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MANIFOLDS

Manifolds are generalizations of our familiar ideas about curves and surfaces to
arbitrary dimensional objects. A curve in three-dimensional Euclidean space is
parametrized locally by a single number t as (x(t), y(t), z(t)), while two numbers
u and v parametrize a surface as (x(u, v), y(u, v), z(u, v)). A curve and a surface
are considered locally homeomorphic to � and �

2 , respectively. A manifold,
in general, is a topological space which is homeomorphic to �m locally; it may
be different from �

m globally. The local homeomorphism enables us to give
each point in a manifold a set of m numbers called the (local) coordinate. If a
manifold is not homeomorphic to �m globally, we have to introduce several local
coordinates. Then it is possible that a single point has two or more coordinates.
We require that the transition from one coordinate to the other be smooth. As
we will see later, this enables us to develop the usual calculus on a manifold.
Just as topology is based on continuity, so the theory of manifolds is based on
smoothness.

Useful references on this subject are Crampin and Pirani (1986), Matsushima
(1972), Schutz (1980) and Warner (1983). Chapter 2 and appendices B and C of
Wald (1984) are also recommended. Flanders (1963) is a beautiful introduction
to differential forms. Sattinger and Weaver (1986) deals with Lie groups and Lie
algebras and contains many applications to problems in physics.

5.1 Manifolds

5.1.1 Heuristic introduction

To clarify these points, consider the usual sphere of unit radius in �
3 . We

parametrize the surface of S2, among other possibilities, by two coordinate
systems—polar coordinates and stereographic coordinates. Polar coordinates θ
and φ are usually defined by (figure 5.1)

x = sin θ cosφ y = sin θ sin φ z = cos θ, (5.1)

where φ runs from 0 to 2π and θ from 0 to π . They may be inverted on the sphere
to yield

θ = tan−1

√
x2 + y2

z
φ = tan−1 y

x
. (5.2)
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170 MANIFOLDS

Figure 5.1. Polar coordinates (θ, φ) and stereographic coordinates (X,Y ) of a point P on
the sphere S2.

Stereographic coordinates, however, are defined by the projection from the North
Pole onto the equatorial plane as in figure 5.1. First, join the North Pole (0, 0, 1)
to the point P(x, y, z) on the sphere and then continue in a straight line to
the equatorial plane z = 0 to intersect at Q(X,Y, 0). Then X and Y are the
stereographic coordinates of P . We find

X = x

1− z
Y = y

1− z
. (5.3)

The two coordinate systems are related as

X = cot 1
2θ cosφ Y = cot 1

2θ sin φ. (5.4)

Of course, other systems, polar coordinates with different polar axes or
projections from different points on S2, could be used. The coordinates on the
sphere may be kept arbitrary until some specific calculation is to be carried out.
[The longitude is historically measured from Greenwich. However, there is no
reason why it cannot be measured from New York or Kyoto.] This arbitrariness
of the coordinate choice underlies the theory of manifolds: all coordinate systems
are equally good. It is also in harmony with the basic principle of physics: a
physical system behaves in the same way whatever coordinates we use to describe
it.
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Another point which can be seen from this example is that no coordinate
system may be usable everywhere at once. Let us look at the polar coordinates
on S2. Take the equator (θ = 1

2π) for definiteness. If we let φ range from 0 to
2π , then it changes continuously as we go round the equator until we get all the
way to φ = 2π . There the φ-coordinate has a discontinuity from 2π to 0 and
nearby points have quite different φ-values. Alternatively we could continue φ
through 2π . Then we will encounter another difficulty: at each point we must
have infinitely many φ-values, differing from one another by an integral multiple
of 2π . A further difficulty arises at the poles, where φ is not determined at all.
[An explorer on the Pole is in a state of timelessness since time is defined by the
longitude.] Stereographic coordinates also have difficulties at the North Pole or
at any projection point that is not projected to a point on the equatorial plane; and
nearby points close to the Pole have widely different stereographic coordinates.

Thus, we cannot label the points on the sphere with a single coordinate
system so that both of the following conditions are satisfied.

(i) Nearby points always have nearby coordinates.
(ii) Every point has unique coordinates.

Note, however, that there are infinitely many ways to introduce coordinates that
satisfy these requirements on a part of S2. We may take advantage of this fact to
define coordinates on S2: introduce two or more overlapping coordinate systems,
each covering a part of the sphere whose points are to be labelled so that the
following conditions hold.

(i′) Nearby points have nearby coordinatcs in at least one coordinate system.
(ii′) Every point has unique coordinates in each system that contains it.

For example, we may introduce two stereographic coordinates on S2, one a
projection from the North Pole, the other from the South Pole. Are these
conditions (i′) and (ii′) enough to develop sensible theories of the manifold? In
fact, we need an extra condition on the coordinate systems.

(iii) If two coordinate systems overlap, they are related to each other in a
sufficiently smooth way.

Without this condition, a differentiable function in one coordinate system
may not be differentiable in the other system.

5.1.2 Definitions

Definition 5.1. M is an m-dimensional differentiable manifold if

(i) M is a topological space;
(ii) M is provided with a family of pairs {(Ui , ϕi )};
(iii) {Ui } is a family of open sets which covers M , that is, ∪i Ui = M . ϕi is a
homeomorphism from Ui onto an open subset U ′

i of �m (figure 5.2); and
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Figure 5.2. A homeomorphism ϕi maps Ui onto an open subset U ′i ⊂ �
m , providing

coordinates to a point p ∈ Ui . If Ui ∩U j �= ∅, the transition from one coordinate system
to another is smooth.

(iv) given Ui and U j such that Ui ∩ U j �= ∅, the map ψi j = ϕi ◦ ϕ−1
j from

ϕ j (Ui ∩U j ) to ϕi (Ui ∩U j ) is infinitely differentiable.

The pair (Ui , ϕi ) is called a chart while the whole family {(Ui , ϕi )} is
called, for obvious reasons, an atlas. The subset Ui is called the coordinate
neighbourhood while ϕi is the coordinate function or, simply, the coordinate.
The homeomorphism ϕi is represented by m functions {x1(p), . . . , xm(p)}. The
set {xµ(p)} is also called the coordinate. A point p ∈ M exists independently of
its coordinates; it is up to us how we assign coordinates to a point. We sometimes
employ the rather sloppy notation x to denote a point whose coordinates are
{x1, . . . , xm}, unless several coordinate systems are in use. From (ii) and (iii), M
is locally Euclidean. In each coordinate neighbourhood Ui , M looks like an open
subset of �m whose element is {x1, . . . , xm}. Note that we do not require that M
be �m globally. We are living on the earth whose surface is S2, which does not
look like �2 globally. However, it looks like an open subset of �2 locally. Who
can tell that we live on the sphere by just looking at a map of London, which, of
course, looks like a part of �2 ?1

1 Strictly speaking the distance between two longitudes in the northern part of the city is slightly



5.1 MANIFOLDS 173

If Ui and U j overlap, two coordinate systems are assigned to a point in
Ui ∩ U j . Axiom (iv) asserts that the transition from one coordinate system to
another be smooth (C∞). The map ϕi assigns m coordinate values xµ (1 ≤ µ ≤
m) to a point p ∈ Ui ∩ U j , while ϕ j assigns yν (1 ≤ ν ≤ m) to the same
point and the transition from y to x , xµ = xµ(y), is given by m functions of m
variables. The coordinate transformation functions xµ = xµ(y) are the explicit
form of the map ψ j i = ϕ j ◦ ϕ−1

i . Thus, the differentiability has been defined
in the usual sense of calculus: the coordinate transformation is differentiable if
each function xµ(y) is differentiable with respect to each yν . We may restrict
ourselves to the differentiability up to kth order (Ck). However, this does not
bring about any interesting conclusions. We simply require, instead, that the
coordinate transformations be infinitely differentiable, that is, of class C∞. Now
coordinates have been assigned to M in such a way that if we move over M in
whatever fashion, the coordinates we use vary in a smooth manner.

If the union of two atlases {(Ui , ϕi )} and {(Vj , ψ j )} is again an atlas, these
two atlases are said to be compatible. The compatibility is an equivalence
relation, the equivalence class of which is called the differentiable structure. It is
also said that mutually compatible atlases define the same differentiable structure
on M .

Before we give examples, we briefly comment on manifolds with
boundaries. So far, we have assumed that the coordinate neighbourhood Ui is
homeomorphic to an open set of �m . In some applications, however, this turns
out to be too restrictive and we need to relax this condition. If a topological space
M is covered by a family of open sets {Ui } each of which is homeomorphic to an
open set of H m ≡ {(x1, . . . , xm) ∈ �m |xm ≥ 0}, M is said to be a manifold with
a boundary, see figure 5.3. The set of points which are mapped to points with
xm = 0 is called the boundary of M , denoted by ∂M . The coordinates of ∂M
may be given by m − 1 numbers (x1, . . . , xm−1, 0). Now we have to be careful
when we define the smoothness. The map ψi j : ϕ j (Ui ∩ U j ) → ϕi (Ui ∩ U j )

is defined on an open set of H m in general, and ψi j is said to be smooth if it is
C∞ in an open set of �m which contains ϕ j (Ui ∩U j ). Readers are encouraged to
use their imagination since our definition is in harmony with our intuitive notions
about boundaries. For example, the boundary of the solid ball D3 is the sphere S2

and the boundary of the sphere is an empty set.

5.1.3 Examples

We now give several examples to develop our ideas about manifolds. They are
also of great relevance to physics.

Example 5.1. The Euclidean space �m is the most trivial example, where a single
chart covers the whole space and ϕ may be the identity map.

shorter than that in the southern part and one may suspect that one lives on a curved surface. Of
course, it is the other way around if one lives in a city in the southern hemisphere.
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Figure 5.3. A manifold with a boundary. The point p is on the boundary.

Example 5.2. Let m = 1 and require that M be connected. There are only two
manifolds possible: a real line � and the circle S1. Let us work out an atlas of S1.
For concreteness take the circle x2 + y1 = 1 in the xy-plane. We need at least
two charts. We may take them as in figure 5.4. Define ϕ−1

1 : (0, 2π)→ S1 by

ϕ−1
1 : θ 
→ (cos θ, sin θ) (5.5a)

whose image is S1 − {(1, 0)}. Define also ψ−1
2 : (−π, π)→ S1 by

ϕ−1
2 : θ 
→ (cos θ, sin θ) (5.5b)

whose image is S1 − {(−1, 0)}. Clearly ϕ−1
1 and ϕ−1

2 are invertible and all the
maps ϕ1, ϕ2, ϕ

−1
1 and ϕ−1

2 are continuous. Thus, ϕ1 and ϕ2 are homeomorphisms.
Verify that the maps ψ12 = ϕ1 ◦ ϕ−1

2 and ψ21 = ϕ2 ◦ ϕ−1
1 are smooth.

Example 5.3. The n-dimensional sphere Sn is a differentiable manifold. It is
realized in �n+1 as

n∑
i=0

(xi )2 = 1. (5.6)

Let us introduce the coordinate neighbourhoods

Ui+ ≡ {(x0, x1, . . . , xn) ∈ Sn |xi > 0} (5.7a)

Ui− ≡ {(x0, x1, . . . , xn) ∈ Sn |xi < 0}. (5.7b)
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Figure 5.4. Two charts of a circle S1.

Define the coordinate map ϕi+ : Ui+ → �
n by

ϕi+(x0, . . . , xn) = (x0, . . . , xi−1, xi+1, . . . , xn) (5.8a)

and ϕi− : Ui− → �
n by

ϕi−(x0, . . . , xn) = (x0, . . . , xi−1, xi+1, . . . , xn). (5.8b)

Note that the domains of ϕi+ and ϕi− are different. ϕi± are the projections of the
hemispheres Ui± to the plane xi = 0. The transition functions are easily obtained
from (5.8). Take S2 as an example. The coordinate neighbourhoods are Ux±,Uy±
and Uz±. The transition function ψy−x+ ≡ ϕy− ◦ ϕ−1

x+ is given by

ψy−x+ : (y, z) 
→
(√

1− y2 − z2, z

)
(5.9)

which is infinitely differentiable on Ux+ ∩Uy−.

Exercise 5.1. At the beginning of this chapter, we introduced the stereographic
coordinates on S2. We may equally define the stereographic coordinates projected
from points other than the North Pole. For example, the stereographic coordinates
(U, V ) of a point in S2 − {South Pole} projected from the South Pole and (X,Y )
for a point in S2−{North Pole} projected from the North Pole are shown in figure
5.5. Show that the transition functions between (U, V ) and (X,Y ) are C∞ and
that they define a differentiable structure on M . See also example 8.1.

Example 5.4. The real projective space �Pn is the set of lines through the origin
in �n+1 . If x = (x0, . . . , xn) �= 0, x defines a line through the origin. Note
that y ∈ �

n+1 defines the same line as x if there exists a real number a �= 0
such that y = ax . Introduce an equivalence relation ∼ by x ∼ y if there
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Figure 5.5. Two stereographic coordinate systems on S2. The point P may be projected
from the North Pole N giving (X,Y ) or from the South Pole S giving (U, V ).

exists a ∈ � − {0} such that y = ax . Then �Pn = (�n+1 − {0})/ ∼. The
n + 1 numbers x0, x1, . . . , xn are called the homogeneous coordinates. The
homogeneous coordinates cannot be a good coordinate system, since �Pn is an
n-dimensional manifold (an (n + 1)-dimensional space with a one-dimensional
degree of freedom killed). The charts are defined as follows. First we take the
coordinate neighbourhood Ui as the set of lines with xi �= 0, and then introduce
the inhomogeneous coordinates on Ui by

ξ
j
(i) = x j/xi . (5.10)

The inhomogeneous coordinates

ξ(i) = (ξ0
(i), ξ

1
(i), . . . , ξ

i−1
(i) , ξ

i+1
(i) , . . . , ξ

n
(i))

with ξ i
(i) = 1 omitted, are well defined on Ui since xi �= 0, and furthermore

they are independent of the choice of the representative of the equivalence class
since x j/xi = y j/yi if y = ax . The inhomogeneous coordinate ξ(i) gives the
coordinate map ϕi : Ui → �

n , that is

ϕi : (x0, . . . , xn) 
→ (x0/xi , . . . , xi−1/xi , xi+1/xi , . . . , xn/xi )

where xi/xi = 1 is omitted. For x = (x0, x1, . . . , xn) ∈ Ui ∩ U j we assign
two inhomogeneous coordinates, ξ k

(i) = xk/xi and ξ k
( j ) = xk/x j . The coordinate
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transformation ψi j = ϕi ◦ ϕ−1
j is

ψi j : ξ k
( j ) 
→ ξ k

(i) = (x j/xi )ξ k
( j ). (5.11)

This is a multiplication by x j/xi .
In example 4.12, we defined �Pn as the sphere Sn with antipodal points

identified. This picture is in conformity with the definition here. As a
representative of the equivalence class [x], we may take points |x | = 1 on a line
through the origin. These are points on the unit sphere. Since there are two points
on the intersection of a line with Sn we have to take one of them consistently,
that is nearby lines are represented by nearby points in Sn . This amounts to
taking the hemisphere. Note, however, that the antipodal points on the boundary
(the equator of Sn) are identified by definition, (x0, . . . , xn) ∼ −(x0, . . . , xn).
This ‘hemisphere’ is homeomorphic to the ball Dn with antipodal points on the
boundary Sn−1 identified.

Example 5.5. A straightforward generalization of �Pn is the Grassmann
manifold. An element of �Pn is a one-dimensional subspace in �

n+1 . The
Grassmann manifold Gk,n(�) is the set of k-dimensional planes in �n . Note that
G1,n+1(�) is nothing but �Pn . The manifold structure of Gk,n(�) is defined in a
manner similar to that of �Pn .

Let Mk,n(�) be the set of k × n matrices of rank k (k ≤ n). Take A =
(ai j ) ∈ Mk,n(�) and define k vectors ai (1 ≤ i ≤ k) in �n by ai = (ai j ). Since
rank A = k, k vectors ai are linearly independent and span a k-dimensional plane
in �n . Note, however, that there are infinitely many matrices in Mk,n(�) that yield
the same k-plane. Take g ∈ GL(k,�) and consider a matrix Ā = g A ∈ Mk,n(�).
Ā defines the same k-plane as A, since g simply rotates the basis within the k-
plane. Introduce an equivalence relation∼ by Ā ∼ A if there exists g ∈ GL(k,�)
such that Ā = g A. We identify Gk,n(�) with the coset space Mk,n (�)/GL(k,�).

Let us find the charts of Gk,n(�). Take A ∈ Mk,n (�) and let {A1, . . . , Al},
l = (n

k

)
, be the collection of all k × k minors of A. Since rank A = k, there exists

some Aα (1 ≤ α ≤ l) such that det A �= 0. For example, let us assume the minor
A1 made of the first k columns has non-vanishing determinant,

A = (A1, Ã1) (5.12)

where Ã1 is a k × (n − k) matrix. Let us take the representative of the class to
which A belongs to be

A−1
1 · A = (Ik, A−1

1 · Ã1) (5.13)

where Ik is the k × k unit matrix. Note that A−1
1 always exists since det A1 �= 0.

Thus, the real degrees of freedom are given by the entries of the k × (n − k)
matrix A−1

1 · Ã1. We denote this subset of Gk,n(�) by U1. U1 is a coordinate
neighbourhood whose coordinates are given by k(n − k) entries of A−1

1 · Ã1.
Since U1 is homeomorphic to �k(n−k) we find that

dim Gk,n(�) = k(n − k). (5.14)
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In the case where det Aα �= 0, where Aα is composed of the columns
(i1, i2, . . . , ik), we multiply A−1

α to obtain the representative

column→ i1 i2 . . . ik

A−1
α · A =


. . . 1 . . . 0 . . . . . . 0 . . .

. . . 0 . . . 1 . . . . . . 0 . . .

. . . . . . . . . . . . . . . . . .

. . . 0 . . . 0 . . . . . . 1 . . .

 (5.15)

where the entries not written explicitly form a k × (n− k)matrix. We denote this
subset of Mk,n (�) with det Aα �= 0 by Uα . The entries of the k × (n − k) matrix
are the coordinates of Uα.

The relation between the projective space and the Grassmann manifold is
evident. An element of M1,n+1(�) is a vector A = (x0, x1, . . . , xn). Since the
αth minor Aα of A is a number xα, the condition det Aα �= 0 becomes xα �= 0.
The representative (5.15) is just the inhomogeneous coordinate

(xα)−1(x0, x1, . . . , xα, . . . , xn)

= (x0/xα, x1/xα, . . . , xα/xα = 1, . . . , xn/xα).

Let M be an m-dimensional manifold with an atlas {(Ui , ϕi )} and N be an n-
dimensional manifold with {(Vj , ψ j )}. A product manifold M×N is an (m+n)-
dimensional manifold whose atlas is {(Ui × Vj ), (ϕi , ψ j )}. A point in M × N
is written as (p, q), p ∈ M, q ∈ N , and the coordinate function (ϕi , ψ j ) acts on
(p, q) to yield (ϕi (p), ψ j (p)) ∈ �m+n . The reader should verify that a product
manifold indeed satisfies the axioms of definition 5.1.

Example 5.6. The torus T 2 is a product manifold of two circles, T 2 = S1× S1. If
we denote the polar angle of each circle as θi mod 2π (i = 1, 2), the coordinates
of T 2 are (θ1, θ2). Since each S1 is embedded in �2 , T 2 may be embedded in �4 .
We often imagine T 2 as the surface of a doughnut in �3 , in which case, however,
we inevitably have to introduce bending of the surface. This is an extrinsic feature
brought about by the ‘embedding’. When we say ‘a torus is a flat manifold’, we
refer to the flat surface embedded in �4 . See definition 5.3 for further details.

We may also consider a direct product of n circles,

T n = S1 × S1 × · · · × S1︸ ︷︷ ︸
n

.

Clearly T n is an n-dimensional manifold with the coordinates (θ1, θ2, . . . , θn)

mod2π . This may be regarded as an n-cube whose opposite faces are identified,
see figure 2.4 for n = 2.

5.2 The calculus on manifolds

The significance of differentiable manifolds resides in the fact that we may use
the usual calculus developed in �n . Smoothness of the coordinate transformations
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ϕ

Figure 5.6. A map f : M → N has a coordinate presentation ψ ◦ f ◦ ϕ−1 : �m → �
n .

ensures that the calculus is independent of the coordinates chosen.

5.2.1 Differentiable maps

Let f : M → N be a map from an m-dimensional manifold M to an n-
dimensional manifold N . A point p ∈ M is mapped to a point f (p) ∈ N , namely
f : p 
→ f (p), see figure 5.6. Take a chart (U, ϕ) on M and (V , ψ) on N , where
p ∈ U and f (p) ∈ V . Then f has the following coordinate presentation:

ψ ◦ f ◦ ϕ−1 : �m → �
n . (5.16)

If we write ϕ(p) = {xµ} and ψ( f (p)) = {yα}, ψ ◦ f ◦ ϕ−1 is just the usual
vector-valued function y = ψ ◦ f ◦ ϕ−1(x) of m variables. We sometimes use
(in fact, abuse!) the notation y = f (x) or yα = f α(xµ), when we know which
coordinate systems on M and N are in use. If y = ψ ◦ f ◦ ϕ−1(x), or simply
yα = f α(xµ), is C∞ with respect to each xµ, f is said to be differentiable at
p or at x = ϕ(p). Differentiable maps are also said to be smooth. Note that
we require infinite (C∞) differentiability, in harmony with the smoothness of the
transition functions ψi j .

The differentiability of f is independent of the coordinate system. Consider
two overlapping charts (U1, ϕ1) and (U2, ϕ2). Take a point p ∈ U1 ∩ U2, whose
coordinates by ϕ1 are {xµ1 }, while those by ϕ2 are {xν2 }. When expressed in
terms of {xµ1 }, f takes the form ψ ◦ f ◦ ϕ−1

1 , while in {xν2 }, ψ ◦ f ◦ ϕ−1
2 =
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ψ ◦ f ◦ ϕ−1
1 (ϕ1 ◦ ϕ−1

2 ). By definition, ψ12 = ϕ1 ◦ ϕ−1
2 is C∞. In the simpler

expressions, they correspond to y = f (x1) and y = f (x1(x2)). It is clear that
if f (x1) is C∞ with respect to xµ1 and x1(x2) is C∞ with respect to xν2 , then
y = f (x1(x2)) is also C∞ with respect to xν2 .

Exercise 5.2. Show that the differentiability of f is also independent of the chart
in N .

Definition 5.2. Let f : M → N be a homeomorphism andψ and ϕ be coordinate
functions as previously defined. If ψ ◦ f ◦ ϕ−1 is invertible (that is, there exists a
map ϕ ◦ f −1 ◦ ψ−1) and both y = ψ ◦ f ◦ ϕ−1(x) and x = ϕ ◦ f −1 ◦ ψ−1(y)
are C∞, f is called a diffeomorphism and M is said to be diffeomorphic to N
and vice versa, denoted by M ≡ N .

Clearly dim M = dim N if M ≡ N . In chapter 2, we noted that
homeomorphisms classify spaces according to whether it is possible to deform
one space into another continuously. Diffeomorphisms classify spaces into
equivalence classes according to whether it is possible to deform one space to
another smoothly. Two diffeomorphic spaces are regarded as the same manifold.
Clearly a diffeomorphism is a homeomorphism. What about the converse? Is
a homeomorphism a diffeomorphism? In the previous section, we defined the
differentiable structure as an equivalence class of atlases. Is it possible for a
topological space to carry many differentiable structures? It is rather difficult
to give examples of ‘diffeomorphically inequivalent homeomorphisms’ since it is
known that this is possible only in higher-dimensional spaces (dim M ≥ 4). It
was believed before 1956 that a topological space admits only one differentiable
structure. However, Milnor (1956) pointed out that S7 admits 28 differentiable
structures. A recent striking discovery in mathematics is that�4 admits an infinite
number of differentiable structures. Interested readers should consult Donaldson
(1983) and Freed and Uhlenbeck (1984). Here we assume that a manifold admits
a unique differentiable structure, for simplicity.

The set of diffeomorphisms f : M → M is a group denoted by Diff(M).
Take a point p in a chart (U, ϕ) such that ϕ(p) = xµ(p). Under f ∈ Diff(M),
p is mapped to f (p) whose coordinates are ϕ( f (p)) = yµ( f (p)) (we have
assumed f (p) ∈ U ). Clearly y is a differentiable function of x ; this is an active
point of view to the coordinate transformation. However, if (U, ϕ) and (V , ψ) are
overlapping charts, we have two coordinate values xµ = ϕ(p) and yµ = ψ(p) for
a point p ∈ U ∩ V . The map x 
→ y is differentiable by the assumed smoothness
of the manifold; this reparametrization is a passive point of view to the coordinate
transformation. We also denote the group of reparametrizations by Diff(M).

Now we look at special classes of mappings, namely curves and functions.
An open curve in an m-dimensional manifold M is a map c : (a, b)→ M where
(a, b) is an open interval such that a < 0 < b. We assume that the curve does
not intersect with itself (figure 5.7). The number a (b) may be −∞ (+∞) and
we have included 0 in the interval for later convenience. If a curve is closed, it is



5.2 THE CALCULUS ON MANIFOLDS 181
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ϕ

Figure 5.7. A curve c in M and its coordinate presentation ϕ ◦ c.

regarded as a map c : S1 → M . In both cases, c is locally a map from an open
interval to M . On a chart (U, ϕ), a curve c(t) has the coordinate presentation
x = ϕ ◦ c : � → �

m .
A function f on M is a smooth map from M to �, see figure 5.8. On a chart

(U, ϕ), the coordinate presentation of f is given by f ◦ ϕ−1 : �m → � which is
a real-valued function of m variables. We denote the set of smooth functions on
M by �(M).

5.2.2 Vectors

Now that we have defined maps on a manifold, we are ready to define other
geometrical objects: vectors, dual vectors and tensors. In general, an elementary
picture of a vector as an arrow connecting a point and the origin does not work in
a manifold. [Where is the origin? What is a straight arrow? How do we define a
straight arrow that connects London and Los Angeles on the surface of the Earth?]
On a manifold, a vector is defined to be a tangent vector to a curve in M .

To begin with, let us look at a tangent line to a curve in the xy-plane. If the
curve is differentiable, we may approximate the curve in the vicinity of x0 by

y − y(x0) = a(x − x0) (5.17)

where a = dy/dx |x=x0. The tangent vectors on a manifold M generalize this
tangent line. To define a tangent vector we need a curve c : (a, b) → M and
a function f : M → �, where (a, b) is an open interval containing t = 0, see
figure 5.9. We define the tangent vector at c(0) as a directional derivative of a
function f (c(t)) along the curve c(t) at t = 0. The rate of change of f (c(t)) at
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Figure 5.8. A function f : M → � and its coordinate presentation f ◦ ϕ−1.

t = 0 along the curve is
d f (c(t))

dt

∣∣∣∣
t=0
. (5.18)

In terms of the local coordinate, this becomes

∂ f

∂xµ
dxµ(c(t))

dt

∣∣∣∣
t=0
. (5.19)

[Note the abuse of the notation! The derivative ∂ f/∂xµ really means ∂( f ◦
ϕ−1(x))/∂xµ.] In other words, d f (c(t))/dt at t = 0 is obtained by applying
the differential operator X to f , where

X = Xµ
(
∂

∂xµ

) (
Xµ = dxµ(c(t))

dt

∣∣∣∣
t=0

)
(5.20)

that is,
d f (c(t))

dt

∣∣∣∣
t=0
= Xµ

(
∂ f

∂xµ

)
≡ X[ f ]. (5.21)

Here the last equality defines X[ f ]. It is X = Xµ∂/∂xµ which we now define as
the tangent vector to M at p = c(0) along the direction given by the curve c(t).

Example 5.7. If X is applied to the coordinate functions ϕ(c(t)) = xµ(t), we
have

X[xµ] =
(

dxν

dt

)(
∂xµ

∂xν

)
= dxµ(t)

dt

∣∣∣∣
t=0
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Figure 5.9. A curve c and a function f define a tangent vector along the curve in terms of
the directional derivative.

which is the µth component of the velocity vector if t is understood as time.

To be more mathematical, we introduce an equivalence class of curves in M .
If two curves c1(t) and c2(t) satisfy

(i) c1(0) = c2(0) = p

(ii)
dxµ(c1(t))

dt

∣∣∣∣
t=0
= dxµ(c2(t))

dt

∣∣∣∣
t=0

c1(t) and c2(t) yield the same differential operator X at p, in which case we define
c1(t) ∼ c2(t). Clearly ∼ is an equivalence relation and defines the equivalence
classes. We identify the tangent vector X with the equivalence class of curves

[c(t)] =
{

c̃(t)

∣∣∣∣̃c(0) = c(0) and
dxµ(̃c(t))

dt

∣∣∣∣
t=0
= dxµ(c(t))

dt

∣∣∣∣
t=0

}
(5.22)

rather than a curve itself.
All the equivalence classes of curves at p ∈ M , namely all the tangent

vectors at p, form a vector space called the tangent space of M at p, denoted
by Tp M . To analyse Tp M , we may use the theory of vector spaces developed in
section 2.2. Evidently, eµ = ∂/∂xµ (1 ≤ µ ≤ m) are the basis vectors of Tp M ,
see (5.20), and dim Tp M = dim M . The basis {eµ} is called the coordinate
basis. If a vector V ∈ Tp M is written as V = V µeµ, the numbers V µ are called
the components of V with respect to eµ. By construction, it is obvious that a
vector X exists without specifying the coordinate, see (5.21). The assignment of
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the coordinate is simply for our convenience. This coordinate independence of
a vector enables us to find the transformation property of the components of the
vector. Let p ∈ Ui ∩U j and x = ϕi (p), y = ϕ j (p). We have two expressions for
X ∈ Tp M ,

X = Xµ
∂

∂xµ
= X̃µ

∂

∂yµ
.

This shows that Xµ and X̃µ are related as

X̃µ = Xν
∂yµ

∂xν
. (5.23)

Note again that the components of the vector transform in such a way that the
vector itself is left invariant.

The basis of Tp M need not be {eµ}, and we may think of the linear
combinations êi ≡ Ai

µeµ, where A = (Ai
µ) ∈ GL(m,�). The basis {êi } is

known as the non-coordinate basis.

5.2.3 One-forms

Since Tp M is a vector space, there exists a dual vector space to Tp M , whose
element is a linear function from Tp M to �, see section 2.2. The dual space is
called the cotangent space at p, denoted by T ∗p M . An element ω : Tp M → � of
T ∗p M is called a dual vector, cotangent vector or, in the context of differential
forms, a one-form. The simplest example of a one-form is the differential d f of
a function f ∈ �(M). The action of a vector V on f is V [ f ] = Vµ∂ f /∂xµ ∈ �.
Then the action of d f ∈ T ∗p M on V ∈ Tp M is defined by

〈d f, V 〉 ≡ V [ f ] = V µ
∂ f

∂xµ
∈ �. (5.24)

Clearly 〈d f, V 〉 is �-linear in both V and f .
Noting that d f is expressed in terms of the coordinate x = ϕ(p) as

d f = (∂ f/∂xµ)dxµ, it is natural to regard {dxµ} as a basis of T ∗p M . Moreover,
this is a dual basis, since 〈

dxµ,
∂

∂xµ

〉
= ∂xν

∂xµ
= δνµ. (5.25)

An arbitrary one-form ω is written as

ω = ωµ dxµ (5.26)

where the ωµ are the components of ω. Take a vector V = V µ∂/∂xµ and a one-
form ω = ωµdxµ. The inner product 〈 , 〉 : T ∗p M × Tp M → � is defined
by

〈ω, V 〉 = ωµV ν
〈
dxµ,

∂

∂xν

〉
= ωµV νδµν = ωµV µ. (5.27)
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Note that the inner product is defined between a vector and a dual vector and not
between two vectors or two dual vectors.

Since ω is defined without reference to any coordinate system, for a point
p ∈ Ui ∩U j , we have

ω = ωµdxµ = ω̃ν dyν

where x = ϕi (p) and y = ϕ j (p). From dyν = (∂yν/∂xµ)dxµ we find that

ω̃ν = ωµ ∂xµ

∂yν
. (5.28)

5.2.4 Tensors

A tensor of type (q, r) is a multilinear object which maps q elements of T ∗p M and

r elements of Tp M to a real number. �q
r,p(M) denotes the set of type (q, r) tensors

at p ∈ M . An element of �q
r,p(M) is written in terms of the bases described earlier

as

T = Tµ1...µq
ν1...νr

∂

∂xµ1
. . .

∂

∂xµq
dxν1 . . . dxνr . (5.29)

Clearly this is a linear function from

⊗q T ∗p M ⊗r Tp M

to �. Let Vi = V µi ∂/∂xµ (1 ≤ i ≤ r) and ωi = ωiµdxµ (1 ≤ i ≤ q). The action
of T on them yields a number

T (ω1, . . . , ωq ; V1, . . . , Vr ) = Tµ1...µq
ν1...νrω1µ1 . . . ωqµq V ν1

1 . . .V νr
r .

In the present notation, the inner product is 〈ω, X〉 = ω(X).

5.2.5 Tensor fields

If a vector is assigned smoothly to each point of M , it is called a vector field
over M . In other words, V is a vector field if V [ f ] ∈ �(M) for any f ∈ �(M).
Clearly each component of a vector field is a smooth function from M to �. The
set of the vector fields on M is denoted as �(M). A vector field X at p ∈ M
is denoted by X |p , which is an element of Tp M . Similarly, we define a tensor
field of type (q, r) by a smooth assignment of an element of �q

r,p(M) at each
point p ∈ M . The set of the tensor fields of type (q, r) on M is denoted by
�

q
r (M). For example, �0

1(M) is the set of the dual vector fields, which is also
denoted by �1(M) in the context of differential forms, see section 5.4. Similarly,
�

0
0(M) = �(M) is denoted by �0(M) in the same context.
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Figure 5.10. A map f : M → N induces the differential map f∗ : Tp M → T f (p)N .

5.2.6 Induced maps

A smooth map f : M → N naturally induces a map f∗ called the differential
map (figure 5.10),

f∗ : Tp M → T f (p)N. (5.30)

The explicit form of f∗ is obtained by the definition of a tangent vector as a
directional derivative along a curve. If g ∈ �(N), then g ◦ f ∈ �(M). A vector
V ∈ Tp M acts on g ◦ f to give a number V [g ◦ f ]. Now we define f∗V ∈ T f (p)N
by

( f∗V )[g] ≡ V [g ◦ f ] (5.31)

or, in terms of charts (U, ϕ) on M and (V .ψ) on N ,

( f∗V )[g ◦ ψ−1(y)] ≡ V [g ◦ f ◦ ϕ−1(x)] (5.32)

where x = ϕ(p) and y = ψ( f (p)). Let V = V µ∂/∂xµ and f∗V = Wα∂/∂yα .
Then (5.32) yields

Wα ∂

∂yα
[g ◦ ψ−1(y)] = Vµ

∂

∂xµ
[g ◦ f ◦ ϕ−1(x)].

If we take g = yα, we obtain the relation between Wα and Vµ,

Wα = Vµ
∂

∂xµ
yα(x). (5.33)

Note that the matrix (∂yα/∂xµ) is nothing but the Jacobian of the map f :
M → N . The differential map f∗ is naturally extended to tensors of type (q, 0),
f∗ : �q

0,p(M)→ �
q
0, f (p)(N).

Example 5.8. Let (x1, x2) and (y1, y2, y3) be the coordinates in M and N ,
respectively, and let V = a∂/∂x1 + b∂/∂x2 be a tangent vector at (x1, x2).
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Let f : M → N be a map whose coordinate presentation is y =
(x1, x2,

√
1− (x1)2 − (x2)2). Then

f∗V = V µ
∂yα

∂xµ
∂

∂yα
= a

∂

∂y1
+ b

∂

∂y2
−

(
a

y1

y3
+ b

y2

y3

)
∂

∂y3
.

Exercise 5.3. Let f : M → N and g : N → P . Show that the differential map of
the composite map g ◦ f : M → P is

(g ◦ f )∗ = g∗ ◦ f∗. (5.34)

A map f : M → N also induces a map

f ∗ : T ∗f (p)N → T ∗p M. (5.35)

Note that f∗ goes in the same direction as f , while f ∗ goes backward, hence
the name pullback, see section 2.2. If we take V ∈ Tp M and ω ∈ T ∗f (p)N , the
pullback of ω by f ∗ is defined by

〈 f ∗ω, V 〉 = 〈ω, f∗V 〉. (5.36)

The pullback f ∗ naturally extends to tensors of type (0, r), f ∗ : � 0
r, f (p)(N) →

� 0
r,p(M). The component expression of f ∗ is given by the Jacobian matrix

(∂yα/∂xµ), see exercise 5.4.

Exercise 5.4. Let f : M → N be a smooth map. Show that for ω = ωαdyα ∈
T ∗f (p)N , the induced one-form f ∗ω = ξµ dxµ ∈ T ∗p M has components

ξµ = ωα ∂yα

∂xµ
. (5.37)

Exercise 5.5. Let f and g be as in exercise 5.3. Show that the pullback of the
composite map g ◦ f is

(g ◦ f )∗ = f ∗ ◦ g∗. (5.38)

There is no natural extension of the induced map for a tensor of mixed type.
The extension is only possible if f : M → N is a diffeomorphism, where the
Jacobian of f −1 is also defined.

Exercise 5.6. Let

Tµν
∂

∂xµ
⊗ dxν

be a tensor field of type (1, 1) on M and let f : M → N be a diffeomorphism.
Show that the induced tensor on N is

f∗
(

Tµν
∂

∂xµ
⊗ dxν

)
= Tµν

(
∂yα

∂xµ

)(
∂xν

∂yβ

)
∂

∂yα
⊗ dyβ

where xµ and yα are local coordinates in M and N , respectively.
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Figure 5.11. (a) An immersion f which is not an embedding. (b) An embedding g and
the submanifold g(S1).

5.2.7 Submanifolds

Before we close this section, we define a submanifold of a manifold. The meaning
of embedding is also clarified here.

Definition 5.3. (Immersion, submanifold, embedding) Let f : M → N be a
smooth map and let dim M ≤ dim N .

(a) The map f is called an immersion of M into N if f∗ : Tp M → T f (p)N
is an injection (one to one), that is rank f∗ = dim M .

(b) The map f is called an embedding if f is an injection and an immersion.
The image f (M) is called a submanifold of N . [In practice, f (M) thus
defined is diffeomorphic to M .]

If f is an immersion, f ∗ maps Tp M isomorphically to an m-dimensional
vector subspace of T f (p)N since rank f∗ = dim M . From theorem 2.1, we also
find ker f∗ = {0}. If f is an embedding, M is diffeomorphic to f (M). Examples
will clarify these rather technical points. Consider a map f : S1 → �

2 in figure
5.11(a). It is an immersion since a one-dimensional tangent space of S1 is mapped
by f∗ to a subspace of T f (p)�

2 . The image f (S1) is not a submanifold of�2 since
f is not an injection. The map g : S1 → �

2 in figure 5.11(b) is an embedding and
g(S1) is a submanifold of �2 . Clearly, an embedding is an immersion although
the converse is not necessarily true. In the previous section, we occasionally
mentioned the embedding of Sn into �n+1 . Now this meaning is clear; if Sn is
embedded by f : Sn → �

n+1 then Sn is diffeomorphic to f (Sn).

5.3 Flows and Lie derivatives

Let X be a vector field in M . An integral curve x(t) of X is a curve in M , whose
tangent vector at x(t) is X |x . Given a chart (U, ϕ), this means

dxµ

dt
= Xµ(x(t)) (5.39)
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where xµ(t) is the µth component of ϕ(x(t)) and X = Xµ∂/∂xµ. Note the abuse
of the notation: x is used to denote a point in M as well as its coordinates. [For
later convenience we assume the point x(0) is included in U .] Put in another
way, finding the integral curve of a vector field X is equivalent to solving the
autonomous system of ordinary differential equations (ODEs) (5.39). The initial
condition xµ0 = xµ(0) corresponds to the coordinates of an integral curve at t = 0.
The existence and uniqueness theorem of ODEs guarantees that there is a unique
solution to (5.39), at least locally, with the initial data xµ0 . It may happen that
the integral curve is defined only on a subset of �, in which case we have to
pay attention so that the parameter t does not exceed the given interval. In the
following we assume that t is maximally extended. It is known that if M is a
compact manifold, the integral curve exists for all t ∈ �.

Let σ(t, x0) be an integral curve of X which passes a point x0 at t = 0 and
denote the coordinate by σµ(t, x0). Equation (5.39) then becomes

d

dt
σµ(t, x0) = Xµ(σ(t, x0)) (5.40a)

with the initial condition
σµ(0, x0) = xµ0 . (5.40b)

The map σ : � × M → M is called a flow generated by X ∈ �(M). A flow
satisfies the rule

σ(t, σµ(s, x0)) = σ(t + s, x0) (5.41)

for any s, t ∈ � such that both sides of (5.41) make sense. This can be seen from
the uniqueness of ODEs. In fact, we note that

d

dt
σµ(t, σµ(s, x0)) = Xµ(σ(t, σµ(s, x0)))

σ (0, σ (s, x0)) = σ(s, x0)

and

d

dt
σµ(t + s, x0) = d

d(t + s)
σµ(t + s, x0) = Xµ(σ(t + s, x0))

σ (0+ s, x0) = σ(s, x0).

Thus, both sides of (5.41) satisfy the same ODE and the same initial condition.
From the uniqueness of the solution, they should be the same. We have obtained
the following theorem.

Theorem 5.1. For any point x ∈ M , there exists a differentiable map σ : �×M →
M such that

(i) σ(0, x) = x ;
(ii) t 
→ σ(t, x) is a solution of (5.40a) and (5.40b); and
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(iii) σ(t, σµ(s, x)) = σ(t + s, x).

[Note: We denote the initial point by x instead of x0 to emphasize that σ is a map
� × M → M .]

We may imagine a flow as a (steady) stream flow. If a particle is observed at
a point x at t = 0, it will be found at σ(t, x) at later time t .

Example 5.9. Let M = �
2 and let X ((x, y)) = −y∂/∂x + x∂/∂y be a vector

field in M . It is easy to verify that

σ(t, (x, y)) = (x cos t − y sin t, x sin t + y cos t)

is a flow generated by X . The flow through (x, y) is a circle whose centre is at
the origin. Clearly, σ(t, (x, y)) = (x, y) if t = 2nπ, n ∈ �. If (x, y) = (0, 0),
the flow stays at (0, 0).

Exercise 5.7. Let M = �
2 , and let X = y∂/∂x + x∂/∂y be a vector field in M .

Find the flow generated by X .

5.3.1 One-parameter group of transformations

For fixed t ∈ �, a flow σ(t, x) is a diffeomorphism from M to M , denoted by
σt : M → M . It is important to note that σt is made into a commutative group by
the following rules.

(i) σt (σs(x)) = σt+s(x), that is, σt ◦ σs = σt+s ;
(ii) σ0 = the identity map (= unit element); and
(iii) σ−t = (σt )

−1.

This group is called the one-parameter group of transformations. The
group locally looks like the additive group �, although it may not be isomorphic
to � globally. In fact, in example 5.9, σ2πn+t was the same map as σt and we find
that the one-parameter group is isomorphic to SO(2), the multiplicative group of
2× 2 real matrices of the form(

cos θ − sin θ
sin θ cos θ

)
or U(1), the multiplicative group of complex numbers of unit modulus eiθ .

Under the action of σε , with an infinitesimal ε, we find from (5.40a) and
(5.40b) that a point x whose coordinate is xµ is mapped to

σµε (x) = σµ(ε, x) = xµ + εXµ(x). (5.42)

The vector field X is called, in this context, the infinitesimal generator of the
transformation σt .
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Given a vector field X , the corresponding flow σ is often referred to as the
exponentiation of X and is denoted by

σµ(t, x) = exp(t X)xµ. (5.43)

The name ‘exponentiation’ is justified as we shall see now. Let us take a parameter
t and evaluate the coordinate of a point which is separated from the initial point
x = σ(0, x) by the parameter distance t along the flow σ . The coordinate
corresponding to the point σ(t, x) is

σµ(t, x) = xµ + t
d

ds
σµ(s, x)

∣∣∣∣
s=0
+ t2

2!
(

d

ds

)2

σµ(s, x)

∣∣∣∣∣
s=0

+ · · ·

=
[

1+ t
d

ds
+ t2

2!
(

d

ds

)2

+ · · ·
]
σµ(s, x)

∣∣∣∣∣
s=0

≡ exp

(
t

d

ds

)
σµ(s, x)

∣∣∣∣
s=0
. (5.44)

The last expression can also be written as σµ(t, x) = exp(t X)xµ, as in (5.43).
The flow σ satisfies the following exponential properties.

(i) σ (0, x) = x = exp(0X)x (5.45a)

(ii)
dσ(t, x)

dt
= X exp(t X)x = d

dt
[exp(t X)x] (5.45b)

(iii) σ (t, σ (s, x)) = σ(t, exp(s X)x) = exp(t X) exp(s X)x

= exp{(t + s)X}x = σ(t + s, x). (5.45c)

5.3.2 Lie derivatives

Let σ(t, x) and τ (t, x) be two flows generated by the vector fields X and Y ,

dσµ(s, x)

ds
=Xµ(σ(s, x)) (5.46a)

dτµ(t, x)

dt
=Yµ(τ(t, x)). (5.46b)

Let us evaluate the change of the vector field Y along σ(s, x). To do this, we have
to compare the vector Y at a point x with that at a nearby point x ′ = σε(x),
see figure 5.12. However, we cannot simply take the difference between the
components of Y at two points since they belong to different tangent spaces
Tp M and Tσε(x)M; the naive difference between vectors at different points is
ill defined. To define a sensible derivative, we first map Y |σε(x) to Tx M by
(σ−ε)∗ : Tσε(x)M → Tx M , after which we take a difference between two vectors
(σ−ε)∗ Y |σε(x) and Y |x , both of which are vectors in Tx M . The Lie derivative of
a vector field Y along the flow σ of X is defined by

�X Y = lim
ε→0

1

ε
[(σ−ε)∗Y |σε(x) − Y |x ]. (5.47)
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Figure 5.12. To compare a vector Y |x with Y |σε(x), the latter must be transported back to
x by the differential map (σ−ε)∗.

Exercise 5.8. Show that �X Y is also written as

�X Y = lim
ε→0

1

ε
[Y |x − (σε)∗Y |σ−ε(x)]

= lim
ε→0

1

ε
[Y |σε(x) − (σε)∗Y |x ].

Let (U, ϕ) be a chart with the coordinates x and let X = Xµ∂/∂xµ and
Y = Yµ∂/∂xµ be vector fields defined on U . Then σε(x) has the coordinates
xµ + εXµ(x) and

Y |σε(x) = Yµ(xν + εXν (x))eµ|x+εX

	 [Yµ(x)+ εXµ(x)∂νY
µ(x)]eµ|x+εX

where {eµ} = {∂/∂xµ} is the coordinate basis and ∂ν ≡ ∂/∂xν . If we map this
vector defined at σε(x) to x by (σ−ε)∗, we obtain

[Yµ(x)+ εXλ(x)∂λY
µ(x)]∂µ[xν − εXν(x)]eν |x

= [Yµ(x)+ εXλ(x)∂λY
µ(x)][δνµ − ε∂µXν(x)]eν |x

= Yµ(x)eµ|x + ε[Xµ(x)∂µY ν(x)− Yµ(x)∂µXν (x)]eν|x + O(ε2).

(5.48)

From (5.47) and (5.48), we find that

�X Y = (Xµ∂µY ν − Yµ∂µXν)eν . (5.49a)
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Exercise 5.9. Let X = Xµ∂/∂xµ and Y = Yµ∂/∂xµ be vector fields in M .
Define the Lie bracket [X,Y ] by

[X,Y ] f = X[Y [ f ]] − Y [X[ f ]] (5.50)

where f ∈ �(M). Show that [X,Y ] is a vector field given by

(Xµ∂µY ν − Yµ∂µXν)eν .

This exercise shows that the Lie derivative of Y along X is

�X Y = [X,Y ]. (5.49b)

[Remarks: Note that neither XY nor Y X is a vector field since they are second-
order derivatives. The combination [X,Y ] is, however, a first-order derivative and
indeed a vector field.]

Exercise 5.10. Show that the Lie bracket satisfies

(a) bilinearity

[X, c1Y1 + c2Y2] = c1[X,Y1] + c2[X,Y2]
[c1 X1 + c2 X2,Y ] = c1[X1,Y ] + c2[X2,Y ]

for any constants c1 and c2,
(b) skew-symmetry

[X,Y ] = −[Y X]
(c) the Jacobi identity

[[X,Y ], Z ] + [[Z , X],Y ] + [[Y, Z ], X] = 0.

Exercise 5.11. (a) Let X,Y ∈ �(M) and f ∈ �(M). Show that

� f X Y = f [X,Y ] − Y [ f ]X (5.51a)

�X ( f Y ) = f [X,Y ] + X[ f ]Y. (5.51b)

(b) Let X,Y ∈ �(M) and f : M → N . Show that

f∗[X,Y ] = [ f∗X, f∗Y ]. (5.52)

Geometrically, the Lie bracket shows the non-commutativity of two flows.
This is easily observed from the following consideration. Let σ(s, x) and τ (t, x)
be two flows generated by vector fields X and Y , as before, see figure 5.13. If we
move by a small parameter distance ε along the flow σ first, then by δ along τ ,
we shall be at the point whose coordinates are

τµ(δ, σ (ε, x)) 	 τµ(δ, xν + εXν(x))

	 xµ + εXµ(x)+ δYµ(xν + εXν (x))

	 xµ + εXµ(x)+ δYµ(x)+ εδXν (x)∂νY
ν(x).
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Figure 5.13. A Lie bracket [X,Y ]measures the failure of the closure of the parallelogram.

If, however, we move by δ along τ first, then by ε along σ , we will be at the point

σµ(ε, τ (δ, x)) 	 σµ(ε, xν + δY ν(x))
	 xµ + δYµ(x)+ εXµ(xν + δY ν(x))
	 xµ + δYµ(x)+ εXµ(x)+ εδY ν(x)∂νXµ(x).

The difference between the coordinates of these two points is proportional to the
Lie bracket,

τµ(δ, σ (ε, x))− σµ(ε, τ (δ, x)) = εδ[X,Y ]µ.
The Lie bracket of X and Y measures the failure of the closure of the
parallelogram in figure 5.13. It is easy to see �X Y = [X,Y ] = 0 if and only
if

σ(s, τ (t, x)) = τ (t, σ (s, x)). (5.53)

We may also define the Lie derivative of a one-form ω ∈ �1(M) along
X ∈ �(M) by

�Xω ≡ lim
ε→0

1

ε
[(σε)∗ω|σε(x) − ω|x ] (5.54)

where ω|x ∈ T ∗x M is ω at x . Put ω = ωµdxµ. Repeating a similar analysis as
before, we obtain

(σε)
∗ω|σε(x) = ωµ(x) dxµ + ε[Xν(x)∂νωµ(x)+ ∂µXν(x)ων(x)] dxµ

which leads to
�Xω = (Xν∂νωµ + ∂µXνων) dxµ. (5.55)

Clearly �Xω ∈ T ∗x (M), since it is a difference of two one-forms at the same point
x .
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The Lie derivative of f ∈ �(M) along a flow σs generated by a vector field
X is

�X f ≡ lim
ε→0

1

ε
[ f (σε(x))− f (x)]

= lim
ε→0

1

ε
[ f (xµ + εXµ(x))− f (xµ)]

= Xµ(x)
∂ f

∂xµ
= X[ f ] (5.56)

which is the usual directional derivative of f along X .
The Lie derivative of a general tensor is obtained from the following

proposition.

Proposition 5.1. The Lie derivative satisfies

�X (t1 + t2) = �X t1 + �X t2 (5.57a)

where t1 and t2 are tensor fields of the same type and

�X (t1 ⊗ t2) = (�X t1)⊗ t2 + t1 ⊗ (�X t2) (5.57b)

where t1 and t2 are tensor fields of arbitrary types.

Proof. (a) is obvious. Rather than giving the general proof of (b), which is full
of indices, we give an example whose extension to more general cases is trivial.
Take Y ∈ �(M) and ω ∈ �1(M) and construct the tensor product Y ⊗ ω. Then
(Y ⊗ ω)|σε(x) is mapped onto a tensor at x by the action of (σ−ε)∗ ⊗ (σε)∗:

[(σ−ε)∗ ⊗ (σε)∗](Y ⊗ ω)|σε(x) = [(σ−ε)∗Y ⊗ (σε)∗ω]|x .
Then there follows (the Leibnitz rule):

�X (Y ⊗ ω) = lim
ε→0

1

ε
[{(σ−ε)∗Y ⊗ (σε)∗ω}|x − (Y ⊗ ω)|x ]

= lim
ε→0

1

ε
[(σ−ε)∗Y ⊗ {(σε)∗ω − ω} + {(σ−ε)∗Y − Y } ⊗ ω]

= Y ⊗ (�Xω)+ (�X Y )⊗ ω.
Extensions to more general cases are obvious. �

This proposition enables us to calculate the Lie derivative of a general tensor
field. For example, let t = tµν dxµ ⊗ eν ∈ � 1

1(M). Proposition 5.1 gives

�X t = X[tµν] dxµ ⊗ eν + tµ
ν(�X dxµ)⊗ eν + tµ

ν dxµ ⊗ (�X eν).

Exercise 5.12. Let t be a tensor field. Show that

�[X,Y ]t = �X�Y t − �Y�X t . (5.58)
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5.4 Differential forms

Before we define differential forms, we examine the symmetry property of
tensors. The symmetry operation on a tensor ω ∈ � 0

r,p(M) is defined by

Pω(V1, . . . , Vr ) ≡ ω(VP(1), . . . , VP(r)) (5.59)

where Vi ∈ Tp M and P is an element of Sr , the symmetric group of order r .
Take the coordinate basis {eµ} = {∂/∂xµ}. The component of ω in this basis is

ω(eµ1 , eµ2, . . . , eµr ) = ωµ1µ2...µr .

The component of Pω is obtained from (5.59) as

Pω(eµ1 , eµ2 , . . . , eµr ) = ωµP(1)µP(2)...µP(r) .

For a general tensor of type (q, r), the symmetry operations are defined for q
indices and r indices separately.

For ω ∈ �0
r,p(M), the symmetrizer � is defined by

�ω = 1

r !
∑
P∈Sr

Pω (5.60)

while the anti-symmetrizer� is

�ω = 1

r !
∑
P∈Sr

sgn(P)Pω (5.61)

where sgn(P) = +1 for even permutations and −1 for odd permutations. �ω is
totally symmetric (that is, P�ω = �ω for any P ∈ Sr ) and �ω is totally anti-
symmetric (P�ω = sgn(P)�ω).

5.4.1 Definitions

Definition 5.4. A differential form of order r or an r-form is a totally anti-
symmetric tensor of type (0, r).

Let us define the wedge product ∧ of r one-forms by the totally anti-
symmetric tensor product

dxµ1∧dxµ2∧ . . .∧dxµr =
∑
P∈Sr

sgn(P) dxµP(1)∧dxµP(2)∧ . . .∧dxµP(r) . (5.62)

For example,

dxµ ∧ dxν = dxµ ⊗ dxν − dxν ⊗ dxµ

dxλ ∧ dxµ ∧ dxν = dxλ ⊗ dxµ ⊗ dxν + dxν ⊗ dxλ ⊗ dxµ

+ dxµ ⊗ dxν ⊗ dxλ − dxλ ⊗ dxν ⊗ dxµ

− dxν ⊗ dxµ ⊗ dxλ − dxµ ⊗ dxλ ⊗ dxν.
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It is readily verified that the wedge product satisfies the following.

(i) dxµ1 ∧ . . .∧ dxµr = 0 if some index µ appears at least twice.
(ii) dxµ1 ∧ . . .∧ dxµr = sgn(P) dxµP(1) ∧ . . . ∧ dxµP(r) .
(iii) dxµ1 ∧ . . .∧ dxµr is linear in each dxµ.

If we denote the vector space of r -forms at p ∈ M by �r
p(M), the set of

r -forms (5.62) forms a basis of �r
p(M) and an element ω ∈ �r

p(M) is expanded
as

ω = 1

r !ωµ1µ2...µr dxµ1 ∧ dxµ2 ∧ . . .∧ dxµr (5.63)

where ωµ1µ2...µr are taken totally anti-symmetric, reflecting the anti-symmetry
of the basis. For example, the components of any second-rank tensor ωµν are
decomposed into the symmetric part σµν and the anti-symmetric part αµν :

σµν =ω(µν) ≡ 1
2 (ωµν + ωνµ) (5.64a)

αµν =ω[µν] ≡ 1
2 (ωµν − ωνµ). (5.64b)

Observe that σµν dxµ ∧ dxν = 0, while αµν dxµ ∧ dxν = ωµν dxµ ∧ dxν .
Since there are

(m
r

)
choices of the set (µ1, µ2, . . . , µr ) out of (1, 2, . . . ,m)

in (5.62), the dimension of the vector space �r
p(M) is(

m

r

)
= m!
(m − r)!r ! .

For later convenience we define �0
p(M) = �. Clearly �1

p(M) = T ∗p M . If
r in (5.62) exceeds m, it vanishes identically since some index appears at least
twice in the anti-symmetrized summation. The equality

(m
r

) = ( m
m−r

)
implies

dim�r
p(M) = dim�m−r

p (M). Since �r
p(M) is a vector space, �r

p(M) is
isomorphic to �m−r

p (M) (see section 2.2).

Define the exterior product of a q-form and an r -form ∧ : �q
p(M) ×

�r
p(M) → �

q+r
p (M) by a trivial extension. Let ω ∈ �q

p(M) and ξ ∈ �r
p(M),

for example. The action of the (q + r)-form ω ∧ ξ on q + r vectors is defined by

(ω ∧ ξ)(V1, . . . , Vq+r )

= 1

q!r !
∑

P∈Sq+r

sgn(P)ω(VP(1), . . . , VP(q))ξ(VP(q+1), . . . , VP(q+r))

(5.65)

where Vi ∈ Tp M . If q + r > m, ω ∧ ξ vanishes identically. With this product,
we define an algebra

�∗p(M) ≡ �0
p(M)⊕�1

p(M)⊕ . . .⊕�m
p (M). (5.66)
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Table 5.1.

r -forms Basis Dimension

�0(M) = �(M) {1} 1
�1(M) = T ∗M {dxµ} m
�2(M) {dxµ1 ∧ dxµ2 } m(m − 1)/2
�3(M) {dxµ1 ∧ dxµ2 ∧ dxµ3 } m(m − 1)(m − 2)/6
..
.

..

.
..
.

�m (M) {dx1 ∧ dx2 ∧ . . . dxm } 1

�∗p(M) is the space of all differential forms at p and is closed under the exterior
product.

Exercise 5.13. Take the Cartesian coordinates (x, y) in �2 . The two-form dx∧dy
is the oriented area element (the vector product in elementary vector algebra).
Show that, in polar coordinates, this becomes rdr ∧ dθ .

Exercise 5.14. Let ξ ∈ �q
p(M), η ∈ �r

p(M) and ω ∈ �s
p(M). Show that

ξ ∧ ξ = 0 if q is odd (5.67a)

ξ ∧ η = (−1)qrη ∧ ξ (5.67b)

(ξ ∧ η) ∧ ω = ξ ∧ (η ∧ ω). (5.67c)

We may assign an r -form smoothly at each point on a manifold M . We
denote the space of smooth r -forms on M by �r (M). We also define �0(M) to
be the algebra of smooth functions, �(M). In summary we have table 5.1.

5.4.2 Exterior derivatives

Definition 5.5. The exterior derivative dr is a map �r (M) → �r+1(M) whose
action on an r -form

ω = 1

r !ωµ1...µr dxµ1 ∧ . . .∧ dxµr

is defined by

drω = 1

r !
(
∂

∂xν
ωµ1...µr

)
dxν ∧ dxµ1 ∧ . . .∧ dxµr . (5.68)

It is common to drop the subscript r and write simply d. The wedge product
automatically anti-symmetrizes the coefficient.
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Example 5.10. The r -forms in three-dimensional space are:

(i) ω0 = f (x, y, z),
(ii) ω1 = ωx(x, y, z) dx + ωy(x, y, z) dy + ωz(x, y, z) dz,
(iii) ω2 = ωxy(x, y, z) dx ∧ dy+ωyz(x, y, z) dy∧ dz+ωzx(x, y, z) dz ∧ dx
and

(iv) ω3 = ωxyz(x, y, z) dx ∧ dy ∧ dz.

If we define an axial vector αµ by εµνλωνλ, a two-form may be regarded as a
‘vector’. The Levi-Civita symbol εµνλ is defined by εP(1)P(2)P(3) = sgn(P) and
provides the isomorphism between �(M) and �2(M). [Note that both of these
are of dimension three.]

The action of d is

(i) dω0 = ∂ f

∂x
dx + ∂ f

∂y
dy + ∂ f

∂z
dz,

(ii) dω1 =
(
∂ωy

∂x
− ∂ωx

∂y

)
dx ∧ dy +

(
∂ωz

∂y
− ∂ωy

∂z

)
dy ∧ dz

+
(
∂ωx

∂z
− ∂ωz

∂x

)
dz ∧ dx ,

(iii) dω2 =
(
∂ωyz

∂x
+ ∂ωzx

∂y
+ ∂ωxy

∂z

)
dx ∧ dy ∧ dz and

(iv) dω3 = 0.

Hence, the action of d on ω0 is identified with ‘grad’, on ω1 with ‘rot’ and on ω2
with ‘div’ in the usual vector calculus.

Exercise 5.15. Let ξ ∈ �q(M) and ω ∈ �r (M). Show that

d(ξ ∧ ω) = dξ ∧ ω + (−1)qξ ∧ dω. (5.69)

A useful expression for the exterior derivative is obtained as follows. Let us
take X = Xµ∂/∂xµ,Y = Y ν∂/∂xν ∈ �(M) and ω = ωµ dxµ ∈ �1(M). It is
easy to see that the combination

X[ω(Y )] − Y [ω(X)] − ω([X,Y ]) = ∂ωµ

∂xν
(XνYµ − XµY ν)

is equal to dω(X,Y ), and we have the coordinate-free expression

dω (X,Y ) = X[ω(Y )] − Y [ω(X)] − ω([X,Y ]). (5.70)

For an r -form ω ∈ �r (M), this becomes

dω (X1, . . . , Xr+1)

=
r∑

i=1

(−1)i+1 Xiω(X1, . . . , X̂i , . . . , Xr+1)

+
∑
i< j

(−1)i+ jω([Xi , X j ], X1, . . . , X̂i , . . . , X̂ j , . . . , Xr+1) (5.71)
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where the entry below ˆ has been omitted. As an exercise, the reader should
verify (5.71) explicitly for r = 2.

We now prove an important formula:

d2 = 0 (or dr+1 dr = 0). (5.72)

Take

ω = 1

r !ωµ1...µr dxµ1 ∧ . . . ∧ dxµr ∈ �r (M).

The action of d2 on ω is

d2ω = 1

r !
∂2ωµ1...µr

∂xλ∂xν
dxλ ∧ dxν ∧ dxµ1 ∧ . . . ∧ dxµr .

This vanishes identically since ∂2ωµ1...µr /∂xλ∂xν is symmetric with respect to λ
and ν while dxλ ∧ dxν is anti-symmetric.

Example 5.11. It is known that the electromagnetic potential A = (φ, A) is a
one-form, A = Aµdxµ (see chapter 10). The electromagnetic tensor is defined
by F = dA and has the components

0 −Ex −Ey −Ex

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0

 (5.73)

where

E = −∇φ − ∂

∂x0
A and B = ∇ × A

as usual. Two Maxwell equations, ∇ · B = 0 and ∂B/∂ t = −∇ × E follow from
the identity dF = d(dA) = 0, which is known as the Bianchi identity, while the
other set is the equation of motion derived from the Lagrangian (1.245).

A map f : M → N induces the pullback f ∗ : T ∗f (p)N → T ∗p M and
f ∗ is naturally extended to tensors of type (0, r); see section 5.2. Since an
r -form is a tensor of type (0, r), this applies as well. Let ω ∈ �r (N) and
let f be a map M → N . At each point f (p) ∈ N , f induces the pullback
f ∗ : �r

f (p)N → �r
p M by

( f ∗ω)(X1, . . . , Xr ) ≡ ω( f∗X1, . . . , f∗Xr ) (5.74)

where Xi ∈ Tp M and f∗ is the differential map Tp M → T f (p)N .

Exercise 5.16. Let ξ, ω ∈ �r (N) and let f : M → N . Show that

d ( f ∗ω) = f ∗(dω) (5.75)

f ∗(ξ ∧ ω) = ( f ∗ξ) ∧ ( f ∗ω). (5.76)
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The exterior derivative dr induces the sequence

0
i−→ �0(M)

d0−→ �1(M)
d1−→ · · · dm−2−→ �m−1(M)

dm−1−→ �m(M)
dm−→ 0 (5.77)

where i is the inclusion map 0 ↪→ �0(M). This sequence is called the de Rham
complex. Since d2 = 0, we have im dr ⊂ ker dr+1. [Take ω ∈ �r (M). Then
drω ∈ im dr and dr+1(drω) = 0 imply drω ∈ ker dr+1.] An element of ker dr is
called a closed r-form, while an element of im dr−1 is called an exact r-form.
Namely, ω ∈ �r (M) is closed if dω = 0 and exact if there exists an (r − 1)-form
ψ such that ω = dψ . The quotient space ker dr/ im dr−1 is called the r th de
Rham cohomology group which is made into the dual space of the homology
group; see chapter 6.

5.4.3 Interior product and Lie derivative of forms

Another important operation is the interior product iX : �r (M) → �r−1(M),
where X ∈ �(M). For ω ∈ �r (M), we define

iXω(X1, . . . , Xr−1) ≡ ω(X, X1, . . . , Xr−1). (5.78)

For X = Xµ∂/∂xµ and ω = (1/r !)ωµ1...µr dxµ1 ∧ . . . ∧ dxµr we have

iXω = 1

(r − 1)!X
νωνµ2...µr dxµ2 ∧ . . . ∧ dxµr

= 1

r !
r∑

s=1

Xµsωµ1...µs ...µr (−1)s−1 dxµ1 ∧ . . . ∧ d̂xµs ∧ . . . ∧ dxµr

(5.79)

where the entry below ˆ has been omitted. For example, let (x, y, z) be the
coordinates of �3 . Then

iex (dx ∧ dy) = dy, iex (dy ∧ dz) = 0, iex (dz ∧ dx) = −dz.

The Lie derivative of a form is most neatly written with the interior product.
Let ω = ωµdxµ be a one-form. Consider the combination

(diX + iX d)ω = d (Xµωµ)+ iX [ 1
2 (∂µων − ∂νωµ) dxµ ∧ dxν]

= (ωµ∂νXµ + Xµ∂νωµ) dxν + Xµ(∂µων − ∂νωµ) dxν

= (ωµ∂νXµ + Xµ∂µων) dxν.

Comparing this with (5.55), we find that

�Xω = (diX + iX d)ω. (5.80)
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For a general r -form ω = (1/r !)ωµ1...µr dxµ1 ∧ . . .∧ dxµr , we have

�Xω = lim
ε→0

1

ε
((σε)

∗ω|σε(x) − ω|x )

= Xν
1

r !∂νωµ1...µr dxµ1 ∧ . . . ∧ dxµr

+
r∑

s=1

∂µs Xν
1

r !ωµ1...

s
↓
ν...µr dxµ1 ∧ . . . ∧ dxµr . (5.81)

We also have

(diX + iX d)ω

= 1

r !
r∑

s=1

[∂νXµsωµ1...µs ...µr + Xµs ∂νωµ1...µs ...µr ]

× (−1)s−1 dxν ∧ dxµ1 ∧ . . . ∧ d̂xµs ∧ dxµr

+ 1

r ! [X
ν∂νωµ1...µr dxµ1 ∧ . . . ∧ dxµr

+
r∑

s=1

Xµsωµ1...µs ...µr (−1)s dxν ∧ dxµ1 ∧ . . .∧ d̂xµs ∧ . . .∧ dxµr ]

= 1

r !
r∑

s=1

[∂νXµsωµ1...µs ...µr (−1)s−1 dxν ∧ dxµ1 ∧ . . . ∧ d̂xµs ∧ . . . ∧ dxµr

+ 1

r ! X
ν∂νωµ1...µr dxµ1 ∧ . . .∧ dxµr .

If we interchange the roles of µs and ν in the first term of the last expression and
compare it with (5.81), we verify that

(diX + iX d)ω = �Xω (5.82)

for any r -form ω.

Exercise 5.17. Let X,Y ∈ �(M) and ω ∈ �r (M). Show that

i[X,Y ]ω = X (iYω)− Y (iXω). (5.83)

Show also that iX is an anti-derivation,

iX (ω ∧ η) = iXω ∧ η + (−1)rω ∧ iXη (5.84)

and nilpotent,
i2X = 0. (5.85)

Use the nilpotency to prove

�X iXω = iX�Xω. (5.86)
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Exercise 5.18. Let t ∈ �n
m(M). Show that

(�X t)µ1...µn
ν1...νm

= Xλ∂λt
µ1...µn
ν1...νm

+
n∑

s=1

∂νs Xλtµ1...µn
ν1...λ...νm

−
n∑

s=1

∂λXµs tµ1...λ...µn
ν1...νm

. (5.87)

Example 5.12. Let us reformulate Hamiltonian mechanics (section 1.1) in terms
of differential forms. Let H be a Hamiltonian and (qµ, pµ) be its phase space.
Define a two-form

ω = d pµ ∧ dqµ (5.88)

called the symplectic two-form. If we introduce a one-form

θ = qµ d pµ, (5.89)

the symplectic two-form is expressed as

ω = dθ. (5.90)

Given a function f (q, p) in the phase space, one can define the Hamiltonian
vector field

X f = ∂ f

∂pµ

∂

∂qµ
− ∂ f

∂qµ
∂

∂pµ
. (5.91)

Then it is easy to verify that

iX f ω = −
∂ f

∂pµ
d pµ − ∂ f

∂qµ
dqµ = −d f.

Consider a vector field generated by the Hamiltonian

X H = ∂H

∂pµ

∂

∂qµ
− ∂H

∂qµ
∂

∂pµ
. (5.92)

For the solution (qµ, pµ) to Hamilton’s equation of motion

dqµ

dt
= ∂H

∂pµ

d pµ
dt

= − ∂H

∂qµ
, (5.93)

we also obtain

X H = d pµ
dt

∂

∂pµ

dqµ

dt

∂

∂qµ
= d

dt
. (5.94)

The symplectic two-form ω is left invariant along the flow generated by X H ,

�X Hω = d(iX Hω)+ iX H (dω)

= d(iX Hω) = −d2 H = 0 (5.95)

where use has been made of (5.82). Conversely, if X satisifes �Xω = 0, there
exists a Hamiltonian H such that Hamilton’s equation of motion is satisfied
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along the flow generated by X . This follows from the previous observation that
�Xω = d(iXω) = 0 and hence by Poincaré’s lemma, there exists a function
H (q, p) such that

iXω = −dH.

The Poisson bracket is cast into a form independent of the special coordinates
chosen with the help of the Hamiltonian vector fields. In fact,

iX f (iXgω) = −iX f (dg) = ∂ f

∂qµ
∂g

∂pµ
− ∂ f

∂qµ
∂g

∂pµ
= [ f, g]PB. (5.96)

5.5 Integration of differential forms

5.5.1 Orientation

An integration of a differential form over a manifold M is defined only when
M is ‘orientable’. So we first define an orientation of a manifold. Let M be
a connected m-dimensional differentiable manifold. At a point p ∈ M , the
tangent space Tp M is spanned by the basis {eµ} = {∂/∂xµ}, where xµ is the
local coordinate on the chart Ui to which p belongs. Let U j be another chart such
that Ui ∩U j �= ∅ with the local coordinates yα. If p ∈ Ui ∩U j , Tp M is spanned
by either {eµ} or {̃eα} = {∂/∂yα}. The basis changes as

ẽα =
(
∂xµ

∂yα

)
eµ. (5.97)

If J = det(∂xµ/∂yα) > 0 on Ui ∩ U j , {eµ} and {̃eα} are said to define the same
orientation on Ui ∩U j and if J < 0, they define the opposite orientation.

Definition 5.6. Let M be a connected manifold covered by {Ui }. The manifold
M is orientable if, for any overlapping charts Ui and U j , there exist local
coordinates {xµ} for Ui and {yα} for U j such that J = det(∂xµ/∂yα) > 0.

If M is non-orientable, J cannot be positive in all intersections of charts.
For example, the Möbius strip in figure 5.14(a) is non-orientable since we have
to choose J to be negative in the intersection B.

If an m-dimensional manifold M is orientable, there exists an m-form ω

which vanishes nowhere. This m-form ω is called a volume element, which
plays the role of a measure when we integrate a function f ∈ �(M) over M .
Two volume elements ω and ω′ are said to be equivalent if there exists a strictly
positive function h ∈ �(M) such that ω = hω′. A negative-definite function
h′ ∈ �(M) gives an inequivalent orientation to M . Thus, any orientable manifold
admits two inequivalent orientations, one of which is called right handed, the
other left handed. Take an m-form

ω = h(p) dx1 ∧ . . . ∧ dxm (5.98)
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Figure 5.14. (a) The Möbius strip is obtained by twisting the part B′ of the second
strip by π before pasting A with A′ and B with B′. The coordinate change on B is
y1 = x1, y2 = −x2 and the Jacobian is −1. (b) Basis frames on the Möbius strip.

with a positive-definite h(p) on a chart (U, ϕ) whose coordinate is x = ϕ(p).
If M is orientable, we may extend ω throughout M such that the component
h is positive definite on any chart Ui . If M is orientable, this ω is a volume
element. Note that this positivity of h is independent of the choice of coordinates.
In fact, let p ∈ Ui ∩ U j �= ∅ and let xµ and yα be the coordinates of Ui and U j ,
respectively. Then (5.98) becomes

ω = h(p)
∂x1

∂yµ1
dyµ1 ∧ . . . ∧ ∂xm

∂yµm
dyµm = h(p) det

(
∂xµ

∂yν

)
dy1 ∧ . . .∧ dym.

(5.99)
The determinant in (5.99) is the Jacobian of the coordinate transformation and
must be positive by assumed orientability. If M is non-orientable, ω with a
positive-definite component cannot be defined on M . Let us look at figure 5.14
again. If we circumnavigate the strip along the direction shown in the figure,
ω = dx ∧ dy changes the signature dx ∧ dy → −dx ∧ dy when we come back to
the starting point. Hence, ω cannot be defined uniquely on M .

5.5.2 Integration of forms

Now we are ready to define an integration of a function f : M → � over an
orientable manifold M . Take a volume element ω. In a coordinate neighbourhood
Ui with the coordinate x , we define the integration of an m-form f ω by∫

Ui

f ω ≡
∫
ϕ(Ui )

f (ϕ−1
i (x))h(ϕ−1

i (x)) dx1 . . . dxm. (5.100)
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The RHS is an ordinary multiple integration of a function of m variables. Once
the integral of f over Ui is defined, the integral of f over the whole of M is given
with the help of the ‘partition of unity’ defined now.

Definition 5.7. Take an open covering {Ui } of M such that each point of M is
covered with a finite number of Ui . [If this is always possible, M is called
paracompact, which we assume to be the case.] If a family of differentiable
functions εi (p) satisfies

(i) 0 ≤ εi (p) ≤ 1
(ii) εi(p) = 0 if p /∈ Ui and
(iii) ε1(p)+ ε2(p)+ . . . = 1 for any point p ∈ M

the family {ε(p)} is called a partition of unity subordinate to the covering {Ui }.
From condition (iii), it follows that

f (p) =
∑

i

f (p)εi(p) =
∑

i

fi (p) (5.101)

where fi (p) ≡ f (p)εi (p) vanishes outside Ui by (ii). Hence, given a point
p ∈ M , assumed paracompactness ensures that there are only finite terms in the
summation over i in (5.101). For each fi (p), we may define the integral over Ui

according to (5.100). Finally the integral of f on M is given by∫
M

f ω ≡
∑

i

∫
Ui

fiω. (5.102)

Although a different atlas {(Vi , ψi )} gives different coordinates and a different
partition of unity, the integral defined by (5.102) remains the same.

Example 5.13. Let us take the atlas of S1 defined in example 5.2. Let U1 =
S1 − {(1, 0)}, U2 = S1 − {(−1, 0)}, ε1(θ) = sin2(θ/2) and ε2(θ) = cos2(θ/2).
The reader should verify that {εi(θ)} is a partition of unity subordinate to {Ui }.
Let us integrate a function f = cos2 θ , for example. [Of course we know∫ 2π

0
dθ cos2 θ = π

but let us use the partition of unity.] We have∫
S1

dθ cos2 θ =
∫ 2π

0
dθ sin2 θ

2
cos2 θ +

∫ π

−π
dθ cos2 θ

2
cos2 θ

= 1
2π + 1

2π = π.
So far, we have left h arbitrary provided it is strictly positive. The reader

might be tempted to choose h to he unity. However, as we found in (5.99), h
is multiplied by the Jacobian under the change of coordinates and there is no
canonical way to single out the component h; unity in one coordinate might not
be unity in the other. The situation changes if the manifold is endowed with a
metric, as we will see in chapter 7.
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5.6 Lie groups and Lie algebras

A Lie group is a manifold on which the group manipulations, product and inverse,
are defined. Lie groups play an extremely important role in the theory of fibre
bundles and also find vast applications in physics. Here we will work out the
geometrical aspects of Lie groups and Lie algebras.

5.6.1 Lie groups

Definition 5.8. A Lie group G is a differentiable manifold which is endowed with
a group structure such that the group operations

(i) · : G × G → G, (g1, g2) 
→ g1 · g2
(ii) −1 : G → G, g 
→ g−1

are differentiable. [Remark: It can be shown that G has a unique analytic structure
with which the product and the inverse operations are written as convergent power
series.]

The unit element of a Lie group is written as e. The dimension of a Lie group
G is defined to be the dimension of G as a manifold. The product symbol may be
omitted and g1 ·g2 is usually written as g1g2. For example, let �∗ ≡ �−{0}. Take
three elements x, y, z ∈ �∗ such that xy = z. Obviously if we multiply a number
close to x by a number close to y, we have a number close to z. Similarly, an
inverse of a number close to x is close to 1/x . In fact, we can differentiate these
maps with respect to the relevant arguments and �∗ is made into a Lie group with
these group operations. If the product is commutative, namely g1g2 = g2g1, we
often use the additive symbol+ instead of the product symbol.

Exercise 5.19.

(a) Show that �+ = {x ∈ �|x > 0} is a Lie group with respect to
multiplication.

(b) Show that � is a Lie group with respect to addition.
(c) Show that �2 is a Lie group with respect to addition defined by (x1, y1)+
(x2, y2) = (x1 + x2, y1 + y2).

Example 5.14. Let S1 be the unit circle on the complex plane,

S1 = {eiθ |θ ∈ � (mod 2π)}.
The group operations defined by eiθeiϕ = ei(θ+ϕ) and (eiθ )−1 = e−iθ are
differentiable and S1 is made into a Lie group, which we call U(1). It is easy
to see that the group operations are the same as those in exercise 5.19(b)modulo
2π .

Of particular interest in physical applications are the matrix groups which
are subgroups of general linear groups GL(n,�) or GL(n, � ). The product of
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elements is simply the matrix multiplication and the inverse is given by the matrix
inverse. The coordinates of GL(n,�) are given by n2 entries of M = {xi j }.
GL(n,�) is a non-compact manifold of real dimension n2.

Interesting subgroups of GL(n,�) are the orthogonal group O(n), the
special linear group SL(n,�) and the special orthogonal group SO(n):

O(n) = {M ∈ GL(n,�)|M M t = M t M = In} (5.103)

SL(n,�) = {M ∈ GL(n,�)| det M = 1} (5.104)

SO(n) = O(n) ∩ SL(n,�) (5.105)

where t denotes the transpose of a matrix. In special relativity, we are familiar
with the Lorentz group

O(1, 3) = {M ∈ GL(4,�)|MηMt = η}
where η is the Minkowski metric, η = diag(−1, 1, 1, 1). Extension to higher-
dimensional spacetime is trivial.

Exercise 5.20. Show that the group O(1, 3) is non-compact and has four
connected components according to the sign of the determinant and the sign of the
(0, 0) entry. The component that contains the unit matrix is denoted by O↑+(1, 3).

The group GL(n, � ) is the set of non-singular linear transformations in � n ,
which are represented by n × n non-singular matrices with complex entries. The
unitary group U(n), the special linear group SL(n, � ) and the special unitary
group SU(n) are defined by

U(n) = {M ∈ GL(n, � )|M M† = M† M = 1} (5.106)

SL(n, � ) = {M ∈ GL(n, � )| det M = 1} (5.107)

SU(n) = U(n) ∩ SL(n, � ) (5.108)

where † is the Hermitian conjugate.
So far we have just mentioned that the matrix groups are subgroups of a Lie

group GL(n,�) (or GL(n, � )). The following theorem guarantees that they are
Lie subgroups, that is, these subgroups are Lie groups by themselves. We accept
this important (and difficult to prove) theorem without proof.

Theorem 5.2. Every closed subgroup H of a Lie group G is a Lie subgroup.

For example, O(n), SL(n,�) and SO(n) are Lie subgroups of GL(n,�). To
see why SL(n,�) is a closed subgroup, consider a map f : GL(n,�) → �

defined by A 
→ det A. Obviously f is a continuous map and f −1(1) =
SL(n,�). A point {1} is a closed subset of �, hence f −1(1) is closed in GL(n,�).
Then theorem 5.2 states that SL(n,�) is a Lie subgroup. The reader should verify
that O(n) and SO(n) are also Lie subgroups of GL(n,�).
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Let G be a Lie group and H a Lie subgroup of G. Define an equivalence
relation ∼ by g ∼ g′ if there exists an element h ∈ H such that g′ = gh. An
equivalence class [g] is a set {gh|h ∈ H }. The coset space G/H is a manifold (not
necessarily a Lie group) with dim G/H = dim G−dim H . G/H is a Lie group if
H is a normal subgroup of G, that is, if ghg−1 ∈ H for any g ∈ G and h ∈ H . In
fact, take equivalence classes [g], [g′] ∈ G/H and construct the product [g][g′].
If the group structure is well defined in G/H , the product must be independent
of the choice of the representatives. Let gh and g′h′ be the representatives of [g]
and [g′] respectively. Then ghg′h′ = gg′h′′h′ ∈ [gg′] where the equality follows
since there exists h′′ ∈ H such that hg′ = g′h′′. It is left as an exercise to the
reader to show that [g]−1 is also a well defined operation and [g]−1 = [g−1].

5.6.2 Lie algebras

Definition 5.9. Let a and g be elements of a Lie group G. The right-translation
Ra : G → G and the left-translation La : G → G of g by a are defined by

Ra g =ga (5.109a)

La g =ag. (5.109b)

By definition, Ra and La are diffeomorphisms from G to G. Hence, the
maps La : G → G and Ra : G → G induce La∗ : TgG → TagG and
Ra∗ : TgG → TgaG; see section 5.2. Since these translations give equivalent
theories, we are concerned mainly with the left-translation in the following. The
analysis based on the right-translation can be carried out in a similar manner.

Given a Lie group G, there exists a special class of vector fields characterized
by an invariance under group action. [On the usual manifold there is no canonical
way of discriminating some vector fields from the others.]

Definition 5.10. Let X be a vector field on a Lie group G. X is said to be a left-
invariant vector field if La∗X |g = X |ag.

Exercise 5.21. Verify that a left-invariant vector field X satisfies

La∗X |g = Xµ(g)
∂xν(ag)

∂xµ(g)

∂

∂xν

∣∣∣∣
ag
= Xν(ag)

∂

∂xν

∣∣∣∣
ag

(5.110)

where xµ(g) and xµ(ag) are coordinates of g and ag, respectively.

A vector V ∈ TeG defines a unique left-invariant vector field XV throughout
G by

XV |g = Lg∗V g ∈ G. (5.111)

In fact, we verify from (5.34) that XV |ag = Lag∗V = (La Lg)∗V = La∗Lg∗V =
La∗XV |g . Conversely, a left-invariant vector field X defines a unique vector
V = X |e ∈ TeG. Let us denote the set of left-invariant vector fields on G by
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�. The map TeG → � defined by V 
→ XV is an isomorphism and it follows
that the set of left-invariant vector fields is a vector space isomorphic to TeG. In
particular, dim � = dim G.

Since � is a set of vector fields, it is a subset of �(G) and the Lie bracket
defined in section 5.3 is also defined on �. We show that � is closed under the
Lie bracket. Take two points g and ag = La g in G. If we apply La∗ to the Lie
bracket [X,Y ] of X,Y ∈ �, we have

La∗[X,Y ]|g = [La∗X |g, La∗Y |g] = [X,Y ]|ag (5.112)

where the left-invariances of X and Y and (5.52) have been used. Thus, [X,Y ] ∈
�, that is � is closed under the Lie bracket.

It is instructive to work out the left-invariant vector field of GL(n,�). The
coordinates of GL(n,�) are given by n2 entries xi j of the matrix. The unit
element is e = In = (δi j ). Let g = {xi j (g)} and a = {xi j (a)} be elements
of GL(n,�). The left-translation is

Lag = ag =
∑

xik(a)xkj (g).

Take a vector V =∑
V ij ∂/∂xi j |e ∈ TeG where the V ij are the entries of V . The

left-invariant vector field generated by V is

XV |g = Lg∗V =
∑

i j klm

V i j ∂

∂xi j

∣∣∣∣
e

xkl(g)xlm(e)
∂

∂xkm

∣∣∣∣
g

=
∑

V ij xkl(g)δl
iδ

m
j

∂

∂xkm

∣∣∣∣
g

=
∑

xki (g)V ij ∂

∂xkj

∣∣∣∣
g
=

∑
(gV )kj ∂

∂xkj

∣∣∣∣
g

(5.113)

where gV is the usual matrix multiplication of g and V . The vector XV |g is often
abbreviated as gV since it gives the components of the vector.

The Lie bracket of XV and XW generated by V = V ij ∂/∂xi j |e and W =
W ij ∂/∂xi j |e is

[XV , XW ]|g =
∑

xki (g)V ij ∂

∂xkj

∣∣∣∣
g

xca(g)W ab ∂

∂xcb

∣∣∣∣
g
− (V ↔ W )

=
∑

xi j (g)[V jkW kl −W jk V kl ] ∂

∂xil

∣∣∣∣
g

=
∑

(g[V ,W ])i j ∂

∂xi j

∣∣∣∣
g
. (5.114)

Clearly, (5.113) and (5.114) remain true for any matrix group and we establish
that

Lg∗V = gV (5.115)

[XV , XW ]|g = Lg∗[V ,W ] = g[V ,W ]. (5.116)
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Now a Lie algebra is defined as the set of left-invariant vector fields � with
the Lie bracket.

Definition 5.11. The set of left-invariant vector fields � with the Lie bracket
[ , ] : �× �→ � is called the Lie algebra of a Lie group G.

We denote the Lie algebra of a Lie group by the corresponding lower-case
German gothic letter. For example ��(n) is the Lie algebra of SO(n).

Example 5.15.

(a) Take G = � as in exercise 5.19(b). If we define the left translation La by
x 
→ x + a, the left-invariant vector field is given by X = ∂/∂x . In fact,

La∗X

∣∣∣∣
x
= ∂(a + x)

∂x

∂

∂(a + x)
= ∂

∂(x + a)
= X

∣∣∣∣
x+a
.

Clearly this is the only left-invariant vector field on �. We also find that
X = ∂/∂θ is the unique left-invariant vector field on G = SO(2) = {eiθ |0 ≤
θ ≤ 2π}. Thus, the Lie groups � and SO(2) share the common Lie algebra.

(b) Let ��(n,�) be the Lie algebra of GL(n,�) and c : (−ε, ε)→ GL(n,�)
be a curve with c(0) = In . The curve is approximated by c(s) = In + s A +
O(s2) near s = 0, where A is an n × n matrix of real entries. Note that
for small enough s, det c(s) cannot vanish and c(s) is, indeed, in GL(n,�).
The tangent vector to c(s) at In is c′(s)

∣∣
s=0 = A. This shows that ��(n,�)

is the set of n × n matrices. Clearly dim ��(n,�) = n2 = dim GL(n,�).
Subgroups of GL(n,�) are more interesting.

(c) Let us find the Lie algebra ��(n,�) of SL(n,�). Following this
prescription, we approximate a curve through In by c(s) = In+s A+O(s2).
The tangent vector to c(s) at In is c′(s)

∣∣
s=0 = A. Now, for the curve c(s) to

be in SL(n,�), c(s) has to satisfy det c(s) = 1+ strA = 1, namely tr A = 0.
Thus, ��(n,�) is the set of n×n traceless matrices and dim ��(n,�) = n2−1.

(d) Let c(s) = In + s A + O(s2) be a curve in SO(n) through In . Since
c(s) is a curve in SO(n), it satisfies c(s)tc(s) = In . Differentiating this
identity, we obtain c′(s)tc(s) + c(s)tc′(s) = 0. At s = 0, this becomes
At + A = 0. Hence, ��(n) is the set of skew-symmetric matrices. Since
we are interested only in the vicinity of the unit element, the Lie algebra
of O(n) is the same as that of SO(n): �(n) = ��(n). It is easy to see that
dim �(n) = dim ��(n) = n(n − 1)/2.

(e) A similar analysis can be carried out for matrix groups of GL(n, � ).
��(n, � ) is the set of n×n matrices with complex entries and dim ��(n, � ) =
2n2 (the dimension here is a real dimension). ��(n, � ) is the set of traceless
matrices with real dimension 2(n2 − 1). To find �(n), we consider a
curve c(s) = In + s A + O(s2) in U(n). Since c(s)†c(s) = In , we
have c′(s)†c(s) + c(s)†c′(s) = 0. At s = 0, we have A† + A = 0.
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Hence, �(n) is the set of skew-Hermitian matrices with dim �(n) = n2.
��(n) = �(n) ∩ ��(n) is the set of traceless skew-Hermitian matrices with
dim ��(n) = n2 − 1.

Exercise 5.22. Let

c(s) =
 cos s − sin s 0

sin s cos s 0
0 0 1


be a curve in SO(3). Find the tangent vector to this curve at I3.

5.6.3 The one-parameter subgroup

A vector field X ∈ �(M) generates a flow in M (section 5.3). Here we are
interested in the flow generated by a left-invariant vector field.

Definition 5.12. A curve φ : � → G is called a one-parameter subgroup of G
if it satisfies the condition

φ(t)φ(s) = φ(t + s). (5.117)

It is easy to see that φ(0) = e and φ−1(t) = φ(−t). Note that the curve φ
thus defined is a homomorphism from � to G. Although G may be non-Abelian,
a one-parameter subgroup is an Abelian subgroup: φ(t)φ(s) = φ(t + s) =
φ(s + t) = φ(s)φ(t).

Given a one-parameter subgroup φ : � → G, there exists a vector field X ,
such that

dφµ (t)

dt
= Xµ(φ(t)). (5.118)

We now show that the vector field X is left-invariant. First note that the vector
field d/dt is left-invariant on �, see example 5.15(a). Thus, we have

(Lt )∗
d

dt

∣∣∣∣
0
= d

dt

∣∣∣∣
t
. (5.119)

Next, we apply the induced map φ∗ : Tt� → Tφ(t)G on the vectors d/dt|0 and
d/dt|t ,

φ∗
d

dt

∣∣∣∣
0
= dφµ(t)

dt

∣∣∣∣
0

∂

∂gµ

∣∣∣∣
e
= X |e (5.120a)

φ∗
d

dt

∣∣∣∣
t
= dφµ(t)

dt

∣∣∣∣
t

∂

∂gµ

∣∣∣∣
g
= X |g (5.120b)

where we put φ(t) = g. From (5.119) and (5.120b), we have

(φLt )∗
d

dt

∣∣∣∣
0
= φ∗Lt∗

d

dt

∣∣∣∣
0
= X |g . (5.121a)
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It follows from the commutativity φLt = Lgφ that φ∗Lt∗ = Lg∗φ∗. Then
(5.121a) becomes

φ∗Lt∗
d

dt

∣∣∣∣
0
= Lg∗φ∗

d

dt

∣∣∣∣
0
= Lg∗X |e. (5.121b)

From (5.121), we conclude that

Lg∗X |e = X |g . (5.122)

Thus, given a flow φ(t), there exists an associated left-invariant vector field
X ∈ �.

Conversely, a left-invariant vector field X defines a one-parameter group of
transformations σ(t, g) such that dσ(t, g)/dt = X and σ(0, g) = g. If we define
φ : � → G by φ(t) ≡ σ(t, e), the curve φ(t) becomes a one-parameter subgroup
of G. To prove this, we have to show φ(s + t) = φ(s)φ(t). By definition, σ
satisfies

d

dt
σ(t, σ (s, e)) = X (σ (t, σ (s, e))). (5.123)

[We have omitted the coordinate indices for notational simplicity. If readers feel
uneasy, they may supplement the indices as in (5.118).] If the parameter s is fixed,
σ̄ (t, φ(s)) ≡ φ(s)φ(t) is a curve � → G at φ(s)φ(0) = φ(s). Clearly σ and σ̄
satisfy the same initial condition,

σ(0, σ (s, e)) = σ̄ (0, φ(s)) = φ(s). (5.124)

σ̄ also satisfies the same differential equation as σ :

d

dt
σ̄ (t, φ(t)) = d

dt
φ(s)φ(t) = (Lφ(s))∗ d

dt
φ(t)

= (Lφ(s))∗X (φ(t))

= X (φ(s)φ(t)) (left-invariance)

= X (σ̄ (t, φ(s))). (5.125)

From the uniqueness theorem of ODEs, we conclude that

φ(s + t) = φ(s)φ(t). (5.126)

We have found that there is a one-to-one correspondence between a one-
parameter subgroup of G and a left-invariant vector field. This correspondence
becomes manifest if we define the exponential map as follows.

Definition 5.13. Let G be a Lie group and V ∈ TeG. The exponential map
exp : TeG → G is defined by

exp V ≡ φV (1) (5.127)
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where φV is a one-parameter subgroup of G generated by the left-invariant vector
field XV |g = Lg∗V .

Proposition 5.2. Let V ∈ TeG and let t ∈ �. Then

exp(tV ) = φV (t) (5.128)

where φV (t) is a one-parameter subgroup generated by XV |g = Lg∗V .

Proof. Let a �= 0 be a constant. Then φV (at) satisfies

d

dt
φV (at)

∣∣∣∣
t=0
= a

d

dt
φV (t)

∣∣∣∣
t=0
= aV

which shows that φV (at) is a one-parameter subgroup generated by Lg∗aV . The
left-invariant vector field Lg∗aV also generates φaV (t) and, from the uniqueness
of the solution, we find that φV (at) = φaV (t). From definition 5.13, we have

exp(aV ) = φaV (1) = φV (a).

The proof is completed if a is replaced by t . �

For a matrix group, the exponential map is given by the exponential of a
matrix. Take G = GL(n,�) and A ∈ ��(n,�). Let us define a one-parameter
subgroup φA : � → GL(n,�) by

φA(t) = exp(t A) = In + t A + t2

2! A
2 + · · · + tn

n! An + · · · . (5.129)

In fact, φA(t) ∈ GL(n,�) since [φA(t)]−1 = φA(−t) exists. It is also easy to see
φA(t)φA(s) = φ(t + s). Now the exponential map is given by

φA(1) = exp(A) = In + A + 1

2! A
2 + · · · + 1

n! A
n + · · · . (5.130)

The curve g exp(t A) is a flow through g ∈ G. We find that

d

dt
g exp(t A)

∣∣∣∣
t=0
= Lg∗A = X A|g

where X A is a left-invariant vector field generated by A. From (5.115), we find,
for a matrix group G, that

Lg∗A = X A|g = g A. (5.131)

The curve g exp(t A) defines a map σt : G → G by σt (g) ≡ g exp(t A) which is
also expressed as a right-translation,

σt = Rexp(t A). (5.132)
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5.6.4 Frames and structure equation

Let the set of n vectors {V1, V2, . . . , Vn} be a basis of TeG where n = dim G.
[We assume throughout this book that n is finite.] The basis defines the set of n
linearly independent left-invariant vector fields {X1, X2, . . . , Xn} at each point g
in G by Xµ

∣∣
g = Lg∗Vµ. Note that the set {Xµ} is a frame of a basis defined

throughout G. Since [Xµ, Xν]|g is again an element of � at g, it can be expanded
in terms of {Xµ} as

[Xµ, Xν] = cµν
λXλ (5.133)

where cµνλ are called the structure constants of the Lie group G. If G is a matrix
group, the LHS of (5.133) at g = e is precisely the commutator of matrices Vµ
and Vν ; see (5.116). We show that the cµνλ are, indeed, constants independent of
g. Let cµνλ(e) be the structure constants at the unit element. If Lg∗ is applied to
the Lie bracket, we have

[Xµ, Xν]|g = cµν
λ(e)Xλ|g

which shows the g-independence of the structure constants. In a sense, the
structure constants determine a Lie group completely (Lie’s theorem).

Exercise 5.23. Show that the structure constants satisfy

(a) skew-symmetry
cµν

λ = −cνµ
λ (5.134)

(b) Jacobi identity

cµν
τ cτρ

λ + cρµ
τ cτν

λ + cνρ
τ cτµ

λ = 0. (5.135)

Let us introduce a dual basis to {Xµ} and denote it by {θµ}; 〈θµ, Xν 〉 = δµν .
{θµ} is a basis for the left-invariant one-forms. We will show that the dual basis
satisfies Maurer–Cartan’s structure equation,

dθµ = − 1
2 cνλ

µθν ∧ θλ. (5.136)

This can be seen by making use of (5.70):

dθµ(Xν, Xλ) = Xν[θµ(Xλ)] − Xλ[θµ(Xν)] − θµ([Xν, Xλ])
= Xν[δµλ ] − Xλ[δµν ] − θµ(cνλκXκ) = −cνλ

µ

which proves (5.136).
We define a Lie-algebra-valued one-form θ : TgG → TeG by

θ : X 
→ (Lg−1)∗X = (Lg)
−1∗ X X ∈ Tg G. (5.137)

θ is called the canonical one-form or Maurer–Cartan form on G.
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Theorem 5.3. (a) The canonical one-form θ is expanded as

θ = Vµ ⊗ θµ (5.138)

where {Vµ} is the basis of TeG and {θµ} the dual basis of T ∗e G.
(b) The canonical one-form θ satisfies

dθ + 1
2 [θ ∧ θ ] = 0 (5.139)

where dθ ≡ Vµ ⊗ dθµ and

[θ ∧ θ ] ≡ [Vµ, Vν] ⊗ θµ ∧ θν. (5.140)

Proof.

(a) Take any vector Y = YµXµ ∈ Tg G, where {Xµ} is the set of frame
vectors generated by {Vµ}; Xµ|g = Lg∗Vµ. From (5.137), we find

θ(Y ) = Yµθ(Xµ) = Yµ(Lg∗)−1[Lg∗Vµ] = YµVµ.

However,

(Vµ ⊗ θµ)(Y ) = Y νVµθ
µ(Xν) = Y νVµδ

µ
ν = YµVµ.

Since Y is arbitrary, we have θ = Vµ ⊗ θµ.
(b) We use the Maurer–Cartan structure equation (5.136):

dθ + 1
2 [θ ∧ θ ] = − 1

2 Vµ ⊗ cνλ
µθν ∧ θλ + 1

2 cνλ
µVµ ⊗ θν ∧ θλ = 0

where the cνλµ are the structure constants of G. �

5.7 The action of Lie groups on manifolds

In physics, a Lie group often appears as the set of transformations acting on a
manifold. For example, SO(3) is the group of rotations in �3 , while the Poincaré
group is the set of transformations acting on the Minkowski spacetime. To study
more general cases, we abstract the action of a Lie group G on a manifold M .
We have already encountered this interaction between a group and geometry. In
section 5.3 we defined a flow in a manifold M as a map σ : � × M → M , in
which � acts as an additive group. We abstract this idea as follows.

5.7.1 Definitions

Definition 5.14. Let G be a Lie group and M be a manifold. The action of G on
M is a differentiable map σ : G × M → M which satisfies the conditions

(i) σ (e, p) = p for any p ∈ M (5.141a)

(ii) σ (g1, σ (g2, p)) = σ(g1g2, p). (5.141b)
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[Remark: We often use the notation gp instead of σ(g, p). The second condition
in this notation is g1(g2 p) = (g1g2)p.]

Example 5.16. (a) A flow is an action of � on a manifold M . If a flow is
periodic with a period T , it may be regarded as an action of U(1) or SO(2)
on M . Given a periodic flow σ(t, x) with period T , we construct a new action
σ̄ (exp(2π it/T ), x) ≡ σ(t, x) whose group G is U(1).

(b) Let M ∈ GL(n,�) and let x ∈ �
n . The action of GL(n,�) on �n is

defined by the usual matrix action on a vector:

σ(M, x) = M · x . (5.142)

The action of the subgroups of GL(n,�) is defined similarly. They may also act
on a smaller space. For example, O(n) acts on Sn−1(r), an (n − 1)-sphere of
radius r ,

σ : O(n)× Sn−1(r)→ Sn−1(r). (5.143)

(c) It is known that SL(2, � ) acts on a four-dimensional Minkowski space
M4 in a special manner. For x = (x0, x1, x2, x3) ∈ M4, define a Hermitian
matrix,

X (x) ≡ xµσµ =
(

x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
(5.144)

where σµ = (I2, σ1, σ2, σ3), σi (i = 1, 2, 3) being the Pauli matrices. Conversely,
given a Hermitian matrix X , a unique vector (xµ) ∈ M4 is defined as

xµ = 1
2 tr(σµX) (5.130)

where tr is over the 2× 2 matrix indices. Thus, there is an isomorphism between
M4 and the set of 2 × 2 Hermitian matrices. It is interesting to note that
det X (x) = (x0)2 − (x1)2 − (x2)2 − (x3)2 = −X tηX = −(Minkowski norm)2.
Accordingly

det X (x) > 0 if x is a timelike vector

= 0 if x is on the light cone

< 0 if x is a spacelike vector.

Take A ∈ SL(2, � ) and define an action of SL(2, � ) on M4 by

σ(A, x) ≡ AX (x)A†. (5.145)

The reader should verify that this action, in fact, satisfies the axioms of definition
5.14. The action of SL(2, � ) on M4 represents the Lorentz transformation
O(1, 3). First we note that the action preserves the Minkowski norm,

detσ(A, x) = det[AX (x)A†] = det X (x)
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since det A = det A† = 1. Moreover, there is a homomorphism ϕ : SL(2, � ) →
O(1, 3) since

A(B X B†)A† = (AB)X (AB)†.

However, this homomorphism cannot be one to one, since A ∈ SL(2, � ) and −A
give the same element of O(1, 3); see (5.145). We verify (exercise 5.24) that the
following matrix is an explicit form of a rotation about the unit vector n̂ by an
angle θ ,

A = exp

[
−i
θ

2
(n̂ · σ )

]
= cos

θ

2
I2 − i(n̂ · σ ) sin

θ

2
. (5.146a)

The appearance of θ/2 ensures that the homomorphism between SL(2, � ) and the
O(3) subgroup of O(1, 3) is indeed two to one. In fact, rotations about n̂ by θ and
by 2π+θ should be the same O(3) rotation, but A(2π+θ) = −A(θ) in SL(2, � ).
This leads to the existence of spinors. [See Misner et al (1973) and Wald (1984).]
A boost along the direction n̂ with the velocity v = tanh α is given by

A = exp
[α

2
(n̂ · σ )

]
= cosh

α

2
I2 + (n̂ · σ ) sinh

α

2
. (5.146b)

We show that ϕ maps SL(2, � ) onto the proper orthochronous Lorentz group
O↑+(1, 3) = { ∈ O(1, 3)| det = +1,00 > 0}. Take any

A =
(

a b
c d

)
∈ SL(2, � )

and suppose xµ = (1, 0, 0, 0) is mapped to x ′µ. If we write ϕ(A) = , we have

x ′0 = 1

2
tr(AX A†) = 1

2
tr

[(
a b
c d

)(
ā c̄
b̄ d̄

)]
= 1

2
(|a|2 + |b|2 + |c|2 + |d|2) > 0

hence 00 > 0. To show det A = +1, we note that any element of SL(2, � ) may
be written as

A =
(

eiα 0
0 e−iα

)(
cosβ sin β eiγ

− sinβ e−iγ cosβ

)
B

=
(

eiα/2 0
0 eiα/2

)2 (
cos(β/2) sin(β/2)eiγ

− sin(β/2)e−iγ cos(β/2)

)2

B

≡ M2 N2 B2
0

where B ≡ B2
0 is a positive-definite matrix. This shows that ϕ(A) is positive

definite:
detϕ(A) = (detϕ(M))2(detϕ(N))2(detϕ(B0))

2 > 0.
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Now we have established that ϕ(SL(2, � )) ⊂ O↑+(1, 3). Equations (5.146a) and

(5.146b) show that for any element of O↑+(1, 3), there is a corresponding matrix
A ∈ SL(2, � ), hence ϕ is onto. Thus, we have established that

ϕ(SL(2, � )) = O↑+(1, 3). (5.147)

It can be shown that SL(2, � ) is simply connected and is the universal covering
group SPIN(1, 3) of O↑+(1, 3), see section 4.6.

Exercise 5.24. Verify by explicit calculations that

(a)

A =
(

e−iθ/2 0
0 eiθ/2

)
represents a rotation about the z-axis by θ ;

(b)

A =
(

cosh(α/2)+ sinh(α/2) 0
0 cosh(α/2)− sinh(α/2)

)
represents a boost along the z-axis with the velocity v = tanhα.

Definition 5.15. Let G be a Lie group that acts on a manifold M by σ : G×M →
M . The action σ is said to be

(a) transitive if, for any p1, p2 ∈ M , there exists an element g ∈ G such
that σ(g, p1) = p2;

(b) free if every non-trivial element g �= e of G has no fixed points in M ,
that is, if there exists an element p ∈ M such that σ(g, p) = p, then g must be
the unit element e; and

(c) effective if the unit element e ∈ G is the unique element that defines the
trivial action on M , i.e. if σ(g, p) = p for all p ∈ M , then g must be the unit
element e.

Exercise 5.25. Show that the right translation R : (a, g) 
→ Ra g and left
translation L : (a, g) 
→ La g of a Lie group are free and transitive.

5.7.2 Orbits and isotropy groups

Given a point p ∈ M , the action of G on p takes p to various points in M . The
orbit of p under the action σ is the subset of M defined by

Gp = {σ(g, p)|g ∈ G}. (5.148)

If the action of G on M is transitive, the orbit of any p ∈ M is M itself. Clearly
the action of G on any orbit Gp is transitive.
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Example 5.17. (a) A flow σ generated by a vector field X = −y∂/∂x + x∂/∂y is
periodic with period 2π , see example 5.9. The action σ : � × �2 → �

2 defined
by (t, (x, y))→ σ(t, (x, y)) is not effective since σ(2πn, (x, y)) = (x, y) for all
(x, y) ∈ �2 . For the same reason, this flow is not free either. The orbit through
(x, y) �= (0, 0) is a circle S1 centred at the origin.

(b) The action of O(n) on �n is not transitive since if |x | �= |x ′|, no element
of O(n) takes x to x ′. However, the action of O(n) on Sn−1 is obviously transitive.
The orbit through x is the sphere Sn−1 of radius |x |. Accordingly, given an action
σ : O(n) × �

n → �
n , the orbits divide �n into mutually disjoint spheres of

different radii. Introduce a relation by x ∼ y if y = σ(g, x) for some g ∈ G. It
is easily verified that∼ is an equivalence relation. The equivalence class [x] is an
orbit through x . The coset space �n /O(n) is [0,∞) since each equivalence class
is parametrized by the radius.

Definition 5.16. Let G be a Lie group that acts on a manifold M . The isotropy
group of p ∈ M is a subgroup of G defined by

H (p) = {g ∈ G|σ(g, p) = p}. (5.149)

H (p) is also called the little group or stabilizer of p.

It is easy to see that H (p) is indeed a subgroup. Let g1, g2 ∈ H (p), then
g1g2 ∈ H (p) since σ(g1g2, p) = σ(g1, σ (g2, p)) = σ(g1, p) = p. Clearly
e ∈ H (p) since σ(e, p) = p by definition. If g ∈ H (p), then g−1 ∈ H (p) since
p = σ(e, p) = σ(g−1g, p) = σ(g−1, σ (g, p)) = σ(g−1, p).

Exercise 5.26. Suppose a Lie group G acts on a manifold M freely. Show that
H (p) = {e} for any p ∈ M .

Theorem 5.4. Let G be a Lie group which acts on a manifold M . Then the
isotropy group H (p) for any p ∈ M is a Lie subgroup.

Proof. For fixed p ∈ M , we define a map ϕp : G → M by ϕp(g) ≡ gp. Then
H (p) is the inverse image ϕ−1

p (p) of a point p, and hence a closed set. The group
properties have been shown already. It follows from theorem 5.2 that H (p) is a
Lie subgroup. �

For example, let M = �
3 and G = SO(3) and take a point p = (0, 0, 1) ∈

�
3 . The isotropy group H (p) is the set of rotations about the z-axis, which is

isomorphic to SO(2).
Let G be a Lie group and H any subgroup of G. The coset space G/H admits

a differentiable structure and G/H becomes a manifold, called a homogeneous
space. Note that dim G/H = dim G − dim H . Let G be a Lie group which
acts on a manifold M transitively and let H (p) be an isotropy group of p ∈ M .
H (p) is a Lie subgroup and the coset space G/H (p) is a homogeneous space.
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In fact, if G, H (p) and M satisfy certain technical requirements (for example,
G/H (p) compact) is, it can be shown that G/H (p) is homeomorphic to M , see
example 5.18.

Example 5.18. (a) Let G = SO(3) be a group acting on �3 and H = SO(2) be
the isotropy group of x ∈ �

3 . The group SO(3) acts on S2 transitively and we
have SO(3)/SO(2) ∼= S2. What is the geometrical picture of this? Let g′ = gh
where g, g′ ∈ G and h ∈ H . Since H is the set of rotations in a plane, g and
g′ must be rotations about the common axis. Then the equivalence class [g] is
specified by the polar angles (θ, φ). Thus, we again find that G/H = S2. Since
SO(2) is not a normal subgroup of SO(3), S2 does not admit a group structure.

It is easy to generalize this result to higher-dimensional rotation groups and
we have the useful result

SO(n + 1)/SO(n) = Sn . (5.150)

O(n + 1) also acts on Sn transitively and we have

O(n + 1)/O(n) = Sn . (5.151)

Similar relations hold for U(n) and SU(n):

U(n + 1)/U(n) = SU(n + 1)/SU(n) = S2n+1. (5.152)

(b) The group O(n + 1) acts on �Pn transitively from the left. Note, first,
that O(n + 1) acts on �n+1 in the usual manner and preserves the equivalence
relation employed to define �Pn (see example 5.12). In fact, take x, x ′ ∈ �n+1

and g ∈ O(n + 1). If x ∼ x ′ (that is if x ′ = ax for some a ∈ � − {0}), then it
follows that gx ∼ gx ′ (gx ′ = agx). Accordingly, this action of O(n+1) on �n+1

induces the natural action of O(n + 1) on �Pn . Clearly this action is transitive
on �Pn . (Look at two representatives with the same norm.) If we take a point p
in �Pn , which corresponds to a point (1, 0, . . . , 0) ∈ �

n+1 , the isotropy group
H (p) is

H (p) =


±1 0 0 . . . 0
0
0
... O(n)
0

 = O(1)× O(n) (5.153)

where O(1) is the set {−1,+1} = �2. Now we find that

O(n + 1)/[O(1)× O(n)] ∼= Sn/�2 ∼= �Pn . (5.154)

(c) This result is easily generalized to the Grassmann manifolds: Gk,n(�) =
O(n)/[O(k) × O(n − k)]. We first show that O(n) acts on Gk,n(�) transitively.
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Let A be an element of Gk,n(�), then A is a k-dimensional plane in �n . Define an
n×n matrix PA which projects a vector v ∈ �n to the plane A. Let us introduce an
orthonormal basis {e1, . . . , en} in �n and another orthonormal basis { f1, . . . , fk}
in the plane A, where the orthonormality is defined with respect to the Euclidean
metric in �n . In terms of {ei }, fa is expanded as fa =∑

i fai ei and the projected
vector is

PAv = (v f1) f1 + · · · + (v fk ) fk

=
∑
i, j

(vi f1i f1 j + · · · + vi fki fkj )e j =
∑
i,a, j

vi fai fa j e j .

Thus, PA is represented by a matrix

(PA)i j =
∑

fai fa j . (5.155)

Note that P2
A = PA , P t

A = PA and tr PA = k. [The last relation holds since it is
always possible to choose a coordinate system such that

PA = diag(1, 1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
n−k

).

This guarantees that A is, indeed, a k-dimensional plane.] Conversely any matrix
P that satisfies these three conditions determines a unique k-dimensional plane in
�

n , that is a unique element of Gk,n(�).
We now show that O(n) acts on Gk,n(�) transitively. Take A ∈ Gk,n(�) and

g ∈ O(n) and construct PB ≡ g PAg−1. The matrix PB determines an element
B ∈ Gk,n(�) since P2

B = PB , P t
B = PB and tr PB = k. Let us denote this

action by B = σ(g, A). Clearly this action is transitive since given a standard
k-dimensional basis of A, { f1, . . . , fk} for example, any k-dimensional basis
{ f̃1, . . . , f̃k} can be reached by an action of O(n) on this basis.

Let us take a special plane C0 which is spanned by the standard basis
{ f1, . . . , fk}. Then an element of the isotropy group H (C0) is of the form

k n − k

M =
(

g1 0
0 g2

)
k

n − k
(5.156)

where g1 ∈ O(k). Since M ∈ O(n), an (n − k) × (n − k) matrix g2 must be an
element of O(n− k). Thus, the isotropy group is isomorphic to O(k)×O(n− k).
Finally we verified that

Gk,n(�) ∼= O(n)/[O(k)× O(n − k)]. (5.157)

The dimension of Gk,n(�) is obtained from the general formula as

dim Gk,n(�) = dim O(n)− dim[O(k)×O(n − k)]
= 1

2 n(n − 1)− [ 1
2 k(k − 1)+ 1

2 (n − k)(n − k − 1)]
= k(n − k) (5.158)
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in agreement with the result of example 5.5. Equation (5.157) also shows that the
Grassmann manifold is compact.

5.7.3 Induced vector fields

Let G be a Lie group which acts on M as (g, x) 
→ gx . A left-invariant vector
field XV generated by V ∈ TeG naturally induces a vector field in M . Define a
flow in M by

σ(t, x) = exp(tV )x, (5.159)

σ(t, x) is a one-parameter group of transformations, and define a vector field
called the induced vector field denoted by V �,

V �|x = d

dt
exp(tV )x

∣∣∣∣
t=0
. (5.160)

Thus, we have obtained a map � : TeG → �(M) defined by V 
→ V �.

Exercise 5.27. The Lie group SO(2) acts on M = �
2 in the usual way. Let

V =
(

0 −1
1 0

)
be an element of ��(2).

(a) Show that

exp(tV ) =
(

cos t − sin t
sin t cos t

)
and find the induced flow through

x =
(

x
y

)
∈ �2 .

(b) Show that V �|x = −y∂/∂x + x∂/∂y.

Example 5.19. Let us take G = SO(3) and M = �
3 . The basis vectors of TeG

are generated by rotations about the x, y and z axes. We denote them by Xx , X y

and Xz , respectively (see exercise 5.22),

Xx =
 0 0 0

0 0 −1
0 1 0

 , X y =
 0 0 1

0 0 0
−1 0 0

 , Xz =
 0 −1 0

1 0 0
0 0 0

 .
Repeating a similar analysis to the previous one, we obtain the corresponding
induced vectors,

X�x = −z
∂

∂y
+ y

∂

∂z
, X�y = −x

∂

∂z
+ z

∂

∂x
, X�z = −y

∂

∂x
+ x

∂

∂y
.
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5.7.4 The adjoint representation

A Lie group G acts on G itself in a special way.

Definition 5.17. Take any a ∈ G and define a homomorphism ada : G → G by
the conjugation,

ada : g 
→ aga−1. (5.161)

This homomorphism is called the adjoint representation of G.

Exercise 5.28. Show that ada is a homomorphism. Define a map σ : G×G → G
by σ(a, g) ≡ ada g. Show that σ(a, g) is an action of G on itself.

Noting that adae = e, we restrict the induced map ada∗ : TgG → Tada gG to
g = e,

Ada : TeG → TeG (5.162)

where Ada ≡ ada∗|TeG . If we identify TeG with the Lie algebra �, we have
obtained a map Ad : G × � → � called the adjoint map of G. Since
ada∗adb∗ = adab∗, it follows that AdaAdb = Adab. Similarly, Ada−1 = Ad−1

a
follows from ada−1∗ada∗|TeG = idTeG .

If G is a matrix group, the adjoint representation becomes a simple matrix
operation. Let g ∈ G and XV ∈ �, and let σV (t) = exp(tV ) be a one-
parameter subgroup generated by V ∈ TeG. Then adg acting on σV (t) yields
g exp(tV )g−1 = exp(tgV g−1). As for Adg we have Adg : V 
→ gV g−1 since

Adg V = d

dt
[adg exp(tV )]

∣∣∣∣
t=0

= d

dt
exp(tgV g−1)

∣∣∣∣
t=0
= gV g−1. (5.163)

Problems

5.1 The Stiefel manifold V (m, r) is the set of orthonormal vectors {ei } (1 ≤ i ≤
r) in �m (r ≤ m). We may express an element A of V (m, r) by an m × r matrix
(e1, . . . , er ). Show that SO(m) acts transitively on V (m, r). Let

A0 ≡


1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . .

0 0 . . . 1
0 0 . . . 0
0 0 . . . 0


be an element of V (m, r). Show that the isotropy group of A0 is SO(m−r). Verify
that V (m, r) = SO(m)/SO(m − r) and dim V (m, r) = [r(r − 1)]/2+ r(m − r).
[Remark: The Stiefel manifold is, in a sense, a generalization of a sphere. Observe
that V (m, 1) = Sm−1.]
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5.2 Let M be the Minkowski four-spacetime. Define the action of a linear operator
∗ : �r (M)→ �4−r (M) by

r = 0 : ∗1 = −dx0 ∧ dx1 ∧ dx2 ∧ dx3;
r = 1 : ∗dxi = −dx j ∧ dxk ∧ dx0 ∗ dx0 = −dx1 ∧ dx2 ∧ dx3;
r = 2 : ∗dxi ∧ dx j = dxk ∧ dx0 ∗ dxi ∧ dx0 = −dx j ∧ dxk;
r = 3 : ∗dx1 ∧ dx2 ∧ dx3 = −dx0 ∗ dxi ∧ dx j ∧ dx0 = −dxk;
r = 4 : ∗dx0 ∧ dx1 ∧ dx2 ∧ dx3 = 1;

where (i, j, k) is an even permutation of (1, 2, 3). The vector potential A and
the electromagnetic tensor F are defined as in example 5.11. J = Jµdxµ =
ρdx0 + jk dxk is the current one-form.

(a) Write down the equation d ∗ F = ∗J and verify that it reduces to two of the
Maxwell equations ∇ · E = ρ and ∇ × B − ∂E/∂ t = j .

(b) Show that the identity 0 = d(d ∗ F) = d ∗ J reduces to the charge
conservation equation

∂µ Jµ = ∂ρ

∂ t
+∇ · j = 0.

(c) Show that the Lorentz condition ∂µAµ = 0 is expressed as d ∗ A = 0.


