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a b s t r a c t 

In a typical software defined network (SDN), switches report the Packet-In messages of newly arrived 

flows to the controllers. With more and more flows arriving at a network, the controller load significantly 

increases, which may lead to long (or even unacceptable) controller response time. Though previous solu- 

tions, such as dynamic controller assignment, help to reduce the controller response time, they still lead 

to various disadvantages, such as an unacceptable controller re-assignment delay, massive communica- 

tion overhead between controllers, or poor routing performance. To address this issue, our intention is to 

trade data plane resource for better control plane performance . Specifically, we propose to pre-install wild- 

card entries for some aggregated flows to reduce controller response time, and perform dynamic routing 

for new-arrival flows to optimize the network performance. We define the problem of reducing controller 

response time with minimum data plane resource cost, and prove its NP-hardness. We then present an 

efficient algorithm based on randomized rounding, and analyze that our algorithm can achieve constant 

bicriteria approximation under most practical situations. Some practical issues are discussed to enhance 

our algorithm. We have implemented the proposed algorithm on a real SDN testbed. The experimental 

results and the extensive simulation results show that our method can reduce the controller response 

time by 47%, or improve the network throughput by 56% compared with the previous solutions, even 

with significant traffic dynamics. 

© 2019 Published by Elsevier B.V. 
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. Introduction 

With the development of information technology, the number

f flows increases drastically in both cloud networks and Internet.

n one hand, with the development of information technology,

any novel network-based applications ( e.g. , search [1] and con-

ent distribution [2] ) are constantly emerging. Thus, the network

hould be able to accommodate a large number of flows for these

pplications. On the other hand, some hot events will attract at-

ention of many people through networks. For example, many au-

iences will watch the live broadcast of some attractive sport fi-

al through the Internet. In recent years, SDN becomes a potential

echnology to better manage a large number of flows. An SDN is

ypically separated into the control plane and the data plane. The

ontrol plane consists of a logically-centralized controller, which

ay be a cluster of distributed controllers and is responsible for

anaging the whole network. The data plane consists of a set
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f SDN switches [3] . With more flows arriving at the network,

he switches will send more Packet-In messages to the controllers,

hich will lead to a higher controller load. 

There are three different ways to reduce the controller response

ime (or the controller load). The first or general way is to use mul-

iple controllers with the static controller assignment mechanism,

.g. , Onix [4] and NVP [5] . Specifically, the control plane is imple-

ented as a cluster of distributed controllers, and each switch is

nly connected/associated with one controller. The switches de-

iver the Packet-In messages to different controllers, which helps

o reduce the controller load compared with the single-controller

ramework. However, since the traffic in the network dynami-

ally fluctuates in space and time, some controllers may still be

eavy-loaded, or even congested [6] . In fact, its infrastructure will

carcely be changed in practice once an SDN is deployed. Mean-

hile, more controllers require massive communication overhead

n the control plane to maintain consistency of network status [7] ,

nd increase the management complexity. Thus, it is not a feasible

olution to reduce the controller response time by using the static

ontroller assignment mechanism. 

https://doi.org/10.1016/j.comnet.2019.106891
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
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Table 1 

Key notations. 

Symbol Semantics 

U A cluster of SDN controllers 

V A set of switches 

E A set of network links 

c ( v i ) The flow table size of switch v i 
c ( e ) The capacity of link e 

αu The Processing capacity of controller u 

θ u ( t ) The load on controller u at time t 

ϑu ( t ) The response time of controller u at time t 

� A set of macroflows 

g ( γ ) The number of individual flows in γ

f ( γ ) The traffic size of macroflow γ

P γ A feasible path set for macroflow γ
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The second method is the dynamic controller assignment mech-

anism [6,8] , which permits each switch to dynamically associate

from a “heavy-loaded” controller to a “light-loaded” one, so that

the maximum controller load can be reduced. For example, the au-

thors of [6,8] presented a near-optimal Nash stable solution for dy-

namic controller assignment. However, the dynamic controller as-

signment scheme brings some disadvantages on service continuity.

In fact, traffic dynamics will often trigger the switch to change its

controller assignment, which may disrupt the service continuity.

For example, when bursty traffic arrives at a switch, it may change

its controller assignment. During the reassignment procedure, the

new-arrival packets will be recorded in the switch’s buffer. Even

with a short delay, the bursty traffic will lead to packet dropping,

which will significantly reduce the user experience. 

The final method is to pre-install entries for all flows in a net-

work, also called proactive routing scheme [9–11] . Since each flow

can match at least one pre-installed entry when arriving at a

switch, the switch will not deliver any Packet-In message to the

controller. Thus, the controller load is very light and the controller

response time is low. However, the proactive routing can not ef-

ficiently deal with traffic and management policy dynamics. First ,

due to dynamic traffic intensity, it may result in transient conges-

tion on some data links, for the controller can not provide dy-

namic route control for flows. This will lead to packet dropping

and throughput reduction. Although network updates [12–15] , e.g. ,

re-routing some elephant flows, can help to improve the routing

performance, it increases additional operations on switches, which

may interfere with other basic switch’s functions, e.g. , entry in-

stalling and traffic measurement [9] . Second , for many practical ap-

plications, network operators expect to specify fine-grained poli-

cies that drive how the underlying switches forward, drop, and

measure traffic. However, as the management policies for flows

may change over time ( e.g. , due to host mobility or middlebox

placement), the proactive routing scheme can not well adapt to

these changes. 

To overcome the disadvantages of the above solutions, we pro-

pose to trade data plane resources (e.g., flow entry and link band-

width) for better control plane performance . Specially, we will pre-

install wildcard forwarding entries ( i.e. , proactive routing) for par-

tial flows (not all flows) so as to achieve the trade-off optimiza-

tion between the controller response time and the resource cost in

the data plane. The controllers will perform the dynamic routing

for new-arrival flows, which helps to optimize the network perfor-

mance, e.g. , throughput maximization. Compared with the previous

works, our proposed method has the following advantages: 

• Our method just requires static controller assignment. Thus, the

communication overhead between controllers can be signifi-

cantly reduced, compared with the dynamic controller assign-

ment scheme [6] . 

• We pre-install wildcard entries for some aggregated flows (or

macroflows [16] ), which will decrease the controller response

time, compared with the fully dynamic routing scheme. 

• As the controller performs dynamic routing for other arrived

flows, the routing performance ( e.g. , load balancing or network

throughput) will still be efficient even with traffic dynamics,

which will be validated by simulations in Section 5 . 

In this paper, we define the problem of reducing controller re-

sponse time with minimum data plane resource cost (RCRT-MR),

and prove its NP-hardness. We present an efficient algorithm based

on the randomized rounding method, and analyze that our pro-

posed algorithm can achieve the constant bicriteria approximation

under most practical situations. This paper discusses some practi-

cal issues to enhance the practicability of our proposed algorithm

and implements the proposed method on our SDN testbed. The ex-

perimental results and the extensive simulation results show that
ur method can reduce the controller response time by about 47%,

nd improve the network throughput by about 56% compared with

he previous solutions, even with significant traffic dynamics ( e.g. ,

ith a prediction error of 60%). 

. Preliminaries 

This section mainly gives the preliminaries for our study. For

ase of reference, we list the key notations in Table 1 . 

.1. Network model 

A software defined network consists of two device sets: a clus-

er of controllers, U = { u 1 , . . . , u m 

} with m = | U| and a set of SDN

witches, V = { v 1 , . . . , v n } , with n = | V | . The controllers are respon-

ible for making decisions for all flows, including route selection

nd statistics collection. Each switch v i ∈ V is connected to a fixed

ontroller u j ∈ U , and its flow table size is denoted as c ( v i ). The net-

ork topology from a view of the data plane can be modeled by a

onnected graph G = (V, E) , where E is the set of links connecting

witches. For each link e ∈ E , its forwarding capacity is denoted as

 ( e ). 

.2. Controller response time model [6] 

We consider a discrete time model where the length of each

ime slot matches the timescale at which Packet-In requests of

ach switch can be precisely recorded. In an SDN, coordination

mong multiple controllers is necessary to install this path. To sim-

lify the problem formalization, we assume that each controller

emains a fraction of capacity for Packet-In processing. For each

ontroller u ∈ U , its processing capacity is denoted as αu in terms

f the number of requests/flows, which can be handled (including

oute computing and rule distributing/installing) using its reserved

apacity in one time unit [6] . The set of its connected switches is

enoted as S u . The number of Packet-In messages (one for each

ewly arrived flow), which will be delivered to the associated con-

roller by switch v in slot t , is denoted as ζ v ( t ). Then, the load of

ontroller u is θu (t) = 

∑ 

v ∈S u ζv (t) . 

By applying the Little’s law [6,17] , the average sojourn time on

ontroller u is 1 
αu −θu (t) 

. Given that the time for computing a single-

ource route is O ( n 2 ) [18] , where n is the number of switches in an

DN, the average response time of controller u can be expressed as

6] : 

 u (t) = 

1 

αu − θu (t) 
· O (n 

2 ) (1)

Without confusion, we omit parameter t in these variables. 
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.3. System workflow 

In the traditional SDN network, header packets of all new flows

ill be encapsulated and reported to the controller. Though this

trategy can provide fine-grained control for each flow [19] , it in-

reases the controller load and its response time, resulting in poor

ser experience. In this paper, we propose to reduce the controller

esponse time by deploying some wildcard rules for a partial set

f flows. 

The workflow of our system is as follows. The time is divided

nto fixed-period slots. At the beginning of each time slot, the con-

roller will collect flow statistics information from switches and

redict the flow traffic in the current time slot. We then choose a

ubset of flows, and install wildcard rules for them. When a packet

rrives at a switch, it will be (1) measured and (2) matched with

ll flow entries. If there is a matching entry, this packet will be di-

ectly forwarded to a certain port, specified by the operation field

n this entry. Otherwise, the switch will report the packet to the

ontroller, which determines the route path and installs rules on

witches along its route path. In this paper, we mainly focus on

ow to choose a suitable subset of flows for proactive routing to

chieve the trade-off optimization between the controller response

ime and resource cost in the data plane. The details of some prac-

ical issues will be discussed in Section 4 . 

.4. Definition of the RCRT-MR problem 

In this paper, we focus on reducing the controller response time

y pre-installing wildcard rules for some aggregated flows, which

ill trade some resource ( e.g. , flow entry and link bandwidth) in

he data plane. We define the problem of reducing controller re-

ponse time with minimum data plane resource cost (RCRT-MR).

ue to traffic dynamics, it is difficult to predict the arrival and traf-

c information of each individual flow. To make our solution fea-

ible and practicable, we consider a coarse-grained flow scheme,

alled macroflow [16] , which aggregates a set of flows matching

ith a wildcard rule. For example, all flows from switches v i to

 j can be aggregated into a macroflow. In fact, our proposed algo-

ithm can also be applied for other definitions of macroflows. For

xample, we can also define the macroflow as the aggregated flows

ith the same hierarchical IP addresses [20] . 

We divide the time into fixed-period slots ( e.g. , 1 min for the

ata center network [21] or 5 min for the backbone network [22] ).

e should note that Hong et al. [23] have shown that there is the

ow impact of performance dips in practice when there are more

ows and the update frequency is 5 min. At the beginning of each

ime slot, we predict the traffic information for a set of macroflows,

enoted as �, via per-flow measurement during the last time slot,

hich will be discussed in Section 4 . Assume that each macroflow

s denoted as γ = (g(γ ) , f (γ )) , where g ( γ ) is the number of in-

ividual flows in this macroflow, and f ( γ ) is its traffic size. Similar

o [23] , the controller has constructed a set of feasible paths P γ

or each macroflow γ , and chooses one feasible path from P γ for

his macroflow. P γ is determined based on the management poli-

ies and performance objectives. Some previous works [10,14] have

hown that only a certain number of the best feasible paths un-

er a certain performance criterion, such as having the shortest

umber of hops or having the large capacities [22] , are enough to

chieve the better network performance. Since traffic prediction er-

or is unavoidable, we will discuss the impact of macroflow traffic

rediction error on the network performance in Section 3.4 , and

ive the simulation results in Section 5.3 . 

To reduce the controller response time (or controller load), the

ontroller performs proactive routing for some (not all) macroflows

y pre-installing wildcard entries. Specifically, we will determine

 subset of macroflows, denoted as �′ , from the set � and se-
ect a feasible path for each macroflow γ ∈ �′ for proactive rout-

ng. When other flows arrive at the network, the controller will

erform dynamic routing for them. With more and more flows ar-

iving at a network, the arrival intervals between flows become

horter. However, long controller response time may result in re-

uest blocking at switches, and poor user experience. Therefore,

e expect that the response time should not exceed a threshold,

enoted as η0 , which is determined by practical application re-

uirements. Meanwhile, the load threshold on controller u is de-

oted as α′ 
u . By Eq. (1) , it follows 1 

αu −α′ 
u 

· O (n 2 ) ≤ η0 , where αu is

he capacity of controller u , and n is the number of switches in the

etwork. Thus, we compute the controller load threshold as: 

′ 
u ≤ αu − 1 

η0 

· O (n 

2 ) (2) 

oreover, to remain some slack controller capacity for process-

ng unpredictable flows, we expect that the estimated load of con-

roller u should not exceed δ · α′ 
u , where δ is a constant and ex-

lained in Section 4.3 . Note that δ will be updated with system

unning. 

After pre-installing wildcard entries for some macroflows, we

onsider the resource cost in the data plane, including switch re-

ource cost and link resource cost. On one hand, for each switch,

e compute the flow table utilization ratio as the number of pre-

nstalled flow entries divided by its flow table size. Then, we derive

he maximum flow table utilization ratio, denoted as λt , among

ll switches. On the other hand, to achieve better routing perfor-

ance, we expect that the link bandwidth cost for proactive rout-

ng should be minimized so that the network can accommodate

ore flows. We compute the traffic load on each link e , and its

ink load ratio. We can derive the maximum load ratio, denoted as

e , among all links. Since flow table and link bandwidth are two

ypes of important resources in the data plane, we define the re-

ource cost μ of the data plane as: 

= β · λe + (1 − β) · λt (3) 

here β represents the relative weight of each type of resource.

ur objective is to minimize the resource cost in the data plane,

.e. , min μ. 

We formulate the RCRT-MR problem as follows: 

in μ

.t. 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∑ 

p∈P γ y p γ + φγ = 1 , ∀ γ∑ 

e ∈ p: p∈P γ y p γ · f (γ ) ≤ λe · c(e ) , ∀ e ∑ 

v ∈ p: p∈P γ y p γ ≤ λt · c(v ) , ∀ v 
ζv = 

∑ 

s (γ )= v φγ · g(γ ) , ∀ γ

θu = 

∑ 

v ∈S u ζv ≤ δ · α′ 
u , ∀ u 

μ = β · λe + (1 − β) · λt , 

y p γ ∈ { 0 , 1 } , ∀ γ , p 

φγ ∈ { 0 , 1 } , ∀ γ

(4) 

 

p 
γ denotes whether the controller will pre-deploy path p for 

acroflow γ or not, and φγ denotes whether macroflow γ will

hoose the dynamic routing scheme or not. The first set of inequal-

ties means that the controller will perform the proactive routing

cheme ( i.e. , pre-installing wildcard entries) or the dynamic rout-

ng scheme for each macroflow γ ∈ �. The second and third sets

f inequalities express the link bandwidth cost and flow table cost

or proactive routing. The fourth and fifth sets of equations denote

hat the load of controller u should not exceed the threshold δ · α′ 
u ,

here s ( γ ) denotes the ingress switch of γ , g ( γ ) is the predicted

umber of individual flows in this macroflow γ and α′ 
u is derived

y Eq. (2) . The sixth set of equations expresses the data plane re-

ource cost. 



4 H. Xu, J. Liu and C. Qian et al. / Computer Networks 164 (2019) 106891 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p  

o  

r  

l  

i  

n  

b  

i  

m  

b  

p  

m

 

F  

e  

b  

t  

u  

[  

1  

t  

o  

v

3

 

a  

d

χ

 

U  

b  

t  

c  

f  

w  

p  

a

L  

x  

P  

v

 

p  

m  

m

D

w

z  

 

d

E

 

Theorem 1. The RCRT-MR problem is NP-hard. 

Proof. We consider a special case of the RCRT-MR problem, in

which there is no constraint on the flow table size ( i.e. , c(v ) = ∞ ),

no dynamic routing ( i.e. , α′ 
u = 0 ), and β = 1 . Then, this special case

becomes an unsplittable multi-commodity flow (MCF) with min-

imum congestion problem [24] , which is NP-hard. Since MCF is

a special case of our problem, the RCRT-MR problem is NP-hard

too. �

3. Algorithm design for LCRT-MR 

Due to NP-hardness, it is difficult to optimally solve our RCRT-

MR problem. We first give a rounding-based algorithm for this

problem ( Section 3.1 ), and analyze its approximation performance

( Section 3.2 ). Then, we give the complete algorithm description

( Section 3.3 ). Finally, we discuss the impact of prediction error on

the network performance ( Section 3.4 ). 

3.1. Algorithm description for the RCRT-MR problem 

In this section, we describe a rounding-based wildcard entry

pre-installing (RWP) algorithm for low controller response time

with minimum resource cost in the data plane. Since the formal-

ization of RCRT-MR in Eq. (4) is an integer linear program, it is

difficult to solve this problem directly. The algorithm consists of

two main steps, relaxing the problem and rounding to the integer

solution, respectively. The RWP algorithm is formally described in

Algorithm 1 . 

Algorithm 1 RWP: Rounding-based Wildcard Entry Pre-installing. 

1: Step 1: Solving the relaxed RCRT-MR problem 

2: Construct LP 1 as Relaxed RCRT-MR 

3: Obtain the optimal solution ( ̃  y 
p 
γ , ̃  φγ ) 

4: Step 2: Choosing macroflows for proactive routing 

5: Derive an integer solution ̂

 y 
p 
γ by randomized rounding 

6: for each macroflow γ ∈ � do 

7: ̂ φγ = 1 − ∑ 

p∈P γ ̂ y 
p 
γ

8: if ̂ φγ = 0 then 

9: for each feasible path p ∈ P γ do 

10: if ̂  y 
p 
γ = 1 then 

11: Install wildcard entries on switches along p 

To solve the problem formalized in Eq. (4) , our algorithm first

constructs a linear program as a relaxation of the RCRT-MR prob-

lem. More specifically, RCRT-MR assumes that the controller will

choose one feasible with proactive routing or not pre-install wild-

card entries for each macroflow. By relaxing this assumption, traffic

of each macroflow γ ∈ � is permitted to be splittable and routed

through a path set P γ . We formulate the following linear program

LP 1 . 

min μ

S.t. 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∑ 

p∈P γ y p γ + φγ = 1 , ∀ γ∑ 

e ∈ p: p∈P γ y p γ · f (γ ) ≤ λe · c(e ) , ∀ e ∑ 

v ∈ p: p∈P γ y p γ ≤ λt · c(v ) , ∀ v 
ζv = 

∑ 

s (γ )= v φγ · ·n (γ ) , ∀ γ

θu = 

∑ 

v ∈ S u ζv ≤ δ · α′ 
u , ∀ u 

μ = β · λe + (1 − β) · λt , 

y p γ ≥ 0 , ∀ γ , p 

φγ ≥ 0 , ∀ γ

(5)

Note that variables y 
p 
γ and φγ are integral in Eq. (4) , but frac-

tional in Eq. (5) . Since LP is a linear program, we can solve it in
1 
olynomial time using a linear program solver. Assume that the

ptimal solution for LP 1 is denoted by { ̃  y 
p 
γ , ̃  φγ } , and the optimal

esult is denoted by ˜ μ. As LP 1 is a relaxation of our RCRT-MR prob-

em, ˜ μ is the lower-bound result for RCRT-MR. Using the random-

zed rounding method [25] , we derive the integral solution, de-

oted by { ̂  y 
p 
γ , ̂ φγ } , for ∀ γ ∈ � and ∀ p ∈ P γ . Specifically, ̂ y 

p 
γ will

e set as 1 with the probability of ˜ y 
p 
γ , ∀ γ ∈ �. If ̂ y 

p 
γ = 1 , ∃ γ ∈ �,

t means that the controller will pre-install wildcard entries for

acroflow γ on all switches along the path p . ̂ φγ can be derived

y the first equation of Eq. (4) . If ̂ φγ = 1 , it means that we will

erform the dynamic routing scheme for all individual flows in this

acroflow. 

Now, we give a scenario of our randomized rounding method.

or example, there are three potentially options for a macroflow γ ,

.g. , ( p 1 , p 2 , φ), where p i denotes that the macroflow will be routed

y the pre-installed entries and φ means that the macroflow will

ake the dynamic routing scheme. The final solutions for the sit-

ation are denoted by {0.2, 0.4, 0.4}. This means that the interval

0, 1] has been divided into four parts, (0, 0.2), (0.2, 0.6), and (0.6,

.0). We then randomly choose a value from 0 to 1. Assume that

he random value is 0.3. Since this value lies in (0.2, 0.4), the sec-

nd feasible path p 2 will be chosen for macroflow. If the random

alue is 0.8, the fourth one φ will be selected. 

.2. Performance analysis 

We analyze the approximate performance of the proposed RWP

lgorithm. Assume that the minimum capacity of all the links is

enoted by c min . We define a constant χ as follows: 

= min { c(v ) , v ∈ V ; α′ 
u 

g(γ ) 
, s (γ ) ∈ S u , γ ∈ �, u ∈ U; c min 

f (γ ) 
, γ ∈ �} 

(6)

nder most practical situations ( e.g. , data center network [21] ,

ackbone network [22] and campus network [26] ), the flow in-

ensity is usually much less than the link capacity. For example,

 min = 100 Mbps, and s (γ ) = 4 Mbps for high-definition video con-

erence. It follows that χ ≥ 1. Since RWP is a randomized algorithm,

e compute the expected controller load and the expected data

lane resource cost. We give the Chernoff bound for probability

nalysis. 

emma 2 (Chernoff Bound) . Given n independent variables:

 1 , x 2 , . . . , x n , where ∀ x i ∈ [0, 1] . Let μ = E [ 
∑ n 

i =1 x i ] . Then,

r [ 
∑ n 

i =1 x i ≥ (1 + ε) μ] ≤ e 
−ε2 μ
2+ ε , where ε is an arbitrary positive

alue. 

Controller Load Performance. Before analyzing the controller load

erformance, we define a random variable z u γ to denote how

any Packet-In messages will be reported to the controller u from

acroflow γ . 

efinition 1. For each controller u ∈ U , and each macroflow γ ∈ �

ith s (γ ) ∈ S u , random variable z u γ is defined as follows: 

 

u 
γ = 

{
g(γ ) , with probability ˜ φγ

0 , otherwise 
(7)

By the definition, variables z u γ , with s (γ ) ∈ S u , are mutually in-

ependent. The expected load on controller u is: 

 

[ ∑ 

v ∈S u 

∑ 

s (γ )= v 
z u γ

] 

= 

∑ 

v ∈S u 

∑ 

s (γ )= v 
E [ z u γ ] 

= 

∑ 

v ∈S u 

∑ 

s (γ )= v ̃

 φγ · g(γ ) ≤ δ · α′ 
u (8)
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Combining Eq. (8) , we can explore a variable χ so that: 
 

 

 

z u γ ·χ
δ·α′ 

u 
∈ [0 , 1] 

E 

[ ∑ 

γ ∈ �
z u γ ·χ
δ·α′ 

u 

] 
≤ χ. 

(9) 

Then, by applying Lemma 2 , assume that τ is an arbitrary pos-

tive value. It follows 

r 

[ ∑ 

γ ∈ �,s (γ ) ∈S u 

z u γ · χ
δ · α′ 

u 

≥ (1 + τ ) χ

] 

≤ e 
−τ2 χ
2+ τ (10) 

Now, we assume that 

r 

[ ∑ 

γ ∈ �,s (γ ) ∈S u 

z u γ

δ · α′ 
u 

≥ (1 + τ ) 

] 

≤ e 
−τ2 χ
2+ τ ≤ F 

m 

, (11) 

here F is the function of network-related variables (such as the

umber of controllers m, etc. ) and F → 0 when the network con-

rol plane size grows. 

The solution for Eq. (11) can be expressed as: 

≥
log m 

F + 

√ 

log 
2 m 

F + 8 · χ log m 

F 

2 · χ , m ≥ 2 (12) 

By setting suitable values of parameters τ and F , we can derive

he approximation performance on the controller load. 

emma 3. After the rounding process, the load of controller u will

ot exceed the constraint δ · α′ 
u by a factor of 3 log m 

χ + 3 . 

roof. We set F(m ) = 

1 
m 

2 . Apparently F → 0 as m → ∞ . With re-

pect to Eq. (12) , we set 

= 

log m 

F + log m 

F + 4 · χ
2 · χ = 

3 log m 

χ
+ 2 (13) 

Thus, it follows 

r 

[ ∨ 

u ∈ U 

∑ 

γ ∈ �,s (γ ) ∈S u 

z u γ

δ · α′ 
u 

≥ (1 + τ ) 

] 

≤
∑ 

u ∈ U 
Pr 

[ ∑ 

γ ∈ �,s (γ ) ∈S u 

z u γ

δ · α′ 
u 

≥ (1 + τ ) 

] 

≤ m · 1 

m 

3 
= 

1 

m 

2 
, τ ≥ 3 log m 

χ
+ 2 (14) 

Then Eq. (11) is guaranteed with 1 + τ = 

3 log m 

χ + 3 and F = 

1 
m 

2 ,

hich concludes the proof. �

Link resource cost: Similar to the analysis for the controller load

erformance, it also follows: 

emma 4. The proposed RWP algorithm achieves the approximation

actor of 4 log n 
χ + 3 for link capacity constraints. 

Flow Table Resource Cost: Similar to the analysis for the con-

roller load performance, we have: 

emma 5. Our algorithm can achieve the approximation factor of
3 log n 

χ + 3 for the flow table resource cost. 

Data plane resource cost: Now we analyze the approximation

erformance for the data plane resource cost. By solving the linear

rogram LP 1 , we obtain the optimal result ˜ μ for the relaxed RCRT-

R problem. Assume that ̂ λe and 

̂ λt are the maximum link load

atio and the maximum flow table utilization ratio, respectively, by

he RWP algorithm. The final resource cost is expressed as: ̂ = β · ̂ λe + (1 − β) · ̂ λt , β ∈ [0 , 1] (15)
For ease of description, we use variable ρ to denote 4 log n 
χ + 3 .

y two Lemmas 4 and 5 , we obtain the following equation, similar

o Eq. (14) . 
 

Pr 
[
β · ̂ λe ≥ β · ρ · ˜ λe 

]
≤ 1 

n 2 

Pr 
[
(1 − β) · ̂ λt ≥ (1 − β) · ρ · ˜ λt 

]
≤ 1 

n 2 

(16) 

Then, we have 

r [ ̂  μ ≥ ρ · ˜ μ] 

= Pr 
[
β · ̂ λe + (1 − β) · ̂ λt ≥ ρ · (β · ˜ λe + (1 − β) · ˜ λt ) 

]
≤ Pr 

[
β · ̂ λe ≥ β · ρ · ˜ λe 

]
+ Pr 

[
(1 − β) · ̂ λt ≥ (1 − β) · ρ · ˜ λt 

]
≤ 1 

n 

2 
+ 

1 

n 

2 
= 

2 

n 

2 
(17) 

So our RWP algorithm achieves the approximation factor ρ or
4 log n 

χ + 3 for the data plane resource cost. 

Approximation factor: According to the above analyses, we can

onclude that: 

heorem 6. The randomized RWP algorithm can guarantee that the

ata plane resource cost will hardly be violated by a factor of 4 log n 
χ +

 , and the controller load performance will not be violated by a factor

f 3 log m 

χ + 3 with a high probability. 

Under most practical situations, in which the flow intensity is

sually much less than the link capacity, the RWP algorithm can

chieve almost the constant bicriteria approximation. For example,

he link capacity of today’s networks will be 10Gbps. Observing the

ractical flow traces, the maximum intensity of a macroflow may

each 100Mbps. Under this case, 
c min 
f (γ ) 

is 10 2 . Even in a large-scale

etwork with 10 0 0 switches, or log n = 10 , the approximation fac-

or for the data plane resource cost is 3.4. This analysis also fits

or that of the controller load constraint. In other words, our RWP

lgorithm can achieve the constant bicriteria approximation with

 high probability for the RCRT-MR problem under many practical

ituations. 

.3. Complete algorithm description 

Though the RWP algorithm can almost achieve the constant

icriteria approximation for the RCRT-MR problem, the random-

zed rounding method cannot fully guarantee that the controller

esponse time (or controller load) constraint is always met. Now,

e describe the complete RWP algorithm to meet the load con-

traint on each switch. The complete algorithm is formally de-

cribed in Algorithm 2 . For ease of description, �u denotes a set

lgorithm 2 Complete RWP Algorithm Description. 

1: Step 1: The same as that in Algorithm 1 

2: Step 2: The same as that in Algorithm 1 

3: Step 3: Choosing more macroflows for proactive routing 

4: The set of macroflows with pre-installed wildcard entries is de-

noted as �′ 
5: for Each controller u ∈ U do 

6: θu = 

∑ 

γ ∈ �u −�′ g(γ ) 

7: Sort all macroflows in �u − �′ according to increasing order

of 
f (γ ) 
g(γ ) 

8: while θu > δ · α′ 
u do 

9: Select a macroflow γ with minimum ratio of 
f (γ ) 
g(γ ) 

10: Choose a route path with minimum resource cost for this

macroflow, and pre-install wildcard entries 

11: Update the load of controller u , i.e. , θu = θu − g(γ ) 
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of macroflows whose ingress switches are connected to controller

u, i.e. , �u = { γ , s (γ ) ∈ S u } . 
The complete RWP algorithm consists of three steps. Same as

Algorithm 1 , the first step constructs a linear program LP 1 as the

relaxation of the RCRT-MR problem, and obtain the optimal so-

lution, denoted as ( ̃  y 
p 
γ , ̃  φγ ) . The second step determines a subset

of macroflows, denoted as �′ , for proactive routing. In the third

step, we check whether the load constraint on each controller is

met or not. For each controller u , we estimate the controller load

θu as θu = 

∑ 

γ ∈ �u −�′ g(γ ) , where �′ is a set of macroflows with

pre-installed wildcard entries. The algorithm sorts all macroflows

in �u − �′ according to increasing order of the ratio between the

traffic size and the number of flows in this macroflow ( i.e. , 
f (γ ) 
g(γ ) 

),

and check these macroflows one by one. For each macroflow γ ,

we choose a feasible path with minimum resource cost, pre-install

wildcard entries for this macroflow, and update the controller load

estimation. The iteration is terminated until the load constraint on

each controller is met. 

3.4. Impact of traffic prediction error 

In this section, we discuss the impact of traffic prediction er-

ror on the network performance. All flows can be divided into two

sets. One is using the proactive routing scheme, the other is us-

ing the dynamic routing scheme. For flows in the first set, we will

install wildcard rules before their arrival. Due to traffic dynamics,

there is a high traffic prediction error in the worst case, which

may lead to improper route selection for those flows. When flows

in the second set arrive at the network, the controller will choose

the least-congestion route paths using the dynamic scheme, which

helps to alleviate the negative impact of infeasible route paths for

flows in the first set. In fact, some previous works have shown that

it can help to improve the network performance by dynamically

rerouting only partial flows in the network [27–29] . Our simula-

tion results in Section 5.3 also show that the network performance

will not be significantly reduced even with a high prediction error.

4. Practical issues for system implementation 

In our system, the packet processing procedure is illustrated

in Fig. 1 . To predict the flow size, the switch will take the per-

flow traffic measurement ( Section 4.1 ). At the beginning of each

time slot, the controller collects flow statistics information from

switches. Then, we predict the flow traffic in the current time slot

( Section 4.2 ), and determine the value of parameter δ ( Section 4.3 ).

Next, we will choose a subset of flows using the RWP algorithm

and update/pre-install rules in the flow tables of SDN switches

( Section 4.4 ). When new flows arrive at the network, the controller

will dynamically determine the route paths for these flows. This

section gives the detailed description of the above five modules for

system implementation. 
Fig. 1. Illustration of Packet Processing Procedure. 
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p  
.1. Per-flow traffic measurement 

Our system needs to periodically collect the traffic information

 e.g. , the traffic size) of each individual flow in the network to pre-

ict the macroflow information. Due to the limited size of flow ta-

les at switches, it is impractical to measure the per-flow traffic

nly through flow tables. To overcome this challenge, some previ-

us methods can be adopted for traffic measurement. For instance,

ow-based measurements ( e.g. , NetFlow [30] and sFlow [31] ) could

rovide generic support for different measurement tasks through

ampling packets. Besides, some advanced methods could sup-

ort online measurement using probabilistic multiplicity counting

32] or randomized counter sharing [33] to keep up with the line

peed of the modern routers. Moreover, we can obtain the average

raffic size of each flow, denoted as ϕ. 

.2. Macroflow traffic prediction 

In our design, the controller needs to predict the traffic size

f macroflows based on the network traffic statistics. Since the

acroflow is a coarse-grained flow management scheme, some

revious traffic prediction works [34,35] can be directly applied

n our system. Specifically, the authors in [34] could provide accu-

ate prediction of traffic behavior at different time scales with less

han 15% relative error. After we derive the estimated traffic size

 ( γ ) of each macroflow γ , the number of individual flows in this

acroflow is estimated as g(γ ) = f (γ ) /ϕ. Thus, it is reasonable to

ssume that we can accurately predict the traffic information of

acroflows. We will evaluate the impact of the traffic prediction

rror on the network performance in Section 5 . 

.3. Estimation of parameter δ

Due to prediction error and flow uncertainty, we should remain

ome slack controller capacity for unpredictable flows to avoid long

esponse time. Assume that the load of controller u in the current

ime slot is θu . We update the parameter δ as δ = min { δ·α′ 
u 

θu 
, u ∈

} , where α′ 
u is defined in Eq. (2) . If δ exceeds 1, we just set δ as

. 

.4. Update static routing entries/rules 

As specified by the Openflow standard, each flow entry

as two fields: idle_timeout and hard_timeout [19] . A non-zero

dle_timeout field means that this flow entry will be removed

fter the given number ( i.e. , the value of this field) of seconds,

f no packet has been matched by this flow entry. A non-zero

ard_timeout field means that this flow entry should be removed

fter the given number of seconds runs out, no matter there are

atched packets or not. If both parameters are set to zero, this

ow entry is considered to be permanent, and will be removed

nly by the controller. 

After choosing a subset of macroflows for proactive routing, we

ill first delete those static routing entries which have no traffic

y the prediction. Then, the controller installs flow entries to each

witch and sets the idle_timeout and hard_timeout as zero. 

. Performance evaluation 

In this section, we evaluatate the performance of our proposed

lgorithm through network simulator and testbed implementation.

.1. Performance metrics and methodology 

We adopt five main metrics for performance evaluation of our

roposed algorithm: (1) the resource cost; (2) the maximum load
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Fig. 2. Topology of the SDN Platform. We implement our proposed algorithm and 

other benchmarks on a real testbed. Our testbed is composed of three parts: a con- 

troller, seven switches and six terminals. 

Fig. 3. Actual Controller Load vs. Controller Load Constraint. 

Fig. 4. Max. Link Load vs. Controller Load Constraint. 
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atio of any controller; (3) the maximum controller response time;

4) the maximum load ratio of any link; and (5) the network

hroughput. During a simulation run, we first pre-install wildcard

ntries for some predicted macroflows with the controller response

ime constraint, and measure the resource cost in the data plane

ased on Eq. (3) . The second metric measures the maximum num-

er of Packet-In requests per controller divided by the controller

rocessing capacity during the simulation. We compute the maxi-

um controller response time by Eq. (1) . The controller will per-

orm the dynamic routing scheme for each new-arrival flow. In the

imulations, we just choose a route path with the least traffic link

oad as the route path of a flow. The load ratio of a link is the

raffic load divided by the link capacity. The load balancing metric

s the maximum load ratio among all links. As we continuously in-

rease the number of flows, we measure the maximum throughput

hat the network can support. 

To evaluate how well our proposed algorithm performs, we se-

ect two other methods as benchmarks for performance compar-

son. The first benchmark is called the proactive routing scheme,

.g. , DevoFlow [9] , in which the controller pre-installs wildcard en-

ries for all macroflows. This method can achieve the lowest con-

roller load. When the (potential) link congestion is detected, the

ontroller will re-route some flows by installing fine-grained rules

n switches. The second one is the dynamic routing scheme. When

ach individual flow arrives at a switch, the controller will dynam-

cally determine its route path. Compared with the dynamic con-

roller assignment mechanism [6] , the above two methods and our

WP algorithm just require each switch to connect to a fixed con-

roller, thus the communication delay for controller re-assignment

nd the control plane overhead between controllers will be re-

uced or even avoided. For fairness, we do not compare our al-

orithm with the dynamic controller assignment mechanism [6] . 

Our proposed algorithm for wildcard entry pre-installing takes

he macroflow prediction as the input. Since the traffic prediction

rror is unavoidable in practice, it is necessary and meaningful to

bserve the impact of the traffic prediction error on the network

erformance. As the controller predicts the number of flows and

ts traffic size for each macroflow γ , there are two prediction er-

ors. One is the prediction error ( ε1 ) of the number of individual

ows in a macroflow, the other is that ( ε2 ) of the traffic size of a

acroflow. Because over-estimation does not violate controller re-

ponse time constraint and also its negative impact on the routing

erformance is insignificant, we are interested in the worst-case

ffect of under-estimation on the controller response time in the

imulations. 

.2. Testbed evaluation 

.2.1. Implementation on the platform 

We implement the dynamic routing scheme and our RWP algo-

ithm on a small-scale testbed. Our SDN platform is mainly com-

osed of three parts: a controller, 7 OpenFlow enabled switches

nd 6 terminals. For simplicity, there deploys only one con-

roller in the SDN, and each switch is directly connected to

he controller, as shown in Fig. 2 . Without confusion, we do

ot draw the controller in the figure. We use the Ryu [36] as

he controller software running on a server with a core i7-

700khttps://github.com/lyl617/SDN-RWP and 32GB of RAM. The

ata plane is comprised of 7 Pica8 3297 switches, which support

he OpenFlow v1.3 standard [19] . We use source IP, source port and

estination IP to identify a flow, so that each terminal is able to

enerate a number of different flows in a network. We generate

00 flows in the network and the average flow intensity is 600

bps. Moreover, to simulate the realistic scenario, 20% elephant

ows and 80% mice flows are generated in the network. 
We have implemented the proposed RWP algorithm as an ap-

lication in python, and integrated it with Ryu. The testing is ex-

cuted under Ubuntu 16.04 LTS and the implementation of RWP

ith Ryu has been published at https://github.com/lyl617/SDN-

WP [37] . 

.2.2. Testing results 

We mainly observe the performance (including controller load

nd maximum link load) of our proposed algorithm even with a

rediction error. The flows from a source terminal to a destina-

ion terminal is regarded as a macroflow in the testing. The test-

ng results in Fig. 3 indicate that (1) our proposed RWP algorithm

an significantly reduce the controller load compared with the dy-

amic routing scheme; and (2) the prediction error has an insignif-

cant impact the controller load for our proposed algorithm. For

xample, when the controller load constraint is 250, the difference

n actual controller load between RWP-0 and RWP-60 is less than

0. It should be noted that RWP-0 and RWP-60 will pre-install

ildcard entries for different macroflows based on prediction. As

hown in Fig. 4 , the maximum link load will decrease with the

ncreasing controller load constraint. That’s because, with a large
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Fig. 5. Per-macroflow Resource Cost vs. Two Prediction Errors. Left plot : Topology (a); right plot : Topology (b). 

Fig. 6. Controller Response Time vs. Two Prediction Errors. Left plot : Topology (a); right plot : Topology (b). 
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controller load constraint, the controller has chance to dynamically

choose routes for more flows, which benefits the routing perfor-

mance. From these testing results, we can conclude that RWP can

achieve better trade-off between controller load and routing per-

formance than the dynamic routing, even with a large prediction

error ( e.g. , 60%). 

5.3. Simulation evaluation 

5.3.1. Simulation settings 

We run four sets of experiments on two different topologies

to evaluate the efficiency of the proposed algorithm. As running

examples, our simulations select two practical and typical net-

work topologies. The first topology, denoted as (a), is the fat-tree

topology [38] , which has been widely used in many data cen-

ter networks. This topology contains totally 80 switches (includ-

ing 16 core switches, 32 aggregation switches, 32 edge switches)

and 128 servers. The second one, denoted as (b), is a campus net-

work topology [39] . The topology (b) contains 100 switches and

200 servers. We deploy 5 controllers, and each controller con-

nects to almost the same number of switches in both topologies.

Due to the limited capacity of our simulation platform, the ca-

pacity of each link is set as 1 Gbps for both topologies. More-

over, the flow table size of each switch is set as 65,356 [40] . For

the flow size, the authors of [9] have shown that less than 20%

of the top-ranked flows may be responsible for more than 80%

of the total traffic. Thus, we adopt this rule to allocate the size

for each flow. The parameter δ and the controller capacity are

set as 0.8 and 180 K [6] in all simulations, respectively. By de-

fault, the network contains 600 K flows. Several works have mea-

sured the controller response time through testbed and simula-

tions. For example, the work [41] presents a study of SDN con-

troller performance using four OpenFlow enabled controllers and

measures minimum (least load) and maximum controller (max-

imum load) response time of SDN controllers. The authors in

[17] study the response time behavior for Packet-In messages by

changing flow arrival rate and repeat the experiments by varying

the number of controllers. Both of their results show that aver-
ge response times of all controllers are between 0.01s and 0.03s.

hus, without lose of generality, we choose 0.02 s as the con-

rollerâs response time in this paper. We execute each simulation

00 times, and average the numerical results. We will analyze the

erformance of our proposed algorithm with different prediction

rrors. 

.3.2. Simulation results 

The first set of simulations observes how two prediction errors

 1 and ε 2 affect different metrics ( e.g. , resource cost and controller

esponse time). Fig. 5 shows that the resource cost will be gener-

lly increased with a larger prediction error. Fig. 6 shows that the

ontroller response time generally increases as the prediction er-

ors ε1 and ε2 are increasing. Two figures also indicate that the

erformance difference is not significant (less than 10%) even with

arger prediction errors, e.g. , ε 1 = 60% and ε 2 = 60%. 

According to the evaluation results in Figs. 5 and 6 , we will use

 single parameter X to capture the prediction error for simplify-

ng the performance evaluation. More specifically, we use g (γ ) to

enote the actual number of individual flows in a macroflow γ . Be-

ides, the actual traffic size is denoted as f (γ ) . In our simulation,

he predicted number g ( γ ) of individual flows in the macroflow γ
beys the uniform distribution from (1 − X%) · g (γ ) to g (γ ) , and

imilarly, the predicted traffic size f ( γ ) obeys the uniform distri-

ution from (1 − X%) · f (γ ) to f (γ ) . In the following experiments

nd simulations, we will compare the performance of four ver-

ions of the RWP algorithms, namely RWP-0, RWP-20, RWP-40 and

WP-60, to evaluate the performance effect of the prediction error.

WP-0 represents a baseline, while RWP-X (where X = 20, 40 and

0) denotes the RWP algorithm with a maximum prediction error

 %. 

The second set of simulations observes how the weight param-

ter β affects different metrics ( e.g. , resource cost and controller

esponse time). Fig. 7 shows that the resource cost does not signif-

cantly increase as the parameter β is increasing from 0.1 to 0.9, or

he maximum gap of the resource cost is less than 9%. That’s be-

ause the algorithm manages to minimize the resource utilization

mong the link bandwidth and flow table entry by efficient route
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Fig. 7. Resource Cost vs. Weight Parameter β . Left plot : Topology (a); right plot : Topology (b). 

Fig. 8. Controller Response Time vs. Weight Parameter β . Left plot : Topology (a); right plot : Topology (b). 

Fig. 9. Resource Cost vs. Number of Flows with CRT = 0.01s. Left plot : Topology (a); right plot : Topology (b). 

Fig. 10. Resource Cost vs. Number of Flows with CRT = 0.04s. Left plot : Topology (a); right plot : Topology (b). 

s  

a  

r  

t

 

n  

c  

t  

fl  

w  

W  

R  

a  

a  

b  

t  

t  

d  

e  

s  

s  

w  

c  

g  
election. Fig. 8 shows that the controller response time decreases

s the weight parameter β is increasing. However, the decreasing

ate is much smaller (less than 5% from Fig. 8 ). In the following,

he parameter β is set as 0.5. 

The third set of four simulations observes the impact of the

umber of flows on the different metrics ( e.g. , resource cost and

ontroller load ratio) with different prediction errors. Fig. 9 shows

he resource cost of the data plane by changing the number of

ows from 400 K to 800 K on two different network topologies, in

hich the controller response time (CRT) constraint is set as 0.01s.

ith more flows in the network, four algorithms (RWP-0, RWP-20,

WP-40 and RWP-60) need to pre-install more wildcard entries so
s to meet the controller response time constraint, which leads to

 higher resource cost. Fig. 10 plots the resource cost performance

y changing the number of flows when the controller response

ime constraint is 0.04 s. This figure has the similar performance

rend as Fig. 9 . We can conclude from the two figures that the pre-

iction error does not significantly impact the resource cost. For

xample, given 600 K flows in the network, the difference of re-

ource cost between RWP-0 and RWP-60 is less than 6%. Fig. 11

hows that the controller load ratio is almost linearly increasing

ith more flows arrival in the network. Since we pre-install wild-

ard entries for some chosen macroflows, our proposed RWP-0 al-

orithm can achieve lighter controller load than the dynamic rout-
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Fig. 11. Controller Load Ratio vs. Number of Flows. Left plot : Topology (a); right plot : Topology (b). 

Fig. 12. Controller Response Time vs. Number of Flows. Left plot : Topology (a); right plot : Topology (b). 

Fig. 13. Link Load Ratio vs. Number of Flows. Left plot : Topology (a); right plot : Topology (b). 
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ing scheme. For example, given 800 K flows in the network, the

controller load ratio will reach 0.51 and 0.80 by the RWP-0 al-

gorithm and the dynamic routing scheme, respectively. In other

words, our proposed algorithm can reduce the controller load ratio

by about 36% compared with the dynamic routing scheme. Heav-

ier controller load also leads to longer controller response time,

which is also validated by Fig. 12 . This figure shows that our pro-

posed algorithm can reduce the controller response time about

47–58% compared with the dynamic routing scheme. Figs. 11 and

12 also show that the performance of RWP-60 is very close to that

of RWP-0. 

The last set of simulations observes the routing performance

of different algorithms by changing the different parameters ( e.g. ,

the number of flows or the controller response time constraint)

on two topologies. Fig. 13 shows that the link load ratio is in-

creasing with more flows in a network. Since the proactive rout-

ing scheme will not dynamically adjust the routes for flows, its

routing performance is worst among these solutions. For exam-

ple, the left plot of Fig. 13 shows that the RWP-60 algorithm can

reduce the link load ratio about 33% compared with the proac-

tive routing scheme. Moreover, the link load ratio gap between

our RWP-0 algorithm and the dynamic routing scheme is less

than 5%. Fig. 14 shows that the network throughput is increas-

ing with more flows in a network. But, the increasing ratio is

slower with more flows. Besides. this figure shows that our pro-
osed algorithm can improve the network throughput by about

6% compared with the proactive routing scheme, and achieve

lose network throughput compared with the dynamic scheme.

igs. 15 and 16 show the impact of the controller response time

onstraint on the routing performance, including link load ratio

nd network throughput. Even with a lower controller response

ime ( e.g. , 0.01 s), our proposed routing scheme can achieve bet-

er routing performance than the proactive routing scheme. When

he controller response time constraint is 0.04 s, our algorithm can

chieve the similar routing performance (both link load ratio and

etwork throughput) compared with the dynamic routing scheme,

hich will lead to a higher controller response time ( e.g. , about

.12 s). 

Fig. 17 compares the routing performance of DevoFlow and our

WP algorithm. In this simulation, we gradually generate flows in

he network with running time. This figure shows that the link

oad ratio is increasing with more flows in the network for both

lgorithms. At the beginning of system running, all flows follow

he default paths in the DevoFlow, which leads to higher link load

atio than ours. After the controller detects the potential link con-

estion in the network, the controller will install some fine-grained

ules to re-route some flows so as to achieve the load balancing in

he network. By this figure, we can find that though DevoFlow can

educe the controller response time, it apt to be link congestion in

he network and be load imbalance. 
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Fig. 14. Network Throughput vs. Number of Flows. Left plot : Topology (a); right plot : Topology (b). 

Fig. 15. Link Load Ratio vs. Controller Response Time Constraint. Left plot : Topology (a); right plot : Topology (b). 

Fig. 16. Network Throughput vs. Controller Response Time Constraint. Left plot : Topology (a); right plot : Topology (b). 

Fig. 17. Link Load Ratio vs. Running Time. Left plot : Topology (a); right plot : Topology (b). 
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From these simulation results, we can make three main con-

lusions. First, the RWP algorithm can perform much better than

he dynamic routing scheme for the metrics of controller load ra-

io and controller response time, while achieving the close rout-

ng performance. Second, our proposed algorithm can obtain bet-

er routing performance ( e.g. , link load ratio and network through-

ut) than the proactive routing scheme, while meeting the con-

roller response time constraint. Third, all figures show that our

WP algorithm can work well for different performance metrics

ven with various prediction errors. Moreover, our RWP algorithm

an achieve better trade-off between controller response time and

outing performance by trading some data plane resource. 
. Related works 

With more applications of data centers [42–44] , software de-

ned networking becomes an emerging technology for flexible re-

ource and network management. Since the controller will provide

he centralized control function for all flows, it plays an important

ole for an SDN. However, when the controller should determine

he route paths for many flows, it may lead to long controller re-

ponse time. There are three different ways for dealing with this

hallenge. 

For the first category, a natural way is to deploy a cluster of

ontrollers in the network. Koponen et al. [4] proposed the Onix
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platform on top of which the control plane could be fulfilled as a

distributed system. Specifically, control planes operated on a global

view of the network, and used basic state distribution primitives

provided by the platform. Paris et al. [45] addressed the challenge

about the interplay between high degree of configuration flexibil-

ity and the computational limits of SDN controller logic. Dixit et al.

[41] proposed ElastiCon, an elastic distributed controller architec-

ture in which the controller pool was dynamically changed ac-

cording to traffic conditions and the load was dynamically shifted

among controllers. They also proposed a novel switch migration

protocol for such load shifting. However, due to traffic dynamics,

some controllers may be even congested, which will still increase

the response time on these controllers. Furthermore, to process

more flows, it is required to deploy more controllers, which will

increase the additional communication/management overhead and

the consistency-maintenance cost among more controllers. More-

over, 

For the second category, each switch is permitted to be dynam-

ically assigned to a controller so as to decrease the controller load.

Wang et al. [6] studied a dynamic controller assignment prob-

lem so as to minimize the average response time of the con-

trollers. In order to solve the problem efficiently, they proposed a

hierarchically two-phase algorithm that integrated key concepts of

both matching theory and coalitional games. The work [46] pro-

posed a novel scheme to dynamically associate switches with con-

trollers and dynamically devolve control of flows to switches. As

described in Section 1 , the dynamic controller assignment meth-

ods [6,46] bring some disadvantages on communication delay and

control plane overhead. 

The final category is the proactive routing scheme. In other

words, the controller will pre-install wildcard rules for all flows,

and dynamically adjust the routes of flows for performance opti-

mization, such as load balancing and throughput maximization [9–

11] . Using this method, the controller only installs rules for those

elephant flows, the controller load is very light and the controller

response time is low. Due to dynamic traffic intensity, it may re-

sult in transient congestion on some data links, for the controller

can not provide dynamic route control for flows. This will lead to

packet dropping and throughput reduction. As another example,

the authors in [47] proposed AggreFlow, a dynamic flow scheduling

scheme that pre-installs wildcard rules for some flow-sets. How-

ever, it needs extra flow entries for rerouting, while turning off

some switches and links to achieve power efficiency, leading to

higher link utilization than our proposed solution, with the same

flow traffic. 

The above solutions may lead to massive controller overhead,

long communication delay, or transient network congestion. Thus,

it is of vital importance to implement low controller response time

while conquering the above disadvantages. 

7. Conclusion 

In this paper, we have studied how to reduce the controller re-

sponse time with minimum data plane resource cost, and proved

its NP-hardness. We have presented an efficient algorithm based

on the randomized rounding method. The experimental results and

extensive simulation results have shown high efficiency of our pro-

posed algorithm. In the future, we will study some more practical

issues. For example, our proposed scheme will update the wildcard

forwarding entries at the beginning of each time slot. However, if

this time slot is very busy, it is inappropriate to perform these op-

erations. Thus, how to deal with this issue is a future challenge.

Moreover, it is another challenge to combine our solution with ser-

vice function chaining and service policies. 
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