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Abstract. Non-volatile memory (NVM) as a new kind of future memories has
a number of special properties such as non-volatility, read/write asymmetry, and
byte addressability. This makes it difficult to directly replace DRAM with NVM
in current memory hierarchy. Thus, a practical way is to construct hybrid memory
composed of both NVM and DRAM. Such hybrid memory architecture intro-
duces many new challenges for existing algorithms. In this paper, we focus on
improving sorting and join algorithms for DRAM-NVM-based hybrid memory.
In particular, we start with a theoretical study on the data placement issue in
DRAM-NVM-based hybrid memory systems and propose an optimal data place-
mentmodel to store data structures inDRAMandNVMduring the sorting process.
We present the theoretical proof to the optimal data placement model to ensure
the correctness of the model. Further, based on the optimal data placement model,
we propose a new NVM-aware sorting algorithm named NVMSort that adopts
heap structures to accelerate the sorting process. Comparedwith traditional sorting
algorithms, NVMSort is write-friendly andmore efficient on DRAM-NVM-based
hybrid memory. We further apply NVMSort into the traditional merge-sort join
algorithm to optimize merge-sort join on DRAM-NVM-based hybrid memory.
We conduct comparative experiments with existing sorting algorithms including
HeapSort and QuickSort. The results show that NVMSort is much faster than the
classical Heapsort and QuickSort. In addition, NVMSort is more NVM-friendly
as it can reducemore NVMwrites.When integrated into the traditional merge-sort
join algorithm, NVMSort also achieves the best performance.
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1 Introduction

The performance of traditional computer systems is highly limited by the high latency
between DRAM and disks. This has been widely regarded as the “storage wall” problem
[1]. Although building in-memory systems [2] seems to be a possible solution to the
storage-wall problem, the volatility ofDRAMmakes it difficult to tackle data consistency
and durability. Recently, the advance in non-volatile memory (NVM) [3] brings new
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opportunities to build NVM-based in-memory systems that can not only support in-
memory data processing but also ensure data consistency and durability. On the other
hand, traditional algorithms such as sorting algorithms and database join schemes, which
are designed either for disks or for DRAM, need to be revisited to suit for the special
properties of NVM.

NVM has some special properties [4–6]. First, differing from DRAM, it is non-
volatile, meaning that all data written into NVMwill not be lost when the host computer
is shut down. Second, differing from magnetic disks or solid-state drives (SSD) [7] that
only support block-based data accesses, NVM is byte addressable, which is similar to
DRAM. Third, NVM has a high level of density, which is comparable to SSD and higher
than NVM. To this end, NVM has the advantages of both disks and DRAM. Moreover,
NVM is more like a new kind of memory, but not a new type of disk. However, NVM
also has some limitations compared to DRAM and disks. Firstly, the read and write
latencies of NVM are not balanced. Particularly, NVM has the similar read latency as
DRAM, but its write latency is higher than that of DRAM. In addition, the endurance of
NVM is limited, meaning that after a certain number of writes (~108 at present), NVM
will become unstable. Thus, algorithms running on NVM have to be write-friendly.

Due to the special features of NVM, existing in-memory algorithms such as sorting
algorithms must be re-designed to make them efficient on NVM. However, it is not a
trivial task. There are a few challenges that need to be carefully considered. First, asNVM
has a lower write speed than DRAM, currently it is more reasonable to construct a hybrid
memory system composed of DRAM and NVM. In this hybrid-memory environment,
how to optimally place data in DRAM andNVM is a new and challenging issue. Second,
traditional external sorting algorithms like Merge Sort [8] are designed toward reducing
I/O operations on block-based disks or SSDs and are not suitable for byte-addressable
NVM. Traditional in-memory sorting algorithms [8] like Quick Sort or Heap Sort do
not consider the high-write-latency of NVM as well as the reduction of NVMwrites for
endurance. Thus, they cannot be applied to NVM. Here, the challenge is that reducing
NVM writes may lower the sorting performance of the algorithm. Therefore, we need
to devise new sorting schemes that are not only time efficient, but also write friendly.

In this paper, we focus on re-designing sorting algorithms on NVM and further
improving the sort join algorithm in database systems. We aim to devise a new sorting
algorithm that is not only time-efficient but also NVM friendly. Specially, we start with
a theoretical study on the data placement issue in DRAM-NVM-based hybrid memory
systems and propose an optimal data placement model to store data structures in DRAM
and NVM during the running of an algorithm. We present the theoretical proof to the
optimal data placement model to ensure the correctness of the model. Further, based on
the optimal data placement model, we propose a new sorting algorithm on NVM as well
as a new sort join algorithm. In summary, we make the following contributions in this
paper:

(1) We study the data placement issue on DRAM-NVM-based hybrid memory systems
and present an optimal data placement model for algorithms running on hybrid
memory. We theoretically prove that the proposed model can offer the best data
placement during the execution of algorithms.
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(2) We present a new sorting algorithm named NVMSort that is optimized for DRAM-
NVM-based hybrid memory. NVMSort is based on the optimal data placement
model and adopts heap structures to accelerate the sorting process. Compared with
traditional sorting algorithms, NVMSort is more efficient on DRAM-NVM-based
hybrid memory. In addition, NVMSort can reduce more NVM writes. We further
integrate the NVMSort algorithm into the traditional merge-sort join algorithm to
accelerate the join process on the hybrid memory.

(3) We conduct extensive experiments to verify the performance of NVMSort and
NVMSort-based join algorithm. Compared with QuickSort and HeapSort, the pro-
posed NVMSort has the best sorting performance. In addition, its NVM writes are
much fewer than that of QuickSort and HeapSort. Overall, NVMSort reaches a
better trade-off between time performance and NVM writes. When integrated into
the merge-sort join algorithm, NVMSort also shows better time performance and
is more NVM-friendly than its competitors.

2 Related Work

Recently, the big data concept leads to a special focus on the use of main memory.
However, the increasing capacity of main memory introduces many problems, such as
increasing of total costs and energy consumption [9]. Both academia and industries
are looking for new greener memory media. Emerging NVM technologies, such as
Phase Change Memory (PCM) and Resistive Memory (ReRAM), can provide faster
persistence than traditional disks and flash memory. NVMs can provide similar read
latency but higher write latency than DRAM. Like flash memory, the write endurance of
NVM is limited. Thus, reducing write operations to NVM is critical for software system
design [4–6].

NVM can provide better support for data durability than DRAM does. Further, it
differs from other media such as flash memory in that it supports byte addressability.
However, NVM has some limitations [3, 4], e.g., high write latency, limited lifecycle,
slower access speed than DRAM, etc. Therefore, it is not a feasible design to completely
replace DRAM with NVM in current computer architectures. A more exciting idea is
to use both NVM and DRAM to construct hybrid memory systems, so that we can
utilize the advantages from both media [10, 11]. NVM has the advantages of low energy
consumption and high density, and DRAM can afford nearly unlimited writes. Specially,
NVM can be used to expand the capacity of main memory, whereas DRAM can be
used as a buffer for NVM. Presently, both the architectures are hot topics in academia
and industries. Many issues need to be further explored. The biggest challenge for
DRAM-NVM-based hybridmemory systems is that we have to copewith heterogeneous
memories. In this paper, we also focus on the architecture of hybrid memory systems.

A few prior works [12, 13] have explored algorithms for asymmetric read-write costs
in emerging NVMs within the context of databases. Chen et al. [12] presented analytical
formulas for PCM latency and energy, as well as algorithms for B-trees and hash joins
that are tuned for PCM. For example, their B-tree variant does not sort the keys in a
leaf node nor repack a leaf after a deleted key, thereby avoiding the write cost of sorting
and repacking, at the expense of additional reads when searching. Similarly, Viglas [13]
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traded off fewer writes for additional reads by rebalancing a B+ -tree only if the cost of
rebalancing has been amortized.

To the best of our knowledge, few studies have been focused on the improvement of
fundamental sorting and joint algorithms onNVM. In aword, there are only two previous
works that are related to this study. The first study [14] presented a write-limited sorting
algorithm but it was toward in-memory sorting. On the contrary, this study is toward
traditional disk-based sorting and join, i.e., the involved relations are initially stored in
disks. The second work [15] proposed a cost model for sorting on storage devices with
asymmetric read and write latencies. However, these related works are both towards
page-based storage devices, such as flash-memory-based SSDs. Although flash memory
also has limited write endurance and low write latency, it is much different from NVM,
because NVM can be used as main memory while flash memory can only be used as
secondary storage.

3 Data Placement Model on Hybrid Memory

In this section, we study the data placement issue on DRAM-NVM-based hybrid mem-
ory. This issue is raised because of the existence of the two heterogeneous memories in
hybrid memory systems. Thus, when a sorting algorithm is running, we have to decide
where any intermediate data should be placed. Below we first introduce the concepts
and problem definitions of the data placement issue. Then, we present the optimal data
placement model as well as its proof for hybrid memory.

3.1 Basic Concepts

Logical Data Structures (DS) need to be placed on physical memory space. In a hybrid
memory system, the memory space of a data structure can be allocated completely
from DRAM, completely from NVM or partially from the two memory devices. A data
placement model (DPM) cares only about how the physical memory allocation of data
structures affects the total memory read and write cost. If not mentioned specially, all
the memory units we refer to afterwards represent one cacheline, which is the unit of
one memory reference, typically 64 bytes in current computer systems. The read and
write time to a unit, as well as other involved symbols, are summarized in Table 1.

If one algorithm uses t data structures, which can be referred as Φ = {DSi|i =
1, 2, . . . t}. For any data structure DSi, we refer the read times of each unit of DSi to be
mi and write times to be ni. When the unit is allocated on DRAM, the total read and
write cost (memory cost) of that unit is Cd

i = mird + niwd ; when the unit is allocated
on NVM, the memory cost is Cp

i = mirp + niwp. If we swap the unit from NVM to
DRAM, the memory cost of that unit will decrease by Cp

i − Cd
i , we name it the cost

gain Cg
i of the unit, represented by (1).

Cg
i = Cp

i − Cd
i (1)

Moreover, we define the memory allocation scheme of Φ in an algorithm as a data
placement scheme. In a data placement scheme, ifDSi occupies Bd

i DRAM units and Bp
i
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Table 1. Symbols in DPM

Symbol Description

rd Latency of read a DRAM unit

wd Latency of write a DRAM unit

Cd Memory cost of a unit if placed in DRAM

rp Latency of read an NVM unit

wp Latency of write an NVM unit

Cp Memory cost of a unit if placed in NVM

Cg Memory cost gain when swap unit from NVM to DRAM

NVM units, the memory cost Ci of DSi is then Cd
i B

d
i +Cp

i B
p
i . Hence, the total memory

cost C is calculated by (2)

C =
∑t

i=1

(
Cd
i B

d
i + Cp

i B
p
i

)
(2)

3.2 Optimal Data Placement Model

Theorem 1. For ∀x, y ∈ 1, 2, . . . t that holds Cg
x > Cg

y , if the DRAM space of a hybrid
memory system cannot accommodate both DSx and DSy, then the DRAM space must
be allocated to DSx preferentially. �

Proof. Given that the total memory cost in the data placement scheme is minimal, we
assume that although Cg

x > Cg
y and DRAM is not large enough to accommodate both

DSx and DSy, DRAM is needless to allocate to DSx preferentially. Thus, there must be
some DRAM spaces that are allocated to DSy rather than DSx, i.e. B

p
x > 0 and Bd

y > 0.

Without loss of generality, we let Bp
x > Bd

y . Then, if we swap Bd
y units DSy in DRAM

with Bd
y units DSx in NVM, we will get a new data placement scheme. Let C ′ be the

new memory cost under this scheme, we have the following result.

C ′ =
∑

i=1,...t and i �=x,y

(
Cd
i B

d
i + Cp

i B
p
I

)
+ Cd

x

(
Bd
x + Bd

y

)
+ Cp

x

(
Bp
x − Bd

y

)
+ Cd

y

(
Bd
y − Bd

y

)

+Cp
y

(
Bp
y + Bd

y

)

=
∑

i=1,...t

(
Cd
i B

d
i + Cp

i B
p
I

)
+ Bd

y

(
Cd
x − Cp

x + Cp
y − Cd

y

)
= C + Bd

y

(
Cg
y − Cg

x
)
.

(3)

Since Bd
y > 0 and Cg

x > Cg
y , we can derive that Bd

y

(
Cg
y − Cg

x
)

< 0, resulting in

C
′
< C. This is in contrast with the above assumption that C is the minimal memory

cost. So, we can conclude that DRAM space must be preferentially allocated to DSx
when Cg

x > Cg
y . �
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Theorem 2. Suppose that under a data placement scheme, the maximal memory cost is
denoted as Cmax. If ∀x, y ∈ 1, 2, . . . t that holds Cg

x > Cg
y and the DRAM space cannot

accommodate both DSx and DSy, the DRAM space must be preferentially allocated to
DSy. �

The proof of Theorem 2 is similar to that of Theorem 1.
We name the data placement scheme with the minimum memory cost in Theorem 1

as the optimal data placement scheme. Accordingly, the scheme defined by Theorem 2
is regarded as the worst data placement scheme. According to the two theorems, the
optimal data placement scheme allocates DRAM space to data structure with larger
Cg value with higher priority, while the worst data placement scheme exactly does the
opposite.

4 Sorting and Join with the Optimal Data Placement Model

The optimal data placement model is helpful to improve sorting and join algorithms. In
this section, we present the new sorting and join algorithms that are based on the optimal
data placement model. We first propose the NVMSort algorithm in Sect. 4.1, and then
explore the NVMSort-based sort join algorithm in Sect. 4.2.

4.1 NVMSort

The sortingproblemweconsider is the standard comparison-based sortingwithn records,
each of which contains a key. We assume that the input is an unsorted array, and the
output to be a sorted array which is sorted on their keys.

Based on the optimal data placement scheme, we propose an efficient sorting algo-
rithm on hybrid memory systems. This algorithm is motivated by the read/write property
of the classical HeapSort algorithm [8]. As Fig. 1 shows, during the execution of Heap-
Sort, most writes are focused on a few portions of heap nodes. The following part will
explain why heap structure has this read/write property and how we can leverage it to
reduce the NVM writes.

Fig. 1. Relationship between the portion of heap nodes and its percentage of total writes
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Heap is physically stored in consecutive memory space like an array, while logically
it is a binary tree with several constraints. TakingMin-heap as an example, the root node
stores the minimal value and every node contains a smaller value than its child nodes.
The HeapSort algorithm builds a heap at first; each time it replaces the root node with
the last node in the heap, heapifies the heap, and outputs the original root to the result set
until the heap goes empty. Note that every time we replace the root with new node, the
heapify process will sift-down the new root until the heap meets Min-heap properties
again. Therefore, every time the heap pops a root, the following heapify process does
a couple of read/write operations to the heap memory space. Since the heap is a binary
tree structure, if a node is close to the root, it is much likely to be read and written
frequently. In other words, the nodes near to the root will have a higher Cg value than
remote nodes. According to Theorem 1, if we place nodes close to the root into DRAM
and nodes close to leaf into NVM, the total rea/write operations occurring on NVM as
well as the total memory cost can be reduced.

Next, we want to present a more formal analysis. The time complexity of building
a heap is O(n) while HeapSort owns a time complexity of O(nlog(n)); thus, we mainly
focus on the read and write operations in the sorting process. Assume that a Min-heap
has the size of n, the distance from a node to the root is the height of the node, and l is the
max node height, we can derive that n ≈ 2l+1. Suppose x is the height of current last node
in the heap; when the node becomes the new root and is sifted down till heap property
holds again, O(x) reads and writes are done to the heap, O(1) reads and writes for each
level. In one level, each node has the same height, along with the same probability for
being moved up (which incursO(1) times of reads and writes). Since level h has about 2h

nodes, the probability of a node being moved up is 1
2h
, then the expectation of read/write

operations on each node is O
(

1
2h

)
. Therefore, after all the node is pop out, the total

expectation of the read/write operations on each node in level h can be represented by
(4).

E(h) =
∑l

i=h
O

(
1

2h

)
2i = O

(
1

2h

) ∑l

i=h
2i = O

((
2l+1 − 2h

)

2h

)
= O

( n

2h

)
(4)

That means the nodes closer to root have higher expectation of read and write. For
example, the root node has an expectation of O(n) while a leaf node has an expectation
of O(1). Using Formula (1), we can derive that the Cg node in level h, as represented by
(5).

Cg
h = O

( n

2h

)(
rp + wp) − O

( n

2h

)(
rd + wd

)
= O

( n

2h

)(
rp + wp − rd − wd

)
(5)

By leveraging the optimal data placement scheme, we can optimize HeapSort in the
follow manner: place the nodes close to the heap root into DRAM and maintain other
nodes in NVM.

Following the above idea, we devise a new sorting algorithm named NVMSort, as
shown in Algorithm 1. Like HeapSort, NVMSort is also based on a heap data struc-
ture. However, differing from the traditional HeapSort, we divide the heap nodes in
NVMSort into two parts, namely NearRoots and NearLeafs. NearRoots can fill up into
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DRAM, which are placed in DRAM. Meanwhile, NearLeafs are organized in NVM
before performing a classical HeapSort procedure.

In this part, we calculate the theoretical performance of NVMSort to prove that
NVMSort outperforms the classical HeapSort in reducing both memory cost and writes
to NVM. We assume that in the memory the proportion of DRAM is ε and we need to
sort n elements. According to Formula (4), The total read-write operations of HeapSort

is
∑n

i=1 O
(

n
2h(i)

)
= n

∑n
i=1 O

(
1

2�log(i)�
)

= O(nlog(n)), where h(i) is the height of node

i, i.e., h(i) = �log(i)�. BecauseHeapSort treats the hybridmemory as a uniformmemory
space, we can assume that the read/write operations are distributed evenly among the
available memory space. Therefore, O(nlog(n)) · ε read/write operations will occur on
DRAM and O(nlog(n)) · (1 − ε) operations will occur on NVM. According to Formula
(2), the total memory cost of HeapSort can be calculated by (6):

CHeapSort =O(nlog(n)) · ε · (rd + wd ) + O(nlog(n)) · (1 − ε) · (
rp + wp

)

=O(nlog(n)) · (
ε(rd + wd ) + (1 − ε)

(
rp + wp

))
(6)

Algorithm 1. NVMSort
Input: an unsorted data array A
Output: a sorted array A in ascending order
1: NearRoot = DRAM space;
2:
3 

NearLeaf = (A.size * Node_Size – NearRoot) NVM space;
heap_space = {NearRoot, NearLeaf}; 

4:        // make sure Nodes close to Root reside in NearRoot space
5: heap = Build_Max_Heap(heap_space, A); 
7: for i = heap.length downto 2
8:
9:

A[i] = heap[1];
heap[1] = heap[i];

10: heap.size = heap.size - 1;
11: Max_Heapify(heap);        
12:
13:

end for
A[1] = heap[1]; 

14: return A;

While for NVMSort, the read/write operations to DRAM are all absorbed by Near-

Roots. The total number of operations is
∑n·ε

i=1 O
(

n
2h(i)

)
= n

∑n·ε
i=1 O

(
1

2�log(i)�
)

=
O(nlog(n · ε)). Similarly, the read/write operations to NVM are concentrated on Near-

Leaf , which are
∑n

i=n·ε+1O
(

n
2h(i)

)
= n

∑n
i=n·ε+1 O

(
1

2�log(i)�
)

= O
(
nlog

( 1
ε

))
. Thus, we

can calculate the total memory cost of NVMSort by (7).

CNVMSort = O(nlog(n · ε))(rd + wd ) + O

(
nlog

(
1

ε

))(
rp + wp

)
(7)

According to the analysis above, HeapSort incurs O(nlog(n)) writes to NVM while
NVMSort only makes O(n) NVM writes. To this end, we can see that NVMSort is
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more write-friendly to NVM. Due to the read and write asymmetry of NVM chips,
especially thewrite latencywp ofNVM is typically one order higher than the read latency
rp, the reduction of NVM writes in NVMSort can result in significant performance
improving, when compared with HeapSort.When combined reads and writes, NVMSort
can reduce the total access timeofNVMbyO

(
nlog

(
ε · n1−ε

))(
rp + wp

)
. In the following

experiments, ei demonstrate the performance of NVMSort to support the above analysis.

4.2 Sort Join with NVMSort

In this section, we discuss the applicability of NVMSort in traditional sort join. Sort
join is one of the commonly used join algorithms in modern relational DBMSs. As the
relations to be joined are supposed to be in external storage, e.g., SSDs ormagnetic disks,
traditional sort join usually employs the merge sort algorithm to sort relations residing
in disks. The basic process of the merge-sort join consists of the following steps:

(1) Read pages into the memory;
(2) Sort the tuples in the memory;
(3) Write the sorted tuples as a run into the disk;
(4) Read all the first pages in each run, merge in memory, and write out to the file.

NVMSort can be used to optimize step (2) in the merge-sort join algorithm. In the
implementation of traditional merge-join, we usually utilize QuickSort as the main-
memory sort algorithm, while in the NVM-based hybrid memory QuickSort is not
the best choice, as we have discussed before. We will experimentally demonstrate that
NVMSort is more efficient than QuickSort as well as HeapSort when applied into the
merge-sort join algorithm.

5 Performance Evaluation

In this section, we evaluate the efficiency of NVMSort by comparing it with other sort
algorithms. The competitors include two traditional sort algorithms, including HeapSort
and QuickSort [8]. We measure the total run time of each algorithm along with its total
reads and writes to DRAM and NVM. The results show that our NVMSort has the best
performance with limited writes to NVM.

5.1 Settings

All the experiments are performed on an Intel Core i5-8500 3.0 GHZ CPU. This CPU
has 6 physical cores, with a 9 MB L3 cache. Each core has a private 256 KB L2 cache
and 32 KB L1d cache and 32 KB L1i cache. The operation system is Ubuntu 18.04 with
the kernel version of 5.2.8. We use the open-source persistent memory development kit
[16] to simulate NVM on Linux. This library maps a memory region to on-disk file
and ensure the atomicity and persistency on read/write operation to that region. In order
to simulate the read-write asymmetric of mainstream NVM, we follow the lead of the
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hardware community [17] and inject artificial 240 ns delays after each write operation
to that persistent region.

Each algorithm is allocated with the same amount of memory. The ratio between
DRAM and NVM space is set to same for each algorithm. However, the classical Heap-
Sort and QuickSort are unaware of the read-write asymmetric property of NVM. They
use the hybrid memory space as a uniform memory space. NVMSort treats DRAM and
NVM differently. It splits the heap structure into two parts before sorting; the formal
part is put into DRAM and the latter part is placed in NVM.

We use three datasets to test the sorting algorithms, scaling from 100k elements
(denoted as 100K below), 1 million elements (denoted as 1M) to 10 million elements
(denoted as 10M). All data elements are tuples with 8 bytes key and 8 bytes payload,
which is generated randomly and stored in the hybrid memory space.

5.2 Sorting Performance

We mainly evaluate the run time of each sorting algorithm. In addition, we measure
the write count on NVM during sorting, as reducing writes to NVM is one of the key
objectives of NVMSort. In the following text, we will present the results on the small
dataset as well as on the large dataset.

Scalability. Figure 2 shows the run time on the three datasets under different NVMwrite
latency. In this experiment, the DRAM ratio is set to 0.2. We can see that NVMSort gets
the best sorting performance when running on datasets scaling from 100K, 1M to 10M.
Averagely,NVMSort is 1.5× faster thanHeapSort andQuickSort. AsNVMwrite latency
gets higher, NVMSort exhibits more advantage than its competitors. This experiment
shows that NVMSort can well suit different sizes of datasets, showing good scalability
for real applications. Therefore, in the following experiments, we use the 1M dataset by
default.

NVM Writes. Table 2 summarizes the DRAM reads/writes and NVM reads/writes of
NVMSort, HeapSort, and QuickSort, when running on the 1M dataset with the DRAM
ratio on 0.2.We can see that NVMSort has the fewest NVMwrites among all algorithms;
thus it is more NVM friendly than the other two algorithms. As NVM has limited write
endurance, reducing writes to NVM is a critical issue in the design of NVM-aware
sorting algorithms. NVMSort also has fewer NVM reads than QuickSort and HeapSort.
The DRAM accesses of NVMSort is comparable to that of HeapSort. Although the
total DRAM reads/writes of NVMSort is a little more than QuickSort, QuickSort has
much more NVM reads/writes than NVMSort, resulting in poor time performance of
QuickSort as shown in Fig. 2. On the other hand, this study does not aim to optimize
DRAM operations.

Sensitivity to the DRAM Ratio. In this experiment, we aim to measure the perfor-
mance of NVMSort when varying the ratio of DRAM among the hybrid memory. The
1M dataset is used in this experiment. The NVM write latency is set to 300 ns. Figure 3
shows the run time of NVMSort and its two competitors, in which the DRAM ratio is
varied from0.1 to 0.4. Note that we do not increase theDRAMratio to amuch high value,



Efficient Sorting and Join on NVM-Based Hybrid Memory 25

(a) 100K dataset                                                  (b) 1M dataset

(c) 10M dataset

Fig. 2. Run time on different scales of datasets

Table 2. Comparison of DRAM read/writes and NVM read/writes

DRAM NVM

Reads (106) Writes
(106)

Reads (106) Writes
(106)

QuickSort 11 56 41 22

HeapSort 24 83 87 30

NVMSort 102 35 9 3

because NVM has higher density than DRAM. Thus, it is not likely that the DRAM size
is over the NVM size in the hybrid memory system. As shown in Fig. 3, NVMSort keeps
relatively high and stable performance when varying the DRAM ratio. This is because
NVMSort can choose optimal data placement according to the DRAM and NVM usage
during the sorting process. On the contrary, both QuickSort and HeapSort do not make
any optimizations for NVM, resulting poor time performance.
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Fig. 3. Run time of three algorithms when
varying the DRAM ratio

Fig. 4. Workload-change resistance of
NVMSort, QuickSort and HeapSort

Workload-Change Resistance. In this experiment, we aim to see whether NVMSort
can perform well on different kinds of workloads. We manually vary the sorted order of
the elements in the 1M dataset and generate four kinds of workloads, which are named
RandomOrder (totally unordered), SemiOrder (50%ordered),NearOrder (80%ordered),
and Ordered (totally ordered). We then run NVMSort on these four kinds of workloads
to verify its performance. Here, the DRAM ratio is also set to 0.2 and the NVM write
latency is set to 300 ns. As Fig. 4 shows, NVMSort has stable time performance when the
workload property changes from “totally unordered” to “totally ordered”. In addition,
NVMSort has the best time performance in all workloads, indicating that NVMSort is
workload-aware due to its intrinsic optimal data placement scheme.

NVM Efficiency. NVMSort is designed for reducing both sorting time andNVMwrites.
The above experiments present detailed measurement of NVMSort with respect to dif-
ferent measures. However, as NVMSort is designed not only for high time performance
but also for reducing NVM writes, it is not apparently to see the overall performance of
NVMSort in terms of time performance and NVM friendliness.

Thus, we further propose a metric named NVM Efficiency that combines both run
time andNVMwrite reduction. TheNVMEfficiency as the overall performance is defined
as follows:

NVM Efficiency = P/WNVM , where P = 1/t (8)

Here, P represents the time performance of a sorting algorithm (t is the run time of
the algorithm), and WNVM is the NVM writes caused by a sorting algorithm. The NVM
Efficiency represents the time performance per NVM write, which implies that higher
time performance or less NVMwrites will result in high NVM efficiency. As higher time
performance and less NVM writes is actually the design goal of this study, the NVM
Efficiency is suitable for measuring the overall performance of a sorting algorithm.

Figures 5 shows the NVM efficiency on the 1M datasets. Here, the time performance
P is calculated with the time granularity of second. In this figure, we can see that as the
DRAM ratio gets higher, all the sort algorithms have better NVM Efficiency due to
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more DRAM space can reduces costly NVM writes. Particularly, when the DRAM
ratio is 0.1, the NVM Efficiency of NVMSort is 6× higher than QuickSort and 13×
than HeapSort. As the DRAM ratio goes up to 0.4, NVMSort is 12×/22× higher than
QuickSort/HeapSort in term of NVM Efficiency. That clearly shows that the proposed
NVMSort algorithms maintains the highest NVM efficiency in various DRAM ratio,
meaning that NVMSort has the best overall performance.

Fig. 5. NVM efficiency

To sum up, all the experiments show that our NVMSort is more efficient for the
DRAM-NVM-based hybrid memory system compared with traditional sorting algo-
rithms includingHeapSort andQuickSort. This ismainly due to the new structural design
in NVMSort, i.e., the heap-node organization and placement based on the optimal data
placement model.

5.3 Join Performance

In this experiment, we compare the time performance as well as NVM writes of sort
join algorithms. We implement the traditional merge-sort join algorithm and replace
the in-memory sorting algorithm with NVMSort. This improved sort join is denoted as
SMJ_NVMSort (meaning Sort-Merge-Join with NVMSort). Similarly, we get the other
two sort join algorithms, which are denoted as SMJ_QuickSort and SMJ_HeapSort. In
this experiment we also use the 1M dataset and the DRAM ratio is set to 0.2. The join
algorithm runs on two relational tables R and S. Since we allocate total 12 MB memory
(including 9.6MBNVM and 2.4MBDRAM, nearly 4:1) and assume that both relations
cannot be hold in the memory, we set the size of R to 16 MB and the size of S to
160 MB. This setting is compatible with the general assumption of join algorithms in
traditional relational database systems, in which the build relation R is smaller than the
probe relation S.

The results are shown in Fig. 6. When the NVM write latency is close to that of
DRAM, SMJ_NVMSort has similar performance with the other two algorithms. How-
ever, when the NVM write latency is set to be higher than that of DRAM, we can
see that SMJ_NVMSort outperforms SMJ_QuickSort and SMJ_HeapSort. To this end,
SMJ_NVMSort is more suitable for DRAM-NVM-based hybrid memory.
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Fig. 6. Run time of three join algorithms

Table 3 shows the NVM reads/writes as well as the DRAM accesses of the three join
algorithms. SMJ_QuickSort has more than 6 times of NVMwrites than SMJ_NVMSort,
while SMJ_HeapSort has over 9 times of NVM writes. Thus, SMJ_NVMSort is more
NVM friendly than the other two algorithms. Although SMJ_NVMSort has a bit more
DRAM accesses than its competitors, this does not influence the time performance of
SMJ_NVMSort, as shown in Fig. 6. In addition, asDRAMhas unlimitedwrite endurance
and is faster than NVM, increasing DRAM accesses is not acceptable in DRAM-NVM-
based hybrid memory.

Table 3. Comparison of DRAM read/writes and NVM read/writes

DRAM NVM

Reads (106) Writes (106) Reads (106) Writes (106)

SMJ_QuickSort 141 755 468 252

SMJ_HeapSort 202 724 1093 380

SMJ_NVMSort 1178 409 117 44

6 Conclusions

NVM has become an alternative of next-generation memories. It is a trend to construct
hybrid memory systems composed of DRAM and NVM in the future. In this paper,
we studied the fundamental sorting issue on DRAM-NVM-based hybrid memory and
proposed an efficient sorting algorithm called NVMSort. NVMSort is based on the
optimal data placement model that proposes to maintain highly-written data structures
in DRAM and others in NVM. We theoretically proved the correctness and efficiency
of the optimal data placement model, based on which NVMSort was presented. We
further integrated NVMSort into the traditional merge-sort join algorithm. We conduct
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extensive experiments on various datasets with different settings. The results suggest the
high performance and NVM friendliness of NVMSort and the new sort-join scheme.

There are some future research directions that are worth further investigating. First,
it is a promising issue to consider efficient buffer management schemes to improve the
join performance on NVM-based hybrid memory [18, 19]. Second, it is valuable to
study other join algorithms such as hash join that runs on NVM-based hybrid memory
[20]. Third, the architecture of hybrid memory systems has a big impact on fundamental
algorithms. There are also other kinds of architecture for hybrid memory systems, e.g.,
the hybrid storage involving DRAM, NVM, and SSD [21]. Thus, we will investigate
sorting and join algorithms on other kinds of hybrid-storage architecture in the future.
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