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Abstract—The past decades have seen a proliferation of
middlebox deployment in various networks, including backbone
networks and datacenters. Since network flows have to tra-
verse specific service function chains (SFCs) for security and
performance enhancement, it becomes much complex for SFC
routing due to routing loops, traffic dynamics and scalability
requirement. The existing SFC routing solutions may consume
many resources (e.g., TCAM) on the data plane and lead to
massive overhead on the control plane, which decrease the
scalability of middlebox networks. Due to SFC requirement
and potential routing loops, solutions like traditional default
paths (e.g., using ECMP) that are widely used in non-middlebox
networks will no longer be feasible. In this paper, we present and
implement a scalable and flexible middlebox policy enforcement
(SAFE-ME) system to minimize the TCAM usage and control
overhead. To this end, we design the smart tag operations for
construction of default SFC paths with less TCAM rules in
the data plane, and present lightweight SFC routing update
with less control overhead for dealing with traffic dynamics in
the control plane. We implement our solution and evaluate its
performance with experiments on both physical platform (Pica8)
and Open vSwitch (OVS), as well as large-scale simulations.
Both experimental and simulation results show that SAFE-ME
can greatly improve scalability (e.g., TCAM cost, update delay,
and control overhead) in middlebox networks. For example, our
system can reduce the control traffic overhead by about 83%
while achieving almost the similar middlebox load, compared
with state-of-the-art solutions.

Index Terms—Software Defined Networks, Network Function,
Middlebox, Default Path, Tag.

I. INTRODUCTION

Network functions (NFs) such as firewalls, deep packet
inspection, load balancer, etc. are provided by specialized
network devices called middleboxes (MB) [1]. They have been
widely deployed in various networking scenarios including
campus networks, backbone networks, data centers and cloud
computing environments [2]. Typically, network flows go
through several NFs in a specific order to meet its processing
requirements, also called Service Function Chaining (SFC)
[1]. Thus routing with SFC (or SFC routing) becomes much
more complex than the traditional network routing. We call
a network with considerable middlebox deployment and fine-
grained middlebox policies as a ‘middlebox network’.

Due to the features of middlebox networks, there are two
critical challenges for SFC routing: 1) Routing loops. The
flows processed by the MBs will be forwarded to the MB,
and then back to switch after NF processing. Thus, there
exist routing loops in the middlebox networks [1], which
is the main difference from the traditional routing solutions.

2) Traffic dynamic is a common issue, especially for large-
scale networks. In practice, the network will experience highly
dynamic flows. Moreover, even for a flow, its intensity will
fluctuate with time. Thus, it is required to handle unexpected
bursts experienced at the switches under dynamic traffic
conditions [3].

Recently, with the advantage of the centralized control,
software defined networking (SDN) [4] has become an emerg-
ing technology to conquer the above challenges of complex
SFC routing. Under the SDN framework, switches forward
the data packets by matching rules on the TCAM-based
forwarding table. However, TCAMs are 400X more expensive
and consume 100X more power per Mbit than the RAM-
based storage on switches [5]. Thus, most today’s commodity
switches only support 2-20K entries [5] (e.g., 16K entries
on high-end Broadcom Trident2 switches [6]). In an SDN-
based middlebox network, we should consider the scalability
issue in two aspects: 1) Control Plane Scalability. Under
the SDN framework, a newly arrival flow will be reported
to the controller for route selection. However, with more
flows arriving at the network, it will lead to serious per-flow
communication/computation overhead on the control plane
[7]. Moreover, SFC routing update, especially in a large-
scale network, also expects less control overhead. 2) Data
Plane Scalability. Due to the limited size of the TCAM-based
forwarding table, it is another challenge to accommodate a
large number (e.g., 106 in a moderate-sized data center [8])
of flows using only a limited size (e.g., several thousands) of
forwarding entries.

To solve complex SFC routing, several works have designed
efficient solutions for MB networks [1] [10]. However, these
solutions still face several critical disadvantages. First, these
solutions often install rules for flows with the granularity
of ingress-egress switch pairs. If a network contains several
thousands of ingress/egress switches, there are millions of
ingress-egress switch pairs. Consequently, it may require
millions of forwarding entries on a switch in the worst
case, which far exceeds the forwarding table size. Moreover,
these solutions (no matter using proactive mode (e.g., [1]) or
using reactive mode (e.g., [10])) will encounter lager response
time (when encountering network failures) and larger network
update delay (when network performance decreases) due to
the low rule installation speed, which will be validated through
experimental testing in Section VI.

Though the traditional solutions, e.g., default paths [12],
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2Schemes No. of Rules Control Overhead SFC Policy Network Performance Hardware Support
Traditional Default Path (e.g., [9]) Few Low No Low No
Per-request Routing (e.g., [1] [10]) Many High Yes High No
Consolidated Platform (e.g., [11]) Few Low Yes High Yes

Our Scheme Few Low Yes High No

TABLE I: Comparison of the advantages and disadvantages of existing solutions.

Fig. 1: Traffic from s1 to s3 has to traverse NF1 and traffic from s2
to s3 has to traverse NF1 and NF2. Different requests with the same
egress switch (or destination) will traverse different SFCs. However,
the switch-based (or destination-based) default path solution cannot
distinguish the traffic from s1 or s2.

can achieve better scalability and deal with traffic dynamics in
traditional networks, these solutions cannot be applied directly
in middlebox networks for the following reasons. First, SFC
routing will cause routing loops, which is the main difference
from the traditional network (Section II-A). However, default
paths cannot deal with routing loops. Second, flows with
the same egress switch (or destination) will be processed
in the same way by default paths, but they may require
different SFCs. How to setup default paths for different SFC
requirements remains a challenging problem.

To conquer the above challenges, we design the scalable
and flexible middlebox policy enforcement system (SAFE-
ME). SAFE-ME installs three types of tables in the switch’s
data plane, namely the SFC table, NF table, and Flow table.
The SFC table maintains the SFC policy information and
assigns tags to packets that match certain policies. The NF
table provides the path information to the NFs by checking the
packet tags. The Flow table is on a per-switch basis to forward
packets to their destinations, similar to those in traditional
routers/swtiches. We design the smart tag operations for con-
struction of default SFC paths, and present lightweight SFC
routing update for dealing with traffic dynamics. Although the
switch implements more logic than classic SDN switches, our
implementation on Pica8 3297 switches shows that SAFE-ME
reduces flow entries, control overhead, and update delay by
>80%, while increasing packet forwarding delay by 3.3% to
4.8%, compared with state-of-the-art solutions.

II. BACKGROUND AND MOTIVATION

A. Inapplicability of Traditional Default Path Solutions

A natural strawman solution for flow routing with less
forwarding entries is deploying default paths (e.g., using
switch-based or destination-based OSPF/ECMP methods) [12]
[9]. However, in middlebox networks, there may exist routing
loops in the forwarding paths due to SFC requirements. In
addition, flows with the same egress switch (or destination)
may traverse different SFCs, which cannot be satisfied by
default paths. Thus, traditional default paths cannot solve the
SFC routing problem with fine-grained middlebox policies.

We give an example to illustrate the difference of flow
routing between traditional networks and middlebox networks.
As shown in Fig. 1, if we forward traffic from server s1
to server s3 in the traditional network (i.e., without any
SFC requirement), we can install one entry (i.e., dst =
s3, output = 2) on each of switches v1 and v2, so that traffic
will be forwarded through path s1 − v1 − v2 − s3.

However, in MB networks, the operator may specify all
traffic from s1 to s3 to go through NF1 (i.e., s1−v1−NF1−
v1 − v2 − s3 ) and traffic from server s2 to s3 through NF1-
NF2 (i.e., s2−v2−v1−NF1−v1−v2−NF2−v2−s3). These
two requests with the same egress switch will go through dif-
ferent SFCs. The switch-based (or destination-based) routing
solution cannot distinguish the traffic from s1 or s2. Thus, we
cannot determine the proper actions for traffic on v2. Prior
work [1] shows that for some network configurations, 15%
of the SFC routing paths using the proposed approach in [1]
contain loops. Hence traditional default-path methods cannot
fully address the SFC routing issue.

B. Limitations of Prior Work

Though packet tags help to solve the routing loop, it may be
flow-entry consuming if each 5-tuple flow is attached with a
tag. Thus, many works have leveraged the per-request routing
strategy to reduce the flow-entry consumption and achieve
load balancing [1] [13] [14] [15]. Specifically, a request is
identified by three elements, ingress switch, egress switch
and SFC. That is, all flows with the same ingress switch,
egress switch and SFC requirement, will be aggregated into
one request. For each newly arrival request, the corresponding
ingress switch reports the packet header information to the
controller for requesting forwarding strategy. The controller
then computes a proper routing path satisfying the service
policy and replies the rule installment instructions to switch-
es along the routing path. Though some 5-tuple flows are
aggregated into a request, this solution still requires a large
number of entries and leads to massive control overhead even
in a moderate-size network. For example, in a practical data
center network with 1,000 edge switches, there may exist
O(1, 000 × 1, 000) switch pairs. Even if there is only one
SFC requirement per switch pair, it may require 1M entries
on a switch in the worst case, which violates today’s switch
capabilities [5]. When multiple SFC requirements are posed
for each switch pair, it becomes more serious. Meanwhile,
since many flow rules should be installed and modified under
per-request routing scheme, the communication/computation
overhead on the control plane is too high, which will be
validated in Section VI.

To reduce the TCAM table cost and controller overhead,
some research attempts to simplify the SFC routing problem in
middlebox networks by constructing consolidated platform
[11] [16] [17]. CoMB [11] is a network function consolida-
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Fig. 2: Illustration of Packet Processing Procedure. When a packet arrives at a switch, the switch matches the header with SFC Table, NF
Table and Flow Table in sequence. In this way, the packet will be forwarded to destination while obeying SFC constraints.

tion platform, where a flow/request can be processed by all
required NFs on a single hardware platform, thus simplifying
the SFC routing. OpenBox [16] and Metron [17] also adopt
the consolidation conception so as to merge similar packet
processing elements into one. In Fig. 1, they may integrate
NF1 and NF2 into one mixed NF . All traffic will traverse the
mixed NF and be processed automatically by corresponding
functions. The consolidated platform simplifies the flow rout-
ing, helps reduce the number of required forwarding entries on
the switches, and also relieves the control overhead. However,
it requires specific hardwares to build the consolidated plat-
form. Moreover, different NFs may be provided by different
vendors, which prevents it to be consolidated.

From Table I, we observe that all existing methods can
only address partial challenges of SFC routing in middlebox
networks. In other words, none of them can achieve better
routing performance with fewer flow rules, lower control
overhead and SFC requirements under existing hardware plat-
forms. Thus, in this paper, we design an efficient architecture
for SFC routing so as to satisfy the above characteristics.

III. SYSTEM ARCHITECTURE

A. System Overview

SAFE-ME consists of data plane and control plane designs.
The proposed architecture addresses the challenges of scalable
SFC routing in middlebox networks by embedding the SFC
information (as a tag) into the packet header. We first give an
outline of the data plane and the control plane.

Data Plane of middlebox networks consists of SDN switch-
es, NFs, servers and links. The SDN switches are responsible
for forwarding packets according to installed rules in switch
tables. Each NF unit processes the received packets. As
specified in the OpenFlow standard [18], each SDN switch
contains multiple tables. We divide these tables into three
parts with different roles, called SFC Table, NF Table and
Flow Table, respectively. We will describe the design of the
data plane in Section IV.

• SFC Table is used to store the SFC information for each
request. When a request arrives at an ingress switch, this
switch will match the packet header with the SFC Table,
and embed the matched SFC policy (as a tag) into the
packet header. In other words, the packet header will

contain SFC information through matching SFC Table
on the ingress switch.

• NF Table stores the next-hop information of the path
from this switch to each NF. Through matching NF Table,
the packet will be forwarded to the required NFs in
sequence according to the SFC information.

• Flow Table is responsible to store the next-hop informa-
tion of the path (e.g., default path or per-request path)
from this switch to each egress switch in the network.
After the packet is processed by all required NFs, it will
be forwarded to destination through matching the Flow
Table.

Control Plane is responsible to manage the whole net-
work. We mainly focus on two new modules in the control
plane: Default Path Construction (DPC) and Lightweight SFC
Routing Update (LRU). Leveraging the network information
collected by OpenFlow API and policy specification issued
by network administrator, DPC computes the default paths
from each switch to each egress switch or each NF. To
avoid the possible congestion due to traffic dynamics, we also
design LRU to periodically re-compute near-optimal routing
strategy based on current network conditions. The results
will be encapsulated into Flow-Mod commands to install
corresponding rules on the switches. We will introduce the
design of the control plane in Section V.

B. Packet Processing Procedure

We then describe the packet processing procedure of SAFE-
ME. As shown in Fig. 2, the controller initially configures the
SFC Table, NF Table and Flow Table based on the network
information with a proactive manner. When a packet arrives at
a switch, the switch first matches the packet header with the
SFC Table. If there is a match, the switch will write the SFC
information (as a tag) into the packet header, which means
the switch is the ingress switch of this packet and the packet
is required to be processed by a set of NFs. Next, if there is a
match in the NF Table, it will be forwarded to next hop from
this switch to corresponding NF, which means the packet has
to be processed by this matched NF. Otherwise, the packet
need not traverse NFs or have traversed all required NFs,
and will be forwarded to the destination. Then, the packet
follows the traditional processing procedure. There are two
cases. If there is a match in the Flow Table, this packet will



4

v2
v3

2
2

3

IDS

Table of Switch v2

FW

Proxy

s1   10.1.1.1
s2  10.2.1.1

v1

1

2

3

4 1 1

NF Table

FW output=1

Proxy output=1

IDS
Shift_operation,

output=2

Flow 

Table

Dst=v1 output=1

Dst=s2 output=3

Table Match Instructions

Table of Switch v3

Table of Switch v1

NF Table

FW output=1

Proxy output=1

IDS output=2

Flow 

Table

Dst=v1 output=1

Dst=v3 output=2

Table Match Instructions

SFC Table
Src=10.1.1.0/2

4 Flag_bit=0

Add Tags FW-IDS-

Proxy to Header, 

Flag_bit=1,

Goto NF Table

NF Table

FW Shift_operation,output=2

Proxy Shift_operation,output=3

IDS output=4

Flow Table
Dst=s1 output=1

Dst=v3 output=4

Table Match Instructions

IDS

Fig. 3: Illustration of Packet Processing in SAFE-ME and Rule
Installment on Switches. The administrator specifies that traffic from
subnet 10.1.1.0/24 should be traversed a service function chain:
Firewall-IDS-Proxy for security benefits. As a result, the packet will
be forwarded by path “s1 − v1 − FW − v1 − v2 − v3 − IDS − v3 −
v2 − v1 − Proxy − v1 − v2 − v3 − s2”.

be forwarded to the next hop according to the matching result.
Otherwise, no match exists in the Flow Table. This packet will
be reported to the controller using existing OpenFlow APIs.
Note that, the switch connected with NF(s) is responsible to
modify the tag in the packet header by tag shifting, which
will be introduced in Section IV. In this way, after the packet
is processed by the NF and returns to the connected switch,
the packet will be forwarded to next required NF through
matching another NF entry or forwarded to the egress switch
through the Flow Table.

C. Illustration of SAFE-ME Design

We give an example for better understanding of packet
processing in SAFE-ME. The controller initially computes
the default path (e.g., shortest path) from each switch to each
egress switch (or NF) and installs the default paths to egress
switches (or NFs) on Flow Tables (or NF Tables). Besides,
the administrator may specify some policies for flows. For
example, in Fig. 3, the administrator specifies that traffic from
subnet 10.1.1.0/24 should be traversed a SFC: Firewall-IDS-
Proxy for security benefits. Thus, the controller installs an
SFC entry on ingress switch v1 of this subnet in Fig. 3.

When a request from subnet 10.1.1.0/24 arrives at the
ingress switch, v1 will match this packet header with the
SFC table, and write the tag (i.e., the SFC information: “FW-
IDS-Proxy”) into the packet header. The packet will then be
matched with the NF Table (i.e., “match=FW”). Since v1 is
connected with a firewall, this switch executes shift operation
(which will be introduced in Section IV) to delete the “FW-”
information in the tag and then forwards this packet to the
firewall through outport 2. After the packet is processed by
the firewall and returns to switch v1, this switch will match
the NF entry “match=IDS and output=4”, and forward this
packet to switch v2, which will then forward it to v3 by the

Flag Bit Tag Storage Field Tag Match Field IP Header Payload

1 Bit 32 Bits 8 Bits Avg:5792 Bits

Fig. 4: Tag Storage/Match Fields and Flag Bit in a packet. Flag Bit
Field indicates whether the packet has been embedded a tag or not.
Tag Match Field stores the first NF in the SFC and Tag Storage Field
embeds the rest NF(s) in the SFC. The overall bandwidth cost for
embedding tags is negligible.

NF Table. Switch v3 continues to forward this packet to IDS
according to the NF Table. In this way, this packet will be
forwarded through path “s1−v1−FW−v1−v2−v3− IDS−
v3 − v2 − v1 − Proxy − v1 − v2 − v3 − s2”. That means, we
only need one special SFC entry on the ingress switch for this
request, and the other entries are shared by different requests.
Consequently, SAFE-ME will greatly reduce the use of rules
and the control overhead.

IV. DATE PLANE DESIGN

As specified by the OpenFlow standard [18], each SDN
switch consists of multiple forwarding tables. We divide
these tables into three parts with different roles, called SFC
Table, NF Table and Flow Table, respectively. Leveraging the
pipeline processing, the switch will first match the packet
header with the SFC table, then with the NF table (if nec-
essary), and finally with the Flow table.

A. Tag Embedding through SFC Table

In the data plane, there may exist many units of NFs.
The controller uses unique identifies (e.g., 1, 2, ...,m) to
distinguish these NFs. Recent studies show that the number
of NFs is similar to the number of switches [19] [20] and
the length of SFC is usually no more than 5 in a moderate-
size network. For the sake of convenience, we use 8 bits to
represent an NF and use 40 bits to indicate a SFC. In this way,
we add several fields into the packet header as shown in Fig.
4. Specifically, we design (1) Tag Match Field to store the
first NF in the SFC and (2) Tag Storage Field to embed the
rest NF(s) of the SFC in the reverse order. Moreover, we use
1 flag bit to denote whether the packet has been embedded
a tag or not. Note that, in data center networks, the average
packet size is around 724 bytes (i.e., 5792 bits) [21]. Even in
a large-scale network, we may need to use 11 bits to identify
2047 different NFs and the maximum length of SFCs may be
10 [22] (i.e., the cost is 11×10+1 = 111 bits), the bandwidth
cost for embedding a tag is still negligible (< 2%).

To illustrate the SFC information (or tag) embedding
process, we revisit the example in Fig. 3. We use 0x01,
0x02, 0x03 to denote the FW, Proxy, IDS units, respectively.
In this way, the service function chain can be encoded
into 0x01-0x03-0x02. To embed this tag, Tag Match Field
records the first NF (e.g., 0x01) and Tag Storage Field
stores the rest NFs in the reverse order (e.g., 0x0203).
In other words, the SFC entry on switch v1 can be ex-
pressed as “ip src = 10.0.1.0/24, F lag bit = 0, actions =
{Tag Match Field = 0x01, Tag Storage F ield =
0x0203, F lag bit = 1, Goto Table : NF Table}”.

When a packet from subnet 10.0.1.0/24 arrives at switch
v1, it will match the entry in the SFC Table. The actions
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will modify the Tag Match Field to 0x01, Tag Storage Field
to 0x0203 and set the Flag Bit to 1. As a result, the SFC
information is successfully embedded in the packet header.

B. Tag Shifting through NF Table

The switch will then match the Tag Match Field (i.e., the
first NF) in the NF Table, and forward the packet to the
corresponding port if there is a matching entry. Moreover, if
the switch is directly connected with the NF as specified by
the Tag Match Field, it will take the following operations:
(1) catch the first NF information of the rest SFC from
the Tag Storage Field (i.e., shift right operation); and (2)
reset the Tag Match Field. We revisit the example in Fig.
3. After embedding a tag, the switch will match the packet
header in the NF table about FW (i.e., 0x01). There is a
matching NF entry: “Tag Match Field = 0x01, actions =
shift right, output = 2”, which means the switch will shift
right the tag and forward the packet to FW through port 2.
Note that, the shift right operation will bitwise shift right
of Tag Storage+Match Field by 8 bits. After the shift right
operation, Tag Match Field and Tag Storage Field become
0x03 and 0x02, which means the packet still has to traverse
two NFs (i.e., 0x03-0x02). When the packet returns to switch
v1 from FW, the switch will match the NF table with the
match field “Tag Match Field = 0x03”, and forward to
IDS through port 4. In the end, the packet will be forwarded
to the destination.

C. Discussions

Flexibility of Implementing SAFE-ME. For some pro-
grammable switches (e.g., Open vSwitches [23], P4-based
barefoot switches [24]), it is not difficult to add new fields,
such as Tag Match Field and Tag Storage Field, to embed
the SFC information into the packet header. In fact, the
development of programmable data plane technology such
as P4 has reduced the difficulty of implementing a SAFE-
ME style data plane and thus, has greatly improved the
feasibility of SAFE-ME. For other SDN switches, we can
leverage either VLAN tags, MPLS labels, or other unused
fields in the IP header to embed the SFC information [1]
[13]. Meanwhile, the shift operation is a basic and high-
speed function [25]. Thus, the tag operations in SAFE-ME can
achieve line rate if the switch supports shift operation (e.g.,
Open vSwitches [23], barefoot switches [24]), which are also
testified in Section VI-C. However, some switches may not
support shift operation. Under this situation, we can leverage
NF units to fulfill shift operation. Specifically, when a packet
arrives at a required NF, the NF will shift the tag in the packet
header before returning to the switch so that the packet will
match the next required NF. FlowTags [13] has illustrated that
these operations are lightweight (<0.5% cost) for an NF to
modify the packet header, which is also testified by our test
in Section VI-B. Thus, SAFE-ME is quite compatible with
legacy networks and easy to be implemented.
Applicability for Network Function Virtualization (NFV).
Similar to MB networks, NFV networks will also encounter
routing loops, traffic dynamics and scalability problems, due

to the disadvantages of existing solutions as shown in Table
I. SAFE-ME can be applied to NFV networks with some
modifications. For example, if the switch is connected to two
following NFs, the switch will delete the first two NFs and
write the second NF in the Tag Store Field to the Tag Match
Field. These modifications are easy to implement.

V. CONTROL PLANE DESIGN

A. Default Path Construction (DPC) for SFC Routing

As described in Section II-A, the traditional default path
solution cannot be directly applied for middlebox networks.
Thus, we propose novel multi-level (i.e., policy-level, NF-level
and switch-level) default paths for SFC routing.

1) Network Model: Once the network topology is estab-
lished, the controller can obtain the topology information,
such as the locations/connections of all switches and NFs,
through classical OpenFlow APIs. The data plane topology
can be modeled as a directed graph G = (U ∪ V ∪ N,E),
where U , V , N and E denote the terminal set, the switch set,
the NF set and the directed link set, respectively.

2) Policy-level Default Path Construction: In the middle-
box networks, the network operator usually specifies different
sequences of NFs (i.e., SFCs) for different requests. For
example, in Fig. 3, the operator may specify that requests
from subnet 10.1.1.0/24 (e.g., s1) have to traverse a SFC:
Firewall-IDS-Proxy for security benefits. The DPC module
will transform this specification to policy-level default path
and install corresponding entries in the SFC Table of the
ingress switch.

3) NF-level Default Path Construction: DPC first leverages
classical algorithms (e.g., OSPF or ECMP) to compute default
path(s) from each switch to each NF. Each switch then stores
the next-hop information on the default path to each NF in
the NF Table so that each packet will be processed by the
required NF(s) in sequence. We should note that even though
one switch lies on more than one default path to each NF,
it requires to install one NF entry and at most one group
entry. Due to space limit, we omit the description of the group
table installment in this paper. As a result, each switch will
install |N | entries in the NF Table for NF-level default paths
construction.

4) Switch-level Default Path Construction: Similarly, DPC
first leverages classical algorithms to compute default path(s)
from each switch to each egress switch. The controller then let
each switch to install switch-level wildcard rules in the Flow
Table through Flow-Mod messages. Moreover, each egress
switch has to install one rule for each connected destination.
For example, in Fig. 3, switch v1 installs two rules in Flow
Table: one wildcard rule for egress switch v3 and one rule for
connected destination s1.

B. Lightweight SFC Routing Update

With the help of multi-level default paths, requests will be
forwarded to destinations while obeying SFC policies. Default
paths help to save TCAM resources and relieve controller
overhead, but they cannot guarantee the network performance
(e.g., NF/link load balancing or network throughput), due



6

to traffic dynamics. Thus, we design the Lightweight SFC
Routing Update (LRU) module by joint default paths and per-
request paths for network optimization.

1) Exploration of Feasible SFC Paths: Each request may
have to traverse multiple NFs in sequence. The number of
feasible SFC paths for each request may be exponential and
the network performance will be affected by the selection
of routing paths. Thus, we compute a set of feasible paths
that satisfy SFC policy for each request. To decrease time
complexity, we pre-compute the feasible SFC path set for
each request only when topology changes. The feasible path
set can be computed by traditional algorithms, such as depth-
first search. If there are too many feasible paths, we may only
choose a certain number (e.g., 3-5) of best ones under a some
performance criterion, such as having the large capacities or
having the shortest number of hops. In this way, during the
update process (Section V-B3), we can select one optimal SFC
path from the feasible path set for each request.

2) Installment of A Feasible SFC Path: When the controller
decides to re-route a request from its default path to another
path p, under the traditional wisdom, the controller will deploy
ω forwarding rules at every switch on p, where ω is the
number of its appearance times on path p [1]. However,
this scheme will cost many entries and lead to massive
control overhead. To reduce the resource cost, we can leverage
SAFE-ME to install default rules so as to improve network
scalability. Since each ingress switch only maintains one SFC
entry for each related request in SFC Table, we just consider
the forwarding entry cost on the Flow Table and the NF Table.

Let variables In(f, p, v) and If (f, p, v) (both initialized
to 0) denote the number of required NF entries and the
number of required flow entries on switch v, respectively,
as the route of request r is updated to the target path p.
Assume that the request r has to traverse q NFs, denoted as
NF1, NF2, ..., NFq , respectively. We determine the values of
In(f, p, v) and If (f, p, v) as follows: 1) We divide the path p
into q + 1 path segments (i.e., source to NF1, NF1 to NF2,
..., NFq to egress switch). 2) We use pd to denote each path
segment on path p, where d is the destination of this path
segment. For example, pNF1 denotes the path segment from
source to NF1. 3) For each switch v on pd, if path segment pd
overlaps with the default path from switch v to d, then there is
no need to deploy an entry for this path segment on switch v;
otherwise, a flow/NF entry on switch v for this path segment
should be deployed. If d is an NF, In(f, p, v) = In(f, p, v)+1,
which means an NF entry should be deployed on the NF Table.
If d is a terminal, If (f, p, v) = If (f, p, v) + 1, which means
a flow entry should be deployed on the Flow Table. After
traversing all path segments and all switches on path p, we
obtain the values of variables In(f, p, v) and If (f, p, v).

3) Problem Definition for SFC Routing Update: We de-
note the set of switches as V = {v1, ..., v|V |}, the set of
terminals as U = {u1, ..., u|U |}, and the set of NFs as
N = {n1, ..., n|N |}. The data plane topology is modeled as a
graph G = (U ∪ V ∪N,E), where E is the set of links. Let
c(e) (or c(n)) be the capacity of a link e (or an NF n) and l(e)

(or l(n)) be its current load. Note that these information can be
obtained through OpenFlow [4] or other statistics collection
mechanisms [26]. Since each middlebox is connected with
a switch, the switch can also measure the middlebox load
through port statistics collection.

When the network performance gets worse (e.g., higher
link/NF load ratio), the controller selects a subset Π of the
largest requests (reported by the switches) for re-routing so
as to achieve better network performance. The budget for
re-routing execution time constraints the size of Π; more
execution time budget means we can re-route more requests,
which can be roughly estimated based on the past executions.
The estimated rate of request f ∈ Π is denoted as r(f), which
can be obtained through edge switches. Let P(f) be the set of
feasible paths for request f . P(f) is determined based on the
management policies and performance objectives, which has
been discussed in Section V-B1. Note that, P(f) also contains
the path p∗(f) that the request is currently routed through.

Let Tn(v) and T f (v) be the number of available entries in
the NF Table and the Flow Table, respectively, at switch v.
Let In(f, p, v) (or If (f, p, v)) be the number of required NF
entries (or flow entries) on switch v if path p is assigned to
request f , which has been discussed in Section V-B2. Note
that, the number of required SFC entries is related to the
number of requests and is independent of update process.
Thus, we do not consider the SFC Table constraint in here.

We formalize the load balancing routing (LBR-MBN) prob-
lem in middlebox networks as follows:

min λ

s.t.



b(e) = l(e)−
∑

f∈Π:e∈p∗(f) r(f), ∀e ∈ E

b(n) = l(n)−
∑

f∈Π:n∈p∗(f) r(f), ∀n ∈ N∑
p∈P(f) y

p
f = 1, ∀f ∈ Π∑

f∈Π

∑
p∈P(f):v∈p y

p
f · In(f, p, v) ≤ Tn(v), ∀v ∈ V∑

f∈Π

∑
p∈P(f):v∈p y

p
f · If (f, p, v) ≤ T f (v), ∀v ∈ V

b(e) +
∑

f∈Π

∑
p∈P(f):e∈p y

p
fr(f) ≤ λ · c(e), ∀e ∈ E

b(n) +
∑

f∈Π

∑
p∈P(f):n∈p y

p
fr(f) ≤ λ · c(n), ∀n ∈ N

ypf ∈ {0, 1}, ∀p, f
λ ≤ 1.

(1)
where ypf ∈ {0, 1} means whether request f will be forwarded
through path p ∈ P(f) or not. The first and second sets
of equations compute the link background traffic load b(e),
∀e ∈ E, and the NF background traffic load b(n), ∀n ∈ N ,
when the flows in Π are taken out. The third set of equations
requires that request f ∈ Π is not splittable; it will be
forwarded through a single path from P(f). The fourth set of
inequalities describes the NF table size constraint, while the
fifth set of inequalities describes the flow table size constraint
on switches. The sixth and seventh sets of inequalities state
the traffic load on each link e and each NF n, respectively,
where λ is called as the network load ratio.

The optimization objective is determined by the users’
requirement (e.g., throughput maximization, load balancing).
We choose network load ratio minimization, i.e.,minλ, as the
objective in this section for simplicity.
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Theorem 1: LBR-MBN is an NP-hard problem.
We can show that the multi-commodity flow with minimum
congestion problem [27] is a special case of our problem.
Thus, the LBR-MBN problem is NP-Hard too. Due to space
limit, we omit the detailed proof here.

4) Algorithm Design and Performance Analysis: We
present an approximate algorithm, called Rounding-based
SFC Routing Update (RBSU), to solve this problem. We first
relax Eq. (1) by replacing the eighth line of integer constraints
with ypf ≥ 0, turning the problem into linear programming.
We can solve it with a linear program solver (e.g., CPLEX)
and the solution is denoted by ỹ and λ̃. As the linear program
is a relaxation of the LBR-MBN problem, λ̃ is a lower-bound
result for LBR-MBN. Using randomized rounding method
[28], we obtain an integer solution ŷpf . More specifically,
variable ŷpf is set as 1 with the probability of ỹpf . The RBSU
algorithm is formally described in Algorithm 1.

Algorithm 1 RBSU: Rounding-based SFC Routing Update
for Middlebox Networks

1: Step 1: Solving the Relaxed LBR-MBN Problem
2: Construct a linear program by replacing the integral

constraints with ypf ≥ 0
3: Obtain the optimal solution {ỹpf}
4: Step 2: Route Update for Middlebox Networks
5: Derive an integer solution {ŷpf} by randomized rounding
6: for each sampled flow f ∈ Π do
7: for each SFC route p ∈ P(f) do
8: if ŷpf = 1 then
9: Appoint a path p for flow f

To analyze the proposed RBSU algorithm performance, we
first assume that the minimum capacity of all the NFs and
links is denoted by cmin and the whole flow set is denoted by
Γ. We define a variable α as follows:

α = min{min{ λ̃cmin

r(f)
, f ∈ Γ},min{Tn(v), T f (v), v ∈ V }}

(2)
Lemma 2: RBSU can achieve the approximation factor of

logn
α +3 for link capacity constraints in large networks, where

n is the number of switches. Moreover, the bound can be
tightened to 2 in practice.

Proof: We denote the traffic load of link e ∈ E from
flow f ∈ Γ as xf,e. Thus, the expected traffic load on e is

E

∑
f∈Γ

xf,e

 =
∑
f∈Π

[xf,e] + b(e)

=
∑
f∈Π

∑
e∈p:p∈P(f)

ỹpf · r(f) + b(e) ≤ λ̃c(e) (3)

Combining Eq. (3) and the definition of α, we have
xf,e·α
λ̃c(e)

∈ [0, 1]

E
[∑

f∈Γ
xf,e·α
λ̃·c(e)

]
≤ α.

(4)

Thus, Chernoff bound [12] can be applied. Assume that ρ

is a arbitrary positive value. It follows

Pr

∑
f∈Γ

xf,e · α
λ̃ · c(e)

≥ (1 + ρ) · α

 ≤ e
−ρ2·α
2+ρ (5)

Now, we would assume that

Pr

∑
f∈Γ

xf,e

λ̃ · c(e)
≥ (1 + ρ)

 ≤ e
−ρ2·α
2+ρ ≤ 1

n
(6)

By solving Eq. (6), we have the following result

ρ ≥ log n+
√
log2 n+ 8α logn

2α
⇒ ρ ≥ log n

α
+ 2 (7)

In most practical scenarios, according to the definition of α,
we can assume α ≥ 3 log n. Under this assumption, we have:

ρ ≥
log n+

√
(log n− 2α)2 − 4α2 + 12α log n

2α
⇒ ρ ≥ 1

(8)
Thus, the approximate factor for link capacity constraints is
ρ+1 = logn

α +3. Under proper assumption (i.e., α ≥ 3 log n),
the bound can be tightened to ρ+ 1 = 2.

Lemma 3: The proposed RBSU algorithm can achieve the
bi-criteria approximation factor of ( logn

α +3, logn
α +3). Under

proper assumption (i.e., α ≥ 3 log n), the bound can be
tightened to (2, 2). It means that RBSU can minimize the
network load ratio to no more than 2λ̃ and the table size
constraints are violated at most by a multiplicative factor 2.

The proof is similar to that of Lemma 2. Due to space limit,
we omit the detailed proof here.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the scalability and efficiency
of our SAFE-ME system. All our code has been publicly
available at github1.

A. Performance Metrics and Benchmarks

Performance Metrics: We adopt the following three sets
of metrics to evaluate the scalability and efficiency of our
proposed system. 1) SAFE-ME involves tag operations, which
may increase the packet transmission delay and decrease
the end-to-end throughput. Thus, we adopt end-to-end delay
and end-to-end throughput to evaluate the efficiency of tag
operations. Specifically, we use Ping and Qperf [29] tools to
measure the delay of ICMP and TCP/UDP protocols between
two terminals, respectively. In our implementation, some flows
are aggregated into one request. We use Packet Generator
(PktGen) tool [30] to measure its flow completion time (FCT).
Besides, we adopt vnStat tool [31] to measure the end-to-
end throughput, which can evaluate the negative impact of
tag operations on the packet forwarding rate. 2) Considering
traffic dynamics (e.g., request intensity fluctuation), we need
re-route flows to better deal with traffic dynamics (i.e., execute
the RBSU algorithm). During the update process, we focus
on two metrics: update delay and control traffic overhead.
Specifically, we measure the duration of the update procedure
as update delay. Moreover, we record the total traffic amount

1https://github.com/sdntest/Middlebox Routing.
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Fig. 5: Topology of the pica8 testbed. The testbed consists of two
pica8 3297 switches, one VNF (IDS) and two servers (s1, s2). We
generate traffic, from s1 to s2, which has to traverse IDS.

Ping Iperf3 Qperf Delay Qperf Delay
Delay throughput (TCP) (UDP)

PDA 1.25 ms 814 Mbps 513 us 429 us
SIMPLE 1.27 ms 812 Mbps 519 us 436 us

SAFE-ME 1.316 ms 809 Mbps 530 us 449 us

TABLE II: Tag operations only cost < 5% performance loss.

between the control plane and the data plane during the update
procedure as control traffic overhead. Obviously, lower update
delay and control traffic overhead represent better network
update performance. After route update, we measure the total
number of required entries on three tables of each switch
and the link/NF Load on each link/NF. Accordingly, we can
obtain the maximum value and CDF performance of these
metrics. 3) Network failure is a common scenario in today’s
networks. Thus, we measure the failure response time to
deal with various network failures, such as single/multiple
NF/link/switch failures. We measure the duration from failure
occurrence to failure recovery as failure response time.
Benchmarks: We compare SAFE-ME with other two bench-
marks for evaluation. The first benchmark is the most related
work, SIMPLE [1], which is an SDN-based policy enforce-
ment layer to simplify middlebox traffic steering. To account
for both the middlebox processing capacity constraint and
the TCAM table size constraint, SIMPLE first pre-computes
several feasible physical sequences for each request while
tackling the switch resource constraints, and then chooses a
physical sequence for each request to minimize the maximum
middlebox load. The second benchmark is an online algo-
rithm, called primal-dual-update-algorithm (PDA) [10]. PDA
achieves the trade-off optimization between the throughput
competitiveness and QoS requirements under both link and
NF capacity constraints. Note that, due to the inapplicability
of traditional default path solutions as shown in Section II-A,
we have not found prior work in this direction. Thus, we
decided to compare SAFE-ME with SIMPLE and PDA, two
solutions that schedule and forward traffic at granularity of
requests (as shown in Table I).

B. System Implementation with Pica8 and Evaluations

As described in Section IV-C, although shift operation is
high-speed for ASIC [25], some commodity switch chips may
not fully support this function. Under this situation, we can
leverage NF to fulfill shift operation. This section shows that
tag operations in SAFE-ME are lightweight for NF processing.

As shown in Fig. 5, the servers (s1 and s2) and VNF are
connected to the Pica8 3297 switches [32] through 1Gbps
links. The VNF is an open source IDS, called Snort [33],
running on a server with a core i5-3470 processor and 8GB
of RAM. To test the efficiency of tag operations on NFs, we
route traffic from s1 to s2 using three different solutions. (1)

V2

V5 V8

V4

V6

V1

V7

V3

F1 I1

I2

P3

F3F2

I3P1

P2

Fig. 6: Telstra Topology for small-scale testing. Circles represent
switches and squares represent NFs. It contains 8 switches (from V1

to V8), 3 firewalls (from F1 to F3), 3 IDSs (I1 to I3) and 3 proxies
(from P1 to P3).

PDA forwards traffic through path s1−v1−IDS−v1−v2−s2
with the help of inport information. (2) SIMPLE leverages
simple tag operations to forward requests through path s1 −
v1 (add tags) − IDS − v1 − v2 (delete tags) − s2. (3) Our
proposed SAFE-ME method implements shift operation on
VNF to forward requests through path s1 − v1 (add tags)−
IDS (shift operation)− v1− v2 (delete tags)− s2. We can
see that the tag operations of SAFE-ME are the most complex,
while those of PDA (without tag operations) are the simplest,
among three algorithms.

We use Ping to test the icmp delay, leverage Iperf3 tool
[34] to test the maximum end-to-end throughput, and adopt
Qperf tool [29] to test the UDP/TCP delay. The testing results
are listed in Table II. Due to space limit, we omit the detailed
description here. Overall, although SAFE-ME contains some
tag operations (e.g., shift operation), it still achieves similar
end-to-end delay/throughput performance (less than < 5%)
compared with both PDA and SIMPLE. For example, the
results show that SAFE-ME (809Mbps) only decreases end-to-
end throughput by about 0.4% and 0.6% compared with SIM-
PLE (812Mbps) and PDA (814Mbps), respectively. Thus, we
can conclude that tag operations in SAFE-ME are lightweight,
which is also testified in the next section (i.e., Figs. 7-8).

C. Small-scale Experiments with Open vSwitches

Experimental Settings: In this section, we implement SAFE-
ME with the popular Open vSwitch (OVS, version 2.8.5) [23]
on a small-scale topology Telstra from the Rocketfuel dataset
[35], as depicted in Fig. 6. Since the topology does not provide
NF information, we utilize VNF mechanism [20] to deploy
three types of NFs (i.e., Firewall, IDS, and Proxy) and place
3 units for each type of NF for simplicity. In other words, we
deploy total 3×3=9 NFs on the Telstra topology. Each OVS
and its connected NF(s) are running on a single server with a
core i5-3470 processor and 16GB of RAM. Besides, we use
RYU [36] as the controller software running on another server
with a core i7-8700k and 32GB of RAM.

We use Packet Generator (PktGen) [30] to generate network
traffic, which is a powerful tool also used by [37] [38]. By
using PktGen, we can generate requests with various sizes and
patterns, and collect FCT, load information through PktGen
APIs. In the experiments, we generate DCTCP (datacenter
TCP) pattern requests [30]. All requests have to traverse either
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Firewall-IDS-Proxy or Firewall-IDS.
FCT and Throughput Performance: In the first set of
experiments, we generate TCP requests with a duration of
30s and measure the FCT and end-to-end throughput. Note
that, PktGen provides the FCT information of all requests.
The end-to-end throughput can be derived by the vnStat tool
[31] through measuring the average throughput of one server
port per 6-second interval. The results in Figs. 7-8 show that
our proposed SAFE-ME system achieves similar FCT and
throughput performance compared with other two algorithms.
That means the tag operations of SAFE-ME are lightweight.
Update Performance: In the second set of experiments, we
conduct the traffic dynamics, which require to dynamically
adjust routing paths and update forwarding entries for load
balancing. In Fig. 7, FCT of nearly 50% requests is less than
10ms. Thus, if we update routing paths at a low speed, the
network performance will be greatly reduced. Figs. 9-10 show
that SAFE-ME can reduce update delay and control traffic
overhead by about 85% and 83%, respectively, compared with
other two solutions. Lower update delay and control traffic
overhead can make the network more reliable and robust
during update procedure. SAFE-ME can achieve lower update
delay because it greatly reduces the number of required entries
by about 85% for updating compared with other algorithms,
as shown in Fig. 11. The rule installation speed is about
0.4ms/rule on OVS, which causes the huge update delay gap
for these methods. Note that, the rule installation speed of
a physical switch (e.g., 50.25ms/rule on HP 5130 switches
[17]) is substantially much slower than that of OVS, which
means the gap of update delay is even larger among these
solutions on the physical platform. Figs. 12-13 show link/NF
load conditions for these three systems. Using Alg. 1, SAFE-
ME achieves better link load balancing and similar NF load
balancing compared with SIMPLE/PDA. For example, by Fig.
12, SAFE-ME reduces the maximum link load by about 14%
and 18% compared with SIMPLE and PDA, respectively.
Note that, we can also tweak RBSU to work for the other
two schemes and obtain a similar link/NF load balancing
performance. However, without the support of the SAFE-ME’s

data plane, both SIMPLE and PDA would still require a higher
number of flow entries, causing larger control overhead and
longer update delays, similar to what is shown in Figs. 9-11,
even after adopting RBSU.
Dealing with Failures: The network may encounter
switch/NF/link failures in practice. We consider four failure
scenarios on the Telstra topology: (I) single-NF failure, (II)
single-link/switch failure, (III) multi-NF failures, and (IV)
multi-link/switch failures. Under all four scenarios, the con-
troller should re-route requests and we focus on the failure
response delay to reconfigure the network. When network
failure occurs, the controller needs to be aware of failures,
compute new rules and install them on switches. For single
NF/link/switch failure, PDA costs much time to compute and
install new rules. SIMPLE pre-computes pruned sets for the
single NF failure scenario. Thus, the time cost is mainly
for installing rules on switches in SIMPLE. SAFE-ME only
adjusts fewer affected SFC entries to embed requests with
other available NFs (e.g., nearest available NFs). The number
of updated entries for route update of SAFE-ME is less than
that of other two benchmarks. As a result, the failure response
time of SAFE-ME is much short. The results in Fig. 14
show that SAFE-ME can reduce the failure response time
by about 93% and 87% compared with PDA and SIMPLE,
respectively, for single NF/link/switch failure. For multi-NF
failures, SAFE-ME only needs to modify affected SFC entries
to redirect requests to other available NFs. However, both
PDA and SIMPLE will cost much time to re-compute and
install rules. As a result, SAFE-ME reduces failure response
time by about 90% compared with other two benchmarks for
multi-NF failures. For multi-link/switch failures, SAFE-ME
re-computes default paths and installs them. Since the number
of affected entries of SAFE-ME is far less than that of other
two solutions, SAFE-ME reduces response time by about 59%
and 61% compared with PDA and SIMPLE, respectively, for
multiple links/switches failures.

2I: single-NF failure, II: single-link/switch failure, III: multi-NF failures,
IV: multi-link/switch failures
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D. Large-scale Simulations

Simulation Settings: In the large-scale simulations, we use
packet traces of our campus network, which is shared at
dropbox3. We simulate the traces across the Rocketfuel project
[35], called Ebone, which contains 87 switches and 348
servers. Since this topology does not provide any NF infor-
mation, similar to small-scale experiments, we adopt VNF
placement scheme [20] to deploy 5 types of NFs (i.e., Firewall,
IDS, IPSec, Proxy and WAN-opt) and the number of each type
of NF is set as 10 by default. In other words, we deploy totally
5×10=50 NFs on the Ebone topology. There exist four SFCs
(i.e., FW-IDS-IPSec, FW-Proxy, FW-IDS-IPSec-WAN-opt and
IDS-Proxy), and each request will be assigned with one of
SFC requirements. Note that, since the campus network is
different from Ebone, we use a gravity model to map requests
to ingress/egress switches [35]. We execute each simulation
50 times and average the numerical results.
Flow Entry Resource: We first compare the required entry re-
sources of these three systems. In Fig. 15, with the increasing
number of requests, the maximum number of required entries
increases for all systems. In comparison, the proposed SAFE-
ME system uses much fewer entries than other two solutions.
For example, when there are 36×103 requests, SAFE-ME uses
a maximum number of 11,900 entries among all switches,
while SIMPLE and PDA use 36,500 and 29,500 entries,
respectively; SAFE-ME needs 2,600 entries on average, while
both SIMPLES and PDA need about 9,000 entries (not shown
due to space limit). In other words, SAFE-ME can reduce the
maximum number of required entries by about 68% and 60%
compared with SIMPLE and PDA, respectively. Meanwhile,
SAFE-ME reduces the average number of required entries
by about 71% compared with the other two solutions. Fig.
16 shows the CDF of the number of entries under a fixed
number (e.g., 36×103) of requests. We observe that about
2.2% of switches need more than 8,000 entries by SAFE-ME,
while over 45% of switches need more than 8,000 entries by
SIMPLE and PDA.

3dropbox.com/s/f6wl5zyyfmqq4ry/flow trace.pcap?dl=0.

Bandwidth Resource: Figs. 17-18 give the comparisons of
bandwidth resource consumption for these algorithms. We
claim that SAFE-ME can save bandwidth resources through
well-designed routing strategy. For example, when there are
36×103 requests, our proposed algorithm can reduce the
maximum/average link load by about 23%/28% and 51%/30%
compared with SIMPLE and PDA, respectively (not shown
average performance due to space limit). Fig. 18 shows the
CDF of link load ratio under a fixed number (e.g., 36×103 )
of requests. We observe that over 64% of links undertake load
less than 4Gbps while only 53% (or 51%) of links undertake
load less than 4Gbps by SIMPLE (or PDA).
NF processing Resource: Figs. 19-20 show the comparisons
of NF loads for different algorithms. From these two figures,
we observe that SAFE-ME can achieve similar NF load
performance compared with both SIMPLE and PDA. Note
that, since we assume all requests can be served by needed
NFs, the average NF loads of these solutions are the same.

From these simulation results, we can draw some conclu-
sions. First, from Figs. 15-16, SAFE-ME reduces the number
of required entries by about 70% on average compared with
other two solutions for serving all requests in the network.
Second, from Figs. 17-18, SAFE-ME reduces the link load
by about 30% on average compared with SIMPLE and PDA.
Finally, from Figs. 19-20, we believe SAFE-ME can achieve
similar NF load compared with SIMPLE and PDA, which
consume more entry and bandwidth resources than SAFE-ME.

VII. CONCLUSION

Scalability is a critical challenge in middlebox networks
due to the routing complexity and traffic dynamics. We proac-
tively deploy multi-level default paths so that requests can
be forwarded to destination while obeying SFC policy with
less resource (e.g., TCAM) consumption. We further study the
joint optimization of default path and per-request routing to
update the SFC routing paths. With the help of default paths,
we only need modify fewer rules when encountering traffic
dynamics or link/switch/NF failures.

VIII. ACKNOWLEDGEMENT

We thank our shepherd, Prof. Geoffrey Xie, and the anony-
mous reviewers for their suggestions. This research of Zhao,
Xu, Liu, Ge and Huang is partially supported by the National
Science Foundation of China (NSFC) under Grants 61822210,
U1709217, and 61936015; by Anhui Initiative in Quantum In-
formation Technologies under No. AHY150300. The research
of Qian is partially supported by National Science Foundation
(NSF) Grant 1750704.



11

REFERENCES

[1] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “Simple-
fying middlebox policy enforcement using sdn,” in ACM SIGCOMM
computer communication review, vol. 43, no. 4. ACM, 2013, pp. 27–
38.

[2] Y. Li and M. Chen, “Software-defined network function virtualization:
A survey,” IEEE Access, vol. 3, pp. 2542–2553, 2015.

[3] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer, “Dynamic scheduling of network up-
dates,” in ACM SIGCOMM Computer Communication Review, vol. 44,
no. 4. ACM, 2014, pp. 539–550.

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[5] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “Infinite cacheflow
in software-defined networks,” in Proceedings of the third workshop on
Hot topics in software defined networking. ACM, 2014, pp. 175–180.

[6] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “On the effect of
forwarding table size on sdn network utilization,” in INFOCOM, 2014
Proceedings IEEE. IEEE, 2014, pp. 1734–1742.

[7] P. Wang, H. Xu, L. Huang, C. Qian, S. Wang, and Y. Sun, “Minimizing
controller response time through flow redirecting in sdns,” IEEE/ACM
Transactions on Networking (TON), vol. 26, no. 1, pp. 562–575, 2018.

[8] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: measurements & analysis,” in Proceedings
of the 9th ACM SIGCOMM conference on Internet measurement. ACM,
2009, pp. 202–208.

[9] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “Devoflow: scaling flow management for high-performance
networks,” in ACM SIGCOMM Computer Communication Review,
vol. 41, no. 4. ACM, 2011, pp. 254–265.

[10] L. Guo, J. Pang, and A. Walid, “Dynamic service function chaining in
sdn-enabled networks with middleboxes,” in Network Protocols (ICNP),
2016 IEEE 24th International Conference on. IEEE, 2016, pp. 1–10.

[11] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design and
implementation of a consolidated middlebox architecture,” in Proceed-
ings of the 9th USENIX conference on Networked Systems Design and
Implementation. USENIX Association, 2012, pp. 24–24.

[12] G. Zhao, H. Xu, S. Chen, L. Huang, and P. Wang, “Joint optimization
of flow table and group table for default paths in sdns,” IEEE/ACM
Transactions on Networking, vol. 26, no. 4, pp. 1837–1850, 2018.

[13] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul,
“Enforcing network-wide policies in the presence of dynamic middlebox
actions using flowtags.” in NSDI, vol. 14, 2014, pp. 543–546.

[14] X. Fei, F. Liu, H. Xu, and H. Jin, “Adaptive vnf scaling and flow
routing with proactive demand prediction,” in IEEE INFOCOM 2018-
IEEE Conference on Computer Communications. IEEE, 2018, pp.
486–494.

[15] Q. Zhang, Y. Xiao, F. Liu, J. C. Lui, J. Guo, and T. Wang, “Joint
optimization of chain placement and request scheduling for network
function virtualization,” in Distributed Computing Systems (ICDCS),
2017 IEEE 37th International Conference on. IEEE, 2017, pp. 731–
741.

[16] A. Bremler-Barr, Y. Harchol, and D. Hay, “Openbox: a software-defined
framework for developing, deploying, and managing network functions,”
in Proceedings of the 2016 ACM SIGCOMM Conference. ACM, 2016,
pp. 511–524.

[17] G. P. Katsikas, T. Barbette, D. Kostic, R. Steinert, and G. Q. Maguire Jr,
“Metron: Nfv service chains at the true speed of the underlying hard-
ware,” in 15th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 18). USENIX Association, 2018.

[18] O. N. Foundation et al., “Openflow version 1.3.4,” 2014.
[19] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and

L. P. Gaspary, “Piecing together the nfv provisioning puzzle: Efficient
placement and chaining of virtual network functions,” in Integrated
Network Management (IM), 2015 IFIP/IEEE International Symposium
on. IEEE, 2015, pp. 98–106.

[20] T. Lukovszki, M. Rost, and S. Schmid, “It’s a match!: Near-optimal
and incremental middlebox deployment,” ACM SIGCOMM Computer
Communication Review, vol. 46, no. 1, pp. 30–36, 2016.

[21] C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu, “Nfp: Enabling network
function parallelism in nfv,” in Proceedings of the Conference of the

ACM Special Interest Group on Data Communication. ACM, 2017,
pp. 43–56.

[22] M. C. Luizelli, D. Raz, and Y. Sa’ar, “Optimizing nfv chain deployment
through minimizing the cost of virtual switching,” in IEEE INFOCOM
2018-IEEE Conference on Computer Communications. IEEE, 2018,
pp. 2150–2158.

[23] OVS. (2018) Open vswitch: open virtual switch. [Online]. Available:
http://openvswitch.org/

[24] B. Switches. (2014). [Online]. Available: https://www.barefootnetworks.
com

[25] J. Wolkerstorfer, E. Oswald, and M. Lamberger, “An asic implementa-
tion of the aes sboxes,” in Cryptographers Track at the RSA Conference.
Springer, 2002, pp. 67–78.

[26] H. Xu, Z. Yu, C. Qian, X.-Y. Li, Z. Liu, and L. Huang, “Minimizing
flow statistics collection cost using wildcard-based requests in sdns,”
IEEE/ACM Transactions on Networking (TON), vol. 25, no. 6, pp. 3587–
3601, 2017.

[27] S. Even, A. Itai, and A. Shamir, “On the complexity of time table
and multi-commodity flow problems,” in 16th Annual Symposium on
Foundations of Computer Science (sfcs 1975). IEEE, 1975, pp. 184–
193.

[28] P. Raghavan and C. D. Tompson, “Randomized rounding: a technique
for provably good algorithms and algorithmic proofs,” Combinatorica,
vol. 7, no. 4, pp. 365–374, 1987.

[29] Qperf. (2018). [Online]. Available: https://github.com/linux-rdma/qperf
[30] W. Bai, L. Chen, K. Chen, and H. Wu, “Enabling ecn in multi-service

multi-queue data centers.” in NSDI, 2016, pp. 537–549.
[31] vnStat. (2018). [Online]. Available: https://humdi.net/vnstat/
[32] Pica8. (2014) Pica8 p3297 switches. [Online]. Available: https://www.

pica8.com/wp-content/uploads/pica8-datasheet-48x1gbe-p3297.pdf
[33] Snort. (2019). [Online]. Available: http://www.snort.org
[34] iperf3. (2016). [Online]. Available: https://iperf.fr/
[35] N. Spring, R. Mahajan, and D. Wetherall, “Measuring isp topologies

with rocketfuel,” ACM SIGCOMM Computer Communication Review,
vol. 32, no. 4, pp. 133–145, 2002.

[36] Ryu. (2017). [Online]. Available: https://osrg.github.io/ryu/
[37] G. Chen, Y. Lu, Y. Meng, B. Li, K. Tan, D. Pei, P. Cheng, L. Luo,

Y. Xiong, X. Wang et al., “Fast and cautious: Leveraging multi-path
diversity for transport loss recovery in data centers.” in USENIX Annual
Technical Conference, 2016, pp. 29–42.

[38] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng,
and E. Chen, “Clicknp: Highly flexible and high performance network
processing with reconfigurable hardware,” in Proceedings of the 2016
ACM SIGCOMM Conference. ACM, 2016, pp. 1–14.


