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The Geometry of State Space 
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The geometry of the state space of a finite-dimensional quantum mechanical 
system, with particular reference to four dimensions, is studied. Many novel 
features, not evident in the two-dimensional space of a single spin, are found. 
Although the state space is a convex set, it is not a ball, and its boundary con- 
tains mixed states in addition to the pure states, which form a low-dimensional 
submanifold. The appropriate language to describe the role of the observer is 
that of flag manifolds. 

The geometry of the state space of a single spin, E(C2), is so well known 
as to be a standard textbook topic, but there is surprisingly little known 
about the geometry of the state space of larger systems, apart from general 
statements such as it is a convex region which is generated by the pure 
states which are extremal points. Even for E(C4) ,  which is the state space 
for a pair of spins and hence the manifold appropriate to the Einstein- 
Podolsky-Rosen paradox, little appears to be known. 

It is the purpose of this article to describe the structure of E(C4), and, 
as it turns out, many major features of E(C n) for arbitrary finite n. The 
principal motive for this inquiry arose out of the work of the first named 
authors ~1) on intuitionist quantum mechanics. In this formulation a special 
neighborhood basis was introduced, and it was thought desirable to test 
the properties of this basis on some special examples. The case of E(C 2) is 
too special to be of much use, and so the case of E(C 4) was selected. It 
turns out that this is sufficient to illustrate the general situation. 

The structure of this paper is as follows. In Section 1, a brief review of 
E ( C  2) is given, following the very nice article of Urbantke (2J drawing atten- 
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tion to the reasons why this is not a suitable starting point for general 
study. In Sec. 2, E(C 4) is studied in detail. It is shown that the natural step 
of using a Clifford algebra representation of the density matrices is not very 
helpful. Instead, the manifold of density matrices is described in terms of 
the diagonalizing unitary matrices ~#(4), and the appropriate language is 
found to be that of flag manifolds. In Section 3 the special case where 
E(C 4) reduces to a product E(C 2) x E(C ~-) is briefly discussed. In Section 4 
the extension to E(C n) is outlined, and in Section 5 some reference is made 
to the topology of intuitionist quantum mechanics. 

1. SINGLE SPIN--E(C 2) 

The state of a single spin is given by a 2 x 2 positive-definite hermitian 
matrix p of trace one. If we introduce the Pauli matrices al ,  cr2, o3, we can 
write 

p = (ao 1 + a-~)/2 (1) 

Then 

1 = T r p = a o  (2) 

The condition that p be positive definite is fulfilled if both the eigenvalues 
of p are positive, and this will be so if 

a2~<l (3) 

When a2= 1, p2= p--pure states. So we see that E(C 2) is the closed unit 
ball B 3, with the boundary the sphere ~2  consisting entirely of pure states. 
All interior points of ~3 are convex combinations of the surface points, 
which are extremal points. 

As already mentioned, this approach does not generalize, and so we 
must proceed in a different way. As p is hermitian, for each such p there 
exists a unitary matrix U~ ~?/(2) such that 

where 

p = U A U *  (4) 

A=i21 • 2 1 '  21+22----1, 2i~>0 (5) 

If 

Eel°l 1 = e,O~ e ~'(1) × ~#(1) (6) 
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then U'AU'*=A, and so for a given A the corresponding set of 
density matrices can be partitioned into equivalence classes which are 
homeomorphic to the left cosets G/H=all(2)/oll(1)xql(1). As the group 
manifold of o/g(2) is four-dimensional and that of 'g'(1) is one-dimensional, 
G/H is two-dimensional. The set of different A, under the constraint (5), is 
one-dimensional, and so dim E(C 2) = 2 + 1 = 3, as required. 

However, this describes the general case where 2 i>0,  21 ¢22. If 
22=0, say, then we have a pure state, and then dim E(C 2)= 2, corre- 
sponding to the surface 5 °2. If 21 = 22 = 1/2, the appropriate left coset is 
now ~(2)/q/(2), which is trivial, and the state space reduces to a single 
point. 

The manifold of G/H is 502, which may be interpreted as the Riemann 
sphere, and hence as the projective space CP J. The space A of the A's is the 
interval [0, 1] of the real line and E(C 2) is the ball ~3, 

2. TWO SPINS---E(C 4) 

The only attempt that we are aware of to describe E(C 4) is that given 
by Majorana; see also Penrose. (3. They considered the general case of 
spin j. A pure state vector can be written 

J 

~,= Y~ ek~ (7) 
k = - - j  

They introduce 2j complex numbers [1,..., [2j which are the roots of the 
equation 

ao[2J + al[~4-r + ... + a 2 j = 0  (8) 

where 

a , = ( _ l )  r cj_,. 
x/(2j_r)!r  ! (9) 

On writing {s= tan ½0s ei<, each ~, can be assigned a point on the unit 
sphere with angles (0,, ~o~). So the state ~b can be represented by a set of 
2j unordered points on 502, or alternatively as a point in the space 
(502×502× ... x502)/S2j~Cp2j. We shall return to this in Section4. 
However, this representation refers only to pure states. 

The density matrices p are 4 x 4 positive-definite matrices of trace 1, 
and we could represent them by 

3 3 

i = 0  j - - O  



214 A d e | m a n ,  Corbe t t ,  and H u r s t  

where ai are the Pauli matrices, a o = 1, a. From the trace condition we 
have 

Xoo = Tr p/4 = 1/4 ( 11 ) 

A necessary and sufficient condition for p ~> 0 is to write it as p = "c 2, where 

3 3 

r * = ~ =  ~ ~ yijai®aj (12) 
i = 0  j = 0  

and then (11 ) becomes 

3 3 

Z Z y 2 : 1 / 4  (13) 
i - 0  j = O  

This is the sphere 5915(1/4), and so we have E(C 4) c 5PlS(1/4). However, 
the inclusion is proper because the mapping ~-+ p is many-one, and it is 
not clear how to choose a unique representative of each equivalence class. 
Choosing z > 0, for example, merely refers the problem on. 

The set of all 4 x 4 hermitian matrices is 16-dimensional, and the 
condition T r p =  1 restricts the manifold to lie in a plane P c  ~16. The 
condition p > 0  restricts the manifold further so that it is a convex 
15-dimensional body. 

Consider Tr p2 ~< Tr p = 1. If we rotate the axes so that they lie in the 
plane y4= ~ Pii = 1, with the 4-axis perpendicular to that plane, and shift the 
origin to the point (1/4, 1/4, 1/4, 1/4), we have 

3 

T r p  2= Z p ; Z + Z  ( x 2 + y 2 ) + ¼  ~<1 (14) 
i= 1 i < j  

where po.= (x~+ iy~)/x/'2= ~ji, i~ j .  This region is the ball ~5 (x /3 /2  ), and 
the only points of E(C 4) which lie on its boundary are the pure states. 
There are other boundary points of E(C4), e.g., p l l=pz2  = 1/2, p u = 0  
otherwise, which lie inside ~, and so E(C 4) is a proper convex subset of B, 
in contrast to the case of E(C2). This follows from the following lemma, 
which summarizes some well-known properties of convex sets. For  brevity 
we shall, in future, denote E(C 4) by g. 

Lemma 1. I fp ,  p ' ~ I n t S ,  a n d p t = ( 1 - t ) p + t p ' ,  t h e n p , ~ I n t ~  for 
0 ~ t ~< 1. If qlo > 1 such that Pt0 ~ 0£, then to is unique and p, ¢ ~ for t > to 
and p, ~ Int ~ for 0 4 t < to. When t = to, det Pro = 0. 

Proof The first two statements follow from the properties of convex 
sets. (4) When t = t  o, there exists a vector ~o:(~o ..... ~o) such that 
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~°?°=0,  and if we choose Ueq/(4) ,  so that p,o is diagonal with (Pto)ij ~-i~j 
eigenvalues o o 2i ..... 24, at least one of 2~ must be zero. Hence det P,0 = 0. 

We have seen from the example given just before the temma that 
boundary points can be mixed states, and we now show that the boundary 
is made up of 3-simplices. 

Lemma 2. The states p form a convex set with the pure states as 
extremal points. The boundary is composed of convex combinations of any 
three independent pure states, i.e., it is made up of 3-simplices. 

Proof If P1 and P2 are pure states, then the convex combination 
21Pl+22P2 ,21+22=l ,  21, 22>~0 is a state because it is a positive 
hermitian matrix of trace l. Conversely, p = UA U* can be written in terms 
of a standard pure state P1 as 

P = 21 U1 P1 U~ "~ 22 U2P 1 Uff + 23 U 3 P~ U* + 24 U4Pt U~ 

where U i = US(lj), S~lj~ being the permutation interchanging the positions 
1 and j, and, as ~2 2j = 1, this is a convex combination of pure states. 

On the boundary p has rank ~3,  which means that at least one of 2i 
is zero, and so p is a convex combination of at most three pure states. 
Conversely, if p = 21P1 + ~12P2 + 23P3, the rank of p is ~<3. If we start with 
a given 3-simplex, the whole boundary will be generated from it by applica- 
tion of the group ~g(4). 

For  further elucidation of the structure of g, we shall study the 
properties of the diagonalization matrix given by (4). There are a large 
number of special cases which arise when two or more of the eigenvalues 
are equal. For  definiteness, we order the eigenvalues 21 >~ 22 ~> 23/> 24 ~>0. 
The various possibilities are set out in Table I. For  brevity we put 
G = ~//(4). 

If 24 = 0, we have the same classification except that the last line is 
omitted as it no longer corresponds to a state. The dimensions of the 
associated flag manifolds are unchanged, but the dimension of the eigen- 
value space, and hence the submanifold dimension, decreases by one. The 
manifold of pure states is ~ ,  which is six-dimensional. As these are the 
extremal points of g, they generate the whole of d ° by taking convex 
combinations. The pure states form a very small manifold, and yet they are 
able to generate all the states. 

There are a number of undefined concepts which enter into this table, 
and they will now be explained. 

Stability Groups. If U' commutes with A, then U'AU'*=A,  and 
the set of all such elements will form a subgroup H A c ~d(4) which is the 
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Table L 

Eigenvalues 

Dimension Dimension Dimension 
Stability Flag of of of 
group manifold flag eigenvalue sub- 

H G/H manifold space manifold 

21 ~7> 22 ~" 23 > 24 ~> 0 (Off, (1))4 7123 12 3 15 
21=22>23>24>0  q/(2) X (q/(1)) z ~23 lO 2 12 
21 ~ 22 =/~32> )~4 2> 0 ~2((1 ) x °g(2) x ql(l) IZ13 10 2 12 
2 I > 2 2 > 2 3 = 2 4  > 0  {0//(1))2 X ~'( 2 ) Y12 10 2 12 
21>22=23=24>0  q/(1) X ~#(3) 7 t 6 1 7 
2a = 22 > 23 = 24 > 0 a/g(2) X ~(2) lZ2 8 1 9 
21=22=23>24>0  a//13) X '4/(1) £3 6 1 7 
21 = 22 = 23 = 24 > 0 q~(4) 1- 0 0 0 0 

s t ab i l i ty  g r o u p  of  A. F o r  example ,  for  A:  21 > 22 > 23 > 24, HA will be the  
set of  d i a g o n a l  ma t r i ces :  

I ei°~ j 
e i02 

e~03 , wh ich  is (~?/(t))4 

e io4 

If  A:  "~1 = 22 • J~3 = 24, H 4  is the  g r o u p  of  ma t r i ce s  

0#(2) ' ~ ( 2 ) ] '  o r  ~k'(2) x ~ ( 2 )  

The  o the r s  are  s imi l a r ly  der ived .  
So the d i s t inc t  PA c o r r e s p o n d i n g  to  a g iven A are  given by p = UAU*, 

where  UeG/H~ a n d  the set {PA} is h o m e o m o r p h i c  to  the h o m o g e n e o u s  
space  G/HA, As all  the  HA are  b l o c k  d i a g o n a l ,  they  will  leave i n v a r i a n t  a 
nes t ed  sequence  of  c o m p l e x  subspaces  Vkl c Vk2 c - ' -  c V~e.~ c V_~ C 4. The  
va lues  of  the  d i m e n s i o n s  k t ,  k2 .... a re  l i s ted  in  T a b l e  II .  

Table IL 

Case (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) 

Dimensions (1, 2, 3) (2, 3) (1, 3) (1, 2) 1 2 3 0 
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The set of subspaces Vk~ ~ Vk2... with fixed (kl, k2,..., kj.,) is called a 
flag manifold ~k~..,kdA' and they have complex dimension 

aM 
dim c It= 2 k j (k j+l -k ) ) ,  (ka,+l =n,  dimn I : = 2 d i m  c ~) 

j=~ l  

This explains the notation in the third column of Table I, and how the 
numbers in the fourth are calculated. The special case d 3 = 1 is called a 
Grassmann manifold, the space of linear subspaces of dimension k I . It is 
a complex projective space which can be canonically embedded into the 
complex projective space CP  N, where N - / , , ~  1. For n = 4 ,  the only 

- -  ~ , k l ]  - -  

additional case (because k~ = n - k ~  is the same manifold as kj)  is iF 2, 
when k~ = 2, N =  5 and the embedding is proper. This is the well-known 
case first analyzed by Grassmann, and is fundamental in twistor theory. All 
flag manifolds can be realised as projective spaces, and, as is obvious in this 
context, are all compact. The case where kj+ I - k j  = 1Vj is called complete, 
full, or standard. 

The eigenvalues 2~ are restricted by X 4i=1 2~= t, 2~>~0 and span a 
4-simplex A~, which is generated by the extremal points, e' 1 = (1, 0, 0, 0), 
e ; =  (0,1, 0, 0), e; = (0, 0,1, 0), e ; =  (0, 0, 0,1), so that A~--Y~=~Le~. 
Because the symmetric group $4 c #/(4), there will be double counting 
in the sets {PA} unless {2;} are ordered as in Table I. So we should 
restrict ourselves to the 4-simplex A4 generated by the extremal points 
e~ = (1, 0, 0, 0), e2 = (1/2,  1/2, 0, 0), e3 = ( t /3 ,  1/3, 1/3, 0),  e4 = (1/4, 1/4, 
1/4, 1/4), i.e.. A4 = 524= ~ c~e~ with 524 • i =  1 ~ i  = 1, ~i i> 0. Then we have 

22 = 1/2 1/2 c~2 (t5) 
23 /1 /3  1/3 1/3 c~ 3 

24 11/4 1/4 1/4 1/4 0~ 4 

The boundaries c?d4 of A4 are obtained by putting up to three of the 
c~, equal to zero, thereby giving the eight regions of Table I, together with 
the seven boundary regions obtained by putting 24 = 0. We can summarize 
the foregoing discussion in the statement 

Theorem 1. The state space ~ can be written as a disjoint union 

= ( 3  4 X ~ 1 2 3 )  k_) (C~A 4 X ~'~)  

where the ~A 4 are obtained by putting one or more ~i= 0 and ~:~ are the 
corresponding flag manifolds listed in Table I. 

825/23/2-4 
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From the polar decomposition for any matrix Ge GL(4, C ) =  G C, i.e., 
G=AU with Ueq/(4), A positive definite, we can infer that the set of all 
positive-definite matrices is given by 

{A} =G,,/G (16) 

However, the condition Tr A = 1 has still to be imposed. 
In terms of physics, the regions d 4 and ~3A4 describe the various 

experimentally possible mixtures of spin states, whereas the flag manifolds 
describe the different observer situations. 

The mathematics of flag manifolds contains a very beautiful structure 
theory which will now be outlined, although at present it is not clear to us 
what the physical significance of this decomposition is. In order to do this, 
it is necessary to work with Gc rather than G although it is the latter 
which is physically relevant. Instead of the diagonal and block-diagonal 
subgroups H, the appropriate complexifications Hc are the Borel and 
parabolic subgroups. The standard Borel subgroup B is the subgroup of 
upper triangular matrices, general Borel subgroups being obtained from B 
by conjugation within Gc, and it is clear that B also leaves 1:123 invariant, 
so that 

~123 ~ G/(~/(4)) 4 

Accordingly, in studying the properties of Y123, one can just as well work 
with the complex groups. Parabolic subgroups P are subgroups for which 
B c P c G~, and to each P there corresponds a flag manifold from among 
the list given. For example, if P is of the form 

li** oO • o ** il 
then it leaves ~23 invariant, so that now 

1:23 ~ G~/P~ G/q/(2) x (q/(1)) 2 

The key step in the structure analysis of 1:123 (or of any complete flag 
manifold) is the construction of the Bruhat decomposition. This asserts that 

Gc = U BwB (17) 

where W is the Weyl group of the associated Lie algebra. For GL(4, C) it 
is the symmetric group $4. Equation (17) is called a double coset decom- 
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position of Gc and describes a representation of an arbitrary nonsingular 
matrix as a product of two upper triangular matrices with a permutation 
matrix sandwiched between. This decomposition is a disjunct decomposi- 
tion and is nonunique to the extent that if Sw c B is the subgroup for which 
S ~ w c  B, then BSwwB= BwB. So, in order to have a unique decomposi- 
tion, we choose a representative Uw from the left cosets B/Sw, and then 

tion 

c,c= UwwB (18) 

The flag manifold--homogeneous space--has therefore the decomposi- 

Go/B= U R .... B,,,=Vww 
w ~  W 

The sets B w, which are called Bruhat cells, give a partitioning of ~ U 1 2 3 ,  each 
cell being labelled by we W. The elements of W ~  $4 can be ordered by 
a length function l(w), which is the smallest integer such that w can be 
written as a product of the generating reflections (12) and (23). In $4, l(w) 
ranges from 0, the identity, to 6, the element (14)(23). Then it can be 
shown that B w - C  l(w), i.e., complex dim B w = l(w). Schubert cells are the 
closure of Bruhat cells and include all the lower order ones: 

/~w = U B~ (19) 
W ~ ~(  W 

This sequence of Bruhat cells generalizes the decomposition of the 
projective space CP' :  

CP'= 0 C~ 

with the important distinction that while the latter is a chain decomposi- 
tion, (19) is a lattice decomposition, there being in general several cells for 
each l(w). 

The smaller flag manifolds have a similar decomposition. To each 
parabolic subgroup Po there corresponds a subgroup Wo c W of the Weyl 
group such that 

Po= BWo B (20) 

and, as a consequence, (18) is replaced by 

= U uwwPo (21) 
r*' E W 0 
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where W°= Wo\W is the right coset with respect to Wo. The ensuing 
Bruhat decomposition is obtained by collapsing together Bruhat cells 
which lie in the same right Wo coset. 

The Schubert cells therefore correspond physically to an increasing 
range of observer possibilities, with the highest cell having the same 
dimension as the corresponding flag manifold. However, because this 
decomposition is made using Gc, rather than G, a simple interpretation has 
not yet been found. 

3. P R O D U C T  SPACE--E(C 2) x E(C 2) 

If the system is prepared so that there is no correlation between the 
two spins, the density matrix p can be written as a direct product 
p =pX x p~i. This means that (10) is replaced by 

p = (11 + b I. a~)/2 x (1 ~l + b n" o-II)/2 (22) 

The manifold of pure states is then the product .f2X~jC~2 and has 
dimensions 4. The state space E(C 2) × E(C 2) is the convex hull. 

It might be thought, intuitively, that this state space is of lower dimen- 
sion than E(C4), but surprisingly it is not. This is because a convex com- 
bination of two product states is not a product state except when there is 
a common factor. Although it is difficult to determine the shape of 
E(C 2) x E(C2), its dimensionality can be determined from the following 
argument. Consider the set of atI vectors whose endpoints lie in the set of 
pure states . ¢ (C :x  Cz). These will span a linear subspace P of N16, and 
dim ~ ~ ( C 2 x  C 2) = dim P. A simple calculation shows that dim P =  15, 
which is the same as dim E(C4). So E(C 2) × E(C 2) will be a proper subset 
of E(C4), of nonzero measure, It is certainly proper because it does not 
contain any pure states which are not product states, but it is a nontrivial 
subset. 

4. EXTENSION TO E(C") 

All that has been said about E(C 4) extends with little difficulty to 

E(C"). It is a convex subset of the (n : -1) -d imensional  ball B ( x ~ - 1 ) / n )  
touching at the pure states, but also having boundary points which are 
strictly inside t3. The pure states are described by the manifold 

0:, = ~(n)/Og(1) x ~'(n - 1) ~ C P " -  t (23) 
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This is the manifold of Majorana and Penrose described in Section 2, 
but it is now part of a more general theory, f~ has complex dimension 
( n -  1), and so has real dimension 2 ( n -  1). All of its points are extremal 
points whose convex hull is E(C=). 

Table I can be appropriately extended to include all the flag manifolds 
IZk~k2...kda, describing the observers, and the n-simplices A~, together with 
their boundaries, represent the physical state of the system. Each of the flag 
manifolds can be decomposed into Bruhat and Schubert cells following the 
Bruhat ordering l(w) over the Weyl group. 

It is interesting to note that the type of analysis of the structure of p 
using the diagonalization equation p = UA U* was used by von Neumann 
and Wigner (5~ in their analysis of noncrossing levels in molecular physics, 
with the difference that there p was replaced by the Hamiltonian H and so 
conditions of positive definiteness and unit trace were not imposed. 

5. TOPOLOGY OF INTUITIONIST QUANTUM MECHANICS 

In Ref. 1 it was shewn that the set of neighborhoods 

A/'(p, P, e,)= {at (Tr(a - p )  P ) <  ~} 

where P is an arbitrary projection operator, provides 
neighborhoods for the weak-*topology on the state space g. 

A sub-basis of neighborhoods is the set 0(P, e): 

(9(P, e) = {p ~ g t Tr(pP) > 1 - e} 

From (1) we can write 

with x2= 1. Then 

P =  (1 + x . a ) / 2  

1 - e  < Tr pP, ,~a .x  > t -  2e 

(24) 

a basis of 

(25) 

(26) 

the same A is obtained if U belongs to the double coset q/ ' \q/(4)/~", where 
U~q/ '  if U*PU=P, and UeO# " if UAU*=A. So, for example, i f P  is the 

Tr pP = Tr( UA U'P) 

So for given P, p e (9(P, e) iff a ties in the polar cap of the sphere. 
Not surprisingly, when we look at E(C 4) it is not possible to say as 

much. However, a number of points can be made. The first is to note that 
from 
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pure state P t , 6 # ' = ~ ( 1 ) x ~ ' ( 3 ) ,  and ~/" belongs to the stability group 
appropriate to A. Hence, if p ~ (~, then so do all the points in the orbit of 
p under ql'. 

Next we show that the sets (9(P, e) cover g when {P} are any set of 
four orthogonal pure states. 

Le mma 3. Vp, 3j such that Tr pPj > 1 - e if e > 3/4. 

Proof. Suppose Tr p Pi ~< 1 - eVi. 

Then I=Trp=Trp~4=~Pi=Z 4i=~TrpPi~<4(1-e)<l, a contra- 
diction. These four neighborhoods are not disjoint. 

At present we do not have an explicit algebraic characterization of the 
neighborhoods 6~(P, e) such as is available for E(C2). 

6. CONCLUSION 

Unfortunately, or fortunately, depending on taste, there still remain a 
number of open questions. 

(1) As mentioned in the text the decomposition into Bruhat and 
Schubert cells has not been given an interpretation in terms of observers. 
A possible line of enquiry is to use the Murnaghan (6J factorization of ~#(4) 

U = U34(~3, 06) U23(03, 05) U24(~2, 04) U12(02, 03) UI3(OI, 02) 

X U14(~l, al)D(c51, 6,, 6~3, 54) (27) 

where D(-) is the diagonal matrix and Upq are the 4 x4  matrices with 
(Upq)ij= 1 for i=j, i , j~  p, q and 

l- cos 0 - s i n  0e -i~] 
(Upq)u = Lsin 0e '° cos 0 j for i, j=p, q and (Upq)O = 0 otherwise 

This is a left coset decomposition with respect to (0//(1))4 and possibly 
gives an explicit expression for Bw. 

(2) The neighborhoods (9(P, e) for general projectors need more 
explicit characterization. 

(3) As the equation for the boundary, det p = 0 ,  is a quartic polyno- 
mial in sixteen variables, constrained by the linear equation Tr p--1,  it 
cannot be directly visualized but two-dimensional sections of it can, and 
are readily amenable to computer graphics. 
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It  would not be possible to conclude this paper without paying a tri- 
bute to the wide and penetrating contributions which Asim Barut, in whose 
honor this issue is prepared, has made to physics. Not  only has he done 
outstanding work in the mainstream of theoretical ideas, but he has also 
been prepared to open or reopen less fashionable but just as interesting 
areas in a definitive way. 
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