16. Show that if F is of bounded variation in [a, b], then:

(a)
$$\int_a^b |F'(x)| dx \le T_F(a, b)$$
.

(b)
$$\int_a^b |F'(x)| dx = T_F(a, b)$$
 if and only if F is absolutely continuous.

As a result of (b), the formula $L = \int_a^b |z'(t)| dt$ for the length of a rectifiable curve parametrized by z holds if and only if z is absolutely continuous.

证明. (a) 因为 $F \in BV([a,b])$,所以 F 可以写成 $F(x) = P_F(a,x) + F(a) - N_F(a,b)$,其中 $P_F(a,x)$ 和 $N_F(a,x)$ 递增,因此它们几乎处处可导,而且有:

$$F'(x) = P'_F(a, x) - N'_F(a, x).$$

根据 Lebesgue 定理的推论可知 P_F' 和 N_F' 可积,从而 |F'| 可积,而且根据 Lebesgue 定理的推论给出的不等式可知:

$$\int_{a}^{b} |F'(x)| dx \le \int_{a}^{b} |P'_{F}(a, x)| dx + \int_{a}^{b} |N'_{F}(a, x)| dx$$

$$= \int_{a}^{b} P'_{F}(a, x) dx + \int_{a}^{b} N'_{F}(a, x) dx \le P_{F}(a, b) + N_{F}(a, b) = T_{F}(a, b).$$

(b) 若 F 绝对连续,则由绝对连续函数成立 Newton-Leibniz 公式,对任何 [a,b] 的分划 Δ ,都成立:

$$\begin{split} \sum_{\Delta} |F(x_j) - F(x_{j-1})| &= \sum_{\Delta} |\int_{x_{j-1}}^{t_j} F'(x) \mathrm{d}x| \\ &\leq \sum_{\Delta} \int_{x_{j-1}}^{x_j} |F'(x)| \mathrm{d}x \\ &= \int_{-b}^{b} |F'(x)| \mathrm{d}x. \end{split}$$

取上确界可得

$$T_F(a,b) \le \int_a^b |F'(x)| dx.$$

因为绝对连续蕴含有界变差,所以根据 (a) 的结果可知反向不等式成立,因此等式

$$T_F(a, b) = \int_a^b |F'(x)| dx$$

成立.

反过来,如果上述等式成立,我们去说明 F 是绝对连续的. 事实上,我们可以断言对任何 $y \in [a,b]$,都成立:

$$\int_{a}^{x} |F'(y)| dy = T_F(a, x).$$

事实上,根据 $F \in BV([a,b])$ 以及 (a) 的结果可知:

$$\int_{a}^{x} |F'(y)| \mathrm{d}y \le T_{F}(a, x), \quad \int_{x}^{b} |F'(y)| \mathrm{d}y \le T_{F}(x, b).$$

但是

$$\int_{a}^{x} |F'(y)| \mathrm{d}y + \int_{x}^{b} |F'(y)| \mathrm{d}y = \int_{a}^{b} |F'(y)| \mathrm{d}y = T_{F}(a, b) = T_{F}(a, x) + T_{F}(x, b).$$

所以,以上两个不等号均取等,作为一个直接推论,[a,b] 的任何子区间 $[a_k,b_k]$ 上都成立

$$\int_{a}^{b_k} |F'(y)| dy = T_F(a_k, b_k).$$

我们计划利用可积函数积分的绝对连续性来证明 F 绝对连续. 因为 $F \in BV([a,b])$,所以 $T_F(a,b) < \infty$,因此 $F'(x) \in L^1_{loc}([a,b])$,根据可积函数积分的绝对连续性,对任何 $\varepsilon > 0$,存在 $\delta > 0$,使得对任何可测集 $E \subset [a,b]$ 满足 $m(E) < \delta$,都有:

$$\int_{F} |F'| < \varepsilon$$
.

因此,对任何 [a,b] 互不相交的有限子区间族 $\{(a_k,b_k)\}_{k=1}^N$,只要 $\sum_{k=1}^N (b_k-a_k) < \delta$,就有:

$$\sum_{k=1}^{N} |F(b_k) - F(a_k)| \leq \sum_{k=1}^{N} T_F(a_k, b_k) = \sum_{k=1}^{N} \int_{a_k}^{b_k} |F'| = \int_{\bigcup_{k=1}^{N} (a_k, b_k)} |F'| < \varepsilon.$$

П

所以 F 绝对连续.

Exercise 19: Show that if $f: \mathbb{R} \to \mathbb{R}$ is absolutely continuous, then

- (a) f maps sets of measure zero to sets of measure zero.
- (b) f maps measurable sets to measurable sets.

Solution.

(a) Suppose $E \subset \mathbb{R}$ has measure zero. Let $\epsilon > 0$. By absolute continuity, $\exists \delta > 0$ such that $\sum |b_j - a_j| < \delta \Rightarrow \sum |f(b_j) - f(a_j)| < \epsilon$. Since m(E) = 0, there is an open set $U \supset E$ with $m(U) < \delta$. Every open subset of \mathbb{R} is a countable disjoint union of open intervals, so

$$U = \bigcup_{j=1}^{\infty} (a_j, b_j) \text{ with } \sum_{j=1}^{\infty} (b_j - a_j) < \delta.$$

For each $j = 1, 2, ..., let m_j, M_j \in [a_j, b_j]$ be values of x with

$$f(m_j) = \min_{x \in [a,b]} f(x) \text{ and } f(M_j) = \max_{x \in [a,b]} f(x).$$

Such m_j and M_j must exist because f is continuous and $[a_j,b_j]$ is compact. Then

$$f(U) \subset \bigcup_{j=1}^{\infty} [f(m_j), f(M_j)].$$

But $|M_j - m_j| \leq |b_j - a_j|$ so

$$\sum_{j=1}^{\infty} |M_j - m_j| < \delta \Rightarrow \sum_{j=1}^{\infty} |f(M_j) - f(m_j)| < \epsilon.$$

Hence f(E) is a subset of a set of measure less that ϵ . This is true for all ϵ , so f(E) has measure zero.

(b) Let $E \subset \mathbb{R}$ be measurable. Then $E = F \cup N$ where F is F_{σ} and N has measure zero. Since closed subsets of \mathbb{R} are σ -compact, F is σ -compact. But then f(F) is also σ -compact since f is continuous. Then $f(E) = f(F) \cup f(N)$ is a union of an F_{σ} set and a set of measure zero. Hence f(E) is measurable.

Exercise 20: This exercise deals with functions F that are absolutely continuous on [a, b] and are increasing. Let A = F(a) and B = F(b).

- (a) There exists such an F that is in addition strictly increasing, but such that F'(x) = 0 on a set of positive measure.
- (b) The F in (a) can be chosen so that there is a measurable subset $E \subset [A, B]$, m(E) = 0, so that $F^{-1}(E)$ is not measurable.
- (c) Prove, however, that for any increasing absolutely continuous F, and E a measurable subset of [A, B], the set $F^{-1}(E) \cap \{F'(x) > 0\}$ is measurable.

Solution.

(a) Let

$$F(x) = \int_{a}^{x} \delta_{C}(x) dx$$

where $C \subset [a,b]$ is a Cantor set of positive measure and $\delta_C(x)$ is the distance from x to C. Note that $\delta_C(x) \geq 0$ with equality iff $x \in C$. Since δ_C is continuous, this integral is well-defined, even in the Riemann sense. Moreover, F is absolutely continuous by the absolute continuity of integration of L^1 functions. As shown in problem 9, F'(x) exists and equals zero a.e. in C, hence on a set of positive measure. However, F is strictly increasing: Suppose $a \leq x < y \leq b$. Since C contains no interval, some point, and therefore some interval, between x and y belongs to C^C . The integral of δ_C over this interval will be positive, so F(y) > F(x).

(b) The same function from part (a) does the trick. Since F is increasing, it maps disjoint open intervals to disjoint open intervals. Let $U = [a, b] \setminus C$. Since U is open, we can write

$$U = \bigcup_{j=1}^{\infty} (a_j, b_j)$$

where the intervals (a_j, b_j) are disjoint. Then

$$F(U) = \bigcup_{j=1}^{\infty} (F(a_j), F(b_j))$$

and

$$m(F(U)) = \sum_{j=1}^{\infty} F((b_j) - F(a_j)).$$

But

$$B - A = F(b) - F(a) = \int_{a}^{b} \delta(x)dx = \int_{U} \delta(x)dx = \sum_{j=1}^{\infty} (F(b_{j}) - F(a_{j}))$$

since $\delta = 0$ on C so $\int_C \delta(x) dx = 0$. Thus m(F(U)) = m(F([a, b])), so that m(F(C)) = 0. This implies that m(F(S)) = 0 for any subset $S \subset C$. But since C has positive measure, it has a non-measurable subset. Then if E = F(S), m(E) = 0 so E is measurable, but $F^{-1}(E) = S$ is not measurable.

[Hint: (a) Let $F(x) = \int_a^x \chi_K(x) dx$, where K is the complement of a Cantor-like set C of positive measure. For (b), note that F(C) is a set of measure zero. Finally, for (c) prove first that $m(\mathcal{O}) = \int_{F^{-1}(\mathcal{O})} F'(x) dx$ for any open set \mathcal{O} .]

Hint mizm

Claim:
$$m(0) = \int_{F^{-1}(0)} F(x) dx$$
. $F = \int_{F^{-1}(0)} F(x) dx$ $F = \int_{F^{-1}(0)} F(x) dx$ $F = \int_{F^{-1}(0)} F(x) dx$ $F = \int_{F^{-1}(0)} F(x) dx$ for any open $G = \int_{F^{-1}(0)} F(x) dx$

- **21.** Let F be absolutely continuous and increasing on [a, b] with F(a) = A and F(b) = B. Suppose f is any measurable function on [A, B].
 - (a) Show that f(F(x))F'(x) is measurable on [a,b]. Note: f(F(x)) need not be measurable by Exercise 20 (b).
 - (b) Prove the change of variable formula: If f is integrable on [A, B], then so is f(F(x))F'(x), and

$$\int_A^B f(y) \, dy = \int_a^b f(F(x))F'(x) \, dx.$$

[Hint: Start with the identity $m(\mathcal{O}) = \int_{F^{-1}(\mathcal{O})} F'(x) dx$ used in (c) of Exercise 20 above.]

证明. (a) 事实上,我们需要**题 20** 作为引理. 首先对于开集 $O \subset [A,B]$,成立 $m(O) = \int_{F^{-1}(O)} F'(x) dx$. 这是因为,F 是绝对连续函数,所以 O 的原像集 $F^{-1}(O)$ 也是开集,所以 $F^{-1}(O)$ 写成可数互不相交的开区间的并: $F^{-1}(O) = \bigsqcup_{k \geq 1} (a_k, b_k)$. 因为 F 连续且单调递增,所以对每个 (a_k, b_k) , $F(a_k, b_k) = (F(a_k), F(b_k)) := (A_k, B_k)$,因此 $O = \bigcup_{k \geq 1} (A_k, B_k)$. 而且,由单调递增可知,每个 (A_k, B_k) 至多在端点处相交,并且 $F(a_k) = A_k$, $F(b_k) = B_k$. 根据绝对连续函数的 Newton-Leibniz 公式可知:

$$m(O) = \sum_{k=1}^{\infty} (B_k - A_k) = \sum_{k=1}^{\infty} (F(b_k) - F(a_k)) = \sum_{k=1}^{\infty} \int_{a_k}^{b_k} F'(x) dx = \int_{\bigcup_k (a_k, b_k)} F'(x) dx = \int_{F^{-1}(O)} F'(x) dx$$

我们下面说明把开集 O 换成 G_δ 集 G 后结论依然成立. 对于 G_δ 集 $G = \bigcap_{i\geq 1} G_i$,记 $O_j = \bigcap_{i=1}^j G_i$ 是开集,所以

$$m(O_j) = \int_{F^{-1}(O_j)} F'(x) dx = \int_{\mathbb{R}^d} F'(x) \chi_{F^{-1}(O_j)}(x) dx.$$

观察到 $\chi_{F^{-1}(O_j)}$ 逐点收敛到 $\chi_{F^{-1}(G)}$, 而且, O_j 是一列单调递减收敛到 G 的集列,因此,对上式取极限并由控制收敛定理知

$$m(G) = \int_{\mathbb{R}^d} F'(x) \chi_{F^{-1}(G)}(x) dx = \int_{F^{-1}(G)} F'(x) dx.$$

对于可测集 E,存在一个 G_δ 集记为 G, $G \supset E$ 而且 G - E 是零测集. 记 $Z = \{F'(x) = 0\}$,此时集合 $F^{-1}(E) \cap \{F' > 0\}$ 以表示为 $F^{-1}(G \cup (G - E)) \cap ([a, b] \setminus Z)$.

我们先证明 Z 是一个零测集. 事实上,因为 $\{0\}$ 是一个 G_δ 集,所以:

$$0 = m(\{0\}) = \int_{F^{-1}(\{0\})} F'(x) dx \Rightarrow F'(x) = 0, \text{a.e. } x \in Z.$$

所以,只能是 Z 本身是零測集.因此 $[a,b]\setminus Z$ 是可測集.

进一步地,写 $F^{-1}(G \cup (G - E)) = F^{-1}(G) \cup F^{-1}(G - E)$. 因为 G - E 是零测集,所以存在 $U \supset G - E$ 是 G_δ 集,使得 m(U - (G - E)) = 0,所以 m(U) = m(G - E) + m(U - (G - E)) = 0,同样可得

$$0 = m(U) = \int_{F^{-1}(U)} F'(x) dx \Rightarrow F'(x) = 0, \text{ a.e. } x \in F^{-1}(U).$$

所以 $m(F^{-1}(U) \cap ([a,b] \setminus Z)) = 0$,所以 $m(F^{-1}(G-E)) \cap ([a,b] \setminus Z) = 0$. 又因为 F 连续 $\Rightarrow F$ 可测 $\Rightarrow F^{-1}(G)$ 是可测集,所以

$$F^{-1}(E) \cap \{F' > 0\} = F^{-1}(G \cup (G - E)) \cap ([a, b] \backslash Z) = [F^{-1}(G) \cap ([a, b] \backslash Z)] \cup [F^{-1}(G - E) \cap ([a, b] \backslash Z)] \cap ([a, b] \backslash Z) = [F^{-1}(G) \cap ([a, b] \backslash Z)] \cap ([a, b] \backslash Z) \cap ([a, b] \backslash Z) = [F^{-1}(G) \cap ([a, b] \backslash Z)] \cap ([a, b] \backslash Z) \cap ([a,$$

是可测集.

回到本题,我们记 $G = (f \circ F) \cdot F'$,我们只需证明对任何 t > 0,都有 $\{G > t\}$ 是可测集. 事实上,我们有如下的分解:

$$\{G>t\} = \bigcup_{r>0\atop r \in \mathbb{Q}} \left\{ (f\circ F) > \frac{t}{r} \right\} \cap \{F'>r\} = \bigcup_{r>0\atop r \in \mathbb{Q}} F^{-1}(f^{-1}(t/r,+\infty)) \cap \{F'>0\} \cap \{F'>r\}.$$

根据引理的结果并结合 F' 可测 $\Rightarrow \{F' > r\}$ 可测,由此可知 $\{G > t\}$ 是可测的. 所以 f(F(x))F'(x) 在 [a,b] 上可测.

(b) 根据 $m(G) = \int_{F^{-1}(O)} F'(x) dx$ 立刻知换元公式对 G_{δ} 集上的特征函数成立,进而对 [a,b] 的可测子集上的特征函数成立,进而对简单函数成立。对于 $f \in L^1_{loc}([a,b])$,将 f 分解为正部和负部 f^+ 和 f^- ,则 f^+ , $f^- \in L^1_{loc}([a,b])$. 对于每个 f^+ ,它是非负、有界且具有有限测度支撑的可测函数,存在非负、递增简单函数逼近 $\{\varphi_n\}_{n\geq 1}$,使得 φ_n 逐点收敛到 f^+ ,由单调收敛定理可知

$$\lim_{n} \int_{a}^{b} \varphi_{n}(x) dx = \int_{a}^{b} \lim_{n} \varphi_{n}(x) dx = \int_{a}^{b} f^{+}(x) dx.$$

另一方面,

$$\int_{a}^{b} \varphi_{n}(x) dx = \int_{A}^{B} \varphi_{n}(F(x))F'(x) dx.$$

所以取 $n \to \infty$ 可知

$$\int_{a}^{b} f^{+}(x) dx = \int_{A}^{B} f^{+}(F(x))F'(x) dx.$$

同理可知

$$\int_{a}^{b} f^{-}(x)dx = \int_{A}^{B} f^{-}(F(x))F'(x)dx.$$

两式相减可知 f(F(x))F'(x) 可积, 而且换元公式成立.

Exercise 22: Suppose that F and G are absolutely continuous on [a, b]. Show that their product FG is also absolutely continuous. This has the following consequences.

(a) Whenever F and G are absolutely continuous in [a, b],

$$\int_{a}^{b} F'(x)G(x)dx = -\int_{a}^{b} F(x)G'(x)dx + [F(x)G(x)]_{a}^{b}.$$

(b) Let F be absolutely continuous in $[-\pi, \pi]$ with $F(\pi) = F(-\pi)$. Show that if

$$a_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(x)e^{-inx}dx,$$

such that $F(x) \sim \sum a_n e^{inx}$, then

$$F'(x) \sim \sum ina_n e^{inx}$$
.

(c) What happens if $F(-\pi) \neq F(\pi)$?

Proof. Since F and G are absolutely continuous, they are continuous and therefore bounded on the compact interval [a,b]. Suppose $|F|,|G| \leq M$ on this interval. Now given $\epsilon > 0$, we can choose $\delta > 0$ such that $\sum |b_j - a_j| < \delta \Rightarrow \sum |F(b_j) - F(a_j)| < \frac{\epsilon}{M}$ and $\sum |G(b_j) - G(a_j)| < \frac{\epsilon}{2M}$. Then

$$\sum |F(b_{j})G(b_{j}) - F(a_{j})G(a_{j})|$$

$$= \sum \frac{1}{2} |(F(b_{j} - F(a_{j}))(G(b_{j}) + G(a_{j})) + (F(b_{j}) + F(a_{j}))(G(b_{j}) - G(a_{j}))|$$

$$\leq \frac{1}{2} \left(\sum |F(b_{j}) - F(a_{j})||G(b_{j}) + G(a_{j})| + \sum |F(b_{j}) + F(a_{j})||G(b_{j}) - G(a_{j})| \right)$$

$$\leq \frac{1}{2} \left(\sum (2M)|F(b_{j}) - F(a_{j})| + \sum (2M)|G(b_{j}) - G(a_{j})| \right)$$

$$\leq \frac{1}{2} \left(2M \cdot \frac{\epsilon}{2M} + 2M \cdot \frac{\epsilon}{2M} \right) = \epsilon.$$

This proves that FG is absolutely continuous on [a,b]. We now turn to the consequences of this:

(a) Since FG is absolutely continuous, it's differentiable almost everywhere. By elementary calculus, (FG)' = F'G + FG' at any point where all three derivatives exist, which is almost everywhere. Integrating both sides and subtracting $\int FG'$ yields

$$\int_a^b F'(x)G(x)dx = -\int_a^b F(x)G'(x)dx + \int_a^b (FG)'(x)dx.$$

Since FG is absolutely continuous, this implies

$$\int_{a}^{b} F'(x)G(x)dx = -\int_{a}^{b} F(x)G'(x)dx + [F(x)G(x)]_{a}^{b}.$$

(b) It would be nice if the problem would actually define this for us, but I'm assuming that the ∼ here means "is represented by" as opposed to any kind of statement about whether the function actually converges

to its Fourier series or not. Then suppose b_n are the Fourier coefficients of F', so by definition

$$b_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} F'(x)e^{-inx}dx.$$

Using part (a), we have

$$b_n = -\frac{1}{2\pi} \int_{-\pi}^{\pi} F(x)(-ine^{-inx}) dx + [F(x)e^{-inx}]_a^b = in\frac{1}{2\pi} \int_{-\pi}^{\pi} F(x)e^{-inx} dx = ina_n.$$

(c) Then all bets are off. As one example, consider F(x) = x which is clearly absolutely continuous on $[-\pi, \pi]$. Then

$$a_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} x e^{-inx} dx = \frac{1}{2\pi} \left(\frac{x e^{-inx}}{-in} + \frac{e^{-inx}}{n^2} \right) \Big|_{-\pi}^{\pi} = \frac{2i}{n} (-1)^n$$

for $n \neq 0$, and $a_0 = \int_{-\pi}^{\pi} x dx = 0$. However, F'(x) = 1 which has Fourier coefficients $b_0 = 1$ and $b_n = 0$ for $n \neq 0$.

- **23.** Let F be continuous on [a, b]. Show the following.
 - (a) Suppose $(D^+F)(x) \ge 0$ for every $x \in [a,b]$. Then F is increasing on [a,b].
 - (b) If F'(x) exists for every $x \in (a, b)$ and $|F'(x)| \leq M$, then $|F(x) F(y)| \leq M|x y|$ and F is absolutely continuous.

[Hint: For (a) it suffices to show that $F(b) - F(a) \ge 0$. Assume otherwise. Hence with $G_{\epsilon}(x) = F(x) - F(a) + \epsilon(x-a)$, for sufficiently small $\epsilon > 0$ we have $G_{\epsilon}(a) = 0$, but $G_{\epsilon}(b) < 0$. Now let $x_0 \in [a, b)$ be the greatest value of x_0 such that $G_{\epsilon}(x_0) \ge 0$. However, $(D^+G_{\epsilon})(x_0) > 0$.]

证明. (a) 只需证明 $F(b) - F(a) \ge 0$ (根据下面的证明过程可知实际上 a 和 b 都可以换成 [a,b] 中的任何一个点). 用反证法,假设不等式不成立,令 $G_{\varepsilon}(x) = F(x) - F(a) + \varepsilon(x-a)$,因此对充分小的 $\varepsilon > 0$ 成立 $G_{\varepsilon}(a) = 0$. 但是, $G_{\varepsilon}(b) < 0$. 令 x_0 是 G_{ε} 在 [a,b] 上的最大值点,则对足够小的 h > 0,成立

$$\frac{G_{\varepsilon}(x_0+h)-G_{\varepsilon}(x_0)}{h} \leq 0.$$

于是:

$$\limsup_{h>0\atop h>0}\frac{G_{\varepsilon}(x_0+h)-G_{\varepsilon}(x_0)}{h}\leq 0.$$

但是这和 $D^+(G_{\varepsilon}) = D^+(F) + \varepsilon > 0$ 对每个 $x \in [a, b]$ 矛盾.

(b) 由微积分基本定理 $|F(x) - F(y)| = |\int_x^y F'(t) dt| \le M|x - y|$. 另外 $F(x) = F(a) + \int_a^x F'(y) dy \Rightarrow F$ 绝对连续.

27. (Stein 中译本, P113, 题 32) 令 $f: \mathbb{R} \to \mathbb{R}$. 证明 f 对某个 M 和所有 $x, y \in \mathbb{R}$ 满足 Lipschitz 条件:

$$|f(x) - f(y)| \le M|x - y|.$$

当且仅当 f 满足: (i) f 绝对连续: (ii) 对 a.e.x, $|f'(x)| \leq M$.

证明. 先证明 ⇒. 若能证明一致连续, 根据

$$\frac{|f(x) - f(y)|}{|x - y|} \le M \Rightarrow \limsup_{h \to 0} \left| \frac{f(x + h) - f(x)}{h} \right| \le M,$$

因此只要能说明 f' 几乎处处存在,就有 $|f'(x)| \le M$. 而绝对连续 \Rightarrow 有界变差 \Rightarrow f' 几乎处处存在,所以只需要说明 f 绝对连续.

我们用定义说明. 对任何 $\varepsilon > 0$,取 $\delta = \frac{\varepsilon}{M}$,对 [a,b] 的子区间 $\{(a_k,b_k)\}_{k=1}^N$ 互不相交且满足 $\sum_{k=1}^N (b_k - a_k) < \delta$,都有:

$$\sum_{k=1}^{N} |f(b_k) - f(a_k)| \le M \sum_{k=1}^{N} (b_k - a_k) < M \cdot \frac{\varepsilon}{M} = \varepsilon.$$

根据定义可知 f 绝对连续.

再证明 \leftarrow ,因为 f 绝对连续 \Rightarrow f 有界变差,所以 f' 几乎处处存在且可积,且成立微积分基本定理:

$$f(x) - f(y) = \int_{x}^{y} f'(t)dt.$$

根据积分的三角不等式:

$$|f(x) - f(y)| \le \int_{(x,y)} |f'(t)| dt \le M|x - y|.$$

所以 f 满足系数为 M 的 Lipschitz 条件.