
Jianchun Liu
School of Computer Science and Technology

University of Science and Technology of China

Hefei, China

lyl617@mail.ustc.edu.cn

Liusheng Huang
School of Computer Science and Technology

University of Science and Technology of China

Hefei, China

lshuang@ustc.edu.cn

Chunming Qiao
Department of Computer Science and Engineering

State University of New York at Buffalo

NewYork, USA

qiao@computer.org

Shishuang Wang
School of Computer Science and Technology

University of Science and Technology of China

Hefei, China

sshuangw@mail.ustc.edu.cn

Abstract
send Packet-In messages of newly arrived flows to the controllers.
With more and more flows arriving at a network, the controller
load significantly increases, which may lead to control channel
congestion and long controller response time. Meanwhile, to the
best of our knowledge, part of these flows are elephant flows
that can affect system performance (including control plane and
data plane). To address this challenge, in this paper, we propose
a novel Time-Optimized Ring with Minimizing Elephant flow
(TOR-ME) scheme and present several algorithms for it. Our
evaluation shows that TOR-ME can reduce controller response
time by 54.8%, and improve the network throughput by 58.1%,
when comparing with the existing solutions.

A typical Software-defined networking (SDN) is a new

paradigm that separates the control and data planes on inde-

pendent devices [1]. The controller monitors the network and

provides centralized control by installing forwarding rules in

the data plane. As specified in the OpenFlow standard [2],

when a new flow arrives at a switch, the switch encapsulates

the header packet into a Packet-In message and delivers it to

a controller. Then, this controller determines the route of this

flow, and installs flow entries on the switches along this path.

In recent years, the number of flows increases drastically

in both cloud networks and Internet. On one hand, with the

development of information technology, many novel network-

based applications (e.g., search [3] and content distribution

[4]) are constantly emerging. On the other hand, some hot

events will attract attention of many people through networks.

For example, many audiences will watch the live broadcast

of some attractive sport final through the Internet. With more

new flows arriving at switches, these switches will send more

Packet-In messages to the controllers in an SDN, which may

lead to long and highly varied controller response time and

poor user experience [5]. The controllers should respond to

events such as shifts in traffic intensity, and new connection

from hosts, by pushing forwarding rules to flow tables on the

switches so as to achieve various performance requirements,

such as load balancing. Thus, reducing controller response

time help to significantly improve network performance and

resource utilization.

There are there different ways to reduce the controller

response time (or the controller load). The first or general

way is to use multiple controllers with the static controller

assignment mechanism (e.g., Onix [6] and NVP [7]). Specif-

ically, the control plane is implemented as a cluster of dis-

tributed controllers, and each switch is only connected with

one controller. The switches deliver the Packet-In messages

to different controllers, which helps to reduce the controller

load compared with the single-controller framework. However,

since the traffic in the network dynamically fluctuates in space

and time, some controllers may still be heavy-loaded, or even

congested [5].

The second method is the dynamic controller assignment

mechanism [5] [8], which permits each switch to dynamically

associate from a “heavy-loaded" controller to a “light-loaded"

one, so that the maximum controller load can be reduced. For

example, the authors of [5] [8] presented a near-optimal Nash

stable solution for dynamic controller assignment. However,

the dynamic controller assignment scheme brings some disad-

vantages on reassignment communication delay and control

plane overhead. Specifically, when a switch is re-assigned

from one controller to another, the communication delay is

unavoidable for building secure connection with the newly

assigned controller.

The final method is to pre-install entries for all flows in a

network, also called proactive routing scheme [9]. Since each

flow can match at least one pre-installed entry when arriving

at a switch, the switch will not deliver any Packet-In message

to the controller. Thus, the controller load is very light and

the controller response time is low. However, the proactive

TOR-ME: Reducing Controller Response Time Based on Rings in Software Defined
Networks

Keywords-software defined network; ring; elephant flow;
controller response time

e-mail:

e-mail:

e-mail:

e-mail:

—In a software defined network (SDN), switches will

I. INTRODUCTION

27

2019 IEEE 11th International Conference on Communication Software and Networks

978-1-7281-2184-0/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 16,2020 at 08:54:31 UTC from IEEE Xplore. Restrictions apply.

routing can not efficiently deal with traffic and management

policy dynamics. Due to dynamic traffic intensity, it may result

in transient congestion on some data links and lead to packet

dropping and throughput reduction.

Meanwhile, the centralized and fine-grained design on SDN

flow control, however, results in serious performance and

scalability bottlenecks of SDN. Some researches [10] [11]

[12] show that flows in DCN (Data Center Network) can be

classified as elephant flows and mice flows. The former is

long-lived while the latter typically lasts less than 10s due to its

small size (≤10KB). Generally, elephant flows usually transfer

significant amount of data in the network, such as ftp, data

backup and VMotion, e.g., which may tend to cause network

congestion and impact the network performance. Therefore,

The detection and processing of elephant flow are also crucial

in efficient network management.

In this paper, we are committed to a scheme that can avoid

network congestion as much as possible, which also can reduce

controller response time. To achieve this goal, we propose a

framework and present several algorithms for it. The main

contributions of this paper are summarized as follows.

• We propose the novel Time-Optimized Ring with Mini-

mizing Elephant flow (TOR-ME) framework, which can

effectively overcome the above shortcomings.

• We present several algorithms for TOR-ME, including

Loop Seeking algorithm, Loop Selection algorithm and

Overall Running algorithm. In the Loop Selection, we

formulate it as an ILP problem, which is NP-Hard and

use an approximation algorithm of greedy heuristic to

solve it.

• The simulation results show that TOR-ME help to im-

prove system performance significantly, such as reducing

the controller response time by 54.8% and improving the

controller load ratio by 37.8% compared with the existing

solutions, etc.
The remainder of this paper is organized as follows. We

review related work in Section II and design the TOR-ME
framework in Section III. Section IV for several appropriate

algorithms of TOR-ME. We report our simulation results in

Section V and conclude the paper in Section VI.

II. RELATED WORKS

Blocking (Control channel or Data plane) is an important

issue in an SDN. To prevent it, some previous solutions about

flow processing have been proposed, elephant flow especially.

PMCE [13] is a parameter minimum cross entropy algorithm

to find the optimal switch allocation policy for each elephant

flow. Mahout [14] computes the optimal path for new flows

more than 100MB by the Global First Fit (GFF) algorithm.

Hedera [15] uses the Simulated Annealing (SA) algorithm

to recalculate paths of elephant flows periodically. All of

these approaches have their own advantages, however, the

complexity of PMCE is high and the convergence speed is

low and the result of the GFF algorithm depends on the

arrival order of flows completely, may leading to new hotspots.

The results of the SA algorithm are completely random in

different periods, the controller needs to issue a large number

of flow tables to the switches to adjust elephant flows’ paths,

increasing the additional load for the network. The common

problems of above solutions based on SDN is that the massive

control traffic between controllers and switches will cause

network congestion.

The most related work, Hu [16] has proposed a mechanism

to reduce congestion, which pre-computes a loop path for each

flow. When the controller has installed forwarding rules in the

switches, the flow leaves the loop and is forwarded according

to these rules. Since the flows will not wait, until flow entries

have been installed, it can obviously reduce congestion of net-

work. However, resource (e.g.,SRAM and DRAM) constraints

should be considered for the model. The SRAM size is usually

limited on some commodity switches. Even in the high-

end Trinder2 switch with forwarding capacity of 960GB, its

SRAM size is only about 16MB, which will be further shared

with routing/firewall/filter/measurement [17]. For example, it

expects to store forwarding information database (FIB) with

10MB in practice [18]. In this paper, we will study how to

reduce congestion and controller response time of network

while conquering the above challenges and disadvantages.

III. PRELIMINARIES

TABLE I.
KEY NOTATIONS.

Symbol Semantics

U a cluster of SDN controllers
V a set of switches
E a set of network links
F a feasible loop set
c(e) the capacity of link e
αu the processing capacity of controller u
ζv(t) the number of Packet-In by switch v at time t
θu(t) the load on controller u at time t
ϑu(t) the response time of controller u at time t

A. Network Model

An SDN typically divides into the control plane and the

data plane, which consists of two device sets: a cluster of

controllers, U = {u1, ..., um} with m = |U | and a set of

SDN switches, V = {v1, ..., vn}, with n = |V |. The con-

trollers are responsible for management of the whole network,

including route selection for all flows and traffic measurement

distribution. Each controller uj has a processing capacity in

terms of the requests it can handle in one unit time, denoted

by αj . The network topology from a view of the data plane

can be modeled by G = (V,E), where E is the set of links

connecting switches. For each link e ∈ E, the capacity of link

e is denoted by c(e).

B. Elephant Flow Detection Mechanism

Prior works such as [9] [19] [20] hava used SDN (OpenFlow

and/or P4) for elephant flow monitoring. Wang [21] provided a

survey of the elephant flow detection in SDN that approaches

can be classified into two kinds: detection in switch and

28

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 16,2020 at 08:54:31 UTC from IEEE Xplore. Restrictions apply.

detection in end-host. We pay attention to detection in switch

and it also can be classified into two kinds: flow-statistics

based and flow-characteristics based elephant flow detection.

Both of them will be used in the mechanism, which is in the

judicious combination of flexible software for packet-header

processing and scalable hardware for flow-counter monitoring.

The software tracks all the flows uniquely identified by a 5-

tuple. It maintains its internal data structures that contain the

duration and volume of individual flows. Using a built-in event

mechanism, the software is able to detect an elephant flow,

which also can dynamically balance the load between software

and hardware.

C. Controller Response Time Model [5]

We consider a discrete time model where the length of

each time slot matches the timescale at which Packet-In

requests of each switch can be precisely recorded. In an SDN,

coordination among multiple controller is necessary to install

this path. The set of its connected switches is denoted as Su.

The number of Packet-In messages (one for each newly arrived

flow), which will be delivered to the associated controller by

switch v in slot t, is denoted as ζv(t). Then, the load of

controller u is θu(t) =
∑

v∈Su
ζv(t).

By applying the Little’s law [5] [22], the average sojourn

time on controller u is 1
αu−θu(t)

. Given that the time for

computing a single-source route is O(n2) [23], where n is

the number of switches in an SDN, the average response time

of controller u can be expressed as:

ϑu(t) =
1

αu − θu(t)
·O(n2) (1)

D. Design Of TOR-ME

We now present the design of TOR-ME. Its idea is simple:

when the flow arrives at the ingress switch and the controller

load has exceeded threshold δ, which is set by default, the flow

will not wait, to avoid blocking. In contrast, keep it looping in

the switches along the pre-computed paths and leave the loop

when the routing rules are installed in the switches. At the

same time, try to minimize the number of elephant flows in

the loop because it will increase the load of links, compared

to mice flows.

For easy understanding, we give an example, in Fig. 1,

suppose that a packet from h1 to h2. Switch v1 will keep the

packet in its buffer and forward it to the controller if buffer

overflows, according to the OpenFlow standard. At the same

time, v1 has detected whether it is elephant flow or mice flow.

If it is mice flow and the controller load has exceeded δ, v1
just sends the first a few bytes of the packet to the controller,

and directly forwards the entire packets to a pre-computed

loop path, e.g., v1 → v3 → v4 → v1.

While the flow is looping, the controller issues new routing

rules to update corresponding flow tables in the switches (e.g.,
v1 and v2 in this case). The flow will be forwarded to h2 next

time it backs to v1 through the path v1 → v2 → h2. This

solution optimizes the controller load and response time by

trading off two types of resources: (1) the bandwidth in the

TOR-ME.

loop path against the bandwidth in the control channel while

waiting for the new rules, and (2) the computing overhead of

ingress switch that used to detect elephant flow.

In addition, the TOR-ME is also controllable. First, the

looping is controllable because each flow packet will even-

tually leave the loop path. It can stop looping and leave at any

switch in the loop path. Second, the bandwidth occupied by the

TOR-ME is also controllable, because of an independent traffic

control queue with limited bandwidth is set in each output

port of loop paths for the flow packets. The main problem we

should solve is to detect whether the flow is elephant flow

or not and find the paths for looping. The former will be

addressed by the mechanism in Section III-B and we focus

on the latter.

IV. ALGORITHM FOR TOR-ME

In this section, we present several algorithms used in the

framework, such as Loop Seeking (Section IV-A), Loop Selec-
tion algorithms (Section IV-B) and Overall Running algorithm

(Section IV-C).

A. Loop Seeking

As mentioned in Section III-A, the network topology is

denoted as G = (V,E) and we then denote a loop l ∈ N+ is

a subgraph of G which satisfies

Vl = {Vl,e} ⊂ V, e = 1, ..., |Vl|, (2)

El = {(vl,1, vl,2), ..., (vl,e−1, vl,e), (vl,e, vl,1)} ⊂ E, (3)

where (vl,e−1, vl,e) denotes that a link from vl,e−1 to vl,e.

Johnson [24] proposed an algorithm for identifying all loops

in a directed graph. It mainly uses Depth First Search (DFS) to

find each vertex. However, this method cannot be used in our

framework because the graph in the framework is undirected.

However, we can borrow the basic idea of Johnson’s method

and use DFS biconnected components instead of strongly

connected components. It should be noted that there may be

cases where the loop does not cover some switches, so we

introduce a virtual loop to cover these nodes, which is a simple

palindrome path v1 → v2 → ... → v2 → v1.

Figure 1. Basic idea of

29

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 16,2020 at 08:54:31 UTC from IEEE Xplore. Restrictions apply.

The time complexity of the method is as large as O((n +
e)(c + 1)), where n, e, c are the number of switches, edges

and loops. The complete Loop Seeking method is described in

Algorithm. 1.

Algorithm 1: Loop Seeking Algorithm

Input: G = (V,E), LENMIN , LENMAX

1 Step 1: Get Biconnected Set;

2 B ← getBiconnectedSet(G);
3 Step 2: Get Loop Set for each Bi ∈ B do
4 for each root ∈ Switch(Bi) do
5 RandomShuffleSwitch(Bi − {root});

6 DFS(root, root, new Stack());

7 Function DFS(vertex v, root, Stack Path) : do;

8 for each w ∈ Bi[v] do
9 if w == root

∧ ‖ Path ‖ +1 ≥ LENMIN then
10 F ← F

⋃{Path
⋃
v};

11 if The number of loops reaches 100 then
12 stop DFS;

13 else
14 if ‖ Path ‖< LENMAX then
15 DFS(w, root, Path

⋃
v);

Output: F - Feasible Loop Set for Loop Selection

A large and complex network can lead to unacceptable time

to find loops, so we make Graph Partition. Spectral [25]

proposed a method of dividing the network topology into k

subgraphs, where k is the controllers’ CPU cores, which will

be borrowed in our framework. However, this operation will

also delete some links and may impact the coverage rate of

the loops. We use the switches that is not covered as the root

to do re-search.

We also need to control Loop Length and Loop Scale.

If the length of the loop is too short, the flow will traverse

a link several times in the loop, consuming too much link

bandwidth. If the length is too long, the packet still in the loop

which causes extra link consumption, even if the flow entry

is already installed in the switch. Therefore, it is important to

control the length of the loop within a reasonable range.

It is almost impossible for the loop to cover all the switches,

so we have to limit the number of loops. In order to achieve

this goal, we add restrictions in DFS. Each switch will

be searched as a root, and we introduce a random shuffle

algorithm to increase the diversity of the loop. Under the above

strict conditions, we only get 100 loops for each root search,

and the experimental results show that there is little difference

between our strategy and full loops searching.

B. Loop Selection

In this section, we select loops from the output of Al-

gorithm. 1, which needs to meet several constraints and

objectives. We formulate the problem as follows:

S.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V1

⋃
V2

⋃
, ...,

⋃
Vl = V,

Ll =
∑
m

tmlIml, ∀l
Ci =

∑
l

alIml, ∀i
Ni =

∑
l

Iml, ∀i
0 ≤ alLl − T ≤ α, ∀l
Iml ∈ {0, 1}, ∀m, l

(4)

The first set of equations is a primary requirement, which

secures all the switches in the network topology being covered.

Virtual loops will play an important role if physical links

are not sufficient. The second set of equations expresses the

time traversing the whole loop, where tml is the delay of

switch m to the next hop. The third set of equations denotes

that bandwidth cost on the link which packet traverses. The

fourth set of equations expresses the number of the extra flow

entries because loop paths should be proactively installed in

the switches and it requires one more flow entry installed into

the switch. The fifth set of inequalities expresses extra delay

of the framework, where T represent the time interval between

the switch sending the Packet-In message and the switch being

updated the new flow entries from controller. Extra delay must

not exceed upper bound α and should be minimized. T and tml

can be measured directly and we use Iml to indicate whether

loop l contains switch m or not.

Algorithm 2: Loop Selection Algorithm

Input: F - Feasible Loop Set from Loop Seeking

V - Switch Set of Graph G

1 Step 1: Initialize Variables;

2 S ← ∅, Cover ← ∅ ;

3 Step 2: Loop Selection;

4 while Cover != V do
5 selected ← ∅;

6 for each loop ∈ F do
7 loop.IE← ‖{v|v∈loop}−Covering‖

‖loop‖ ;

8 if loop.IE > selected.IE then
9 selected ← loop;

10 else
11 if loop.IE == selected.IE then
12 selected ←

argMin(Delayloop,Delayselected);

13 if selected.IE == 0 then
14 break;

15 S ← S
⋃

{selected},

16 Cover←Cover
⋃

{v|v ∈ selected};

Output: S - Selected Loop Set to Cover Switches

The above formula can be simplified as a weighted set

cover problem, which is NP-hard. We use an approximation

algorithm of greedy heuristic to solve it and get an approx-

30

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 16,2020 at 08:54:31 UTC from IEEE Xplore. Restrictions apply.

imate solution [26]. The complete algorithm is described in

Algorithm 2. Cover represents the switches covered by the

selected loops and Increase Effect (IE) represents the effect

can be obtained from adding a new loop to the selected set.

The time complexity of Loop Selection is O(‖ F ‖ ×min(‖
F ‖, ‖ V ‖)), where ‖ F ‖ is the number of loops found in

Algorithm. 1 and ‖ V ‖ is number of switches in the network

topology. The approximation ratio of this greedy algorithm

is O(log(n)) and it is optimal to solve set cover problem in

polynomial time.

C. Overall Running

The overall running of TOR-ME based on the techniques

we have discussed in previous sections and detailed algorithm

is described in Algorithm. 3. Without loss of generality,

we assume that each switch in the network topology has

flow tables specifying regular matching fields (e.g., Src/Dst

IP Address/port, VLAN, MPLS), actions (e.g., forwarding,

to_controller, meter), and supporting rule priorities.

Algorithm 3: Overall Running

Input: G = (V, E), Flow Packets

1 Step 1: Elephant Flow Detection;

2 if Controller load ≥ δ then
3 if Not Elephant Flow then
4 Enter Loop Path (Step 2);

5 else
6 Wait until Flow Entries Installed;

7 Step 2: Loop Seeking (IV-A);

8 Step 3: Loop Selection (IV-B);

9 Step 4: Install Loop Paths;

10 while Not Flow Entries Installed do
11 if TTL > 0 then
12 Keep Looping in the Path;

13 else
14 Stop Looping;

15 Forwarded Directly According to Flow Entries;

In order to keep the flow packet from looping endlessly, we

add a TTL field to it. Looping will stop when routing rules

have not been installed on the switches and TTL turns to be

zero. This field will be reset when the flow leaves the loop.

Overall Running algorithm will also be re-executed while the

network topology changes.

V. PERFORMANCE EVALUATION

In this section, we evaluate our TOR-ME framework and

algorithms with network simulator. First, we introduce the

metrics and benchmarks for performance comparison (Section

V-A). Then we compare with the previous methods by running

extensive simulations (Section V-B).

A. Performance Metrics and Benchmarks

This paper studies how to reduce controller response time

(or controller load) by trading off part of data plane resources,

which can avoid network congestion. We adopt five main

metrics for performance evaluation. (1) the maximum con-

troller response time; (2) the maximum load ratio of any

controller; (3) the maximum load ratio of any link; (4) the

network throughput; (5) the running time. We compute the

maximum controller response time by Eq. 1. The second

metric measures the maximum number of Packet-In messages

per controller divided by the controller processing capacity

during the simulation. The load ratio of a link is the traffic load

divided by the link capacity. As we continuously increase the

number of flows, we measure the maximum throughput that

the network can support. The running time is measured when

packet arrives at the ingress switch, until the packet leaves the

egress switch.

To evaluate how well our proposed solution performs, we

compare with other three benchmarks. The first benchmark is

called the proactive routing scheme, in which the controller

pre-installs wildcard entries for all flows. This method can

achieve the lowest controller load. The second one is the

dynamic routing scheme. When each individual flow arrives at

a switch, the controller will dynamically determine its route

path. The last benchmark is SoftRing [16], which also can

reduce the control channel congestion by trading off data plane

resources.

B. Simulation Evaluation

1) Simulation Settings: In the simulations, as running ex-

amples, we select two typical and practical topologies for data

center networks. The first topology, called VL2[21], contains

240 switches (including 200 edge switches, 20 aggregation

switches, and 20 core switches) and 1000 terminals. The

second one is the fat-tree topology[23], which has been widely

used in many data center networks. The fat-tree topology has

total 320 switches (including 128 edge switches, 128 aggre-

gation switches, and 64 core switches) and 1024 terminals.

The parameter δ and the controller capacity are set as 0.5 and

180K, respectively. We use Packet Generator (PktGen) [27] to

generate network traffic, which is a powerful tool also used

by [28] [29]. Through PktGen, we can generate various sized

and pattern flows, and we can collect throughput information

through PktGen API. In this experiment, we generate DCTCP

pattern flows and execute each simulation 100 times, then take

the average of the numerical results.

2) Simulation Results: We run three groups of simulations

to check the effectiveness of the proposed TOR-ME framework

and related algorithms.

The first set of three simulations observes the performance

(e.g., Controller Load Ratio and Controller Response Time) of

Controller. Fig. 2 shows the controller load ratio by changing

the number of flows from 200K to 1M. We observe that it

is almost linearly increasing with more flows arrival in the

network and our framework can achieve lighter controller load

than Reactive and SoftRing. For example, given 600K flows

31

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 16,2020 at 08:54:31 UTC from IEEE Xplore. Restrictions apply.

 0.2

 0.4

 0.6

 0.8

 1

2 4 6 8 10

C
o
n
tr

o
ll

er
 L

o
ad

 R
at

io

Number of Flows (× 10
5
)

Reactive
SoftRing
TOR-ME

 0.2

 0.4

 0.6

 0.8

 1

2 4 6 8 10

C
o
n
tr

o
ll

er
 L

o
ad

 R
at

io

Number of Flows (× 10
5
)

Reactive
SoftRing
TOR-ME

Left plot: VL2;
right plot: Fat-tree.

 0.02

 0.04

 0.06

 0.08

2 4 6 8 10

C
o
n
tr

o
ll

er
 R

es
p
o
n
se

 T
im

e(
s)

Number of Flows (× 10
5
)

Reactive
SoftRing
TOR-ME

 0.02

 0.04

 0.06

 0.08

2 4 6 8 10

C
o
n
tr

o
ll

er
 R

es
p
o
n
se

 T
im

e(
s)

Number of Flows (× 10
5
)

Reactive
SoftRing
TOR-ME

Left plot: VL2;
right plot: Fat-tree.

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 6 8 10

L
in

k
 L

o
ad

 R
at

io

Number of Flows (× 10
5
)

Proactive
SoftRing
TOR-ME
Reactive

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 6 8 10

L
in

k
 L

o
ad

 R
at

io

Number of Flows (× 10
5
)

Proactive
SoftRing
TOR-ME
Reactive

Left plot: VL2;
right plot: Fat-tree.

 20

 40

 60

2 4 6 8 10

N
et

w
o
rk

 T
h
ro

u
g
h
p
u
t

(G
b
p
s)

Number of Flows (× 10
5
)

Reactive
TOR-ME
SoftRing
Proactive

 20

 40

 60

 80

 100

2 4 6 8 10

N
et

w
o
rk

 T
h
ro

u
g
h
p
u
t

(G
b
p
s)

Number of Flows (× 10
5
)

Reactive
TOR-ME
SoftRing
Proactive

Left plot: VL2;

right plot: Fat-tree.

in the network, the controller load ratio will reach 0.58 and

0.46 by Reactive and SoftRing, respectively. In other words,

our proposed framework can reduce the controller load ratio

by about 38% compared with Reactive. Heavier controller

load also leads to longer controller response time, which is

also validated by Fig. 3. This figure shows that our proposed

framework can reduce the controller response time about 55%

compared with Reactive and also significantly better than

SoftRing.

The second set of simulations observes the routing perfor-

mance (e.g., Link Load Ratio or Network Throughput). Fig.

4 shows that the link load ratio is increasing with more flows

in a network. Since Proactive can not dynamically adjust the

routes for new arrivals, so its routing performance is worst

 20

 30

 40

 50

 60

 70

2 4 6 8 10

R
u
n
n
in

g
 T

im
e

(s
)

Number of Flows (× 10
5
)

Reactive
SoftRing
TOR-ME

 20

 30

 40

 50

 60

 70

2 4 6 8 10

R
u
n
n
in

g
 T

im
e

(s
)

Number of Flows (× 10
5
)

Reactive
SoftRing
TOR-ME

Left plot: VL2;

right plot: Fat-tree.

among these solutions. Our proposed TOR-ME is very close

to the Reactive, which has best routing performance. Fig. 5

shows that the network throughput will increase when there are

more and more flows in the network. However, the increasing

ratio is slower with more flows. TOR-ME can improve the

network throughput by about 60% compared with Proactive,

also optimize it of SoftRing and is close to Reactive.

The last set of simulations observes the running time of

these solutions, including SoftRing, TOR-ME and Reactive.

Fig. 6 shows that running time of Reactive is shorter than

other two solutions at the beginning, but the advantage of

TOR-ME becomes obvious, with more and more flows in the

network. That is to say, our proposed framework can achieve

ideal performance of running time.

In this paper, we focus on the optimization of controller

load and response time in SDNs. We proposed a novel

TOR-ME framework, and present several algorithms for it.

Our evaluations demonstrate that the proposed solutions can

achieve much lower controller response time and running time

compared to existing solutions. In the future, we will observe

the impact of traffic dynamics and looping overhead.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[2] B. Pfaff et al., “Openflow switch specification v1.3.0,” 2012.
[3] L. A. Barroso, J. Dean, and U. Hölzle, “Web search for a planet: The

google cluster architecture,” IEEE micro, no. 2, pp. 22–28, 2003.
[4] S. Androutsellis-Theotokis and D. Spinellis, “A survey of peer-to-peer

content distribution technologies,” ACM computing surveys (CSUR),
vol. 36, no. 4, pp. 335–371, 2004.

[5] T. Wang, F. Liu, J. Guo, and H. Xu, “Dynamic sdn controller assignment
in data center networks: Stable matching with transfers,” in IEEE
INFOCOM, 2016.

[6] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama et al., “Onix: A distributed
control platform for large-scale production networks.” in OSDI, vol. 10,
2010, pp. 1–6.

[7] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton,
I. Ganichev, J. Gross, P. Ingram, E. J. Jackson et al., “Network
virtualization in multi-tenant datacenters.” in NSDI, vol. 14, 2014, pp.
203–216.

[8] T. Wang, F. Liu, and H. Xu, “An efficient online algorithm for dynamic
sdn controller assignment in data center networks,” IEEE/ACM Trans-
actions on Networking, vol. 25, no. 5, pp. 2788–2801, 2017.

VI. CONCLUSIONS

Figure 2. Controller Load Ratio vs. Number of Flows.

Figure 3. Controller Response Time vs. Number of Flows.

Figure 4. Link Load Ratio vs. Number of Flows.

Figure 5. Network Throughput vs. Number of Flows.

Figure 6. Running Time vs. Number of Flows.

32

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 16,2020 at 08:54:31 UTC from IEEE Xplore. Restrictions apply.

[9] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “Devoflow: scaling flow management for high-performance
networks,” in ACM SIGCOMM Computer Communication Review,
vol. 41, no. 4. ACM, 2011, pp. 254–265.

[10] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement. ACM, 2010, pp. 267–280.

[11] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: a scalable and flexible data
center network,” in ACM SIGCOMM computer communication review,
vol. 39, no. 4. ACM, 2009, pp. 51–62.

[12] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: measurements & analysis,” in Proceedings
of the 9th ACM SIGCOMM conference on Internet measurement. ACM,
2009, pp. 202–208.

[13] Z. Liu, D. Gao, Y. Liu, and H. Zhang, “An enhanced scheduling
mechanism for elephant flows in sdn-based data center,” in Vehicular
Technology Conference (VTC-Fall), 2016 IEEE 84th. IEEE, 2016, pp.
1–5.

[14] A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-overhead
datacenter traffic management using end-host-based elephant detection,”
in INFOCOM, 2011 Proceedings IEEE. IEEE, 2011, pp. 1629–1637.

[15] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: dynamic flow scheduling for data center networks.” in Nsdi,
vol. 10, no. 8, 2010, pp. 89–92.

[16] C. Hu, K. Hou, H. Li, R. Wang, P. Zheng, P. Zhang, and H. Wang,
“Softring: Taming the reactive model for software defined networks,” in
Network Protocols (ICNP), 2017 IEEE 25th International Conference
on. IEEE, 2017, pp. 1–10.

[17] “Resource monitoring usage computation overview.”
https://www.juniper.net/documentation/en US/junos/topics/concept/
resource- monitoring- usage- calculation.html.

[18] J. Scudder, “Resource monitoring usage computation
overview.” http..//www.arin.net/meetings/minutes/ARIN
XX/PDF/wednesday/SolutionSpace Scudder.pdf 2009-07-281.

[19] Y. Afek, A. Bremler-Barr, S. Landau Feibish, and L. Schiff, “Sampling
and large flow detection in sdn,” in ACM SIGCOMM Computer Com-
munication Review, vol. 45, no. 4. ACM, 2015, pp. 345–346.

[20] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in
Proceedings of the Symposium on SDN Research. ACM, 2017, pp.
164–176.

[21] J. S. Binfeng Wang, “A survey of elephant flow detection in sdn,”
International Symposium on Digital Forensic and Security (ISDFS), pp.
1–6, 2018.

[22] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood,
“On controller performance in software-defined networks,” in Presented
as part of the USENIX Hot-ICE, 2012.

[23] S. Skiena, “Dijkstra¡¯s algorithm,” Implementing Discrete Mathematics:
Combinatorics and Graph Theory with Mathematica, Reading, MA:
Addison-Wesley, pp. 225–227, 1990.

[24] D. Johnson, “Finding all the elementary circuits of a directed graph.”
SIAM Journal on Computing, vol. 4, no. 1, pp. 77–84, 1975.

[25] B. Hendrickson and R. Leland, “An improved spectral graph partitioning
algorithm for mapping parallel computations,” SIAM Journal on Scien-
tific Computing, vol. 16, no. 2, pp. 452–469, 1995.

[26] L. l. Xindong zhang, “An approximation algorithm for solving weighted
set cover problem.” Journal of Wenzhou University: Natural Science
Edition, vol. 6, no. 3, pp. 46–48, 2008.

[27] W. Bai, L. Chen, K. Chen, and H. Wu, “Enabling ecn in multi-service
multi-queue data centers.” in NSDI, 2016, pp. 537–549.

[28] G. Chen, Y. Lu, Y. Meng, B. Li, K. Tan, D. Pei, P. Cheng, L. Luo,
Y. Xiong, X. Wang et al., “Fast and cautious: Leveraging multi-path
diversity for transport loss recovery in data centers.” in USENIX Annual
Technical Conference, 2016, pp. 29–42.

[29] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng,
and E. Chen, “Clicknp: Highly flexible and high performance network
processing with reconfigurable hardware,” in Proceedings of the 2016
ACM SIGCOMM Conference. ACM, 2016, pp. 1–14.

33

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 16,2020 at 08:54:31 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

