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1 Introduction1

This is my preparation before reading relevant literature and conducting scientific researchabout bandit. This2

note is for Introduction to Multi-Armed Bandits.3

2 Probability4

In this section, I will briefly note some basic probability theory knowledge, so as to facilitate the reference5

when reading literature.6

2.1 Bayes7

Lemma 2.1 (posterior for sufficient statistic). X ∼ f(x | θ), if T (X) is a sufficient statistic for θ, then8

π(θ | x) = π̃(θ | t) (2.1)

1. X ∼ N(θ, σ2
S), in which σ2

S is known. θ has a prior N(µP , σ
2
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2. Using the assumption abouve, the posterior of θ after observing x1, · · · , xn is a.s. Gaussian with mean13

µn and variance σ2
n given by:14
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(2.5)

Proof. Note that X̄ ∼ N(θ, σ2
S/n), then subsititute x above with x̄.15

Or you can calculate the law of x = (x1, · · · , xn) and get the same result.16

3. X ∼ B(n, θ), θ has a prior Be(a, b), then the posterior of θ is Be(x+ a, n− x+ b).17

Proof. X ∼ B(n, θ), it has a distribution:18

f(x | θ) =
(
n

x

)
θx(1− θ)n−x. (2.6)
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θ satisfies:19

π(θ) =
Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1. (2.7)

then the posterior of θ can be calculated by:20

π(θ | x) ∝ f(x | θ)π(θ)
= θ(x+a)−1(1− θ)(n−x+b)−1.

(2.8)

21

3 Concentration Inequality22

Consider random variables X1, X2, . . . Assume they are mutually independent, but not necessary identially23

distributed. Let X̄n = X1+...+Xn

n to be the average of the first n random variables, and let µn = E[X̄n] be its24

expectation. We have:25

Theorem 3.1 (Hoeffding Inequality).

P{|X̄n − µn| ≤
√

α log T/n} ≥ 1− 2T−2α, α > 0. (3.1)

Here T is a fixed parameter.26

4 Stochastic Bandit27

4.1 Simple bandit algorithms28

In this part I tend summarize some simple bandit algorithms and their regret bounds.29

We consider the basic model with IID rewards, called stochastic bandit. An algorithm has K possible30

actions to choose from, and there are T rounds, for some known K and T. The mean reward of arm a is31

µ(a) := E[Da], in which D is the reward distribution. The best mean reward is denoted µ∗ = max a ∈ Aµ(a),32

the difference δ(a) := µ∗(a)− µ(a) describes how bad arm a is compared to µ∗ Then we can define our main33

goal regret by:34

Definition 4.1 (Regret).
R(T ) = µ∗T − ΣT

t=1µ(at). (4.1)

Then I can begin to summarize some simple algorithms and analysis their regret.35

Algorithm 1 Explore-first algorithm
1: Exploration phase: try each arm N times;
2: Select the arm â with the highest average reward (break ties arbitrarily);
3: Exploitation phase: play arm â in all remaining rounds.

Theorem 4.2. Explore-first algorithm achieves regret E[R(T )] ≤ T 2/3 ×O(K log T )1/3.36

Algorithm 2 Epsilon-greedy algorithm
1: for each round t=1,2,… do
2: Toss a coin with success probability ϵt;
3: if success then
4: explore:choose an arm uniformly at random
5: else
6: exploit:choose the arm with the highest average reward so far
7: end if
8: end for
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Theorem 4.3. Epsilon-greedy algorithm with exploration probability ϵt = t−1/3(K log t)1/3 achieves regret37

bound E[R(t)] ≤ t2/3O(K log t)1/3 for each round t.38

Remark 4.4. Explore-first and Epsilon-greedy do not adapt their exploration schedule to the history of the39

observed rewards. The set of all exploration rounds and the choice of arms therein is fixed before the round 1.40

Definition 4.5 (Confidence interval). For each arm a and round t,41

rt(a) =
√
2 log(T )/nt(a) (confidence radius)

UCBt(a) = µ̄t(a) + rt(a) (upper confidence bound)
LCBt(a) = µ̄t(a)− rt(a) (lower confidence bound).

(4.2)

Using concentration inequality we have confidence interval [LCBt(a), UCBt(a)] and confidence radius rt(a).42

Then we have some adaptive exploration algorithms:43

Algorithm 3 successive algorithm for two arms
1: Alternate two arms until UCBt(a) < LCBt(a

′) after some even round t;
2: Abandon arm a, and use arm a′ forever since.

For multi-armed bandit, we have:44

Algorithm 4 Successive Elimination algorithm
1: All arms are initially designed as active
2: loop
3: play each active arm once
4: deactive all arms a such that, letting t be the current round, UCBt(a) < LCBt(a

′) for some other arm
a′ deactivation rule

5: end loop

Theorem 4.6. Successive Elimination algorithm achieves regret45

E[R(t)] = O(
√
Kt log T )for all rounds t ≤ T. (4.3)

Theorem 4.7. Successive Elimination algorithms achieves regret46

E[R(t)] ≤ O(log T )

[ ∑
arms a with µ(a)<µ∗(a)

1

µ∗(a)− µ(a)

]
(4.4)

Note that we can only use UCBt to determination which arm is better, this is because an arm a can47

have a large UCBt(a) for two reasons (or combination thereof ): because the average m̄ut(a) is large, and/or48

because the confidence radius rt(a) is large, in which case this arm has not been explored much. So we have49

the algorithm:50

Algorithm 5 Algorithm UCB1
1: Try each arm once
2: for each round t=1,…,T do
3: pich arm some a which maximizes UCBt(a).
4: end for

Theorem 4.8. Algorithm UCB1 satisfies regret bounds in 4.3 and 4.4.51

Theorem 4.9 (lower bound). Fix time horizon T and the number of arms K. For any bandit algorithm, there52

exists a problem instance such that E[R(T )] ≥ Ω(
√
KT ).53
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Consider a simple algorithm for Bayesian bandits, called Thompson Sampling. For each round t and arm54

a, the algorithm computes the posterior probability that a is the best arm, and samples a with this probability.55

Algorithm 6 Thompson Sampling
1: for each round t=1,2,… do
2: Observe Ht−1 = H, for some feasible (t-1)-history H;
3: Draw arm at independently from distribution pt(·|H), where pt(a|H) := P[a∗ = a|Ht−1 = H] for each

arm a.
4: end for

Algorithm 7 Thompson Sampling: equivalent version
1: for each round t=1,2,… do
2: Observe Ht−1 = H, for some feasible (t-1)-history H;
3: Sample mean reward vector µt from the posterior distribution PH ;
4: Choose the best arm ãt according to µt.
5: end for

And if we have independent priors, the distribution of µ can be easily calculated by using Pa
H only.56

Then let us analyze Bayesian regret of Thompson Sampling:57

Theorem 4.10. Bayesian Regret of Thompson Sampling is BR(T ) = O(KT log T ).58

This is the core theorem of the TS algorithm, and its proof is very subtle, so I want to state it in detail.59

First, we can recap the definition of the confidence interval 4.2 defined before. THen we say the key lemma60

below hold for a more general notion of the confidence bounds, and clearly hold for 4.2. Actually, U(a,Ht)61

and L(a,Ht) can be arbitrary functions of the arm a and the t-history Ht. There are two properties we want62

these functions to have, for some γ > 0 to be specified later:63

E
[
[U(a,Ht)− µ(a)]−

]
≤ γ

TK
for all arm a and rounds t,

E
[
[µ(a)− L(a,Ht)]

−] ≤ γ

TK
for all arm a and rounds t.

(4.5)

The confidence radius can be defined as r(a,Ht) =
U(a,Ht)−L(a,Ht)

2 .64

Lemma 4.11. Assume we have lower and upper bound functions that satisfies properties above, for some65

parameter γ > 0. Then Bayesian Regret of Thompson Sampling can be bound as follows:66

BR(T ) ≤ 2γ + 2ΣT
t=1E[r(at,HT )].

Proof. Fix round t. As two algorithms are equivalent, we have:67

P[at = a|Ht = H] = P[a∗ = a|Ht = H]for each arm a. (4.6)

It follows that68

E[U(a∗,H)|Ht = H] = E[U(at,H)|Ht = H]. (4.7)

The Bayesian Regret suffered in round t is69

BRt = E[µ(a∗ − µ(at))]

= E
H∼Ht

[E[µ(a∗)− µ(at)|Ht = H]]

= E
H∼Ht

[E[U(at,H)− µ(at) + µ(a∗)− U(a∗,H)|Ht = H]]

= E[U(at,Ht)− µ(at)] + E[µ(a∗)− U(a∗,Ht)].

(4.8)
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We will use properties above to bound both summands. Note that we cannot immediately use these properties70

because they assume a fixed arm a, whereas both at and a∗ are random varibales.71

E[µ(a∗)− U(a∗,Ht)] ≤ E[(µ(a∗)− U(a∗,Ht))
+]

≤ E[
∑

armsa

(µ(a∗)− U(a∗,Ht))
+]

= ΣarmsaE[(U(a,Ht)− µ(a))−]

≤ K
γ

KT
=

γ

T
.

(4.9)

72

E[U(at,Ht)− µ(at)] = E[2r(at,Ht) + L((at,Ht)− µ(at))] = E[2r(at,Ht)] + E[L((at,Ht)− µ(at))] (4.10)
73

E[L((at,Ht)− µ(at))] ≤ E[(L((at,Ht)− µ(at)))
+]

≤ E
armsa

[(L((at,Ht)− µ(at)))
+]

= E
armsa

[(µ(at)− L((at,Ht)))
−]

≤ K
γ

KT
=

γ

T
.

(4.11)

Thus, BRt(T ) ≤ 2 γ
T + 2E[r(at,Ht)], the lemma follows by summing up over all rounds t.74

Now we can proof the main theorem.75

Proof. By lemma,76

BR(T ) ≤ O(
√
log T )

T∑
t=1

E
[

1√
nt(at)

]
Moreover,77

T∑
t=1

1√
nt(at)

=
∑

armsa

∑
roundst:at=a

1√
nt(a)

=
∑

armsa

nT+1(a)∑
j=1

1√
j
=

∑
armsa

O(
√
n(a)).

It follows that78

BR(T ) ≤ O(
√

log T )
∑

armsa

√
n(a) ≤ O(

√
logT )

√
K

∑
armsa

n(a) = O(
√

KT log T )

.79

4.2 Lipschitz Bandit80

In a special case, arms correspond to point in the interval X = [0, 1], and expected rewards obey a Lipschitz81

condition:82

|µ(x)− µ(y)| ≤ L|x− y|for any two arms x, y ∈ X. (4.12)
We can see this Lipschitz condition describes ”similar” arms have similar expected rewards. As this bandit83

has infinity many arms, a simple solution to this is use finite arms to approximate the whole model. And such84

Lipschitz condition can guarantee these finite arms have enough information.85

Theorem 4.12. Consider continuum-armed bandits with Lipschitz constant L and time horizon T . Uniform86

discretization with algorithm ALG satisfying Lipschitz and discretization step ϵ = (TL2/ log T )−1/3 attains87

E[R(T )] ≤ L1/3T 2/3(1 + cALG)(log T )
1/3 (4.13)

The main take-away here is the Õ(L1/3T 2/3) regret rate. The explicit constant and logarithmic dependence88

are less important.89

Actually, uniform discretization is optimal in the worst case: we have an Ω(L1/3T 2/3) lower bound on90

regret.91
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Theorem 4.13. Let ALG be any algorithm for continuum-armed bandits with time horizon T and Lipschitz92

constant L. There exists a problem instance L = L(x∗, ϵ), for some x ∈ [0, 1] and ϵ > 0, such that93

E[R(T )|L] ≥ (L1/3T 2/3). (4.14)

In a more general case, the Lipschitz condition can be stated as:94

|µ(x)− µ(y)| ≤ D(x, y)for any arms x, y (4.15)

where Dis a metric.95

Definition 4.14. A subset S ∈ X is called an ϵ−mash, ϵ > 0, if every point x ∈ X is within distance ϵ from96

S, in the sense that D(x, y) ≤ ϵ for some y ∈ S.97

Then we have regret bound for this more general case:98

Theorem 4.15. Consider Lipschitz bandits with time horizon T . Optimzing over the choice of an ϵ−mesh,99

uniform discretization with algorithm ALG attains regret100

E[R(T )] ≤ inf
ϵ>0,ϵ−mesh S

ϵT + cALG

√
|S|T log T (4.16)

In the d−dimension Eulidean space with lp metric, we can get a explicit form. And in more general cases,101

this form can be attained through the definition of ”covering dimension”. But all of these are about optimizing102

over the choice of all subset. We leave out these unimportant details to get into our main algorithm quickly.103

Now we can describe the algorithm. It contains two parts: activation step and selection step. We consider104

the confidence ball defined as Bt(x) = {y ∈ X : D(x, y) ≤ rt(x)}. In the activation step, we find an arm which105

is not in any confidence ball of all the active arms: we can see in intuition that if some arm lies very close to106

some active arm, we don’t need to explore it because of the Lipschitz condition.107

Then in the selection step, we select an arm which is active. The idea is just like UCB1. If an arm x is108

active at time t, we define109

indext(x) = µ̄t(x) + 2rt(x). (4.17)

The selcetion rule is very simple: play an active arm with the largest index.110

Algorithm 8 Zooming algorithm for adaptive discretization.
1: Initialize: set of active arms S ← ∅
2: for each round t=1,2,… do
3: if some arm y is not covered by the confidence balls of active arms then
4: pick any such arm y and ”activate” it: S ← S ∪ {y}.
5: end if
6: Play an active arm x with the largest indext(x).
7: end for

Definition 4.16. The smallest number of subsets in an ϵ−covering is called the covering number and denoted111

Nϵ(X).112

For any instance of Lipschitz MAB, the zooming dimension with multiplier c > 0 is113

inf
d≥0
{Nr/3(X) ≤ cr−d} (4.18)

Theorem 4.17. Consider Lipschitz bandits with time horizon T . Assume that realized rewards take values114

on a finite set. For any given problem instance and any c > 0, the zooming algorithm attains regret115

E[R(T )] ≤ O(T (d+1)/(d+2)(c log T )1/(d+2)),where d is the zooming dimension with multiplier c. (4.19)
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5 Adversarial Bandits116

To catch up quickly, let’s run through this section.117

First, we need to have a basic knowledge about adversarial cost. It may be influenced by algorithms and118

mean to ”fool” the algorithm. The main set up of this part is at each step, we can choose one arm, suffer the119

cost and view the cost of every arm. Now we can desctibe two main algorithms and alalysis their effectiveness.120

Algorithm 9 Weighted Majority Algorithm
1: Parameter: ϵ ∈ [0, 1]
2: for each round t do
3: Make predictions using weighted majority vote based on ω.
4: for each expert i do
5: if the i-th expert’ s prediction is correct then
6: ωi stays the same
7: else
8: ωi = ωi(1− ϵ)
9: end if

10: end for
11: end for

Theorem 5.1. The number of mistakes made by WMA with parameter ϵ ∈ [0, 1] is at most121

2

1− ϵ
cost∗ +

2

ϵ
lnK

Algorithm 10 Hedge algorithm for online learning with experts
1: Initialize the weights as ω1(a) = 1 for each arm a.
2: for each round t do
3: Let pt(a) =

ωt(a)

ΣK
a′=1

ωt(a′)
.

4: Sample an arm at from distribution pt().
5: Observe cost ct(a) for each arm a.
6: For each arm a, update its weight ωt+1(a) = ωt(a)(1− ϵ)ct(a)

7: end for

Below we analyze Hedge, and prove O(
√
T logK) bound on expected regret, the best possible for regret.122

6 Contextual Bandits123

The problem set of this so-called contextual bandit is every time before we make a choice among arms at,124

algorithm could observe a ”context” xt. As usual, reward rt ∈ [0, 1] is realized.125

For small number of context, we can just apply algorithms we have developed before. Here is an easy126

algorithm which describe this process.127

Algorithm 11 Contextual bandit algorithm for a small number of contexts
1: Initialization: For each context x, create an instance ALGx of algorithm ALG
2: for each round t do
3: invoke algorithm ALGx with x = xt

4: ”play” action at chosen by ALGx, return reward rt to ALGx.
5: end for

Theorem 6.1. Algorithm above has regret E[R(T )] = O(
√

KT |X | lnT ).128

To handle contextual bandit with a large |X |, we either assume some structure such as Lipschitz condition129

or the setting of linear contextual bandits, or change the objective.130

Let’s stop here for the moment. It’s time to read the literature.131
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