

TLBtree: A Read/Write-Optimized Tree Index for
Non-Volatile Memory

Yongping Luo1, Peiquan Jin1*, Qinglin Zhang2, Bin Cheng2

1 University of Science and Technology of China, Hefei 230027, China
2 Tencent, Shenzhen 518057, China

jpq@ustc.edu.cn

Abstract—With the rapid advance of Non-Volatile Memory
(NVM), it has been a hot topic to improve traditional tree indices
like B+-tree for NVM. However, due to the high cost of the writing
operations on NVM, few existing tree indices can offer high
performance for both read and write operations. For example, the
WB-tree with unsorted leaf nodes is write-optimized but has poor
search performance. To address this problem, in this paper, we
propose a read/write-optimized tree index called TLBtree (Two-
Layer B+-tree) for NVM. TLBtree consists of a read-optimized top
layer and a write-optimized bottom layer. We notice that the top
levels of a B+-tree are read frequently, while the bottom levels are
written frequently. Motivated by such an observation, we propose
to design a read-optimized top layer and a write-optimized layer
for the TLBtree index. We offer several read optimizations to
implement the top layer and employ write-optimized structures to
organize the bottom layer. With this mechanism, we can alleviate
the read and write tradeoff of the index on NVM. We conduct
extensive experiments on a server with Intel Optane DC Persistent
Memory and compare TLBtree with state-of-the-art NVM-based
tree indices, including WB-tree, Fast&fair, and FPtree. The
results show that TLBtree outperforms other indices in write-
intensive workloads by up to 1.7x throughput and achieves
comparable read-only performance with read-optimized indices.

Keywords—Hybrid index, Read/write optimization, B+-tree, Non-
volatile memory

I. INTRODUCTION
B+-tree has been a famous index structure in database

systems [1, 2], which attracted much research attention to
improve its read/write performance on modern hardware [2-7].
However, most previous work either focused on optimizing read
performance [2-4] or improving write performance [5-7]. Few
studies were toward optimizing both the read and write
performance of the B+-tree.

The emerging of Non-Volatile Memory (NVM) technologies
makes it more challenging to optimize the read/write
performance of in-memory indices. We attribute it to two main
reasons [8]: (1) Available NVM products like the Intel Optane
DC Persistent Memory exhibit a slightly higher read/write
latency than DRAM. (2) Programmers have to issue instructions
like cacheline flush (clflush) and memory fence (mfence)
to guarantee the durability and failure-atomicity of writes, which
will deteriorate the effect of cache locality. As the write
operations on NVM are costly, it is necessary to reduce NVM
writes when designing NVM-friendly indices. Following this
rule, Chen et al. proposed the WB-tree [9] with unsorted nodes
to reduce NVM writes. However, WB-tree is not read-
optimized, resulting in worse search performance than the
ordinary B+-tree. Bztree [10] uses the costly PMwCAS [11]
instruction and the shadowing techniques to enable the

persistence of node splitting/merging operations. Fast&fair [12]
proposed node-level detection algorithms to avoid accessing
inconsistent states, but it needs to shift records when doing insert
and delete operations, bringing additional persistent cost. WB-
tree and Fast&fair sacrifice write performance for achieving
good read performance. Some other researchers [13-16]
proposed only to persist leaf nodes on NVM and let interior
nodes reside in DRAM. Such a design needs to rebuild the tree
structure first, which is not time-efficient. Besides, the internal
nodes will occupy a large amount of DRAM space. As a result,
most of the previous B+-tree-like indices designed for NVM fail
to provide high performance for both read and write operations.

To address this problem, in this paper, we first propose a Two-
Layer Persistent Index (TLPI) architecture (as shown in Fig. 1)
to improve both the read and write performance of NVM-based
indices. The TLPI architecture divides an index into two layers,
including a top layer and a bottom layer. The top layer is read-
optimized for fast retrieval, which is based on the fact that all
operations in the tree index have to go through the top layer
before reaching the bottom layer. Thus, the top layer is read
frequently and should be search-friendly. On the other hand, the
bottom layer in the TLPI architecture needs to be write-
optimized because a tree index has to write data into the bottom
layer, e.g., into the leaf nodes of the B+-tree. Also, as different
bottom nodes may have different write frequencies, the bottom
layer can contain different write-optimized sub-indices.

Figure 2 shows the read/write statistics for each layer in an in-
memory B+-tree that runs on a randomly-accessing workload.
We can see that the last three bottom layers, including the leaf
layer, absorb about 99% of the writes. This observation
motivates the design of a write-optimized bottom layer in the
TLPI architecture. As a result, the TLPI architecture decouples
read optimizations and write optimizations of an NVM-oriented
index by the two-layer structure. Therefore, it is feasible to

Figure 1. Two-Layer Persistent Index (TLPI) architecture composed of a
search-optimized top layer and a NVM-friendly write-optimized bottom layer.

1889

2021 IEEE 37th International Conference on Data Engineering (ICDE)

2375-026X/21/$31.00 ©2021 IEEE
DOI 10.1109/ICDE51399.2021.00172

improve both the read and write performance of the index by
devising appropriate index structures for the top and the bottom
layer.

Based on the TLPI architecture, we propose a new NVM-
friendly index called Two-Layer B+-tree (TLBtree). TLBtree
follows the two-layer design of TLPI but presents an efficient
implementation of each layer. Briefly, the top layer of TLBtree
is cache-friendly and the bottom layer is write-atomic with
efficient support to log-free node splitting. The bottom layer
grows horizontally with new records inserted. Sub-indices in the
bottom layer are linked together. When it reaches a threshold,
the top layer will be rebuilt. We also present a gapped leaf-node
structure in the top layer to reduce the rebuilding frequency. In
summary, we make the following contributions in this paper:

(1) We noticed that most writes in a tree index are focused on
a few bottom levels, based on which we present a two-layer
persistent index architecture named TLPI for optimizing both
the read and write performance of NVM-oriented indices.

(2) We propose a new read/write-optimized TLBtree
following the TLPI architecture. TLBtree is composed of a read-
optimized top layer and a write-optimized bottom layer. We
devise efficient structures for each layer and invent a gapped
leaf-node structure for the top layer to improve insertions and
splits performance. TLBtree does rebuilding in a back ground
manner and need not to block on-going and successive read and
write operations. As a result, TLBtree can offer high read and
write performance when running on pure NVM.

(3) We conduct extensive experiments on a real NVM-based
environment with 1 TB of NVM and 384 GB of DRAM and
compare TLBtree with three state-of-the-art NVM-based
indices. The result shows that TLBtree outperforms its
competitors in write-intensive workload and achieves
comparable read-only performance, suggesting the two-layer
persistent index architecture's efficiency.

The rest of the paper is structured as follows. Section Ⅱ
describes the background and related work. Section Ⅲ gives an
overview of TLBtree’s design. In Section Ⅳ, we report the
comparative experimental results on a real NVM environment,
and finally, in Section Ⅴ, we conclude the paper and discuss
future research directions.

II. BACKGROUND AND RELATED WORK

A. Non-Volatile Memory
NVM is an industry-changing storage class memory

technology, offering DRAM-level access latency and byte-
addressability along with durability upon failure. NVM has a
higher density and lower energy consumption compared to
DRAM [17]. In other words, NVM is like a blend of two storage
paradigms: byte-addressable DRAM and block-addressable
storage (e.g., HDD/SSD). These properties make NVM highly
promising for building a whole new database system that resides
in persistent memory [18]. There are several distinct categories
of NVM technology, among which Phase Change Memory [19]
and 3DX-point [20] are the most promising candidates at
delivering a huge capacity of storage class memory. Intel
launched its commercial NVM products based on 3DX-point
technology, namely Optane DC Persistent Memory [21]. Optane
is so attractive that it has been used in many real commercial
companies. According to some former experience with the
Optane module [8], the Optane Memory module exhibits 3x read
or write latency compared to the DRAM module. Its R/W
bandwidth is much worse than the latter, primarily when tasked
with write requests.

There are mainly two significant design challenges to apply
NVM technology to existing in-memory data structures:

(1) Durability. Durability means data is durably stored in
NVM when a write operation has finished. However, writes are
not immediately persistent on NVM because of the CPU caching
effect. Users should explicitly issue cacheline-flush instructions
(e.g., clflushopt, clwb) and Memory fence instructions
(e.g., sfence). Traditionally, we use the write-ahead log to
guarantee durability, while this method is not economical on
byte-addressable NVM as the data is redundantly stored. A log-
free design, therefore, is more practical for NVM-based systems.

(2) Consistency (Failure Atomicity). Consistency means
operations are atomic concerning other threads or failures. The
atomicity unit in modern CPU is a word (e.g., 64 bits), while
most writing operations touch multi-words in different
cachelines. For example, a regular insert operation of B+-tree
may trigger a node splitting that modifies several nodes. Modern
CPUs exploit out-of-order-execution techniques to accelerate
instruction execution, and CPU cache is essentially a black box
to make things even harder. Thus, when a crash or power-loss
occurs, a partial write operation may be persistent on the NVM
devices, leading to an inconsistent state.

The literature [16] categorized software schemes to achieve
data persistence in NVM memory, including logging,
shadowing, PMwCAS, and NVM Atomic Writes (NAW). In the
logging scheme, a log record is flushed into NVM first, and a
consistent state can be recovered from the logs. Shadowing does
not modify the original data in-place. It makes a new copy and
utilizes a CAS operation that swaps the new and old data copy.
The PMwCAS technique makes it possible to perform a CAS
operation upon multi-words and guarantee persistence. It uses
persistent records to save intermediate states. NAW is a scheme
that ensures failure-atomicity manually by cacheline flush and
memory fence instructions. Each NAW operation comprises
several out-of-place updates and an 8 bytes in-place update to

Figure 2. Reads and writes distribution in each level of an in-memory B-tree

(16 fan-outs, 8 levels) running a randomly-accessing workload. Reads are
even distributed in each level and writes are centered at the bottom layers

1890

visualize all the updates. Note that there is another way to
achieve failure-atomicity termed helping mechanism, which is
adopted by Fast&fair [12]. In this scheme, one thread's
inconsistent state can be detected, tolerated, or fixed by another
thread. In general, NAW is the most simple, flexible, and light-
weighted among all schemes. Therefore, many researchers have
adopted the NAW scheme [9, 13-16]. We also adopt it in our
design.

B. Persistent B+-tree Indices
A persistent B+-tree index is a B+-tree that resides in NVM-

based memory and can recover from a normal reboot or failures
to consistent states. It will not leave the index in an inconsistent
state unless it can tolerate or fix it. The existing B+-tree on NVM
are CDDS-tree [22], WB-tree [9], Fast&fair [12], Bztree [10],
clfBtree [23], NV-tree [13], FPtree [14], DPTree [15], and LB+-
tree [16].

Some of the persistent B+-tree indices reside on pure NVM
memory to guarantee instant recovery. The CDDS-tree [22], to
the best of our knowledge, is the first persistent B+-tree under
NVM. CDDS-tree uses a multi-version scheme to provide
consistency without the additional overhead of logging or
shadowing when doing node splitting or node merging. To
maintain a sorted node failure-atomically, it needs to shift slots
carefully with clwb and sfence instructions. The WB-tree [9]
proposes to use an indirect vector to maintain an ordered node.
At the same time, slots can be physically unsorted, which helps
to simplify insert operation and reduce persisting costs as well.
It also uses a WAL log to guarantee the persistence of structure
modified operations. Thus, it can recover to a consistent state
under the guard of minor log records. The Fast&fair [12] is a
novel persistent B+-tree that maintains a sorted node by shifting
slots and splits/merges nodes in a failure-tolerable manner.
Other threads can detect the inconsistency and function correctly.
To make things easier, The Bztree [10] uses the PMwCAS
technique when performing multi-word atomic updates, making
it the first lock-free persistent B+-tree index structure. But the
PMwCAS and shadowing technique bring significant overhead.

Other persistent B+-tree indices choose a selectively
persistent strategy, given that using leaf nodes can reconstruct
the inner search tree. They only guarantee leaf node’s
persistence, and all the interior nodes either store in DRAM or
ignore failure-atomicity and durability constraints. The NV-tree
[13] is the first NVM B+-tree index that adopts this strategy.
NV-tree is composed of a nearly fixed inner search tree and a
persistent link-list of leaf nodes. All the leaf nodes are unsorted.
They accept writing requests in an append-only strategy,
releasing the complexity of failure-atomicity. NV-tree needs to
frequently rebuild the inner search tree, which is time-
consuming on a real NVM system. FPtree [14] proposed to store
fingerprints of the keys in the node header to accelerate
searching in an unsorted leaf node. A node searching first probes
the fingerprint array, then checks the slots with matching
fingerprints. Note that FPtree uses the Hardware Transaction
Memory (HTM) for concurrent coordination of inner nodes.
DPTree [15] adopted a dual-stage index architecture and
appended each insert atomically to a write-optimized adaptive
log. When the log reaches a size threshold, it is merged to a giant
base tree atomically. LB+-tree [16] is similar to FPtree. It also
uses a fingerprint array to achieve better leaf node search

performance. They also put forward an entry-moving scheme
and a log-free node split strategy to optimize insert performance.
As reported in [16], LB+-tree performs better than FPtree,
making itself prominent among this selective persistent B+-tree
index.

III. DESIGN OF TLBTREE
The main advantage of the TLPI architecture is that its top

layer and the bottom layer are decoupled. Therefore, the top
layer and the bottom layer can adopt different index designs. It
enables us to put together specific optimizations which may be
too complicated to coexist in an individual index. Following the
idea of TLPI, we present a new structure called TLBtree in this
section. TLBtree consists of two layers, namely a search-
optimized top layer and a write-optimized bottom layer. Figure
3 shows the structure of TLBtree. The search-optimized top
layer aims for fast retrieval of sub-indices, while the write-
optimized bottom layer aims to absorb insert and delete
operations efficiently. As a result, TLBtree is promising to
deliver both good read and write performance.

To make the top layer search-optimized, we linearize the top-
layer index into a contiguous array. Also, we need not store the
child pointers in inner nodes as we can calculate a child node's
position in the node array. That means each inner node is 100%
full and pointer-less. The leaf nodes in the top-layer index point
to the bottom layer, including many write-optimized sub-indices
linked together horizontally.

To make the bottom layer NVM-friendly and write-efficient,
we made the following designs:

(1) We choose an Optane-friendly node size to maximize the
total I/O bandwidth.

(2) Records are unsorted physically, but their order
information is stored indirectly inside the header. This design
enables append-only insertions.

(3) Insertions take two cacheline flushes, and deletions take
only one cacheline flush, significantly reducing the persistent
overhead.

(4) We propose a log-free splitting/merging mechanism to
avoid logging overhead when doing structure modifications.

The bottom layer has a height limit. When the size of a sub-
index in the bottom layer increases, we split the sub-index into
two sub-indices. The records in the new sub-index can be
accessed by the following steps:

(1) Locate the old sub-index.

Figure 3. Two-layer structure of TLBtree. The top layer is less-mutable,
cache-friendly and the bottom layer is a link-list of write-optimized trees.

1891

(2) Traverse horizontally by sibling pointer till the correct
sub-index.

(3) Access the corresponding record in the current sub-index.
The splitting of sub-indices may degrade read/write

performance. Therefore, we make several optimizations to
improve performance further. Firstly, we leave empty slots in
the top layer leaf nodes to absorb moderate sub-index splitting.
Secondly, when we find that traversal in the sub-indices link-list
is beyond a configurable threshold, we rebuild the top layer
using the link-list. Due to the decoupled structure of TLBtree,
the rebuilding procedure can be done in a background manner
without blocking any read and write operations.

IV. EVALUATION

A. Experiment Setting
Real NVM Environment. We ran our experiments on a

server with real NVM. The server contains 384 GB DRAM and
1 TB Optane DC memory, distributed upon two sockets. To
avoid the impact of NUMA effect on the experimental results,
we ran all programs using only one socket, which means that we
only use the CPU and NVM memory within the same socket.
The operating system on the server is CentOS with a kernel
version 5.8.7. A DAX-aware ext4 file system is created after
configuring all the Optane modules into app-direct mode. Then,
we mount the file system using DAX option. We utilize PMDK
1.8 to map files on Optane into virtual memory space and handle
basic memory allocation tasks.

Persistent Indices Compared. We compare six NVM-based
persistent indices that reside in NVM. They are WB-tree,
Fast&fair, FPtree, our write-optimized bottom layer index
(abbreviate as Wo-tree), and two variants of TLBtree structures,
including TLBtree_FO and TLBtree.
 WB-tree. The key-value pairs inside a WB-tree node are

not sorted. That reduces the cacheline-flush number of
insert operations but sacrifices search performance to
some extent.

 Fast&fair. The Fast&fair leverages a novel detecting
mechanism to tolerate inconsistency. All keys are sorted,
but it has to shift slots to maintain the order.

 FPtree. The FPtree adopts a selective persistent strategy
to guarantee the persistence of leaf nodes and puts all
inner nodes into DRAM.

 Wo-tree. The Wo-tree is a log-free, write-optimized
persistent B+-tree index. Similar to WB-tree, keys inside
a node are physically unsorted. However, Wo-tree
supports splitting and merge nodes without logging. It
further reduces the cacheline-flush number.

 TLBtree_FO and TLBtree. They both adopt Wo-tree as
the bottom layer, but they choose different top layer
indices. TLBtree_FO chooses Fast&fair as its top layer,
while TLBtree chooses our tailored read-optimized tree.
Both TLBtree_FO and TLBtree limit its bottom layer to
2, as it renders a subtle tradeoff between read
performance and write performance.

WB-tree, Fast&fair, and FPtree are three state-of-the-art
persistent indices for NVM-based memory, in which WB-tree
and Fast&fair are specially designed for NVM-only systems.
Our evaluation focuses on performance under an NVM-only

system, so we store all the nodes and auxiliary structures of each
index in Optane DC memory, including the inner nodes of
FPtree. Since WB-tree and FPtree are not open-source, we
implemented them delicately in the Optane environment.
Fast&fair is open-sourced, and we use its source codes in our
evaluation.

To make the comparison fair enough, we implement six
indices as close as possible. First, all the indices have the same
node size in the same comparison. Second, we use the same
interface to do memory allocation. We implemented a Persistent
Memory Allocator to allocate memory from the pool file on
Optane. It ensures that each node is 256 B aligned. It supports
address transformation from physical memory address to offset
inside the pool and vice versa, facilitating storing persistent
addresses into Optane. Finally, all the indices reside on pure
Optane memory and use clwb and sfence instructions to
guarantee persistence. Also, we reduce the WB-tree's additional
clwb instructions according to the advice in the literature [25].

Dataset. Without losing generality, we use an 8-byte key and
an 8-byte payload as the record content, which is compatible
with the configuration in Fast&fair. Since the B+-tree structure
is self-balanced and not sensitive to the data distribution, we
choose a random dataset as the initial dataset and build a
persistent B+-tree index upon it.

B. Overall Performance
In this section, we evaluate the single thread throughput of six

indices under different workloads. Each index is built upon
256MB non-duplicated random key-value pairs by calling the
inserting function iteratively. All six indices have a node size of
256B, making the comparison fair.

The workload consists of look-up queries and inserting
operations. According to the distribution of query keys, we
divide the workload into two categories, a random workload and
a skewed workload. In the random workload, the query keys are
under random distribution. In the skewed workload, the query
keys are under the Zipfan distribution, and we set the skewness
value to be 0.7 (high skew). In each category, we have read-only
queries (RO), read-write queries (RW, half of the query are
insert queries), and write-only queries (WO). The keys in a look-
up query are from the initial dataset, and we ensure that the keys
of insert operations are not in the index.

The overall result is shown in Fig. 4. WB-tree shows no
advantage over other indices. It has the worst read performance
and comparable write performance compared to other ones,
which is mainly because the keys in WB-tree are not sorted
inside a node, which incurs bad cacheline efficiency when
searching a node. Wo-tree does not store keys physically sorted
either, so it achieves a similar read performance as WB-tree.
However, Wo-tree delivers a speedup of 1.4x over WB-tree and
FPtree on write throughput. This advantage also holds for RW
workload. We can conclude that Wo-tree is write-optimized for
NVM memory, but it suffers from poor read performance.

For indices that contain sorted nodes, such as Fast&fair and
FPtree, they achieve the best read performance. But when the
query includes 50% insert operations, the query throughput
drops by 20% and 60% for Fast&fair and FPtree, respectively.
The write performance for FPtree is worse because it needs
logging to guarantee failure-atomicity when doing node
splitting. Moreover, FPtree is slightly slower than WB-tree

1892

when doing node splitting as it needs to sort the keys when
splitting a leaf node. We can conclude that FPtree is suitable for
read-intensive workload but has poor performance for write-
intensive workloads. Besides, FPtree does not persist inner
nodes and takes more time to recover than other indices. In
contrast, Fast&fair is slightly better than FPtree as it can achieve
comparable throughput on RW workloads.

Our proposed TLBtree candidates perform well on both read
and write workloads. They achieve comparable read-only
performance with Fast&fair and FPtree. Besides, on the RW and
WO workloads, they beat state-of-the-art indices. Combined
with Fast&fair and Wo-tree, TLBtree_FO exhibits similar write-
performance with Wo-tree and better read performance than
Wo-tree. That shows the advantage of TLPI on combining read-
optimized indices like Fast&fair and write-optimized indices
like Wo-tree elegantly. TLBtree further improves read
performance by using a tailored read-optimized top layer. The
result shows that TLBtree achieves similar read performance
with Fast&fair and up to 1.7x speedup on the write-only
workload compared to read-optimized indices. TLBtree beats its
competitors when query workload contains insert operations.

When query keys are under skew distributions, all indices get
slightly higher throughput. We attribute it to the effect of CPU
caches. Same as random workload, our Wo-tree, and TLBtree
maintain high write throughput. To be accurate, TLBtree
achieves about 1.6x/1.5x/1.8x/1.2x/1.2x speedup on write
performance compared to WB-tree/Fast&fair/FPtree/Wo-tree.

To sum up, the TLPI architecture can alleviate read and write
performance tradeoffs. Fast&fair and FPtree are read-optimized
but not attractive under insert operations. Wo-tree is write-
optimized but not suitable for read-intensive workloads. Our
TLBtree puts the read-optimized and write-optimized

ingredients together, and it shows the advantage of overall
performance.

C. Monitoring Hardware Behavior
In this section, we measure six indices' hardware behavior

under insert operations and look-up operations to reveal the
optimization of Wo-tree and TLBtree. We mainly monitor the
hardware behavior like cacheline flushes, L3 cache misses, and
branch misses by a program counter and the Linux Perf tool
[27]. The initial dataset is 256MB random key-value pairs, and
all indices use a node size of 256B. We amortize the value to
one operation and show results in Fig. 5.

Figure 5(a) is the cacheline-flush number incurred by one
insert operation. cacheline-flush number is a representative
metric for the persistent cost of NVM data structure. Most
formal researches focus on reducing the cacheline-flush number
[14-16]. As shown in Fig. 5(a), WB-tree and FPtree need four or
five cacheline flushes for one insert operation. This number is
higher than that of Fast&fair, which takes about three cacheline
flushes. Wo-tree is write-optimized, and it needs 2.7 cacheline
flushes to finish one insert operation. Compared to its
competitors, it reduces the cacheline-flush number of WB-tree,
Fast&fair, and FPtree by 40%, 16%, and 77%, respectively. The
result is confirmed in Fig. 4: FPtree has the largest cacheline-
flush number and then the worst write performance. TLBtree has
the similar cacheline-flush number with Wo-tree. Besides, with
the improvements of the search-optimized top layer, TLBtree
achieves the best write performance among all indices.

Figure 5(b) shows the L3 cache misses for one look-up query.
Because the memory access latency is orders of magnitude
slower than the cache access and CPU cost, the look-up cost is
highly impacted by L3 cache misses. FPtree exhibits the least

Figure 5: monitoring the hardware behavior of six indices under insert operations and look-up operations. (a) reports the average clflush number of one
insert operation, and (b) and (c) report the average L3 cache missing number and Branch missing number of one look-up operation.

Figure 4: Overall throughput of six indices under different workloads.

1893

L3 cache misses than the other indices because its inner node is
ordered and not failure-atomic. Therefore, FPtree achieves the
best read performance. Wo-tree has a slightly larger value of L3
cache misses, followed by the other four indices with a similar
value.

Figure 5(c) further shows the branch-miss number for one
look-up query. Besides L3 cache misses, the branch misses cost
is also an essential factor imfluencing the operation latency.
WB-tree use a slotArray to store the order information of
records, which leads to a higher branch misses number
compared to the other indices. The top layer of TLBtree is a
compact and pointer-less search tree, which is tailored for high
search performance. That accounts for lower branch misses of
TLBtree compared to Wo-tree and TLBtree_FO.

V. CONCLUSION
In this paper, we first propose a new kind of index architecture

named TLPI to improve both the read and write performance for
NVM-oriented indices. It divides the index into two layers,
namely a top layer and a bottom layer. The top layer is read-
optimized for fast retrieval because all searches have to go
through the top layer before reaching the bottom layer. Thus, the
top layer is read frequently and needs to offer high search
performance. On the other hand, the bottom layer in the TLPI
architecture needs to be write-optimized as 99% percent of the
writes are biased to the last 2-3 level.

Based on the idea of TLPI, we further propose a new NVM-
friendly index called TLBtree. TLBtree follows the two-layer
design of TLPI but presents an efficient implementation of each
layer. The top layer of TLBtree is cache-friendly, less mutable,
and the bottom layer is write-atomic and supports log-free node
splitting. The bottom layer grows horizontally with the
insertions of new records. When it reaches a threshold, we
rebuild the top layer. We also present a gapped leaf-node
structure and a delayed rebuilding strategy to reduce the
rebuilding cost. We conduct experiments on a real NVM
environment with 1TB of Intel Optane persistent memory and
384GB of DRAM, and compare TLBtree with a number of
existing indices. The results suggests the efficiency of the TLPI
architecture.

In the future, we will evaluate TLBtree on other kinds of
workloads, such as the OLTP and TPC-C workloads. We will
also consider using various kinds of existing index structures to
replace the top and bottom layers in the TLPI architecture. We
will experimentally reveal how current indices perform in the
TLPI architecture.

ACKNOWLEDGMENTS
This work is supported by the National Science Foundation

of China (no. 62072419 and no. 61672479) and Tencent.
Peiquan Jin is the corresponding author of this paper.

REFERENCES
[1] D. Comer. The ubiquitous B-tree. ACM Computing Surveys. 11(2):121–

137, 1979.
[2] P. Jin, C. Yang, C. S. Jensen, P. Yang, L. Yue. Read/write-optimized tree

indexing for solid-state drives. The VLDB Journal, 25(5): 695-717, 2016

[3] C. Yang, P. Jin, L. Yue, P. Yang. Efficient buffer management for tree
indexes on solid state drives. International Journal of Parallel
Programming. 44(1): 5-25, 2016

[4] L. Li, P. Jin, C. Yang, Z. Wu, L. Yue. Optimizing B+-tree for PCM-based
hybrid memory. In EDBT, 662-663, 2016

[5] P. Jin, P. Yang, L. Yue. Optimizing B+-tree for hybrid storage systems.
Distributed Parallel Databases, 33(3): 449-475, 2015

[6] L. Li, P. Jin, C. Yang, S. Wan, L. Yue. XB+-Tree: A novel index for
PCM/DRAM-based hybrid memory. In ADC, 357-368, 2016

[7] M. Bender, M. Farach-Colton, W. Jannen, R. Johnson, B. Kuszmaul, D.
Porter, J. Yuan, and Y. Zhan. An Introduction to Bε-trees and Write-
Optimization. USENIX Magazine, 40(5):22-28, 2015.

[8] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson. An
Empirical Guide to the Behavior and Use of Scalable Persistent Memory.
In FAST, 169-182, 2020.

[9] S. Chen, and Q. Jin. Persistent B+-trees in non-volatile main memory.
PVLDB, 8(7):786–797, 2015.

[10] J. Arulraj, J. J. Levandoski, U. F. Minhas, and P. Larson. Bztree: A high-
performance latch-free range index for non-volatile memory. PVLDB,
11(5):553–565, 2018.

[11] T. Wang, J. Levandoski, and P. Larson. Easy Lock-Free Indexing in Non-
Volatile Memory. In ICDE, 461-472, 2018.

[12] D. Hwang, W. Kim, Y. Won, and B. Nam. Endurable transient
inconsistency in byte-addressable persistent b+-tree. In FAST, 187–200,
2018.

[13] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He. NV-Tree:
Reducing consistency cost for NVM-based single level systems. In FAST,
167–181, 2015.

[14] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and W. Lehner. FPtree: A
hybrid SCM-DRAM persistent and concurrent b-tree for storage class
memory. In SIGMOD, 371–386, 2016.

[15] X. Zhou, L. Shou, K. Chen, W. Hu, and G. Chen. DPtree: differential
indexing for persistent memory. PVLDB, 13(4):421–434, 2019.

[16] J. Liu, S. Chen, and L. Wang. LB+Trees: optimizing persistent index
performance on 3DXPoint memory. PVLDB, 13(7):1078–1090, 2020.

[17] Y. Luo, Z. Chu, P. Jin, S. Wan. Efficient sorting and join on NVM-based
hybrid memory. In ICA3PP, 15-30, 2020

[18] A. Renen, V. Leis, A. Kemper, T. Neumann, T. Hashida, K.i Oe, Y. Doi,
L. Harada, and M. Sato. Managing Non-Volatile Memory in Database
Systems. In SIGMOD, 1541–1555, 2018.

[19] K. Chen, P. Jin, L. Yue. A novel page replacement algorithm for the
hybrid memory architecture Involving PCM and DRAM. In NPC, 108-
119, 2014

[20] 3D XpointTM: A breakthrough in non-volatile memory technology.
https://www.intel.com/content/www/us/en/architecture-and-
technology/intel-micron-3d-xpoint-webcast.html , 2020.

[21] Intel Optane Memory, https://www.intel.com/content/www/us
/en/architecture-and-technology/optane-memory.html, 2020.

[22] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell.
Consistent and durable data structures for non-volatile byte-addressable
memory. In FAST, 61–75, 2011.

[23] W. H. Kim, J. Seo, J. Kim, and B. Nam. 2018. ClfB-tree: Cacheline
Friendly Persistent B-tree for NVRAM. ACM Transactions on Storage.
Article 5, 1-17, 2018.

[24] P. L. Lehman, and S. B. Yao.Efficient locking for concurrent operations
on B-trees. ACM Transactions on Database Systems. 6(4):650–670, 1981.

[25] S. Pelley, P. M. Chen, and T. F. Wenisch. Memory persistency.
SIGARCH Computer Architecture News, 42(3):265–276, 2014.

[26] Intel Optane™ Persistent Memory 200 Series Brief
https://www.intel.com/content/www/us/en/products/docs/memory-
storage/optane-persistent-memory/optane-persistent-memory-200-series-
brief.html , 2020.

[27] Linux Perf Wiki, https://perf.wiki.kernel.org/index.php/Main_Page, 2020

1894

