w) . (28.31)

Given the weights the coefficient estimates (and any other parameter of interest) are found by taking
weighted averages of the model estimates using the weight vector ŵjma. B. E. Hansen and Racine (2012)
call this the Jackknife Model Averaging (JMA) estimator.

The algebraic properties of the solution are similar to Mallows. Since (28.31) minimizes a quadratic
function subject to a simplex constraint solutions tend to be on edges and vertices which means that
many (or most) models receive zero weight. Hence JMA weight selection simultaneously performs se-
lection and shrinkage. The solution is found numerically by quadratic programming which is computa-
tionally simple and fast even when the number of models M is large.
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B. E. Hansen and Racine (2012) showed that the JMA estimator is asymptotically equivalent to the in-
feasible optimal weighted average across least squares estimates based on a regression fit criteria. Their
results hold under quite mild conditions including conditional heteroskedasticity. This result is similar
to Andrews (1991c) generalization of Li (1987)’s result for model selection.

The implication of this theory is that JMA weight selection is computationally simple and has excel-
lent sampling performance.

28.30 Granger-Ramanathan Averaging

A method similar to JMA based on hold-out samples was proposed for forecast combination by
Granger and Ramanathan (1984), and has emerged as a popular method in the modern machine learning
literature.

Randomly split the sample into two parts: an estimation an an evaluation sample. Using the estima-
tion sample, estimate the M regression models, obtaining the coefficients β̂m . Using these coefficients
and the evaluation sample construct the fitted values Ỹmi = X ′

mi β̂m for the M models. Then estimate the
model weights by a least squares regression of Yi on Ỹmi and no intercept using the evaluation sample.
This regression is

Yi =
M∑

m=1
ŵm Ỹmi + êi .

The least squares coefficients ŵm are the Granger-Ramanathan weights.
Based on an informal argument Granger and Ramanathan (1984) recommended an unconstrained

least squares regression to obtain the weights but this is not advised as this produces extremely erratic
empirical weights, especially when M is large. It is recommended to use constrained regression, impos-
ing the constraints ŵm ≥ 0 and

∑M
m=1 ŵm = 1. To impose the non-negativity constraints it is best to use

quadratic programming.
This Granger-Ramanathan approach is best suited for applications with a very large sample size

where the efficiency loss from the hold-out sample split is not a concern.

28.31 Empirical Illustration

We illustrate the model averaging methods with the empirical application from Section 28.18, which
reported wage regression estimates for the CPS sub-sample of Asian women focusing on the return to
experience between 0 and 30 years.

Table 28.2 reports the model averaging weights obtained using the methods of SBIC, SAIC, Mallows
model averaging (MMA), and jackknife model averaging (JMA). Also reported in the final column is the
weighted average estimate of the return to experience as a percentage.

The results show that the methods put weight on somewhat different models. The SBIC puts nearly
all weight on model 2. The SAIC puts nearly 1/2 of the weight on model 6 with most of the remainder
split between models 5 and 9. MMA puts nearly 1/2 of the weight on model 9, 30% on 5, and 9% on
model 1. JMA is similar to MMA but more emphasis on parsimony, with 1/2 of the weight on model 5,
17% on model 9, 17% on model 1, and 8% on model 3. One of the interesting things about the MMA/JMA
methods is that they can split weight between quite different models, e.g. models 1 and 9.

The averaging estimators from the non-BIC methods are similar to one another but SBIC produces a
much smaller estimate than the other methods.
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Table 28.2: Model Averaging Weights and Estimates of Return to Experience among Asian Women

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Return
SBIC .02 .96 .00 .00 .04 .00 .00 .00 .00 22%
SAIC .00 .02 .10 .00 .15 .44 .00 .06 .22 38%
MMA .09 .02 .02 .00 .30 .00 .00 .00 .57 39%
JMA .17 .00 .08 .00 .57 .01 .00 .00 .17 34%

28.32 Technical Proofs*

Proof of Theorem 28.1 We establish the theorem under the simplifying assumptions of the normal linear
regression model with a K ×1 coefficient vector β and known variance σ2. The likelihood function is

Ln(β) = (
2πσ2)−n/2

exp

(
− 1

2σ2

n∑
i=1

(
Yi −X ′

iβ
)2

)
.

Evaluated at the MLE β̂ this equals

Ln(β̂) = (
2πσ2)−n/2

exp

(
−

∑n
i=1 ê2

i

2σ2

)
. (28.32)

Using (8.21) we can write

Ln(β) = (
2πσ2)−n/2

exp

(
− 1

2σ2

(
n∑

i=1
ê2

i +
(
β̂−β)′

X ′X
(
β̂−β)))

= Ln(β̂)exp

(
− 1

2σ2

(
β̂−β)′

X ′X
(
β̂−β))

.

For a diffuse prior π(β) =C the marginal likelihood is

p(Y ) = Ln(β̂)
∫

exp

(
− 1

2σ2

(
β̂−β)′

X ′X
(
β̂−β))

C dβ

= Ln(β̂)n−K /2 (
2πσ2)K /2

det

(
1

n
X ′X

)−1/2

C

where the final equality is the multivariate normal integral. Rewriting and taking logs

−2log p(Y ) =−2logLn(β̂)+K logn −K log
(
2πσ2)+ logdet

(
1

n
X ′X

)
+ logC

=−2`n(β̂)+K logn +O(1).

This is the theorem. ■
Proof of Theorem 28.2 From (28.11)∫

g (y) log f (y, θ̂)d y =−n

2
log

(
2πσ2)− 1

2σ2

n∑
i=1

∫ (
y −X ′

i β̂
)2

g
(
y | Xi

)
d y

=−n

2
log

(
2πσ2)− 1

2σ2

n∑
i=1

(
σ2 + (

β̂−β)′
Xi X ′

i

(
β̂−β))

=−n

2
log

(
2πσ2)− n

2
− 1

2σ2 e ′Pe.
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Thus

T =−2E

[∫
g (y) log f̂ (y)d y

]
= n log

(
2πσ2)+n + 1

σ2 E
[
e ′Pe

]= n log
(
2πσ2)+n +K .

This is (28.12). The final equality holds under the assumption of conditional homoskedasticity.
Evaluating (28.11) at β̂ we obtain the log likelihood

−2`n(β̂) = n log
(
2πσ2)+ 1

σ2

n∑
i=1

ê2
i = n log

(
2πσ2)+ 1

σ2 e ′Me.

This has expectation

−E[
2`n(β̂)

]= n log
(
2πσ2)+ 1

σ2 E
[
e ′Pe

]= n log
(
2πσ2)+n −K .

This is (28.13). The final equality holds under conditional homoskedasticity. ■

Proof of Theorem 28.4 The proof uses Taylor expansions similar to those used for the asymptotic distri-
bution theory of the MLE in nonlinear models. We avoid technical details so this is not a full proof.

Write the model density as f (y,θ) and the estimated model as f̂ (y) = f (y, θ̂). Recall from (28.10) that
we can write the target T as

T =−2E
[
log f (Ỹ , θ̂)

]
where Ỹ is an independent copy of Y . Let θ̃ be the MLE calculated on the sample Ỹ . θ̃ is an independent
copy of θ̂. By symmetry we can write T as

T =−2E
[
log f (Y , θ̃)

]
. (28.33)

Define the Hessian H =− ∂
∂θ∂θ′ E

[
log f (Y ,θ)

]> 0. Now take a second-order Taylor series expansion of the

log likelihood log f (Y , θ̃) about θ̂. This is

log f (Y , θ̃) = log f (Y , θ̂)+ ∂

∂θ′
log f (Y , θ̂)

(
θ̃− θ̂)− 1

2

(
θ̃− θ̂)′

H
(
θ̃− θ̂)+Op

(
n−1/2)

= log f (Y , θ̂)− n

2

(
θ̃− θ̂)′

H
(
θ̃− θ̂)+Op

(
n−1/2) . (28.34)

The second equality holds because of the first-order condition for the MLE θ̂.
If the Op (n−1/2) term in (28.34) is uniformly integrable (28.33) and (28.34) imply that

T =−E[
2log f (Y , θ̂)

]+E[
n

(
θ̃− θ̂)′

H
(
θ̃− θ̂)]+O

(
n−1/2)

=−E[
2logL(θ̂)

]+E[
n

(
θ̃−θ)′

H
(
θ̃−θ)]+E[

n
(
θ̂−θ)′

H
(
θ̂−θ)]

+2E
[

n
(
θ̃−θ)′

H
(
θ̂−θ)]+O

(
n−1/2)

=−E[
2`n(θ̂)

]+E[
χ2

K

]+E[
χ̃2

K

]+O
(
n−1/2)

=−E[
2`n(θ̂)

]+2K +O
(
n−1/2)

where χ2
K and χ̃2

K are chi-square random variables with K degrees of freedom. The second-to-last equal-
ity holds if

n
(
θ̂−θ)′

H
(
θ̂−θ)−→

d
χ2

K (28.35)

and the Wald statistic on the left-side of (28.35) is uniformly integrable. The asymptotic convergence
(28.35) holds for the MLE under standard regularity conditions (including correct specification). ■
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Proof of Theorem 28.5 Using matrix notation we can write m̂−m =− (I n − A)m+Ae. We can then write
the fit as

R = E[
(m̂ −m)′ (m̂ −m) | X

]
= E[

m′ (I n − A′) (I n − A)m −2m′ (I n − A′) Ae +e ′A′Ae | X
]

= m′ (I n − A′) (I n − A)m +σ2 tr
(

A′A
)

.

Notice that this calculation relies on the assumption of conditional homoskedasticity.
Now consider the Mallows criterion. We find that

C∗
p = ê ′ê +2σ̃2 tr(A)−e ′e

= (m +e)′
(

I n − A′) (I n − A) (m +e)+2σ̃2 tr(A)−e ′e

= m′ (I n − A′) (I n − A)m +2m′ (I n − A′) (I n − A)e +e ′A′Ae −2e ′Ae +2σ̃2 tr(A) .

Taking expectations and using the assumptions of conditional homoskedasticity and E
[
σ̃2 | X

]=σ2

E
[
C∗

p | X
]
= m′ (I n − A′) (I n − A)m +σ2 tr

(
A′A

)= R.

This is the result as stated. ■

Proof of Theorem 28.6 Take any two models M1 and M2 where M1 ∉ M
∗

and M2 ∈ M
∗

. Let their
information criteria be written as

IC1 =−2`1(θ̂1)+ c(n,K1)

IC2 =−2`2(θ̂2)+ c(n,K2).

Model M1 is selected over M2 if
LR < c(n,K2)− c(n,K1)

where LR = 2
(
`2(θ̂2)−`(θ̂1)

)
is the likelihood ratio statistic for testing M1 against M2. Since we have

assumed that M1 is not a true model while M2 is true, then LR diverges to +∞ at rate n. This means that
for any α > 0, n−1+αLR −→

p
+∞. Furthermore, the assumptions imply n−1+α (c(n,K1)− c(n,K2)) −→ 0.

Fix ε> 0. There is an n sufficiently large such that n−1+α (c(n,K1)− c(n,K2)) < ε. Thus

P
[
M̂ =M1

]
≤P[

n−1+αLR < n−1+α (c(n,K2)− c(n,K1))
]

≤P [LR < ε] → 0.

Since this holds for any M1 ∉M
∗

we deduce that the selected model is in M
∗

with probability approach-
ing one. This means that the selection criterion is model selection consistent as claimed. ■

Proof of Theorem 28.7 Take the setting as described in the proof of Theorem 28.6 but now assume M1 ⊂
M2 and M1,M2 ∈M

∗
. The likelihood ratio statistic satisfies LR −→

d
χ2

r where r = K2 −K1. Let

B = limsup
n→∞

(c(n,K1)− c(n,K2)) <∞.

Letting Fr (u) denote the χ2
r distribution function

P
[
M̂ =M2

]
=P [LR > (c(n,K2)− c(n,K1))]

≥P [LR > B ]

→P
[
χ2

r > B
]= 1−Fr (B) > 0
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since χ2
r has support over the positive real line and B <∞. This shows that the selection criterion asymp-

totically over-selects with positive probability. ■

Proof of Theorem 28.8 Since c(n,K ) = o(n) the procedure is model selection consistent. Take two models
M1,M2 ∈ M

∗
with K1 < K2. Since both models are true then LR = Op (1). Fix ε > 0. There is a B < ∞

such that LR ≤ B with probability exceeding 1− ε. By (28.16) there is an n sufficiently large such that
c(n,K2)− c(n,K1) > B . Thus

P
[
M̂ =M2

]
≤P [LR > (c(n,K2)− c(n,K1))] ≤P [LR > B ] ≤ ε.

Since ε is arbitrary P
[
M̂ =M2

]
−→ 0 as claimed. ■

Proof of Theorem 28.9 First, we examine Rn(K ). Write the predicted values in matrix notation as m̂K =
X K β̂K = P K Y where P K = X K

(
X ′

K X K
)−1 X ′

K . It is useful to observe that m − m̂K = M K m −P K e where
M K = I K −P K . We find that the prediction risk equals

Rn(K ) = E[
(m −m̂K )′ (m −m̂K ) | X

]
= E[

(M K m −P K e)′ (M K m −P K e) | X
]

= m′M K m +E[
e ′P K e | X

]
= m′M K m +σ2K .

The choice of regressors affects Rn(K ) through the two terms in the final line. The first term m′M K m is
the squared bias due to omitted variables. As K increases this term decreases reflecting reduced omitted
variables bias. The second term σ2K is estimation variance. It is increasing in the number of regressors.
Increasing the number of regressors affects the quality of out-of-sample prediction by reducing the bias
but increasing the variance.

We next examine the adjusted Mallows criterion. We find that

C∗
n (K ) = ê ′

K êK +2σ2K −e ′e

= (m +e)′ M K (m +e)+2σ2K −e ′e

= m′M K m +2m′M K e −e ′P K e +2σ2K .

The next step is to show that

sup
K

∣∣∣∣C∗
n (K )−Rn(K )

Rn(K )

∣∣∣∣−→p 0 (28.36)

as n →∞. To establish (28.36), observe that

C∗
n (K )−Rn(K ) = 2m′M K e −e ′P K e +σ2K .

Pick ε> 0 and some sequence Bn →∞ such that Bn/
(
Ropt

n

)r → 0. (This is feasible by Assumption 28.1.5.)

By Boole’s inequality (B.24), Whittle’s inequality (B.48), the facts that m′M K m ≤ Rn(K ) and Rn(K ) ≥σ2K ,
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Bn/
(
Ropt

n

)r → 0, and
∑∞

K=1 K −r <∞

P

[
sup

K

∣∣∣∣m′M K e

Rn(K )

∣∣∣∣> ε∣∣∣∣ X
]
≤

∞∑
K=1

P

[∣∣∣∣m′M K e

Rn(K )

∣∣∣∣> ε∣∣∣∣ X
]

≤ C1r

ε2r

∞∑
K=1

∣∣m′M K m
∣∣r

Rn(K )2r

≤ C1r

ε2r

∞∑
K=1

1

Rn(K )r

= C1r

ε2r

Bn∑
K=1

1

Rn(K )r + C1r

ε2r

∞∑
K=Bn+1

1

Rn(K )r

≤ C1r

ε2r

Bn(
Ropt

n

)r + C1r

ε2rσ2r

∞∑
K=Bn+1

1

K r

→ 0.

By a similar argument but using Whittle’s inequality (B.49), tr(P K P K ) = tr(P K ) = K , and K ≤σ−2Rn(K )

P

[
sup

K

∣∣∣∣e ′P K e −σ2K

Rn(K )

∣∣∣∣> ε∣∣∣∣ X
]
≤

∞∑
K=1

P

[∣∣∣∣e ′P K e −E(
e ′P K e

)
Rn(K )

∣∣∣∣> ε∣∣∣∣ X
]

≤ C2r

ε2r

∞∑
K=1

tr(P K P K )r

Rn(K )2r

= C2r

ε2r

∞∑
K=1

K r

Rn(K )2r

≤ C1r

ε2rσ2r

∞∑
K=1

1

Rn(K )r

→ 0.

Together these imply (28.36).
Finally we show that (28.36) implies (28.18). The argument is similar to the standard consistency

proof for nonlinear estimators. (28.36) states that C∗
n (K ) converges uniformly in probability to Rn(K ).

This implies that the minimizer of C∗
n (K ) converges in probability to that of Rn(K ). Formally, since K opt

n

minimizes Rn(K )

0 ≤ Rn(K̂n)−Rn(K opt
n )

Rn(K̂n)

= C∗
n (K̂n)−Rn(K opt

n )

Rn(K̂n)
− C∗

n (K̂n)−Rn(K̂n)

−Rn(K̂n)

≤ C∗
n (K̂n)−Rn(K opt

n )

Rn(K̂n)
+op (1)

≤ C∗
n (K opt

n )−Rn(K opt
n )

Rn(K opt
n )

+op (1)

≤ op (1).

The second inequality is (28.36). The following uses the facts that K̂n minimizes C∗
n (K ) and K opt

n mini-
mizes Rn(K ). The final is (28.36). This is (28.18). ■
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Before providing the proof of Theorem 28.10 we present two technical results related to the non-
central chi-square density function with degree of freedom K and non-centrality parameter λ which
equals

fK (x,λ) =
∞∑

i=0

e−λ/2

i !

(
λ

2

)i

fK+2i (x) (28.37)

where fr (x) = xr /2−1e−x/2

2r /2Γ(r /2))
is the χ2

K density function.

Theorem 28.16 The non-central chi-square density function (28.37) obeys the
recursive relationship fK (x,λ) = K

x fK+2(x,λ)+ λ
x fK+4(x,λ).

The proof of Theorem 28.16 is a straightforward manipulation of the non-central chi-square density
function (28.37).

The second technical result is from Bock (1975, Theorems A&B).

Theorem 28.17 If X ∼ N(θ, I K ) then for any function h (u)

E
[

X h
(
X ′X

)]= θE [h (QK+2)] (28.38)

E
[

X ′X h
(
X ′X

)]= KE [h (QK+2)]+λE [h (QK+4)] (28.39)

where λ = θ′θ and Qr ∼ χ2
r (λ), a non-central chi-square random variable with

r degrees of freedom and non-centrality parameter λ.

Proof of Theorem 28.17 To show (28.38) we first show that for Z ∼ N(µ,1) then for any function g (u)

E
[

Z g
(
Z 2)]=µE[

g (Q3)
]

. (28.40)

Assume µ> 0. Using the change-of-variables y = x2

E
[

Z g
(
Z 2)]= ∫ ∞

−∞
xp
2π

g
(
x2)exp

(
−1

2

(
x −µ)2

)
d x

=
∫ ∞

0

y

2
p

2π
e−(y+µ2)/2

(
e
p

yµ−e−
p

yµ
)

g
(
y
)

d y. (28.41)

By expansion and Legendre’s duplication formula

ex −e−x = 2
∞∑

i=0

x1+2i

(1+2i )!
=p

πx
∞∑

i=0

(x2/2)i

2i i !Γ (i +3/2)
.

Then (28.41) equals

µ

∫ ∞

0
ye−(y+µ2)/2

∞∑
i=0

(µ2/2)i y i+1/2

23/2+i i !Γ (i +3/2)
g

(
y
)

d y =µ
∫ ∞

0
y f3(y,µ2)g

(
y
)

d y =µE[
g (Q3)

]
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where f3(y,λ) is the non-central chi-square density (28.37) with 3 degrees of freedom. This is (28.40).
Take the j th row of (28.38). Write X ′X = X 2

j + J , where X j ∼ N(θ j ,1) and J ∼ χ2
K−1(λ−θ2

j ) are inde-
pendent. Setting g (u) = h(u + J ) and using (28.41)

E
[

X j h
(
X ′X

)]= E[
X j h

(
X 2

j + J
)]

= E
[
E
[

X j g
(

X 2
j

)
| J

]]
= E[

θ jE
[
g (Q3) | J

]]
= θ jE [h (Q3 + J )]

= θ jE [h (QK+2)]

which is (28.38). The final equality uses the fact that Q3 + J ∼QK+2.
Observe that X ′X has density fK (x,λ). Using Theorem 28.16

E
[

X ′X
(
X ′X

)]= ∫ ∞

0
xh(x) fK (x,λ)d x

= K
∫ ∞

0
h(x) fK+2(x,λ)d x +λ

∫ ∞

0
h(x) fK+4(x,λ)d x

= KE [h (QK+2)]+λE [h (QK+4)]

which is (28.39). ■

Proof of Theorem 28.10 By the quadratic structure we can calculate that

MSE
[
θ̂∗

]= E[(
θ̂−θ− θ̂1{

θ̂′θ̂ ≤ c
})′ (

θ̂−θ− θ̂1{
θ̂′θ̂ ≤ c

})]
= E

[(
θ̂−θ)′ (

θ̂−θ)]−E[
θ̂′θ̂1

{
θ̂′θ̂ ≤ c

}]+2E
[
θ′θ̂1

{
θ̂′θ̂ ≤ c

}]
= K −KE

[
1

{
QK+2 ≤ c

}]−λE[
1

{
QK+4 ≤ c

}]+2λE
[
1

{
QK+2 ≤ c

}]
= K + (2λ−K )FK+2 (c,λ)−λFK+4 (c,λ) .

The third equality uses the two results from Theorem 28.17, setting h(u) =1 {u ≤ c}. ■

_____________________________________________________________________________________________

28.33 Exercises

Exercise 28.1 Verify equations (28.1)-(28.2).

Exercise 28.2 Find the Mallows criterion for the weighted least squares estimator of a linear regression
Yi = X ′

iβ+ei with weights ωi (assume conditional homoskedasticity).

Exercise 28.3 Backward Stepwise Regression. Verify the claim that for the case of AIC selection, step (b)
of the algorithm can be implemented by calculating the classical (homoskedastic) t-ratio for each active
regressor and find the regressor with the smallest absolute t-ratio.

Hint: Use the relationship between likelihood ratio and F statistics and the equality between F and
Wald statistics to show that for tests on one coefficient the smallest change in the AIC is identical to
identifying the smallest squared t statistic.
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Exercise 28.4 Forward Stepwise Regression. Verify the claim that for the case of AIC selection, step (b)
of the algorithm can be implemented by identifying the regressor in the inactive set with the greatest
absolute correlation with the residual from step (a).

Hint: This is challenging. First show that the goal is to find the regressor which will most decrease
SSE = ê ′ê = ‖ê‖2. Use a geometric argument to show that the regressor most parallel to ê will most
decreases ‖ê‖. Show that this regressor has the greatest absolute correlation with ê.

Exercise 28.5 An economist estimates several models and reports a single selected specification, stat-
ing that “the other specifications had insignificant coefficients”. How should we interpret the reported
parameter estimates and t-ratios?

Exercise 28.6 Verify Theorem 28.11, including (28.21), (28.22), and (28.23).

Exercise 28.7 Under the assumptions of Theorem 28.11, show that λ̂ = θ̂′V −1θ̂−K is an unbiased esti-
mator of λ= θ′V −1θ.

Exercise 28.8 Prove Theorem 28.14 for the simpler case of the unadjusted (not positive part) Stein esti-
mator θ̃, V = I K and r = 0.

Extra challenge: Show under these assumptions that

wmse
[
θ̃
]= K − (q −2)2 Jq (λR )

λR = θ′R (
R ′R

)−1 R ′θ.

Exercise 28.9 Suppose you have two unbiased estimators θ̂1 and θ̂2 of a parameter vector θ̂ with covari-
ance matrices V 1 and V 2. Take the goal of minimizing the unweighted mean squared error, e.g. trV 1 for
θ̂1. Assume that θ̂1 and θ̂2 are uncorrelated.

(a) Show that the optimal weighted average estimator equals

1
trV 1

θ̂1 + 1
trV 2

θ̂2

1
trV 1

+ 1
trV 2

.

(b) Generalize to the case of M unbiased uncorrelated estimators.

(c) Interpret the formulae.

Exercise 28.10 You estimate M linear regressions Y = X ′
mβm +em by least squares. Let Ŷmi = X ′

mi β̂m be
the fitted values.

(a) Show that the Mallows averaging criterion is the same as

n∑
i=1

(
Yi −w1Ŷ1i −w2Ŷ2i −·· ·−wM ŶMi

)2 +2σ2
M∑

m=1
wmkm .

(b) Assume the models are nested with M the largest model. If the previous criterion were minimized
over w in the probability simplex but the penalty was omitted, what would be the solution? (What
would be the minimizing weight vector?)



CHAPTER 28. MODEL SELECTION, STEIN SHRINKAGE, AND MODEL AVERAGING 909

Exercise 28.11 You estimate M linear regressions Y = X ′
mβm +em by least squares. Let Ỹmi = X ′

mi β̂m(−i )

be the predicted values from the leave-one-out regressions. Show that the JMA criterion equals

n∑
i=1

(
Yi −w1Ỹ1i −w2Ỹ2i −·· ·−wM ỸMi

)2
.

Exercise 28.12 Using the cps09mar dataset perform an analysis similar to that presented in Section
28.18 but instead use the sub-sample of Hispanic women. This sample has 3003 observations. Which
models are selected by BIC, AIC, CV and FIC? (The precise information criteria you examine may be lim-
ited depending on your software.) How do you interpret the results? Which model/estimate would you
select as your preferred choice?



Chapter 29

Machine Learning

29.1 Introduction

This chapter reviews machine learning methods for econometrics. This is a large and growing topic
so our treatment is selective. This chapter briefly covers ridge regression, Lasso, elastic net, regression
trees, bagging, random forests, ensembling, Lasso IV, double-selection/post-regularization, and dou-
ble/debiased machine learning.

A classic reference is Hastie, Tibshirani, and Friedman (2008). Introductory textbooks include James,
Witten, Hastie, and Tibshirani (2013) and Efron and Hastie (2017). For a theoretical treatment see Bühlmann
and van der Geer (2011). For reviews of machine learning in econometrics see Belloni, Chernozhukov
and Hansen (2014a), Mullainathan and Spiess (2017), Athey and Imbens (2019), and Belloni, Chernozhukov,
Chetverikov, Hansen, and Kato (2021).

29.2 Big Data, High Dimensionality, and Machine Learning

Three inter-related concepts are “big data”, “high dimensionality”, and “machine learning”.
Big data is typically used to describe datasets which are unusually large and/or complex relative to

traditional applications. The definition of “large” varies across discipline and time, but typically refers
to datasets with millions of observations. These datasets can arise in economics from household census
data, government administrative records, and supermarket scanner data. Some challenges associated
with big data are storage, transmission, and computation.

High Dimensional is typically used to describe datasets with an unusually large number of variables.
Again the definition of “large” varies across applications, but typically refers to hundreds or thousands
of variables. In the theoretical literature “high dimensionality” is used specifically for the context where
p >> n, meaning that the number of variables p greatly exceeds the number of observations n.

Machine Learning is typically used to describe a set of algorithmic approaches to statistical learn-
ing. The methods are primarily focused on point prediction in settings with unknown structure. Machine
learning methods generally allow for large sample sizes, large number of variables, and unknown struc-
tural form. The early literature was algorithmic with no associated statistical theory. This was followed by
a statistical literature examining the properties of machine learning methods, mostly providing conver-
gence rates under sparsity assumptions. Only recently has the literature expanded to include inference.

Machine learning embraces a large and diverse set of tools for a variety of settings, including su-
pervised learning (prediction rules for Y given high-dimensional X ), unsupervised learning (uncov-
ering structure amongst high-dimensional X ), and classification (discrete choice analysis with high-
dimensional predictors). In this chapter we focus on supervised learning as it is a natural extension of

910
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linear regression.
Machine learning arose from the computer science literature and thereby adopted a distinct set of

labels to describe familar concepts. For example, it speaks of “training” rather than “estimation” and
“features” rather than “regressors”. In this chapter, however, we will use standard econometric language
and terminology.

For econometrics, machine learning can be thought of as “highly nonparametric”. Suppose we are
interested in estimating the conditional mean m(X ) = E [Y | X ] when the shape of m(x) is unknown. A
nonparametric analysis typically assumes that X is low-dimensional. In contrast, a machine learning
analysis may allow for hundreds or even thousands of regressors in X , and does not require prior infor-
mation about which regressors are most relevant.

Connections between nonparametric estimation, model selection, and machine learning methods
arise in tuning parameter selection by cross-validation and evaluation by out-of-sample prediction ac-
curacy. These issues are taken seriously in machine learning applications; frequently with multiple levels
of hold-out samples.

29.3 High Dimensional Regression

We are familiar with the linear regression model Y = X ′β+ e where X and β are p × 1 vectors1. In
conventional regression models we are accustomed to thinking of the number of variables p as small
relative to the sample size n. Traditional parametric asymptotic theory assumes that p is fixed as n →∞
which is typically interpreted as implying that p is much smaller than n. Nonparametric regression the-
ory assumes that p →∞ but at a much slower rate than n. This is interpreted as p being moderately large
but still much smaller than n. High-dimensional regression is used to describe the context where p is
very large, including the case where p is larger than n. It even includes the case where p is exponentially
larger than n.

It may seem shocking to contemplate an application with more regressors than observations. But
the situation arises in a number of contexts. First, in our discussion of series regression (Chapter 20) we
described how a regression function can be approximated by an infinite series expansion in basis trans-
formations of the underlying regressors. Expressed as a linear model this implies a regression model
with an infinite number of regressors. Practical models (as discussed in that chapter) use a moderate
number of regressors in estimated regressions because this provides a balance between bias and vari-
ance. This latter models, however, are not the true conditional mean (which has an infinite number of
regressors) but rather a low-dimensional best linear approximation. Second, many economic applica-
tions involve a large number of binary, discrete, and categorical variables. A saturated regression model
converts all discrete and categorical variables into binary variables and includes all interactions. Such
manipulations can result in thousands of regressors. For example, ten binary variables fully interacted
yields 1024 regressors. Twenty binary variables fully interacted yields over one million regressors. Third,
many contemporary “big” datasets contain thousands of potential regressors. Many of the variables may
be low-information but it is difficult to know a priori which are relevant and which irrelevant.

When p > n the least squares estimator β̂ols is not uniquely defined since X ′X has deficient rank.
Furthermore, for p < n but “large” the matrix X ′X can be near-singular or ill-conditioned so the least
squares estimator can be numerically unstable and high variance. Consequently we turn to estimation
methods other than least squares. In this chapter we discuss several alternative estimation methods,
including ridge regression, Lasso, elastic net, regression trees, and random forests.

1In most of this textbook we have denoted the dimension of X as k. In this chapter we will instead denote the dimension of
X as p as this is the custom in the machine learning literature.
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29.4 p-norms

For discussion of ridge and Lasso regression we will be making extensive use of the 1-norm and 2-
norm, so it is useful to review the definition of the general p-norm. For a vector a = (a1, ..., ak )′ the
p-norm (p ≥ 1) is

‖a‖p =
(

k∑
j=1

∣∣a j
∣∣p

)1/p

.

Important special cases include the 1-norm

‖a‖1 =
k∑

j=1

∣∣a j
∣∣ ,

the 2-norm

‖a‖2 =
(

k∑
j=1

a2
j

)1/2

,

and the sup-norm
‖a‖∞ = max

1≤ j≤k

∣∣a j
∣∣ .

We also define the “0-norm”

‖a‖0 =
k∑

j=1
1

{
a j 6= 0

}
,

the number of non-zero elements. This is only heuristically labeled as a “norm”.
The p-norm satisfies the following additivity property. If a = (a0, a1) then

‖a‖p
p = ‖a0‖p

p +‖a1‖p
p .

The following inequalities are useful. The Hölder inequality for 1/p +1/q = 1 is∣∣a′b
∣∣≤ ‖a‖p ‖b‖q . (29.1)

The case p = 1 and q =∞ is ∣∣a′b
∣∣≤ ‖a‖1 ‖b‖∞ . (29.2)

The Minkowski inequality for p ≥ 1 is

‖a +b‖p ≤ ‖a‖p +‖b‖p . (29.3)

The p-norms for p ≥ 1 satisfy norm monotonicity. In particular

‖a‖1 ≥ ‖a‖2 ≥ ‖a‖∞ .

Applying Hölder’s (29.1) we also have the inequality

‖a‖1 =
k∑

j=1

∣∣a j
∣∣1{

a j 6= 0
}≤ ‖a‖2 ‖a‖1/2

0 . (29.4)
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29.5 Ridge Regression

Ridge regression is a shrinkage-type estimator with similar but distinct properties from the James-
Stein estimator (see Section 28.20). There are two competing motivations for ridge regression. The tra-
ditional motivation is to reduce the degree of collinearity among the regressors. The modern motivation
(though in mathematics it pre-dates the “traditional” motivation) is regularization of high-dimensional
and ill-posed inverse problems. We discuss both in turn.

As discussed in the previous section, when p is large the least squares coefficient estimate can be
numerically unreliable due to an ill-conditioned X ′X . As a numerical improvement Hoerl and Kennard
(1970) proposed the ridge regression estimator

β̂ridge =
(

X ′X +λI p
)−1 X ′Y

where λ> 0 is a shrinkage parameter. This estimator has the property that it is well-defined and does not
suffer from multicollinearity or ill-conditioning. This even holds if p > n! That is, the ridge regression
estimator is well-defined even when the number of regressors exceeds the sample size.

The constant λ is a tuning parameter. We discuss how to select λ below.
To see how λ> 0 ensures that the inverse problem is solved, use the spectral decomposition to write

X ′X = H ′D H where H is orthonormal and D = diag{r1, ...,rp } is a diagonal matrix with the eigenvalues
r j of X ′X on the diagonal. SetΛ=λI p . We can write

X ′X +λI p = H ′D H +λH ′H = H ′ (D +Λ) H

which has strictly positive eigenvalues r j +λ > 0. Thus all eigenvalues are bounded away from zero so
X ′X +λI p is full rank and well-conditioned.

The second motivation is based on penalization. When X ′X is ill-conditioned its inverse is ill-posed.
Techniques to deal with ill-posed estimators are called regularization and date back to Tikhonov (1943).
A leading method is penalization. Consider the sum of squared errors penalized by the squared 2-norm
of the coefficient vector

SSE2
(
β,λ

)= (
Y −Xβ

)′ (Y −Xβ
)+λβ′β= ∥∥Y −Xβ

∥∥2
2 +λ

∥∥β∥∥2
2 .

The minimizer of SSE2
(
β,λ

)
is a regularized least squares estimator.

The first order condition for minimization of SSE2
(
β,λ

)
over β is

−2X ′ (Y −Xβ
)+2λβ= 0. (29.5)

The solution is β̂ridge. Thus the regularized (penalized) least squares estimator equals ridge regression.
This shows that the ridge regression estimator minimizes the sum of squared errors subject to a penalty
on the squared 2-norm of the regression coefficient. Penalizing large coefficient vectors keeps the latter
from being too large and erratic. Hence one interpretation of λ is as a penalty on the magnitude of the
coefficient vector.

Minimization subject to a penalty has a dual representation as constrained minimization. The latter
is

min
β′β≤τ

(
Y −Xβ

)′ (Y −Xβ
)

for some τ> 0. To see the connection, the Lagrangian for the constrained problem is

min
β

(
Y −Xβ

)′ (Y −Xβ
)+λ(

β′β−τ)
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where λ is a Lagrange multiplier. The first order condition is (29.5) which is the first order condition for
the penalization problem. This shows that they have the same solution.

The practical difference between the penalization and constraint problems is that in the first you
specify the ridge parameter λwhile in the second you specify the constraint τ. They are connected since
the values of λ and τ satisfy the relationship

Y ′X
(

X ′X +λI p
)−1 (

X ′X +λI p
)−1 X ′Y = τ.

To find λ given τ it is sufficient to (numerically) solve this equation.

β1

β2

● OLS
●

Ridge

β1
2 + β2

2 ≤ τ

Ridge Path

●

Figure 29.1: Ridge Regression Dual Minimization Solution

To visualize the constraint problem see Figure 29.1 which plots an example in R2. The constraint set
β′β ≤ τ is displayed as the ball about the origin and the contour sets of the sum of squared errors are
displayed as ellipses. The least squares estimator is the center of the ellipses, while the ridge regression
estimator is the point on the circle where the contour is tangent. This shrinks the least squares coefficient
towards the zero vector. Unlike the Stein estimator, however, it does not shrink along the line segment
connecting least squares with the origin, rather it shrinks along a trajectory determined by the degree of
correlation between the variables. This trajectory is displayed with the dashed lines, marked as “Ridge
path”. This is the sequence of ridge regression coefficients obtained as λ is varied from 0 to ∞. When
λ= 0 the ridge estimator equals least squares. For small λ the ridge estimator moves slightly towards the
origin by sliding along the ridge of the contour set. As λ increases the ridge estimator takes a more direct
path towards the origin. This is unlike the Stein estimator which shrinks the least squares estimator
towards the origin along the connecting line segment.

It is straightforward to generalize ridge regression to allow different penalties on different groups of
regressors. Take the model

Y = X ′
1β1 +·· ·+X ′

GβG +e

and minimize the SSE subject to the penalty

λ1β
′
1β1 +·· ·+λGβ

′
GβG .

The solution is
β̂ridge =

(
X ′X +Λ)−1 X ′Y

where
Λ= diag

{
λ1I p1 , ...,λG I pG

}
.

This allows some coefficients to be penalized more (or less) than other coefficients. This added flexibility
comes at the cost of selecting the ridge parameters λ= (λ1, ...,λG ). One important special case is λ1 = 0,
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thus one group of coefficients are not penalized. With G = 2 this partitions the coefficients into two
groups: penalized and non-penalized.

The most popular method to select the ridge parameterλ is cross validation. The leave-one-out ridge
regression estimator, prediction errors, and CV criterion are

β̂−i (λ) =
(∑

j 6=i
X j X ′

j +Λ
)−1 (∑

j 6=i
X j Yi

)
ẽi (λ) = Yi −X ′

i β̂−i (λ)

CV(λ) =
n∑

i=1
ẽi (λ)2.

The CV-selected ridge parameter λ̂ minimizes CV(λ). The cross-validation ridge estimator is calculated
using λ̂.

In practice it may be tricky to minimize CV(λ). The minimum may occur at λ= 0 (ridge equals least
squares), at λ=∞ (full shrinkage), or there may be multiple local minima. The scale of the minimizing λ
depends on the scaling of the regressors and in particular the singular values of X ′X . It can be important
to explore CV(λ) for very small values of λ.

As for least squares there is a simple formula to calculate the CV criterion for ridge regression which
greatly speeds computation.

Theorem 29.1 The leave-one-out ridge regression prediction errors are

ẽi (λ) =
(
1−X ′

i

(
X ′X +Λ)−1 Xi

)−1
êi (λ) (29.6)

where êi (λ) = Yi −X ′
i β̂ridge(λ) are the ridge regression residuals.

For a proof see Exercise 29.1.
An alternative method for selection of λ is to minimize the Mallows criterion which equals

C (λ) =
n∑

i=1
êi (λ)2 +2σ̂2 tr

((
X ′X +Λ)−1 (

X ′X
))

. (29.7)

where σ̂2 is the variance estimator from least squares estimation. For a derivation of (29.7) see Exercise
29.2. The Mallows-selected ridge parameter λ̂ minimizes C (λ). The Mallows-selected ridge estimator
is calculated using λ̂. Li (1986) showed that in the normal regression model the ridge estimator with
the Mallows-selected ridge parameter is asymptotically equivalent to the infeasible best ridge parameter
in terms of regression fit. I am unaware of a similar optimality result for cross-validated-selected ridge
estimation.

An important caveat is that the ridge regression estimator is not invariant to rescaling the regres-
sors nor other linear transformations. Therefore it is common to apply ridge regression after applying
standardizing transformations to the regressors.

Ridge regression can be implemented in R with the glmnet command. In Stata, ridge regression is
available in the downloadable package lassopack.
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29.6 Statistical Properties of Ridge Regression

Under the assumptions of the linear regression model it is straightforward to calculate the exact bias
and variance of the ridge regression estimator. Take the linear regression model

Y = X ′β+e

E [e | X ] = 0.

The bias of the ridge estimator is

bias
[
β̂ridge | X

]=−λ(
X ′X +λI p

)−1
β. (29.8)

Under random sampling its covariance matrix is

var
[
β̂ridge | X

]= (
X ′X +λI p

)−1 (
X ′D X

)(
X ′X +λI p

)−1 (29.9)

where D = diag
{
σ2(X1), ...,σ2(Xn)

}
and σ2(x) = E

[
e2 | X = x

]
. For a derivation of (29.8) and (29.9) see

Exercise 29.3. Under cluster or serial dependence the central component modifies in the standard way.
We can measure estimation efficiency by the mean squared error (MSE) matrix

mse
[
β̂ | X

]= E[(
β̂−β)(

β̂−β)′ | X
]

.

Define σ2 = minx∈X σ2(x) where X is the support of X .

Theorem 29.2 In the linear regression model, if 0 <λ< 2σ2/β′β,

mse
[
β̂ridge | X

]< mse
[
β̂ols | X

]
.

For a proof see Section 29.23.
Theorem 29.2 shows that the ridge estimator dominates the least squares estimator for λ satisfying a

range of values. This holds regardless of the dimension ofβ. Since the upper bound 2σ2/β′β is unknown,
however, it is unclear if feasible ridge regression dominates least squares. The upper bound does not give
practical guidance for selection of λ.

Given (29.9) it is straightforward to construct estimators of Vβ̂ = var
[
β̂ridge | X

]
. I suggest the HC3

analog

Ṽβ̂ =
(

X ′X +λI p
)−1

(
n∑

i=1
Xi X ′

i ẽi (λ)2

)(
X ′X +λI p

)−1 (29.10)

where ẽi (λ) are the ridge regression prediction errors (29.6). Alternatively the ridge regression residuals
êi (λ) can be used but it is unclear how to make an appropriate degree-of-freedom correction. Under
clustering or serial dependence the central component of Ṽβ̂ can be modified as usual. If the regressors
are highly sparse (as in a sparse dummy variable regression) it may be prudent to use the homoskedastic
estimator

Ṽ 0
β̂
= σ̃2(λ)

(
X ′X +λI p

)−1 (
X ′X

)(
X ′X +λI p

)−1

with σ̃2(λ) = n−1 ∑n
i=1 ẽi (λ)2.

Given that the ridge estimator is explicitly biased there are natural concerns about how to interpret
standard errors calculated from these covariance matrix estimators. Confidence intervals calculated the
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usual way will have deficient coverage due to the bias. One answer is to interpret the ridge estimator
β̂ridge and its standard errors similarly to those obtained in nonparametric regression. The estimators

and confidence intervals are valid for the pseudo-true projections, e.g. β∗ = (
X ′X +λI p

)−1 X ′Xβ, not
the coefficients β themselves. This is the same interpretation as we use for the projection model and
for nonparametric regression. For asymptotically accurate inference on the true coefficients β the ridge
parameter λ could be selected to satisfy λ = o

(p
n

)
analogously to an undersmoothing bandwidth in

nonparametric regression.

29.7 Illustrating Ridge Regression
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Figure 29.2: Least Squares and Ridge Regression Estimates of the Return to Experience

To illustrate ridge regression we use the CPS dataset with the sample of Asian men with a college
education (16 years of education or more) to estimate the experience profile. We consider a fifth-order
polynomial in experience for the conditional mean of log wages. We start by standardizing the regressors.
We first center experience at its mean, create powers up to order five, and then standardized each to
have mean zero and variance one. We estimate the polynomial regression by least squares and by ridge
regression, the latter shrinking the five coefficients on experience but not the intercept.

We calculate the ridge parameter by cross-validation. The cross-validation function is displayed in
Figure 29.2(a) over the interval [0,60]. Since we have standardized the regressors to have zero mean and
unit variance the ridge parameter is scaled comparably with sample size, which in this application is
n = 875. The cross-validation function is uniquely minimized at λ = 19. I use this value of λ for the
following ridge regression estimation.

Figure 29.2(b) displays the estimated experience profiles. Least squares is displayed by dashes and
ridge regression by the solid line. The ridge regression estimate is smoother and more compelling. The
grey shaded region are 95% normal confidence bands centered at the ridge regression estimate, calcu-
lated using the HC3 covariance matrix estimator (29.10).
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29.8 Lasso

In the previous section we learned that ridge regression minimizes the sum of squared errors plus a
2-norm penalty on the coefficient vector. Model selection (e.g. Mallows) minimizes the sum of squared
errors plus the 0-norm penalty (the number of non-zero coefficients). An intermediate case uses the
1-norm penalty. This was proposed by Tibshirani (1996) and is known as the Lasso (for Least Absolute
Shrinkage and Selection Operator). The least squares criterion with a 1-norm penalty is

SSE1
(
β,λ

)= (
Y −Xβ

)′ (Y −Xβ
)+λ p∑

j=1

∣∣β j
∣∣= ∥∥Y −Xβ

∥∥2
2 +λ

∥∥β∥∥
1 .

The Lasso estimator is its minimizer

β̂Lasso = argmin
β

SSE1
(
β,λ

)
.

Except for special cases the solution must be found numerically. Fortunately, computational algorithms
are surprisingly simple and fast. An important property is that when λ > 0 the Lasso estimator is well-
defined even if p > n.

The Lasso minimization problem has the dual constrained minimization problem

β̂Lasso = argmin
‖β‖1≤τ

SSE1
(
β
)

.

To see that the two problems are the same observe that the constrained minimization problem has the
Lagrangian

min
β

(
Y −Xβ

)′ (Y −Xβ
)+λ(

p∑
j=1

∣∣β j
∣∣−τ)

which has first order conditions
−2X ′

j

(
Y −Xβ

)+λsgn
(
β j

)= 0.

This is the same as those for minimization of the penalized criterion. Thus the solutions are identical.

β1

β2

OLS

 β1 +  β2 ≤ τ

Lasso

Lasso Path

Figure 29.3: Lasso Dual Minimization Solution

The constraint set
{∥∥β∥∥

1 ≤ τ
}

for the dual problem is a cross-polytope resembling a multi-faceted
diamond. The minimization problem in R2 is illustrated in Figure 29.3. The sum of squared error con-
tour sets are the ellipses with the least squares solution at the center. The constraint set is the shaded
polytope. The Lasso estimator is the intersection point between the constraint set and the largest ellipse
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drawn. In this example it hits a vertex of the constraint set and so the constrained estimator sets β̂1 = 0.
This is a typical outcome in Lasso estimation. Since we are minimizing a quadratic subject to a polytope
the solution tends to be at vertices. This eliminates a subset of the coefficients.

The Lasso path is drawn with the dashed line. This is the sequence of solutions obtained as the
constraint set is varied. The solution path has the property that it is a straight line from the least squares
estimator to the y-axis (in this example), at which point β2 is set to zero, and then the solution path
follows the y-axis to the origin. In general, the solution path is linear on segments until a coefficient hits
zero, at which point that coefficient is eliminated. In this particular example the solution path shows β2

increasing while β1 decreases. Thus while Lasso is a shrinkage estimator it does not shrink individual
coefficients monotonically.

It is instructive to compare Figures 29.1 and 29.3 which have the same sum of squares contours. The
ridge estimator is generically an interior solution with no individual coefficient set to zero, while the
Lasso estimator typically sets some coefficients equal to zero. However both estimators follow similar
solution paths, following the ridge of the SSE criterion rather than taking a direct path towards the origin.

One case where we can explicitly calculate the Lasso estimates is when the regressors are orthogonal.
Suppose that X ′X = I p . Then the first order condition for minimization simplifies to

−2
(
β̂ols, j − β̂Lasso, j

)+λsgn
(
β̂Lasso, j

)= 0

which has the explicit solution

β̂Lasso, j =


β̂ols, j −λ/2 β̂ols, j >λ/2

0
∣∣β̂ols, j

∣∣≤λ/2
β̂ols, j +λ/2 β̂ols, j <−λ/2.

This Lasso estimate is a continuous transformation of the least squares estimate. For small values of the
least squares estimate the Lasso estimate is set to zero. For all other values the Lasso estimate moves the
least squares estimate towards zero by λ/2.

β̂ols

β̂select

(a) Selection

β̂ols

β̂ridge

(b) Ridge

β̂ols

β̂Lasso

(c) Lasso

Figure 29.4: Transformations of least squares estimates by Selection, Ridge, and Lasso

It is constructive to contrast this behavior with ridge regression and selection estimation. When
X ′X = I k the ridge estimator equals β̂ridge = (1+λ)−1 β̂ols so shrinks the coefficients towards zero by a
common multiple. A selection estimator (for simplicity consider selection based on a homoskedastic
t-test with σ̂2 = 1 and critical value c) equals β̂select = 1

{∣∣β̂ols, j
∣∣> c

}
β̂ols, j . Thus the Lasso, ridge, and
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selection estimates are all transformations of the least squares coefficient estimate. We illustrate these
transformations in Figure 29.4. Panel (a) displays the selection transformation, panel (b) displays the
ridge transformation, and panel (c) displays the Lasso transformation.

The Lasso and ridge estimators are continuous functions while the selection estimator is a discontin-
uous function. The Lasso and selection estimators are thresholding functions, meaning that the function
equals zero for a region about the origin. Thresholding estimators are selection estimators since they
equal zero when the least squares estimator is sufficiently small. The Lasso function is a “soft threshold-
ing” rule as it is a continuous function with bounded first derivative. The selection estimator is a “hard
thresholding” rule as it is discontinuous. Hard thresholding rules tend to have high variance due to the
discontinuous transformation. Consequently, we expect the Lasso to have reduced variance relative to
selection estimators, permitting overall lower MSE.

As for ridge regression, Lasso is not invariant to the scaling of the regressors. If you rescale a re-
gressor then the penalty has a different meaning. Consequently, it is important to scale the regressors
appropriately before applying Lasso. It is conventional to scale all the variables to have mean zero and
unit variance.

Lasso is also not invariant to rotations of the regressors. For example, Lasso on (X 1, X 2) is not the
same as Lasso on (X 1 −X 2, X 2) despite having identical least squares solutions. This is troubling as typi-
cally there is no default specification.

Applications of Lasso estimation in economics are growing. Belloni, Chernozhukov and Hansen
(2014) illustrate the method using three application: (1) the effect of eminent domain on housing prices
in an instrumental variables framework, (2) a re-examination of the effect of abortion on crime using the
framework of Donohue and Levitt (2001), (3) a re-examination of the the effect of democracy on growth
using the framework of Acemoglu, Johnson and Robinson (2001). Mullainathan and Spiess (2017) illus-
trate machine learning using a prediction model for housing prices using characteristics. Oster (2018)
uses household scanner data to measure the effect of a diabetes diagnosis on food purchases.

29.9 Lasso Penalty Selection

Critically important for Lasso estimation is the penalty λ. For λ close to zero the estimates are close
to least squares. As λ increases the number of selected variables falls. Picking λ induces a trade-off
between complexity and parsimony.

It is common in the statistics literature to see coefficients plotted as a function of λ. This can be
used to visualize the trade-off between parsimony and variable inclusion. It does not, however, provide
a statistical rule for selection.

The most common selection method is minimization of K-fold cross validation (see Section 28.9).
Leave-one-out CV is not typically used as it is computationally expensive. Many programs set the default
number of folds as K = 10, though some authors use K = 5, while others recommend K = 20.

K-fold cross validation is an estimator of out-of-sample mean squared forecast error. Therefore
penalty selection by minimization of the K-fold criterion is aimed to select models with good forecast
accuracy, but not necessarily for other purposes such as accurate inference.

Conventionally, the value of λ selected by CV is the value which minimizes the CV criterion. Another
popular choice is called the “1se” rule, which is the λ which yields the most parsimonious model for
λ values within one standard error of the minimum. The idea is to select a model similar but more
parsimonious than the CV-minimizing choice.

K-fold cross validation is implemented by first randomly dividing the observations into K groups.
Consequently the CV criterion is sensitive to the random sorting. It is therefore prudent to set the random
number seed for replicability and to assess sensitivity across initial seeds. In general, selecting a larger



CHAPTER 29. MACHINE LEARNING 921

value for K reduces this sensitivity.
Asymptotic consistency of CV selection for Lasso estimation has been demonstrated by Chetverikov,

Liao, and Chernozhukov (2020).

29.10 Lasso Computation

The constraint representation of Lasso is minimization of a quadratic subject to linear inequality
constraints. This can be implemented by standard quadratic programming which is computationally
simple. For evaluation of the cross-validation function, however, it is useful to compute the entire Lasso
path. For this a computationally appropriate method is the modified LARS algorithm. (LARS stands for
least angle regression.)

The LARS algorithm produces a path of coefficients starting at the origin and ending at least squares.
The sequence corresponds to the sequence of constraints τwhich can be calculated by the absolute sum
of the coefficients, but neither these values (nor λ) are used by the algorithm. The steps are as follows.

1. Start with all coefficients equal to zero.

2. Find X j most correlated with Y .

3. Increase β j in the direction of correlation.

(a) Compute residuals along the way.

(b) Stop when some other X` has the same correlation with the residual as X j .

(c) If a non-zero coefficient hits zero, drop from the active set of variables and recompute the
joint least squares direction.

4. Increase (β j ,β`) in their joint least squares direction until some other Xm has the same correlation
with the residual.

5. Repeat until all predictors are in model.

This algorithm produces the Lasso path. The equality between the two is not immediately apparent
but the demonstration is tedious so is not shown here.

The most popular computational implementation for Lasso is the R glmnet command in the glmnet
package. Penalty selection by K-fold cross validation is implmented by the cv.glmnet command. The
latter by default reports the penalty selected by the “1se” rule, and reports the minimizingλ as lambda.min.
The default number of folds is K = 10.

In Stata, Lasso is available with the command lasso. By default it selects the penalty by minimizing
the K-fold cross validation criterion with K = 10 folds. Many options are available, including constraining
the estimator to penalize only a subset of the coefficients. An alternative downloadable package with
many options is lassopack.

29.11 Asymptotic Theory for the Lasso

The current distribution theory of Lasso estimation is challenging and mostly focused on conver-
gence rates. The results are derived under sparsity or approximate sparsity conditions, the former re-
stricting the number of non-zero coefficients, and the second restricting how a sparse model can ap-
proximate a general parameterization. In this section we provide a basic convergence rate for the Lasso
estimator β̂Lasso under a mild moment bound on the errors and a sparsity assumption on the coefficients.
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The model is the high-dimensional projection framework:

Y = X ′β+e

E [X e] = 0 (29.11)

where X is p ×1 with p >> n. The true coefficient vector β is assumed to be sparse in the sense that only
a subset of the elements of β are non-zero.

For some λ let β̂Lasso be the Lasso estimator which minimizes SSE1
(
β,λ

)
. Define the scaled design

matrix Qn = n−1X ′X and the regression fit

(
β̂Lasso −β

)′
Qn

(
β̂Lasso −β

)= 1

n

n∑
i=1

(
X ′

i

(
β̂Lasso −β

))2
. (29.12)

We provide a bound on the regression fit (29.12), the 1-norm fit
∥∥β̂−β∥∥

1 and the 2-norm fit
∥∥β̂−β∥∥

2.
The regression fit (29.12) is similar to measures of fit we have used before, including the integrated

squared error (20.22) in series regression and the regression fit Rn(K ) (equation (28.17)) for evaluation of
model selection optimality.

When p > n the matrix Qn is singular. The theory, however, requires that it not be “too singular”. What
is required is non-singularity of all sub-matrices of Qn corresponding to the non-zero coefficients and
not “too many” of the zero coefficients. The specific requirement is rather technical. Partitionβ= (β0,β1)
where the elements of β0 are all 0 and the elements of β1 are non-zero. (This partition is a theoretical
device and unknown to the econometrician.) Let b = (b0,b1) ∈ Rp be partitioned conformably. Define
the cone B = {

b ∈Rp : ‖b0‖1 ≤ 3‖b1‖1
}
. This is the set of vectors b such that the sub-vector b0 is not “too

large” relative to the sub-vector b1.

Assumption 29.1 Restricted Eigenvalue Condition (REC)
With probability approaching 1 as n →∞

min
b∈B

b′Qnb

b′b
≥ c2 > 0. (29.13)

To gain some understanding of what the REC means, notice that if the minimum (29.13) is taken
without restriction over Rp it equals the smallest eigenvalue of Qn . Thus when p < n a sufficient condi-
tion for the REC is λmin

(
Qn

) ≥ c2 > 0. Instead, the minimum in (29.13) is calculated only over the cone
B . In this sense this calculation is similar to a “restricted eigenvalue” which is the source of its name.
The REC takes a variety of forms in the theoretical literautre; Assumption 29.1 is not the weakest but is
the most intuitive. Assumption 29.1 has been shown to hold under primitive conditions on X , includ-
ing normality and boundedness. See Section 3 of Bickel, Ritov, and Tsybakov (2009) and Section 3.1 of
Belloni, Chen, Chernozhukov, and Hansen (2012).

We provide a rate for the Lasso estimator under the assumption of normal errors.
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Theorem 29.3 Suppose model (29.11) holds with p > 1 and Assumption 29.1
holds. Assume that each regressor has been standardized so that n−1X ′

j X j = 1

before applying the Lasso. Suppose e | X ∼ N
(
0,σ2(X )

)
where σ2(x) ≤ σ2 <∞.

For some C sufficiently large set

λ=C
√

n log p. (29.14)

Then there is D <∞ such that with probability arbitrarily close to 1,

(
β̂Lasso −β

)′
Qn

(
β̂Lasso −β

)≤ D
∥∥β∥∥

0

log p

n
, (29.15)

∥∥β̂Lasso −β
∥∥

1 ≤ D
∥∥β∥∥

0

√
log p

n
, (29.16)

and ∥∥β̂Lasso −β
∥∥

2 ≤ D
∥∥β∥∥1/2

0

√
log p

n
. (29.17)

For a proof see Section 29.23.
Theorem 29.3 presents three convergence rates for the Lasso coefficient estimator β̂Lasso, for the re-

gression fit (29.12), covering the 1-norm, and the 2-norm. These rates depend on the number of non-zero
coefficients

∥∥β∥∥
0, the number of variables p, and the sample size n. Suppose that

∥∥β∥∥
0 is fixed. Then the

bounds (29.15)-(29.17) are o(1) if log p = o (n). This shows that Lasso estimation is consistent even for an
exponentially large number of variables. The rates, however, allow the number of non-zero coefficients∥∥β∥∥

0 to increase with n at the cost of slowing the allowable rate of increase of p.
We stated earlier in this section that we had assumed that the coefficient vector β is sparse, meaning

that only a subset of the elements of β are non-zero. This appears in the theory through the 0-norm∥∥β∥∥
0, the number of non-zero coefficients. If all elements of β are non-zero then

∥∥β∥∥
0 = p and the

bound (29.15) is O
(
p log p/n

)
, which is similar to the bound for series regression obtained in Theorem

20.7, equation (20.24). Instead, the assumption of sparsity enables the Lasso estimator to achieve a much
improved rate of convergence.

The key to establishing Theorem 29.3 is a maximal inequality applied to 1
n X ′e. Our proof uses the

Gaussian Tail inequality (B.39) which requires the assumption of normality. This follows the analysis of
Bickel, Ritov, and Tsybakov (2009), though these authors impose homoskedastic errors, which as shown
in Theorem 29.3 can be replaced by the assumption of bounded heteroskedasticity. Other papers in the
statistics literature (see the monograph of Bühlmann and van de Geer (2011)) use instead the assumption
of sub-Gaussian tails, which is weaker than normality (but not much).

A theory which allows for non-normal heteroskedastic errors has been developed by Belloni, Chen,
Chernozhukov, and Hansen (2012). These authors examine an alternative Lasso estimator which adds
regresssor-specific weights to the penalty function, with weights equalling the square roots of n−1 ∑

X 2
j i ê2

i .
They use a maximal inequality based on self-normalization and obtain rates similar to (29.15)-(29.17),
though with considerably more complicated regularity conditions. While their specific conditions may
not be the weakest possible, their theory shows that that the assumption of Gaussian or sub-Gaussian
errors is not essential to the convergence rates (29.15)-(29.17). I expect that future research will further
relax these conditions.
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An important limitation of results such as Theorem 29.3 is the sparsity assumption. It is untestable
and counter-intuitive. Researchers in this field frequently use the phrase “imposing sparsity” as if it
is something under the control of the theorist – but sparsity is only a property of the true coefficients.
Fortunately there are alternatives to the sparsity assumption as we discuss in the following section.

29.12 Approximate Sparsity

The theory of the previous section used the strong assumption that the true regression is sparse:
only a subset of the coefficients are non-zero, and the convergence rate depends on the cardinality of
the non-zero coefficients. As shown by Belloni, Chen, Chernozhukov, and Hansen (2012), strict sparsity
is not required. Instead, similar convergence rates hold under the assumption of approximate sparsity.

Once again take the high-dimensional regression model (29.11) but do not assume that β necessarily
has a sparse structure. Instead, view sparse models as approximations. For each integer K > 0 let BK ={
b ∈Rp : ‖b‖0 = K

}
be the set of vectors with K non-zero elements. Define the best sparse approximation

βK = argmin
b∈BK

∥∥Qn
(
β−b

)∥∥∞
with associated approximation error

rK = ∥∥Qn
(
β−βK

)∥∥∞ .

Assumption 29.2 Approximate Sparsity. For some s > 1, rK =O (K −s).

Assumption 29.2 states that the approximation error of the sparse approximation decreases at a
power law rate. In Section 20.8 and Theorem 20.1 we learned that approximations similar to Assump-
tion 29.2 hold for polynomial and spline series regressions with bounded regressors if the true regression
function has a uniform s th derivative. The primary difference is that series regression requires that the
econometrician knows how to order the regressors while Assumption 29.2 does not impose a specific
ordering. In this sense Assumption 29.2 is weaker than the approximation conditions of Section 20.8.

Belloni, Chen, Chernozhukov, and Hansen (2012) show that convergence results similar to Theo-
rem 29.3 hold under the approximate sparsity condition of Assumption 29.2. The convergence rates are
slowed and depend on the approximation exponent s. As s →∞ the convergence rates approach those
under the assumption of sparsity. The reason is that as s increases the regression function can be approx-
imated with a smaller number K of non-zero coefficients. Their results show that exact sparsity is not
required for Lasso estimation, rather what is needed is approximation properties similar to those used
in series regression theory.

The approximate sparsity condition fails when the regressors cannot be easily ordered. Suppose, for
example, that Qn = I p and all elements of β have common value δ. In this case rK = δ which does not
decrease with K . In this context Assumption 29.2 does not hold and the convergence results of Belloni,
Chen, Chernozhukov, and Hansen (2012) do not apply.

29.13 Elastic Net

The difference between Lasso and ridge regression is that the Lasso uses the 1-norm penalty while
ridge uses the 2-norm penalty. Since both procedures have advantages it seems reasonable that further
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improvements may be obtained by a compromise. Taking a weighted average of the penalties we obtain
the Elastic Net criterion

SSE
(
β,λ,α

)= (
Y −Xβ

)′ (Y −Xβ
)+λ(

α
∥∥β∥∥2

2 + (1−α)
∥∥β∥∥

1

)
with weight 0 ≤α≤ 1. This includes Lasso (α= 0) and ridge regression (α= 1) as special cases. For small
but positive α the constraint sets are similar to “rounded” versions of the Lasso constraint sets.

Typically the parameters (α,λ) are selected by joint minimization of the K-fold cross-validation cri-
terion. Since the elastic net penalty is linear-quadratic the solution is computationally similar to Lasso.

Elastic net can be implemented in R with the glmnet command. In Stata use elasticnet or the
downloadable package lassopack.

29.14 Post-Lasso

The Lasso estimator β̂Lasso simultaneously selects variables and shrinks coefficients. Shrinkage in-
troduces bias into estimation. This bias can be reduced by applying least squares after Lasso selection.
This is known as the Post-Lasso estimator.

The procedure takes two steps. First, estimate the model Y = X ′β+ e by Lasso. Let XS denote the
variables in X which have non-zero coefficients in β̂Lasso. Let βS denote the corresponding coefficients
in β. Second, the coefficient βS is estimated by least squares, thus β̂S = (

X ′
S X S

)−1 (
X ′

S Y
)
. This is the

Post-Lasso least squares estimator. Belloni and Chernozhukov (2013) provide conditions under which
the post-Lasso estimator has the same convergence rates as the Lasso estimator.

The post-Lasso is a hard thresholding or post-model-selection estimator. Indeed, when the regres-
sors are orthogonal the post-Lasso estimator precisely equals a selection estimator, transforming the
least squares coefficient estimates using the hard threshold function displayed in Figure 29.4(a). Conse-
quently, the post-Lasso estimator inherits the statistical properties of PMS estimators (see Sections 28.16
and 28.17), including high variance and non-standard distributions.

29.15 Regression Trees

Regression trees were introduced by Breiman, Friedman, Olshen, and Stone (1984), and are also
known by the acronym CART for Classification and Regression Trees. A regression tree is a nonparamet-
ric regression using a large number of step functions. The idea is that with a sufficiently large number
of split points, a step function can approximate any function. Regression trees may be especially useful
when there are a combination of continuous and discrete regressors so that traditional kernel and series
methods are challenging to implement.

Regression trees can be thought of as a 0th-order spline with free knots. They are also similar to
threshold regression with intercepts only (no slope coefficients) and a very large number of thresholds.

The goal is to estimate m(x) = E [Y | X = x] for scalar Y and vector X . The elements of X can be
continuous, binary, or ordinal. If a regressor is categorical is should be first transformed to a set of binary
variables.

The literature on regression trees has developed some colorful language to describe the tools based
on the metaphor of a living tree.

1. A subsample is a branch.

2. Terminal branches are nodes or leaves.

3. Increasing the number of branches is growing a tree.
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4. Decreasing the number of branches is pruning a tree.

The basic algorithm starts with a single branch. Grow a large tree by sequentially splitting the branches.
Then prune back using an information criterion. The goal of the growth stage is to develop a rich data-
determined tree which has small estimation bias. Pruning back is an application of backward stepwise
regression with the goal of reducing over-parameterization and estimation variance.

The regression tree algorithm makes extensive use of the regression sample split algorithm. This is
a simplified version of threshold regression (Section 23.7). The method uses NLLS to estimate the model

Y =µ11
{

Xd ≤ γ}+µ21
{

Xd > γ}+e

E [e | X ] = 0

with the index d and parameter γ as free parameters2. The NLLS criterion is minimized over (d ,γ) by grid
search. The estimates produce a sample split. The regression tree algorithm applies sequential sample
splitting to make a large number of splits, each on a sub-sample of observations.

The basic growth algorithm is as follows. The observations are {Yi , X1i , ..., Xki : i = 1, ...,n}.

1. Select a minimum node size Nmin (say 5). This is the minimal number of observations on each leaf.

2. Sequentially apply regression sample splits.

(a) Apply the regression sample split algorithm to split each branch into two sub-branches, each
with size at least Nmin.

(b) On each sub-branch b:

i. Take the sample mean µ̂b of Yi for observations on the sub-branch.

ii. This is the estimator of the regression function on this sub-branch.

iii. The residuals on the sub-branch are êi = Yi − µ̂b .

(c) Select the branch whose split most reduces the sum of squared errors.

(d) Split this branch into two branches. Make no other split.

(e) Repeat (a)-(d) until each branch cannot be further split. The terminal (unsplit) branches are
the leaves.

After the growth algorithm has been run, the estimated regression is a multi-dimensional step func-
tion with a large number of branches and leaves.

The basic pruning algorithm is as follows.

1. Define the Mallows-type information criterion

C =
n∑

i=1
ê2

i +αN

where N is the number of leaves and α is a penalty parameter.

2. Compute the criterion C for the current tree.

3. Use backward stepwise regression to reduce the number of leaves:

2If Xd ∈ {0,1} is binary then γ= 0 is fixed.
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(a) Identify the leaf whose removal most decreases C .

(b) Prune (remove) this leaf.

(c) If there is no leaf whose removal decreases C then stop pruning.

(d) Otherwise, repeat (a)-(c).

The penalty parameter α is typically selected by K-fold cross-validation. The Mallows-type criterion
is used because of its simplicity, but to my knowledge does not have a theoretical foundation for regres-
sion tree penalty selection.

The advantage of regression trees is that they provide a highly flexible nonparametric approxima-
tion. Their main use is prediction. One disadvantage of regression trees is that the results are difficult to
interpret as there are no regression coefficients. Another disadvantage is that the fitted regression m̂(x)
is a discrete step function, which may be a crude approximation when m(x) is continuous and smooth.
To obtain a good approximation a regression tree may require a high number of leaves which can result
in a non-parsimonious model with high estimation variance.

The sampling distribution of regression trees is difficult to derive, in part because of the strong cor-
relation between the placement of the sample splits and the estimated means. This is similar to the
problems associated with post-model-selection. (See Sections 28.16 and 28.17.) A method which breaks
this dependence is the honest tree proposal of Wager and Ather (2018). Split the sample into two halves
A and B . Use the A sample to place the splits and the B sample to do within-leaf estimation. While re-
ducing estimation efficiency (the sample is effectively halved) the estimated conditional mean will not
be distorted by the correlation between the estimated splits and means.

Regression trees algorithms are implemented in the R package rpart.

29.16 Bagging

Bagging (bootstrap aggregating) was introduced by Breiman (1996) as a method to reduce the vari-
ance of a predictor. We focus here on its use for estimation of a conditional mean. The basic idea is
simple. You generate a large number B of bootstrap samples, estimate your regression model on each
bootstrap sample, and take the average of the bootstrap regression estimates. The mean of the bootstrap
estimates is the bagging estimator of the conditional mean.

Bagging is believed to be useful when the conditional mean estimator has low bias but high variance.
This occurs for hard thresholding estimators such as regression trees, model selection, and post-Lasso.
Bagging is a smoothing operation which reduces variance. The resulting bagging estimator can have
lower MSE as a result. Bagging is believed to be less useful for estimators with high bias, as bagging may
exaggerate the bias.

We first describe the estimation algorithm. Let m(x) = E [Y | X = x] be the conditional mean and
m̂(x) an estimator such as a regression tree. Let m̂∗

b (x) be the same estimator constructed on a bootstrap
sample. The bagging estimator of m(x) is

m̂bag(x) = 1

B

b∑
B=1

m̂∗
b (x).

As B increases this converges in bootstrap probability to the ideal bagging estimator E∗ [m̂∗(x)].
To understand the bagging process we use an example from Bühlmann and Yu (2002). As in Section

28.16 suppose that θ̂ ∼ N(θ,1) and consider a selection estimator based on a 5% test, θ̂pms = θ̂1
{
θ̂2 ≥ c

}=
h(θ̂) where c = 3.84 and h(t ) = t1

{
t 2 ≥ c

}
. Applying Theorem 28.17, equation (28.38), we can calculate

that E
[
θ̂pms

] = g (θ) where g (t ) = t
(
1−F3

(
c, t 2

))
and Fr (x,λ) is the non-central chi-square distribution
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function3. This representation is not intuitive so it is better to visualize its graph. The functions h(t ) and
g (t ) are plotted in Figure 29.5(a). The selection function h(t ) is identical to the plot in Figure 29.4(a). The
function g (t ) is a smoothed version of h(t ), everywhere continuous and differentiable.

Suppose that the bagging estimator is constructed using the parametric bootstrap θ̂∗ ∼ N(θ̂,1). The

bootstrap selection estimator is θ̂∗pms = h
(
θ̂∗

)
. It follows that the bagging estimator is θ̂bag = E∗

[
θ̂∗pms

]
=

E∗
[
h

(
θ̂∗

)] = g (θ̂). Thus while the selection estimator θ̂pms = h(θ̂) is the hard threshold transformation
h(t ) applied to θ̂, the bagging estimator θ̂bag = g (θ̂) is the smoothed transformation g (t ) applied to θ̂.
Thus Figure 29.5(a) displays how θ̂pms and θ̂bag are transformations of θ̂, with the bagging estimator a
smooth transformation rather than a hard threshold transformation.

θ̂pms

θ̂

h(t)

g(t)

(a) Selection and Bagging Transformations

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

θ
0 1 2 3 4 5

MSE(θ̂pms)
MSE(θ̂bag)

(b) MSE of Selection and Bagging Estimators

Figure 29.5: Bagging and Selection

Bühlmann and Yu (2002) argue that smooth transformations generally have lower variances than
hard threshold transformations, and thus argue that θ̂bag will generally have lower variance than θ̂pms.
This is difficult to demonstrate as a general principle but seems satisfied in specific examples. For our
example we display4 in Figure 29.5(b) the MSE of the selection estimator θ̂pms and its bagged verion θ̂bag

as functions of θ. As we learned in Section 28.16, the MSE of the selection estimator θ̂pms is a hump-
shaped function of θ. In Figure 29.5(b) we can see that the MSE of the bagged estimator is considerably
reduced relative to the selection estimator for most values of θ. The reduction in MSE is greatest in the
region where the MSE of θ̂pms is greatest. Bühlmann and Yu (2002) also calculate that most of this MSE
reduction is due to a reduction in the variance of the bagged estimator.

The most common application of bagging is to regression trees. Trees have a similar structure to our
example selection estimator θ̂pms and are therefore expected to have a similar reduction in estimation
variance and MSE relative to regression tree estimation.

One convenient by-product of bagging is a CV proxy called the out-of-bag (OOB) prediction error. A
typical nonparametric bootstrap sample contains about 63% of the original observations, meaning that
about 37% of the observations are not present in that bootstrap sample. Therefore a bootstrap estimate
of the regression function m(x) constructed on this bootstrap sample has “left out” about 37% of the

3Bühlmann and Yu (2002), Proposition 2.2, provide an alternative representation using the normal cdf and pdf functions.
4For θ̂pms the MSE is calculated using Theorem 28.10. For θ̂bag the MSE is calculated by numerical integration.
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observations, meaning that valid prediction errors can be calculated on these “left out” observations.
Alternatively, for any given observation i , out of the B bootstrap samples about 0.63×B samples will
contain this observation and about 0.37×B samples will not include this observation. The bagging “leave
i out” estimator m̂−i (x) of m(x) is obtained by averaging just this second set (the 37% which exclude the
observation). The out-of-bag error is ẽi = Yi −m̂−i (Xi ). The out-of-bag CV criterion is

∑n
i=1 ẽ2

i . This can
be used as an estimator of out-of-sample MSFE and can be used to compare and select models.

Wager, Hastie, and Efron (2014) propose estimators of Vn(x) = var
[
m̂bag(x)

]
. Let Ni b denote the num-

ber of times observation i appears in the bootstrap sample b and Ni = B−1 ∑B
b=1 Ni b . The infinitesimal

jackknife estimator of Vn is

V̂n(x) =
n∑

i=1
cov∗

(
Ni ,m̂bag(x)

)2 =
n∑

i=1

(
1

B

B∑
b=1

(Ni b −Ni )
(
m̂∗

b (x)−m̂bag(x)
))2

. (29.18)

This variance estimator is based on Efron (2014).
While Breiman’s proposal and most applications of bagging are implemented using the nonparamet-

ric bootstrap, an alternative is to use subsampling. A subsampling estimator is based on sampling with-
out replacement rather than with replacement as done in the conventional bootstrap. Samples of size
s < n are drawn from the original sample and used to construct the estimator m̂∗

b (x). Otherwise the
methods are identical. It turns out that it is somewhat easier to develop a distribution theory for bagging
under subsampling, so a subsampling assumption is frequently employed in theoretical treatments.

29.17 Random Forests

Random forests, introduced by Breiman (2001), are a modification of bagged regression trees. The
modification is designed to reduce estimation variance. Random forests are popular in machine learning
applications and have effectively displaced simple regression trees.

Consider the procedure of applying bagging to regression trees. Since bootstrap samples are similar
to one another the estimated bootstrap regression trees will also be similar to one another, particularly
in the sense that they tend to have the splits based on the same variables. This means that conditional
on the sample the bootstrap regression trees are positively correlated. This correlation means that the
variance of the bootstrap average remains high even when the number of bootstrap replications B is
large. The modification proposed by random forests is to decorrelate the bootstrap regression trees by
introducing extra randomness. This decorrelation reduces the variance of the bootstrap average, thereby
reducing its MSE.

The basic random forest algorithm is as follows. The recommended defaults are taken from the de-
scription in Hastie, Tibshirani, and Friedman (2008).

1. Pick a minimum leaf size Nmin (default = 5), a minimal split fraction α ∈ [0,1), and a sampling
number m < p (default = p/3).

2. For b = 1, ...,B :

(a) Draw a nonparametric bootstrap sample.

(b) Grow a regression tree on the bootstrap sample using the following steps:

i. Select m variables at random from the p regressors.

ii. Among these m variables, pick the one which produces the best regression split, where
each split subsample has at least Nmin observations and at least a fraction α of the ob-
servations in the branch.
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iii. Split the bootstrap sample accordingly.

(c) Stop when each leaf has between Nmin and 2Nmin −1 observations.

(d) Set m̂b(x) as the sample mean of Y on each leaf of the bootstrap tree.

3. m̂rf(x) = B−1 ∑b
B=1 m̂b(x).

Using randomization to reduce the number of variables from p to m at each step alters the tree struc-
ture and thereby reduces the correlation between the bootstrapped regression trees. This reduces the
variance of the bootstrap average.

The infinitesimal jackknife (29.18) can be used for variance and standard error estimation, as dis-
cussed in Wager, Hastie, and Efron (2014).

While random forests are popular in applications, a distributional theory has been slow to develop.
Some of the more recent results have made progress by focusing on random forests generated by sub-
sampling rather than bootstrap (see the discussion at the end of the previous section).

A variant proposed by Wager and Athey (2018) is to use honest trees (see the discussion at the end of
Section 29.15) to remove the dependence between the sample splits and the sample means.

Consistency and asymptotic normality has been established by Wager and Athey (2018). They as-
sume that the conditional mean and variance are Lipschitz-continuous in x, X ∼U [0,1]p , and p is fixed5.
They assume that the random forest is created by subsampling, estimated by honest trees, and that the
minimal split fraction satisfies 0 <α≤ 0.2. Under these conditions they establish that pointwise in x

m̂rf(x)−m(x)p
Vn(x)

−→
d

N(0,1)

for some variance sequence Vn(x) → 0. These results justify inference for random forest estimation of the
regression function and standard error calculation. The asymptotic distribution does not contain a bias
component, indicating that the estimator is undersmoothed. The Wager-Athey conditions for asymp-
totic normality are surprisingly weak. The theory does not give insight, however, into the convergence
rate of the estimator. The essential idea of the result is as follows. The splitting algorithm and restric-
tions ensure that the regressor space is (in a rough sense) evenly split into N ∼ nγ leaves which grows
at a power rate. This ensures that the estimator is asymptotically unbiased and with suitable control
over γ the squared bias can be made smaller than the variance. The assumption that α> 0 ensures that
the number of observations per leaf increases with n which combined with the honest tree construction
ensures asymptotic normality of the estimator.

Furthermore, Wager and Athey (2018) assert (but do not provide a proof) that the variance Vn(x) can
be consistently estimated by the infinitesimal jackknife (29.18), in the sense that V̂n(x)/Vn(x) −→

p
1.

The standard computational implementation of random forests is the R randomForest command.

29.18 Ensembling

Ensembling is the term used in machine learning for model averaging across machine learning algo-
rithms. Ensembling is popular in applied machine learning.

Suppose you have a set of estimators (e.g., CV selection, James-Stein shrinkage, JMA, SBIC, PCA,
kernel regression, series regression, ridge regression, Lasso, regression tree, bagged regression tree, and
random forest). Which should you use? It is reasonable to expect that one method may work well with

5The authors claim that the uniform distribution assumption on X can be replaced by the condition that the joint density is
bounded away from 0 and infinity.
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some types of data and other methods may work well with other types of data. The principle of model
averaging suggests that you can do better by taking a weighted average rather than just selecting one.

We discussed model averaging models in Sections 28.26-28.31. Ensembling for machine learning
can use many of the same methods. One popular method known as stacking is the same as Jackknife
Model Averaging discussed in Section 28.29. This selects the model averaging weights by minimizing a
cross-validation criterion, subject to the constraint that the weights are non-negative and sum to one.

Unfortunately, the theoretical literature concerning ensembling is thin. Much of the advice concern-
ing specific methods is based on empirical performance.

29.19 Lasso IV

Belloni, Chen, Chernozhukov, and Hansen (2012) propose Lasso for estimation of the reduced form
of an instrumental variables regression.

The model is linear IV

Y = X ′β+e

E [e | Z ] = 0

X = Γ′Z +U

E [U | Z ] = 0

where β is k ×1 (fixed) and Γ is p ×n with p large. If p > n the 2SLS estimator equals least squares. If
p < n but large the 2SLS estimator suffers from the “many instruments” problem. The authors’ recom-
mendation is to estimate Γ by Lasso or post-Lasso6.

The reduced form equations for the endogenous regressors are X j = γ′j Z +U j . Each is estimated

separately by Lasso yielding coefficient estimates γ̂ j which are stacked into the matrix Γ̂Lasso and used to
form the predicted values X̂ Lasso = Z Γ̂Lasso. The Lasso IV estimator is

β̂Lasso−IV =
(

X̂
′
LassoX

)−1 (
X̂

′
LassoY

)
.

The paper discusses alternative formulations. One is obtained by split-sample estimation as in An-
grist and Krueger (1995) (see Section 12.14). Divide the sample randomly into two independent halves
A and B . Use A to estimate the reduce form equations by Lasso. Then use B to estimate the structural
coefficient β. Specifically, using sample A construct the Lasso coefficient estimate matrix Γ̂Lasso,A . Com-
bine this with sample B to create the predicted values X̂ Lasso,B = Z B Γ̂Lasso,A . Finally, using B construct
the estimator

β̂Lasso,B =
(

X̂
′
Lasso,B X B

)−1 (
X̂

′
Lasso,B Y B

)
.

We can reverse the procedure. Use B to estimate the reduced form coefficient matrix Γ̂Lasso,B by Lasso
and use A to estimate the structural coefficient, thus X̂ Lasso,A = Z AΓ̂Lasso,B . The moments are averaged
to obtain the Lasso SSIV estimator

β̂Lasso−SSIV =
(

X̂
′
Lasso,B X B + X̂

′
Lasso,A X A

)−1 (
X̂

′
Lasso,B Y B + X̂

′
Lasso,AY A

)
.

In later work (see Section 29.22) the authors describe β̂Lasso,B as a “sample split” and β̂Lasso−SSIV as a
“cross-fit” estimator.

6As they discuss, any machine learning estimator can be used, though the specific assumptions listed in their paper are for
Lasso estimation.
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Using the asymptotic theory for Lasso estimation the authors show that these estimators are equiva-
lent to estimation using the infeasible instrument W = Γ′Z .

Theorem 29.4 Under the Assumptions listed in Theorem 3 of Belloni, Chen,
Chernozhukov, and Hansen (2012), including

‖Γ‖0
log pp

n
→ 0, (29.19)

then (
Q−1ΩQ−1)pn

(
β̂Lasso−IV −β

)−→
d

N(0, I k ) (29.20)

where Q = E[
W W ′],Ω= E[

W W ′e2
]
, and W = Γ′Z . Furthermore, the standard

covariance matrix estimators are consistent for the asymptotic covariance ma-
trix. The same distribution result holds for β̂Lasso−SSIV under the assumptions
listed in their Theorem 7. In particular, (29.19) is replaced by

‖Γ‖0
log p

n
→ 0. (29.21)

For a sketch of the proof see Section 29.23.
Equation (29.19) requires that the reduced form coefficient Γ is sparse in the sense that the number

of non-zero reduced form coefficients ‖Γ‖0 grows more slowly than
p

n. This allows for p to grow expo-
nentially with n but at a somewhat slower rate than allowed by Theorem 29.3. Condition (29.19) is one
of the key assumptions needed for the distribution result (29.20).

For Lasso SSIV, equation (29.21) replaces (29.19). This rate condition is weaker, allowing p to grow at
the same rate as for regression estimation. The difference is due to the split-sample estimation, which
breaks the dependence between the reduced form coefficient estimates and the second-stage structural
estimates. There are two interpretable implications of the difference between (29.19) and (29.21). First,
a direct implication is that Lasso SSIV allows for larger number of variables p. Second, an indirect impli-
cation is that for any set of variables, Lasso SSIV will have reduced bias relative to Lasso IV. Both inter-
pretations suggest that Lasso SSIV is the preferred estimator.

Belloni, Chen, Chernozhukov, and Hansen (2012) extend Theorem 29.4 to allow for approximate
sparsity as in Section 29.12 at the cost of more restrictive rate conditions.

An important disadvantage of the split-sample and cross-fit estimators is that they depend on the
random sorting of the observations into the samples A and B . Consequently, two researchers will obtain
two different estimators. Furthermore, the split-sample estimators use n/2 observations rather than n,
which may impact finite-sample performance. A deduction is that the split-sample estimators are not
appropriate when n is small.

IV Lasso can be implemented in Stata using the downloadable package ivlasso.

29.20 Double Selection Lasso

Post-estimation inference is difficult with most machine learning estimators. For example, consider
the post-Lasso estimator (least squares applied to the regressors selected by the Lasso). This is a post-
model-selection (PMS) estimator, as discussed in Sections 28.16 and 28.17. As shown in Section 28.17,
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the coverage probability of standard confidence intervals applied to PMS estimators can be far from
the nominal level. Belloni, Chernozhukov, and Hansen (2014b) proposed an alternative estimation and
inference method which achives better coverage rates.

Consider the linear model

Y = Dθ+X ′β+e (29.22)

E [e | D, X ] = 0

where Y and D are scalar and X is p ×1. The variable D is the main focus of the regression; the variable
X are controls. The goal is inference on θ.

Suppose you estimate model (29.22) by group post-Lasso, only penalizing β. This performs selection
on the variables X , resulting in a least squares regression of Y on D and the selected variables in X . This
is identical to the model studied in Section 28.17 (except that in that analysis selection was performed
by testing), where Figure 28.2(c) shows that the coverage probabilities for θ are downward biased, and
the distortions are serious. The distortions are primarily affected by (and increasing in) the correlation
between D and X .

Belloni, Chernozhukov, and Hansen (2014b) deduce that improved coverage accuracy can be achieved
if the variable X is included in the regression (29.22) whenever X and D are correlated. This gives rise to
the practical suggestion to perform what they call double-selection. We start by specifying an auxiliary
equation for D :

D = X ′γ+V (29.23)

E [V | X ] = 0.

Substituting (29.23) into (29.22) we obtain a reduced form for Y :

Y = X ′η+U (29.24)

E [U | X ] = 0

where η=β+γθ and U = e+V θ. The proposed double-selection algorithm applies model selection (e.g.,
Lasso selection) separately to equations (29.23) and (29.24), takes the union of the selected regressors,
and then estimates (29.22) by least squares using the selected regressors. This method ensures that a
variable X is included if it is relevant for the regression (29.22) or if it is correlated with D .

The double-selection estimator as recommended by Belloni, Chernozhukov, and Hansen (2014b) is:

1. Estimate (29.23) by Lasso. Let X1 be the selected variables from X .

2. Estimate (29.24) by Lasso. Let X2 be the selected variables from X .

3. Let X̃ = X1 ∪X2 be the union of the variables in X1 and X2.

4. Regress Y on (D, X̃ ) to obtain the double-selection coefficient estimate θ̂DS.

5. Calculate a conventional (heteroskedastic) standard error for θ̂DS.

Belloni, Chernozhukov, and Hansen (2014b) show that when both (29.22) and (29.23) satisfy an ap-
proximate sparsity structure (so that the regressions are well approximated by a finite set of regressors)
then the double-selection estimator θ̂DS and its t-ratio are asymptotically normal so conventional infer-
ernce methods are valid. Their proof is technically tedious so not repeated here. The essential idea is
that since X̃ includes the variables in X2, the estimator θ̂DS is asymptotically equivalent to the regression



CHAPTER 29. MACHINE LEARNING 934

where D is replaced with the error V from (29.23). Since V is uncorrelated with the regressors X the
estimator and t-ratio satisfy the conventional non-selection asymptotic distribution.

It should be emphasized that this distributional claim is asymptotic; finite sample inferences remain
distorted from nominal levels. Furthermore, the result rests on the adequacy of the approximate sparsity
assumption for both the structural equation (29.22) and the auxillary regression (29.23).

The primary advantage of the double-selection estimator is its simplicity and clear intuitive struc-
ture.

In Stata, the double-selection Lasso estimator can be computed by the dsregress command or with
the pdslasso add-on package. Double-selection is available in R with the hdm package.

29.21 Post-Regularization Lasso

A potential improvement on double-selection Lasso is the post-regularization Lasso estimator of
Chernozhukov, Hansen, and Spindler (2015), which is labeled as partialing-out Lasso in the Stata man-
ual. The estimator is essentially the same as Robinson (1988) for the partially linear model (see Section
19.24) but estimated by Lasso rather than kernel regression.

We first transform the structural equation (29.22) to eliminate the high-dimensional component.
Take the expected value of (29.22) conditional on X , and subtract from each side. This leads to the equa-
tion

Y −E [Y | X ] = (D −E [D | X ])θ+e.

Notice that this elminates the regressor X and the high-dimensional coefficient β. The models (29.23)-
(29.24) specify E [Y | X ] and E [D | X ] as linear functions of X . Substituting these expressions we obtain

Y −X ′η= (
D −X ′γ

)
θ+e. (29.25)

If η and γwere known the coefficient θ could be estimated by least squares. As η and γ are unknown they
need to be estimated. Chernozhukov, Hansen, and Spindler (2015) recommend estimation by Lasso or
post-Lasso, separately for Y and D .

The estimator recommended by Chernozhukov, Hansen, and Spindler (2015) is:

1. Estimate (29.23) by Lasso or post-Lasso with Lasso parameter λ1. Let γ̂ be the coefficient estimator
and V̂i = Di −X ′

i γ̂ the residual.

2. Estimate (29.24) by Lasso or post-Lasso with Lasso parameter λ2. Let η̂ be the coefficient estimator
and Ûi = Yi −X ′

i η̂ the residual.

3. Let θ̂PR be the OLS coefficient from the regression of Û on V̂ .

4. Calculate a conventional (heteroskedastic) standard error for θ̂PR.

Chernozhukov, Hansen, and Spindler (2015) introduce the following insight to understand why θ̂PR
may be relatively insensitive to post-model-selection. The reason why model selection invalidates infer-
ence is because when the variables D and X are correlated the moment condition for θ is sensitive to β.
Specifically, the moment condition for θ based on (29.22) is

m(θ,β) = E[
D

(
Y −Dθ−X ′β

)]= 0.

Its sensitivity with respect to β is its derivative evaluated at the true coefficients

∂

∂β
m(θ,β) =−E[

D X ′]
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which is non-zero when D and X are correlated. This means that inclusion/exclusion of the variable X
has an impact on the moment condition for θ and hence its solution.

In contrast, the moment condition for θ based on (29.25) is

mPR(θ,β) = E[(
D −X ′γ

)(
Y −X ′η− (

D −X ′γ
)
θ
)]

= E[(
D −X ′γ

)(
Y −Dθ−X ′β

)]
.

Its sensitivity with respect to β is

∂

∂β
mPR(θ,β) =−E[(

D −X ′γ
)

X ′]=−E[
V X ′]= 0.

This equals zero because V is a regression error as specified in (29.23) and thus uncorrelated with X .
Since the sensitivity of mPR(θ,β) with respect to β is zero, inclusion/exclusion of the variable X has only
a mild impact on the moment condition for θ and its estimator.

These insights are formalized in the following distribution theory.

Theorem 29.5 Suppose model (29.22)-(29.23) holds and Assumption 29.1
holds for both β and γ. Assume that each regressor has been standardized so
that n−1X ′

j X j = 1. Suppose e | X ∼ N
(
0,σ2

e (X )
)

and V | X ∼ N
(
0,σ2

V (X )
)

where

σ2
e (x) ≤σ2

e <∞ and σ2
V (x) ≤σ2

V <∞. For some C1 and C2 sufficiently large the
Lasso parameters satisfy λ1 =C1

√
n log p and λ2 =C2

√
n log p. Assume p →∞

and (∥∥β∥∥
0 +

∥∥γ∥∥
0

) log pp
n

= o(1). (29.26)

Then
p

n
(
θ̂PR−θ

)−→
d

N

(
0,
E
[
V 2e2

](
E
[
V 2

])2

)
.

Furthermore, the standard variance estimator for θ̂PR is consistent for the
asymptotic variance.

For a proof see Section 29.23.
In order to provide a simple proof, Theorem 29.5 uses the assumption of normal errors. This is not

essential. Chernozhukov, Hansen, and Spindler (2015) state the same distributional result under weaker
regularity conditions.

Theorem 29.5 shows that the post-regularization (partialing-out) Lasso estimator has a conventional
asymptotic distribution, allowing conventional inference for the coefficient θ. The key rate condition is
(29.26), which is stronger than required for Lasso estimation, and identical to (29.19) used for Lasso IV.
(29.26) requires that both β and γ are sparse. The condition (29.26) can be relaxed to allow approximate
sparsity as in Section 29.12 at the cost of a more restrictive rate condition.

The advantage of the post-regularization estimator θ̂PR over the double-selection estimator θ̂DS is
efficiency. The post-regularization estimator uses only the relevant components of X to separately de-
mean Y and D , leading to greater parsimony. Different components of X may be relevant to D and Y .
The post-regularization estimator allows such distinctions and estimates each separately. In contrast,
the double-selection estimator uses the union of the two regressor sets for estimation of θ, leading to
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a less parsimonious specification. As a consequence, an advantage of the double-selection estimator
is reduced bias and robustness. Regarding the theory, the derivation of the asymptotic theory for the
post-regularization estimator is considerably easier than that for the double-selection estimator, as it
only involves the manipulation of rates of convergence, while the double-selection estimator requires a
careful attention to the handling of the union of the regressor sets.

The partialing-out Lasso estimator is available with the poregress command in Stata (implemented
with post-Lasso estimation only), or with the pdslasso add-on package. Partialing-out Lasso is available
in R with the hdm package.

29.22 Double/Debiased Machine Learning

The most recent contribution to inference methods for model (29.22) is the Double/Debiased ma-
chine learning (DML) estimator of Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and
Robins (2018). Our description will focus on linear regression estimated by Lasso, though their treat-
ment is considerably more general. This estimation method has received considerable attention among
econometricians in recent years and is considered the state-of-the-art estimation method.

The DML estimator extends the post-regularization estimator of the previous section by adding sample-
splitting similarly to the split-sample IV estimator (see Section 29.19). The authors argue that this reduces
the dependence between the estimation stages and can improve performance.

As presented in the previous section, the post-regularization estimator first estimates the coefficients
γ and η in the models (29.23) and (29.24) and then estimates the coefficient θ. The split-sample estimator
performs these estimation steps using separate samples. The DML estimator takes this a step further by
using K-fold partitioning. The estimation algorithm is as follows.

1. Randomly partition the sample into K independent folds Ak , k = 1, ...,K , of roughly equal size n/K .

2. Write the data matrices for each fold as (Y k ,Dk , X k ).

3. For k = 1, ...,K

(a) Use all observations except for fold k to estimate the coefficients γ and η in (29.23) and (29.24)
by Lasso or post-Lasso. Write these leave-fold-out estimators as γ̂−k and η̂−k .

(b) Set V̂ k = Dk − X k γ̂−k and Û k = Y k − X k η̂−k . These are the estimated values of V and U for
observations in the k th fold using the leave-fold-out estimators.

4. Set θ̂DML =
(∑K

k=1 V̂
′
kV̂ k

)−1 (∑K
k=1 V̂

′
kÛ k

)
. Equivalently, stack V̂ k and Û k into n×1 vectors V̂ and Û

and set θ̂DML =
(
V̂

′
V̂

)−1 (
V̂

′
Û

)
.

5. Construct a conventional (heteroskedastic) standard error for θ̂DML.

The authors call θ̂DML a cross-fit estimator as in the K = 2 case it performs sample splitting in both
directions and is therefore fully asymptotically efficient. The estimator as described above is labeled the

“DML2” estimator by the authors. An alternative they label “DML1” is θ̂DML1 = ∑K
k=1

(
V̂

′
kV̂ k

)−1 (
V̂

′
kÛ k

)
.

They are asymptotically equivalent but DML2 is preferred.
The estimator requires the selection of the number of folds K . Similarly to K-fold CV the authors

recommend K = 10. Computational cost is roughly proportional to K .
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Theorem 29.6 Under the assumptions of Theorem 29.5,

p
n

(
θ̂DML−θ

)−→
d

N

(
0,
E
[
V 2e2

](
E
[
V 2

])2

)
.

Furthermore, the standard variance estimator for θ̂DML is consistent for the
asymptotic variance.

Theorem 29.6 shows that the DML estimator achieves a standard asymptotic distribution. The proof
is a straightforward extension of that for Theorem 29.5 so is omitted. Weaker (but high-level) regularity
conditions are provided by Chernozhukov et. al. (2018).

The authors argue that the DML estimator has improved sampling performance due to an improved
rate of convergence of certain error terms. If we examine the proof of Theorem 29.5, one of the error
bounds is (29.44), which shows that∣∣∣∣(γ̂−k −γ

)′ 1p
n

X ′
k ek

∣∣∣∣≤Op

(∥∥γ∥∥
0

log pp
n

)
= op (1). (29.27)

Under sample splitting, however, we have an improved rate of convergence. The components γ̂−k and
X ′

k ek are independent. Thus the left side of (29.27), conditional on γ̂−k and X k , is mean zero and has

conditional variance bounded by σ2
e

(
γ̂−k −γ

)′ 1

n
X ′

k X k
(
γ̂−k −γ

)
. This is Op

(∥∥γ∥∥
0

log p
n

)
by Theorem 29.3.

Hence (29.27) is Op

(√∥∥γ∥∥
0

log p
n

)
, which is of smaller order. This improvement suggests that the devia-

tions from the asymptotic approximation should be smaller under sample splitting and the DML estima-
tor. The improvements, however, do not lead to a relaxation of the regularity conditions. The proof re-
quires bounding the terms (29.42)-(29.43) and these are not improved by sample splititng. Consequently
it is unclear if the distributional impact of sample splitting is large or small.

The advantage of the DML estimator over the post-regularization estimator is that the sample split-
ting eliminates the dependence between the two estimation steps, thereby reducing post-model-selection
bias. The procedure has several disadvantages, however. First, the estimator is random due to the sam-
ple splitting. Two researchers with the same data set but making different random splits will obtain two
distinct estimators. This arbitrariness is unsettling. This randomness can be reduced by using a larger
value of K , but this increases computation cost. Another disadvantage of sample-splitting is that esti-
mation of γ and η is performed using smaller samples which reduces estimation efficiency, though this
effect is minor if K ≥ 10. Regardless, these considerations suggest that DML may be most appropriate for
settings with large n and K ≥ 10.

At the beginning of this section the DML estimator was described as the “state-of-the-art”. This field
is rapidly developing so this specific estimator may be soon eclipsed by a further iteration.

In Stata, the DML estimator is available with the xporegress command. By default it implements
the DML2 estimator with K = 10 folds. The coefficients γ and η are estimated by post-Lasso.

29.23 Technical Proofs*

Proof of Theorem 29.2 Combining (29.8) and (29.9) we find that

mse
[
β̂ridge | X

]= var
[
β̂ridge | X

]+bias
[
β̂ridge | X

]
bias

[
β̂ridge | X

]′
= (

X ′X +λI p
)−1 (

X ′D X +λ2ββ′)(X ′X +λI p
)−1 .
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The MSE of the least squares estimator is

mse
[
β̂ols | X

]= (
X ′X

)−1 (
X ′D X

)(
X ′X

)−1

= (
X ′X +λI p

)−1 (
X ′X +λI p

)(
X ′X

)−1 (
X ′D X

)(
X ′X

)−1 (
X ′X +λI p

)(
X ′X +λI p

)−1

= (
X ′X +λI p

)−1
(

X ′D X +λ(
X ′X

)−1 (
X ′D X

)+λ(
X ′D X

)(
X ′X

)−1

+λ2 (
X ′X

)−1 (
X ′D X

)(
X ′X

)−1
)(

X ′X +λI p
)−1

≥ (
X ′X +λI p

)−1
(

X ′D X +λ(
X ′X

)−1 (
X ′D X

)+λ(
X ′D X

)(
X ′X

)−1
)(

X ′X +λI p
)−1 .

Their difference is

mse
[
β̂ols | X

]−mse
[
β̂ridge | X

]≥λ(
X ′X +λI p

)−1 A
(

X ′X +λI p
)−1 (29.28)

where
A = (

X ′X
)−1 (

X ′D X
)+ (

X ′D X
)(

X ′X
)−1 −λββ′.

The right-hand-side of (29.28) is positive definite if A > 0. Its smallest eigenvalue satisfies

λmin (A) = 2 min
α′α=1

α′ (X ′X
)−1/2 (

X ′D X
)(

X ′X
)−1/2

α−λβ′β≥ 2 min
h′h=1

h′Dh −λβ′β= 2σ2 −λβ′β

which is strictly positive when 0 < λ < 2σ2/β′β as assumed. This shows that (29.28) is positive definite.
■

Proof of Theorem 29.3 Define Vn j = n−1 ∑n
i=1 X 2

j iσ
2 (Xi ). The normality assumption implies that for

each j ,
(
nVn j

)−1/2 X ′
j e ∼ N(0,1). The Gaussian Tail inequality (B.39) implies that for any x

P

[∣∣∣∣∣ 1√
nVn j

X ′
j e

∣∣∣∣∣> x

]
≤ 2exp

(
−x2

2

)
. (29.29)

By Boole’s inequality (B.24), (29.29), Jensen’s inequality, Vn j ≤σ2, and (29.14),

P

[∥∥∥∥ 1

n
X ′e

∥∥∥∥∞ > λ

4n

∣∣∣∣ X
]
=P

[
max

1≤ j≤p

∣∣∣∣ 1

n
X ′

j e

∣∣∣∣> λ

4n

∣∣∣∣ X
]

=P
[ ⋃

1≤ j≤p

∣∣∣∣∣ 1√
nVn j

X ′
j e

∣∣∣∣∣> λ

4
√

nVn j

∣∣∣∣∣ X

]

≤
p∑

j=1
P

[∣∣∣∣∣ 1√
nVn j

X ′
j e

∣∣∣∣∣> λ

4
√

nVn j

∣∣∣∣∣ X

]

≤
p∑

j=1
2exp

(
− λ2

16nVn j

)

≤ 2p exp

(
− C 2

16σ2 log p

)
= 2p1−C 2/16σ2

. (29.30)

Since p > 1 this can be made arbitrarily small by selecting C sufficiently large. This shows that∥∥∥∥ 1

n
X ′e

∥∥∥∥∞ ≤ λ

4n
(29.31)
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holds with arbitrarily large probability. The remainder of the proof is algebraic, based on manipulations
of the estimation criterion function, conditional on the event (29.31).

Since β̂ minimizes SSE1
(
β,λ

)
it satisfies SSE1

(
β̂,λ

)≤ SSE1
(
β,λ

)
or(

Y −X β̂
)′ (

Y −X β̂
)+λ∥∥β̂∥∥

1 ≤ e ′e +λ∥∥β∥∥
1 .

Writing out the left side, dividing by n, and re-arranging and defining Rn = (
β̂−β)′

Qn
(
β̂−β)

, this implies

Rn + λ

n

∥∥β̂∥∥
1 ≤

2

n
e ′X

(
β̂−β)+ λ

n

∥∥β∥∥
1

≤ 2

∥∥∥∥ 1

n
X ′e

∥∥∥∥∞∥∥β̂−β∥∥
1 +

λ

n

∥∥β∥∥
1

≤ λ

2n

∥∥β̂−β∥∥
1 +

λ

n

∥∥β∥∥
1 .

The second inequality is Hölder’s (29.2) and the third holds by (29.31).
Partition β̂= (

β̂0, β̂1
)

conformably with β= (
β0,β1

)
. Using the additivity property of the 1-norm and

the fact β0 = 0, the above expression implies

Rn + λ

2n

∥∥β̂0 −β0
∥∥

1 ≤
λ

2n

∥∥β̂1 −β1
∥∥

1 +
λ

n

(∥∥β1
∥∥

1 −
∥∥β̂1

∥∥
1

)
≤ 3λ

2n

∥∥β̂1 −β1
∥∥

1 (29.32)

the second inequality using the fact
∥∥β∥∥

1 ≤
∥∥β̂1 −β1

∥∥
1 +

∥∥β̂1
∥∥

1 which follows from (29.3).
An implication of (29.32) is

∥∥β̂0 −β0
∥∥

1 ≤ 3
∥∥β̂1 −β1

∥∥
1. Thus β̂−β ∈ B . A consequence is that we can

apply Assumption 29.1 to obtain

Rn = (
β̂−β)′

Qn
(
β̂−β)≥ c2

∥∥β̂−β∥∥2
2 . (29.33)

This is the only (but key) point in the proof where Assumption 29.1 is used.
Together with (29.32), (29.33) implies

c2
∥∥β̂−β∥∥2

2 ≤
3λ

2n

∥∥β̂1 −β1
∥∥

1

≤ 3λ

2n

∥∥β̂1 −β1
∥∥

2

∥∥β̂1 −β1
∥∥1/2

0

≤ 3λ

2n

∥∥β̂−β∥∥
2

∥∥β∥∥1/2
0 .

The second inequality is (29.4). The third is
∥∥β̂1 −β1

∥∥
2 ≤

∥∥β̂−β∥∥
2 and

∥∥β̂1 −β1
∥∥

0 =
∥∥β1

∥∥
0 =

∥∥β∥∥
0. Rear-

ranging and using (29.14) we obtain

∥∥β̂−β∥∥
2 ≤

3λ

2c2n

∥∥β∥∥1/2
0 = 3C

2c2

∥∥β∥∥1/2
0

√
log p

n

which is (29.17) with D = 3C /2c2.
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(29.32), (29.4), (29.17) and (29.14) imply

Rn + λ

2n

∥∥β̂0 −β0
∥∥

1 ≤
3λ

2n

∥∥β̂1 −β1
∥∥

2

∥∥β̂1 −β1
∥∥1/2

0

≤ 3λ

2n

∥∥β̂−β∥∥
2

∥∥β∥∥1/2
0

≤ 9C

4c2

λ

n

∥∥β∥∥
0

√
log p

n
(29.34)

= 9C 2

4c2

∥∥β∥∥
0

log p

n
.

This implies (29.15) with D = 9C 2/4c2.
Equation (29.34) also implies

∥∥β̂0 −β0
∥∥

1 ≤
9C

2c2

∥∥β∥∥
0

√
log p

n
.

Using (29.4) and (29.17)

∥∥β̂1 −β1
∥∥

1 ≤
∥∥β̂1 −β1

∥∥
2

∥∥β̂1 −β1
∥∥1/2

0 ≤ ∥∥β̂−β∥∥
2

∥∥β∥∥1/2
0 ≤ 3C

2c2

∥∥β∥∥
0

√
log p

n
.

Hence ∥∥β̂−β∥∥
1 =

∥∥β̂0 −β0
∥∥

1 +
∥∥β̂1 −β1

∥∥
1 ≤

6C

c2

∥∥β∥∥
0

√
log p

n

which is (29.16) with D = 6C /c2. ■

Proof of Theorem 29.4 We provide a sketch of the proof. We start with Lasso IV. First, consider the ideal-
ized estimator β̂= (

W ′X
)−1 (

W ′Y
)

where W = ZΓ. If the distribution of W does not change with n (which
holds when the non-zero coefficients in Γ do not change with n) then β̂ has the asymptotic distribution
(29.20) under standard assumptions. To allow the non-zero coefficients in Γ to change with n, Belloni,
Chen, Chernozhukov, and Hansen (2012) use a triangular array central limit theory which requires some
additional technical conditions. Given this, (29.20) holds if W can be replaced by the predicted values
X̂ Lasso without changing (29.20). This holds if

1

n

(
X̂ Lasso −W

)′
X −→

p
0 (29.35)

1p
n

(
X̂ Lasso −W

)′
e −→

p
0. (29.36)

For simplicity assume that k = 1. Theorem 29.3 shows that under the regularity conditions for the Lasso
applied to the reduced form,∣∣∣∣ 1

n

(
X̂ Lasso −W

)′ (
X̂ Lasso −W

)∣∣∣∣= (
Γ̂−Γ)′ ( 1

n
Z ′Z

)(
Γ̂−Γ)≤Op

(
‖Γ‖0

log p

n

)
(29.37)

and ∥∥Γ̂−Γ∥∥
1 ≤Op

‖Γ‖0

√
log p

n

 . (29.38)
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Similar to (29.30), under sufficient regularity conditions∥∥∥∥ 1p
n

Z ′e
∥∥∥∥
∞

=Op

(√
log p

)
. (29.39)

By the Schwarz inequality and (29.37)∣∣∣∣ 1

n

(
X̂ Lasso −W

)′
X

∣∣∣∣≤ ∣∣∣∣ 1

n

(
X̂ Lasso −W

)′ (
X̂ Lasso −W

)∣∣∣∣1/2 ∣∣∣∣ 1

n
X ′X

∣∣∣∣1/2

≤Op

(
‖Γ‖0

log p

n

)1/2

≤ op (1)

the final inequality under (29.19). This establishes (29.35).
By the Hölder inequality (29.2), (29.38), and (29.39),

∣∣∣∣ 1p
n

(
X̂ Lasso −W

)′
e

∣∣∣∣= ∣∣∣∣(Γ̂−Γ)′ 1p
n

Z ′e
∣∣∣∣

≤ ∥∥Γ̂−Γ∥∥
1

∥∥∥∥ 1p
n

Z ′e
∥∥∥∥
∞

≤Op

‖Γ‖0

√
log p

n

Op

(√
log p

)
=Op

(
‖Γ‖0

log pp
n

)
≤ op (1) (29.40)

the final inequality under (29.19). This establishes (29.36).
Now consider Lasso SSIV. The steps are essentially the same except for (29.40). For this we use the

fact that Γ̂Lasso,A is independent of Z ′
B eB . Let DB = diag

(
E
[
e2

i | Zi
])

for sample B and assume E
[
e2 | Z

]≤
σ2 <∞. Conditionally on A and Z B

var

[
1p
n

(
X̂

′
Lasso,B −W B

)′
eB

∣∣∣∣ A, Z B

]
= var

[(
Γ̂Lasso,A −Γ)′ 1p

n
Z ′

B eB

∣∣∣∣ A, Z B

]
= (
Γ̂Lasso,A −Γ)′ 1

n
Z ′

B D Z B
(
Γ̂Lasso,A −Γ)

≤σ2 (
Γ̂Lasso,A −Γ)′ 1

n
Z ′

B Z B
(
Γ̂Lasso,A −Γ)

=Op

(
‖Γ‖0

log p

n

)
≤ op (1)

the final bounds by (29.37) and (29.21). Thus n−1/2
(

X̂
′
Lasso,B −W B

)′
eB −→

p
0 as needed. ■

Proof of Theorem 29.5 The idealized estimator θ̂PR =
(
V ′V

)−1 (
V ′U

)
satisfies

p
n

(
θ̂PR−θ

)= (
n−1V ′V

)−1 (
n−1/2V ′e

)
which has the stated asymptotic distribution. The Theorem therefore holds if replacement of (V ,U ) by
(V̂ ,Û ) is asymptotically negligible.
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Since Y = Xη+ V̂ θ+X
(
γ̂−γ)

θ+e,

p
n

(
θ̂PR−θ

)=p
n

V̂
′
Û

V̂
′
V̂

=
1p
n

V̂
′ (

V̂ θ+X
(
γ̂−γ)

θ−X
(
η̂−η)+e

)
1

n
V̂

′
V̂

. (29.41)

The denominator equals

1

n
V̂

′
V̂ = 1

n
V ′V −2

(
γ̂−γ)′ 1

n
X ′V + (

γ̂−γ)′Qn
(
γ̂−γ)

.

The numerator equals

1p
n

V̂
′ (

V̂ θ+X
(
γ̂−γ)

θ−X
(
η̂−η)+e

)= 1p
n

V ′e − (
γ̂−γ)′ 1p

n
X ′e − (

η̂−η)′ 1p
n

X ′V

+θ (
γ̂−γ)′ 1p

n
X ′V +p

n
(
γ̂−γ)′Qn

(
η̂−η)−θpn

(
γ̂−γ)′Qn

(
γ̂−γ)

.

The terms on the right side beyond the first are asymptotically negligible because

p
n

(
γ̂−γ)′Qn

(
γ̂−γ)≤Op

(∥∥γ∥∥
0

log pp
n

)
= op (1) (29.42)

p
n

(
η̂−η)′Qn

(
η̂−η)≤Op

(∥∥η∥∥
0

log pp
n

)
= op (1) (29.43)

by Theorem 29.3 and Assumption (29.26),

p
n

(
γ̂−γ)′Qn

(
η̂−η)≤ (p

n
(
γ̂−γ)′Qn

(
γ̂−γ))1/2 (p

n
(
η̂−η)′Qn

(
η̂−η))1/2

≤Op

(∥∥γ∥∥1/2
0

∥∥η∥∥1/2
0

log pp
n

)
= op (1)

by the Schwarz inequality and the above results, and∣∣∣∣(γ̂−γ)′ 1p
n

X ′e
∣∣∣∣≤ ∥∥γ̂−γ∥∥

1

∥∥∥∥ 1p
n

X ′e
∥∥∥∥
∞

≤Op

∥∥γ∥∥
0

√
log p

n

Op

(√
log p

)
=Op

(∥∥γ∥∥
0

log pp
n

)
= op (1) (29.44)

by Hölder’s (29.2), Theorem 29.3, (29.39), and Assumption (29.26). Similarly

(
γ̂−γ)′ 1p

n
X ′V = op (1)

(
η̂−η)′ 1p

n
X ′V = op (1).

Together we have shown that in (29.41), the replacement of (V̂ ,Û ) by (V̂ ,Û ) is asymptotically negligible.
■
_____________________________________________________________________________________________



CHAPTER 29. MACHINE LEARNING 943

29.24 Exercises

Exercise 29.1 Prove Theorem 29.1. Hint: The proof is similar to that of Theorem 3.7.

Exercise 29.2 Show that (29.7) is the Mallows criterion for ridge regression. For a definition of the Mal-
lows criterion see Section 28.6.

Exercise 29.3 Derive the conditional bias (29.8) and variance (29.9) of the ridge regression estimator.

Exercise 29.4 Show that the ridge regression estimator can be computed as least squares applied to an
augmented data set. Take the original data (Y , X ). Add p 0’s to Y and p rows of

p
λI p to X , apply least

squares, and show that this equals β̂ridge.

Exercise 29.5 Which estimator produces a higher regression R2, least squares or ridge regression?

Exercise 29.6 Does ridge regression require that the columns of X linearly independent? Take a sample
(Y , X ). Create the augmented regressor set X̃ = (X , X ) (add a duplicate of each regressor) and let (β̂1, β̂2)

be the ridge regression coefficients for the regression of Y on X̃ . Show that β̂1 = β̂2 = 1
2

(
X ′X + I p λ̃

)−1 (
X ′Y

)
with λ̃=λ/2.

Exercise 29.7 Repeat the previous question for Lasso regression. Show that the Lasso coefficient esti-
mates β̂1 and β̂2 are individually indeterminate but their sum satisfies β̂1 + β̂2 = β̂Lasso, the coefficients
from the Lasso regression of Y on X .

Exercise 29.8 You have the continuous variables (Y , X ) with X ≥ 0 and you want to estimate a regression
tree for E [Y | X ]. A friend suggests adding a quadratic X 2 to the variables for added flexibility. Does this
make sense?

Exercise 29.9 Take the cpsmar09 dataset and the subsample of Asian women (n = 1149). Estimate
a Lasso linear regression of log(wage) on the following variables: education; dummies for education
equalling 12, 13, 14, 15, 16, 18, and 20; experience/40 in powers from 1 to 9; dummies for marriage cate-
gories married, divorced, separated, widowed, never married; dummies for the four regions; dummy for
union membership. Report the estimated model and coefficients.

Exercise 29.10 Repeat the above exercise using the subsample of Hispanic men (n = 4547).
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Appendix A

Matrix Algebra

A.1 Notation

A scalar a is a single number.
A vector a is a k ×1 list of numbers typically arranged in a column. We write this as

a =


a1

a2
...

ak

 .

Equivalently, a vector a is an element of Euclidean k space, written as a ∈Rk . If k = 1 then a is a scalar.
A matrix A is a k × r rectangular array of numbers, written as

A =


a11 a12 · · · a1r

a21 a22 · · · a2r
...

...
...

ak1 ak2 · · · akr

 .

By convention ai j refers to the element in the i th row and j th column of A. If r = 1 then A is a column
vector. If k = 1 then A is a row vector. If r = k = 1, then A is a scalar.

A standard convention (which we will follow in this text whenever possible) is to denote scalars by
lower-case italics a, vectors by lower-case bold italics a, and matrices by upper-case bold italics A. Some-
times a matrix A is denoted by the symbol (ai j ).

A matrix can be written as a set of column vectors or as a set of row vectors. That is,

A = [
a1 a2 · · · ar

]=

α1

α2
...
αk


where

ai =


a1i

a2i
...

aki


945
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are column vectors and
α j =

[
a j 1 a j 2 · · · a j r

]
are row vectors.

The transpose of a matrix A, denoted A′, A>, or At , is obtained by flipping the matrix on its diagonal.
In most of the econometrics literature, and this textbook, we use A′, but in the mathematics literature
A> is the convention. Thus

A′ =


a11 a21 · · · ak1

a12 a22 · · · ak2
...

...
...

a1r a2r · · · akr

 .

Alternatively, letting B = A′, then bi j = a j i . Note that if A is k × r , then A′ is r ×k. If a is a k ×1 vector,
then a ′ is a 1×k row vector.

A matrix is square if k = r. A square matrix is symmetric if A = A′, which requires ai j = a j i . A square
matrix is diagonal if the off-diagonal elements are all zero, so that ai j = 0 if i 6= j . A square matrix is
upper (lower) diagonal if all elements below (above) the diagonal equal zero.

An important diagonal matrix is the identity matrix, which has ones on the diagonal. The k × k
identity matrix is denoted as

I k =


1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

 .

A partitioned matrix takes the form

A =


A11 A12 · · · A1r

A21 A22 · · · A2r
...

...
...

Ak1 Ak2 · · · Akr


where the Ai j denote matrices, vectors and/or scalars.

A.2 Complex Matrices

Scalars, vectors and matrices may contain real or complex numbers as entries. (However, most
econometric applications exclusively use real matrices.) If all elements of a vector x are real we say that
x is a real vector, and similarly for matrices.

Recall that a complex number can be written as x = a + bi where where i = p−1 and a and b are
real numbers. Similarly a vector with complex elements can be written as x = a +bi where a and b are
real vectors, and a matrix with complex elements can be written as X = A +B i where A and B are real
matrices.

Recall that the complex conjugate of x = a +bi is x∗ = a −bi. For matrices, the analogous concept is
the conjugate transpose. The conjugate transpose of X = A +B i is X ∗ = A′−B ′i. It is obtained by taking
the transpose and taking the complex conjugate of each element.
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A.3 Matrix Addition

If the matrices A = (
ai j

)
and B = (

bi j
)

are of the same order, we define the sum

A +B = (
ai j +bi j

)
.

Matrix addition follows the commutative and associative laws:

A +B = B + A

A + (B +C ) = (A +B )+C .

A.4 Matrix Multiplication

If A is k × r and c is real, we define their product as

Ac = c A = (
ai j c

)
.

If a and b are both k ×1 then their inner product is

a ′b = a1b1 +a2b2 +·· ·+ak bk =
k∑

j=1
a j b j .

Note that a ′b = b′a. We say that two vectors a and b are orthogonal if a ′b = 0.
If A is k×r and B is r × s, so that the number of columns of A equals the number of rows of B , we say

that A and B are conformable. In this event the matrix product AB is defined. Writing A as a set of row
vectors and B as a set of column vectors (each of length r ), then the matrix product is defined as

AB =


a ′

1
a ′

2
...

a ′
k

[
b1 b2 · · · bs

]=


a ′
1b1 a ′

1b2 · · · a ′
1bs

a ′
2b1 a ′

2b2 · · · a ′
2bs

...
...

...
a ′

k b1 a ′
k b2 · · · a ′

k bs

 .

Matrix multiplication is not commutative: in general AB 6= B A. However, it is associative and dis-
tributive:

A (BC ) = (AB )C

A (B +C ) = AB + AC .

An alternative way to write the matrix product is to use matrix partitions. For example,

AB =
[

A11 A12

A21 A22

][
B 11 B 12

B 21 B 22

]
=

[
A11B 11 + A12B 21 A11B 12 + A12B 22

A21B 11 + A22B 21 A21B 12 + A22B 22

]
.

As another example,

AB = [
A1 A2 · · · Ar

]


B 1

B 2
...

B r


= A1B 1 + A2B 2 +·· ·+ Ar B r

=
r∑

j=1
A j B j .
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An important property of the identity matrix is that if A is k × r then AI r = A and I k A = A.
We say two matrices A and B are orthogonal if A′B = 0. This means that all columns of A are orthog-

onal with all columns of B .
The k × r matrix H , r ≤ k, is called orthonormal if H ′H = I r . This means that the columns of H are

mutually orthogonal and each column is normalized to have unit length.

A.5 Trace

The trace of a k ×k square matrix A is the sum of its diagonal elements

tr(A) =
k∑

i=1
ai i .

Some straightforward properties for square matrices A and B and real c are

tr(c A) = c tr(A)

tr
(

A′)= tr(A)

tr(A +B ) = tr(A)+ tr(B )

tr(I k ) = k.

Also, for k × r A and r ×k B we have
tr(AB ) = tr(B A) . (A.1)

Indeed,

tr(AB ) = tr


a ′

1b1 a ′
1b2 · · · a ′

1bk

a ′
2b1 a ′

2b2 · · · a ′
2bk

...
...

...
a ′

k b1 a ′
k b2 · · · a ′

k bk


=

k∑
i=1

a ′
i bi

=
k∑

i=1
b′

i ai

= tr(B A) .

A.6 Rank and Inverse

The rank of the k × r matrix (r ≤ k)

A = [
a1 a2 · · · ar

]
is the number of linearly independent columns a j and is written as rank(A). We say that A has full rank
if rank(A) = r .

A square k ×k matrix A is said to be nonsingular if it is has full rank, e.g. rank(A) = k. This means
that there is no k ×1 c 6= 0 such that Ac = 0.

If a square k ×k matrix A is nonsingular then there exists a unique matrix k ×k matrix A−1 called the
inverse of A which satisfies

A A−1 = A−1 A = I k .



APPENDIX A. MATRIX ALGEBRA 949

For non-singular A and C some important properties include

A A−1 = A−1 A = I k(
A−1)′ = (

A′)−1

(AC )−1 =C−1 A−1

(A +C )−1 = A−1 (
A−1 +C−1)−1

C−1

A−1 − (A +C )−1 = A−1 (
A−1 +C−1)−1

A−1.

If a k ×k matrix H is orthonormal (so that H ′H = I k ) then H is nonsingular and H−1 = H ′. Further-
more, H H ′ = I k and H ′−1 = H .

Another useful result for non-singular A is known as the Woodbury matrix identity

(A +BC D)−1 = A−1 − A−1BC
(
C +C D A−1BC

)−1
C D A−1.

In particular, for C = 1, B = b and D = b′ for vector b we find the Sherman–Morrison formula(
A +bb′)−1 = A−1 − (

1+b′A−1b
)−1

A−1bb′A−1.

and similarly using C =−1 (
A −bb′)−1 = A−1 + (

1−b′A−1b
)−1

A−1bb′A−1. (A.2)

The following fact about inverting partitioned matrices is quite useful.[
A11 A12

A21 A22

]−1
def=

[
A11 A12

A21 A22

]
=

[
A−1

11·2 −A−1
11·2 A12 A−1

22
−A−1

22·1 A21 A−1
11 A−1

22·1

]
(A.3)

where A11·2 = A11 − A12 A−1
22 A21 and A22·1 = A22 − A21 A−1

11 A12. There are alternative algebraic representa-
tions for the components. For example, using the Woodbury matrix identity you can show the following
alternative expressions

A11 = A−1
11 + A−1

11 A12 A−1
22·1 A21 A−1

11

A22 = A−1
22 + A−1

22 A21 A−1
11·2 A12 A−1

22

A12 =−A−1
11 A12 A−1

22·1
A21 =−A−1

22 A21 A−1
11·2.

Even if a matrix A does not possess an inverse we define the Moore-Penrose generalized inverse A−

as the matrix which satisfies

A A−A = A

A−A A− = A−

A A− is symmetric

A−A is symmetric.

For any matrix A the Moore-Penrose generalized inverse A− exists and is unique.
For example, if

A =
[

A11 0
0 0

]
and A−1

11 exists then

A− =
[

A−1
11 0
0 0

]
.
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A.7 Orthogonal and Orthonormal Matrices

We say that two k ×1 vectors h1 and h2 are orthogonal if h′
1h2 = 0. This means that they are perpen-

dicular.
We say that a k ×1 vector h is a unit vector if h′h = 1. This means that it has unit length in Rk .
We say that two k ×1 vectors h1 and h2 are orthonormal if they are orthogonal unit vectors.
We say that the k ×m1 and k ×m2 matrices H 1 and H 2 are orthogonal if H ′

1H 2 = 0.
We say that the k×m (k ≥ m) matrix H is orthonormal if H ′H = I m . This means that the columns of

H are orthonormal. Some call H an orthogonal matrix.
Typically an orthonormal matrix is written as H .
If H is a k ×k orthogonal matrix then it has full rank k, H ′H = I k , H H ′ = I k , and H−1 = H ′.

A.8 Determinant

The determinant is a measure of the volume of a square matrix. It is written as det A or |A|. In this
textbook we use det A for clarity.

While the determinant is widely used, its precise definition is rarely needed. However, we present the
definition here for completeness. Let A = (

ai j
)

be a k×k matrix. Let π= (
j1, ..., jk

)
denote a permutation

of (1, ...,k). There are k ! such permutations. There is a unique count of the number of inversions of the
indices of such permutations (relative to the natural order (1, ...,k), and let επ = +1 if this count is even
and επ =−1 if the count is odd. Then the determinant of A is defined as

det A =∑
π
επa1 j1 a2 j2 · · ·ak jk .

For example, if A is 2×2 then the two permutations of (1,2) are (1,2) and (2,1) for which ε(1,2) = 1 and
ε(2,1) =−1. Thus

det A = ε(1,2)a11a22 +ε(2,1)a21a12

= a11a22 −a12a21.

For a square matrix A the minor Mi j of the i j th element ai j is the determinant of the matrix obtained
by removing the i th row and j th column of A. The cofactor of the i j th element is Ci j = (−1)i+ j Mi j . An
important representation known as Laplace’s expansion relates the determinant of A to its cofactors:

det A =
k∑

j=1
ai j Ci j .

This holds for all i = 1, , ..,k. This is often presented as a method for computation of a determinant.

Theorem A.1 Properties of the determinant

1. det(A) = det
(

A′)
2. det(c A) = ck det A

3. det(AB ) = det(B A) = (det A) (detB )

4. det
(

A−1
)= (det A)−1

5. det

[
A B
C D

]
= (detD)det

(
A −B D−1C

)
if detD 6= 0
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6. det

[
A B
0 D

]
= det(A) (detD) and det

[
A 0
C D

]
= det(A) (detD)

7. If A is p ×q and B is q ×p then det
(

I p + AB
)= det

(
I q +B A

)
8. If A and D are invertible then det

(
A −B D−1C

)= det(A)

det(D)
det

(
D −C A−1B

)
9. det A 6= 0 if and only if A is nonsingular

10. If A is triangular (upper or lower), then det A =∏k
i=1 ai i

11. If A is orthonormal, then det A =±1

12. A−1 = (det A)−1 C where C = (Ci j ) is the matrix of cofactors

A.9 Eigenvalues

The characteristic equation of a k ×k square matrix A is

det(λI k − A) = 0.

The left side is a polynomial of degree k in λ so has exactly k roots, which are not necessarily distinct and
may be real or complex. They are called the latent roots, characteristic roots, or eigenvalues of A. If λ
is an eigenvalue of A then λI k −A is singular so there exists a non-zero vector h such that (λI k − A)h = 0
or

Ah = hλ.

The vector h is called a latent vector, characteristic vector, or eigenvector of A corresponding toλ. They
are typically normalized so that h′h = 1 and thus λ= h′Ah.

Set H = [h1 · · · hk ] andΛ= diag{λ1, ...,λk }. A matrix expression is

AH = HΛ

We now state some useful properties.

Theorem A.2 Properties of eigenvalues. Let λi and hi , i = 1, ...,k, denote the k eigenvalues and eigen-
vectors of a square matrix A.

1. det(A) =∏k
i=1λi

2. tr(A) =∑k
i=1λi

3. A is non-singular if and only if all its eigenvalues are non-zero.

4. The non-zero eigenvalues of AB and B A are identical.

5. If B is non-singular then A and B−1 AB have the same eigenvalues.

6. If Ah = hλ then (I − A)h = h(1−λ). So I −A has the eigenvalue 1−λ and associated eigenvector h.
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Many eigenvalue applications in econometrics concern the case where the matrix A is real and sym-
metric. In this case all eigenvalues of A are real and its eigenvectors are mutually orthogonal. Thus H
is orthonormal so H ′H = I k and H H ′ = I k . When the eigenvalues are all real it is conventional to write
them in decending order λ1 ≥λ2 ≥ ·· · ≥λk .

The following is an important property of real symmetric matrices which follows directly from the
equations AH = HΛ and H ′H = I k .

Theorem A.3 Spectral Decomposition. If A is a k × k real symmetric matrix then A = HΛH ′ where
H contains the eigenvectors and Λ is a diagonal matrix with the eigenvalues on the diagaonal. The
eigenvalues are all real and the eigenvector matrix satisfies H ′H = I k .

The spectral decomposition can be alternatively written as H ′AH =Λ.
If A is real, symmetric, and invertible, then by the spectral decomposition and the properties of or-

thonormal matrices, A−1 = H ′−1Λ−1H−1 = HΛ−1H ′. Thus the columns of H are also the eigenvectors of
A−1, and its eigenvalues are λ−1

1 , λ−1
2 , ..., λ−1

k .

A.10 Positive Definite Matrices

We say that a k ×k real symmetric square matrix A is positive semi-definite if for all c 6= 0, c ′Ac ≥ 0.
This is written as A ≥ 0. We say that A is positive definite if for all c 6= 0, c ′Ac > 0. This is written as A > 0.

Some properties include:

Theorem A.4 Properties of positive semi-definite matrices

1. If A =G ′BG with B ≥ 0 and some matrix G then A is positive semi-definite. (For any c 6= 0, c ′Ac =
α′Bα≥ 0 where α=Gc .) If G has full column rank and B > 0 then A is positive definite.

2. If A is positive definite then A is non-singular and A−1 exists. Furthermore, A−1 > 0.

3. A > 0 if and only if it is symmetric and all its eigenvalues are positive.

4. By the spectral decomposition, A = HΛH ′ where H ′H = I k and Λ is diagonal with non-negative
diagonal elements. All diagonal elements ofΛ are strictly positive if (and only if) A > 0.

5. The rank of A equals the number of strictly positive eigenvalues.

6. If A > 0 then A−1 = HΛ−1H ′.

7. If A ≥ 0 and rank(A) = r ≤ k then the Moore-Penrose generalized inverse of A is A− = HΛ−H ′

whereΛ− = diag
(
λ−1

1 ,λ−1
2 , ...,λ−1

r ,0, ...,0
)
.

A.11 Idempotent Matrices

A k×k square matrix A is idempotent if A A = A. When k = 1 the only idempotent numbers are 1 and
0. For k > 1 there are many possibilities. For example, the following matrix is idempotent

A =
[

1/2 −1/2
−1/2 1/2

]
.
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If A is idempotent and symmetric with rank r then it has r eigenvalues which equal 1 and k − r
eigenvalues which equal 0. To see this, by the spectral decomposition we can write A = HΛH ′ where H
is orthonormal andΛ contains the eigenvalues. Then

A = A A = HΛH ′HΛH ′ = HΛ2H ′.

We deduce that Λ2 =Λ and λ2
i =λi for i = 1, ...,k. Hence each λi must equal either 0 or 1. Since the rank

of A is r , and the rank equals the number of positive eigenvalues, it follows that

Λ=
[

I r 0
0 0k−r

]
.

Thus the spectral decomposition of an idempotent matrix A takes the form

A = H
[

I r 0
0 0k−r

]
H ′ (A.4)

with H ′H = I k . Additionally, tr(A) = rank(A) and A is positive semi-definite.
If A is idempotent and symmetric with rank r < k then it does not possess an inverse, but its Moore-

Penrose generalized inverse takes the simple form A− = A. This can be verified by checking the condi-
tions for the Moore-Penrose generalized inverse , for example A A−A = A A A = A.

If A is idempotent then I − A is also idempotent.
One useful fact is that if A is idempotent then for any conformable vector c ,

c ′Ac ≤ c ′c (A.5)

c ′ (I − A)c ≤ c ′c (A.6)

To see this, note that
c ′c = c ′Ac +c ′ (I − A)c .

Since A and I − A are idempotent they are both positive semi-definite, so both c ′Ac and c ′ (I − A)c are
non-negative. Thus they must satisfy (A.5)-(A.6).

A.12 Singular Values

The singular valuesσ j of a k×r real matrix A are the positive square roots of the eigenvalues of A′A.
Thus for j = 1, ...,r

σ j =
√
λ j

(
A′A

)
.

Since A′A is positive semi-definite its eigenvalues are non-negative. Thus singular values are always real
and non-negative.

The non-zero singular values of A and A′ are the same. The number of non-zero singular values
equals the rank of A.

When A is positive semi-definite then the singular values of A correspond to its eigenvalues.
It is convention to write the singular values in decending order σ1 ≥σ2 ≥ ·· · ≥σr .



APPENDIX A. MATRIX ALGEBRA 954

A.13 Matrix Decompositions

There are several useful ways to decompose a matrix into the products of simpler matrices. We have
already introduced the spectral decomposition, which we repeat here for completeness. The following
apply to real matrices A.

Spectral Decomposition: If A is k×k and symmetric then A = HΛH ′ where H ′H = I k andΛ is a diagonal
matrix with the (real) eigenvalues on the diagaonal.

Eigendecomposition: If A is k ×k and has distinct eigenvalues there exists a nonsingular matrix P such
that A = PΛP−1 and P−1 AP =Λ. The columns of P are the eigenvectors. Λ is diagonal with the eigen-
values on the diagonal.

Matrix Square Root: If A is k ×k and positive definite we can find a matrix B such that A = B B ′. We call
B a matrix square root of A and is typically written as B = A1/2.

The matrix B need not be unique. One matrix square root is obtained using the spectral decom-
position A = HΛH ′. Then B = HΛ1/2H ′ is itself symmetric and positive definite and satisfies A = B B .
Another matrix square root is the Cholesky decomposition, described in Section A.16.

Singular Value Decomposition: If A is k × r then A =UΛV ′ where U is k ×k, Λ is k × r and V is r × r . U
and V are orthonormal (U ′U = I k and V ′V = I r ). Λ is a diagonal matrix with the singular values of A on
the diagonal.

Cholesky Decomposition: If A is k×k and positive definite then A = LL′ where L is lower triangular and
full rank. See Section A.16.

QR Decomposition: If A is k × r with k ≥ r and rank r then A =QR . Q is a k × r and orthonormal matrix
(Q ′Q = I r ). R is a r × r full rank upper triangular matrix. See Section A.17.

Jordan Matrix Decomposition: If A is k ×k then A = P J P−1 where J takes the Jordan normal form. The
latter is a block diagonal matrix J = diag{J 1, ..., J r } where r is the number of distinct eigenvalues of A.
The Jordan blocks J i are mi ×mi where mi is the multiplicity of λi (number of eigenvalues equalling λi )
and take the form

J i =
 λi 1 0

0 λi 1
0 0 λi

 (A.7)

illustrated here for mi = 3.

A.14 Generalized Eigenvalues

Let A and B be k ×k matrices. The generalized characteristic equation is

det
(
µB − A

)= 0.

The solutions µ are known as generalized eigenvalues of A with respect to B . Associated with each
generalized eigenvalue µ is a generalized eigenvector v which satisfies

Av = B vµ.

They are typically normalized so that v ′B v = 1 and thus µ= v ′Av .
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A matrix expression is AV = BV M where M = diag
{
µ1, ...,µk

}
.

If A and B are real and symmetric then the generalized eigenvalues are real.
Suppose in addition that B is invertible. Then the generalized eigenvalues of A with respect to B

are equal to the eigenvalues of B−1/2 AB−1/2′. The generalized eigenvectors V of A with respect to B are
related to the eigenvectors H of B−1/2 AB−1/2′ by the relationship V = B−1/2′H . This implies V ′BV = I k .
Thus the generalized eigenvectors are orthogonalized with respect to the matrix B .

If Av = B vµ then (B − A) v = B v (1−µ). So a generalized eigenvalue of B −A with respect to B is 1−µ
with associated eigenvector v .

Generalized eigenvalue equations have an interesting dual property. The following is based on Lemma
A.9 of Johansen (1995).

Theorem A.5 Suppose that B and C are invertible p ×p and r × r matrices, respectively, and A is p × r .
Then the generalized eigenvalue problems

det
(
µB − AC−1 A′)= 0 (A.8)

and
det

(
µC − A′B−1 A

)= 0 (A.9)

have the same non-zero generalized eigenvalues. Furthermore, for any such generalized eigenvalue µ, if
v and w are the associated generalized eigenvectors of (A.8) and (A.9), then

w =µ−1/2C−1 A′v . (A.10)

Proof. Let µ 6= 0 be an eigenvalue of (A.8). Using Theorem A.1.8

0 = det
(
µB − AC−1 A′)

= det
(
µB

)
det(C )

det
(
C − A′ (µB

)−1 A
)

= det(B )

det(C )
det

(
µC − A′B−1 A

)
.

Since det(B )/det(C ) 6= 0 this implies (A.10) holds. Hence µ is an eigenvalue of (A.9), as claimed.
We next show that (A.10) is an eigenvector of (A.9). Note that the solutions to (A.8) and (A.9) satisfy

B vµ= AC−1 A′v (A.11)

and
C wµ= A′B−1 Aw (A.12)

and are normalized so that v ′B v = 1 and w ′C w = 1. We show that (A.10) satisfies (A.12). Using (A.10), we
find that the left-side of (A.12) equals

C
(
µ−1/2C−1 A′)µ= A′µ1/2 = A′B−1B vµ1/2 = A′B−1 AC−1 A′vµ−1/2 = A′B−1 Aw .

The third equality is (A.11) and the final is (A.10). This shows that (A.12) holds and thus (A.10) is an
eigenvector of (A.9) as stated. ■
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A.15 Extrema of Quadratic Forms

The extrema of quadratic forms in real symmetric matrices can be conveniently be written in terms
of eigenvalues and eigenvectors.

Let A denote a k ×k real symmetric matrix. Let λ1 ≥ ·· · ≥ λk be the ordered eigenvalues of A and
h1, ...,hk the associated ordered eigenvectors.

We start with results for the extrema of x ′Ax . Throughout this Section when we refer to the “solution”
of an extremum problem it is the solution to the normalized expression.

• max
x ′x=1

x ′Ax = max
x

x ′Ax

x ′x
=λ1. The solution is x = h1. (That is, the maximizer of x ′Ax over x ′x = 1.)

• min
x ′x=1

x ′Ax = min
x

x ′Ax

x ′x
=λk . The solution is x = hk .

Multivariate generalizations can involve either the trace or the determinant.

• max
X ′X=I`

tr
(

X ′AX
)= max

X
tr

((
X ′X

)−1 X ′AX
)
=∑`

i=1λi .

The solution is X = [h1, ...,h`].

• min
X ′X=I`

tr
(

X ′AX
)= min

X
tr

((
X ′X

)−1 X ′AX
)
=∑`

i=1λk−i+1.

The solution is X = [hk−`+1, ...,hk ].

For a proof see Theorem 11.13 of Magnus and Neudecker (2019).

Suppose as well that A > 0 with ordered eigenvalues λ1 ≥λ2 ≥ ·· · ≥λk and eigenvectors [h1, ...,hk ].

• max
X ′X=I`

det
(

X ′AX
)= max

X

det
(

X ′AX
)

det
(

X ′X
) = ∏̀

i=1
λi . The solution is X = [h1, ...,h`].

• min
X ′X=I`

det
(

X ′AX
)= min

X

det
(

X ′AX
)

det
(

X ′X
) = ∏̀

i=1
λk−i+1. The solution is X = [hk−`+1, ...,hk ].

• max
X ′X=I`

det
(

X ′ (I − A) X
)= max

X

det
(

X ′ (I − A) X
)

det
(

X ′X
) = ∏̀

i=1
(1−λk−i+1). The solution is X = [hk−`+1, ...,hk ].

• min
X ′X=I`

det
(

X ′ (I − A) X
)= min

X

det
(

X ′ (I − A) X
)

det
(

X ′X
) = ∏̀

i=1
(1−λi ). The solution is X = [h1, ...,h`].

For a proof see Theorem 11.15 of Magnus and Neudecker (2019).
We can extend the above results to incorporate generalized eigenvalue equations.
Let A and B be k ×k real symmetric matrices with B > 0. Let µ1 ≥ ·· · ≥µk be the ordered generalized

eigenvalues of A with respect to B and v 1, ..., v k the associated ordered eigenvectors.

• max
x ′B x=1

x ′Ax = max
x

x ′Ax

x ′x
=µ1. The solution is x = v 1.

• min
x ′B x=1

x ′Ax = min
x

x ′Ax

x ′x
=µk . The solution is x = v k .
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• max
X ′B X=I`

tr
(

X ′AX
)= max

X
tr

((
X ′B X

)−1 X ′AX
)
=∑`

i=1µi .

The solution is X = [v 1, ..., v`].

• min
X ′B X=I`

tr
(

X ′AX
)= min

X
tr

((
X ′B X

)−1 X ′AX
)
=∑`

i=1µk−i+1.

The solution is X = [v k−`+1, ..., v k ].

Suppose as well that A > 0.

• max
X ′B X=I`

det
(

X ′AX
)= max

X

det
(

X ′AX
)

det
(

X ′B X
) = ∏̀

i=1
µi .

The solution is X = [v 1, ..., v`].

• min
X ′B X=I`

det
(

X ′AX
)= min

X

det
(

X ′AX
)

det
(

X ′B X
) = ∏̀

i=1
µk−i+1.

The solution is X = [v k−`+1, ..., v k ].

• max
X ′B X=I`

det
(

X ′ (I − A) X
)= max

X

det
(

X ′ (I − A) X
)

det
(

X ′B X
) = ∏̀

i=1

(
1−µk−i+1

)
.

The solution is X = [v k−`+1, ..., v k ].

• min
X ′B X=I`

det
(

X ′ (I − A) X
)= min

X

det
(

X ′ (I − A) X
)

det
(

X ′B X
) = ∏̀

i=1

(
1−µi

)
.

The solution is X = [v 1, ..., v`].

By change-of-variables we can re-express one eigenvalue problem in terms of another. For example,
let A > 0, B > 0, and C > 0. Then

max
X

det
(

X ′C AC X
)

det
(

X ′C BC X
) = max

X

det
(

X ′AX
)

det
(

X ′B X
)

and

min
X

det
(

X ′C AC X
)

det
(

X ′C BC X
) = min

X

det
(

X ′AX
)

det
(

X ′B X
) .

A.16 Cholesky Decomposition

For a k ×k positive definite matrix A its Cholesky decomposition takes the form A = LL′ where L is
lower triangular and full rank. A lower triangular matrix (also known as a left triangular matrix) takes
the form

L =


L11 0 · · · 0
L21 L22 · · · 0

...
...

. . .
...

Lk1 Lk2 · · · Lkk

 .

The diagonal elements of L are all strictly positive. The Cholesky decomposition is unique (for positive
definite A).
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The decomposition is very useful for a range of computations, especially when a matrix square root
is required. Algorithms for computation are available in standard packages (for example, chol in either
MATLAB or R).

Lower triangular matrices such as L have special properties. One is that its determinant equals the
product of the diagonal elements.

Proofs of uniqueness of the Cholesky decomposition (as well as computation) are algorithmic. Here
are the details for the case k = 3. Write out A11 A21 A31

A21 A22 A32

A31 A32 A33

= A = LL′ =
 L11 0 0

L21 L22 0
L31 L32 L33

 L11 L21 L31

0 L22 L32

0 0 L33



=
 L2

11 L11L21 L11L31

L11L21 L2
21 +L2

22 L31L21 +L32L22

L11L31 L31L21 +L32L22 L2
31 +L2

32 +L2
33

 .

There are six equations, six knowns (the elements of A), and six unknowns (the elements of L). We can
solve for the latter by starting with the first column, moving from top to bottom. The first element has
the simple solution L11 =

p
A11. This has a real solution since A11 > 0. Moving down, since L11 is known,

for the entries beneath L11 we solve and find

L21 = A21

L11
= A21p

A11

L31 = A31

L11
= A31p

A11
.

Next we move to the second column. We observe that L21 is known. Then we solve for L22

L22 =
√

A22 −L2
21 =

√
A22 −

A2
21

A11
.

This has a real solution since A > 0. Then since L22 is known we can move down the column to find

L32 = A32 −L31L21

L22
=

A32 − A31 A21
A11√

A22 − A2
21

A11

.

Finally we take the third column. All elements except L33 are known. So we solve to find

L33 =
√

A33 −L2
31 −L2

32 =

√√√√√√A33 −
A2

31

A11
−

(
A32 − A31 A21

A11

)2

A22 − A2
21

A11

.

A.17 QR Decomposition

The QR decomposition is widely used for numerical problems such as matrix inversion and solving
systems of linear equations.

Let A be an k × r matrix, with k ≥ r and rank r . The QR decomposition of A is A = QR where Q
is a k × r orthonormal matrix and R is a r × r full rank upper triangular matrix (also known as a right
triangular matrix).
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To show that the QR decomposition exists, observe that A′A is r × r and positive definite. Apply
the Cholesky decomposition to find A′A = LL′ where L is lower triangular and full rank. We then set
Q = A

(
L′)−1 and R = L′. The matrix R is upper triangular by construction. Also,

Q ′Q = (
L′)−1′ A′A

(
L′)−1 = L−1LL′ (L′)−1 = I k

so Q is orthonormal as claimed.
Numerical computation of the QR decomposition does not use the above matrix operations. Instead

it is done algorithmically. Standard methods include the Gram-Schmidt and Householder algorithms.
The Gram-Schmidt is simple to describe and implement but the Householder is numerically more stable
and is therefore the standard implementation. Since the algorithm is involved we do not describe it here.

A.18 Solving Linear Systems

A linear system of k equations with k unknowns is

a11b1 +a12b2 +·· ·+a1k bk = c1

a21b1 +a22b2 +·· ·+a2k bk = c2

...

ak1b1 +ak2b2 +·· ·+akk bk = ck

or in matrix notation
Ab = c (A.13)

where A is k×k, and b and c are k×1. If A is full rank then the solution b = A−1c is unique. In this section
we describe three algorithms to numerically find the solution b. The first uses Gaussian elimination, the
second uses the QR decomposition, and the third uses the Cholesky decomposition.

(1) Solving by Gaussian elimination
The solution b in (A.13) is invariant to row operations; including multiplying an equation by non-

zero numbers, and adding and subtracting equations from one another. To exploit this insight combine
the known constants A and c into a k × (k +1) augmented matrix

[A | c] . (A.14)

The row operations described above are the same as multiplying rows of [A | c] by non-zero numbers and
adding and subtracting rows of [A | c] from one another. Such operations do not change the solution b.
Gaussian elimination works by applying row operations to [A | c] until the left section equals the identity
matrix I k and thus equals

[I k | d ] . (A.15)

Since row operations do not alter the solution, this means that the solution b in (A.13) also satisfies
I k b = d which implies b = d . Thus the solution b can be found as the right-most vector d in (A.15).

The Gauss-Jordan algorithm implements a sequence of row operations which obtains the solution
for any pair (A.14) such that A is full rank. The algorithm is as follows.

For r = 1, ...,k:

1. Divide the elements of row r by ar r . Thus make the changes
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(a) ar i 7→ ar i /ar r for i = 1, ...,k

(b) cr 7→ cr /ar r

2. For rows j 6= r , subtract a j r times row r from row j . Thus make the changes

(a) a j i 7→ a j i −a j r ar i for i = 1, ...,k

(b) c j 7→ c j −a j r cr

Each pair of operations transforms a column of the matrix A into an column of the identity matrix
I k , starting with the first column and working sequentially to the right. The first operation (dividing by
ar r ) normalizes the r th diagonal element to unity. The second set of operations makes row operations to
transform the remaining elements of the r th column to equal zero. Since the previous columns are unit
vectors they are unaffected by these operations.

(2) Solving by QR Decomposition
First, compute the QR decomposition A = QR where Q is a k ×k orthogonal matrix, and R is k ×k

and upper triangular. This is is done numerically (typically by the Householder algorithm) as described
in Section A.17. This means that (A.13) can be written as QRb = c . Premultiplying by Q ′ and observing

Q ′Q = I k we obtain Rb =Q ′c def= d . This system can be written as

r11b1 + r12b2 +·· ·+ r1,k−1bk−2 + r1k bk = d1

r22b2 +·· ·+ r2,k−1bk−2 + r2k bk = d2

...

rk−1,k−1bk−2 + rk−1,k bk = dk−1

rkk bk = dk .

This can be solved by backwards recursion

bk = dk /rkk

bk−1 =
(
dk−1 − rk−1,k bk

)
/rk−1,k−1

...

b1 = (d1 − r12b2 −·· ·− r1k bk )/r11.

To summarize, the QR solution method is

1. Numerically compute the QR decomposition A =QR .

2. Calculate d =Q ′c .

3. Solve for b by backward recursion.

(3) Solving by Cholesky Decomposition for positive definite A
First, compute the Cholesky decomposition A = LR where L is k ×k and lower triangular, and R = L′

is upper triangular. This is is done numerically as described in Section A.16. This means that (A.13) can
be written as LRb = c or Ld = c where d = Rb. The vector d can be solved from L and c using forward
recursion. The equation Rb = d can then be solved for b by backwards recursion.
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We have described three algorithms. Which should be used in practice? For positive definite A,
solving by the Cholesky decomposition is the preferred method as it is numerically most efficient and
stable. When A is not positive definite, solving by the QR decomposition is the preferred method as
it is numerically most stable. The advantage of the Gauss-Jordan algorithm is that it is the simplest to
program.

A.19 Algorithmic Matrix Inversion

Numerical methods for solving linear systems can be used to calculate the inverse of a full-rank k×k
matrix A. Let B = A−1 be the inverse of A. The matrices satisfy AB = I k which is a matrix generalization
of (A.13). The goal is to solve this system to obtain B .

(1) Solving by Gaussian elimination
Replace c in (A.14) with I k and apply the Gauss-Jordan elimination algorithm. The solution is B .
(2) Solving by QR decomposition
Numerically compute the QR decomposition A =QR . This implies QRB = I k . Premultiplying by Q ′

and observing Q ′Q = I k we obtain RB = Q ′. Write B = [b1, ...,bk ] and Q ′ = [
q 1, ..., q k

]
. For j = 1, ...,k,

Rb j = q j . Since R is upper triangular the vector b j can be found by backwards recursion as described in
Section A.18.

(3) Solving by Cholesky decomposition for positive definite A
Compute the Cholesky decomposition A = LR where L is k × k and lower triangular and R = L′ is

upper triangular. This implies LRB = I k or LC = I k where C = RB . Applying forward recursion one
column at a time we can solve for C . We then have RB =C . Applying backwards recursion one column
at a time we can solve for B .

A.20 Matrix Calculus

Let x = (x1, ..., xk )′ be k ×1 and g (x) = g (x1, ..., xk ) :Rk →R. The vector derivative is

∂

∂x
g (x) =


∂
∂x1

g (x)
...

∂
∂xk

g (x)


and

∂

∂x ′ g (x) =
(

∂
∂x1

g (x) · · · ∂
∂xk

g (x)
)

.

Some properties are now summarized.

Theorem A.6 Properties of matrix derivatives

1. ∂
∂x

(
a ′x

)= ∂
∂x

(
x ′a

)= a

2. ∂
∂x

(
x ′A

)= A and ∂
∂x ′ (Ax) = A

3. ∂
∂x

(
x ′Ax

)= (
A + A′)x

4. ∂2

∂x∂x ′
(
x ′Ax

)= A + A′

5. ∂
∂A tr(B A) = B ′
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6. ∂
∂A logdet(A) = (A−)′

To show part 1, note that

∂

∂x j

(
a ′x

)= ∂

∂x j
(a1x1 +·· ·+ak xk ) = a j .

Thus

∂

∂x

(
a ′x

)=
 a1

...
ak

= a

as claimed.

For part 2, write A = [a1, ..., am] so that

∂

∂x

(
x ′A

)= ∂

∂x

[
x ′a1, ..., x ′am

]= [
∂

∂x

(
x ′a1

)
, ...,

∂

∂x

(
x ′am

)]= [a1, ..., am] = A

using part 1. ∂
∂x ′ (Ax) = A follows by taking the transpose.

For part 3, notice x ′Ax = x ′A′x and apply the product rule and then part 2,

∂

∂x

(
x ′Ax

)= ∂

∂x

(
x ′I k

)
Ax + ∂

∂x

(
x ′A′)x = I k Ax + A′x = (

A + A′)x .

For part 4, applying part 3 we find

∂2

∂x∂x ′
(
x ′Ax

)= ∂

∂x

∂

∂x ′
(
x ′Ax

)= ∂

∂x
x ′ (A + A′)= A + A′.

For part 5, recall from Section A.5 that we can write out explicitly

tr(B A) =
∑

i

∑
j

ai j b j i .

Thus if we take the derivative with respect to ai j we find

∂

∂ai j
tr(B A) = b j i .

which is the i j th element of B ′, establishing part 5.
For part 6, recall Laplace’s expansion

det A =
k∑

j=1
ai j Ci j .

where Ci j is the i j th cofactor of A. Set C = (Ci j ). Observe that Ci j for j = 1, ...,k are not functions of ai j .
Thus the derivative with respect to ai j is

∂

∂ai j
logdet(A) = (det A)−1 ∂

∂ai j
det A = (det A)−1 Ci j .

Together this implies
∂

∂A
logdet(A) = (det A)−1 C = A−1

where the second equality is Theorem A.1.12.
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A.21 Kronecker Products and the Vec Operator

Let A = [a1 a2 · · · an] be m ×n. The vec of A, denoted by vec(A), is the mn ×1 vector

vec(A) =


a1

a2
...

an

 .

Let A = (
ai j

)
be an m×n matrix and let B be any matrix. The Kronecker product of A and B , denoted

A ⊗B , is the matrix

A ⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

...
am1B am2B · · · amnB

 .

Some important properties are now summarized. These results hold for matrices for which all matrix
multiplications are conformable.

Theorem A.7 Properties of the Kronecker product

1. (A +B )⊗C = A ⊗C +B ⊗C

2. (A ⊗B ) (C ⊗D) = AC ⊗B D

3. A ⊗ (B ⊗C ) = (A ⊗B )⊗C

4. (A ⊗B )′ = A′⊗B ′

5. tr(A ⊗B ) = tr(A) tr(B )

6. If A is m ×m and B is n ×n, det(A ⊗B ) = (det(A))n (det(B ))m

7. (A ⊗B )−1 = A−1 ⊗B−1

8. If A > 0 and B > 0 then A ⊗B > 0

9. vec(ABC ) = (
C ′⊗ A

)
vec(B )

10. tr(ABC D) = vec
(
D ′)′ (C ′⊗ A

)
vec(B )

A.22 Vector Norms

Given a vector space V (such as Euclidean space Rm) a norm is a function ρ : V →Rwith the proper-
ties

1. ρ (ca) = |c|ρ (a) for any complex number c and a ∈V

2. ρ (a +b) ≤ ρ (a)+ρ (b)

3. If ρ (a) = 0 then a = 0.
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A seminorm on V is a function which satisfies the first two properties. The second property is known
as the triangle inequality. It is the one property which typically needs a careful demonstration (as the
other two properties typically hold by inspection).

The typical norm used for Euclidean space Rm is the Euclidean norm

‖a‖ = (
a ′a

)1/2 =
(

m∑
i=1

a2
i

)1/2

.

An alternative norm is the p−norm (for p ≥ 1)

‖a‖p =
(

m∑
i=1

|ai |p
)1/p

.

Special cases include the Euclidean norm (p = 2), the 1−norm

‖a‖1 =
m∑

i=1
|ai |

and the sup-norm
‖a‖∞ = max(|a1| , ..., |am |) .

For real numbers (m = 1) these norms coincide.

A.23 Matrix Norms

Two common norms used for matrix spaces are the Frobenius norm and the spectral norm. We will
use ‖A‖F for the Frobenius and ‖A‖ for the spectral norm. In general the spectral norm is more widely
used.

The Frobenius norm of an m ×k matrix A is the Euclidean norm applied to its elements

‖A‖F = ‖vec(A)‖ = (
tr

(
A′A

))1/2 =
(

m∑
i=1

k∑
j=1

a2
i j

)1/2

.

When m ×m A is real symmetric then

‖A‖F =
(

m∑
`=1

λ2
`

)1/2

where λ`, `= 1, ...,m are the eigenvalues of A. To see this, by the spectral decomposition A = HΛH ′ with
H ′H = I andΛ= diag{λ1, ...,λm}, so

‖A‖F = (
tr

(
HΛH ′HΛH ′))1/2 = (tr(ΛΛ))1/2 =

(
m∑
`=1

λ2
`

)1/2

. (A.16)

A useful calculation is for any m ×1 vectors a and b, using (A.1),∥∥ab′∥∥
F = tr

(
ba ′ab′)1/2 = (

b′ba ′a
)1/2 = ‖a‖‖b‖

and in particular ∥∥aa ′∥∥
F = ‖a‖2 . (A.17)
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The spectral norm of an m ×k real matrix A is its largest singular value

‖A‖ =σmax (A) = (
λmax

(
A′A

))1/2

where λmax (B ) denotes the largest eigenvalue of the matrix B . Notice that

λmax
(

A′A
)= ∥∥A′A

∥∥
so

‖A‖ = ∥∥A′A
∥∥1/2 .

If A is m ×m and symmetric with eigenvalues λ j then ‖A‖ = max j≤m
∣∣λ j

∣∣.
The Frobenius and spectral norms are closely related. They are equivalent when applied to a matrix

of rank 1, since
∥∥ab′∥∥= ‖a‖‖b‖ = ∥∥ab′∥∥

F . In general, for m ×k matrix A with rank r

‖A‖ = (
λmax

(
A′A

))1/2 ≤
(

k∑
j=1

λ j
(

A′A
))1/2

= ‖A‖F . (A.18)

Since A′A also has rank at most r it has at most r non-zero eigenvalues, and hence

‖A‖F =
(

k∑
j=1

λ j
(

A′A
))1/2

=
(

r∑
j=1

λ j
(

A′A
))1/2

≤ (
rλmax

(
A′A

))1/2 =p
r ‖A‖ . (A.19)

Given any vector norm ‖a‖ the induced matrix norm is defined as

‖A‖ = sup
x ′x=1

‖Ax‖ = sup
x 6=0

‖Ax‖
‖x‖ .

To see that this is a norm we need to check that it satisfies the triangle inequality. Indeed

‖A +B‖ = sup
x ′x=1

‖Ax +B x‖ ≤ sup
x ′x=1

‖Ax‖+ sup
x ′x=1

‖B x‖ = ‖A‖+‖B‖ .

For any vector x by the definition of the induced norm ‖Ax‖ ≤ ‖A‖‖x‖, a property which is called con-
sistent norms.

Let A and B be conformable and ‖A‖ an induced matrix norm. Then using the property of consistent
norms

‖AB‖ = sup
x ′x=1

‖AB x‖ ≤ sup
x ′x=1

‖A‖‖B x‖ = ‖A‖‖B‖ .

A matrix norm which satisfies this property is called a sub-multiplicative norm and is a matrix form of
the Schwarz inequality.

The matrix norm induced by the Euclidean vector norm is the spectral norm. Indeed,

sup
x ′x=1

‖Ax‖2 = sup
x ′x=1

x ′A′Ax =λmax
(

A′A
)= ‖A‖2 .

It follows that the spectral norm is consistent with the Euclidean norm and is sub-multiplicative.



Appendix B

Useful Inequalities

In this Appendix we list a set of inequalities and bounds which are used frequently in econometric
theory, predominantly in asymptotic analysis. The proofs are presented in Section B.5.

B.1 Inequalities for Real Numbers

Triangle Inequality. For any real numbers x j∣∣∣∣∣ m∑
j=1

x j

∣∣∣∣∣≤ m∑
j=1

∣∣x j
∣∣ . (B.1)

Jensen’s Inequality. If g (·) :R→R is convex, then for any non-negative weights a j such that
∑m

j=1 a j = 1,
and any real numbers x j

g

(
m∑

j=1
a j x j

)
≤

m∑
j=1

a j g
(
x j

)
. (B.2)

In particular, setting a j = 1/m, then

g

(
1

m

m∑
j=1

x j

)
≤ 1

m

m∑
j=1

g
(
x j

)
. (B.3)

If g (·) :R→R is concave then the inequalities in (B.2) and (B.3) are reversed.

Geometric Mean Inequality. For any non-negative real weights a j such that
∑m

j=1 a j = 1, and any non-
negative real numbers x j

xa1
1 xa2

2 · · ·xam
m ≤

m∑
j=1

a j x j . (B.4)

Loève’s cr Inequality. For any real numbers x j , if 0 < r ≤ 1∣∣∣∣∣ m∑
j=1

x j

∣∣∣∣∣
r

≤
m∑

j=1

∣∣x j
∣∣r (B.5)

and if r ≥ 1 ∣∣∣∣∣ m∑
j=1

x j

∣∣∣∣∣
r

≤ mr−1
m∑

j=1

∣∣x j
∣∣r . (B.6)

966
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For the important special case m = 2 we can combine these two inequalities as

|a +b|r ≤Cr
(|a|r +|b|r )

(B.7)

where Cr = max
[
1,2r−1

]
.

Norm Monotonicity. If 0 < t ≤ s, and any real numbers x j∣∣∣∣∣ m∑
j=1

∣∣x j
∣∣s

∣∣∣∣∣
1/s

≤
∣∣∣∣∣ m∑

j=1

∣∣x j
∣∣t

∣∣∣∣∣
1/t

. (B.8)

B.2 Inequalities for Vectors

Triangle Inequality. If a = (a1, ..., am)′

‖a‖ ≤
m∑

j=1

∣∣a j
∣∣ . (B.9)

c2 Inequality. For any m ×1 vectors a and b,

(a +b)′ (a +b) ≤ 2a ′a +2b′b. (B.10)

Hölder’s Inequality. If p > 1, q > 1, and 1/p +1/q = 1, then for any m ×1 vectors a and b,∣∣a ′b
∣∣≤ ‖a‖p ‖b‖q . (B.11)

Schwarz Inequality. For any m ×1 vectors a and b,∣∣a ′b
∣∣≤ ‖a‖‖b‖ . (B.12)

Minkowski’s Inequality. For any m ×1 vectors a and b, if p ≥ 1, then

‖a +b‖p ≤ ‖a‖p +‖b‖p . (B.13)

Triangle Inequality. For any m ×1 vectors a and b,

‖a +b‖ ≤ ‖a‖+‖b‖ . (B.14)
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B.3 Inequalities for Matrices

Schwarz Matrix Inequality. For any m × k and k ×m matrices A and B , and both the Frobenius and
spectral norms,

‖AB‖ ≤ ‖A‖‖B‖ . (B.15)

Triangle Inequality. For any m ×k matrices A and B , and both the Frobenius and spectral norms,

‖A +B‖ ≤ ‖A‖+‖B‖ . (B.16)

Trace Inequality. For any m ×m matrices A and B such that A is symmetric and B ≥ 0

tr(AB ) ≤ ‖A‖ tr(B ) . (B.17)

Quadratic Inequality. For any m ×1 b and m ×m symmetric matrix A

b′Ab ≤ ‖A‖b′b. (B.18)

Strong Schwarz Matrix Inequality. For any conformable matrices A and B

‖AB‖F ≤ ‖A‖‖B‖F . (B.19)

Norm Equivalence. For any m ×k matrix A of rank r

‖A‖ ≤ ‖A‖F ≤p
r ‖A‖ . (B.20)

Eigenvalue Product Inequality. For any m×m real symmetric matrices A ≥ 0 and B ≥ 0, the eigenvalues
λ` (AB ) are real and satisfy

λmin (A)λmin (B ) ≤λ` (AB ) ≤λmax (A)λmax (B ) . (B.21)

(Zhang and Zhang, 2006, Corollary 11).

B.4 Probability Inequalities

Monotone Probability Inequality. For any events A and B such that A ⊂ B ,

P [A] ≤P [B ] . (B.22)

Inclusion-Exclusion Principle. For any events A and B ,

P [A∪B ] =P [A]+P [B ]−P [A∩B ] . (B.23)

Boole’s Inequality (Union Bound). For any events A and B ,

P [A∪B ] ≤P [A]+P [B ] . (B.24)
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Bonferroni’s Inequality. For any events A and B ,

P [A∩B ] ≥P [A]+P [B ]−1. (B.25)

Expectation Equality. If X ∈R is a non-negative random variable then

E [X ] =
∫ ∞

0
P [X > u]du. (B.26)

Jensen’s Inequality. If g (x) : Rm → R is convex, then for any random vector X ∈ Rk for which E‖X ‖ <∞
and E

∣∣g (X )
∣∣<∞,

g (E [X ]) ≤ E[
g (X )

]
. (B.27)

If g (·) is concave the inequality is reversed.

Conditional Jensen’s Inequality. If g (x) : Rm → R is convex, then for any random variables (Y , X ) ∈
Rm ×Rk for which E‖Y ‖ <∞ and E

∥∥g (Y )
∥∥<∞,

g (E [Y | X ]) ≤ E[
g (Y ) | X

]
. (B.28)

If g (x) is concave the inequality is reversed.

Conditional Expectation Inequality. For any r ≥ 1 and for any random variables (Y , X ) ∈ R×Rk such
that E |Y |r <∞, then

E |E(Y | X )|r ≤ E |Y |r <∞. (B.29)

Expectation Inequality. For any random vector Y ∈Rm with E‖Y ‖ <∞ then

‖E [Y ]‖ ≤ E‖Y ‖ . (B.30)

Hölder’s Inequality. If p > 1 and q > 1 and 1
p + 1

q = 1, then for any random m ×n matrices X and Y ,

E
∥∥X ′Y

∥∥≤ (
E‖X ‖p)1/p (

E‖Y ‖q)1/q . (B.31)

Cauchy-Schwarz Inequality. For any random m ×n matrices X and Y ,

E
∥∥X ′Y

∥∥≤ (
E‖X ‖2)1/2 (

E‖Y ‖2)1/2
. (B.32)

Matrix Cauchy-Schwarz Inequality. Tripathi (1999). For any random X ∈Rm and Y ∈R`,

E
[
Y X ′](

E
[

X X ′])−E[
X Y ′]≤ E[

Y Y ′] . (B.33)

Minkowski’s Inequality. For any random m ×n matrices X and Y ,(
E‖X +Y ‖p)1/p ≤ (

E‖X ‖p)1/p + (
E‖Y ‖p)1/p . (B.34)
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Lyapunov’s Inequality. For any random m ×n matrix X and 0 < r ≤ p,(
E‖X ‖r )1/r ≤ (

E‖X ‖p)1/p . (B.35)

Markov’s Inequality (standard form). For any random X ∈Rk , non-negative function g (x) ≥ 0, and ε> 0

P
[
g (X ) > ε]≤ ε−1E

[
g (X )

]
. (B.36)

Markov’s Inequality (strong form). For any random X ∈Rk , non-negative function g (x) ≥ 0, and ε> 0

P
[
g (X ) > ε]≤−1 E

[
g (X )1

{
g (X ) > ε}] . (B.37)

Chebyshev’s Inequality. For any random X ∈R and ε> 0

P [|X −E [X ]| > ε] ≤ ε−2 var[X ] . (B.38)

Gaussian Tail Inequality (Chernoff Bound). If X ∼ N(0,1), then for any t > 0,

P [X > t ] ≤ exp

(
− t 2

2

)
. (B.39)

Bernstein’s Inequality. If Xi ∈R are independent, E [Xi ] = 0, σ2 =∑n
i=1E

[
X 2

i

]
, and |Xi | ≤ M <∞, then for

all ε> 0

P

[∣∣∣∣∣ n∑
i=1

Xi

∣∣∣∣∣> ε
]
≤ 2exp

(
− ε2

4σ2 +4Mε

)
. (B.40)

Bernstein’s Inequality for Vectors. If Xi = (X1i , ..., Xmi )′ are independent random vectors, E [Xi ] = 0,

σ2 = max j
∑n

i=1E
[

X 2
j i

]
, and

∣∣X j i
∣∣≤ M <∞, then for all ε> 0

P

[∥∥∥∥∥ n∑
i=1

Xi

∥∥∥∥∥> ε
]
≤ 2m exp

(
− ε2

4m2σ2 +4mMε

)
. (B.41)

Bahr-Esseen Inequality. If Xi ∈R are independent and E [Xi ] = 0, then for any 0 < r ≤ 2

E

∣∣∣∣∣ n∑
i=1

Xi

∣∣∣∣∣
r

≤ 2
n∑

i=1
E |Xi |r . (B.42)

Some of the following inequalities make use of Rademacher random variables εwhich are two-point
discrete variables satisfying

P [ε= 1] = 1

2

P [ε=−1] = 1

2
.

Exponential Inequality. If εi are independent Rademacher random variables then for any constants ai

E

[
exp

(
n∑

i=1
aiεi

)]
≤ exp

(∑n
i=1 a2

i

2

)
. (B.43)
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Symmetrization Inequality. If Xi ∈ R are independent, E [Xi ] = 0, and εi are independent Rademacher
random variables, then for any r ≥ 1

E

∣∣∣∣∣ n∑
i=1

Xi

∣∣∣∣∣
r

≤ 2rE

∣∣∣∣∣ n∑
i=1

Xiεi

∣∣∣∣∣
r

. (B.44)

Khintchine’s Inequality. If εi are independent Rademacher random variables then for any r > 0 and any
real numbers ai

E

∣∣∣∣∣ n∑
i=1

aiεi

∣∣∣∣∣
r

≤ Kr

(
n∑

i=1
a2

i

)r /2

. (B.45)

where Kr = 1 for r ≤ 2 and Kr = 2r /2Γ ((r +1)/2))/π1/2 for r ≥ 2.

Maximal Khintchine Inequality. If εi are independent Rademacher random variables and J ≥ 2 then
any real numbers a j i

E

[
max

1≤ j≤J

∣∣∣∣∣ n∑
i=1

a j iεi

∣∣∣∣∣
]
≤ 2

(
log J

)1/2 max
1≤ j≤J

(
n∑

i=1
a2

i

)1/2

. (B.46)

Marcinkiewicz-Zygmund Inequality. If Xi ∈R are independent and E [Xi ] = 0 then for any r ≥ 1

E

∣∣∣∣∣ n∑
i=1

Xi

∣∣∣∣∣
r

≤ MrE

∣∣∣∣∣ n∑
i=1

X 2
i

∣∣∣∣∣
r /2

(B.47)

where Mr = 2r Kr with Kr from the Khintchine inequality.

Whittle’s Inequalities. (Whittle, 1960) If Xi ∈ R are independent, E [Xi ] = 0, and for some r ≥ 2, E |Xi |r ≤
B1r <∞, then there is a constant C1r <∞ such that for any real numbers ai

E

∣∣∣∣∣ n∑
i=1

ai Xi

∣∣∣∣∣
r

≤C1r

∣∣∣∣∣ n∑
i=1

a2
i

∣∣∣∣∣
r /2

. (B.48)

Furthermore, if E |Xi |2r ≤ B2r <∞ then there is a constant C2r <∞ such that for any real n ×n matrix A
and setting X = (X1, ..., Xn)′

E
∣∣X ′AX −E[

X ′AX
]∣∣r ≤C2r tr

(
A′A

)r /2 . (B.49)

Our proof shows that we can set C1r = Mr B1r and C2r = 4r Kr C 1/2
1r B 1/2

2r where Mr and Kr are from the
Marcinkiewicz-Zygmund and Khinchine inequalities.

Rosenthal’s Inequality. For any r > 0 there is a constant Rr <∞ such that if Xi ∈R are independent and
E [Xi ] = 0 then

E

∣∣∣∣∣ n∑
i=1

Xi

∣∣∣∣∣
r

≤ Rr

{(
n∑

i=1
E
[

X 2
i

])r /2

+
n∑

i=1
E |Xi |r

}
. (B.50)

Our proof establishes that (B.50) holds with Rr = 2r (r−2)/8Mr where Mr is from the Marcinkiewicz-Zygmund
inequality.

For a generalization of Rosenthal’s inequality to the matrix case see B. E. Hansen (2015).
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Kolmogorov’s Inequality. If Xi are independent, E [Xi ] = 0, and E
[

X 2
i

]<∞, then for all ε> 0

P

[
max

1≤ j≤n

∣∣∣∣∣ j∑
i=1

Xi

∣∣∣∣∣> ε
]
≤ ε−2

n∑
i=1

E
[

X 2
i

]
. (B.51)

Billingsley’s Inequality. Assume Xi are independent and mean zero. Set Si =∑i
j=1 X j and σ2

n = var[Sn].

Then for any λ> 2
p

2,

P

[
max

1≤i≤n
|Si | >σnλ

]
≤ 2P

[
|Sn | > σnλ

2

]
. (B.52)

Billingsley (1968, Lemma 10.7).

B.5 Proofs*

Proof of Triangle Inequality (B.1). Take the case m = 2. Observe that

−|x1| ≤ x1 ≤ |x1|
−|x2| ≤ x2 ≤ |x2| .

Adding, we find
−|x1|− |x2| ≤ x1 +x2 ≤ |x1|+ |x2|

which is (B.1) for m = 2. For m > 2, we apply (B.1) m −1 times. ■

Proof of Jensen’s Inequality (B.2). See Introduction to Econometrics, Theorem 2.12.

Proof of Geometric Mean Inequality (B.4). See Introduction to Econometrics, Theorem 2.13.

Proof of Loève’s cr Inequality (B.5). See Introduction to Econometrics, Theorem 2.14.

Proof of Norm Monotonicity (B.8). See Introduction to Econometrics, Theorem 2.15.

Proof of Triangle Inequality (B.9). Apply the cr inequality (B.5) with r = 1/2 to find

‖a‖ =
∣∣∣∣∣ m∑

j=1
a2

j

∣∣∣∣∣
1/2

≤
m∑

j=1

∣∣a j
∣∣ .

■

Proof of c2 Inequality (B.10). By the cr inequality (B.6) with r = 2,
(
a j +b j

)2 ≤ 2a2
j +2b2

j . Thus

(a +b)′ (a +b) =
m∑

j=1

(
a j +b j

)2 ≤ 2
m∑

j=1
a2

j +2
m∑

j=1
b2

j = 2a ′a +2b′b.

■

Proof of Hölder’s Inequality (B.11). Without loss of generality assume
∑m

j=1

∣∣a j
∣∣p = ‖a‖p

p = 1 and
∑m

j=1

∣∣b j
∣∣q =

‖b‖q
q = 1. By the geometric mean inequality (B.4)

∣∣a j b j
∣∣≤ ∣∣a j

∣∣ ∣∣b j
∣∣≤ ∣∣a j

∣∣p

p
+

∣∣b j
∣∣q

q
. (B.53)
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By the Triangle inequality (B.1), (B.53), the assumptions
∑m

j=1

∣∣a j
∣∣p = 1,

∑m
j=1

∣∣b j
∣∣q = 1, and 1/p +1/q = 1

∣∣a ′b
∣∣= ∣∣∣∣∣ m∑

j=1
a j b j

∣∣∣∣∣
≤

m∑
j=1

∣∣a j b j
∣∣

≤
m∑

j=1

(∣∣a j
∣∣p

p
+

∣∣b j
∣∣q

q

)

= 1

p
+ 1

q
= 1

which is (B.11). ■

Proof of Schwarz Inequality (B.12). This is a special case of Hölder’s inequality (B.11) with p = q = 2.

∣∣a ′b
∣∣≤ m∑

j=1

∣∣a j b j
∣∣≤ ‖a‖‖b‖ .

■
Proof of Minkowski’s Inequality (B.13). Set q = p/(p −1) so that 1/p +1/q = 1. Using the triangle in-
equality for real numbers (B.1) and two applications of Hölder’s inequality (B.11)

‖a +b‖p
p =

m∑
j=1

∣∣a j +b j
∣∣p

=
m∑

j=1

∣∣a j +b j
∣∣ ∣∣a j +b j

∣∣p−1

≤
m∑

j=1

∣∣a j
∣∣ ∣∣a j +b j

∣∣p−1 +
m∑

j=1

∣∣b j
∣∣ ∣∣a j +b j

∣∣p−1

≤ ‖a‖p

(
m∑

j=1

∣∣a j +b j
∣∣(p−1)q

)1/q

+‖b‖p

(
m∑

j=1

∣∣a j +b j
∣∣(p−1)q

)1/q

= (‖a‖p +‖b‖p
)‖a +b‖p−1

p .

Solving, we find (B.13). ■

Proof of Triangle Inequality (B.14). This is Minkowski’s inequality (B.13) with p = 2. ■

Proof of Schwarz Matrix Inequality (B.15). The inequality holds for the spectral norm since it is an
induced norm. Now consider the Frobenius norm. Partition A′ = [a1, ..., an] and B = [b1, ...,bn]. Then
by partitioned matrix multiplication, the definition of the Frobenius norm and the Schwarz inequality
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(B.12)

‖AB‖F =

∥∥∥∥∥∥∥
a ′

1b1 a ′
1b2 · · ·

a ′
2b1 a ′

2b2 · · ·
...

...
. . .

∥∥∥∥∥∥∥
F

≤

∥∥∥∥∥∥∥
‖a1‖‖b1‖ ‖a1‖‖b2‖ · · ·
‖a2‖‖b1‖ ‖a2‖‖b2‖ · · ·

...
...

. . .

∥∥∥∥∥∥∥
F

=
(

m∑
i=1

m∑
j=1

‖ai‖2
∥∥b j

∥∥2

)1/2

=
(

m∑
i=1

‖ai‖2

)1/2 (
m∑

i=1
‖bi‖2

)1/2

=
(

k∑
i=1

m∑
j=1

a2
j i

)1/2 (
m∑

i=1

k∑
j=1

∥∥b j i
∥∥2

)1/2

= ‖A‖F ‖B‖F .

■
Proof of Triangle Inequality (B.16). The inequality holds for the spectral norm since it is an induced
norm. Now consider the Frobenius norm. Let a = vec(A) and b = vec(B ). Then by the definition of the
Frobenius norm and the triangle inequality (B.14)

‖A +B‖F = ‖vec(A +B )‖F = ‖a +b‖ ≤ ‖a‖+‖b‖ = ‖A‖F +‖B‖F .

■
Proof of Trace Inequality (B.17). By the spectral decomposition for symmetric matices, A = HΛH ′

where Λ has the eigenvalues λ j of A on its diagonal and H is orthonormal. Define C = H ′B H which
has non-negative diagonal elements C j j since B is positive semi-definite. Then

tr(AB ) = tr(ΛC ) =
m∑

j=1
λ j C j j ≤ max

j

∣∣λ j
∣∣ m∑

j=1
C j j = ‖A‖2 tr(C )

where the inequality uses the fact that C j j ≥ 0. Note that

tr(C ) = tr
(

H ′B H
)= tr

(
H H ′B

)= tr(B )

since H is orthonormal. Thus tr(AB ) ≤ ‖A‖2 tr(B ) as stated. ■
Proof of Quadratic Inequality (B.18). In the trace inequality (B.17) set B = bb′ and note tr(AB ) = b′Ab
and tr(B ) = b′b. ■
Proof of Strong Schwarz Matrix Inequality (B.19). By the definition of the Frobenius norm, the property
of the trace, the trace inequality (B.17) (noting that both A′A and B B ′ are symmetric and positive semi-
definite), and the Schwarz matrix inequality (B.15)

‖AB‖F = (
tr

(
B ′A′AB

))1/2

= (
tr

(
A′AB B ′))1/2

≤ (∥∥A′A
∥∥

2 tr
(
B B ′))1/2

= ‖A‖2 ‖B‖F .
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■

Proof of Norm Equivalence (B.20). The first inequality was established in (A.18), and the second in
(A.19). ■

Proof of Monotone Probability Inequality (B.22). See Introduction to Econometrics, Theorem 1.2.4.

Proof of Inclusion-Exclusion Principle (B.23). See Introduction to Econometrics, Theorem 1.2.5.

Proof of Boole’s Inequality (B.29). See Introduction to Econometrics, Theorem 1.2.6.

Proof of Bonferrroni’s Inequality (B.25). See Introduction to Econometrics, Theorem 1.2.7.

Proof of Expectation Equality (B.26). Let F∗(u) = P [X > u] = 1− F (u) where F (u) is the distribution
function. By integration by parts

E [X ] =
∫ ∞

0
udF (u) =−

∫ ∞

0
udF∗(u) =−[

uF∗(u)
]∞

0 +
∫ ∞

0
F∗(u)du =

∫ ∞

0
P [X > u]du

as stated. ■

Proof of Jensen’s Inequality (B.27). See Introduction to Econometrics, Theorem 2.9.

Proof of Conditional Jensen’s Inequality (B.28). Apply Jensen’s inequality to the conditional distribu-
tion.

Proof of Conditional Expectation Inequality (B.29). As the function |u|r is convex for r ≥ 1, the condi-
tional Jensen’s inequality (B.28) implies

|E [Y | X ]|r ≤ E[|Y |r | X
]

.

Taking unconditional expectations and the law of iterated expectations, we obtain

E
[|E [Y | X ]|r ]≤ E[

E
[|Y |r | X

]]= E[|Y |r ]<∞

as required. ■

Proof of Expectation Inequality (B.30). See Introduction to Econometrics, Theorem 2.10.

Proof of Hölder’s Inequality (B.31). See Introduction to Econometrics, Theorem 4.15.

Proof of Cauchy-Schwarz Inequality (B.32). See Introduction to Econometrics, Theorem 4.11.

Proof of Matrix Cauchy-Schwarz Inequality (B.33). Define e = Y − E[
Y X ′](

E
[

X X ′])− X . Note that
E
[
ee ′

]≥ 0 is positive semi-definite. We can calculate that

E
[
ee ′

]= E[
Y Y ′]− (

E
[
Y X ′])(E[

X X ′])−E[
X Y ′] .

Since the left-hand-side is positive semi-definite, so is the right-hand-side. This means

E
[
Y Y ′]≥ E[

Y X ′](
E
[

X X ′])−E[
X Y ′]

as stated. ■
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Proof of Minkowski’s Inequality (B.34). See Introduction to Econometrics, Theorem 4.16.

Proof of Lyapunov’s Inequality (B.35). See Introduction to Econometrics, Theorem 2.11.

Proof of Markov’s Inequality (B.36) and (B.37). See Introduction to Econometrics, Theorem 7.3.

Proof of Chebyshev’s Inequality (B.38). See Introduction to Econometrics, Theorem 7.1.

Proof of Gaussian Tail Inequality (B.39). Since t > 0, using Markov’s inequality (B.36), and the moment
generating function of the standard normal (See Introduction to Econometrics, Theorem 5.3)

P [X > t ] =P[
exp(t X ) > exp

(
t 2)]≤ E

[
exp(t X )

]
exp

(
t 2

) =
exp

(
t 2

2

)
exp

(
t 2

)
which simplies to (B.39). ■

Proof of Bernsteins’s Inequality (B.40). We first show

P

[
n∑

i=1
Xi > ε

]
≤ exp

(
− ε2

4σ2 +4Mε

)
. (B.54)

Set σ2
i = E

[
X 2

i

]
and t = ε/

(
2σ2 +2Mε

)> 0. Observe that

t k ≤ ε

2σ2

(
1

2M

)k−2

t (B.55)

and |Xi | ≤ M implies

E
[

X k
i

]
≤σ2

i (2M)k−2 . (B.56)

Using Markov’s inequality (B.36) the left side of (B.54) equals

P

[
exp

(
t

n∑
i=1

Xi

)
> exp(tε)

]
≤ e−tεE

[
exp

(
t

ni∑
i=1

Xi

)]
= e−tε

n∏
i=1
E
[
exp(t Xi )

]
. (B.57)

Expanding the exponential function, using the assumption E [Xi ] = 0, (B.55), and (B.56)

E
[
exp(t Xi )

]= 1+ tE [xi ]+
∞∑

k=2

t kE
[

X k
i

]
k !

≤ 1+ σ2
i εt

2σ2

∞∑
k=2

1

k !

≤ 1+ σ2
i εt

2σ2

≤ exp

(
σ2

i εt

2σ2

)
.

This means that the right side of (B.57) is less than

exp

(
−tε+ εt

2

)
= exp

(
−εt

2

)
= exp

(
− ε2

4σ2 +4Mε/3

)
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the second equality using the defintion t = ε/
(
2σ2 +2Mε

)
. This establishes (B.54).

Replacing Xi with −Xi in the above argument we obtain

P

[
n∑

i=1
Xi <−ε

]
≤ exp

(
− ε2

4σ2 +4Mε

)
. (B.58)

Together, (B.54) and (B.58) establish (B.40). ■

Proof of Bernsteins’s Inequality for Vectors (B.41). By the triangle inequality (B.9), Boole’s inequality
(B.24), and then Bernstein’s inequality (B.40)

P

[∥∥∥∥∥ n∑
i=1

Xi

∥∥∥∥∥> ε
]
≤P

[
m∑

j=1

∣∣∣∣∣ n∑
i=1

X j i

∣∣∣∣∣> ε
]

≤P
[

m⋃
j=1

1

{∣∣∣∣∣ n∑
i=1

X j i

∣∣∣∣∣> ε/m

}]

≤
m∑

j=1
P

[∣∣∣∣∣ n∑
i=1

X j i

∣∣∣∣∣> ε/m

]

≤ 2m exp

(
− (ε/m)2

4σ2 +4M (ε/m)

)
which is (B.41). ■

Proof of Bahr-Esseen Inequality (B.42). Our proof is taken from von Bahr and Esseen (1965). For 0 < r ≤
1 (B.42) holds by the cr inequality (B.5). For r = 2, (B.42) holds by independence and direct calculation.
We thus focus on the case 1 < r < 2.

We start with a characterization of an absolute moment. Define the generalized cosine integral

K (r ) =
∫ ∞

0
t−(r+1) (1−cos(t ))d t (B.59)

which is finite for 0 < r < 2. Making the change of variable t = sx and rearranging we obtain

|x|r = K (r )−1
∫ ∞

0
t−(r+1) (1−cos(t x))d t .

Let Ci (t ) denote the characteristic function of Xi and let Ri (t ) = E [cos(t Xi )] denote its real part. Thus for
any 0 < r < 2

E |Xi |r = K (r )−1
∫ ∞

0
t−(r+1) (1−Ri (t ))d t . (B.60)

Let Yi be an independent copy of Xi . The characteristic function of Xi −Yi is Ci (t )Ci (−t ) = |Ci (t )|2.
The facts |Ci (t )|2 ≥ |Ri (t )|2 and |Ri (t )| ≤ 1 imply

1−|Ci (t )|2 ≤ 1−Ri (t )2 = (1−Ri (t )) (1+Ri (t )) ≤ 2(1−Ri (t )) . (B.61)

Using the characterization (B.60), (B.61), and (B.60) again we find that for 0 < r < 2

E |Xi −Yi |r = K (r )−1
∫ ∞

0
t−(r+1) (1−|Ci (t )|2)d t

≤ 2
n∑

i=1
K (r )−1

∫ ∞

0
t−(r+1) (1−Ri (t ))d t

= 2E |Xi |r . (B.62)
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Let EY denote expectation over Yi . Since Xi and Yi have the same distribution, EY [Yi ] = 0. Using
Jensen’s inequality (B.27) since |u|r is convex for r ≥ 1,

E

∣∣∣∣∣ n∑
i=1

Xi

∣∣∣∣∣
r

= E
∣∣∣∣∣EY

n∑
i=1

(Xi −Yi )

∣∣∣∣∣
r

≤ E
[
EY

∣∣∣∣∣ n∑
i=1

(Xi −Yi )

∣∣∣∣∣
r ]

= E
∣∣∣∣∣ n∑
i=1

Zi

∣∣∣∣∣
r

(B.63)

where the final equality sets Zi = Xi −Yi .

Since the Zi are mutually independent, the characteristic function of
∑n

i=1 Zi is
n∏

i=1
|Ci (t )|2, which is

real. We next employ the following inequality. If |ai | ≤ 1 then

1−
n∏

i=1
ai ≤

n∑
i=1

(1−ai ) . (B.64)

To establish (B.64) first do so for n = 2 and then apply induction. The inequality follows from 0 ≤
(1−a1) (1−a2) = 1−a1 −a2 +a1a2 and rearranging. Since |Ci (t )| ≤ 1 (B.64) implies

1−
n∏

i=1
|Ci (t )|2 ≤

n∑
i=1

(
1−|Ci (t )|2) . (B.65)

Recalling the characterization (B.60) and the fact that the the characteristic function of
∑n

i=1 Zi is
n∏

i=1
|Ci (t )|2,

applying (B.65), and then using (B.60) again

E

∣∣∣∣∣ n∑
i=1

Zi

∣∣∣∣∣
r

= K (r )−1
∫ ∞

0
t−(r+1)

(
1−

n∏
i=1

|Ci (t )|2
)

d t

≤
n∑

i=1
K (r )−1

∫ ∞

0
t−(r+1) (1−|Ci (t )|2)d t

=
n∑

i=1
E |Zi |r

=
n∑

i=1
E |Xi −Yi |r

≤ 2
n∑

i=1
E |Xi |r .

The final inequality is (B.62). Combined with (B.63) this is (B.42). ■

Proof of Exponential Inequality (B.43). Using the definition of the exponential function and the fact
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(2k)! ≥ 2k k !,

exp(−u)+exp(u)

2
= 1

2

∞∑
k=0

1

k !

(
(−u)k +uk

)
=

∞∑
k=0

u2k

(2k)!

≤
∞∑

k=0

(
u2/2

)k

k !

= exp

(
u2

2

)
. (B.66)

Taking expectations and applying (B.66),

exp(aiεi ) = exp(−ai )+exp(−ai )

2
≤ exp

(
λ2a2

i

2

)
. (B.67)

Since the εi are independent and applying (B.67),

E

[
exp

(
n∑

i=1
aiεi

)]
=

n∏
i=1
E
[
exp(aiεi )

]≤ n∏
i=1

exp

(
λ2a2

i

2

)
= exp

(
λ2 ∑n

i=1 a2
i

2

)
. (B.68)

This is (B.43). ■

Proof of Symmetrization Inequality (B.44). Let Y j i be an independent copy of X j i (a random variable
independent of X j i with the same distribution). Let EX denote expectation conditional on X j i . Since
EX

[
Y j i

]= 0,

EX

[
n∑

i=1

(
X j i −Y j i

)]=
n∑

i=1
X j i . (B.69)

Using (B.69) and Jensen’s inequality (B.27) (since |u|r is convex for r ≥ 1)

max
1≤ j≤J

∣∣∣∣∣ n∑
i=1

X j i

∣∣∣∣∣
r

= max
1≤ j≤J

∣∣∣∣∣EX

[
n∑

i=1

(
X j i −Y j i

)]∣∣∣∣∣
r

≤ max
1≤ j≤J

EX

∣∣∣∣∣ n∑
i=1

(
X j i −Y j i

)∣∣∣∣∣
r

≤ EX max
1≤ j≤J

∣∣∣∣∣ n∑
i=1

(
X j i −Y j i

)∣∣∣∣∣
r

.

Taking unconditional expectations we obtain

E

[
max

1≤ j≤J

∣∣∣∣∣ n∑
i=1

X j i

∣∣∣∣∣
r ]

≤ E
[

max
1≤ j≤J

∣∣∣∣∣ n∑
i=1

(
X j i −Y j i

)∣∣∣∣∣
r ]

. (B.70)

The random variables X j i −Y j i are symmetrically distributed about 0, and therefore have the same dis-
tribution as

(
X j i −Y j i

)
εi . Making this substitution and applying the cr inequality (B.6), (B.70) equals

E

[
max

1≤ j≤J

∣∣∣∣∣ n∑
i=1

(
X j i −Y j i

)
εi

∣∣∣∣∣
r ]

≤ 2r−1

(
E

[
max

1≤ j≤J

∣∣∣∣∣ n∑
i=1

X j iεi

∣∣∣∣∣
r ]

+E
[

max
1≤ j≤J

∣∣∣∣∣ n∑
i=1

Y j iεi

∣∣∣∣∣
r ])

= 2rE

[
max

1≤ j≤J

∣∣∣∣∣ n∑
i=1

X j iεi

∣∣∣∣∣
r ]

,

where the final equality holds since the two sums are identically distributed. This is (B.44). ■
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Proof of Khintchine’s Inequality (B.45). For r ≤ 2 by Lyapunov’s inequality (B.35)(
E

∣∣∣∣∣ n∑
i=1

aiεi

∣∣∣∣∣
r )1/r

≤
(
E

∣∣∣∣∣ n∑
i=1

aiεi

∣∣∣∣∣
2)1/2

=
(

n∑
i=1

E
[
a2

i ε
2
i

])1/2

=
(

n∑
i=1

a2
i

)1/2

which is (B.45) with Kr = 1.
Take r ≥ 2. Let bi = ai /

(∑n
i=1 a2

i

)1/2
so

∑n
i=1 b2

i = 1. Then

E

∣∣∣∣∣ n∑
i=1

aiεi

∣∣∣∣∣
r

=
(

n∑
i=1

a2
i

)r /2

E

∣∣∣∣∣ n∑
i=1

biεi

∣∣∣∣∣
r

. (B.71)

We show below that the expectation is bounded by replacing the bi with the common value n−1/2. Thus

E

∣∣∣∣∣ n∑
i=1

biεi

∣∣∣∣∣
r

≤ E
∣∣∣∣∣ 1p

n

n∑
i=1

εi

∣∣∣∣∣
r

(B.72)

≤ limsup
n→∞

E

∣∣∣∣∣ 1p
n

n∑
i=1

εi

∣∣∣∣∣
r

= E |Z |r = 2r /2Γ ((r +1)/2))/π1/2.

The second-to-last equality follows from the central limit theorem and the fact that εi are bounded and
thus uniformly integrable. The final equality is Theorem 5.1.4. Together with (B.71) this is (B.45) with
Kr = 2r /2Γ ((r +1)/2))/π1/2.

The proof is completed by showing (B.72). Without loss of generality assume bi ≥ 0 and are ordered
ascending, so that b1 is the smallest and bn is the largest. The argument below shows that the left side of

(B.72) is increased if we replace b1 and bn by the common value
√(

b2
1 +b2

n
)

/2 (which does not alter the

sum
∑n

i=1 b2
i ). Iteratively this implies (B.72).

Set S =∑n−1
i=2 biεi . Then

E

[∣∣∣∣∣ n∑
i=1

biεi

∣∣∣∣∣
r ∣∣∣∣∣ S

]
= E[ |b1ε1 +bnεn +S|r ∣∣ S

]
= 1

4

[|b1 +bn +S|r +|b1 −bn +S|r +|−b1 +bn +S|r +|−b1 −bn +S|r ]
= g (u1)+ g (u2) (B.73)

where

g (u) = 1

4

(∣∣S +p
u

∣∣r + ∣∣S −p
u

∣∣r )
u1 = (b1 +bn)2

u2 = (bn −b1)2 .

The function g (u) is convex on u ≥ 0 since S ≥ 0 and r ≥ 2. (For a formal proof see Whittle (1960, Lemma
1.) Set c = 2

(
b2

1 +b2
n

)
. We find

g (u1)+ g (u2) = g
(u1

c
w1 + (1− u1

c
)0

)
+ g

(u2

c
c + (1− u2

c
)0

)
≤ u1

c
g (c)+ (1− u1

c
)g (0)+ u2

c
g (c)+ (1− u2

c
)g (0)

= g (c)+ g (0) .
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The inequality is two applications of Jensen’s (B.2) and the final equality is u1 +u2 = c. Combined with
(B.73) we have shown that

E

[∣∣∣∣∣ n∑
i=1

biεi

∣∣∣∣∣
r ∣∣∣∣∣ S

]
≤ g (c)+ g (0) .

The right-hand-side is (B.73) when b1 = bn =p
c/2.

This means that the left side of (B.72) can be increased by replacing b1 and bn by the common valuep
c/2 as described earlier. Iteratively, we replace the smallest and largest bi by their common value, with

each step increasing the expectation. In the limit we obtain (B.72). ■

Proof of Maximal Khintchine Inequality (B.46). Set

C = max
1≤ j≤J

( ∑n
i=1 a2

j i

2log(2J )

)1/2

. (B.74)

Since exp(x) is convex, by Jensen’s inequality (B.27),

exp

(
E

[
1

C
max

1≤ j≤J

∣∣∣∣∣ n∑
i=1

a j iεi

∣∣∣∣∣
])

≤ E
[

exp

(
1

C
max

1≤ j≤J

∣∣∣∣∣ n∑
i=1

a j iεi

∣∣∣∣∣
)]

= E
[

max
1≤ j≤J

exp

(
1

C

∣∣∣∣∣ n∑
i=1

a j iεi

∣∣∣∣∣
)]

≤ J max
1≤ j≤J

E

[
exp

(
1

C

∣∣∣∣∣ n∑
i=1

a j iεi

∣∣∣∣∣
)]

. (B.75)

The second inequality uses E
[
max1≤ j≤J

∣∣Z j
∣∣]≤∑J

j=1E
∣∣Z j

∣∣≤ J max1≤ j≤J E
∣∣Z j

∣∣.
For a random variable Y symmetrically distributed about zero,

E
[
exp(|Y |)]= E[

exp(Y )1 {Y > 0}
]+E[

exp(−Y )1 {Y < 0}
]

= 2E
[
exp(Y )1 {Y > 0}

]
≤ 2E

[
exp(Y )

]
.

Thus (B.75) is bounded by

2J max
1≤ j≤J

E

[
exp

(
1

C

n∑
i=1

a j iεi

)]
≤ 2J max

1≤ j≤J
exp

(
1

2C 2

n∑
i=1

a2
j i

)
= (2J )2 .

The inequality is the Exponential Inequality (B.43). The equality substitutes (B.74) for C .
We have shown

exp

(
E

[
1

C
max

1≤ j≤J

∣∣∣∣∣ n∑
i=1

a j iεi

∣∣∣∣∣
])

≤ (2J )2 .

Taking logs, multiplying by C , and substituting (B.74) we obtain

E

[
max

1≤ j≤J

∣∣∣∣∣ n∑
i=1

a j iεi

∣∣∣∣∣
]
≤ (

2log(2J )
)1/2 max

1≤ j≤J

(
n∑

i=1
a2

j i

)1/2

.

Using 2 ≤ J to make the simplification
(
2log(2J )

)1/2 ≤ 2
(
log(J )

)1/2 we obtain (B.46). ■
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Proof of Marcinkiewicz-Zygmund Inequality (B.47). Let εi be independent Rademacher random vari-
ables. Let EX and Eε denote expectations conditional on Xi and εi , respectively. By the symmetrization
inequality (B.44)

E

∣∣∣∣∣ n∑
i=1

Xi

∣∣∣∣∣
r

≤ 2rE

∣∣∣∣∣ n∑
i=1

εi Xi

∣∣∣∣∣
r

= 2rEε

[
EX

∣∣∣∣∣ n∑
i=1

εi Xi

∣∣∣∣∣
r ]

. (B.76)

The expectation EX treats Xi as fixed, so we can apply Khintchine’s inequality (B.45). Thus (B.76) is
bounded by

2r KrEε

(
n∑

i=1
X 2

i

)r /2

= 2r KrE

(
n∑

i=1
X 2

i

)r /2

.

This is (B.47). ■

Proof of Whittle’s Inequality (B.48). By the Marcinkiewicz-Zygmund inequality (B.47), Minkowski’s in-
equality (B.34), and E |Xi |r ≤ B1r

E

∣∣∣∣∣ n∑
i=1

ai Xi

∣∣∣∣∣
r

≤ MrE

∣∣∣∣∣ n∑
i=1

a2
i X 2

i

∣∣∣∣∣
r /2

≤ Mr

(
n∑

i=1
a2

i

(
E |Xi |r

)2/r

)r /2

≤ B1r Mr

(
n∑

i=1
a2

i

)r /2

.

which is (B.48) with C1r = B1r Mr as claimed. ■

Proof of Whittle’s Inequality (B.49). As shown in (B.63)

E
∣∣X ′AX −E[

X ′AX
]∣∣r ≤ E ∣∣X ′AX −Y ′AY

∣∣r (B.77)

where Y = (Y1, ...,Yn)′ is an independent copy of X . We can write

(X +Y )′ A (X −Y ) = ξ′ (X −Y )

where ξ= A (X +Y ).
Independence implies exchangeability which implies the distribution of Xi−Yi conditional on Xi+Yi

is symmetric about the origin. To see this formally, by exchangeability

P [Xi −Yi ≤ u | Xi +Yi = v] =P [Yi −Xi ≤ u | Yi +Xi = v]

= 1−P [Yi −Xi > u | Yi +Xi = v]

= 1−P [Xi −Yi <−u | Xi +Yi = v]

=P [Xi −Yi ≥−u | Xi +Yi = v]

which is the definition of a symmetric distribution. Thus we can write Xi −Yi = ηiεi where ηi = |Xi −Yi |
and εi is an independent Rademacher random variable.
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Denote the i th element of ξ as ξi = a ′
i (X +Y ) where a ′

i is the i th column of A. Then ξ′ (X −Y ) =∑n
i=1 ξiηiεi . Applying Khintchine’s inequality (B.45)

E
∣∣X ′AX −Y ′AY

∣∣r = E
∣∣∣∣∣ n∑
i=1

ξiηiεi

∣∣∣∣∣
r

≤ KrE

[(
n∑

i=1
ξ2

i η
2
i

)r /2]

≤ Kr

(
n∑

i=1

(
E
[|ξi |r

∣∣ηi
∣∣r ])2/r

)r /2

≤ Kr

(
n∑

i=1

(
E
[
ξ2r

i

])1/r (
E
[
η2r

i

])1/r

)r /2

. (B.78)

The first inequality is Minkowski’s (B.34), the second is Cauchy-Schwarz (B.32). Observe that

E
[
η2r

i

]≤ 22rE
[

X 2r
i

]≤ 22r B2r .

By Whittle’s first inequality (B.48)

E
[
ξ2r

i

]= E ∣∣∣∣∣ n∑
j=1

a j i
(
X j +Y j

)∣∣∣∣∣
2r

≤ 22r C1r

(
n∑

j=1
a2

j i

)r

.

Hence (B.78) is bounded by

4r Kr C 1/2
1r B 1/2

2r

(
n∑

i=1

n∑
j=1

a2
j i

)r /2

= 4r Kr C 1/2
1r B 1/2

2r

(
tr

(
A′A

)r /2
)r /2

.

This is (B.49) with C2r = 4r Kr C 1/2
1r B 1/2

2r . ■

Proof of Rosenthal’s Inequality (B.50). Define µs =∑n
i=1E |Xi |s for any s > 0.

Take 0 < r ≤ 2. By Lyapunov’s inequality (B.35)

(
E

∣∣∣∣∣ n∑
i=1

Xi

∣∣∣∣∣
r )1/r

≤
(
E

∣∣∣∣∣ n∑
i=1

Xi

∣∣∣∣∣
2)1/2

=µ1/2
2 .

Raising to the power r implies (B.50). For the remainder assume r > 2.
By the Marcinkiewicz-Zygmund inequality (B.47)

E

∣∣∣∣∣ n∑
i=1

Xi

∣∣∣∣∣
r

≤ MrE |Sn |r /2 . (B.79)

where Sn =∑n
i=1 X 2

i . For any i , using the cr inequality (B.7)

|Sn |r /2−1 =
∣∣∣∣∣Xi +

∑
j 6=i

X j

∣∣∣∣∣
r /2−1

≤ cr /2−1

(
|Xi |r /2 +

∣∣∣∣∣∑
j 6=i

X j

∣∣∣∣∣
r /2−1)

.
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Thus

E |Sn |r /2 = E[
Sn |Sn |r /2−1]

=
n∑

i=1
E
[

X 2
i |Sn |r−2]

≤ cr /2−1

n∑
i=1

E

[
X 2

i

(
|Xi |r /2 +

∣∣∣∣∣∑
j 6=i

X j

∣∣∣∣∣
r /2−1)]

≤ cr /2−1

(
n∑

i=1
E |Xi |r +

n∑
i=1

E

[
X 2

i

∣∣∣∣∣∑
j 6=i

X 2
j

∣∣∣∣∣
r /2−1])

= cr /2−1

(
µr +

n∑
i=1

E
[

X 2
i

]
E

∣∣∣∣∣∑
j 6=i

X 2
j

∣∣∣∣∣
r /2−1)

≤ cr /2−1
(
µr +µ2E |Sn |r /2−1) . (B.80)

The second-to-last line holds since X 2
i is independent of

∑
j 6=i X 2

j . The final inequality holds since
∑

j 6=i X 2
j ≤

Sn and
∑n

i=1E
[

X 2
i

]=µ2.
Suppose 2 ≤ r ≤ 4. Then r /2−1 ≤ 1. By Jensen’s inequality (B.27) E |Sn |r /2−1 ≤ (E |Sn |)r /2−1 = µr /2−1

2 .
Also, cr /2−1 = 1. Together, we can bound (B.80) by

∑n
i=1E |Xi |r +µr /2

2 . This implies

E |Sn |r /2 ≤
n∑

i=1
E |Xi |r +µr /2

2 . (B.81)

We now establish
E |Sn |s/2 ≤ 2s(s−2)/8 (

µs +µs/2
2

)
(B.82)

for all s ≥ 2 by a recursive argument. (B.81) shows that (B.82) holds for 2 ≤ s ≤ 4. We now show that (B.82)
for s = r −2 implies (B.82) for s = r . Take r > 4. Using (B.80), cr /2−1 = 2r /2−2 and (B.82)

E |Sn |r /2 ≤ 2r /2−2 (
µr +µ2E |Sn |r /2−1)

≤ 2r /2−2
(
µr +µ22(r−2)(r−4)/8

(
µr−2 +µ(r−2)/2

2

))
≤ 2r /2−22(r−2)(r−4)/8 (

µr +µ2µr−2 +µr /2
2

)
= 2r (r−2)/8−1 (

µr +µ2µr−2 +µr /2
2

)
.

Using Hölder’s inequality (B.31), Hölder’s inequality for vectors (B.11), and the geometric mean inequal-
ity (B.4)

µ2µr−2 ≤µ2

n∑
i=1

(
E
[

X 2
i

])2/(r−2) (
E |Xi |r

)(r−4)/(r−2)

≤µ2

(
n∑

i=1
E
[

X 2
i

])2/(r−2) ( n∑
i=1

E |Xi |r
)(r−4)/(r−2)

=µr /(r−2)
2 µ(r−4)/(r−2)

r

≤ 2

r −2
µr /2

2 + r −4

r −2
µr

≤µr /2
2 +µr .

Together
E |Sn |r /2 ≤ 2r (r−2)/8 (

µr +µr /2
2

)
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which is (B.82) for s = r . This shows that (B.82) holds for all s ≥ 2.
(B.79) and (B.82) imply (B.50) for r > 2. ■

Proof of Kolmogorov’s Inequality (B.51). See Introduction to Econometrics, Theorem 7.13.

Proof of Billingsley’s Inequality (B.52). Without loss of generality assume σ2
n = 1. Define the events

Ai =
{
|Si | >λ,max

j<i

∣∣S j
∣∣≤λ}

These events are disjoint. Their union is

A =
n⋃

i=1
Ai =

{
max
i≤n

|Si | >λ
}

.

Then

P [A] =P
[

n⋃
i=1

Ai

]
≤P

[
|Sn | > λ

2

]
+P

[{
n⋃

i=1
Ai

}
∩

{
|Sn | ≤ λ

2

}]
.

Since the Ai are disjoint the second term on the right equals

n∑
i=1

P

[
Ai ∩

{
|Sn | ≤ λ

2

}]
≤

n∑
i=1

P

[
Ai ∩

{
|Sn −Si | > λ

2

}]

the inequality since the events {|Si | >λ} and
{
|Sn | ≤ λ

2

}
imply

{
|Sn −Si | > λ

2

}
. The events Ai and

{
|Sn −Si | > λ

2

}
independent (since Xi are independent) so final term equals

n∑
i=1

P [Ai ]P

[
|Sn −Si | > λ

2

]
≤

n∑
i=1

P [Ai ]
4

λ2 var[Sn −Si ] ≤
n∑

i=1
P [Ai ]

4

λ2 ≤ P [A]

2
.

The first inequality is Chebyshev’s, the second is var[Sn −Si ] ≤ σ2
n = 1, the final is 4/λ2 < 1/2 when λ >

2
p

2. We have shown that P [A] ≤P [|Sn | >λ/2]+P [A]/2, which upon rearrangement is (B.52). ■
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