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Abstract

Here are some notes on the papers from my study. I think the only way to remember is to
write something while reading.
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1 Finished paper

1. Lifting the Information ratio: [NOPS22] Paper link (See my notes)

2. Contextual IDS: [HLQ22] Paper link (See my notes)

3. Linear bandits (OFUL): [AYPS11] Paper link

4. Bayesian Contextual TS (Information method): [GRGOS23] Paper link

5. LinUCB: [CLRS11] Paper link

6. Generalized linear: [KZS+20]Paper link and [LLZ17] (Leave out the proof) Paper link

7. Perturbed-History Exploration: [KSGB19]Paper link

8. RandUCB: [VMDK19] Paper link

9. Langevin Monte Carlo: [XZM+22] Paper link

10. Frequentist regret of LinTS: (Leave out the proof)[HB20] Paper link

11. ϵ-Exploring TS: (Reading group)Paper link

12. Batched TS: (Leave out the proof)[KO21]Paper link and [KMS21] Paper link

13. Ensemble Sampling: (Leave out the proof)[QWLVR22] Paper link

14. Classical IDS: [RVR14] Paper link

15. Information analysis of TS [RVR16] Paper link

16. Frequentist IDS (Heteroscedastic Noise): [KK18] Paper link

17. Asymptotically Optimal frequentist IDS: [KLVS21] Paper link [Kir21] Thesis link

18. GP-UCB for kernelized bandit: [WWR23] Paper link [SKKS09] Paper link

19. End of Optimism: [LS17] Paper link

20. Langevin Batched TS (bandits and RL) (Leave out the proof):[KKMM23] Paper link

21. Heavy tail (Leave out the proof): [JSS21] Paper link [BCBL13] Paper link

22. DETC: [JXXG21] Paper link

23. Best arm identification (Leave out the proof): [GK16] Paper link and [JP20] Paper link, a pdf
and Chapter 33 in bandit algorithms for reference.

24. Batched linear bandits: [HZZ+20] Paper link
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3 Basic knowledge

3.1 Linear algebra

Proposition 3.1 (Matrix determinant lemma). Suppose A is an invertible square matrix and u, v
are column vectors. Then the matrix determinant lemma states that

det
(
A+ uvT

)
=
(
1 + vTA−1u

)
det (A) .

Proposition 3.2 (Sherman–Morrison formula). Suppose A ∈ Rn×n is an invertible square matrix
and u, v ∈ Rn are column vectors. Then A+ uvT is invertible iff 1 + vTA−1u ̸= 0. In this case,

(
A+ uvT

)−1
= A−1 − A−1uvTA−1

1 + vTA−1u
.

Here, uvT is the outer product of two vectors u and v. The general form shown here is the one
published by Bartlett.

3.2 Basic probability

I collect some basic probability results here which I’m not so familiar with.

3.2.1 Bayes

Lemma 3.3 (posterior for sufficient statistic). X ∼ f(x | θ), if T (X) is a sufficient statistic for θ,
then

π(θ | x) = π̃(θ | t) (3.1)

1. X ∼ N(θ, σ2S), in which σ2S is known. θ has a prior N(µP , σ
2
p), then the posterior distribution

of θ is:

θ ∼ N(

x
σ2
S
+ µP

σ2
P

1
σ2
S
+ 1

σ2
P

, (
1

σ2S
+

1

σ2P
)−1), (3.2)

which means

µ =
σ2P

σ2S + σ2P
x+

σ2S
σ2S + σ2P

µP ,

σ2 =
σ2Sσ

2
P

σ2S + σ2P
.

(3.3)

Proof. f(x | θ) = 1√
2πσ2

S

exp{− 1
2σ2

S
(x− θ)2}

π(θ | x) = f(x | θ)π(θ)
f(x)

∝ f(x | θ)π(θ)

= exp{− 1

2σ2S
(x− θ)2 − 1

2σ2P
(θ − µP )2}

∝ exp{−1

2
(
1

σ2S
+

1

σ2P
)(θ2 − 2

x
σ2
S
+ µP

σ2
P

1
σ2
S
+ 1

σ2
P

θ)}.

(3.4)
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2. Using the assumption abouve, the posterior of θ after observing x1, · · · , xn is a.s. Gaussian
with mean µn and variance σ2n given by:

µn =
σ2S/n

σ2S/n+ σ2P
µP +

σ2P
σ2S/n+ σ2P

x̄,

σ2n =
σ2Pσ

2
S

nσ2P + σ2S
.

(3.5)

Proof. Note that X̄ ∼ N(θ, σ2S/n), then subsititute x above with x̄.

Or you can calculate the law of x = (x1, · · · , xn) and get the same result.

3. X ∼ B(n, θ), θ has a prior Be(a, b), then the posterior of θ is Be(x+ a, n− x+ b).

3.2.2 Beta distribution

Definition 3.4. We say X ∼ Beta(α, β), if

f(x;α, β) =
1

B(α, β)
xα−1(1− x)β−1.

Property 1. X ∼ Beta(α, β), then E[X] =
α

α+ β
, E[X2] =

(α+ 1)α

(α+ β + 1)(α+ β)
,

Var[X] =
αβ

(α+ β + 1)(α+ β)2
.

Property 2. If Y ∼ B(n, p), where the prior is p ∼ Beta(α, β). Then if Y = k is number of
successes, the posterior of p is Beta(α+ k, β + n− k).

Proof. X ∼ B(n, θ), it has a distribution:

f(x | θ) =
(
n

x

)
θx(1− θ)n−x. (3.6)

θ satisfies:
π(θ) =

Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1. (3.7)

then the posterior of θ can be calculated by:

π(θ | x) ∝ f(x | θ)π(θ)
= θ(x+a)−1(1− θ)(n−x+b)−1.

(3.8)

Property 3. Beta(1, 1) d
= U [0, 1].
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3.3 Concentration inequalities

This note is a collation of relevant knowledge about measure concentration. Mainly used for our
bandit and reinforcement learning study. The most basic part is based on High-Dimensional Statistics
A Non-Asymptotic Viewpoint ( 2019, Cambridge University Press), and the rest of the inequalities
come from the Internet.

Definition 3.5 (sub-Gaussian). A random variable X is σ sub-Gaussian if

E[exp(λX − λE[X])] ≤ exp(σ2λ2/2),

for all λ ∈ R.

Proposition 3.6 (Bounded random variables). If X ∈ [a, b], then X is (b−a)2
4 -sub Gaussian r.v.,

i.e. EeλX ≤ e
(b−a)2λ2

8 .

Theorem 3.7 (Equivalent characterizations of sub-Gaussian variables). Given any zero-mean
random variable X, the following properties are equivalent:

1. There is a constant σ > 0 such that

E[eλX ] ≤ e
λ2σ2

2 for all λ ∈ R.

2. An equivalent definition
P(|X| ≥ t) ≤ 2 exp (−t2/C2).

3. There is a constant c > 0 and Gaussian random variable Z ∼ N(0, τ2) such that

P[|X| > s] ≤ cP[|Z| > s] for all s ≥ 0.

4. There is a constant θ ≥ 0 such that

E[X2k] ≤ (2k)!

2kk!
θ2k for all k = 1, 2, . . .

5. There is a constant σ > 0 such that

E
[
e

λX2

2σ2 ≤ 1√
1− λ

]
for all λ ∈ [0, 1).

Theorem 3.8 (Equivalent characterizations of sub-exponential variables). For a zeromean random
variable X, the following statements are equivalent:

1. There are non-negative numbers (v, α) such that

E[eλX ] ≤ e
v2λ2

2 for all |λ| < 1

α

2. There is a positive number c0 > 0 such that E[eλX ] <∞ for all |λ| ≤ c0.
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3. There are constants c1, c2 > 0 such that

P[|X| ≥ t] ≤ c1e−c2t
2

for all t > 0

4. The quantity γ := supk≥2

[
E[Xk]
k!

]1/k
is finite.

First, let’s see the simplest concentration inequality: Hoeffding Inequality.
Consider random variables X1, X2, . . . Assume they are mutually independent, but not necessary

identially distributed. Let X̄n = X1+...+Xn
n to be the average of the first n random variables, and let

µn = E[X̄n] be its expectation. We have:

Theorem 3.9 (Hoeffding Inequality).

P{|X̄n − µn| ≤
√
α log T/n} ≥ 1− 2T−2α, α > 0. (3.9)

Here T is a fixed parameter.

3.3.1 Concentration inequality

I will directly list the common knowledge, easy to consult. The specific learning process and proof
details are written in later subsubsections.

Markov’s inequality(X:non-negative and a finite mean):

P(X ≥ t) ≤ E[X]

t
,∀t > 0 (3.10)

Chebyshev’s inequality(Y = (X − µ)2):

P(|X − µ| ≥ t) ≤ var(X)

t2
, ∀t > 0 (3.11)

Extensions of Markov’s inequality (X has a central moment of order k):

P(|X − µ| ≥ t) ≤ E|X − µ|k

tk
,∀t > 0 (3.12)

(Chernoff’s bounds)Suppose there is some constant b > 0 such that the moment generating
function ϕ(λ) = E[eλ(X−µ)] exist for all λ ≤ |b|:

logP(X − µ ≥ t) ≤ inf
λ∈[0,b]

(logE[eλ(X−µ)]− λt) (3.13)

Proposition 3.10. Let Z1, . . . , Zn be independent Bernoulli variables where for every i,P[Zi = 1] =
pi, let p = Σnk=1pi, Z = Σnk=1Zi. Then, for any δ > 0,

P[Z > (1 + δ)p] ≤ e−h(δ)p ≤ e−p
δ2

2+2δ/3 ,

P[Z < (1− δ)p] ≤ e−h(−δ)p ≤ e−p
δ2

2+2δ/3

(3.14)

where h(a) = (1 + a) log(1 + a)− a.
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(Gaussian tail bounds) Suppose X is any N(µ, σ2) random variable, then:

P(X ≥ µ+ t) ≤ e−
t2

2σ2 , ∀t > 0 (3.15)

Definition 3.11 (Sub-Gaussian). A random variable X with mean µ is sub-Gaussian if there is a
positive number σ such that

E[eλ(X−µ)] ≤ e
σ2λ2

2 , ∀λ ∈ R (3.16)

Remark 3.12. If X ∈ [a, b], then it is sub-Gaussian with parameter σ = b−a
2 .

The sub-Gaussian variable satisfies the concentration inequality (3.15) and

P(|X − µ| ≥ t) ≤ 2e−
t2

2σ2 ,∀t ∈ R (3.17)

Theorem 3.13 (Hoeffding bound). Suppose that the variables Xi, i = 1, . . . , n are independent and
Xi has mean µi and sub-Gaussian parameter σi, then for all t > 0, we have

P
[ n∑
i=1

(Xi − µi) ≥ t
]
≤ exp{− t2

2Σni=1σ
2
i

} (3.18)

If Xi ∈ [a, b], then we obtain the bound

P
[ n∑
i=1

(Xi − µi) ≥ t
]
≤ exp{− 2t2

n(b− a)2
},

P
[ n∑
i=1

|Xi − µi| ≥ t
]
≤ 2 exp{− 2t2

n(b− a)2
}

(3.19)

Definition 3.14 (sub-exponential). A random variable X with mean µ = E[X] is sub-exponential if
there are non-negative parameters (v,α) such that

E
[
eλ(X−µ)

]
≤ e

v2λ2

2 for all |λ| < 1

α
(3.20)

Note: Any sub-Gaussian variable is also sub-exponential. However, the converse statement is not
true.

(Sub-exponential tail bound) Suppose that X is sub-exponential with parameters (v, α), then

P[X − µ ≥ t] ≤

{
e−

t2

2v2 if 0 ≤ t ≤ v2

α

e−
t
2α if t > v2

α .
(3.21)

Definition 3.15 (Bernstein’s condition). Given a random variable X with mean µ and variance σ2,
we say that Bernstein’s condition with parameter b holds if

|E[(X − µ)k]| ≤ 1

2
k!σ2bk−2for k = 2, 3, 4, . . . . (3.22)

Proposition 3.16. When X satisfies the Bernstein condition, then it is sub-exponential with
parameters (

√
2σ, 2b).
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(Bernstein-type bound) For any random variable satisfying the Bernstein’s condition, we have

E[eλ(X−µ)] ≤ e
λ2σ2/2
1−b|λ| for all |λ| < 1

b
,

and, moreover, the concentration inequality

P[|X − µ| ≥ t] ≤ 2e
− t2

2(σ2+bt) for all t > 0. (3.23)

There are another version of Bennet’s and Bernstein’s Inequalities.

Lemma 3.17 (Bennet’s inequality). Let Z1, . . . , Zm be independent random variables with zero
mean, and assume that Zi ≤ 1 with probability 1. Let

σ2 ≥ 1

m

m∑
i=1

E[Z2
i ].

Then for all ϵ > 0,

P[
m∑
i=1

Zi > ϵ] ≤ e−mσ
2h( ϵ

mσ2 ), (3.24)

where h is the same definition as above.

Theorem 3.18 (Bernstein’s inequality). Same as above, assume |Zi| < M a.s., then

P[
m∑
i=1

Zi > t] ≤ exp{− t2/2

ΣZ2
j +Mt/3

} (3.25)

Corollary 3.19 (The sum of sub-exponential variables). Consider an independent sequence {Xk}nk=1

of random variables, such that Xk has mean µk, and is sub-exponential with parameters (vk, αk),
then

P
[
1

n

n∑
i=1

(Xk − µk) ≥ t
]
≤

 e
− nt2

2(v2∗/n) for 0 ≤ t ≤ v2∗
nα∗

,
e−

nt
2a∗ for t > v2∗

nα∗
,

(3.26)

Where α∗ := max
k=1,...,n

αk and v∗ :=

√
n∑
k=1

v2k.

Theorem 3.20 (One-sided Bernstein inequality). If X ≤ b a.s., then

E[eλ(X−EX)] ≤ e
λ2EX2

1−λb/3∀λ ∈ [0, b/3)

P[
1

n

n∑
i=1

(Xi − EX) ≥ t] ≤ exp{ −nt2

2( 1n

n∑
i=1

EX2
i ) +

bt
3

}. (3.27)

Theorem 3.21 (Slud’s Inequality). Let X be a (m, p) binomial variable and assume that p = (1−ϵ)/2.
Then,

P[X ≥ m/2] ≥ 1

2
(1−

√
1− exp{−mϵ2/(1− ϵ2)}). (3.28)
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Definition 3.22 (Martingale, Martingale difference sequence). Given a sequence {Yk}∞k=1 of random
variables adapted to a filtration {Fk}∞k=1, the pair {(Yk,Fk)}∞k=1 is a martingale, if for all k ≥ 1,

E[|Yk|] <∞ and E[Yk+1|Fk] = Yk.

A martingale difference sequence is an adapted sequence {(Dk,Fk)}∞k=1 such that for all k ≥ 1,

E[|Dk|] <∞ and E[Dk+1|Fk] = 0.

Theorem 3.23 (A general Bernstein-type bound). Let {(Dk,Fk)}∞k=1 be a martingale difference
sequence, and suppose that E[eλDk |Fk−1] ≤ eλ

2v2k/2 almost surely for any |λ| < 1/αk. Then the
following hold:

1. The sum Σnk=1Dk is sub-exponential with parameters (
√
Σnk=1v

2
k, α∗) where α∗ := max

k=1,...,n
αk.

2. The sum satisfies the concentration inequality:

P
[
|
n∑
k=1

Dk| ≥ t
]
≤

 2e
− t2

2Σn
k=1

v2
k if 0 ≤ t ≤ Σn

k=1v
2
k

2

2e−
t

2α∗ if t > Σn
k=1v

2
k

α∗
.

(3.29)

Corollary 3.24. Let Xi be a sequence of i.i.d. random variables such that |Xi −E[Xi]| ≤ b. Then,
it holds that

P[
n∑
i=1

(Xi − EX) ≥ t] ≤ exp{ −t2

2nσ2 + 2
3bt
}. (3.30)

Corollary 3.25 (Azuma-Hoeffding). Let {(Dk,Fk)}∞k=1 be a martingale difference sequence for
which there are constants {(ak, bk)}nk=1 such that Dk ∈ [ak, bk] almost surely for all k = 1, . . . , n.
Then, for all t ≥ 0,

P
[
|
n∑
k=1

Dk| ≥ t
]
≤ 2e

− 2t2

Σn
k=1

(bk−ak)2 . (3.31)

Theorem 3.26 (One-side Azuma-Hoeffding). Let Xi ∈ Fi and Fk−1 ⊆ Fk. If it holds that

E[Xi − EXi|Fi−1] = 0, Xi ≤ EXi +Ri,

then it holds that

P[
n∑
i=1

(Xi − EX) ≥ t] ≤ 2 exp{− 2t2

Σni=1R
2
i

}.

Theorem 3.27 (One-side Azuma-Bernstein). Let Xi ∈ Fi and Fk−1 ⊆ Fk. If it holds that

E[Xi − EXi|Fi−1] = 0, Xi ≤ EXi +Ri,V[Xi|Fi−1] ≤ σ2i ,

then it holds that

P[
n∑
i=1

(Xi − EX) ≥ t] ≤ 2 exp{− t2

2Σni=1σ
2
i + 2/3Rt

}.
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Corollary 3.28 (Bounded differences inequality). Suppose that f satisfies the bounded difference
property with parameters (L1, . . . , Ln) and that the random vector X = (X1, . . . , Xn) has independent
components. Then

P[|f(X)− E[f(X)]| ≥ t] ≤ 2e
− 2t2

Σn
k=1

L2
k for all t ≥ 0, (3.32)

where the bounded difference property means if you change only the k th component, the value of the
function changes at most Lk.

Theorem 3.29 (Lipchitz bound). Let X = (X1, . . . , Xn) be a vector of i.i.d standard Gaussian
variables, and let f : Rn → R be L-Lipchitz with respect to the Euclidean norm. Then the variale
f(X)− E[f(X)] is sub-Gaussian with parameter at most L, and hence

P[|f(X)− E[f(X)]| ≥ t] ≤ 2e−
t2

2L2 for all t ≥ 0 (3.33)

Using the corollary above we can derive the χ2-concentration:

P[Y ≥ n(1 + t)] ≤ e−
nt2

18 for all t ∈ [0, 3], (3.34)

where Y := Σnk=1Z
2
k follows a χ2-distribution with n degrees of freedom.

Proposition 3.30. Let Z ∼ χ2
k, then for all ϵ > 0 we have

P[Z ≤ (1− ϵ)k] ≤ e−
ϵk2

6

, and for all ϵ ∈ (0, 3) we have

P[Z ≥ (1 + ϵ)k] ≤ e−
ϵk2

6 .

Finally, for all ϵ ∈ (0, 3)

P[(1− ϵ)k ≤ Z ≤ (1 + ϵ)k] ≥ 1− 2e−
ϵk2

6 .
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3.4 Bandit algorithms

3.4.1 Simple bandit algorithms

In this part I tend summarize some simple bandit algorithms and their regret bounds.
We consider the basic model with IID rewards, called stochastic bandit. An algorithm has K

possible actions to choose from, and there are T rounds, for some known K and T. The mean reward
of arm a is µ(a) := E[Da], in which D is the reward distribution. The best mean reward is denoted
µ∗ = max a ∈ Aµ(a), the difference δ(a) := µ∗(a)− µ(a) describes how bad arm a is compared to
µ∗ Then we can define our main goal regret by:

Definition 3.31 (Regret).
R(T ) = µ∗T − ΣTt=1µ(at). (3.35)

Then I can begin to summarize some simple algorithms and analysis their regret.

Algorithm 1 Explore-first algorithm
1: Exploration phase: try each arm N times;
2: Select the arm â with the highest average reward (break ties arbitrarily);
3: Exploitation phase: play arm â in all remaining rounds.

Theorem 3.32. Explore-first algorithm achieves regret E[R(T )] ≤ T 2/3 ×O(K log T )1/3.

Algorithm 2 Epsilon-greedy algorithm
1: for each round t=1,2,. . . do
2: Toss a coin with success probability ϵt;
3: if success then
4: explore:choose an arm uniformly at random
5: else
6: exploit:choose the arm with the highest average reward so far
7: end if
8: end for

Theorem 3.33. Epsilon-greedy algorithm with exploration probability ϵt = t−1/3(K log t)1/3 achieves
regret bound E[R(t)] ≤ t2/3O(K log t)1/3 for each round t.

Remark 3.34. Explore-first and Epsilon-greedy do not adapt their exploration schedule to the history
of the observed rewards. The set of all exploration rounds and the choice of arms therein is fixed
before the round 1.

Definition 3.35 (Confidence interval). For each arm a and round t,

rt(a) =
√
2 log(T )/nt(a) (confidence radius)

UCBt(a) = µ̄t(a) + rt(a) (upper confidence bound)
LCBt(a) = µ̄t(a)− rt(a) (lower confidence bound).

(3.36)

13



Using concentration inequality we have confidence interval [LCBt(a), UCBt(a)] and confidence
radius rt(a).

Then we have some adaptive exploration algorithms:

Algorithm 3 successive algorithm for two arms
1: Alternate two arms until UCBt(a) < LCBt(a

′) after some even round t;
2: Abandon arm a, and use arm a′ forever since.

For multi-armed bandit, we have:

Algorithm 4 Successive Elimination algorithm
1: All arms are initially designed as active
2: loop
3: play each active arm once
4: deactive all arms a such that, letting t be the current round, UCBt(a) < LCBt(a

′) for some
other arm a′ deactivation rule

5: end loop

Theorem 3.36. Successive Elimination algorithm achieves regret

E[R(t)] = O(
√
Kt log T )for all rounds t ≤ T. (3.37)

Theorem 3.37. Successive Elimination algorithms achieves regret

E[R(t)] ≤ O(log T )

[ ∑
arms a with µ(a)<µ∗(a)

1

µ∗(a)− µ(a)

]
(3.38)

Note that we can only use UCBt to determination which arm is better, this is because an arm a
can have a large UCBt(a) for two reasons (or combination thereof ): because the average m̄ut(a)
is large, and/or because the confidence radius rt(a) is large, in which case this arm has not been
explored much. So we have the algorithm:

Algorithm 5 Algorithm UCB1
1: Try each arm once
2: for each round t=1,. . . ,T do
3: pich arm some a which maximizes UCBt(a).
4: end for

Theorem 3.38. Algorithm UCB1 satisfies regret bounds in 3.37 and 3.38.

Theorem 3.39 (lower bound). Fix time horizon T and the number of arms K. For any bandit
algorithm, there exists a problem instance such that E[R(T )] ≥ Ω(

√
KT ).

Consider a simple algorithm for Bayesian bandits, called Thompson Sampling. For each round t
and arm a, the algorithm computes the posterior probability that a is the best arm, and samples a
with this probability.

14



Algorithm 6 Thompson Sampling
1: for each round t=1,2,. . . do
2: Observe Ht−1 = H, for some feasible (t-1)-history H;
3: Draw arm at independently from distribution pt(·|H), where pt(a|H) := P[a∗ = a|Ht−1 = H]

for each arm a.
4: end for

Algorithm 7 Thompson Sampling: equivalent version
1: for each round t=1,2,. . . do
2: Observe Ht−1 = H, for some feasible (t-1)-history H;
3: Sample mean reward vector µt from the posterior distribution PH ;
4: Choose the best arm ãt according to µt.
5: end for

And if we have independent priors, the distribution of µ can be easily calculated by using PaH
only.

Then let us analyze Bayesian regret of Thompson Sampling:

Theorem 3.40. Bayesian Regret of Thompson Sampling is BR(T ) = O(KT log T ).

This is the core theorem of the TS algorithm, and its proof is very subtle, so I want to state it in
detail.

First, we can recap the definition of the confidence interval 3.36 defined before. THen we say the
key lemma below hold for a more general notion of the confidence bounds, and clearly hold for 3.36.
Actually, U(a,Ht) and L(a,Ht) can be arbitrary functions of the arm a and the t-history Ht. There
are two properties we want these functions to have, for some γ > 0 to be specified later:

E
[
[U(a,Ht)− µ(a)]−

]
≤ γ

TK
for all arm a and rounds t,

E
[
[µ(a)− L(a,Ht)]

−] ≤ γ

TK
for all arm a and rounds t.

(3.39)

The confidence radius can be defined as r(a,Ht) =
U(a,Ht)−L(a,Ht)

2 .

Lemma 3.41. Assume we have lower and upper bound functions that satisfies properties above, for
some parameter γ > 0. Then Bayesian Regret of Thompson Sampling can be bound as follows:

BR(T ) ≤ 2γ + 2ΣTt=1E[r(at, HT )].

Proof. Fix round t. As two algorithms are equivalent, we have:

P[at = a|Ht = H] = P[a∗ = a|Ht = H]for each arm a. (3.40)

It follows that
E[U(a∗, H)|Ht = H] = E[U(at, H)|Ht = H]. (3.41)
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The Bayesian Regret suffered in round t is

BRt = E[µ(a∗ − µ(at))]
= E

H∼Ht

[E[µ(a∗)− µ(at)|Ht = H]]

= E
H∼Ht

[E[U(at, H)− µ(at) + µ(a∗)− U(a∗, H)|Ht = H]]

= E[U(at, Ht)− µ(at)] + E[µ(a∗)− U(a∗, Ht)].

(3.42)

We will use properties above to bound both summands. Note that we cannot immediately use these
properties because they assume a fixed arm a, whereas both at and a∗ are random varibales.

E[µ(a∗)− U(a∗, Ht)] ≤ E[(µ(a∗)− U(a∗, Ht))
+]

≤ E[
∑
armsa

(µ(a∗)− U(a∗, Ht))
+]

= ΣarmsaE[(U(a,Ht)− µ(a))−]

≤ K γ

KT
=
γ

T
.

(3.43)

E[U(at, Ht)− µ(at)] = E[2r(at, Ht) + L((at, Ht)− µ(at))] = E[2r(at, Ht)] + E[L((at, Ht)− µ(at))]
(3.44)

E[L((at, Ht)− µ(at))] ≤ E[(L((at, Ht)− µ(at)))+]
≤ E

armsa
[(L((at, Ht)− µ(at)))+]

= E
armsa

[(µ(at)− L((at, Ht)))
−]

≤ K γ

KT
=
γ

T
.

(3.45)

Thus, BRt(T ) ≤ 2 γT + 2E[r(at, Ht)], the lemma follows by summing up over all rounds t.

Now we can proof the main theorem.

Proof. By lemma,

BR(T ) ≤ O(
√
log T )

T∑
t=1

E
[

1√
nt(at)

]
Moreover,

T∑
t=1

1√
nt(at)

=
∑
armsa

∑
roundst:at=a

1√
nt(a)

=
∑
armsa

nT+1(a)∑
j=1

1√
j
=
∑
armsa

O(
√
n(a)).

It follows that

BR(T ) ≤ O(
√
log T )

∑
armsa

√
n(a) ≤ O(

√
logT )

√
K
∑
armsa

n(a) = O(
√
KT log T )

.
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3.4.2 Lipschitz Bandit

In a special case, arms correspond to point in the interval X = [0, 1], and expected rewards obey a
Lipschitz condition:

|µ(x)− µ(y)| ≤ L|x− y|for any two arms x, y ∈ X. (3.46)

We can see this Lipschitz condition describes "similar" arms have similar expected rewards. As this
bandit has infinity many arms, a simple solution to this is use finite arms to approximate the whole
model. And such Lipschitz condition can guarantee these finite arms have enough information.

Theorem 3.42. Consider continuum-armed bandits with Lipschitz constant L and time horizon
T . Uniform discretization with algorithm ALG satisfying Lipschitz and discretization step ϵ =
(TL2/ log T )−1/3 attains

E[R(T )] ≤ L1/3T 2/3(1 + cALG)(log T )
1/3 (3.47)

The main take-away here is the Õ(L1/3T 2/3) regret rate. The explicit constant and logarithmic
dependence are less important.

Actually, uniform discretization is optimal in the worst case: we have an Ω(L1/3T 2/3) lower
bound on regret.

Theorem 3.43. Let ALG be any algorithm for continuum-armed bandits with time horizon T and
Lipschitz constant L. There exists a problem instance L = L(x∗, ϵ), for some x∗ ∈ [0, 1] and ϵ > 0,
such that

E[R(T )|L] ≥ (L1/3T 2/3). (3.48)

In a more general case, the Lipschitz condition can be stated as:

|µ(x)− µ(y)| ≤ D(x, y)for any arms x, y (3.49)

where Dis a metric.

Definition 3.44. A subset S ∈ X is called an ϵ − mash, ϵ > 0, if every point x ∈ X is within
distance ϵ from S, in the sense that D(x, y) ≤ ϵ for some y ∈ S.

Then we have regret bound for this more general case:

Theorem 3.45. Consider Lipschitz bandits with time horizon T . Optimzing over the choice of an
ϵ−mesh, uniform discretization with algorithm ALG attains regret

E[R(T )] ≤ inf
ϵ>0,ϵ−mesh S

ϵT + cALG

√
|S|T log T (3.50)

In the d− dimension Eulidean space with lp metric, we can get a explicit form. And in more
general cases, this form can be attained through the definition of "covering dimension". But all of
these are about optimizing over the choice of all subset. We leave out these unimportant details to
get into our main algorithm quickly.

Now we can describe the algorithm. It contains two parts: activation step and selection step. We
consider the confidence ball defined as Bt(x) = {y ∈ X : D(x, y) ≤ rt(x)}. In the activation step, we
find an arm which is not in any confidence ball of all the active arms: we can see in intuition that if
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some arm lies very close to some active arm, we don’t need to explore it because of the Lipschitz
condition.

Then in the selection step, we select an arm which is active. The idea is just like UCB1. If an
arm x is active at time t, we define

indext(x) = µ̄t(x) + 2rt(x). (3.51)

The selcetion rule is very simple: play an active arm with the largest index.

Algorithm 8 Zooming algorithm for adaptive discretization.
1: Initialize: set of active arms S ← ∅
2: for each round t=1,2,. . . do
3: if some arm y is not covered by the confidence balls of active arms then
4: pick any such arm y and "activate" it: S ← S ∪ {y}.
5: end if
6: Play an active arm x with the largest indext(x).
7: end for

Definition 3.46. The smallest number of subsets in an ϵ− covering is called the covering number
and denoted Nϵ(X).

For any instance of Lipschitz MAB, the zooming dimension with multiplier c > 0 is

inf
d≥0
{Nr/3(X) ≤ cr−d} (3.52)

Theorem 3.47. Consider Lipschitz bandits with time horizon T . Assume that realized rewards take
values on a finite set. For any given problem instance and any c > 0, the zooming algorithm attains
regret

E[R(T )] ≤ O(T (d+1)/(d+2)(c log T )1/(d+2)),where d is the zooming dimension with multiplier c.
(3.53)

3.4.3 Adversarial Bandits

To catch up quickly, let’s run through this subsection.
First, we need to have a basic knowledge about adversarial cost. It may be influenced by

algorithms and mean to "fool" the algorithm. The main set up of this part is at each step, we can
choose one arm, suffer the cost and view the cost of every arm. Now we can desctibe two main
algorithms and alalysis their effectiveness.
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Algorithm 9 Weighted Majority Algorithm
1: Parameter: ϵ ∈ [0, 1]
2: for each round t do
3: Make predictions using weighted majority vote based on ω.
4: for each expert i do
5: if the i-th expert’ s prediction is correct then
6: ωi stays the same
7: else
8: ωi = ωi(1− ϵ)
9: end if

10: end for
11: end for

Theorem 3.48. The number of mistakes made by WMA with parameter ϵ ∈ [0, 1] is at most

2

1− ϵ
cost∗ +

2

ϵ
lnK

Algorithm 10 Hedge algorithm for online learning with experts
1: Initialize the weights as ω1(a) = 1 for each arm a.
2: for each round t do
3: Let pt(a) =

ωt(a)

ΣK
a′=1

ωt(a′)
.

4: Sample an arm at from distribution pt(·).
5: Observe cost ct(a) for each arm a.
6: For each arm a, update its weight ωt+1(a) = ωt(a)(1− ϵ)ct(a)
7: end for

Below we analyze Hedge, and prove O(
√
T logK) bound on expected regret, the best possible

for regret.

3.4.4 Contextual Bandits

The problem set of this so-called contextual bandit is every time before we make a choice among
arms at, algorithm could observe a "context" xt. As usual, reward rt ∈ [0, 1] is realized.

For small number of context, we can just apply algorithms we have developed before. Here is an
easy algorithm which describe this process.

Algorithm 11 Contextual bandit algorithm for a small number of contexts
1: Initialization: For each context x, create an instance ALGx of algorithm ALG
2: for each round t do
3: invoke algorithm ALGx with x = xt
4: "play" action at chosen by ALGx, return reward rt to ALGx.
5: end for

Theorem 3.49. Algorithm above has regret E[R(T )] = O(
√
KT |X | lnT ).
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To handle contextual bandit with a large |X |, we either assume some structure such as Lipschitz
condition or the setting of linear contextual bandits, or change the objective.
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3.5 Information theory

Definition 3.50 (Entropy). The entropy of a random variable is the average level of "infor-
mation", "surprise", or "uncertainty" inherent to the variable’s possible outcomes. Given a dis-
crete random variable X, which takes values in the alphabet X and is distributed according to
p : X → [0, 1]p : X → [0, 1] :

H(X) := −
∑
x∈X

p(x) log p(x) = E[− log p(X)],

Definition 3.51 (Conditional entropy).

H(X|Y ) = EY

[
−
∑
x∈X

P(X = x|Y ) logP(X = x|Y )

]
.

K-L divergence describes distance between two distributions. It is asymmetric.

Definition 3.52 (Kullback–Leibler divergence). For discrete probability distributions P and Q
defined on the same sample space, X , the relative entropy from Q to P is defined to be

DKL(P ∥ Q) =

∫
log

dP

dQ
dP =

∑
x∈X

P (x) log

(
P (x)

Q(x)

)
.

Fact 3.53 (Gibbs’ inequality).
D(P∥Q) ≥ 0

with equality if and only if P = Q P -a.s.

Property 4 (Chain rule of KL-divergence).

DKL [p(x, y)|q(x, y)] = DKL [p(x)|q(x)] +DKL [p(y|x)|q(y|x)] .

Example 3.54. For two Bernoulli variable Xi ∼ B(pi), i = 1, 2, KL-divergence between them is

DKL(X1∥X2) = p1 log(
p1
p2

) + (1− p1) log(
1− p1
1− p2

).

3.5.1 Mutual information

Definition 3.55. The mutual information is defined as

I(X;Y ) = DKL(P(X,Y )∥PXPY ).

Remark 3.56. I(X;Y ) ≥ 0 with equality if and only if X and Y are independent.

It measures how much knowing one of these variables reduces uncertainty about the other. That’s
how much Y explains the entropy of X.

Property 5. Mutual information has the following properties:

• I(X;Y ) ≥ 0;
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• I(X;Y ) = I(Y ;X);

• I(X;Y ) = H(X)−H(X|Y ) = H(X) +H(Y )−H(X,Y );

• (KL-divergence form of mutual information) I(X;Y ) = EY [DKL(pX|Y ∥pX)], in some
case this can be interpreted by the difference between the prior and the posterior;

• I(X;Y |Z) = H(X|Z)−H(X|Y,Z) = EZ [DKL(P ((X,Y )|Z)∥P (X|Z)P (Y |Z))];

• Chain rule: I(X;Y, Z) = I(X;Z) + I(X;Y |Z);

• Data processing inequality: Let three random variables form the Markov chain X → Y → Z,
then

I(X;Y ) ≥ I(X;Z).

Proof.

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(X,Y )(x, y) log

(
p(X,Y )(x, y)

pX(x) pY (y)

)

=
∑
y∈Y

∑
x∈X

pX|Y=y(x)pY (y) log
pX|Y=y(x)pY (y)

pX(x)pY (y)

=
∑
y∈Y

pY (y)
∑
x∈X

pX|Y=y(x) log
pX|Y=y(x)

pX(x)

=
∑
y∈Y

pY (y) DKL
(
pX|Y=y ∥ pX

)
= EY

[
DKL

(
pX|Y ∥ pX

)]
.

Fact 3.57. If Z is jointly independent of X and Y , then I(X;Y |Z) = I(X;Y ).

Several generalizations of mutual information to more than two random variables have been
proposed. I will introduce it when it is useful.

Theorem 3.58 (Pinsker’s inequality). Suppose P ≤ Q, then√
1

2
DKL(P∥Q) ≥ ∥P −Q∥TV

def
=

1

2

∫
Ω

∣∣∣∣dPdµ − dQ

dµ

∣∣∣∣ dµ = sup
A
|P (A)−Q(A)|.

Property 6 (Application of Pinsker’s inequality). For any distribution P and Q such that P is
absolutely continuous w.r.t. Q, any random variable X : Ω → X and any g : X → R such that
sup g − inf g ≤ 1

EP [g(X)]− EQ[g(X)] ≤
√

1

2
DKL(P∥Q).

It also holds for sub-Gaussian variables, where we need to bound it with 2σ2 instead of 1
2 .

This property shows

E[R|A = a]− E[R] ≤
√

1

2
DKL(PR|A∥PR)

And the proof of last property follows from the variational form of KL-Divergence.
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Fact 3.59 (Donsker–Varadhan inequality ). Fix two probability distributions P and Q such that P is
absolutely continuous with respect to Q. Then

DKL(P∥Q) = sup
X
{EP [X]− logEQ[eX ]}.

Fact 3.60. For any matrix M ∈ Rk×k,

Trace(M) ≤
√
Rank(M)∥M∥F .

Proof. By the Cauchy-Schwartz inequality, for any vector x ∈ Rn, Σixi ≤
√
n∥x∥2. This is just an

analogous result for matrices.
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3.6 Dynamic Programming

I read this lecture notes and keep notes to help me memorize.
Basic idea(version 1):What we want to do is take our problem and somehow break it down

into a reasonable number of subproblems (where “reasonable” might be something like n2) in such a
way that we can use optimal solutions to the smaller subproblems to give us optimal solutions to the
larger ones. Unlike divide-and-conquer (as in mergesort or quicksort) it is OK if our subproblems
overlap, so long as there are not too many of them.

Example 3.61. Longest Common Subsequence.

Basic idea (version 2): Suppose you have a recursive algorithm for some problem that gives you
a really bad recurrence like T (n) = 2T (n− 1) + n. However, suppose that many of the subproblems
you reach as you go down the recursion tree are the same. Then you can hope to get a big savings if
you store your computations so that you only compute each different subproblem once. You can
store these solutions in an array or hash table. This view of Dynamic Programming is often called
memoizing.

Example 3.62 (The Knapsack Problem). In the knapsack problem we are given a set of n items,
where each item i is specified by a size si and a value vi. We are also given a size bound S (the size
of our knapsack).

The goal is to find the subset of items of maximum total value such that sum of their sizes is at
most S (they all fit into the knapsack).

Solution Consider whether the n-th item would be chosen.

Example 3.63. Matrix product parenthesization.

Two properties of problems which can be solved using Dynamic Programming:

1. Optimal solution involves solving a subproblem;

2. There should be only a polynomial number of different subproblems.
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3.7 Reproducing kernel Hilbert space

Let X be an arbitrary set and H a Hilbert space of real-valued functions on X, equipped with
pointwise addition and pointwise scalar multiplication. The evaluation functional over the Hilbert
space of functions H is a linear functional that evaluates each function at a point x,

Lx : f 7→ f(x) ∀f ∈ H.

We say that H is a reproducing kernel Hilbert space if, for all x in X, Lx is continuous at every f in
H or, equivalently, if Lx is a bounded operator on H, i.e. there exists some Mx > 0such that

|Lx(f)| := |f(x)| ≤Mx ∥f∥H ∀f ∈ H.

Although Mx <∞ is assumed for all x ∈ X, it might still be the case that supxMx =∞.
While this property is the weakest condition that ensures both the existence of an inner product

and the evaluation of every function in H at every point in the domain, it does not lend itself to
easy application in practice. A more intuitive definition of the RKHS can be obtained by observing
that this property guarantees that the evaluation functional can be represented by taking the inner
product of f with a function Kx in H. This function is the so-called reproducing kernel for the
Hilbert space H from which the RKHS takes its name. More formally, the Riesz representation
theorem implies that for all x in X there exists a unique element Kx of H with the reproducing
property,

f(x) = Lx(f) = ⟨f, Kx⟩H ∀f ∈ H.

Since Kx is itself a function defined on X with values in the field R (or C in the case of complex
Hilbert spaces) and as Kx is in H we have that

Kx(y) = Ly(Kx) = ⟨Kx, Ky⟩H ,

where Ky ∈ H is the element in H associated to Ly.
This allows us to define the reproducing kernel of H as a function K : X ×X → R by

K(x, y) = ⟨Kx, Ky⟩H .

From this definition it is easy to see that K : X × X → R (or C in the complex case) is both
symmetric (resp. conjugate symmetric) and positive definite, i.e.

n∑
i,j=1

cicjK(xi, xj) =

n∑
i=1

ci

〈
Kxi ,

n∑
j=1

cjKxj

〉
H

=

〈
n∑
i=1

ciKxi ,

n∑
j=1

cjKxj

〉
H

=

∥∥∥∥∥
n∑
i=1

ciKxi

∥∥∥∥∥
2

H

≥ 0

for every n ∈ N, x1, . . . , xn ∈ X, and c1, . . . , cn ∈ R . The Moore–Aronszajn theorem is a sort of
converse to this: if a function K satisfies these conditions then there is a Hilbert space of functions
on X for which it is a reproducing kernel.
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4 RL reading notes

4.1 Markov decision process

In a given MDP M = (S,A, P, r, γ, µ), the agent interacts with the environment according to the
following protocol: the agent starts at some state s0 ∼ µ; at each time step t = 0, 1, 2, . . ., the agent
takes an action at at ∈ A, obtains the immediate reward rt = r(st, at), and observes the next state
st+1 sampled according to st+1 ∼ P (·|st, at). The interaction record at time t,

τt = (s0, a0, r0, . . . , st, at, rt),

is called a trajectory, which include the observed state at time t.
A policy is a mapping from a trajectory to an action.
A value function is the discoundtd sum of future rewards

V π
M (s) = E

[ ∞∑
t=0

γtr(st, at)|π, s0 = s

]
.

The action-value (or Q-value) function QπM : S ×A ← R is defined as

QπM (s, a) = E
[ ∞∑
t=0

γtr(st, at)|π, s0 = s, a0 = a

]
.

Since r(s, a) is bounded between 0 and 1, the value functions are bounded by 1/(1− γ).
The goal is:

max
π

V π
M (s).

Lemma 4.1 (Bellman Consistency Equations for Stationary Policies). Suppose that π is
a stationary policy. Then V π and Qπ satisfy the following Bellman consistency equations: for all
s ∈ S, a ∈ A,

V π(s) = Qπ(s, π(s))

Qπ(s, a) = r(s, a) + γEa∼π(·|s),s′∼P (·|s,a)[V
π(s′)].

Lemma 4.2 (Induced distribution). [(1−γ)(I−γP π)−1](s,a),(s′,a′) = (1−γ)
∞∑
t=0

γtPπ(st = s′, at =

a′|s0 = s, a0 = a) is a induced distribution.

There exists a stationary and deterministic policy that simultaneously maximizes V π(s) for all
s ∈ S.

Theorem 4.3 (Best policy is stationary and determinstic). Let Π be the set of all non-stationary
and randomized policies. There exists a stationary and determinstic policy π such that for all s ∈ S
and a ∈ A

V π(s) = V ∗(s) := sup
π∈Π

V π(s),

Qπ(s, a) = Q∗(s, a) := sup
π∈Π

Qπ(s, a).
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Theorem 4.4 (Bellman optimality equations). We say that a vector Q ∈ R|S||A| satisfies the
Bellman optimality equations if:

Q(s, a) = r(s, a) + γEs′∼P (·|s,a)

[
max
a′∈A

Q(s′, a′)

]
.

For any Q ∈ R|S||A|, we have that Q = Q∗ iff Q satisfies the Bellman optimality equations. Further-
more, the deterministic policy defined by π(s) ∈ argmaxa∈AQ

∗(s, a) is an optimality policy.

This theorem tells us why we can use Q-function to find the best policy. And so-called Q-learning
is based on this.

And for finnite-horizon MDP, we defined

V π
h (s) = E[

H−1∑
t=h

rh(st, at)|π, sh = s],

Qπh(s, a) = E[
H−1∑
t=h

rh(st, at)|π.sh = s, ah = a].

Use the same method we can prove Bellman optimality equations for finite horizon MDP.

Theorem 4.5. Define
Q∗h(s, a) = sup

π∈Π
Qπh(s, a),

we have that Qh = Q∗h forall h iff for all h,

Qh(s, a) = rh(s, a) + Es′∼Ph(·|s,a)

[
max
a′∈A

Qh+1(s
′, a′)

]
.

Next we discuss two simple algorithm. We suppose the MDP M = (S,A, P, r, γ) is known.
Value iteration:

Q← T Q.

This will convergerce to Q∗ since Q∗ is the stationary point of operator T . Then we get the policy π
by π(s) = πQ(s) = argmax

a∈A
Q(s, a).

Policy iteration:

1. Policy evaluation: Compute Qπk = (I − γP π)−1r by Bellman consistency equations;

2. policy improvement: Update the policy: πk+1 = πQπk .

Next we give a technical lemma, which describes difference between value functions with respect
to two policies.

The advantage Aπ(s, a) of a policy π is defined as

Aπ(s, a) := Qπ(s, a)− V π(s).

Lemma 4.6 (Performance difference lemma).
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4.2 Sample complexity with a generative model

This chapter talks about how many samples do we need if we want to get value accuracy with high
probability.

4.3 Linear Bellman Completeness

The sample complexity of "tabular" MDPs scaled polynomially in the size of the state and action
spaces. Now we seek methods which are applicable to cases where number of states and actions is
large.

We will work with a feature mapping ϕ : A×A → Rd.The main idea is to assume Q∗(s, a) is a
linear function of ϕ(s, a).

Definition 4.7 (Linear Bellman Completeness). There exist ω ∈ Rd such that

wTϕ(s, a) = r(s, a) + Es′∼Ph(s,a)max
a′

θTϕ(s′, a′),

Note that we already know

Q∗h(s, a) = r(s, a) + Es′∼Ph(s,a)max
a′

θTϕ(s′, a′).

Then for "completeness" ⇒ "realizability", I have a question. By definition we know if we have a
Qh+1 satisfies the realizability condition, then we get Qt satisfies the same realizability. But how
can we get the first Q function? Do we need to use QH = 0 is clearly a linear function of ϕ, then
can we get the conclusion by this?

The answer is yes!
Least square value iteration:

1. θ̂h = argmin
θ

∑
s,a,r,s′∈Dh

(
θTϕ(s, a)− r −max

a∈A
θTh+1ϕ(s

′, a)

)2

;

2. π̂h(s) := argmaxa

(
θTh ϕ(s, a)

)
.

4.4 Fitted Dynamic Programming Methods: Fitted Q Iteration

Definition 4.8 (Bellman operator). T f(s, a) = r(s, a) + γEs′∼P (·|s,a)max
a′∈A

f(s′, a′).

Given dataset D = {(si, ai, ri, s′i)} and a function class F , define FQI algorithm

ft ∈ argmin
f∈F

n∑
i=1

(f(si, ai)− ri − γmax
a′∈A

ft−1(s
′
i, ai))

2.

To understand this algorithm, we can think it as a stationary point problem. Since T Q∗ = Q∗, we
want to find the stationary point of the operator T . For example, start with some f0 ∈ F and use
iteration ft = T ft−1. But we don’t know the MDP and T . But given ft−1 we know

ft(s, a) := T ft−1(s, a) = r(s, a) + γEs′∼P (·|s,a)max
a′∈A

ft−1(s
′, a′)
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= Es′∼P (·|s,a)

[
r(s, a) + γmax

a′∈A
ft−1(s

′, a′)

]
Actually for some (si, ai), observed value

ft(si, ai) = ri(si, ai) + γmax
a′∈A

ft−1(s
′
i, a
′) + noise,

so we can just define the loss function as square loss and minimize the loss function.
After k many iterations, we output a policy πk(s) := argmaxa fk(s, a), ∀s.
This method has performance guarantee:

Theorem 4.9 (FQI guarantee). Fix K ∈ N+. Fitted Q Iteration guarantees that with probability
1− δ,

V ∗ − V πK ≤ 1

(1− γ)2
(

√
22CV 2

max ln(|F|2K/δ)
n

+
√
20Cϵapprox,ν) +

γKVmax
(1− γ)

.

4.5 Multi-Armed & Linear Bandits

This chapter introduces basic UCB algorithms of multi-armed and linear bandits. See bandit reading
notes.

4.6 Exploration: UCB value iteration for Tabular MDPs and linear MDPs

Algorithm 12 UCBVI
1: for n = 1, . . . , N do
2: Learn transition model {P̂nh }

H−1
h=0 from all previous data;

3: Design reward bonus bnh;

4: Plan: πn+1 =Value-Iteration
(
{P̂n}h, {rh + bnh}

)
;

5: Execute πn+1 for H steps.
6: end for

Algorithm 13 LSVI-UCB
1: for k = 1, . . . ,K do
2: Receive the initial state xk1
3: for step h=H,. . . ,1 do

4: Λh ←
k−1∑
τ=1

ϕ(xτh, a
τ
h)ϕ(x

τ
h, a

τ
h)
T + λI.

5: wh ← Λ−1h

k−1∑
τ=1

ϕ(xτh, a
τ
h)
[
rh(x

τ
h, a

τ
h) + max

a
Qh+1(x

τ
h+1, a)

]
.

6: Qh(·, ·)← min
{
wTh ϕ(·, ·) + β[ϕ(·, ·TΛ−1h ϕ(·, ·))]1/2, H

}
.

7: end for
8: for step h=1,. . . ,H do
9: Take action akh ← argmax

a∈A
Qh(x

τ
h, a), and observe xkh+1.

10: end for
11: end for
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In tabular setting, we use an empirical model to estimate P kh (s
′|s, a). While, in low-rank linear

MDPs, we use ridge linear regression:

µ̂nh = argmin
µ∈R|S|×d

n−1∑
i=0

∥µϕ(sih, aih)− δ(sih+1)∥22 + λ∥µ∥2F .

We do this because E[P (·|s, a)− δ(sih+1)|Hih] = 0.
Ridge linear regression has the following closed-form solution:

µ̂nh =
n∑
i=1

δ(sih+1)ϕ(s
i
h, a

i
h)
T (Λnh)

−1.

Note that µnh ∈ R|S|×d, so we never want to explicitly store it. Note that in our value iteration
we just care about P̂nh (·|s, a) · V := ϕ(s, a)T µ̂nh

T
V , which can be re-written as:

ϕ(s, a)T
n−1∑
i=0

(Λnh)
−1ϕ(sih, a

i
h)V (sih+1),

where we use the fact that δ(s)TV = V (s). Thus the operator P̂nh (·|s, a) · V simply requires storing
all data and can be computed via simple linear algebra and the computation complexity is simply
poly(d, n)-no poly dependency on |S|.

There is a very important lemma in the decomposition of regret.

Lemma 4.10 (Simulation lemma).

V̂ n
0 (s0)− V πn

0 (s0) ≤
H−1∑
h=0

Es,a∼dπn
n

[
bnh(s, a) + (P̂nh (·|s, a)− Ph(·|s, a)) · V̂ n

h+1

]
.

Proof.

V̂ n
0 (s0)− V πn

0 (s0) = Q̂n0 (s0, π
n(s0))−Qπ

n

0 (s0, π
n(s0))

≤ r0(s0, πn(s0)) + bnh(s0, π
n(s0)) + P̂n0 (·|s0, πn(s0)) · V n

1 − r0(s0, πn(s0))− Pn0 (·|s0, πn(s0)) · V πn

1

= bnh(s0, π
n(s0)) + P̂n0 (·|s0, πn(s0)) · V̂ n

1 − Pn0 (·|s0, πn(s0)) · V πn

1

= bnh(s0, π
n(s0)) +

(
P̂n0 (·|s0, πn(s0))− Pn0 (·|s0, πn(s0))

)
· V̂ n

1 + Pn0 (·|s0, πn(s0)) ·
(
V̂ n
1 − V πn

1

)
≤

H−1∑
h=0

Es,a∼dπn
n

[
bnh(s, a) + (P̂nh (·|s, a)− Ph(·|s, a)) · V̂ n

h+1

]
,

where we use induction in the last step.

Theorem 4.11. For tabular MDPs, UCBVI has regret bound Õ(H2
√
S2AN).

Theorem 4.12. For linear MDPs, UCBVI has regret bound Õ(H2d1.5
√
N).
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4.7 Learning in Large Scale MDPs (Bellman rank)

Obtaining sample size results which are independent of the size of the state space (and possibly the
action space) is essentially a question of generalization, which is the focus of this chapter.

Definition 4.13 (Bellman rank). Q-Bell man rank: related to the Bellman error of a Q function
estimate g:

E(g; f, h) = E
sh,ah∼dπ

f
h

[
g(sh, ah)− r(sh, ah)− Esh+1∼P (·|sh,ah)

[
max
a∈A

g(sh+1, a)
]]

V-Bellman rank: related to the Bellman error to a V function estimate

E(g; f, h) = E
sh∼dπ

f
h

[
Vg(sh)− r(sh, πg(sh)− Esh+1∼P (·|sh,πg(sh))

[
Vg(sh+1)

]]
Many models (more in the book chapter) indeed have low-Q or V Bellman rank.

Algorithm 14 BLin-UCB
1: Input: number of iteration T , batch size m, confidence radius R
2: for t = 1, . . . , T do
3: Select ft = argmax

g∈F
Vg(s0) s.t.

∀h :
t−1∑
i=0

(EDh,i
[ℓ(sh, ah, sh+1, g)])

2 ≤ R2

4: For all h, create Dh,t = {sh, ah, sh+1} with m triples
5: end for
6: return: argmax

π∈πf0 ,...,πfT−1

V π.

An interesting lemma used in the proof:

Lemma 4.14.

Vft(s0)− V πft (s0) =

H−1∑
h=0

E
sh,ah∼d

πft
h

[
ft(sh, ah)− r(sh, ah)− Esh+1∼Ph(sh,ah)max

a′
ft(sh+1, a

′)

]
.

Proof. Use telescoping. Left hand side in the equation can be split into H terms and most of them
cancel out.

The main theorem in this chapter is:

Theorem 4.15 (Analysis of BLin-UCB). After running BLin-UCB for T = Õ(HD) many iterations,
there exists a policy among T many policies, such that:

V ∗(s0)− V π(s0) ≤ Õ(εgen(m,F , δ/(TH)) ·
√
dH3).

, and the number of trajectories we used is mHT .
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For discrete (but maybe large) hypothesis class F for Q-Bellman rank, we have:

Corollary 4.16. With probability at least 1− δ, BLin-UCB learns a policy with V ∗ − V π ≤ ε, with

the number of trajectories Õ
(
H6d2 ln(|F|/δ)

ε2

)
.
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5 Paper notes: bandit

5.1 Lifting the Information Ratio: An Information-Theoretic Analysis of Thomp-
son Sampling for Contextual Bandits

5.1.1 Abstract

The paper adapt the information-theoretic perspective of [RVR16] to the contextual setting by
introducing a new concept of information ratio based on the mutual information between the
unknown model parameter and the observed loss. And the main goal is to bound the regret in terms
of the entropy of the prior distribution through a remarkably simple proof, and with no structural
assumptions on the likelihood or the prior. After proving the general results, it is mentioned in
this paper that several specific binary loss bandits and linear gaussian loss bandit have good regret
bounds.

5.1.2 Questions to ask

Question 5.1. What is the difference between the information ratio based TS and the original TS
algorithm?

Actually, information ratio just consider a new way to analysis the regret of TS algorithm, the
algorithm is the same. Using information ratio can bound the regret in terms of the entropy of the
prior distribution and the upper bound of so-called information ratio.

Question 5.2. What is the benefit of using this new notion?

I think it provides a new framework for algorithmic regret analysis. In the future if we want to
prove a regret bound for TS, we can first think if we can find upper bound for this information ratio
and maybe the entropy of the prior distribution.

In the main section, I use red color to denote some things we may improve this method. Just my
personal thinking, due to limited knowledge may not be the right idea

5.1.3 Preliminaries

We consider a parametric class of contextual bandits with parameters space Θ, context space X , and
K actions. To each parameter θ ∈ Θ there corresponds a contextual bandit with loss distribution
Pθ,x,a for each context x ∈ X and action a ∈ A, with the mean loss of the distribution denoted by
l(θ, x, a).

We study the problem of regret minimization in the Bayesian setting. In this setting, the
environment secretly samples a parameter θ∗ from a known prior distribution Q1 over Θ. We assume
that the agent has full knowledge of the prior and the likelihood model Pθ,x,a. The goal of the agent
is to minimize the expected sum of losses. In the Bayesian setting, this is equivalent to minimizing
the Bayesian regret, defined as follows:

RT = E
[ T∑
t=1

(l(θ∗, Xt, At)− l(θ∗, Xt, A
∗
t ))

]
,

where A∗t is the optimal action for round t.
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Furthermore, let Ft = σ(X1, A1, L1, . . . , Xt, At, Lt). We use Qt to denote the distribution of
the unknown parameter θ∗ conditional on the past history Ft−1. We denoted by π(·|Xt) the
distribution over the agent’s actions conditional on Xt and Ft−1, and call it agent’s policy. Finally,
Et[·] = E[·|Ft−1, Xt] and Pt[·] = P[·|Ft−1, Xt].

In Thompson Sampling, an important fact is Pt[At = a] = Pt[A∗t = a] and (θ,At)
d
= (θ∗, A∗t ).

The Shannon entropy of X is defined as

H(X) = −
∑
x∈X

P(X = x) logP(X = x).

Fact 5.3. 0 ≤ H(X) ≤ log(|X |).

For two probability measures P and Q, if P is absolutely continuous with respect to Q, the
Kullback-Leibler divergence between them is

D(P ||Q) =

∫
log

dP

dQ
dP =

∑
x∈X

p(x) log
p(x)

q(x)
.

Fact 5.4. D(P ||Q) ≥ 0 with equality if and only if P = Q P-a.s.

Mutual information is defined by

I(X;Y ) = D(P (X,Y )||P (X)P (Y )) = EX [D(P (Y |X)||P (Y ))].

Fact 5.5 (Data processing inequality). I(X;Y ) ≥ I(X; g(Y )).

Definition 5.6 (Information ratio). Informally, the information ratio measures the trade-off between
achieving low regret and gaining information about the identity of the optimal action A∗ (which is a
deterministic function of θ∗ in the standard multi-armed bandit setting). The formal definition is
given by

ρ∗t =
(Et[l(θ∗, At)− l(θ∗, A∗)])2

It(A∗; (At, Lt))
.

But in contextual bandit, the optimal action A∗t changes from round to round, influenced by the
context Xt, so information about A∗ is useless.

Definition 5.7 (Lifted information ratio).

ρt =
(Et[l(θ∗, At)− l(θ∗, A∗)])2

It(θ∗;Lt)
.

We can use
θ → At → Lt

to describe the relationship between θ, At and Lt, the arrow means given At, θ and Lt are conditional
independent. Then the data processing inequality implies that the information gain about θ∗ is
always smaller than that about A∗t , which in turn implies that ρt is greater than ρ∗t .

As our analysis will establish, a bounded lifted information ratio guarantees low regret, and
we will show that the ratio itself can be bounded reasonably under conditions similar to the ones
required by the analysis of [RVR16].
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5.1.4 Main results

Theorem 5.8. assume Q1 is supported on the countable set Θ1 ⊆ Θ and that the lifted information
ratio for all rounds t satisfies ρt ≤ ρ for some ρ > 0. Then, the Bayesian regret of TS after T rounds
can be bounded as

RT ≤
√
ρTH(θ∗).

Using this theorem, if we can find upper bounds for ρ and H(θ∗), then we find upper bound for
the regret.

Lemma 5.9. Suppose that the losses are binary and |A| = K. Then, the lifted information ratio of
Thompson sampling satisfies ρt ≤ 2K for all t ≥ 1.

We now instantiate our bounds in two well-studied settings for Bernoulli bandits. We start from
the fully unstructured case, assuming finite actions and finitely supported prior. The following regret
bound follows direst from Theorem 5.1.4 and Lemma 5.9.

Theorem 5.10. Consider a contextual bandit with K actions and binary losses, and suppose Θ1,
the support of Q1, is finite with |Θ1| = N . Then, the Bayesian regret of TS satisfies:

RT ≤
√
2KT logN.

Unfortunately, the Shannon entropy can be unbounded for distributions with infinite support,
which is in fact the typical situation that one encounters in practice. To address this concern, we
develop a more general result, that holds for a broader family of distributions.

In the following, (Θ, ϱ) is a metric space with metric ϱ : Θ2 → R. We make the following
regularity assumption on the likelihood function Pθ,x,a:

Assumption 5.11 (log-Lipschitz). There exists a constant C > 0 such that for any θ, θ′ ∈ Θ1,
| logPθ,x,a − logPθ′,x,a| ≤ Cϱ(θ, θ′) holds for all x ∈ X , a ∈ A, and L ∈ {0, 1}.

Under this assumption, we can state a variant of Theorem 1 that applies to metric parameter
spaces:

Theorem 5.12. assume (Θ, ϱ) is a metric space, and Q1 is supported on Θ1 ⊆ Θ with ϵ-covering
number Nϵ(Θ1, ϱ). Let assumption hold, and assume the lifted information ratio for all round t
satisfies ρt ≤ ρ for some ρ > 0. Then, the Bayesian regret of TS after T rounds can be bounded as

RT ≤
√
ρT min

ϵ
(logNϵ(Θ1, ϱ) + 2ϵCT )

When the Shannon entropy is bounded, we can use it to bound the regret. And the article find
one way to deal with unbounded entropy problem by adding Lipschitz assumption.

One potential direction of improvement is to find new ways to bound
T∑
t=1

It(θ
∗, Lt).

In this model, the losses are generated by a Bernoulli distribution as Lt(θ, x, a) ∼ Ber(σ(fθ(x, a))),
where σ(z) = 1/(1 + e−z) is sigmoid function.

See Theorem 4 and Corollary 1 in [NOPS22] for the results.
We can consider two types of linear bandits. And the regret analysis is similar. The first one

supposes the losses are binary, and the expected losses are linear functions of the form l(θ, x, a) =<
θ, ϕ(x, a) >, see Lemma 2 in [NOPS22].
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Another type is linear bandits with Gaussian noise. Lt ∼ N (l(θ∗, Xt, At), σ
2). See Lemma 3 in

[NOPS22].
Another potential direction is apply the method to more types of bandits. For one thing, we

can use this lifted information ratio to deal with other types of contextual bandit. For another, we
can develop new theory about information ratio to deal with bandits beyond basic and contextual
bandits. For example, we may find another type of information ratio.

I don’t have so much knowledge about types of bandits beyond these, and we can have a discussion
here.

5.2 Contextual Information-Directed Sampling

Paper notes

5.3 Improved Algorithms for Linear Stochastic Bandits

This is a very classic paper on linear bandit. Familiarity with this technique is very helpful in
understanding linear bandit.

I’d like to summarize the main results and the sketch of proofs.
In each round t, the learner is given a decision set Dt ⊆ Rd from which he has to choose an action

Xt. Subsequently he observes reward Yt = ⟨Xt, θt⟩+ η∗ where θ∗ ∈ Rd is an unknown parameter and
ηt is a random noise satisfying E[ηt|X1:t, η1:t−1] = 0 and some tail-constraints, to be specified soon.

The goal of the learner is to maximize his total reward Σnt=1⟨Xt, θ∗⟩ accumulated over the course
of n rounds.

5.3.1 OFU: Optimism in the face of uncertainty

In each round t, the learner is given a decision set Dt ∈ Rd, and the algorithm maintains a confidence
set Ct−1 ⊆ Rd.

The algorithm choose the pair

(Xt, θ̃t) = argmax
(x,θ)∈Dt×Ct=1

⟨x, θ⟩. (5.1)

5.3.2 Self-normalized tail inequality for vector-valued martingales

Theorem 5.13 (Self-Normalized Bound for Vector-Valued Martingales). Let {Ft}∞t=0 be a filtration.
Let {ηt}∞t=1 be a real-valued stochastic process such that ηt is Ft-measurable and ηt is conditionally
R-sub-Gaussian for some R > 0 i.e.

∀λ ∈ R E[eληt |Ft−1] ≤ exp
λ2R2

2

Let {Xt}∞t=1 be a Rd-valued stochastic process such that Xt is Ft−1-measurable. Assume that V is a
d× d positive definite matrix. For any t > 0, define

V̄t = V +

t∑
s=1

XsX
T
s St =

t∑
s=1

ηsXs.
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Then, for any δ > 0, with probability at least 1− δ, for all t > 0

∥St∥2V̄ −1
t
≤ 2R2 log(

det(V̄t)
1/2 det(Vt)

−1/2

δ
).

Proof. Use the property of sub-Gaussian variable to construct a supermartingale.
Then prove the event concerning the stopped process has the high-probability bound.
Finally claim the event we care can be described using this stopped process.

5.3.3 Construction of confidence sets

Let θ̂t be the ℓ2-regulized least-squares estimate of θ∗ with regularization parameter λ > 0:

θ̂t =
(
XT

1:tX1:t + λI
)−1

XT
1:tY1:t =

(
t∑
i=1

XiX
T
i + λI

)−1
(X1, . . . , Xt)

 Y T
1
...
Y T
t

 (5.2)

The following theorem shows that theta∗ lies with high probability in an ellipsod with center at θ̂t.

Lemma 5.14 (Determinant-Trace Inequality). Suppose X1, . . . , Xt ∈ Rd and for any 1 ≤ s ≤ t,
∥Xs∥2 ≤ L. Let V̂t = λI +Σts=1XsX

T
s for some λ > 0. Then,

det(V̂t) ≤ (λ+ tL2/d)d.

Theorem 5.15 (Confidence Ellipsoid). Assume the same condition. Let V = Iλ, λ > 0, define
Yt = ⟨Xt, θ∗⟩ + ηt and assume that ∥θ∗∥2 ≤ S. Then, for any delta > 0, with probability at least
1− δ. for all t ≥ 0,theta∗ lies in the set

Ct =

θ ∈ Rd : ∥θ̂t − θ∥V̄t ≤ R

√√√√2 log

(
det(V̂t)1/2 det(λI)−1/2

δ

)
+ λ1/2S

 .

Furthermore, if for all t ≥ 1, ∥Xs∥2 ≤ L then with probability at least 1− δ, for all t ≥ 0, θ∗ lies in
the set

Ct =

{
θ ∈ Rd : ∥θ̂t − θ∥V̄t ≤ R

√
d log

(
1 + tL2/λ

δ

)
+ λ1/2S

}
.

Proof. Using the Cauchy-Schwarz Inequality, we get

|xT θ̂t − xT θ∗| ≤ ∥x∥V̄ −1
t

(
∥XT η∥V̄ −1

t
+ λ1/2∥θ∗∥2

)
,

By 5.13 we have a high probability bound for ∥XT η∥V̄ −1
t

. Assuming θ∗ is bounded, we can get the

final confidence ellipsoid for θ∗ by plugging in x = V̄t(θ̂t − θ∗).
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5.3.4 Regret analysis of OFUL algorithm

Recall the OFUL algorithm maintains a confidence set Ct−1 ⊆ Rd, and choose the pair

(Xt, θ̃t) = argmax
(x,θ)∈Dt×Ct=1

⟨x, θ⟩ (5.3)

at each rounds.

Theorem 5.16 (Regret of OFUL). Assume that for all t and all x ∈ Dt, ⟨x, θ∗⟩ ∈ [−1, 1] and let
λ ≥ 1. Then, with probability at least 1− δ, the regret of the OFUL algorithm satisfies

∀n ≥ 0, Rn ≤ 4
√
nd log(λ+ nL/d)

(
λ1/2S +R

√
2 log(1/δ) + d log(1 + nL/(λd))

)
.

Remark 5.17. The notation β in the proof is strange. Its first time appearance is about confidence
bound from other paper. And there are two confusing inequality in the proof.

Since we have

det(V̄n) = det(V̄n−1 +XnX
T
n )

= det(V̄n−1) det(I + V̄
−1/2
n−1 Xn(V̄

−1/2
n−1 Xn)

T )

= det(V̄n−1)(1 + ∥Xn−1∥V̄n−1
)

= det(V )

n∏
t=1

(
(1 + ∥Xn−1∥V̄n−1

)
,

we can recompute θt whenever det(V̄t) increases by a constant factor 1 + C. We call the resulting
algorithm the RARELY SWITCHING OFUL algorithm.

And theorem 4 in paper proves a regret bound for this algorithm.
Then the paper discuss problem dependent bound.

Theorem 5.18. Assume that λ ≥ 1 and ∥θ∗∥2 ≤ S where S ≥ 1. With probability at least 1− δ, for
all n ≥ 1, the regret of OFUL satisfies

Rn ≤
16R2λS2

∆̄n
(log(Ln)+(d− 1) log

64R2λS2L

∆̄n

+ 2(d− 1) log(d log
dλ+ nL2

D
+ 2 log(1/δ) + 2 log(1/δ))2.

5.3.5 Multi-armed bandit problem

They can use the method in this paper to analysis multi-armed bandit. Just let d = 1 and get
confidence intervals, then get regret of the algorithm UCB(δ).

Lemma 5.19 (Confidence Intervals). Assuming that the noise ηt is conditionally 1-sub-Gaussian.
With probability at least 1− δ,

∀i ∈ {1, 2, . . . , d}, ∀t ≥ 0, |X̄i,t − µi| ≤ ci,t,

where

ci,t =

√
1 +Ni,t

N2
i,t

(
1 + 2 log(

d(1 +Ni,t)1/2

δ
)

)
.
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Theorem 5.20 (Regret of UCB(δ)). Assume that the noise ηt is conditionally 1-sub-Gaussian, with
probability at least 1− δ, the total regret of the UCB(δ) is bounded as

Rn ≤
∑
i:∆i>0

(
3∆i +

16

∆i
log

2d

∆iδ

)
.
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5.4 Thompson Sampling Regret Bounds for Contextual Bandits with sub-
Gaussian rewards

The proof in this paper is quite well written! It’s very comfortable to read!

5.4.1 Genearl theoretic results

In this paper, we extend the results from [NOPS22] to contextual bandits with sub-Gaussian rewards.
The first theorem is just the same as the one in [NOPS22], but slightly change the form of the

notion.

Theorem 5.21. Assume that the average of the lifted information ratios is bounded 1
T Σ

T
t=1E[Γt] ≤ Γ

for some Γ > 0. Then, the TS cumulative regret is bounded as

Regret ≤
√
ΓTI(Θ; ĤT+1)

=
√
ΓTE[DKL(PΘ|ĤT+1∥PΘ)]

Proof. The proof follows by the chain rule of the mutual information.

I(X;Y,Z) = I(X;Z) + I(X;Y |Z).

In the next theorem, they want to research on problems when θ ∈ Rd. It is based a weaker
regularity condition. And the requirement of binary rewards is unnecessary.

Assumption 5.22 (Lipschitz process). There is a random variable C > 0 that can be depend only
on Rt, Xt and Ât such that

| log fRt|Xt,Ât,Θ=θ(Rt)− log fRt|Xt,Ât,Θ=θ′(Rt)| ≤ Cρ(θ, θ
′) a.s. for all θ, θ′ ∈ O.

Note that the smallest cardinality of an ϵ-net for (O, ρ) is called the ϵ-covering number.

Theorem 5.23. Assume that the parameters’ space is a metric space (O, ρ) and let |N (O, ρ, ϵ)|
be the ϵ-covering number of this space for any ϵ > 0. Assume as well that the log-likelihood is a
Lipschitz process according to assumption above and that the average of the lifted information ratio
is bounded like the first theorem. Then, the TS cumulative regret is bounded as

Regret ≤
√
ΓT min

ϵ>0
{ϵE[C]T + log |N (O, ρ, ϵ)|}.

Proof. The mutual information can be written as

I(Θ;Rt|Ĥt, Xt, At) = E
[ ∫
O
fΘ|Rt,Ĥt,Xt,At

(θ)

(
log

fΘ,Ĥt,Xt,At(Rt)

fπ(Θ),Ĥt,Xt,At
(Rt)

+ log
fπ(Θ),Ĥt,Xt,At(Rt)

fRt|Ĥt,Xt,At
(Rt)

)
dθ

]
,

where the first term can be bounded by log-Lipschitz condition, and the second term is I(Θπ;Rt|Ĥt, Xt, At)),
Θπ is a discrete version of Θ and it is finite since we can find a finite ϵ-net. So the second term can
be bounded by the ϵ-covering number just like the first theorem.
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5.4.2 Bounding the lifted information ratio

In this section, they prove two lemmata. The first is for finite action set just like Lemma 1 in
[NOPS22]. The second is for finite action set and θ ∈ Rd setting. In this paper the authors deal
with sub-Gaussian rewards instead of binary rewards.

Lemma 5.24. Assume the number of actions |A| is finite and the random rewards Rt are σ2-sub-
Gaussian, then Γt ≤ 2σ2|A|.

Lemma 5.25. Assume the number of actions |A| is finite, the expectation of the rewards is
E[R(x, a, θ)] = ⟨θ,m(x, a)⟩ for some feature map m. The random rewards Rt are σ2-sub-Gaussian.
Then Γt ≤ 2σ2d.

This lemma is useful in cases where the dimension is smaller than the number of actions d < |A|.

5.4.3 Application for special bandits

The first result is a corollary of the first theorem and the first lemma. They close the gap on the
regret of the TS algorithm showing that it is in O(

√
|A|T log |O|) for sub-Gaussian rewards, and

thus for bounded ones.

Corollary 5.26. Assume that the rewards are bounded in [0, L]. Then, for any contextual bandit
problem Φ, the TS cumulative regret after T rounds is bounded as

Regret ≤
√
L2|A|TH(Θ)

2
.

The next corollary gives a general result for bandits with Laplace likelihoods. This setting

considers rewards with a likelihood proportional to exp

(
− |r−fθ(x,a)β

)
for some β > 0. In addition,

this setting assumes that the random variable fθ(X,A) is a Lipschitz process with respect to θ with
random variable C = C(X,A). This ensure the Lipschitz log-likelihood.

Corollary 5.27. Assume that O ∈ Rd with diag(O) ≤ S. Consider a contextual bandit problem Φ
with Laplace likelihood and rewards bounded in [0, L]. Then, the TS cumulative regret after T rounds
is bounded as

Regret ≤

√
L2|A|Td

2

(
1 + log(

3SE[C]T
dβ

)

)
.

Then they deal with bernoulli bandits with rewards distributed as Ber(g ◦ fΘ(Xt, Ât)), where g
is a binomial like function and f is a linear function. This part just like the section about Lipschitz
bandits in [NOPS22].

Finally they talked about bounded linear contextual bandits. In this setting [CLRS11] showed

that LinUCB has a regret bound in O(
√
dT log3(|A|T log(t)/δ)) with probability no smaller than

1− δ. This corollary shows that TS has a regret bound in O
(√

d2T log(3ϵ )

)
.
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5.5 Contextual Bandits with Linear Payoff Functions

In this paper they prove an O(
√
Td ln3(KT ln(T )/δ)) regret bound that holds with probability 1− δ

for the simplest known UCB algorithm. They also prove a lower bound of Ω(
√
Td) for this setting,

matching the upper bound up to logarithmic factors.
Let T be the number of rounds and K the number of possible actions. Let rt,a ∈ [0, 1] be the

reward of action a on round t.
On each round t, for each action a the learner observes K feature vectors xt,a ∈ Rd, with ∥xt,a∥

where ∥ · ∥ denotes the ℓ2-norm. This is the meaning of "contextual bandits".
Linear realizability assumption:

E[rt,a|xt,a] = xTt,aθ
∗,

where ∥θ∗∥ ≤ 1.

5.5.1 LinUCB

For convenience, define:

st,a =
√
xTt,aA

−1xt,a ∈ R+

Dt = [xTτ,aτ ]τ∈Ψt ∈ R|Ψt|×d

yt = [rτ,aτ ]τ∈Ψt ∈ R|Ψt|×1

At = Id +DT
t Dt

bt = DT
t yt

λt,j = the eigenvalue of At

First I will talk about the classic LinUCB algorithm.
The method to estimate the unknown parameter θ is Ridge Regression. It calculate the estimator

in this way: θ̂t =
(
Σxix

T
i

)
Σxiyi, where xi denotes the feature of one arm, yi denotes the reward.

And in each round, the algorithm choose the action according to its upper confidence bound:

at = argmax θ̂Tt xt,a + α
√
xTt,aA

−1xt,a.

While experiments show LinUCB is probably sufficient in practice, there is technical difficulty in
alalyzing it. Because predictions in later rounds are made using previous outcomes. To handle
this problem, they modify the algorithm into BaseLinUCB which assumes statistical independence
among the samples, and use as master algorithm SupLinUCB to ensure the assumption holds, in
order to apply Azuma/Hoeffding inequality.

Actually, this problem was solved later, see the first paper notes concerning linear bandits.
Now, we discuss the method in this paper.

Algorithm 15 BaseLinUCB
1: Inputs: α ∈ R+,Ψt ⊂ {1, 2, . . . , t− 1}
2: Calculate At, bt, θt, wt,a = α

√
xTt,aA

−1xt,a, r̂t,a = θTt xt,a
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Lemma 5.28 (Confidence bound). Suppose the input index set Ψt in BaseLinUCB is constructed
so that for fixed xτ,aτ with τ ∈ Ψt, the random rewards rτ,aτ are independent random variables with
mean E[rτ,aτ ] = xTτ,aτ θ

∗. Then, with probability at least 1− δ
T , we have for all a ∈ [K] that

|r̂t,a − xTt,aθ∗| ≤ (α+ 1)st,a.

Proof. The proof of this lemma based on Azuma-Hoeffding bound:
If Xi ∈ [a, b], then we obtain the bound

P[
n∑
i=1

|Xi − µi|] ≤ 2 exp{− 2t2

n(b− a)2
}.

Algorithm 16 SupLinUCB
1: Inputs: T ∈ N
2: S ← ln(T )
3: Index set: Ψs

t ← ∅ for all s ∈ [T ]
4: for t=1,2,. . . ,T do
5: repeat
6: Use BaseLinUCB with Ψs

t to calculate the width wst,a, and upper confidence bound r̂st,a+wst,a
for all a ∈ Âs.

7: if wst,a ≤ 1/
√
T for all a ∈ Âs then

8: choose at
9: Keep the same index set at all levels

10: else if wst,a ≤ 2−s for all a ∈ Âs then
11: Update the action set Âs+1

12: s← s+ 1
13: else
14: Choose action at.

Update the index set at all levels: keep this step
15: end if
16: until an action at is found.
17: end for

Theorem 5.29. If SupLinUCB is run with

α =

√
1

2
ln

2TK

δ
,

then with probability at least 1− δ, the regret of the algorithm is

O

(√
Td ln3

(
KT ln(T )/δ

))
.
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5.5.2 Lower bound

In this section, they prove the following lower bound that matches the upper bound up to logarithmic
factors.

Theorem 5.30. For the contextual bandit problem with linear payoff function, for any number of
trials T and K actions (where T ≥ K ≥ 2), for any algorithm A choosing action at at time t, there
is a constant γ > 0, for d2 ≤ T a sequence of a d-dimensional vectors xt,a, such that

E
[ T∑
t=1

max
a

xTt,aθ
∗ −

T∑
t=1

rt,at

]
≥ γ
√
Td.

Proof. We can reduce the problem to the classic multi-armed bandit problem, and find a useful
setting according to the results there.
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5.6 Generalized linear bandits

A generalized linear model is a probabilistic model where observation Y conditioned on feature
vector x ∈ Rd has an exponential-family distribution with mean µ(xT θ), where θ is the unknown
parameter.

Assume the probability density function of Y conditioned on x.θ is

p(y|x, θ) = exp{y(xT θ) + c(y)− b(xT θ)},

then we know the mean value of Y is µ = ḃ. Because∫
f = 1⇒

∫
exp{y(xT θ) + c(y)} = eb(x

T θ)

⇒
∫
y exp{y(xT θ) + c(y)} = ḃ(xT θ)eb(x

T θ)

⇒
∫
y exp{y(xT θ) + c(y)− b(xT θ)} = ḃ(xT θ)

⇒ E[Y |x, θ] = E[Y |xT θ] = ḃ(xT θ)

In the same way we can show Var(Y |x, θ) = b̈(xT θ).
The negative log likelihood function of D = {(xℓ, yℓ)nℓ=1} is

L(D; θ) =
|D|∑
ℓ=1

b(xTℓ θ)− yℓxTℓ θ − c(yℓ).

The gradient and Hessian of L(D, θ) with respect to θ are

∇L(D; θ) =
|D|∑
ℓ=1

(µ(xTℓ θ − yℓ))xℓ,

∇2L(D; θ) =
|D|∑
ℓ=1

µ̇(xTℓ θ)xℓx
T
ℓ .

The mean function µ is increasing and therefore its derivative µ̇ is positive. The MLE of model
parameters is a vector θ ∈ Rd such that ∇(L(D; θ)) = 0.
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5.6.1 GLM-TSL and GLM-FPL algorithms

Algorithm 17 General randomized exploration in a generalized linear bandit.
1: Inputs: Number of exploration rounds τ
2: for t=1,. . . ,n do
3: if t > τ then
4: θ̃ ← Randomized MLE on {(xℓ, yℓ)t−1ℓ=1

5: It ← argmaxi∈[K] x
T
i θ̃t

6: else
7: Choose It based on {Xℓ}t=1

ℓ=1

8: end if
9: Pull arm It and get reward YIt,t

10: Xt ← xIt , Yt ← YIt,t
11: end for

Two algorithm follows the general template in Algorithm 17.
The first algorithm, GLM-TSL, is Thompson sampling where the posterior of θ is approximated by

Laplace approximation. The randomized parameter vector is sampled from the Laplace approximation
as

θ̃t ∼ N (θ̄t, a
2H−1t ),

where

θ̄t = argmin
θ∈Rd

L({(Xℓ, Yℓ)}t−1ℓ=1; θ)

Ht =

t−1∑
ℓ=1

µ̇(XT
ℓ θ̄t)XℓX

T
ℓ ,

and a > 0 a tunable parameter.
In GLM-FPL, the randomized parameter vector is the MLE on the past t− 1 rewards perturbed

with Gaussian noise,
θ̃t = argmin

θ∈Rd

L({(Xℓ, Yℓ + Zℓ)}t−1ℓ=1; θ),

where Zℓ ∼ N (0, a2) are normal random variables that are resampled in each round, independently
of each other and history.

Posterior sampling and perturbations by Gaussian noise in linear bandits are equivalence, when
both the prior of θ and rewards are normally distributed. But this equivalence no longer holds in
generalied linear models. Thus GLM-TSL and GLM-FPL are two different algorithms.

5.6.2 Theoretic analysis

Let θ∗ be the unknown parameter vector, θ̄t be its maximum likelyhood estimate in round t, and θ̃t
be the randomized solution in the round t. Let Gt = Σt−1ℓ=1XℓX

T
ℓ .

We define

E1,t =

{
∀i ∈ [K] : |xTi θ̄t − xTi θ∗| ≤ c1∥xi∥G−1

i

}
,
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E2,t =

{
∀i ∈ [K] : |xTi θ̃t − xTi θ̄| ≤ c2∥xi∥G−1

i

}
, (I think the "absolute value" should be deleted)

E3,t =

{
∀i ∈ [K] : xTi θ̃t − xTi θ̄ > c1∥xi∥G−1

i

}
,

The central part of the analysis is an upper bound on the expected per-round regret of any
randomized algorithm that chooses the perturbed solution in round t as a function of its history.
The corresponding lemma is stated below.

Lemma 5.31. Let p2 ≥ Pt(Ē2,t), p3 ≤ Pt(E3,t) and p3 > p2. Then on event E1,t,

Et[∆It ] ≤ µ̇max(c1 + c2)
(
1 +

2

p3 − p2
)
× Et[∥xIt∥G−1

t
] + ∆maxp2.

This is a general result. In specific algorithm, we need to bound p2 and p3. Then we finally ready
to analyze GLM-TSL and GLM-FPL.

For GLM-TSL, the regret bound is Õ(d
√
n logK).

Theorem 5.32. Assume the noise ηi,t = Yi,t − µ(xTi θ∗) is σ2-sub-Gaussian.The n-round regret of
GLM-TSL is bounded as

Regret(n) ≤ µ̇max(c1 + c2)(1 +
2

0.15− 1/n
)×

√
2dn log(2n/d) + (3n+ τ)∆max,

where

a = c1
√
µ̇max,

c1 = σµ̇−1min
√
d log(n/d) + 2 log n,

c2 = c1

√
2µ̇−1minµ̇max log(Kn),

and the number of initial exploration round τ is chosen such that

λmin(Gτ ) ≥ max{σ2µ̇−2min(d log(n/d) + 2 log n), 1}.

Proof. First, we bound the probability of event Ē1,t.
Second, we bound the probabilities of events Ē2,t and E3,t from above and below.
Finally, we choose the number of initial exploration rounds τ such that ∥θ̄t − θ∗∥2 ≤ 1 is likely in

any round t ≥ τ .

And the theorem concerning GLM-FPL is almost identical to this theorem. The differences are
finding a and c2.

Theorem 5.33. Assume the noise ηi,t = Yi,t − µ(xTi θ∗) is σ2-sub-Gaussian.The n-round regret of
GLM-FPL is bounded as

Regret(n) ≤ µ̇max(c1 + c2)(1 +
2

0.15− 1/n
)×

√
2dn log(2n/d) + (4n+ τ)∆max,
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where

a = c1µ̇max,

c1 = σµ̇−1min
√
d log(n/d) + 2 log n,

c2 = c1µ̇
−1
minµ̇max

√
2 log(Kn),

and the number of initial exploration round τ is chosen such that

λmin(Gτ ) ≥ max{4σ2µ̇−2min(d log(n/d) + 2 log n), 8a2µ̇−2min log n, 1}.

However, the analysis is under the assumption that all feature vectors xi have at most one
non-zero entry. I think this assumption is so strong that it reduce this problem to a multi-armed
bandit since different arms are irrelevant.

The proofs of technical lemmas in this paper is confusing. It uses lots of consequences from
other papers but makes a little change. And the author don’t write carefully why it is true. What’s
impressive is that it quotes martingale’s theorem from linear bandit.

Another paper about generalized linear bandit proposed an algorithm just like Lin-UCB in
[CLRS11]. I’ve only skimmed over it.
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5.7 Perturbed-History Exploration in Stochastic Linear Bandits

In last paper we study GLM-FPL, but the proof is not good enough, for it assumes feature vectors
have at most one non-zero item. So I read this paper. But don’t find the answer.

Perturbed-History Exploration means when we estimate the model parameter θ∗, we don’t use
true history {(Xi, Yi)}t−1i=1 but a mixture of history {(Xi, Yi + Zi)}t−1i=1. Note that in linear bandit
setting, when Zi is gaussian random variable, this estimate is just the same as Thompson Sampling.
But here we can use other r.v. such as Bernoulli. Therefore, it cannot justify their perturbation
scheme as a form of posterior sampling.

Question 5.34. Why we need Perturbed-History Exploration in case we already have OFU and TS?

Because these designs do not extend easily to complex problems. For instance, in generalized
linear bandits, OFU algorithms use approximate high-probability confidence sets, which are loop
and statistically suboptimal. And the main problem is we don’t have a closed form of the estimator
of model parameters in complex settings such as generalized linear bandit. The posterior sampling
TS don’t have a closed form and need to be approximated. This is computationally.

Then this paper analyse the theory of LinPHE algorithm in the Bernoulli setting and evaluate
LogPHE in a logistic model empirically without proof. The details are just like last paper so I just
describe the algorithm and leave out the others.

Algorithm 18 Perturbed-history exploration in a linear bandit(LinPHE) with [0,1] rewards.
1: Inputs: Integer perturbation scale a > 0

Regularization parameter λ > 0
2: for t=1,. . . ,n do
3: if t > d then
4: Generate (Zj,ℓ)j∈[a],ℓ∈[t−1] ∼ Ber(1/2)

5: Gt ← (a+ 1)
t−1∑
ℓ=1

XℓX
T
ℓ + λ(a+ 1)Id

6: θ̃ ← G−1t
t−1∑
ℓ=1

Xℓ

[
Yℓ +

a∑
j=1

Zj,ℓ

]
7: It ← argmaxi∈[K] x

T
i θ̃t

8: else
9: Choose It ← K − t+ 1

10: end if
11: Pull arm It and get reward YIt,t
12: Xt ← xIt , Yt ← YIt,t
13: end for

Actually, θ̃t is a regularized least-squares solution on the past t− 1 rewards and a(t− 1) i.i.d
pseudo-rewards.

In linear bandit setting, their regret bound Õ(d
√
n) scales with d and n better than LinTS

which proves to be Õ(d3/2
√
n). (Bayesian regret for LinTS has upper bound Õ(d

√
n).) Their bound

does not improve over those of OFU designs, such as LinUCB. The improvement is in practical
performance.
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5.8 Old Dog Learns New Tricks: Randomized UCB for Bandit Problems

In search of potential solution to the analysis of GLM-FPL, I read this paper [VMDK19].

5.8.1 Summary of some classic and randomized strategies

In this section, blue color means advantages, and red color means drawbacks.
First, I summarize some classic algorithms in multi-armed and structured bandit settings.

• ε-greedy

– Simple, widely used in practice

– Statistically sub-optimal, does not explore in a problem dependent manner, sensitive to
hyper-parameter tuning

• TS

– When the posterior has a closed form, as in the Bernoulli or Gaussian MAB or linear
bandits, it is possible to sample exactly from it. In these cases, TS is computationally
efficient and have good empirical performance; near-optimal for MAB

– Not practical in settings where there is no closed form posterior [Pan: this can be solved
by Langevin Monte Carlo [XZM+22]]

– Sub-optimal dependence on the feature dimension for structured bandits, for example
Õ(d3/2

√
T ) or Õ(d

√
T logN)

• OFU, UCB, GLM-UCB, UCB-GLM

– Theoretically optimal in many bandit settings, including MAB and linear bandits: Õ(d
√
T )

– Not practical: since these confidence sets are constructed to obtain good worst-case
performance, they often have poor empirical performance on typical problem instances;
in non-linear setting, confidence sets are often too conservative in practice

– Computationally inefficient: inverting a d× d matrix; at step t, MLE is computed using
Θ(t) samples, meaning that the per-step complexity grows at least linearly with t for a
straightforward implementation of the algorithms

Next, I summarize some improvements and limitations of randomized algorithms. I focus on
their application on generalized linear bandits.

Randomized algorithms: Perturbed history exploration, GLM-FPL, random-UCB . . .

• Do not rely on closed form posterior distributions like TS, but they "sample" from an implicit
distribution.(PHE, GLM-FPL, rand-UCB); whereas still need to solve MLE

• Near-optimal regret bounds in the general MAB setting; however, the degree of exploration is
difficult to control, complicating their proofs.

• Linear bandits: closely follows that of TS and inherits its sub-optimality in the feature
dimension Õ(d3/2

√
T ) or Õ(d

√
T logK) . (GLM-FPL, GLM-TSL)
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• Proving regret bounds for the generalized linear case requires additional assumptions. (GLM-
FPL)

• MLE problem cannot be solved in an efficient online manner while preserving regret guarantees,
approximations do not have rigorous theoretical guarantees and add another layer of complexity
to the algorithm design.(For all perturbed history algorithms)

• RandUCB match the empirical performance of TS (and often ourperforms it) and yet attains
the theoretic optimal regret bounds of OFU-based algorithms, thus achieving the best of both
worlds.

Both LinUCB and and RandUCB required to compute spectral norms of all actions ∥x∥V −1
t,λ

in
every round so that they cannot be efficiently implemented with an infinite set of arms.

Remark 5.35 (exploration in UCB). UCB- based algorithms tend to choose arms which have big
∥x∥V −1

t,λ
. This means x lies in the direction of eigenvectors of small eigenvalues, named exploration.

And in order to implement UCB we need to estimate the model parameter θ∗, in that way we
need to solve the MLE problem which is not efficient. All algorithms need to do this so this is not a
critical problem. Or can we think this rand-UCB is the best one? I hope to answer this question in
the final step.

5.8.2 The RandUCB Meta-Algorithm

When arm i ∈ A is pulled, reward distribution with mean µi and support [0, 1]. The learner’s
objective is to maximize its expected cumulative reward arcoss T rounds.

OFU-based strategies have the same general form: in round t, they choose the arm

it = argmax
i∈A

{µ̂i(t) + βCi(t)},

where Ci(t) is the size of the confidence interval.
As a simple modification, RandUCB randomizes the confidence intervals and chooses the arm

it = argmax
i∈A

{µ̂i(t) + ZtCi(t)}.

Here Z1, . . . , ZT are i.i.d. samples from the sampling distribution. This distribution is discrete.
Suppose Z1, . . . , ZT ∼ Z. Z ∈ [L,U ]. Let α1 = L, . . . , αM = U denote equally spaced points in
[L,U ], and define pm := P(Z = αm).

To obtain optimal theoretical guarantees, the probabilities p1, . . . , pM in RandUCB must be
chosen in a way that ensures P (Z ≥ β) > 0.

By only considering positive values for Z (by setting L = 0), we maintain the OFU principle of
the corresponding OFU-based algorithm.

5.8.3 Instantiating RandUCB

For multi-armed bandit, RandUCB begins by pulling each arm once and in each subsequent round
t > K, selects

it = argmax
i

{
µ̂i(t) + Zt

√
1

si(t)

}
.
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Note that if we want to prove the optimal regret bound, we need choose Z such that P(Z > β) > c > 0,
where OFU-based algorithm sets the constant β =

√
2 lnT . For randUCB, we choose L = 0 and

U = 2
√
lnT . I think we inflate the confidence interval to get a better exploration.

Theorem 5.36 (Minimax regret of RandUCB with coupled arms for MAB). Let c1 := 1+
√

ln(KT 2)
and c3 := 2K ln(1 + T

K ). For any c2 > c1, the regret R(T ) of RandUCB for MAB is bounded by

(c1 + c2)

(
1 +

2

P(Z > c1)− P(|Z| > c2)

)
×
√
c3T + TP(|Z| > c2) +K + 1.

When P(Z > c1) > c > 0 and |Z| ≤ c2 a.s. the regret of RandUCB can be bounded by
O(
√
KT ln(KT )), which is minimax-optimal up to logarithmic factors.

There is another result of MAB about Instance-dependent regret:

Theorem 5.37 (Instance-dependent regret of uncoupled RandUCB for MAB). Uncoupled RandUCB

can be bouned as O(Σ∆i>0∆
−1
i )×

(
M
pM

+ Te−2α
2
M + α2

M

)
.

I find this not so interesting and leave out the proof.
For structured bandit setting where each arm is associated with a d-dimensional feature vector,

we first consider linear bandits:

Theorem 5.38 (RandUCB for linear bandits). Let c1 :=
√
λ + 1

2

√
d ln(T + T 2/dλ) and c3 :=

2d ln(1 + T
dλ). For any c2 > c1, the regret of RandUCB for linear bandits is bounded by

(c1 + c2)

(
1 +

2

P(Z > c1)− P(|Z| > c2)

)
×
√
c3T + TP(|Z| > c2) + 1.

We next consider structured bandits where the feature to reward mapping is a generalized
linear model. We have E[Yt|it = i] = g(⟨xi, θ∗⟩) ∈ [0, 1], where g is a known, strictly increasing,
differentiable function called the link function or the mean function.

RandUCB for GLB starts by pulling each of the vi(bases for action space) for O(d ln(T )/µ2ρ)

many times such that ∥θ̂t − θ∥ ≤ 1 with probability at least 1− 1/T . This is because
d∑
j=1

vjv
T
j ≥ ρI.

While in linear bandits setting, we use regularization Mt := λId +
t−1∑
ℓ=1

XℓX
T
ℓ .

Next theorem gives the promised Õ(d
√
T ) regret bound by choosing c2 = 3

√
Lc1.

Theorem 5.39 (RandUCB for GLB). Let c1 =
√
d ln(T/d) + 2 ln)(T )/2µ, c3 = 2d ln(1 + T

d ). For
any c2 > c1, the regret R(T ) of RandUCB for generalized linear bandits is bounded by

(c1 + c2/
√
µ)

(
1 +

2

P(Z > c1
√
L)− P(|Z| > c2)

)
× L

√
c3T + TP(|Z| > c2) +O(d2 ln(T )/µ2ρ).

5.8.4 Conclusion

RandUCB matches the empirical performance of TS (and often outperforms it) and yet attains
the theoretically optimal regret bounds of OFU-based algorithms, thus achieving the best of both
worlds.
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5.9 Langevin Monte Carlo for Contextual Bandits

5.9.1 Laplace Approximation Thompson Sampling

After t−1 rounds of the bandit problem, assume we have collected data {x1, r1, x2, r2, . . . , xt−1, rt−1}.
Define the following quantities based on historical data:

Vt = λI +
t−1∑
s=1

xsx
T
s , bt =

t−1∑
s=1

rsxs,

where λ > 0 is a regularization parameter.
Denote θ̂t = V −1t bt. At round t, the agent receives an action set Xt ⊆ Rd which consists of

feature vectors of candidate actions at round t.Then LinTS samples a parameter θ̃t from distribution
N (θ̂t, vtV

−1
t ) and then choose the arm as follows

xt = argmax
x∈Xt

xTt θ̃t.

Remark 5.40. To understand this Laplace Approximation [AG13] method, we need some
deduction.

First, assume the distribution of rt given choosing arm xi and parameter is N (xTi θ, v
2). Then,

if given prior for θ at time t is N (θ̂t, v
2V −1t ). To be more specific, the primary prior at time 0 is

N (0, v2λ−1I). Then we can compute the posterior distribution at time t+ 1 as N (θ̂t+1, v
2V −1t+1).

There are two problems when using classical LinTS algorithms:

1. The Laplace approximation(Gaussian distribution) is not a good estimation for the posterior
distribution when the reward distribution has more general forms than linearity;

2. Sampling from a Gaussian distribution with general covariance matrix in high dimensional
problems is computationally inefficient.

Remark 5.41. The second one is easy to understand. For the first claim, we can see later that
LMS-TS approxiamtely samples from the real posterior distribution.

5.9.2 LMC-TS algorithm

Advantages of LMC-TS:

1. Approximately samples from the true posterior distribution;

2. Computationally efficient due to

• it only needs to sample from isotropic Gaussian N(0, I);

• it only needs to perform noisy gradient descent updates.
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Algorithm 19 Langevin Monte Carlo Thompson Sampling(LMC-TS)
1: Input: step size {ηt > 0}t≥1, inverse temperature parameters {βt}t≥1, loss function Lt(θ), and

reward model function f(x, θ). θ1,0 = 0,K0 = 0.
2: for t = 1, 2, . . . do
3: θt,0 = θt−1,K−1
4: for k = 1, . . . ,Kt do
5: sample a standard normal vector ϵt,k ∼ N (0, I)

6: θt,k = θt,k−1 − ηt∇Lt(θt,k−1) +
√

2ηtβ
−1
t ϵt,k

7: end for
8: Play arm xt = argmaxx∈Xt

f(x, θt,Kt) and observe reward rt
9: end for

5.9.3 Implication

For linear contextual bandits, we can show the LMC-TS algorithm generates samples approxi-
mately from the Gaussian posterior distribution. And the algorithm is similar to TS, but is more
computationally efficient.

Proposition 5.42. If the epoch length Kt in Algorithm 5.9.2 is sufficiently large, the distribution of
Kt convergences to Gaussian distribution N (V −1t bt, β

−1
t V −1t ) up to an arbitrary accuracy.

Proof. Use an existing result that the distribution convergence to πt ∝ exp(−βtLt(θ)).

Remark 5.43. Note that if L is the negative log-likelihood function, this exp(−L) is the likelihood.
With π(θ|r) ∝ π(θ)p(r|θ) we can see if π(θ) = constant, i.e. we have no prior knowledge, the
posterior π(θ|r) ∝ p(r|θ) = exp(−L). This tells us the distribution convergences to the real posterior.

For generalized linear bandits model, recall the negative likelihood (or density) function is

L(D; θ) =
|D|∑
ℓ=1

m(xTℓ θ)− yℓxTℓ θ − c(yℓ),

where ṁ = µ, and µ is the link function in GLM. And we can calculate the gradient and Hessian of
L(D; θ) with respect to θ:

∇L(D; θ) =
|D|∑
ℓ=1

(µ(xTℓ θ)− yℓ)xℓ;

∇2L(D; θ) =
|D|∑
ℓ=1

µ̇(xTℓ θ)xℓx
T
ℓ .

So the posterior of θ has the form πt ∝ exp(−βtLt(θ)). Similarly, the distribution of iterates
θt,Kt in Algorithm 5.9.2 convergences to πt. In other words, it convergences to the true posterior
distribution if the epoch length Kt of the inner loop is sufficiently large.

For neural contextual bandits or deep bandits, where reward function f(x, θ∗) is a neural network
with x as its input and θ∗ as the collection of all weight matrices.
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We can choose flexible loss functions based on the belief in the prior and posterior distributions
to boost the empirical performance. One possible choice is

Lt(θ) =

t−1∑
i=1

(f(xi, θ)− ri)2 + λ∥θ∥2,

where λ > 0.

Remark 5.44. Just like regression analysis, we can use linear, log-linear, logistic, neural network ...
to fit the real function. Here we can choose the f(x, θ) as a neural network to fit.

5.9.4 Theoretical Analysis

Assumption 5.45. There is an unknown parameter θ∗ ∈ Rd such that for any arm x ∈ X ⊆ Rd,
the reward is r(x) = xT θ∗ + ξ, where ξ is assumed to be a R-subGaussian random variable for some
constant R > 0.

Theorem 5.46. Let δ ∈ (0, 1), choose algorithm parameter as:

Kj = κj log(3R
√
2dT log(T 3/δ)),

β−1j = 4(R
√
d log(T 3/δ)),

κj = λmax(Vj)/λmin(Vj).

Then with probability 1− δ, it holds that

R(T ) ≤ CRd log(1/δ)
√
dT log3(1 + T/(λd)),

where C > 0 is an absolute constant that is independent of the problem.
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5.10 On Frequentist Regret of Linear Thompson Sampling

I leave out proofs in this paper since I think the proof details of counter-examples is not so useful.
And I find them a little boring. I’d like to read something new and interesting first.

Recall that linear Thompson sampling samples θt ∼ N (θ̂t, rV
−1
t ), where r = Θ(d) a constant, for

example r = R
√
9d ln(T/δ) if the time horizon T is known or r = R

√
9d ln(T/δ) if T is unknown.

And

Vt = I +
t−1∑
s=1

xsx
T
s

θ̂t = V −1t

t−1∑
s=1

rsxs.

Then xt = argmaxx∈Xt
⟨θt, x⟩.

This corresponds to assuming the noise Gaussian with variance r and choosing prior Q = N (0, rI),
see last notes or the paper [AG13] for details.

The frequentist regret of this algorithm is Õ(d
√
dn), which is worse than LinUCB by a factor

√
d.

The increase regret is caused by the choice of noise and prior distribution model, which
assumes the variance is r = Θ(d) rather than r = 1. The reason to do this comes from the
analysis, which works by showing the algorithm is ‘optimistic’ with reasonable probability. Examples
in this paper shows without this blowup(i.e. inflation) of variance, the regret may be linear.

We first give a sufficient condition for sub-linear regret:

Theorem 5.47. If Lin-TS where the posterior distribution is inflated by a positive parameter ι, i.e.
sample Θ̃t ∼ N (Θ̂t, ι

2Σt), satisfies

P( sup
A∈At

⟨A, Θ̃t⟩ ≥ sup
A∈At

⟨A,Θ∗⟩|Θ∗,Ft) ≥ p, (5.4)

whenever ∥Θ̂t −Θ∗∥Σ−1
t
≤ ρ, we then have

Regret(T, πLinTS) ≤ Õ(
ρι

p

√
dT ).

Recall
sup
A∈At

⟨A, Θ̃t⟩ − sup
A∈At

⟨A,Θ∗⟩ ≥ ⟨A∗t , Θ̃t −Θ∗⟩.

Therefore a sufficient condition for Eq.(5.4) is that

P(⟨A∗t , Θ̃t −Θ∗⟩ ≥ 0|Θ∗,Ft) ≥ p

whenever whenever ∥Θ̂t −Θ∗∥Σ−1
t
≤ ρ.

Remark 5.48. This condition assumes the best arm would be over-estimated with probability larger
than a constant, which would cause it be chosen. If the best arm is under-estimated, i.e. the estimated
reward of the best arm is not big enough, we will choose sub-optimal arm with high probability.
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So a counter-example in which LinTS would fail must violate this sufficient condition which gives
us intuition on how to construct counter-examples.

Then the paper gives two examples to show if we choose inflation parameter ι = 1, i.e. choose
unit variance of prior and noise, Lin-TS will suffer a linear regret.

Then the paper propose an algorithm which adapts the inflation parameter in each round. Define

ρt :=

√
2 log

(
det(Σ−1t ) det(0.1Id)

− 1
2

0.0001

)
+
√
d. (5.5)

Algorithm 20 Thompson Sampling with Adaptive Inflation (TS-AI)
1: Require: Inflation parameter ι and thinness threshold Ψ.
2: Initialize Σ1 ← λI and Θ̂1 ← 0
3: for t = 1, 2 · · · do
4: Observe At
5: if ϕ(Σt) > Ψ then
6: Sample Θ̃t ∼ N (Θ̂t, ρ

2
tΣt) where ρt is defined in Eq.(5.5)

7: else
8: Sample Θ̃t ∼ N (Θ̂t, ι

2Σt)
9: end if

10: Ãt ← argmaxA∈At
⟨A, Θ̃t⟩

11: Observe reward Yt
12: Σ−1t+1 ← Σ−1t + ÃtÃ

T
t

13: Θ̂t+1 ← Σt+1(Σ
−1
t Θ̂t + ÃtYt)

14: end for

This algorithm is proved to have Õ(d
√
T ) regret. While analyzing performance of TS, they even

improve OFUL algorithms by use smaller confidence sets. This do not improve the optimal regret
bound but lead to improved empirical performance of the OFUL algorithm.
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5.11 Thompson Sampling with Less Exploration is Fast and Optimal

First I’d like to record two concepts: asymptotically optimal and minimax optimal.
For a fixed multi-armed bandit instance, an agent has a set of K arms to play with, where each

arm i ∈ [K] is associated with a reward distribution with an unknown mean value µi. When T goes
to infinity, the regret of any algorithm is at least

C(µ) log(T )(1− o(1)))

for some constant
C(µ) =

∑
i>1

∆i

KL(µi, µ1)
.

A bandit algorithm is said to be asymptotically optimal if its regret can be uppper bounded by
C(µ) log(T )(1− o(1))) for some constant C(µ).

When the time horizon T is fixed, no algorithm can achieve a worst-case regret lower than
C
√
KT for some universal constant C. Here the worst-case regret is defined as the maximum regret

of the algorithm on any possible bandit instance. A bandit algorithm that achieve the worst-case
regret O(

√
KT ) is said to be minimax optimal.

Introduction part in this paper is well-written. It describes pros and cons of different
TS-based algorithms used in multi-armed bandit problems. Then it proposes a new algorithm:ϵ-TS,
which is fast and optimal.

Algorithm 21 ϵ-Exploring Thompson Sampling
Initialize the prior distributions.
For all i ∈ [K], µ̂i(1) = 0 and Ti(1) = 0.
for t = 1, 2, · · · , T do

For all i ∈ [K], update the posterior, and obtain

ai(t) =

{
θi(t) ∼ P iPosterior with prob.ϵ
µ̂i(t) with prob.1− ϵ.

Pull the arm At = argmaxi∈[K] ai(t), and observe the corresponding reward rt;

For all i ∈ [K], Ti+1(t) = Ti(t) + 1{i = At}, µ̂i(t+ 1) =
Ti(t)µ̂i(t) + rt1{i = At}

Ti(t+ 1)
.

end for

Theorem 5.49. For Gaussian, Bernoulli, Poisson, and Gamma reward distributions, and ϵ ∈
[1/K, 1], there exists a universal constant C > 0 such that the regret of ϵ-TS is bounded as follows:

Rµ(T ) ≤ C(
√
V KT log(eKϵ)) + 2

∑
i>1

∆i,

where V = σ2 for Gaussian, V = 1/4 for Bernoulli, V = µ1 for Poisson and V = µ21 for Gamma.
Moreover,

lim
T←∞

Rµ(T )

log T
=
∑
i>1

∆i

KL(µi, µ1)
.
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Remark 5.50. For ϵ = 1, this implies TS is minimax optimal up to a factor of
√
logK and is

asymptotically optimal. For ϵ = 1/K, this implies that 1/K-TS is simultaneously minimax and
asymptotically optimal.
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5.12 Parallelizing Thompson Sampling

This batched algorithm is intuitive. For instance, if we want to do a vaccine testing experiment,
in each batch we collect some action-reward pairs then update the model. We cannot update the
model parameters every time before we make a decision because of the high cost.

In batched TS algorithm, we use TS but update θ(a),∀a ∈ [N ] only if ka = 2la for some arm
a ∈ [N ].

Algorithm 22 Batched Thompson Sampling
Initialize: ka = 0, la = 0, ∀a ∈ [N ], batch ← ∅
for t = 1, 2, · · · , T do
θa(t) ∼ Da(t),∀a ∈ [N ]
a(t) := argmaxa∈[N ] θa(t).
ka(t) ← ka(t) + 1

if ka(t) < 2la(t) then
batch ← batch ∪{a(t)}

else
la(t) = la(t) + 1
Query(batch) and recieive rewards
Update Da(t) ∀a ∈ batch
batch ← ∅

end if
end for

Theorem 5.51. The total number of batches carried out by B-TS is at most O(N log T ).

Proof. For each arm a ∈ [N ], the number of batches related to this arm (meaning the batch ends
because of ka = 2la) is at most O(log T ). Now we have N arms, so the number of batches is at most
O(N log T ).

Theorem 5.52 (Regret Bounds with Beta Priors). B-TS achieves the problem-dependent asymptotic
optimal regret and worst-case regret R(T ) = O(

√
NT lnT ) with O(N log T ) batches.

As we instantiate B-TS with Gaussian priors, the regret bound slightly improves.

Theorem 5.53 (Regret Bounds with Gaussian Priors.). B-TS achieves E[R(T )] = O(
√
NT lnT )

with O(N log T ) batch queries.

Batch Minimax Optimal Thompson Sampling (B-MOTS) achieves the optimal minimax regret
bound of O(

√
NT ), as well as the asymptotic optimal regret bound for Gaussian rewards, with only

O(N log Tbatches).

Remark 5.54. Compared with TS, MOTS just clip the sample by a confidence range (−∞, τa(t)),
where

τa(t) = µ̂a(t) +

√
α

ka(B(t))
log+(

T

Nka(B(t))
).

To understand this, we know TS with less exploration can be optimal.

60



Theorem 5.55. B-MOTS is minimax optimal and matches the problem-dependent lower bound
log(T )Σa:∆>0

1
∆a

up to a multiplicative factor 1/ρ.

For linear contextual bandits, they design a batched algorithm.

Theorem 5.56. The B-TS-C algorithm achieves the total regret of

R(T ) = O(d3/2
√
T (ln(T ) +

√
ln(T ) ln(1/δ))

with probability 1− δ with O(N log T ) batch queries.
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5.13 An Analysis of Ensemble Sampling

For complex models, exact posterior may be computationally intractable. Ensemble sampling (ES)
can serve as a practice approximation to TS.

Remark 5.57. Langevin TS solves the problem that we might may be able to calculate the posterior
but the sample step is hard to implement. It samples approximately from the real posterior. ES solves
the problem that we cannot even calculate the posterior.

This is a general framework of Ensemble Sampling:

Algorithm 23 Ensemble Sampling
Input: number of models M and prior P(θ ∈ ·)
Sample: θ̃0,1, . . . , θ̃0,M ∼ P(θ ∈ ·)
for t = 0, 1, . . . do

Sample: mt ∼ unif{1, . . . ,M}

Execute:At ∼
{
argmax
a∈A

aT θ̃t,mt

}
Observe: Rt+1,At

Update: θ̃t,m → θ̃t+1,m∀m ∈ [M ]
end for

For linear bandits (though we don’t need ensemble sampling for this setting because TS for linear
bandit is efficient), we begin by sampling M model parameter θ̃0,1, . . . , θ̃0,M i.i.d. ∼ N (µ0,Σ0). (It
could natural here to let µ0 = 0 and Σ0 = σ20I.) Then we sample one model uniformly from M
models and choose an action which maximize the expected reward under this model:

At = argmax
a∈A

θTt At

and observe reward Rt.
Finally, we update M parameters independently. One possible procedure is maintain a covariance

matrix Vt and statistics bt:

Vt = Σ0 +
t−1∑
i=1

AtA
T
t /σ

2

bt =

t−1∑
i=1

RtAt,

Vt+1 = Vt +AtA
T
t /σ

2,

Recall that in LinTS we use ridge regression estimator θ̂t = V −1t bt. Then sample θ̃t ∼
N (θ̂t, vV

−1
t ).

But we generate model parameters incrementally according to

θ̃t,m = V −1t

(
Vtθ̃t−1,m +At(Rt +Wt,m)/σ

2
)
,
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for m = 1, . . . ,M , where (Wt,m) are m independent N (0, σ2) random variables.
This is intuitive for linear setting, as it seems like LinTS. But for complex model we cannot

derive closed form solution for θ̂t. So there is another approach for understanding.
It is easy to verify the resulting parameter satisfy:

θ̃t,m = argmin
ν

(
1

σ2

t−1∑
i=1

(Rt +Wt,m −ATt ν)2 + (ν − θ̃0,m)TΣ−10 (ν − θ̃0,m)

)
,

which admits an intuitive interpretation: each θ̃t,m is a model fit to random perturbed observations
(the first term) a randomly perturbed prior (the second term).

We can compare it with ridge regression here:

θ̃t,m = argmin
ν

(
1

σ2

t−1∑
i=1

(Rt −ATt ν)2 + λ∥ν∥2
)

Theorem 5.58. Under ensemble sampling,

Regret(T ) ≤ ι
√
dTH(A∗) + ηT

√
K log(6TM)

M
,

where ι =

√
2

(
max
a∈A

aTΣ0a+ σ2
)

= O(1) and η = 2

√
E
[
max
a∈A

(aT θ)2
]
+ σ2 = O(

√
min{d, logK}).

So

Regret(T ) ≤ O

(√
dTH(A∗) + T

√
min{d, logK}K log(6TM)

M

)
.
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5.14 Learning to Optimize via Information-Directed Sampling

This paper is where IDS born. It leaves some open problems. The most important is it requires
significantly more compute time.

It is worth noting that we refer to IDS as a design principle rather than an algorithm. The reason
is that IDS does not specify steps to be carried out in terms of basic computational operations but
only an abstract objective to be optimized.

Some notations:

It(X1;X2) = DKL(P((X1, X2) ∈ ·|Ft)∥P(X1 ∈ ·|Ft)P(X2 ∈ ·|Ft))
gt(a) = It(A

∗;Yt,a)

∆t(a) = E[Rt,A∗ −Rt,a|Ft]
gt(π) = Σa∈Aπ(a)gt(a)

∆t(π) = Σa∈Aπ(a)∆t(a).

Note that they are random variables due to their dependence on the conditional probability measure
P(·|Ft). Let D(A) denote the set of probability distributions over A.

The policy πIDS = (πIDS1 , πIDS2 , . . .) is defined by

πIDSt = argmin
π∈D(A)

{
Ψt(π) :=

∆t(π)
2

gt(π)

}
. (5.6)

Remark 5.59. Consider TS algorithm: P(At ∈ ·|Ft) = P(A∗ ∈ ·|Ft). This is trying to minimize

∆t(π) = Ea∼πE[Rt,A∗ −Rt,a|Ft]

by choosing At
d
= A∗|Ft.

Remark 5.60. Given history Ft, It(A∗;Yt,a) = H(A∗|Ft)−H(A∗|Ft, Yt,a). So maximize this mutual
information, is to select an action such that minimize the entropy of posterior distribution of A∗

after observing Yt,a (i.e. H(A∗|Ft, Yt,a) = H(A∗|Ft+1)).

Figure 1: Reduce the uncertainty
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Example 5.61 (a revealing action). Let A = {0, 1, . . . ,K} consists of K + 1 actions and suppose
that θ is drawn uniformly at random from a finite set Θ = {1, . . . ,K} of K possible values. Consider
a problem with bandit-feedback Yt,a = Rt,a. Under θ, the reward of action a is

Rt,a =


1 θ = a

0 θ ̸= a, a ̸= 0

1

2θ
a = 0

Example 5.62 (Sparse linear model).

Then we can establish regret bounds for information-directed sampling.
General bound:

Proposition 5.63. For any policy π = (π1, π2, . . .) and time T ∈ N,

E[Regret(T, π)] ≤
√
Ψ̄T (π)H(A∗)T ,

where

Ψ̄T (π) :=
1

T

T∑
t=1

Eπ[Ψt(πt)].

Corollary 5.64. For a deterministic λ ∈ R such that Ψt(πt) ≤ λ a.e. for each t ∈ {1, . . . , T}, then

E[Regret(T, π)] ≤
√
λH(A∗)T .

Since Ψt(π
IDS
t ) ≤ Ψt(π

TS
t ), where πTS is the Thompson sampling policy, it is enough to bound

Ψt(π
TS
t ). So the implied bounds are the same as those established for TS. But IDS outperforms TS

in simulation, and it is sometimes provably much more information efficient.

Assumption 5.65 (Uniformly bounded rewards).

sup
y∈Y

R(y)− inf
y∈Y

R(y) ≤ 1.

Here are some results that we can get from information theoretic analysis of TS.

Proposition 5.66 (Worst-case bound). There is always an action sampling distribution π ∈ D(A)
such that ∆t(π)

2 ≤ (|A|/2) gt(π). In that way, Ψt(π
IDS
t ) ≤ |A|/2 a.s. Then,

E[Regret(T, πIDS)] ≤
√

1

2
|A|H(A∗)T .

Proposition 5.67 (Full information). Under full information, Ψt(π
IDS
t ) ≤ 1

2
.

Proposition 5.68 (Linear feedback). If A ⊂ Rd,Θ ⊂ Rd, and E[Rt,a|θ] = aT θ for each action
a ∈ A, then Ψt(π

IDS
t ) ≤ d/2 a.s. .
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5.14.1 Computation methods

For concrete settings, we need some computation methods to implement our abstract algorithm.
We will focus on the problem of generating an action At given the posterior distribution over θ at
time t.

To implement IDS-algorithm, we need two steps:

• Evaluating/approximate the information ratio: some efficient algorithms can be devised
to implement IDS for various problem classes, but some applications call for extremely fast
computation. So we need some approximation methods.

• Optimizing the information ratio: choose the policy πt = argmin
π

(πT∆)2

πT g
and action

at ∼ πt.

The following result shows this optimization problem is a convex optimization problem and
surprisingly, has an optimal solution with at most two non-zero components.

Proposition 5.69. For all ∆, g ∈ RK+ such that g ̸= 0, the function π 7→ (πT∆)2/πT g is convex.
Moreover, this function is minimized by some π∗ with at most two non-zero components.

Proof. Proof of this proposition relies on basic convex optimization and some interesting tricks.

Algorithm 24 finiteIR(L,K,N,R, p, q)
Θa ← {θ|a = argmaxa′ Σyqθ,a′R(y)}
p(a∗)← Σθ∈Θa∗p(θ)
pa(y)← Σθp(θ)qθ,a(y)
pa(a

∗, y)← Σθ∈Θa∗p(θ)qθ,a(y)
R∗ ← ΣaΣθ∈Θa∗Σyp(θ)qθ,a(y)R(y)

ga ← Σa∗,ypa(a
∗, y) log

pa(a
∗, y)

p(a∗)pa(y)
∆a ← R∗ − Σθp(θ)Σyqθ,a(y)R(y)
Return: ∆, g

Then we discuss some useful approximation concepts. One approach to addressing this challenge
is to replace integrals with sample-based estimates.

It can sometimes be helpful to replace the information ratio with alternative information measures
that adequately address these issues for more specialized classes of problems.

Variance-based information ratio, which is suitable for some problems with bandit feedback,
satisfies our regret bounds for such problems, and can facilitate design of more efficient numerical
methods.

Use data-processing inequality and Pinsker’s inequality to get

gt(a) ≥ 2Var(Et[Rt,a|A∗]) := 2vt(a).

So we can define variance-based information ratio by

(πT∆)2

πT v
.
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Algorithm 25 SampleIR(K, q,R,M, θ1, . . . , θM )

Θ̂a ← {m|a = argmaxa′ Σyqa′,θmR(y)}
p̂(a∗)← |Θ̂a∗ |/M
p̂a(y)← Σmqθm,a(y)/M
p̂a(a

∗, y)← Σm∈Θ̂a∗
qa,θm(y)/M

R̂∗ ← Σa,yp̂a(a, y)R(y)

ga ← Σa∗,yp̂a(a
∗, y) log

p̂a(a
∗, y)

p̂(a∗)p̂a(y)
∆a ← R∗ −M−1ΣmΣyqθm,a(y)R(y)
Return: ∆, g

And actions with high variance vt(a) must yield substantial information about which action is
optimal.

The next proposition establishes that variance-based IDS satisfies the bounds on the information
ratio given before.

Proposition 5.70. Suppose supy R(y)− infy R(y) ≤ 1 and

πt ∈ argmin
π

∆t(π)
2

vt(π)
,

then Ψt(πt) ≤ |A|/2. And for linear setting with feature dimension d, Ψt(πt) ≤ d/2.

Drawbacks:

• Computationally demanding;

• Whether IDS attains the lower bound;

• Understanding of information complexity, whether information is a right form;

• Derive lower bounds use information theoretic methods.

5.14.2 Extensions

There are some extension problems where IDS can be used.

• Pure exploration: it seems strange to minimize E[mina∈A∆T (a)];

• Use information gain about θ;

• A tunable version of IDS.
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5.15 An Information-Theoretic Analysis of Thompson Sampling

In order to better understand this set of methods, I think I must read this paper that originally
proposed the information ratio.

Definition 5.71 (Information ratio).

Γt =
Et[R(Yt,A∗)−R(Yt,At)]

2

It(A∗; (At, Yt,At))

.

Proposition 5.72 (General regret bound). For any T ∈ N, if Γt ≤ Γ̄ a.s. for each t ∈ {1, . . . , T},
then

E[Regret(T, πTS)] ≤
√
Γ̄H(A∗)T .
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5.16 Frequentist IDS algorithms

I sort out frequentist Information-Directed Sampling methods through these papers [KK18, KLVS21]
and this thesis [Kir21].

Here are examples where classical UCB and TS algorithms fail to gain information.

Example 5.73 (Choice between low and high noise. ). Action space A = S × {ρ1, ρ2}, where
0 < ρ1 < ρ2 <∞. Just copy any action to get a low noise version and a high noise version. In this
setting, choosing (s, ρ1) over (s, ρ2) yields a more efficient solution. But UCB and TS fain to do this.

Example 5.74 (Extreme linear bandits). Take a linear bandit problem in Rd, and add a set of d
basis vectors to the action set, such that observations from these actions have no (or infinitesimal
small) observation noise. By scaling the new basis vectors, one can also achieve that none of the new
actions is optimal. Still, if these actions are played first, one can have vanishing regret after d steps,
but again UCB and Thompson Sampling fail to take these actions.

Next we introduce a frequentist framework:

∀λ ∈ R, E[eλϵt |Ft−1, xt] ≤ exp(
λ2ρ2t
2

)

γT = ess sup
FT

T∑
t=1

It(xt)

Ψt(µ) =
Eµ[∆(x)|Ft−1]2

Eµ[It(x)|Ft−1]

For a fixed policy π with sampling distribution πt, we write Ψt = Ψ(πt), and with slight abuse of
notation, we define Ψt(x) = Ψt(δx).

Theorem 5.75 (Regret bound for randomized policies). Let S = maxx∈X ∆(x), and let Ψt, γt as
defined above. Then, for any policy, with probability at least 1− δ, at any time T ≥ 1, it holds that

RT ≤
5

4

√√√√ T∑
t=1

Ψt

(
2γT + 4γT log

2

δ
+ 8γT log(4γT ) + 1

)
+ 4S log

(
8π2T 2

3δ
(log(T ) + 1)

)
.

If also It(xt) ≤ 1 holds for all t ≥ 1, then with probability at least 1− δ, at any time T ≥ 1,

RT ≤
5

4

√√√√ T∑
t=1

Ψt

(
2γT + 4 log

2

δ
+ 8 log(4) + 1

)
+ 4S log

(
8π2T 2

3δ
(log(T ) + 1)

)
.

Proof. We can rewrite the regret

RT =

T∑
t=1

∆t =

T∑
t=1

E[∆t|Ft−1] +
T∑
t=1

(∆t − E[∆t|Ft−1]) .

Then bound the first term like before in Bayesian setting, and the second term use a new martingale
difference sequence concentration inequality.
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For the first part, note that

T∑
t=1

E[∆t|Ft−1] =
T∑
t=1

√
Ψt

√
E[It|Ft−1] ≤

√√√√ T∑
t=1

Ψt

T∑
t=1

E[It|Ft−1]

.
Again, we need to bound a martingale difference sequence E[It|Ft−1]− It such that we can make

use of
T∑
t=1

It ≤ γT to bound the term E[It|Ft−1].

So we need the following lemma to show that, for any non-negative stochastic process Xt, with

high probability the sum of conditional means
T∑
t=1

E[Xt|Ft−1] is not much larger than
T∑
t=1

Xt.

Lemma 5.76 (Concentration on conditional mean). Let Xt be any non-negative stochastic process

adapted to a filtration {FT }, and define mt = E[Xt|Ft−1] and MT =
T∑
t=1

mt. Further assume that

Xt ≤ bt for a fixed, non-decreasing sequence (bt)t≥1 and let (lt)t≥1 be any fixed, positive sequence.
Then, with probability at least 1− δ, for any T ≥ 1,

T∑
t=1

mt −Xt ≤

√√√√2(bTMT + lT ) log(
1

δ

(bTMT + lT )
1/2

l
1/2
T

).

Further, if bT ≥ 1, with probability at least 1− δ for any T ≥ 1 it holds that,

T∑
t=1

mt ≤ 2
T∑
t=1

Xt + 4bT log
1

δ
+ 8bT log(4bT ) + 1

.

Theorem 5.77 (Regret bound for deterministic policies). Let the sequence (xt)
T
t=1 be generated by

any deterministic policy. Then, at any time T ≥ 1, the regret is bounded by RT ≤
√
ΣTt=1ΨtγT .

Proof. Since Ψt =
∆(xt)

2

It(xt)
, we can simply apply Cauchy-Schwarz inequality.

Frequentist Information Directed Sampling We look for policies such that the regret-information
ratio is as small as possible. But in frequentist framework, ∆(xt) can not be directly calculated.
However, if a confidence band lt(x), ut(x) is available, containing the true function values f(x)
with probability 1− δ, one can construct an upper bound ∆+

t (x) = maxx′ ut(x
′)− lt(x), such that

∆(x) ≤ ∆+
t also holds with probability 1− δ. Then we define a surrogate of the regret-information

ratio

Ψ+
t (µ) =

Eµ[∆+
t (x)|Ft−1]2

Eµ[It(x)|Ft−1]
.

We define Information Directed Sampling(IDS) to be a policy πIDS , which depends on the choice
of information functions (It)t≥1, such that at any time t,

πIDSt ∈ argmin
µ∈P(X )

Ψ+
t (µ).
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Define Deterministic Information Directed Sampling(DIDS) to be a deterministic policy which at
tiem t choose an action

xDIDSt ∈ argmin
µ∈X

Ψ+
t (µ).

We can choose information function as follows:

• IFt = log

(
1 +

σt(x)
2

ρ(x)2

)
, where σt(x) is the confidence widths of the reward f(x). This is

motivated by the Bayesian setting with Gaussian prior and likelihood, where IFt is up to a
constant factor equal to the conditional mutual information I(f ;x|Ft−1).

• IUCBt = log
(

σt(xUCB
t )2

σt(xUCB
t |x)2

)
, where we define σt(xUCBt |x) as the confidence width at xUCBt after

x has been evaluated.

• ITSt (x) = log

(
σt(x

TS
t )2

σt(xTSt |x)2

)
.

• IEt =
1

m

m∑
i=1

log

(
σt(x

TS
t,i )

2

σt(xTSt,i |x)2

)
.

Corollary 5.78. With probability at least 1− δ, the regret of IDS-F and IDS-UCB is bounded by

O

(
RβδT

√
T (γT + log

1

δ
)

)
, and DIDS by RT = O

(
RβδT
√
TγT

)
.

About discussion about this regret bound, see the table in page 11 of [KK18].

5.17 Asymptotically Optimal Information-Directed Sampling

Surprisingly, results show that no algorithm based on optimism or Thompson sampling will ever
achieve the optimal rate, and indeed, can be arbitrarily far from optimal, even in very simple cases.
This is a disturbing result because these techniques are standard tools that are widely used for
sequential optimisation.

In paper The end of optimism, there is a theorem stating that

Theorem 5.79.

lim sup
n→∞

RUCB

log(n)
=

∑
x∈A:∆x>0

2

∆x
.

For actions x, z ∈ X , we denote by Hzx = {ν ∈M : ⟨x− z, ν⟩ ≥ 0} the convex set of parameters
where the reward of x is at least the reward of z. The set of alternative parameters is C∗ =

⋃
x ̸=x∗ Hx

∗
x

.

Theorem 5.80 (Asymptotical lower bound). Any consistent algorithm π for the linear bandit setting
with Gaussian noise has regret Rn(θ∗, π) at least

lim inf
n→∞

Rn(θ
∗, π)

log(n)
≥ c∗(θ∗),
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where c∗ is the solution to the following convex program,

c∗ = inf
α

∑
x∈X

α(x)⟨x∗ − x, θ∗⟩ s.t. min
ν∈C∗

1

2
∥ν − θ∗∥2V (α) ≥ 1. (5.7)

α is an allocation over actions, and V (α) =
∑

x∈X α(x)xx
T .

IDS design principle

µs = argmin
µ∈P(X )

{
Ψs(µ)

def
=

∆̂s(µ)
2

Is(µ)

}
.

Algorithm 26 Asymptotically Optimal Information-Directed Sampling
s← 1
for t=1,2,. . . do
Vs ← Σs−1i=1xix

T
i + 1d

θ̂s ← V −1s Σs−1i=1xiyi
x̂s ← argmaxx∈X ⟨x, θ̂s⟩
βδ,1/δ ← (

√
2 log δ−1 + log det(Vs) + 1)2

∆̂s(x)← maxz∈X

(
⟨z, θ̂s⟩+ β

1/2
s,s2
∥z∥V −1

s

)
− ⟨x, θ̂s⟩

ν̂s(z)← argmin
ν∈Hx̂s

z
∥ν − θ̂s∥2Vs

ms ← min
z ̸=x̂s

1

2
∥ν̂s(z)− θ̂s∥2Vs

ηs ← minl≤sm
−1/2
l log(k)

qs(z)← exp(−ηs∥ν̂s(z)− θ̂s∥2Vs)

Is(x)←
1

2
Σz ̸=x̂sqs(z)

(
|⟨ν̂s(z)− θ̂s, x⟩|+ β

1/2
s,s2
∥x∥V −1

s

)2
if ms ≥

1

2
βs,t log(t) then

Choose x̂s
else

µs ← argminµ∈P(X )

∆̂s(µ)
2

Is(µ)
Sample xs ∼ µs, observe ys = ⟨xs, θ∗⟩+ ϵs
s← s+ 1

end if
end for

Gap Estimates
All estimated quantities are defined using data collected in exploration rounds, whereas observation

data from exploitation rounds is discarded. Ignoring data from exploitation rounds leads to a much
more balanced data set.

Let θ̂s = V −1s Σs−1i=1xiyi be the regularized least squares estimator with covariance matrix Vs =
Σs−1i=1 + 1d.

Concentration coefficient:

β
1/2
s,1/δ =

√
2 log δ−1 + log det(Vs) + 1.
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Let ν̂s(z)← argmin
ν∈Hx̂s

z
∥ν − θ̂s∥2Vs be the closest parameter to θ̂s in Vs-norm for which z is better

than x̂s.
Exploitation condition:

ms =
1

2
min
z ̸=x̂s
∥ν̂s(z)− θ̂s∥2Vs ≥

1

2
βs,t log(t).

The gap estimate:

∆̂s(x)← max
z∈X

(
⟨z, θ̂s⟩+ β

1/2
s,s2
∥z∥V −1

s

)
− ⟨x, θ̂s⟩.

Then with high probability, ∆(x) ≤ 2∆̂s(x). Let δs := ∆̂s(x̂s), then ∆̂s(x) = ⟨x̂s − x, θ̂s⟩+ δs. We
also refer to δs as the estimation error. The UCB action is xUCBs := argmaxx∈X ⟨x, θ̂s⟩+β

1/2
s,s2
∥x∥V −1

s
.

Information Gain
The information gain is set to

Is(x) :=
1

2
Σz ̸=x̂sqs(z)

(
|⟨ν̂s(z)− θ̂s, x⟩|+ β

1/2
s,s2
∥x∥V −1

s

)2
,

where the mixing distribution qs ∈ P(X ) is defined so that

qs(z) ∝

0 if z = x̂s

exp
(
−ηs

2
∥ν̂s(z)− θ̂s∥2Vs

)
otherwise

The learning rate is ηs ← minl≤sm
−1/2
l log(k), where ms ← min

z ̸=x̂s

1

2
∥ν̂s(z)− θ̂s∥2Vs .

Regret Bounds

Theorem 5.81 (Worst-case regret). The regret of Algorithm 26 is bounded by

Rn ≤ O(d
√
n log)(n).

Theorem 5.82 (Gap-dependent bound). The regret of Algorithm 26 is bounded by

Rn ≤ O(∆−1mind
3 log(n)2).

Theorem 5.83 (Asymptotic regret). Algorithm 26 is asymptotically optimal,

lim
n→∞

Rn
log(n)

= c∗,

where c∗ is the solution to the lower bound 5.8 and we assume that ∥x∗∥ > 0.
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5.18 Improved Self-Normalized Concentration in Hilbert Spaces: Sublinear
Regret for GP-UCB

In this problem, there is some unknown function f∗ : X → R of bounded norm in H, where X ∈ Rd
is a bounded set. Feedback Yt = f∗(Xt) + ϵt.

Assumption 5.84. There is some constant D such that ∥f∗∥H ≤ D and for every t ≥ 1, ϵt is
σ-subGaussian condition on σ(Y1:t−1, X1:t).

Fact 5.85. Let Mt be a non-negative supermartingale with respect to some filtration. Suppose
EM0 = 1. Then, for any δ ∈ (0, 1), we have

P(∃t ≥ 0 :Mt ≥
1

δ
) ≤ δ.

An identical result holds in infinite-dimensional Hilbert spaces:

Theorem 5.86 (Self-normalized concentration in Hilbert spaces). Defining St := Σts=1ϵsfs and
Vt := Σts=1fsf

T
s , we have that for any ρ > 0, the process (Mt)t≥0 defined by

Mt :=
1√

det(idH + ρ−1Vt)
exp

{
1

2
∥(ρidH + Vt)

−1/2St/σ∥2H
}

is a nonnegative supermartingale with respect to (Ft)t≥0. Consequently, by the last Fact, for any
δ ∈ (0, 1), with probability at least 1− δ, simultaneously for all t ≥ 1, we have

∥(Vt + ρidH)
−1/2St∥H ≤ σ

√
2 log

(
1

δ

√
det(idH + ρ−1Vt)

)
.

Sketch of proof. In infinite dimension Euclidean spaces, the result holds. Then use methods of taking
the limit.

Algorithm 27 Gaussian Process Upper Confidence Bound (GP-UCB)
Input: regularization parameter ρ > 0, norm bound D, confidence bounds (Ut)t≥1, and time
horizon T .
V0 = ρidH , f0 = 0, E0 = {f ∈ H : ∥f∥H ≤ D}
for t = 1, . . . , T do

Let (Xt, f̃t) := argmaxx∈X ,f∈Et−1
(f, k(·, x))H

Play action Xt and observe reward Yt := f∗(Xt) + ϵt
Set Vt = Vt−1 + k(·, Xt)k(·, Xt)

T and ft = (Vt + ρidH)
−1ΦTt Y1:t

Set Et = {f ∈ H; ∥(Vt + ρidH)
1/2(ft − f)∥H ≤ Ut}

end for

Theorem 5.87. With probability at least 1− δ, the regret of Algorithm above satisfies

RT = O
(
γT (ρ)

√
T +

√
ργT (ρ)T

)
.

If the kernel k experiences (C, β)-polynomial eigendecay for some C > 0 and β > 1, taking ρ = T
1

1+β

yields RT = Õ(T 3+β
2+2β ), which is always sub-linear in T .
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Corollary 5.88. Matérn kernel with smoothness ν > 1/2 in dimension d experiences
(
C,

2ν + d

d

)
-

eigendecay, for some constant C > 0. Thus, GP-UCB obtains a regret rate of RT = Õ
(
T

ν+2d
2ν+2d

)
.

Contributions:

• First, we show how to extend self-normalized concentration inequalities for finite-dimensional,
Euclidean spaces directly to the case of Hilbert spaces through carefully making a truncation
argument.

• Second, we demonstrate the importance of regularization in the kernelized bandit problem.
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5.19 The End of Optimism? An Asymptotic Analysis of Finite-Armed Linear
Bandits

We analyse the asymptotic regret and show matching upper and lower bounds on what is achievable.
Surprisingly, our results show that no algorithm based on optimism or Thompson sampling will
ever achieve the optimal rate. In fact, they can be arbitrarily far from optimal, even in very simple
cases. This is a disturbing result because these techniques are standard tools that are widely used
for sequential optimisation, for example, generalised linear bandits and reinforcement learning.

This paper mentions that frequentist IDS may be a promising candidate to overcome
the failures of optimism and Thompson sampling.

Definition 5.89 (Consistent). A policy is consistent if for all θ and p > 0 it holds that Rπθ (n) = O(np)
or o(np).

Assuming consistency is required to rule out policies that are defined to always play a fixed
action x∗, which incurs zero regret when x∗ is indeed optimal, but linear regret on other instances.

Theorem 5.90 (Asymptotically lower bound). Let π be a consistent policy, θ ∈ Rd such that there
is a unique optimal arm in A. Let

Ḡ−1n = E

[
n∑
t=1

AtA
T
t

]
.

Then

lim sup
n→∞

log(n)∥x∥2
Ḡ−1

n
≤ ∆2

x

2
,

and also
lim inf
n→∞

Rπθ (n)

log(n)
≥ c(A, θ),

where c(A, θ) is the solution to the optimisation problem:

inf
α∈[0,∞)A

∑
x∈A−

α(x)∆x subject to

∥x∥2H−1(α) ≤
∆2
x

2
, ∀x ∈ A−,

where H(α) = Σx∈Aα(x)xx
T and A− = A− {x∗}.

Remark 5.91. The intuition underlying the optimisation problem is that no consistent strategy can
escape allocating samples so that the gaps of all suboptimal actions are identified with high confidence,
while a good strategy will also minimise the regret subject to the identifiability condition.

In the former paper, c∗ is the solution to the following convex program,

c∗ = inf
α

∑
x∈X

α(x)⟨x∗ − x, θ∗⟩ s.t. min
ν∈C∗

1

2
∥ν − θ∗∥2V (α) ≥ 1. (5.8)

α is an allocation over actions, and V (α) =
∑

x∈X α(x)xx
T .
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Remark 5.92. This form has the intuition that choose arms to discriminate the true parameter and
alternative parameter.

Example 5.93 (Finite armed bandits). Suppose k = d and A = {e1, . . . , ek} be the standard basis
vectors. Then

c(A, θ) =
∑

x∈A:∆x>0

2

∆x
,

which recovers the lower bound for MAB.

Example 5.94. Let α > 1 and d = 2 and A = {x1, x2, x3} with x1 = (1, 0) and x2 = (0, 1) and
x3 = (1− ϵ, αϵ) and θ = (1, 0). Then c(A, θ) = 2α2 for all sufficiently small ϵ. And c(A−{x2}, θ) =
2ϵ−1 ≫ c(A, θ). Determining which of x1 and x3 is optimal is easy by playing x2.
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5.20 Langevin Thompson Sampling with Logarithmic Communication: Bandits
and Reinforcement Learning

This paper use Langvin Monte Carlo in TS, and batched methods to solve bandits and RL problems.
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5.21 Bandits with heavy tail/ sub-exponential rewards

5.21.1 Bandits with heavy tail

The vast majority of authors assume that the unknown distributions are sub-Gaussian, i.e.

Eeλ(X−EX) ≤ e
vλ2

2 .

A paper before assumes that there exists a convex function ψ such that for all λ ≥ 0,

Eeλ(X−EX) ≤ eψ(λ).

Then one can show the so-called ψ-UCB strategy satisfies the following regret guarantee:

Rn ≤
∑
i:∆i>0

(
4∆i

ψ∗(∆i/2) lnn+ 2

)
,

where ψ∗ is the Legendre-Fenchel transform of ψ, defined by ψ∗(ε) = sup
λ∈R

(λε− ψ(λ)).

In fact, in this paper, the author shows this bound is sub-optimal when the tails are heavier than
sub-Gaussian. Then they show when the distributions are heavy tailed, under weak assumptions,
regret bounds of the same form as in the sub-Gaussian case may be achieved.

To be more specific, when the reward distributions have a finite moments of order 1 + ε for some
ε > 0, they derive a strategy that satisfies

Rn ≤
∑
i:∆i>0

(
8

(
4

∆i

) 1
ε

log n+ 5∆i

)
.

They also prove matching lower bounds that shows that the proposed strategies are optimal up
to constant factors.

For each estimator of reward mean they describe their performance in terms of concentration to
the mean and deduce the corresponding regret bound.

We need to find new mean estimators rather than empirical mean, in order to get the concentration
property in the following assumption.

Assumption 5.95. Let ε ∈ (0, 1] be a positive parameter and let c, v be positive constants. Let
X1, . . . , Xn be i.i.d. random variables with finite mean µ. Suppose for all δ ∈ (0, 1), there exists an
estimator µ̂ = µ̂(n, δ) such that with probability at least 1− δ,

µ̂ ≤ µ+ v1/(1+ε)
(
c log(1/δ)

n

)ε/(1+ε)
,

and also with probability at least 1− δ,

µ ≤ µ̂+ v1/(1+ε)
(
c log(1/δ)

n

)ε/(1+ε)
.

Then we can propose the algorithm, Robust UCB:
Define the index

Bi,s,t = µ̂i,s,t + v1/(1+ε)
(
c log t2

s

)ε/(1+ε)
,

for s, t ≥ 1 and Bi,0,t =∞.
At time t, draw an arm maximizing Bi,Ti(t−1),t.
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Remark 5.96. We just change the estimator and the way to get this similar concentration result,
then use UCB.

Theorem 5.97. The regret of Robust UCB satisfies

Rn ≤
∑
i:∆i>0

(
2c

(
v

∆i

) 1
ε

log n+ 5∆i

)
.

Also, if n is sufficiently large,

Rn ≤ n
1

1+ε
(
4Kc log n

) ε
1+ε v1/(1+ε).

Choices of estimators:

1. Truncated empirical mean (Bernstein);

2. Median of means (Hoeffding);

3. Catoni’s M estimator.

5.21.2 MAB with sub-exponential rewards

Propose new algorithms to improve UCB.
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5.22 Double Explore-then-Commit: Asymptotic Optimality and Beyond

Consider asymptotic lower bound for multi-armed bandits. If gaps ∆i(i = 1, 2, . . . ,K) are known to
the decision maker in advance, the lower bound is

lim infT→∞
Rµ(T )

log T
≥
∑
i:∆i>0

2

∆i
.

When gaps ∆i(i = 1, 2, . . . ,K) are unknown to the decision maker in advance, the asymptotic lower
bound turns to

lim infT→∞
Rµ(T )

log T
≥
∑
i:∆i>0

1

2∆i
.

For two-armed bandits, the minimax optimal rate is Õ(
√
T ) and the instance dependent optimal

rate is Õ(∆ + log(T∆2)/∆).
The algorithms Double explore then commit has four-stages in common:

1. Explore: Pull all arms for τ1 rounds;

2. Exploit: Commit to the arm with the largest average reward;

3. Explore: Explore the unchosen arm in Stage 2;

4. Exploit: Commit to the arm with the largest average reward.

Algorithm 1, 2 in this paper deal with known/unknown gap respectively, and they can be shown to
have low round complexity. Since Algorithm 2 can just guarantee asymptotically optimality, the
authors combine it with a finite time optimal algorithm to ensure simutaneously(finite and infinite
time) optimal.

I learn the idea that two optimal algorithm can be combined to be simultaneously
minimax/instance dependent and asymptotically optimal from this paper.

To get this, one need to design an asymptotically optimal algorithm, then modify it to ensure the
finite time optimality. But the combined algorithm need to be the same as the original asymptotically
optimal algorithm with high probability as T →∞.

Then they convert these DETC algorithms into batched versions in known/unknown gap setting.
They prove that they not only achieve the asymptotically optimal regret bound but also enjoy Õ(1)
round complexity.

Remark 5.98. In this section they only focus on deriving the asymptotically optimality along with
a constant round complexity in the batched bandits setting. For minimax and instance dependent
regret bounds, it is proved that any algorithm achieving the minimax optimality or instance dependent
optimality will cost at least Ω(log log T ) or Ω(log T/ log log T ) rounds respectively. How to extending
simultaneously optimal Algorithm 3 to the batched bandit setting is an interesting open question.
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5.23 Best Arm Identification

Three settings about pure exploration have been considered in the literature:

1. Simple regret;

2. Best-Arm Identification with a Fixed Confidence;

3. Best-Arm Identification with a Budget.

Definition 5.99 (ε-optimal arm). An arm a is called ϵ-optimal if its expected reward is larger than
the highest expected reward minus ϵ.

Definition 5.100. An algorithm is a (ε, δ)-PAC algorithm for the multi armed bandit with sample
complexity T , if it outputs an ε-optimal arm a′, with probability at least 1− δ, when it terminates,
and the number of time steps the algorithm performs until it terminates is bounded by T .

In the former paper: The Naive algorithm is a (ε, δ)-PAC algorithm with sample complexity

Õ
(
(
n

ε2
) log(

n

δ
)
)
.

The Median elimination algorithm is a (ε, δ)-PAC algorithm with sample complexity

Õ
(
(
n

ε2
) log(

1

δ
)
)
.

Successive elimination algorithm with known/unknown bias choose best arm with probability at
least 1− δ with sample complexity

Õ

(
log(

n

δ
)

n∑
i=2

1

∆2
i

)
and

Õ

( n∑
i=1

log( n
δ∆i

)

∆2
i

)
respectively.

Definition 5.101 (Lower bound). Let δ ∈ (0, 1). For any δ-PAC strategy and any bandit model
µ ∈ S,

Eµ[τδ] ≥ T ∗(µ) log(
1

4δ
),

where

T ∗(µ)−1 := sup
ω

inf
λ∈Alt(µ)

( K∑
a=1

ωaKL(µa, λa)

)
.
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Algorithm 28 Track-and-Stop
Input: δ and βt(δ)
Initialize: Choose each arm once and set t = k
while Zt(δ) < βt(δ) do

if mint∈[k] Ti(t) ≤
√
t then

Choose At+1 = argmint∈[k] Ti(t)
else

Choose At+1 = argmax(tα̂∗i (t)− Ti(t))
end if
Observe reward Xt+1, update statistics and increment t.

end while
Return ψ = i∗(ν̂(t)),τ = t.

Theorem 5.102. Track-and-stop policy is sound(δ-PAC) asymptotically optimal with respect to
sampling complexity.
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5.24 Sequential Batch Learning in Finite-Action Linear Contextual Bandits

5.24.1 Learning with Adversarial Contexts

In this section, authors propose a sequential batch UCB algorithm. It just merges LinUCB and
batched algorithms. To validate the conditional independence assumption, it uses a master algorithm
called SupSBUCB and a regression algorithm BaseSBUCB.

Remark 5.103. The analysis of the algorithm needs a assumption that assumes for a fixed sequence
of selected contexts {xt,at}t∈[tm] up to time tm, the random rewards {rt,at}t∈[tm] are independent.
However, this assumption does not hold in the vanilla version of the algorithm. This is because a future
selected action at and hence the chosen context xt,at depends on the previous rewards. Consequently,
by conditioning on xt,at, previous rewards, say rτ1 , rτ2(τ1, τ2 < t) can become dependent. Note
the somewhat subtle issue here on the dependence of the rewards: when conditioning on xt,at, the
corresponding reward rt becomes independent of all the past rewards rττ < t. Despite this, when a
future xt′,at′ is revealed (t′ > t), these rewards (i.e. rt and all the rewards prior to rt) become coupled
again: what was known about rt now reveals information about the previous rewards {rτ}τ<t, because
rt itself would not determine the selection of xt′,at′ : all those rewards have influence over xt′,at′ .
Consequently, a complicated dependence structure is thus created when conditioning on {xt,at}t∈[tm].
This lack of independence issue will be handled with a master algorithm. Using the master algorithm
to decouple dependencies is a standard technique in contextual bandits that was used in [CLRS11].

Assumption 5.104. K = O(poly(d)) and T ≥ d2.

Theorem 5.105. Let T,M and d be the learning horizon, number of batches and each context’s
dimension, respectively. Denote by polylog(T ) all the poly-logarithmic factors in T .

1. Under assumption above, there exists a sequential batch learning algorithm Alg = (T , π), where
T is a uniform grid defined by tm =

⌊
mT
M

⌋
and π is explicit defined in SupSBUCB algorithm,

such that

sup
θ∗:∥θ∗∥2≤1

Eθ∗ [RT (Alg)] ≤ polylog(T ) ·
(√

dT +
dT

M

)
.

2. Conversely, for K = 2 and any sequential batch learning algorithm, we have:

sup
θ∗:∥θ∗∥2≤1

Eθ∗ [RT (Alg)] ≥ c ·
(√

dT +
(T√d
M
∧ T√

M

))
,

where c > 0 is a universal constant independent of (T,M, d).

Corollary 5.106. Under adversarial contexts, Θ(
√
dT ) batches acieve the fully online regret Θ̃(

√
dT ).

5.24.2 Learning with Stochastic Contexts

Assumption 5.107. At each time t ∈ [T ], each context xt,a is drawn from N(0,Σ), with a possible
unknown covariance matrix Σ. The covariance matrix Σ satisfies κ

d ≤ λmin(Σ) ≤ λmax(Σ) ≤ 1
d

for some numerical constant κ > 0, where λmin(Σ), λmax(Σ) denote the smallest and the largest
eigenvalues of Σ, respectively.
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Theorem 5.108. Let T,M = O(log log T ) and d be the learning horizon, number of batches and
each context’s dimension, respectively. Denote by polylog(T ) all the poly-logarithmic factors in T .

1. Under assumptions above, there exists a sequential batch learning algorithm Alg = (T , π) such
that:

sup
θ∗:∥θ∗∥2≤1

Eθ∗ [RT (Alg)] ≤ polylog(T ) ·
√
dT

κ

(
T

d2

) 1

2(2M−1)

.

2. Conversely, even when K = 2 and contexts xt,a ∼ N (0, Id/d) are independent over all a ∈
[K], t ∈ [T ], for any M ≤ T and any sequential batch learning algorithm, we have:

sup
θ∗:∥θ∗∥2≤1

Eθ∗ [RT (Alg)] ≥ c ·
√
dT

(
T

d2

) 1

2(2M−1)

.

Corollary 5.109. Under stochastic contexts, it is necessary and sufficient to have Θ(log log(T/d2))
batches to achieve the fully online regret Θ̃(

√
dT ).

Algorithm 29 Sequential Batch Pure-exploitation
Input: Time horizon T ; context dimension d; number of batches M .

Set: a = Θ

(√
T ( T

d2
)

1

2(2M−1)

)
.

Grid choice: T = {t1, · · · , tM}, with t1 = ad, tm = ⌊a
√
tm−1⌋, m = 2, 3, · · · ,M .

Initialization: A = 0 ∈ Rd×d, θ̂ = 0 ∈ Rd×d.
for m = 1 to M do

for t = tm−1 + 1 to tm do
choose at = argmaxa∈[K] x

T
t,aθ̂.

receive reward rt,at .
end for
A = A+

∑tm
t=tm−1+1 xt,atx

T
t,at .

θ̂ = A−1
∑tm

t=tm−1+1 rt,atxt,at .
end for

To handle with the dependency of rewards, we need to design another master algorithm. But
this is much easier than SupLinUCB. Instead of using all past contexts and rewards before tm, we
only use the past observations inside the time frame T (m) ⊊ [tm] to construct the estimator. The
key property of the time frame is the disjointness, i.e., T (1), · · · , T (M) are pairwise disjoint. The the
conditional independency condition holds within each time frame t(m).
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Algorithm 30 Batched Pure-exploitation (with sample splitting)
Input: Time horizon T ; context dimension d; number of batches M .

Set: a = Θ

(√
T ( T

d2
)

1

2(2M−1)

)
.

Grid choice: T = {t1, · · · , tM}, with t1 = ad, tm = ⌊a
√
tm−1⌋, m = 2, 3, · · · ,M .

Initialization: Partition each batch into M intervals evenly, i.e., (tm, tm+1] =
⋃M
j=1 T

(j)
m .

for m = 1 to M do
if m=1 then

choose at = 1 and receives reward rr,at for any t ∈ [1, t1].
else

for t = tm−1 + 1 to tm do
choose at = argmaxa∈[K] x

T
t,aθ̂.

receive reward rt,at .
end for

end if
T (m) =

⋃m
m′=1 T

(m)
m′ .

A = A+
∑tm

t=tm−1+1 xt,atx
T
t,at .

θ̂ = A−1
∑tm

t=tm−1+1 rt,atxt,at .
end for
Output: resulting policy π = (a1, · · · , aT ).
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