
Resource-Efficient Federated Learning with
Hierarchical Aggregation in Edge Computing

IEEE INFOCOM 2021, Paper # 1570663288

Abstract—Federated learning (FL) has emerged in edge
computing to address limited bandwidth and privacy concerns
of traditional cloud-based centralized training. However, the
existing FL mechanisms may lead to long training time and
consume a tremendous amount of communication resources. In
this paper, we propose an efficient FL mechanism, which divides
the edge nodes into K clusters by balanced clustering. The
edge nodes in one cluster forward their local updates to cluster
header for aggregation by synchronous method, called cluster
aggregation, while all cluster headers perform the asynchronous
method for global aggregation. This processing procedure is
called hierarchical aggregation. Our analysis shows that the
convergence bound depends on the number of clusters and
the training epochs. We formally define the resource-efficient
federated learning with hierarchical aggregation (RFL-HA)
problem. We propose an efficient algorithm to determine the
optimal cluster structure (i.e., the optimal value of K) with
resource constraints and extend it to deal with the dynamic
network conditions. Extensive simulation results obtained from
our study for different models and datasets show that the
proposed algorithms can reduce completion time by 34.8%-
70% and the communication resource by 33.8%-56.5% while
achieving a similar accuracy, compared with the well-known
FL mechanisms.

Index Terms—Federated Learning, Mobile Edge Computing,
Resource-constraint, Cluster, Optimization.

I. INTRODUCTION

In the era of big data, billions of Internet of Thing

(IoT) devices and smartphones around the world produce a

significant amount of data per second [1], [2]. Therefore,

the traditional way of uploading those data to the remote

cloud for processing will encounter many issues, including

privacy leaks, network congestion, and high transmission

delay [3]. Since data are generated at the network edge,

mobile edge computing (MEC) is a natural alternative [4],

[5], which uses the computing and storage resources of edge

nodes to perform data processing close to the data generators.

According to Cisco’s survey, most IoT-created data will be

stored, processed, and analyzed close to or at the network

edge [6], [7]. With more data and advanced applications (e.g.,
autonomous driving, virtual reality, and image classification),

machine learning (ML) tasks will be a dominant workload in

MEC [8], [9]. To alleviate the network bandwidth burden and

avoid the privacy leakage, FL becomes an efficient solution

to analyze and process the distributed data on edge nodes for

those ML tasks [10]–[12].

Among previous FL frameworks, the dominant one is the

parameter server (PS) based framework [13]. This framework

comprises two components, the PS and workers, which form

a two-layer architecture. Edge nodes usually act as workers

and use their local data to cooperatively train models. After

each node performs several local updates, the local model

will be forwarded to the PS for processing, which is called

global aggregation. Under this framework, the PS maintains

globally shared models to solve large-scale ML problems,

which can protect privacy [14], reduce network delay, and

relieve network burden [15], [16].

However, the PS-based two-layer framework will also

encounter many difficulties for the following reasons. 1)

Since PS is always located on a remote cloud platform to

provide reliable services [13], the communication between

workers (or edge nodes) and the remote servers may be

frequently unavailable, slow, and expensive (e.g., frequent

backhaul and long communication distance). 2) The resources

(e.g., communication and computation) are always limited in

the MEC system [17], [18]. 3) The size of model parameters

may reach tens or even hundreds of megabytes in many

ML tasks [19]. 4) The number of workers (or edge nodes)

often ranges from thousands to billions [20]–[22]. Therefore,

communication cost may become the principal constraint of

this framework. Even though many proposed solutions are

put forward to improve the performance of FL, most of

them will also cause network congestion and slow down the

convergence of model training since they simply adopt the

PS-based two-layer framework.

To alleviate the total communication cost in FL, a natural

solution adopts the lossy compression, which reduces the

amount of total forwarded data. Unfortunately, since it will

not decrease the number of edge nodes that forward models

to PS, they only offer a small amount of network traffic

reduction, but sacrifice the accuracy of the trained model

and incur high computation overhead [23], [24]. Hence,

it is highly desirable for more effective and fundamental

solutions, which can reduce the communication cost between

edge nodes and PS without losing the model accuracy.

In MEC, many edge nodes cooperate to handle a general

task by low-cost communication to exchange their current

processing results [25], which motivates our design. In this

paper, we aim to reduce the high-cost communication be-

tween edge nodes and PS, and strengthen cooperation among

edge nodes. We propose a novel cluster-based FL mechanism.

Under our mechanism, we divide all the edge nodes into K
clusters by balanced clustering [26], [27]. Among the edge

nodes in one cluster, a leader node (LN) is chosen as the

cluster header to aggregate all local models in this cluster.

Those edge nodes in the same cluster perform synchronous

method for aggregation, called cluster aggregation, while

2

all LNs communicate with the PS for global aggregation

in an asynchronous method. We call the whole processing

procedure as hierarchical aggregation. Considering the low-

cost intra-cluster communication between edge nodes, the

proposed cluster-based FL result in a significant resource

reduction in the runtime. Under hierarchical aggregation,

the theoretical analyses show that the training performance

mainly depends on the cluster topology and resource budgets

in Section III. As a result, it is critical to determine how to

organize these edge nodes into clusters, i.e., the optimal value

of K, under resource constraints. The main contributions of

this paper are as follows:

1) We design a novel cluster-based FL mechanism, which

performs hierarchical aggregation. We analyze the con-

vergence bound that incorporates the number of clusters

and the training epochs.

2) Based on the analysis results, we formally define the

resource-efficient federated learning with hierarchical

aggregation (RFL-HA) problem. We propose an efficient

algorithm to determine the optimal value of K with

resource constraints. We also extend our algorithm to

deal with a dynamic scenario in which the network

situations may vary with time by re-clustering the edge

nodes.

3) We conduct extensive simulations using various models

and datasets. The simulation results show that the pro-

posed algorithms reduce training time by 34.8%-70%

and the communication resource by 33.8%-56.5% while

achieving similar accuracy, compared with the well-

known FL mechanisms.

The rest of this paper is organized as follows. We introduce

some FL mechanisms and propose our cluster-based mecha-

nism in Section II. In Section III, we present our algorithm

for the RFL-HA problem and extend it to dynamic scenar-

ios. Section IV evaluates the performance of our proposed

algorithms. We conclude this paper in Section V.

II. PRELIMINARIES

This section first reviews some related work about FL.

Then, we describe our proposed mechanism and prove its

convergence. Finally, we put forward the problem definition.

A. Federated Learning

Many well-known FL mechanisms have emerged since

FL was first proposed in 2016 [28]. The authors in [8]

propose a solution that dynamically adapts the frequency

of global aggregation. Another mechanism, called FedAvg

[18], combines local stochastic gradient descent on each

worker with a server that performs model averaging. The

mechanism proposed in [29] adopts a hierarchical struc-

ture and allows multiple edge servers to perform partial

model aggregation, which is similar to ours. However, those

mechanisms perform global aggregation in a synchronous

method, and each training epoch only progresses as fast as

the slowest edge nodes [30], called straggler effect. Due to

node heterogeneity and data imbalance [10], the probability

of the occurrence of straggler effect increases with more and

FL Epoch
Scalability

Training Resource
mechanisms duration efficiency consumption

[8], [18], [29] Long Poor High High
[31]–[33] Short Good Low High

Ours Short Good High Low

TABLE I: Comparison of different FL mechanisms

more edge nodes. As a result, those solutions are not suitable

for large-scale ML tasks, leading to poor scalability [11].

To conquer these disadvantages, the asynchronous FL [31]–

[33] is proposed to perform global aggregation as soon as

the PS collects one local update from an arbitrary worker.

However, this mechanism usually requires more training

epochs to achieve the similar accuracy as [8], [18], especially

for unbalanced data distribution. In addition, all of the above

works will consume huge communication resources due to

PS-based two-layer communication architecture. The detailed

comparison among these works is shown in Table I.

B. Gradient Descent-based FL

In FL, each edge node trains its own local model based on

a collection of data samples. Let j denote a training sample,

including feature xj and label yj . Given a model, e.g., logistic

regression (LR) [34], or convolutional neural network (CNN)

[35], the loss function is denoted as fj(w, xj , yj), written as

fj(w) for simplicity, where w is the model vector. The loss

function on dateset D is

f(w) =
1

|D|
∑
j∈D

fj(w) (1)

where |D| is the number of training samples in D. Then, the

learning problem is to find the optimal model vector w that

minimizes the loss function f(w), expressed as

w∗ = argmin f(w) (2)

It is almost impossible to solve Eq. (2) directly, especially

for deep learning models. Alternatively, each edge node will

perform gradient-descent in each local update (i.e., iteration)

to gradually approach the optimal solution. For iteration t,
the local update rule is described as follows:

w(t) = w(t− 1)− η∇f(w(t)) (3)

where η > 0 is the step size.

C. Cluster-based Federated Learning Mechanism

We introduce the cluster-based FL mechanism, as illus-

trated in Fig. 1. Assume that there are N edge nodes, and the

edge nodes are divided into K clusters, with nk edge nodes in

each cluster k. The clustering operation will be triggered after

each edge node i forwards its feature vector Vi to PS, where

Vi is mainly extracted from the communication cost (e.g.,
the model size, network bandwidth, and the communication

distance between edge nodes) and the model training abilities

(e.g., the computing ability, the dataset size, and the remain-

ing battery power). Specially, we consider a scenario in which

there are several small areas (e.g., companies, hospitals)

separated by tens of kilometers or more, and each area has

thousands of edge nodes. Apparently, we will completely

separate the edge nodes in each area according to their

communication cost. After that, those nodes in each area will

be further divided into several small clusters.

3

Fig. 1: The architecture of our proposed mechanism

To avoid the occurrence of empty clusters (e.g., nk = 0),

and balance the weight of each cluster, we adopt the well-

known balanced clustering method (e.g., balanced K-means

[26], FSCL [27]), which minimizes the mean square error

and balances the cluster size. In other words, they reduce the

difference in the number of edge nodes among all clusters

to make nk → �N
K � + βk, where βk ∈ {0, 1}. The whole

clustering process is performed by PS. Then, PS simply

chooses the leader node LNk of cluster k with powerful

computing and communication capabilities based on feature

vector, and report the clustering result to all edge nodes.

After clustering, edge node i in cluster k starts using its

dataset Di
k to train the local model wi

k. The loss function is

F i
k(w

i
k) =

1

|Di
k|

∑
j∈Di

k

fj(w
i
k) (4)

Assume that there are totally T training epochs, with one

global aggregation in each epoch. Let H denote the number

of local updates (i.e., iterations) that each edge node performs

between its two consecutive cluster aggregation. After H
iterations, edge nodes in cluster k will send the updated local

model to LNk. Once collecting local models from all edge

nodes in cluster k, LNk will perform the cluster aggregation.

The new model after cluster aggregation is defined as

wk =

∑nk

i=1 |Di
k|wi

k∑nk

i=1 |Di
k|

(5)

This model will be forwarded to PS for calculating the global

model by staleness-aware global update approach mentioned

in the next subsection. Then, the global loss function F (wt)
after t ∈ {1, 2, .., T} epochs is

F (wt) =

∑K
k=1

∑nk

i=1 |Di
k|F i

k(w
t)∑K

k=1

∑nk

i=1 |Di
k|

(6)

The global loss function F (wt) cannot be directly computed

without sharing global model to all edge nodes by PS.

We should note that our proposed FL mechanism is the

generalization of the previous FL solutions. For example, if

K is 1, it becomes the synchronous FL [36]. If K is N , it

is exactly the asynchronous FL [31]. In this paper, we will

study the impact of parameter K on the training performance.

D. Staleness-aware Global Update

Since edge nodes in each cluster perform the synchronous

FL method, their staleness, denoted as τ , is the same. For

cluster k, its staleness is defined as the number of experienced

epochs since its last global update. PS updates the global

model with staleness treatment, that is, the weight of each

newly received model from an arbitrary cluster will be

determined by τ ,

wt = (1− αt
τ)w

t−1 + αt
τwk (7)

where αt
τ is the weight of wk at epoch t with staleness τ .

Then, we adopt a function [31] to determine the value of αt
τ ,

that is,

αt
τ =

{
α, τ ≤ a

α · τ−b, τ > a
(8)

where a > 0, b ≥ 0, and α ∈ (0, 1) is an initial model

weight. This function implies that when τ > a, the weight

of model drops rapidly as the staleness becomes higher. In

fact, when we divide edge nodes into different numbers of

clusters, the model weight of each cluster will drop with

the increasing number of clusters. We initialize weight α as

α = φ(K) = 1 − K−1
N , with K ∈ {1, .., N}, and we also

set a lower bound for α based on the analysis in Section III.

After substituting α in Eq. (8), we obtain the expression of

αt
τ as follows

αt
τ =

{
1− K−1

N , τ ≤ a

(1− K−1
N)τ−b, τ > a

(9)

By Eq. (9), we have αt
1 = 1 if K = 1. As a result, wt =

∑N
i=1 |Di|wi∑N
i=1 |Di| , which is same as that in the synchronous FL [8].

E. Convergence Analysis
To analyze the convergence of our proposed mechanism,

we assume the loss function is strongly-convex and smooth

[31].
Assumption 1: Assume that the loss function f satisfies

the following conditions:

1) f is μ-strongly convex, where μ ≥ 0, i.e.,
f(y)− f(x) ≥ ∇fT(x)(y − x) +

μ

2
‖y − x‖2, ∀x, y

2) f is β-smoothness, where β > 0, i.e.,

f(y)− f(x) ≤ ∇fT(x)(y − x) +
β

2
‖y − x‖2, ∀x, y

3) There exists at least one solution x∗ for global optimiza-

tion that can minimize the loss function, i.e.,
x∗ = inf

x
f(x) and ∇f(x∗) = 0, ∃x∗ ∈ Rd

The above assumptions can be satisfied for many models

with convex loss function, e.g., linear regression [37], LR

[34] and SVM [38]. The loss function f(w, xj , yj) of those

models are listed below.

• Liner regression: 1
2‖yj − wTxj‖2, yj ∈ R

• LR: − log(1 + exp(−yjw
Txj)), yj ∈ {0, 1}

• SVM: λ
2 ‖w‖2 + 1

2 max{0; 1− yjw
Txj}, yj ∈ {−1, 1}

According to the above assumptions, we prove the con-

vergence of our two-layer FL mechanism in two steps. We

analyze the convergence bound after H local updates. Based

on that, we will derive the bound after T epochs.
Definition 1: Assume that the global loss function F is

β-smooth and μ-strongly convex. ∀w ∈ Rd and ∀j ∈ Di
k,

4

where k ∈ {1, ...,K} and i ∈ {1, ..., nk}, we define an upper

bound Q1 of ‖∇f(w; j)−∇F (w)‖2, i.e.,

E‖∇f(w; j)−∇F (w)‖2 ≤ Q1

We also define Q2 as the upper bound of ‖∇f(w; j)‖2, i.e.,

E‖∇f(w; j)‖2 ≤ Q2

Theorem 1: When the following conditions are satisfied:

1) η < 1
β

; and 2) F (w0)− F (w∗) > Q1+Q2
2ημ2 , the convergence

bound of the global loss function F after T epochs is,

E[F (wT)− F (w∗)]

≤ [
K − 1

N
+ α(1− ημ)H]T (F (w0)− F (w∗))

+
(Q1 +Q2)(1− [K−1

N + α(1− ημ)H]T)

2ημ2
(10)

where w0 is the initial model parameter, and w∗ denotes the

optimal model which minimizes the global loss function F .

Proof: Since some proof procedure can be found in the

previous work [31], we only show the differences from [31].

After edge node i in an arbitrary cluster k performs H local

updates by the model wt−τ , the convergence bound is

E[F (wt−τ,H)− F (w∗)]

≤ (1− ημ)H [F (wt−τ,0)− F (w∗)] +
HηQ1

2
(11)

where wt−τ,H is derived from the global model wt−τ by

H iterations. Apparently, wt−τ,0 and wt−τ are equal. Then,

the asynchronous FL mechanism in [31] will perform one

global aggregation immediately. But for our FL mechanism,

only after nk edge nodes in cluster k have performed H
iterations and the LNk aggregates their local models based

on Eq. (5), the PS will update the global model by Eq. (7).

Thus, the convergence bound of our FL mechanism after t
epochs is:

E[F (wt)− F (w∗)]

≤ (1− αt
τ)F (wt−1) + αt

τE[F (wk)]− F (w∗)

≤ (1− αt
τ)F (wt−1) + αt

τE[F (

∑nk

i=1 |Di
k|wi

k∑nk

i=1 |Di
k|

)]− F (w∗)

≤ (1− αt
τ)F (wt−1) + αt

τ

nk∑
i=1

Di
k∑nk

i=1 |Di
k|
F (wi

k)− F (w∗)

≤ (1− αt
τ)[F (wt−1)− F (w∗)] + αt

τE[F (wi
k)− F (w∗)]

(12)

Since the edge nodes in cluster k adopt wt−τ to perform

local updates, therefore, the weight of the new model wk is

αt
τ , where αt

τ ≤ αt
1 according to Eq. (9). Based on Eq. (11)

and Eq. (12), we can derive the convergence bound after T
epochs as shown Theorem 1.

F. Problem Formulation

In this section, we give the definition of resource-efficient

federated learning with hierarchical aggregation (RFL-HA)

problem. For a specific ML task, we will determine the

optimal number of clusters (i.e., K) for training under re-

source constraints. To train models among distributed edge

nodes by FL, it is inevitable to consume resources (e.g.,
time, computing, and communication resources). Formally,

we consider M different types of resources, and each re-

source m ∈ {1, 2, ...,M} has a budget Rm. We assume

that it consumes cm of resource m for performing H local

updates at each edge node. Meanwhile, let bm denote the

consumption of resource m for each global aggregation of an

edge node. Thus, the total resource consumption of T epochs

is T · nk · ptk · (cm + bm), where ptk is a binary variable to

indicate whether cluster k is involved in global aggregation

at epoch t or not. Since each cluster runs asynchronously, ptk
is determined in real-time during training. We formulate the

RFL-HA problem as follows:

min
T∈{1,2,3,...}

F (wT)

s.t.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑T
t=1 nkp

t
k(cm + bm) ≤ Rm, ∀m∑K

k=1 p
t
k = 1, ∀t

nk = 	N
K
+ βk, ∀k

ptk ∈ {0, 1}, βk ∈ {0, 1} ∀t, k

(13)

The first set of inequalities indicates that the resource

consumption on each type during T epochs should not

exceed its budget. The second formula represents that all

clusters asynchronously perform the global update, and the

PS updates the global model when it receives the parameters

from an arbitrary LN. In the third formula, we consider the

situation that balanced clustering achieves the optimal clus-

tering result. Since we target to minimize the loss function

F (wT), it is impossible to solve Eq. (13) by finding an

exact expression among K, T and F (wT) [8]. But using the

convergence bound of the loss function, we can solve RFL-

HA approximately to obtain the optimal value of K. Then T
can be derived from K accordingly.

III. CLUSTER-BASED ALGORITHM FOR FL

A. Approximate Solution for RFL-HA

Based on the above analyses, we first study how to

solve the RFL-HA problem in a static scenario with

stable conditions of both networks (e.g., stable bandwidth)

and edge nodes (e.g., sufficient power and stable size of

datasets). Given a loss function, its minimum value F (w∗) is

a constant. We rewrite the objective function F (wT) in Eq.

(13) as F (wT)− F (w∗). Then we replace F (wT)− F (w∗)
by the approximate value which is derived by convergence

analysis in Eq. (10). We also substitute the first set of

inequalities in Eq. (13) by T · �N
K � · (cm + bm) ≤ Rm

since βk ∈ {0, 1}. As a result, we reformulate the RFL-HA

problem as:

min γ(F (w0)− F (w∗)) + (Q1+Q2)(1−γ)
2ημ2

s.t.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

T �N
K �(cm + bm) ≤ Rm, ∀m∑K
k=1 p

t
k = 1, ∀t

ptk ∈ {0, 1}, ∀t, k
K ∈ {1, 2, ..., N}

(14)

5

where γ = [K−1
N + α(1 − ημ)H]T , which is related to T

and K. The objective function in Eq. (14) decreases as T
increases based on Theorem 1. Thus, the optimal value of
T is �min

m

Rm

�N
K �(cm+bm)

�. We omit the rounding operation for

simplicity. Then, we substitute T into the objective function
in Eq. (14), yielding

L(K) = [
K − 1

N
+ α(1− ημ)H]

RmK
N(cm+bm) [F (w0)− F (w∗)]

+
(Q1 +Q2)[1− (K−1

N
+ α(1− ημ)H)

RmK
N(cm+bm)]

2ημ2
(15)

After that, the optimal value of K can be determined as

K∗ = arg min
K∈{1,2,...,N}

L(K) (16)

Theorem 2: We set Rmin = min
m

Rm. When Rmin → ∞,

we have F (wT)− F (w∗) ≤ Q1+Q2

2ημ2 .

Proof: Because Rmin → ∞, that is, Rm → ∞, ∀m, we

have T = 	min
m

RmK
N(cm+bm)
 → ∞. We also have K−1

N +α(1−
ημ)H < 1 based on Eq. (9). Thus, [K−1

N +α(1− ημ)H]T →
0 and γ → 0. Then it follows γ(F (w0) − F (w∗)) → 0
and (1 − γ) → 1. As a result, F (wT) − F (w∗) ≤ Q1+Q2

2ημ2 .

This result denotes that the model will eventually converge

regardless of the value of K in the condition without resource

constraint.

However, the resource constraints are unavoidable in MEC.

Therefore, we demand to study the impact of K on Eq. (15)

under limited resources, which is important for improving

the training performance of our FL mechanism. We set

g(K) = [1− N + 1−K
N

(1− (1− ημ)H)]
RmK

N(cm+bm) (17)

Then, we focus on the monotonicity of this function instead

of L(K) in Eq. (15). For simplicity, we define

A =
1

N
(1− (1− ημ)H), B =

Rm

N(cm + bm)
(18)

We rewrite Eq. (17) as g(K) = (1 + KA − (N + 1)A)KB .
Taking the derivative, we get

∂g(K)

∂K =(1 +KA− (N + 1)A)KB [B ln(1 +KA− (N + 1)A)

+
KBA

1 +KA− (N + 1)A
] (19)

The second derivative result is

∂2g(K)

∂2K = (1 +KA− (N + 1)A)KB [B ln(1 +KA− (N + 1)A)

+
KBA

1 +KA− (N + 1)A
]2 +

2BA[A(K − 1) + (1−NA)]

[1 +KA− (N + 1)A]2

(20)

According to Eq .(18), we have A ∈ (0, 1
N
). It follows A(K−

1)+(1−NA) > 0, and ∂2g(K)
∂K > 0. So

∂g(K)
∂K is monotonically

increasing with K. We define

H(K, A) = B ln(1 +KA− (N + 1)A) +
KBA

1 +KA− (N + 1)A
(21)

The partial derivative of function H(K, A) on A is

∂H(K, A)

∂A
=

B[A(K −N − 1)2 + 2K −N − 1]

[1 + (K −N − 1)A]2
(22)

We note that H(K, 0) = 0 if A = 0.

Algorithm 1 Cluster-based Federated Learning (CFL)

1: Initialize the cluster structure;

2: Initialize w0, t = 0 and rm = 0, ∀m;

3: repeat
4: Global Aggregation at the Parameter Server
5: Receive update from LNk, and set t ← t+ 1;

6: Compute wt according to Eq. (7);

7: Estimate bim, using b̂im, ∀m, i;
8: update rm ← rm +

∑nk
i=1 c

i
m +

∑nk
i=1 b

i
m,

9: Send wt back to LNk;

10: Cluster Aggregation at the Leader Node k
11: Receive local updates from all edge nodes in cluster;

12: Compute wk by Eq. (5), and estimate b̂im, ∀m, i;
13: Send wk,

∑nk
i=1 c

i
m, and b̂im, ∀m, i, to PS;

14: Receive wt from PS and return it back to edge nodes;

15: Procedure at Edge Node i in Cluster k
16: Receive wt from LNk;

17: Perform H local updates;

18: Send resource consumption cim and wi
k to LNk;

19: until rm ≥ Rm, ∃m;

20: return the final model parameter wt;

Theorem 3: If Rm < R, ∀m, where R a finite real number,

we have K∗ ∈ {1, ..., 	N+1
2
}.

Proof: If N+1
2 < K ≤ N , we obtain

∂H(K,A)
∂A > 0. For

H(K, 0) = 0, we have H(K, A) > 0 if A > 0. Thus, we get
∂g(K)
∂K > 0, making the loss function upper bound increase

with K.

On the contrary, assume that 1 ≤ K ≤ N+1
2 . We consider

the following two propositions with different conditions.

1) N−1
N2 < A < 1

N . We have
∂H(K,A)

∂A > 0, ∀K, and
∂g(K)
∂K > 0. Thus, the minimum value of function g(K)

is g(1), which means K∗ = 1. This case becomes the

synchronous FL.

2) 0 < A ≤ N−1
N2 . If K = 1, we have

∂H(1,A)
∂A < 0.

Since H(1, 0) = 0, we derive H(1, A) < 0. Meanwhile, if

K = N+1
2 , we have H(N+1

2 , A) > 0 for
∂H(N+1

2 ,A)

∂A > 0,

and H(N+1
2 , 0) = 0. Due to the continuity of the function

H(K, A), there exist K∗ ∈ (1, N+1
2), making H(K∗, A) = 0.

As a result, g(K) will takes a minimum value at K∗ where
∂g(K∗)
∂K∗ = 0.

Since the solution of
∂g(K)
∂K = 0 is difficult to be obtained

directly and K∗ is a positive integer with less than N+1
2 , we

can explore a proper value of K∗ within a finite range that

minimizes function g(K). To calculate the value of g(K),
we should estimate some parameters (e.g., cm, bm, μ and

α) during training in practice, e.g., we calculate μ based

on Assumption 1. Since Eq. (17) always increases when K
become larger if K > N+1

2 , We take the lower bound of

α as 0.5 is benefit for the model convergence. After that,

we can search K∗ by Eq. (17) with a time complexity of

O(log N+1
2).

B. Cluster-based Federated Learning

In this section, we present the cluster-based federated

learning (CFL) algorithm, as described in Alg. 1. During

initialization, the PS demand to perform global aggregation

6

for several epochs among all edge nodes for collecting Vi

from edge node i and estimating the parameters (e.g., cm,

bm and μ). Then, PS can search K∗, perform balanced

clustering and select LNs. After that, we focus on the detailed

operations on three components, PS, LNs, and edge nodes,

respectively. The PS mainly implements two functions (Line

5-9). 1) After receiving local models from each LN, PS up-

dates the global model using Eq. (7) and returns the updated

model. 2) The PS also estimates the resource consumption

and monitors whether the resource constraints are satisfied

or not. Specifically, the PS will update the resource counter

rm to record total resource consumption, and return the

final model when rm exceeds the constraint. Each LN is

responsible for forwarding the result of cluster aggregation

to PS (Line 13) and returning the updated model to edge

nodes in the cluster (Line 14). Edge nodes mainly play the

role of local model trainers. After receiving the global model,

edge nodes perform H iterations and forward the results to

the LN in the cluster. The parameters cim and bim is utilized

to denote the different resource consumption of each edge

node i in practical. Each edge node repeats training until

the algorithm stops (Line 16-18). In fact, LNs are also the

members of edge nodes, but we treat LNs as an independent

component in this algorithm.

C. Extension to Dynamic Scenarios

The CFL algorithm assumes that the network condition

is stable and each edge node will not suffer from network

interruption and training capability degradation due to un-

expected accidents, e.g., battery exhausted and computing

resource occupation. However, it is not the case in practice

[39]. Based on these concerns, we study a dynamic cluster-

based FL mechanism for practical situations in this section.

To this end, we propose two approaches. One is fixed re-

clustering, and the other is adaptive re-clustering, which can

be invoked as a supplement to the CFL algorithm.

Fixed Re-clustering. Fixed re-clustering means clustering

all edge nodes after every Tb epochs, where Tb is a pre-

set constant. Obviously, PS keeps a counter tb to denote the

number of experienced epochs since the last re-clustering.

If tb ≥ Tb, re-clustering will be triggered. However, the re-

clustering operation will suspend the training process. For

example, edge node i will stop training, transfer the new

feature vectors Vi to PS, and wait for the re-clustering result.

Therefore, it is reasonable to trigger re-clustering only after

all clusters have undergone several updates, that is,

Tb = � · K, � ∈ N∗ (23)

To determine the value of �, we consider the specific value

of K. A small value of K indicates that there are more

edge nodes in one cluster. Thus, the FL mechanism is more

susceptible to the stragglers effect, and we adopt a small �.

But for K = 1 and K = N , we set � → ∞, because both

approaches can not implement re-clustering. However, the

way to obtain the optimal value of � demands future study.

Adaptive Re-clustering. Fixed re-clustering is only trig-

gered after every Tb epochs. Thus, it can not fully adapt

to the real-time situation of severe deterioration of network

Algorithm 2 Dynamic Cluster-based Federated learning

(DCFL)

1: Initialize the cluster structure;
2: Initialize Tb, K̃, tb = 0,S = {0; ...; 0};
3: repeat
4: Global Aggregation at the Parameter Server
5: Receive update from LNk, and set tb ← tb + 1;
6: Update global model, S, and resource budgets;

7: if
∑K

k=1 sk ≥ K̃ or tb ≥ Tb then
8: Broadcast CLU flag to edge nodes;
9: Receive Vi from edge nodes, and perform re-clustering;

10: Send clustering result and global model to edge nodes;
11: Set tb ← 0,S ← {0; ...; 0};
12: else
13: Send updated global model back to LNk;

14: Cluster Aggregation at the Leader Node k
15: if Receive CLU flag then
16: Wait for clustering result;
17: else
18: Wait for local updates from edge nodes in cluster k;
19: Perform cluster aggregation, and update sk;
20: Receive global model from PS and send to edge nodes;

21: Procedure at Edge Node i in Cluster k
22: if Receive CLU flag then
23: Send Vi to PS;
24: Wait for clustering result;
25: else
26: Receive model from LNk or PS;
27: Perform local updates and send updated model to LNk;

28: until Resource constraints are exceeded;
29: return the final global model;

status. To be more flexible, we propose another approach,

called adaptive re-clustering. PS maintains an array S =
{s1; s2; ...; sK} to denote the conditions of all clusters, while

sk = 0, ∀k ∈ {1, 2, ...,K}, indicates that no straggler appears

in cluster k. As soon as LNk discovers the occurrence of

straggler (e.g., the time for cluster aggregation is greatly

increased), it sets sk = 1 and forward this parameter to

PS during the next global aggregation. The PS will modify

the corresponding value sk to 1 in array S . When a certain

number, e.g., K̃ ∈ {1, ..,K}, of clusters report the presence

of stragglers, i.e.,
K∑

k=1

sk = K̃ (24)

re-clustering will be triggered. After adaptive re-clustering,

we reset t = 0 and S = {0; ...; 0} for the next re-clustering.

Even though LN dies in adaptive re-clustering and cannot

perform cluster aggregation and forward parameters to PS,

fixed re-clustering can be triggered normally to discard the

dead nodes and select new LNs for future training. Therefore,

the combination of two approaches can deal with the slow

or sudden degradation of training conditions, e.g., straggler

effect and nodes failure, and maintain efficient training until

the ML task is completed.

We introduce the dynamic cluster-based FL algorithm

(DCFL) in Alg. 2 and omit the process of model training

which is similar to that in Alg. 1. In addition to maintaining

the global model and updating resource constraints, PS

7

should manage re-clustering in DCFL. Whenever PS collects

updates from a cluster, it checks whether the condition of re-

clustering is satisfied or not. Re-clustering only occurs when

the conditions for fixed re-clustering (tb ≥ Tb) or adaptive

re-clustering (
∑K

k=1 sk ≥ K̃) are met (Line 7). Then PS

will perform re-clustering and select the new LN for each

cluster (Lines 8-10) depending on the new feature vector

Vi of each edge node. For LNs and edge nodes, they will

stop performing cluster aggregation or local updates when

they receive the CLU flag. Edge nodes will forward the

new feature vectors to the PS (Line 23). After receiving

the re-clustering results, those edge nodes will initiate their

procedure for model training.

IV. PERFORMANCE EVALUATION

A. Simulation Settings

Benchmarks. We compare our proposed algorithms with

two benchmarks for performance evaluation. The first bench-

mark is FedAsync [31], which is an asynchronous FL

algorithm with staleness treatment. The global update of

FedAsync is performed as soon as one model from an

arbitrary edge node is received by PS. We also choose an

improved synchronous FL algorithm FedAvg [18] as the

baseline. It randomly selects a fixed number of edge nodes

in each epoch and aggregates the local models from these

edge nodes.

Models and Datasets. The experiments are conducted

over three different models (e.g., SVM [38], LR [34] and

CNN [35]) and two real datasets (e.g., MNIST [40] and

CIFAR-10 [41]). SVM and LR are trained over MNIST,

which is composed of 60,000 handwritten digits for training

and 10,000 for testing. They divide the digits into odd and

even categories. CNN1 is trained over both MNIST and

CIFAR-10. CIFAR-10 includes 50,000 images for training

and 10,000 for testing, and has ten different types of objects.

We will perform stochastic gradient descent to process the

mini-batch samples for training two datasets. We adopt the

same mini-batch size for each edge node (e.g., 60 for MNIST

and 50 for CIFAR-10) [31].

Performance Metrics. We mainly adopt three common

metrics for performance evaluation. 1) Loss function mea-

sures the difference between the predicted values and the

actual values. 2) Classification accuracy is the proportion

of correctly classified samples to all samples in the dataset.

Both metrics can be derived from the model after global

aggregation. 3) Completion time denotes the time spent until

training terminates, which is used to evaluate the model

training speed.

Resources. In the experiments, we compare the training

performance of different algorithms under the resource (e.g.,
time and communication) constraints. We consider one re-

source type in each experiment for simplicity. To quantify

1The detailed CNN network architectures for MNIST (CIFAR-10):
5 × 5 × 32(64) Convolutional → Local Response Normalization →
2 × 2 MaxPool → 5 × 5 × 64(128) Convolutional → Local Response
Normalization → 2 × 2 MaxPool → 1600(3200) × 512 Fully connected
→ 512 × 10(256) Fully connected (→ 256 × 10 Fully connected) →
Softmax.

the communication cost, we adopt the cost of each model

exchange between LN and PS as one unit [18], [31]. We also

set the communication cost among edge node and LN as 0.1

unit for the following reasons. 1) The communication latency

between LN and PS is more than ten times of intra-cluster

communication [42], [43]. 2) Long communication distance

and frequent backhaul will often lead to network congestion

[42], [44], [45].

Data Distribution. To evaluate the impact of data im-

balance on the simulation performance, we conduct our

evaluations in a simulated environment with 100 edge nodes

and distribute the dataset (with its size D) into separate nodes

in three cases. In case 1, data samples are assigned to each

edge node uniformly (i.e., D
100 for each node). In case 2 and

case 3, the dataset is distributed to each edge node according

to the Gaussian distribution with the same expectation (e.g.,
D
100) but different standard deviation σ (e.g., 100 for case 2

and 300 for case 3), which denote the data size of each edge

node mainly ranging from D
100 − 2σ to D

100 + 2σ.

Simulation Parameters. In all simulations, we by default

set the learning rate η as 0.01, and the number of local

updates in each epoch as H = 10 [8]. We adopt a = 5
and b = 1 to deal with staleness. The only feature we

consider for performing clustering is the dataset size of edge

nodes. We randomly select an LN in each cluster. To evaluate

the performance of our algorithms when Assumption 1 is

not satisfied (e.g., non-convex or non-smooth), we conduct

experiments on several values of K (e.g., 5, 10, 20, 25 and

50) to observe the impact on the performance. Then, CFL(10)

denotes the algorithm with K = 10. To analyze the impact

of data imbalance, we test the completion time of different

algorithms while achieving the same training accuracy (e.g.,
80% for SVM and 50% for CNN over MNIST) in cases 1-

3, and other experiments are only conducted in case 1. For

DCFL, we assume a certain fraction (e.g., 0.3) of edge nodes

will die at any time during training [46]. We set � = 10
and K̃ = 1 for re-clustering. For the benchmark, we set

two subset sizes z (e.g., 10 and 100) for FedAvg. We adopt

the average results of 5 independent experiments to avoid

accidents.

B. Simulation Results

Convergence Performance. Our first set of simulations

compares CFL to baselines with different numbers of epochs,

ranging from 0 to 1,000. The results are shown in Figs. 2-4.

We observe that CFL(10) always achieves the lowest loss and

the highest accuracy compared with both FedAvg (z = 10)

and FedAsync, and its superiority is better reflected on CNN

than on SVM. Meanwhile, the performance of FedAvg (z =
10) is similar to that of CFL(20), which is better than the

performance of CFL(50). For example, after training 1,000

epochs on CIFAR-10 using CNN, the accuracy of CFL(10)

and FedAvg is 56% and 39%, respectively. Besides, CFL

requires about 300 epochs to achieve the same accuracy of

FedAsync after 1,000 epochs with CNN over MNIST, which

reduces the number of training epochs by 70%.

8

0 2 4 6 8 10

0.4

0.5

0.6

0.7

0.8

L
o

s
s

Epochs (×100)

 FedAsync

 CFL (50)

 FedAvg

 CFL (20)

 CFL (10)

0 2 4 6 8 10
0.65

0.70

0.75

0.80

0.85

A
c
c
u

ra
c
y

Epochs (×100)

 CFL (10)

 CFL (20)

 FedAvg

 CFL (50)

 FedAsync

Fig. 2: Loss and Accuracy vs. No. of Epochs with SVM

over MNIST.

0 2 4 6 8 10
0.0

0.6

1.2

1.8

2.4

L
o

s
s

Epochs (×100)

 FedAsync

 CFL (50)

 FedAvg

 CFL (20)

 CFL (10)

0 2 4 6 8 10
0.1

0.3

0.5

0.7

0.9

A
c
c
u

ra
c
y

Epochs (×100)

 CFL (10)

 CFL (20)

 FedAvg

 CFL (50)

 FedAsync

Fig. 3: Loss and Accuracy vs. No. of Epochs with CNN

over MNIST.

0 2 4 6 8 10

1.4

1.6

1.8

2.0

2.2

2.4

L
o

s
s

Epochs (×100)

 FedAsync

 CFL (50)

 FedAvg

 CFL (20)

 CFL (10)

0 2 4 6 8 10
0.1

0.2

0.3

0.4

0.5

A
c
c
u

ra
c
y

Epochs (×100)

 CFL (10)

 CFL (20)

 FedAvg

 CFL (50)

 FedAsync

Fig. 4: Loss and Accuracy vs. No. of Epochs with CNN

over CIFAR-10.

Resource Constraints. In the second set of experiments,

we compare the performance of different algorithms in the

scenario with resource constraints. Similar to the settings

in [8], we adopt the time budget (e.g., 600s for SVM/LR

and 1,800s for CNN over MNIST) for different values of

K. The communication budgets vary from 100 to 1,000 for

CNN over MNIST and CIFAR-10. The results are shown in

Figs. 5-9. Figs. 5-6 show that CFL achieves higher accuracy

than both FedAvg (z = 100) and FedAsync under the time

budget. For different models and datasets, there are different

optimal values of K between 10 and 25. For instance, CFL

achieves an accuracy of 74.2% with CNN over MNIST when

it takes the optimal value of K, which is about 15% and

26% higher than FedAvg and FedAsync, respectively. In

the left plot of Fig. 7, we compare the completion time

of three algorithms when achieving the final accuracy of

FedAsync in Figs. 5-6. The result shows that CFL reduces

the time by about 34.8%-70%. By the right plot of Fig. 7,

CFL(50) reduces the communication cost by about 33.8%

and 56.5% when achieving the accuracy of FedAsync after

1,000 communication budgets, compared with FedAvg and

FedAsync, respectively. Figs. 8-9 shows the specific training

process. The reason for the significant performance improve-

ment of CFL under the communication budgets is that CFL

performs cluster aggregation and reduces the communication

1 2 5 10 20 25 50 100

0.45

0.50

0.55

0.60

0.65

0.70

L
o

s
s

 SVM

 LR

1 2 5 10 20 25 50 100

0.74

0.76

0.78

0.80

0.82

A
c
c
u
ra

c
y

 SVM

 LR

Fig. 5: Loss and Accuracy vs. K with Time Budget of 600s.

1 2 5 10 20 25 50 100
0.8

1.0

1.2

1.4

1.6

1.8

2.0

 CNN

L
o

s
s

1 2 5 10 20 25 50 100
0.50

0.55

0.60

0.65

0.70

0.75

 CNN

A
c
c
u
ra

c
y

Fig. 6: Loss and Accuracy vs. K with Time Budget of 1,800s.

SVM LR CNN
0

5

10

15

20

Models

C
o

m
p

le
ti

o
n

 T
im

e
 (

×
1

0
0

s
)

 CFL

 FedAvg

 FedAsync

MNIST CIFAR-10
0

5

10

15

20

25

Datasets

C
o

m
m

u
n

ic
a
ti

o
n

s
 (

×
1

0
0

)

 CFL

 FedAvg

 FedAsync

Fig. 7: The Comparison of Resource Consumption. Left plot:
Time; Right plot: Communication.

cost between edge nodes and PS.

Data Imbalance. The completion time of different algo-

rithms (e.g., CFL, FedAvg, and FedAsync) using SVM or

CNN to train MNIST is shown in Fig. 10. As the degree

of data imbalance increases, the training time of FedAvg

(z = 100) and FedAsync also rapidly increases. However,

the training time for CFL remains stable in cases 1-3,

especially for CNN over MNIST. We speculate that this may

be attributed to the positive effect of clustering, which avoids

the adverse effects of single edge nodes (FedAsync) and

prevents the situation for waiting for all edge nodes in each

epoch (FedAvg). In comparison, CFL demands less training

time than both FedAvg and FedAsync. For example, by the

left plot of Fig. 10, the training time of CFL is about 1,036s

in case 1, which is 56.8% and 67.2% less than that of FedAvg

and FedAsync, respectively.

Dynamic Scenarios. Assuming that a certain fraction (0.3)

of edge nodes will encounter failure during training [46],

we conduct this simulation to compare the performance of

CFL, DCFL, and baselines. We adopt K = 10 for CFL and

DCFL. The results for CNN over MNIST and CIFAR-10

are shown in Figs. 11-12. Two aspects attract our attention.

1) The accuracy of FedAvg and CFL stops increasing at

around 100 and 700 epochs, respectively. That is because

the training process of FedAvg will terminate when a node

9

2 4 6 8 10

0.0

0.6

1.2

1.8

2.4

L
o

s
s

Communication Budgets (×100)

 FedAvg

 FedAsync

 CFL (50)

 CFL (20)

 CFL (10)

2 4 6 8 10
0.1

0.3

0.5

0.7

0.9

A
c
c
u

ra
c
y

Communication Budgets (×100)

 CFL (10)

 CFL (20)

 CFL (50)

 FedAsync

 FedAvg

Fig. 8: Loss and Accuracy vs. Communication Budgets

with CNN over MNIST.

2 4 6 8 10
1.6

1.8

2.0

2.2

2.4

L
o

s
s

Communication Budgets (×100)

 FedAvg

 FedAsync

 CFL (50)

 CFL (20)

 CFL (10)

2 4 6 8 10
0.1

0.2

0.3

0.4

A
c
c
u

ra
c
y

Communication Budgets (×100)

 CFL (10)

 CFL (20)

 CFL (50)

 FedAsync

 FedAvg

Fig. 9: Loss and Accuracy vs. Communication Budgets

with CNN over CIFAR-10.

1 2 3
0

1

2

3

4

5

Cases

C
o

m
p

le
ti

o
n

 T
im

e
 (

×
1

0
3

s
)

 CFL

 FedAvg

 FedAsync

1 2 3
0

1

2

3

4

5

C
o

m
p

le
ti

o
n

 T
im

e
 (

×
1

0
3

s
)

Cases

 CFL

 FedAvg

 FedAsync

Fig. 10: Completion Time vs. Data Distribution Cases.

Left plot: SVM; Right plot: CNN.

dies. As a result, FedAvg achieves the lowest accuracy (14%)

compared with other algorithms. For CFL, since edge nodes

in each cluster run synchronously, the training will stop at

the time when one node dies in each cluster. 2) Before CFL

terminates, we notice that it converges faster than DCFL. But

DCFL finally achieves higher accuracy than CFL. The reason

is that CFL has fewer clusters for global updates since some

clusters stop training due to the dead nodes, which results in

a lower average staleness than DCFL. After that, DCFL will

keep training and can achieve better performance than CFL.

For example, the final accuracy of DCFL is 51% with CNN

over CIFAR-10, which is 16% higher than that of CFL.

Sensitivity of a and b. We finally analyze the influence

of parameters a and b on convergence performance using

CFL with K = 20. We adopt three values of a (e.g., 5,

10 and 20) and b (e.g., 0.5, 1 and 2) to train CNN over

MNIST for 1000 epochs. Since there are 1000 epochs totally,

a = 1000 indicates that we have not taken measures to deal

with staleness. The results are shown in Fig. 13. We observe

that different values of a and b have a minor impact on the

accuracy of CFL except when a = 1000. For example, when

a = 10, b = 1, CFL achieves the accuracy of 91.8%, whereas

if a = 1000, the accuracy would be 26% lower.

To summarize, our proposed algorithms can substantially

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

2.5

L
o

s
s

Epochs (×100)

 FedAvg

 FedAsync

 CFL

 DCFL

0 2 4 6 8 10
0.1

0.3

0.5

0.7

0.9

A
c
c
u

ra
c
y

Epochs (×100)

 DCFL

 CFL

 FedAsync

 FedAvg

Fig. 11: Loss and Accuracy vs. No. of Epochs with CNN over

MNIST in Dynamic Scenarios.

0 2 4 6 8 10

1.4

1.6

1.8

2.0

2.2

L
o

s
s

Epochs (×100)

 FedAvg

 FedAsync

 CFL

 DCFL

0 2 4 6 8 10
0.1

0.2

0.3

0.4

0.5

A
c
c
u

ra
c
y

Epochs (×100)

 DCFL

 CFL

 FedAsync

 FedAvg

Fig. 12: Loss and Accuracy vs. No. of Epochs with CNN over

CIFAR-10 in Dynamic Scenarios.

0.5 1 2
0.0

0.3

0.6

0.9

1.2

L
o

s
s

0.5 1 2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
c
c
u
ra

c
y

Fig. 13: Impact of Parameters a and b with CNN over MNIST.

Left plot: Loss; Right plot: Accuracy.

outperform two benchmarks in the following aspects. Firstly,

from Figs. 2-4, CFL always achieve better convergence than

benchmarks on different models during training. Secondly,

Figs. 5-9 shows that CFL reduce the resource consumption

by 33.8%-70% while achieving a similar accuracy, compared

with baselines. We also observe that CFL effectively deals

with data imbalance based on Fig. 10. Meanwhile, from Figs.

11-12, we realize that DCFL handles the node failure and

maintains the training process well. Finally, Fig. 13 shows

that CFL with staleness treatment improves the classification

accuracy by 26% compared with the algorithm without

dealing with staleness.

V. CONCLUSION

In this paper, we have designed a cluster-based federated

learning mechanism with hierarchical aggregation. We have

proposed an efficient algorithm to determine the optimal

number of clusters with resource constraints and perform

training in edge computing. We have further extended our

algorithm to deal with the network dynamics in practice.

The experimental results have indicated that the proposed

mechanism can obtain excellent performance under resource

constraints compared with baselines. We believe that our

proposed mechanism will provide a valuable solution for

federated learning.

10

REFERENCES

[1] K. L. Lueth, “State of the iot 2018: Number of iot devices now at
7b-market accelerating,” IOT Analytics, 2018.

[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[3] B. M. Gaff, H. E. Sussman, and J. Geetter, “Privacy and big data,”
Artificial Intelligence, vol. 47, no. 6, pp. 7–9, 2014.

[4] H. Li, K. Ota, and M. Dong, “Learning iot in edge: Deep learning for
the internet of things with edge computing,” IEEE Network, vol. 32,
no. 1, pp. 96–101, 2018.

[5] X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan, and X. Chen,
“Convergence of edge computing and deep learning: A comprehensive
survey,” IEEE Communications Surveys and Tutorials, pp. 1–1, 2020.

[6] C. V. Networking, “Cisco global cloud index: Forecast and methodol-
ogy, 2015-2020. white paper,” Cisco Public, San Jose, 2016.

[7] D. Evans, “The internet of things: How the next evolution of the
internet is changing everything,” CISCO White Paper, vol. 1, pp. 1–11,
2011.

[8] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “When edge meets learning: Adaptive control for resource-
constrained distributed machine learning,” in IEEE INFOCOM 2018-
IEEE Conference on Computer Communications. IEEE, 2018, pp.
63–71.

[9] H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated learning
on non-iid data with reinforcement learning,” in IEEE INFOCOM
2020-IEEE Conference on Computer Communications. IEEE, 2020,
pp. 1698–1707.

[10] D. Verma, S. J. Julier, and G. Cirincione, “Federated ai for building
ai solutions across multiple agencies.” arXiv: Computers and Society,
2018.

[11] A. Hard, C. Kiddon, D. Ramage, F. Beaufays, H. Eichner, K. Rao,
R. Mathews, and S. Augenstein, “Federated learning for mobile
keyboard prediction.” arXiv: Computation and Language, 2018.

[12] T. S. Brisimi, R. Chen, T. Mela, A. Olshevsky, I. C. Paschalidis, and
W. Shi, “Federated learning of predictive models from federated elec-
tronic health records.” International Journal of Medical Informatics,
vol. 112, pp. 59–67, 2018.

[13] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konecný, S. Mazzocchi, B. Mcmahan et al.,
“Towards federated learning at scale: System design,” arXiv: Learning,
2019.

[14] M. Ammaduddin, E. Ivannikova, S. A. Khan, W. Oyomno, Q. Fu, K. E.
Tan, and A. Flanagan, “Federated collaborative filtering for privacy-
preserving personalized recommendation system.” arXiv: Information
Retrieval, 2019.

[15] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” arXiv: Artificial Intelligence, 2019.

[16] S. Silva, B. A. Gutman, E. Romero, P. M. Thompson, A. Altmann,
and M. Lorenzi, “Federated learning in distributed medical databases:
Meta-analysis of large-scale subcortical brain data,” arXiv: Machine
Learning, 2018.

[17] M. Li, D. G. Andersen, A. J. Smola, and K. Yu, “Communication
efficient distributed machine learning with the parameter server,” pp.
19–27, 2014.

[18] H. B. Mcmahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y.
Arcas, “Communication-efficient learning of deep networks from de-
centralized data,” pp. 1273–1282, 2017.

[19] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-
the-art and research challenges,” Journal of internet services and
applications, vol. 1, no. 1, pp. 7–18, 2010.

[20] P. Kairouz, H. B. Mcmahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” arXiv: Learning,
2019.

[21] X. Zhang, F. Li, Z. Zhang, Q. Li, C. Wang, and J. Wu, “Enabling
execution assurance of federated learning at untrusted participants,” in
IEEE INFOCOM 2020-IEEE Conference on Computer Communica-
tions. IEEE, 2020, pp. 1877–1886.

[22] Y. Zhan and J. Zhang, “An incentive mechanism design for efficient
edge learning by deep reinforcement learning approach,” in IEEE
INFOCOM 2020-IEEE Conference on Computer Communications.
IEEE, 2020, pp. 2489–2498.

[23] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: a system for
large-scale machine learning,” pp. 265–283, 2016.

[24] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gradient
compression: Reducing the communication bandwidth for distributed
training,” arXiv: Computer Vision and Pattern Recognition, 2017.

[25] G. Castellano, F. Esposito, and F. Risso, “A distributed orchestration
algorithm for edge computing resources with guarantees,” in IEEE
INFOCOM 2019-IEEE Conference on Computer Communications.
IEEE, 2019, pp. 2548–2556.

[26] X. Chang, F. Nie, Z. Ma, and Y. Yang, “Balanced k-means and min-cut
clustering,” arXiv: Learning, 2014.

[27] A. Banerjee and J. Ghosh, “Frequency-sensitive competitive learning
for scalable balanced clustering on high-dimensional hyperspheres,”
IEEE Transactions on Neural Networks, vol. 15, no. 3, pp. 702–719,
2004.

[28] J. Konecný, H. B. Mcmahan, D. Ramage, and P. Richtarik, “Federated
optimization: Distributed machine learning for on-device intelligence,”
arXiv: Learning, 2016.

[29] L. Liu, J. Zhang, S. H. Song, and K. B. Letaief, “Client-edge-
cloud hierarchical federated learning.” arXiv: Networking and Internet
Architecture, 2019.

[30] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y. Liang,
Q. Yang, D. Niyato, and C. Miao, “Federated learning in mobile edge
networks: A comprehensive survey.” arXiv: Networking and Internet
Architecture, 2019.

[31] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimiza-
tion.” arXiv: Distributed, Parallel, and Cluster Computing, 2019.

[32] M. Sprague, A. Jalalirad, M. Scavuzzo, C. Capota, M. Neun, L. Do,
and M. Kopp, “Asynchronous federated learning for geospatial appli-
cations,” pp. 21–28, 2018.

[33] Y. Chen, Y. Ning, and H. Rangwala, “Asynchronous online federated
learning for edge devices.” arXiv: Distributed, Parallel, and Cluster
Computing, 2019.

[34] S. L. Gortmaker, D. W. Hosmer, and S. Lemeshow, “Applied logistic
regression.” Contemporary Sociology, vol. 23, no. 1, p. 159, 1994.

[35] S. Shalev-Shwart and S. Ben-David, “Understanding machine learning:
From theory to algorithms.” Cambridge, U.K.: Cambridge Unix. Press,
2015.

[36] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the conver-
gence of fedavg on non-iid data,” arXiv: Machine Learning, 2019.

[37] S. Wassertheil and J. Cohen, “Statistical power analysis for the
behavioral sciences,” Biometrics, vol. 26, no. 3, p. 588, 1970.

[38] T. Joachims, “Making large-scale svm learning practical,” Technical
reports, 1998.

[39] Y. Tu, Y. Ruan, S. Wang, S. Wagle, C. G. Brinton, and C. Joe-
Wang, “Network-aware optimization of distributed learning for fog
computing,” arXiv preprint arXiv:2004.08488, 2020.

[40] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[41] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[42] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computing—a key technology towards 5g,” ETSI white paper,
vol. 11, no. 11, pp. 1–16, 2015.

[43] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” pp. 49–62, 2010.

[44] J. Zhang, W. Xie, F. Yang, and Q. Bi, “Mobile edge computing and
field trial results for 5g low latency scenario,” China Communications,
vol. 13, no. 2, pp. 174–182, 2016.

[45] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14–23, 2009.

[46] A. Ghosh, J. Hong, D. Yin, and K. Ramchandran, “Robust fed-
erated learning in a heterogeneous environment,” arXiv preprint
arXiv:1906.06629, 2019.

