5 APPLICATIONS IN PHYSICS

A Thermodynamics

51 Simple systems

We confine our attention at first to a one-component fluid, for which
the equation of conservation of energy is

8Q = PAV + dU, (5.1)
where U is the internal energy of the fluid and 8Q is the heat absorbed as the
fluid does work PdV and changes its energy. We shall interpret this equation as a
relation among various one-forms in the two-dimensional manifold whose
coordinates are (¥, U), on which the function A(V, U) is defined (called the
equation of state). Then since dV and dU are one-forms, so is gQ. But is 5Q an
exact one-form? That is, can one find a function Q(V, U) such that §Q = dQ? If
this were true, then one would have aEQ = 0, which would mean

op dav + op dU | A dv
vy aU )y

0P\ ~ ~
= ('BTJ)VCIU/\ dav.

0 = dPAdV

il

(Subscripts on derivatives indicate which variable is fixed during differentiation.)
Thus, a function Q can exist only if (0P/dU)y, vanishes everywhere: this would
be a strange fluid indeed!

Since 5Q is a one-form in a two-space, its ideal is automatically closed, so by
Frobenius’ theorem (§4.26) there must exist functions T(U, V) and S(U, V)
such that Q = T'dS. Thus, we define the temperature and entropy functions
for the single<component gas in thermodynamic equilibrium simply as a repre-
sentation of the one-form in equation (5.1):

. TdS = PdV+ dU. (5.2)
It is important to understand that this is a purely mathematical definition of T’
and S, and it has no relation to the second law of thermodynamics, which we
will consider in a moment. No mathematical identity of this sort would hold for
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a multi-component fluid. (We shall see that the second law of thermodynamics is
equivalent to requiring gQ = TdS for composite systems. Because this is not an
automatic identity, the second law is a physical law: it restricts the possible
mathematical nature of physical systems.)

52 Maxwell and other mathematical identities
Taking the exterior derivative of (5.2) gives

dTAdS = dPA dV. (5.3)

Suppose we write T = T(S, V), P = P(S, V). Then (5.3) gives (since dsads=o0,
dV A dV=0):

aT\ ~  ~ 3P\ ~ - oP\ ~ -
) dvads = (=] dsadr = — =] dva ds.
(aV)s " (as)v " (as)v nds

From this we conclude

oT oP
£,

which is known as one of the Maxwell identities. Similarly, by writing S = S(T,
V),P=KT, V), we can deduce

as oP
ov). = () 59

another Maxwell identity. By dividing (5.2) by T and then taking the exterior
derivative we get

I~ ~ P~ 1~ ~
T dP A dV_F dT A dV_F dT A dU = 0.
By writing U= U(T, V),P = P(T, V), we get
1

1P\ ~. ~ P~ U\~
— 55| ITA v -5 dTA IV —55 | =
T(BT)V ANV dTA g (aV)TdT’\ =20

X opP aUu
(), - (7). o

Exercise 5.1
Derive the identity

o), _ (%) (v} _(22) (v
T(ﬁ)s_P" (aT)s(as)T (as)T(aT)s .7

by multiplying (5.2) by 1/P and differentiating,
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Another important relation which follows easily from the use of forms is

(ap) (g;) (as) —1L (5.8)

which is equally true of any set of three of (P, V, U, T, S). We prove this by
writing
T =T1@,S),S = ST,P),P = HI,S), (59)

which is possible since the manifold is two-dimensional. Then we have the

successive identities:
oT
dp
( P ) AdS

g
.

from which follows (5.8). Notice that the derivation here relies only on the
ability to write (5.9), so that it is really an identity among any three functions
on a two-dimensional manifold.

The ease with which the Maxwell identities and (5.8) can be derived using
forms is an illustration of the natural way in which they fit into thermodynamics:
the one-forms (~1P, ds , etc. are the mathematically precise substitutes for the
physicists’ rather fuzzier concept of the infinitesimals dP, dS, etc.

dT A dS

53 Composite thermodynamic systems: Caratheodory’s theorem

We now consider composite thermodynamic systems, the parts of
which may exchange energy with each other and with the outside world. In this
case the law of conservation of energy is (for a system with NV parts)

50 = P,dV, + dU, + P,dv, + dU, +
N
i=1

We regard this as a relation among one-forms on a 2/N-dimensional manifold
whose coordinates are (V;, U;;i =1, ...,N), and we assume that each P; can be
expressed as a function of these coordinates. The question arises of whether one
can define an entropy and temperature for the system as a whole, i.e. whether T
and S exist such that

. 50 = TdSs. (5.11)
This equation is just the statement that 8Q is integrable (in the sense of the
Frobenius theorem). Now the Frobenius theorem tells us that the necessary and
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sufficient condition for this to be true is EEQ A gQ = 0. It is easy to see from
(5.6) that this will not generally be true, so we can conclude that for a general
interacting system there is no global temperature or entropy function. But the
situation can be different for an equilibrium system, because the conditions for
mechanical and thermodynamic equilibrium among the constituent parts restrict
the problem (we assume) to a submanifold of the 2/N-dimensional one. We shall
from now on let the world ‘manifold’ refer to this equilibrium submanifold, and
examine the possibility that gQ is integrable in it from the point of view of
Caratheodory.

If 5Qis integrable, then every point of the manifold is on one and only one
integral submanifold; these submanifolds are defined by S = const. None of these
surfaces intersect. Therefore, starting at one point, it is not possible to reach an
arbitrary point of the manifold along a curve on which 6Q is everywhere zero. In
other words, if an entropy function exists it is not possible to reach every equi-
librium state of the system along an adiabatic path of equilibria. The physically
interesting question is whether the converse is true: if we know that not every
state is reachable along a path for which 8Q = 0, can we say that §Q is inte-
grable? This is interesting because one version of the second law of thermo-
dynamics asserts that it is impossible in a closed system to transfer heat from a
" colder to a hotter body without making other changes as well. By a closed sys-
tem we mean one for which §Q = 0, so that the second law tells us that not
every state can be achieved with 6@ = 0. So does the second law imply the exist-
ence of an entropy function? Caratheodory’s theorem says it does.

What we shall prove is that if §Q is not integrable then all points in the neigh-
borhood of some initial point P are reachable from P on a curve which annuls
5Q. Since gQ is not integrable, the version of Frobenius’ theorem given in §4.26
shows us that there are at least two vector fields 7 and W for which §Q(7)
= §Q(W) = 0 in a neighborhood of any point P, but 5Q([ 7, W]) # 0 at P. That
is, the one-form 8Q defines at each point P a subspace K p of T'p, the vectors of
which annul 5Q; the nonintegrability of 5Q means that vector fields everywhere
in Kp do not form a hypersurface: at least one of their Lie brackets does not lie
in K p (see figure 5.1). Because annulling 5Q is only one equation, K p has

Fig. 5.1. The tangent hyperplane K p contains the vectors annulling gQ
but not all of their Lie brackets at P.

v, M

o)
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dimension n — 1, where n is the dimension of the equilibrium manifold. Now,
recall the exponentiation notation for the Taylor series introduced in §2.13. If
we take any vector field U which is in Kp at all points P, and we move along it a
parameter distance € from P, we reach the point whose coordinates are
x' = exp (e0)x'|p, where we use U as a derivative operator on the function x*
along the curve. The set of all points in a small neighborhood of P reachable in
this way may be called exp (eKp): it is the representation in the manifold of the
vector space K p. This set of points is locally like a piece of an (n — 1)-dimensional
hypersurface. We shall show that, by following the curves of ¥ and W defined
above, we can reach points ‘above’ or ‘below’ this ‘hypersurface’ — i.e. that we
can reach all points near P. The trip we make is the following: we move first a
distance € along 7, then € along W, then — ¢ along ¥, and finally — e along W.
This takes us to (cf. equation (2.6))
xi = e—eWe—e‘_/eeWeerilp

= (1+ e2[W, V] + 0(e®))x'|p. (5.12)
This means that we wind up almost back at P, but a parameter distance €2 away
from it along [V, W]. This point is not in exp (€K p), since {7, W] is not in K p.
It is on one side of exp (eKp); to finish on the other side we would have trav-
elled first on W, then on V. Now, our path was along ¥ or W everywhere, so it
was adiabatic: §Q = 0 everywhere. It is clear, therefore, that if EQ is not integ-
rable, all states of the system will be reachable along adiabatic paths. This proves
that the second law requires integrability of §Q in the equilibrium manifold and
the existence of an entropy function for composite systems in equilibrium.

B Hamiltonian mechanics

54 Hamiltonian vector fields

The Hamiltonian version of a dynamical system of equations begins
with the Lagrangian #{q, q ;) for some dynamical variable q(¢). The momentum
p is defined as

p = 3Z/9@q,.), (5.13)
and the Hamiltonian H as

H = pq:— % = H(p,q). (5.14)
The dynamical equation

d 0¥ o0&

———— =0, :

dtaq,;, 9q v (5.15)

and the definition of p can be written, respectively, as
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H dq
2= d — =—. 5.16
aq dr’ p dt (.16)

We now make a geometric picture of Hamiltonian dynamics by defining a mani-
fold M called ‘phase space’, whose coordinates are p and q. On M we define the
two-form

) & = dg A dp. (5.17)
Consider a curve {g = f(t), p = g(¢)} on M which is a solution of (5.16). Its tan-
gent vector, U =d/d¢t =f, 3/dq + g ; 9/3p, has the property

¢ £56 = 0, (5.18)
as we shall now prove. Since dés = 0, we have from (4.67)
£56 = d[a(@)]. (5.19)

But since & = dgq ® ap -—ap ® aq,we have
&(0) = (dgq, 0) dp—(dp, 0 dq

= —dp——dq. 2
vl Al (5.20)
On the other hand, since f and g satisfy (5.16), we have
_ o0H ~  oH - ~
&U) = —dp+—dg = dH. (5.21)
ap aq

Therefore d[&3(T7)] vanishes, establishing (5.18). A vector field U that satisfies
(5.18) is called a Hamiltonian vector field.

Exercise 5.2
(a) Prove that if U is a Hamiltonian vector field, there exists some H(p, q)
such that equations (5.16) are satisfied along the integral curves of U.
(b) Prove that Hamiltonian vector fields form a Lie algebra.

By exercise 5.2(a), we interpret U as a tangent to the solution curves in phase
space if U is Hamiltonian. Notice that the system is conservative, since (5.16)
implies

_dH
£gH = Frai 0. (5.22)
5.5 Canonical transformation
Now the coordinates p and q are not unique. We define a canonical
transformation as one which leaves & in the same form. That is, new coordinates
P =P(q,p)and Q = Q(q, p) are called canonical if
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dgadp = dgadP. (5.23)
The necessary and sufficient condition for this is
00 0P 9Q oP
—_———— 1. 24
(aq op op aq) 329
One such transformation is Q = p, P = —q. A less trivial one is found if we

follow a procedure similar to the one we used to deduce the Maxwell identities
in thermodynamics: we write p = p(q, @), P = P(q, @) and find from (5.23) that

op/oQ = —oP[aq. (5.25)
So if we take an arbitrary function (g, Q) and define
= 0F/dq, P = —0F/oQ,
then (5.25) is satisfied identically. Thus, F(q, Q) is said to generate a canonical
transformation. Since we could have chosen, instead of (g, Q), the pairs (g, P),

(p, @), or (p, P) to be independent in (5.23), there are clearly four types of such
generating functions for canonical transformations. They are explored more

fully in Goldstein (1950) (see bibliography).

56 Map between vectors and one-forms provided by &

One of the most important features of this geometrical point of view on
Hamiltonian dynamics is that & can be cast in a role similar to that which a
metric plays on Riemannian manifolds: it provides an invertible 1-1 mapping
between vectors and one-forms. If ¥ is a vector field on M, we define a one-form
field

= o(V), (5.26)
with components
Py = wyV? 2D

Similarly, given a one-form field & we define a vector field & as the (unique)
vector such that

= &(a). (5.28)

Exercise 5.3
Prove that (V, V) =0, so that & is not suitable asa metric.

Exercise 5.4
Prove that if @ = fdg + g dp, then

a=g——f—. (5.29)
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Exercise 5.5

Prove that X is a Hamiltonian vector field on M if and only if Xisan
exact one- form i.e. if and only if there exists some function A such
that X = dH, or X = dH.

5.7 Poisson bracket

Suppose there are two functions f and g on the manifold, and we define
the vector fields X = df and X, = dg. Then consider the scalar

{f.8} = &(X;, X,) = (df, Xp. (5.30)
Since & = Eq®(~ip—(~1p® aq,wehave

Xe=T—r—T7— , .

¢ oqdp opdq (531)

which can be established by verifying that &(X,) = dg. Therefore we have

og of og of
g} = (df, Xy = =L == :
{f.g} = (df, 3qp p3q
This is what is usually called the Poisson bracket of the functions f and g. The
definition (5.30) gives it a geometrical significance, and shows that the Poisson

bracket is actually independent of the coordinates. It depends only on &.

Exercise 5.6
(a) Defining X;; = dH, show that for any function K,
{K,H} = Xy(K) = dK/dt, (5.32)

where ¢ is the parameter such that X;; = d/dz. Thus, the Poisson
bracket of a function with the Hamiltonian gives the time-derivative of
that function along a solution curve. In particular, constants of the

motion have vanishing Poisson bracket with H.
(b) Show that the Poisson brackets satisfy the Jacobi identity

for any C? functxons f,g, .
(c) Show from this that

[Xr, X,) = — X0}, (5.34)
so that the Hamiltonian vector fields form a Lie algebra.

58 Many-particle systems: symplectic forms
In general one deals with systems which have more than one degree of
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freedom, so there are more than one g and p. A particle in three dimensions has
3 gs and 3 ps, so phase space is 6-dimensional. A system containing /V such par-
ticles has a 6 N-dimensional phase space. If we consider now a general system with
n degrees of freedom, then phase space is 2n-dimensional, and all the above
results still hold if we take the two-form & to be

¢

& =) dg*ndp,. (5.35)

Such an & is called a symplectic form, and then phase space is a symplectic
manifold.

(@

(b)

Exercise 5.7

Show that f'is a constant of the motion if X, = (df) is an invariant of
H,ie.

£};fo = 0. (5.36)
(Refer to exercise 5.6.)

Define a volume-form G for phase space by
0= OA..AD, (537)
N —— s’
n times

where 2n is the dimension of the space, Show that G # 0 and that a
Hamiltonian vector field U is divergence-free in this volume measure.
Said another way, this volume in phase space is preserved by the time-
evolution of the system. This is known as Liouville’s theorem.

Exercise 5.8

We now prove the remarks made in §3.12 about the relation between
Killing vectors and conserved quantities. For particle motion the
coordinates of phase space are {g*, p, } = {x', p; = mv;} and the
Hamiltonian is H = (1 /2m)gijpipj + ®(x*). Prove that if T is a Killing
vector and if ® is constant along U, then its conjugate momentum,

pg = U'p;, is a conserved quantity. Hint: using exercise 5.7, define X,
as the vector field in phase space whose space components equal & and
whose momentum components vanish. Show that

£§,H = (0,
and find f from equation (5.31).

59.

Linear dynamical systems: the symplectic inner product and conserved
quantities
Even more strikingly simple ways of formulating conservation laws are
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possible for linear systems, by which we mean dynamical systems whose Hamil-

tonian has the form
n

H= Y (T*%p,pp+ Vapa*q®), (5.38)
A,B=1

where T4B and V5 are independent of the p, s and g*s. This system is called
linear because the equations of motion are linear in {qA, Pal:

d oH

% = 3 _§VABqB, (5.39)
dg*® oH AB

—— == : 5.4
ar pa %-.T Ps (5.40)

Notice that we can take T4B = TBA and V, ; = V3, since the antisymmetric
part of, say, T4B would make no contribution to H when contracted with the
symmetric expression p4ppg.

The linearity of the system ensures that if {g}), P14 } and {8, P2)a} are
solutions then so is {aqﬂ) + Bqé), aP(1ya + Bp(z)a } for arbitrary constants a and
B. Thus, this phase space is not just a manifold; it has a natural vector-space
structure as well. A vector space is, of course, a kind of manifold, since it has a
map into R", but it is a manifold which can be identified with its tangent space
at every point. That is, since a curve in a vector space is a sequence of vectors,
the tangent to the curve is just the derivative of the vectors along the curve,
which is another vector, i.e. another element of the vector space. A vector space
is its own tangent space. More than this, all the tangent spaces Tp have a natural
identification with each other: we are able to speak about vectors in different
Tps as being equal or not, simply by whether or not their components are equal.
(This means a vector space is a flar manifold: see chapter 6.)

Since a point in phase space is a vector, we can use the symplectic form & to
define an inner product between elements of phase space. If Y, is the vector
whose components are {g}), Paya A =1,...,N}andif ¥, similarly has
components {q¢,, P4 }, then their symplectic inner product is defined as

(Y, ¥py) = AZ @8)Pya — TEyPwy4)- (5.41)

If ¥;)(¢) and ¥5(7) are solution curves, then their symplectic inner product is
independent of time ¢. To prove this, we simply substitute the equations of
motion into the expression for dé( ¥y, ¥;))/d¢ (sum on repeated indices here):

d _ - d d
—a(Yyy, Yipy) = — (g8 +q8) —
ar Yy, Yizp) i @Gypa + a0y FRAON

d d
- a'; (‘Ia))Pu)A - CIf‘z) d_t Pmya
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A
= T*%ppPa + Vasdindty ~ T*"PwaPws
— Vapa&aQy-
From the symmetry of T2 and V, 5 we conclude:

d ..o o
E;G’J(Ym, Y»)=0 (542)

if ¥3y(¢) and ¥;)(2) are solutions.

The symplectic inner produce enables us to define in an elegant way certain
conserved quantities associated with solutions. At first sight this may not be
obvious: although the symplectic inner product is conserved, the symplectic
inner product of a solution with itself vanishes identically. The trick is to use
an invariance of the system (i.e. of T2 and V) to generate from one solution
Y another closely related one. For example, suppose T2 and V, g are indepen-
dent of time. Then the equations of motion tell us that if ¥(¢) is a solution, so
is dY/d¢. We define the canonical energy £, of the solution ¥ to be

) g
* E(P) = w( " ,Y). (5.43)

It is easy to verify that £,(Y) is just the value of the Hamiltonian on the
solution Y.

Other conserved quantities are just as easy to derive. It usually happens that
T4B and V,p depend on the coordinates {x’} of the manifold in which the
dynamical system is defined (Euclidean space for nonrelativistic dynamics). If,
as in exercise 5.8, there is some vector field U for which

£5T48 = 0 = £5V,3, (544
then there is a conserved quantity associated with U. (In computing £5T48 it is
important to distinguish between indices 4, B which refer to coordinates in
phase space and the tensorial character of 42 on the original manifold. The
quantities T2 may be scalars, or tensors on the original manifold, depending
upon whether the quantities g are scalars or tensors of higher order. The
indices 4 and B are lzbels; they do not imply that 742 should be treated as a
tensor of type (3) when computing the Lie derivative with respect to U, because
U s a vector field in the original manifold, not in phase space.) As before, if ¥ is
a solution, then so is £5 Y. (Again the same remark applies: this is a derivative in
the original manifold, not in a phase space.) We therefore define the (conserved)
canonical U-momentum
. PHY) = &(£5Y, V). (5.45)
The reader is invited to try a simple example, such as the one given in exercise
5.8, to verify that the usual conserved quantity does indeed appear.

Although our discussion has been confined to systems with a finite number
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(V) of degrees of freedom, the formalism generalizes in a straightforward way to
continuous systems, such as wave equations. Readers familiar with the Klein-
Gordon equation may recognize the symplectic inner product: the integral of
the conserved Klein-Gordon current density y*y — yy* is just (to within con-
stant factors) &3(Y*, ¥). A discussion of the canonical conserved quantities for
waves in fluids, with application to questions of stability, can be found in
Friedman & Schutz (1978) (see bibliography).

5.10 Fiber bundle structure of the Hamiltonian equations

Our original statement in §5.4 that we defined phase space to be the
manifold whose coordinates are p and g, hid a lot of interesting and important
structure. Suppose a dynamical system has the N coordinates {g’} corresponding
to its V degrees of freedom. These define a manifold called configuration space
M, and the evolution of the dynamical system in time is described by a curve
q'(¢) in M. The Lagrangian < is a function of ¢ and dg‘/dt, and so is a function
on TM, the tangent bundle of M. We now show that the momentum

pi = 3Z[3(@' »), (5.46)
is a one-form field on M, a cross-section of the cotangent bundle T*M. We show
this by its transformation properties. Let us define new coordinates for M

Qi' - Qi'(qi)' (547)
Then the new momenta are

3Y 0L 3",

20", 2a".20’
Now, both qk., and Q’ ',, are elements of the fiber over any point P, and coordi-
nates on this fiber undergo a natural change induced by (5.47). That is, if ¥ is
any vector at P its components change by

V= N VE VR = AR
This applies as well to the velocity vector qk,,:

Py = (5.48)

B _ Ak, 3q" — Ak
q = N0 t:a_Q,"_t = A%
Using this in (5.48) gives
Pp = A%p,, : (549)

so that the momentum is indeed a one-form.

It follows that phase space, whose coordinates are {q’, p;}, is nothing but the
cotangent bundle T*M, and the Hamiltonian is a function on this bundle. What
is more, the symplectic form,

@ = aqi/\ apiy
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summation convention employed) is independent of the coordinates in M. The
y p
transformation for it is

0" = /(¢ =do" = N .dg',

Pj’ = Akj'pk S al)l’ = Akj',lpk aq' + Akj'apk.
(Remember that this d operator acts in T*M, not in M, and that the functions
A are functions only of the coordinates of M). Then we find

Jj y

(5.50)

dQ7 A APy = N A% py dg' A dg' + N A% dg A dp. (5.51)
Now we also have

NNfy = 8F=> NA% = — N AR
So (5.51) becomes

do’' a dp; = - Aj'i’,A",-'pk dg' A dg* + dg* A dp;.
The first term on the right-hand side vanishes because

Ny = LQJz

' 90q'dq

is symmetric in i and ] and is contracted with the antisymmetric form dg’ A dg'.
Therefore & is independent of the coordinates of M and is a natural structure on
the cotangent bundle T*M. Moreover, T*M is always orientable, since the
volume-form & defined in exercise 5.7(b) is nowhere zero.

Clearly, although our examples treated the fiber structure as trivial (i.e. as a
product of the g-space and p-space), it is possible to have nontrivial manifolds M
and fiber bundles 7*M, in which all the coordinate-dependent formulae above
are valid only in local coordinate patches. Even an example as simple as that of a
bead constrained to move on the surface of a sphere has a nontrivial bundle
structure for phase space, as we pointed out in §2.11.

C Flectromagnetism

5.11 Rewriting Maxwell’s equations using differential forms
Maxwell’s equations, written in conventional form but with units where
cC=lg=¢€g=1,are

v x B—%E = 4nJ, (5.52a)
d .

VXE+—B =0, (5.52b)

VB =0, (5.52¢)

V-E = 4mp. (5.52d)
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In writing these equations we have, of course, used the curl and divergence
operations of ordinary flat three-space.

What we shall show below is that there exists a way of writing these equations
using only the concepts of the metric and the exterior derivative. First we rewrite
the equations in their relativistically invariant form™ by first defining the
Faraday two-form F, whose components are
0 —E, —E, -—E,

E, 0 B, —B,
E, -—B, 0 B,
E, B, —B, 0

* (Fu) = (5.53)

(Here, as in §2.31, Greek indices run over ¢, x, y, z.)

Exercise 5.9
Prove that under a spatial rotation F,, transforms in such a way that
both E and B transform as three-vectors.

" In terms of the Faraday tensor, Maxwell’s equations take a particularly simple
form. For instance, the four equations (5.52b, c) are just

Fiuvy = 0=>dF = 0, (5.54)

where we have used the square-bracket notation to denote antisymmetrization.

Exercise 5.10
() Prove that (5.54) constitutes four linearly independent equations.
(b) Evaluate (5.54) for the components of F given by (5.53) and prove
their equality to (5.52b, c).

As for the rest of the equations, if we introduce the special-relativistic metric
whose components in this coordinate system are

-1 0 0 O
0 1 0 O

= ) 5.55

(g;w) 001 0 ( )
0 0 0 1

T For readers to whom this is unfamiliar, recall that Maxwell’s equations are the
correct theory for light and that special relativity was invented to explain certain
properties of light, so the theory is already relativistically correct. All we do here
is to find a convenient form for the equations.
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then we can define an antisymmetric (3) tensor F whose components are
FHY = g‘“"g"ﬁFaﬁ,
0 E. E, E,

F*) = (5.56)

Exercise 5.11
Prove equation (5.56).

Then the remaining equations are
F¥ = 4nJ*, (5.57)

where we have defined the current four-vector to have components {J! = p,
Ji=Q) fori=x,y,z}.

Exercise 5.12
Prove that the four equations (5.57) are just the same as (5.52a-d).

So far we have stuck to Lorentz coordinates because, while (5.54) is
coordinate-independent, (5.57) is not a valid tensor equation in every coordinate
system (recall exercise 4.15). On the other hand, we saw in exercise 4.23 how to
define the divergence of an antisymmetric (3) tensor (two-vector) if we have a
volume-form. Because we have a metric, and because {3/d¢, 3/dx, 3/dy, 3/0z}
form an orthonormal basis in this metric, the preferred volume-form is

® = dradxa ay/\az.

The following exercise develops the argument.

Exercise 5.13
(a) Define the two-form *F to be the contraction

ie.

(*ﬁ);w = %"‘-’aﬁquaﬁ-

This is, of course, the dual of F introduced in chapter 4. Find the
components (*F),,, in terms of E and B.
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(b) Define the three-form *J by the contraction

T = &), (5.59)
and show that (5.57) is equivalent to

d(F) = 4n*J. (5.60)
By exercise 4.23 this is also

div,F = 4nJ. (5.61)

Note the great formal similarity between the two halves of our new form for
Maxwell’s equations:
) dF = 0, (5.54)
) d*F = 4n*J. : (5.60)
Note also that they now are completely coordinate-free, so they have this form
in any manifold with metric (because the metric was needed to obtain *F from
F). The similarity between (5.54) and (5.60) is deep in Maxwell’s equations.
Note that the * operation on F simply results in an exchange of E and B (cf.
exercise 5.13(a)), and recall also that J was the electrical current density. If there
were magnetic monopoles we would have two current densities, J, and Jy, , and
Maxwell’s equations would take the symmetric form

dF = an*J,,, d*F = an*J.. (5.62)

Exercise 5.14

(a) Prove (5.62).

(b) Prove by exterior differentiation that equation (5.60) guarantees con-
servation of charge, i.e. that ‘

div(/) = 0. (5.63)
Exercise 5.15
Establish the integral theorem for charge in the following way.

(a) Choose any oriented three-dimensional hypersurface # and restrict
(5.60) to it. Prove that restriction commutes with exterior differen-
tiation, i.e. that
dCF)lgel = (I*F)lge.

(b) Choose a region @ of #, with boundary 3% Integrate the restriction
of (5.60) over @ and apply Stokes’ theorem to find (appropriate
restrictions implied)

f oL e
9 4n Jag
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(c) In the case where # is a hypersurface ¢ = const in Minkowski space-
time and 3 Zis a sphere, show that this gives the total charge in & as an
integral of the normal component of the electric field over 9.2.

512 Charge and topology

Since we can now formulate Maxwell’s equations on any manifold with
a metric, we can mention two attempts which have been made to resolve the
puzzling question ‘what is charge?’ by answering ‘charge is topology’. The first
explanation, due to J. A. Wheeler (1962), is extremely simple. Consider figure
5.2,1in which a hypersurface ¢ = const of some hypothetical spacetime is
depicted. The lines drawn are integral curves of E. There is no charge density
anywhere, and these integral curves are either closed (threading through the
handle, out one hole, and down the other) or infinite (though they pass through
the handle). Consider what an experimenter who measures E on the sphere S sur-
rounding one hole will deduce: the integral fg ﬁls will certainly not vanish (E is
outward-pointing all over §), and he will say the hole has positive charge. Like-
wise, a sphere around the other hole would give it negative charge, of exactly the
same magnitude. (The calculation of exercise 5.15 fails because S does not divide
the manifold into an inside and outside, cf. figure 4.10.) So this is a model for
‘charge without charge’, which has the bonus of explaining why negative charges
equal positive charges. It has two drawbacks: first, no-one pretends to have a
solution to, say, Einstein’s equations which gives a geometry for spacetime that
looks like this; and second, it is perhaps philosphically displeasing to think of

Fig. 5.2. A ‘wormhole’ or handle attached to a three-dimensional mani-
fold with one dimension suppressed. Lines of force can thread through
the handle, come out, and go backdown again to give each ‘mouth’ the
appearance of charge in a charge-free space.
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two charges, which may be separated by huge distances, linked together by their
own special ‘handle’.

The second explanation is more sophisticated, using a manifold made non-
orientable by a special construction of the handle. This is due to Sorkin (1977)
(reference in the bibliography of chapter 4). In this model, both holes have the
same charge and so may be assumed to be close together, forming what to an out-
side observer looks like a single charge of twice the strength of each hole. Here
the breakdown in exercise 5.15 occurs because the manifold is nonorientable.
This model overcomes the second objection to Wheeler’s picture, but not the
first. And neither model explains why two unrelated charges should be equal.
Nevertheless they illustrate a maxim which is becoming more convincing all the
time: there is more to theoretical physics than just itslocal differential equations!

5.13 The vector potential

The existence of a ‘vector potential’ for Maxwell’s equations follows
naturally from (5.54). Since Fis a closed two-form, there is a one-form 4 such
that
. F=d4 (5.64)
in some neighborhood of any point. This one-form can be mapped into a vector
by the metric, and this is called the vector potential. A more natural concept is,
of course, the one-form potential. Note that A is not uniquely defined: A=4
+ af, for an arbitrary function f, also gives Fin (5.64). This is a gauge transfor-
mation. Note also that if magnetic monopoles exist, then dF does not vanish
everywhere. By our discussion of exact forms in chapter 4, it will be possible to
define 4 only in simple regions which contain no magnetic monopoles. In par-
ticular, in a region of spacetime containing the world-line of a magnetic
monopole, the one-form potential cannot be consistently defined everywhere.

Exercise 5.16

(a) Show that, if a one-form potential A exists, then in nonrelativistic
language it is related to the scalar potential ¢ and the vector potential
A'by ¢ = Ay, A (vector potential) = — A; (one-form), where indices
refer to the coordinates of (5.52).

(b) Show how ¢ and A’ defined in (a) change under a gauge transformation.

(c) To illustrate the problems caused to the one-form potential A by mag-
netic monopoles, consider a situation with charges and no monopoles,
but in which one defines a one-form potential & for *F by the equation
F = da.
(By the duality between electric and magnetic fields under the
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*.operation, & should have the same problems with electric charge as A
has with magnetic.) Write down Maxwell’s equations in terms of @ and
show that @ exists in regions that contain no charge and that can

be shrunk to zero. Show this by finding an explicit solution for & in
the case of a single isolated static charge q.

5.14  Plane waves: a simple example

Plane electromagnetic waves, as is well-known, travel at the speed of
light. Consider a particular Faraday tensor F%E_all of whose components are
functions only of u =t — x (recall that we are using units in which ¢ = 1):

F*F = A%F(t —x) = A*F(u). (5.65)
W}Elt are the conditions that this satisfy the empty-space equations dF =0,
d*F = 0? From (5.65) we have
dF = d(F,,dx* A dx¥) = Fd(F,) A dx*a dx”
, %(EA#,,/du)au A dx* A dx”.
From (5.53) it is easy to deduce

f

~n

d N d ~ o~ o~
dF = [—@B,—E))dtrndxandy+ —(B,)dtAadynadz
du du

d ~ s~ d . o~ o~
+—(—By)dxandyadz+—(—B, —E;)dtandxndz|,
du du

the vanishing of which implies (ignoring any static fields)
B, =E,, B, = —E,, B, = 0. (5.66)

Exercise 5.17
Show that the equation d*F = 0 implies

B,=E, B,=—E, E,=0. (5.67)

By this exercise we see that a plane electromagnetic wave has transverse electric
and magnetic fields (i.e. perpendicular to its direction of propagation), and that
these are determined by two independent functions, E,,(«) and E,(u), corres-
ponding to the two independent polarizations of the wave.

D Dynamics of a perfect fluid

5.15  Role of Lie derivatives
By a ‘perfect’ fluid we mean one which has no viscosity and moves
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adiabatically, i.e. with no heat conduction. It is well-known that such a fluid
obeys certain local conservation laws: during its motion any fluid element has a
constant mass, entropy, and — in some sense — vorticity. These conservation
laws are usually derived using ordinary vector calculus, and can seem rather
complicated. From the geometric point of view, the existence of a flow suggests
immediately the use of the Lie derivative, and we now show that the local con-
servation laws become much more transparent when framed with Lie derivatives.

5.16 The comoving time-derivative
We have seen in exercise 4.22 that the equation of continuity, whose
conventional form is

ap —
— + di V) =
Py iv(p?)

takes the form

ot

where & = dx A dy A dz is the volume three-form of Euclidean space. The
operator (3/d¢ + £7) is a natural time-derivative operator following a particular
fluid element. To see this, think not of space but of the four-dimensional mani-
fold called Galilean spacetime, whose coordinates are (x, y, z, ) (see §2.10).
Any hypersurface ¢ = const is in fact Euclidean space. Then the motion of a fluid
element describes a curve on spacetime, called the world-line of the element. In
figure 5.3, two such world-lines (44" and BB') are drawn. For an infinitesimal
change in time d¢, a point on this curve moves from the point with coordinates
(x,y,z,1) to the one with coordinates (x + V*dt,y + V¥dt, z + VZ3dr, t + dr).
If we call U the tangent to the world line in the four-dimensional manifold, then
it clearly has components (V*, V¥, V*, 1). The time-derivative following a fluid
element is simply £g, the natural derivative along the world-line of the element.

] (2-+ £‘7)(p<b) =0, (5.68)

Flg 5.3. Two moments of Galilean time and the world lmes AA' and
BB' of two particles. The vector U is the tangent to A4’ parameterized
by time ¢.
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Exercise 5.18
Using equation (2.7) show that

_ 0 _
LgW = (a_t+ £‘-,) W, (5.69)
where W is any vector field in the hypersurface ¢ = const, i.e. any
purely spatial vector field (W! = 0).

Equation (5.69) clearly holds if W is replaced by any (§) tensor which is entirely
in the three-space ¢ = const. It might seem that the notion of a tensor being
purely spatial is not invariant under coordinate changes in the four-dimensional
manifold, since it simply says that all the -components of the tensor vanish.
This is acceptable here, however, because of the rigid distinction made in non-
relativistic physics between space and time.

Exercise 5.19
The most general kind of coordinate transformation which remains
‘natural’ to the fiber-bundle structure of Galilean spacetime (§2.10) is

t' = g(p); x = f"'(x", 1,i=1,2,3. (5.70)
Show that under this transformation a (§) tensor A with no time-
components (A( . .., &%, ...)=0)remains one with no time-

components, and a (3) tensor B with no spatial components (i.e. only
B, is nonzero) remains one with no spatial components.

5.17 Equation of motion

The condition that the flow be adiabatic means that the total entropy
of a fluid element must be conserved. It is convenient to work with S, the
specific entropy (entropy per unit mass). This must clearly be constant during
the flow:

d
. —+£5|S = 0. .
&t £»S 0 (5.71)

The Euler equation of motion for a fluid whose pressure is p and which
moves in a gravitational field whose potential is ¢ can be written in Cartesian
coordinates as

0 ) 1o 9

—Vi+V —=Vi+——p+—o =0. 72
ot ox’ p ox' P (5.72)
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There are two reasons that this equation is valid only in Cartesian coordinates:
first, some indices i are up and some are down, and only in an orthonormal basis
does this make no difference; second, the t§rm aVi/axj transforms like a (})
tensor only if the transformation matrix A’ is independent of position (exercise
4.5), which is true for a transformation from one Cartesian frame to another.
The usual way to adapt it to arbitrary coordinates is to introduce the covariant
derivative, which is defined in the chapter on Riemannian geometry. Here we
show that there is a different, and very instructive, approach. First, note that the
first two terms of (5.72) can be written as

Wi,
ot ox’’
since there is no difference between V¥ and V; in Cartesian coordinates. (We use

here, of course, the fact that the three-dimensional space has a metric tensor.)

Next, replace the derivative V78/ox’ with the Lie derivative (equation (3.14)) of
the one-form V=g (V, ):

~ , 0 0
EgV)i = V' = P VJQV’
2 1
= Vi—V, + ALY
ax’ 23 ’(

where in obtaining the final expression we again used the fact that V; = Vi,
Therefore we find

9
V= ax’ Vi = (&v V)l % (%Vz)- (5.73)
Both terms on the right-hand side are tensors in any coordinate system! There-
fore (5.72) becomes the frame-independent expression

) O
(—a—t+ £‘7) V+ ; dp + d(® — %Vz) = 0. (5.74)

In this the role of the metric is crucial but hidden: it is required to form V from
V, and hence to form V2 = V(V).

5.18 Conservation of vorticity

Now we are in a position to consider conservation of vorticity. In con-
ventional terms, the vorticity is the curl of the velocity, V x V. As we saw in
chapter 4, this is properly the exterior derivative dV. Now, exterior differen-
tiation and Lie differentiation commute (and of course d and 3/d7 commute
since d only involves spatial derivatives), so we find from (5.74)
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0 1
—+£y|dV = < dpadp. 5.75
(a , v) 2 dpAdp (5.75)
(We have dropped tildes over symbols for clarity.) There are two cases to be con-
sidered. The easier is when the fluid obeys an equation of state p = p(p). Then
dp A dp =0 and we find that the vorticity two-form d¥ obeys the local (or con-
vective) conservation law

0
Fe£sldV = 0. .

This is the Helmholtz circulation theorem, written in its most natural form. A
different result holds, however, if the more general equation of state p = p(p, S)
obtains. Then the right-hand side of (5.75) does not vanish, but its wedge pro-
duct with d.S does:

dSadpadp = 0. (5.77)

Exercise 5.20
Prove (5.77).

The exterior derivative of (5.71) gives

at
Therefore we can wedge dS with (5.75) to get

(3— + £v) ds = o. (5.78)

d
dSA|—+ L) av =
A(at £V)V 0,

or

¢ (%+ £V) dSAdV = 0. (5.79)
This equation is the most general vorticity conservation law. It is called Ertel’s
theorem.

The meaning of the three-form dS A dV may not be immediately apparent,
but it is possible to convert (5.79) into a conservation law for a scalar. The
reason is that there is another conserved three-form, pw, and any two three-
forms in a three-dimensional space are proportional. Therefore there is a scalar
function a such that

dSAdV = apw, (5.80)
and (5.68) and (5.79) then give the scalar equation
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0
—+£5)a = 0.
It can be shown that, in conventional vector notation,

1
a = ;VS'VXV. (5.81)

Exercise 5.21
Prove (5.81). (Hint: express both sides of (5.80) in terms of dx A dy
A dz)

In the notation introduced in chapter 4 we have
1
a = ;e” S’in’j. (5.82)

Therefore a is the dual of dS A dV with respect to pw. The conservation of « is
then a natural consequence of the conservation of dS A dV: the fact that pw is
conserved means that forming duals with respect to it is an operation which is
also conserved, i.e. which commutes with the operator 8/0¢ + £.

Exercise 5.22
The shear of a velocity field ¥ is defined in Cartesian coordinates by
the equation

oy = Vij+ Vii— 1§86, (5.83)
where 0 is the expansion

6 =V-V. (5.84)
Show that in an arbitrary coordinate system

6 = 18'%yg;, (5.85)
0 = £yg;; — 508 (5.86)

E Cosmology

5.19  The cosmological principle

Most physicists are aware that Einstein’s theory of general relativity has
given modern physics a consistent and fruitful framework in which to study cos-
mology, the large-scale structure of our universe. Most are also aware that, at
least at the simplest level, there are only three basic cosmological models: the
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‘closed’, “flat’, and ‘open’ universes. What is probably less well known is that this
simplicity of having only three models is not at all a prediction or consequence
of Einstein’s equations. Rather, it is simply a consequence of assuming that the
universe is homogeneous and isotropic in its large-scale properties. (Homogeneity
and isotropy will be defined precisely below.) General relativity, like all the
fundamental theories of physics, is a dynamical theory: given initial conditions,
it will predict their future evolution and past history. The uniformity of the uni-
verse is part of the initial conditions we put in to construct the simplest models.
The important contribution of general relativity is that it permits us to choose
the geometry of space — its metric tensor field — as a part of the initial con-
ditions. This is not possible in Newtonian gravity, of course. Once we decide to
choose the most uniform initial conditions, it is differential geometry that tells
us that only three metric tensor fields are possible. Our aim in the next few
sections is to find these metrics. We shall use the mathematics of symmetry and
invariance developed in chapter 3, but we will not need to know anything about
general relativity nor even about Riemannian geometry.

We begin with the physical problem: the universe. On a small scale the uni-
verse is certainly lumpy. On nearly any length scale from the nuclear (1075 m)
to the interstellar (10’7 m), our world is characterized by clumping of matter
into small regions with sharp demarcations between different kinds of matter or
between matter and the vacuum. The stars themselves group into more or less
isolated galaxies, galaxies congregate into clusters of several tens to thousands,
and even clusters may associate in loose superclusters. But modern astronomy
can see well beyond the supercluster length scale, and we find that in all direc-
tions the tendency is for greater and greater homogeneity in the properties of
the universe when they are averaged over larger and larger length scales. Since it
is these large-scale averaged properties (particularly the mean density and

Fig. 5.4. A slice of spacetime showing all the events labelled by coordi-
nates ¢ (time) and x, with ¥ = z = 0. Because electromagnetic radiation
travels at a finite speed, distant objects are seen at an earlier time in
their own histories than nearby objects.

1

now- observer
recent_|
past nearby
galaxy
distant_|_ distant
past galaxy
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velocity) that are important for the dynamics of the universe, the cosmologist
would like to incorporate this homogeneity into at least the simplest models.
But what does homogeneity really mean? After all, in a dynamical universe, the
more distant regions should look different from those nearby if only because
they are seen at an earlier time in their history, as illustrated in figure (5.4).
Indeed this is the case: the number of quasars, for instance, is much higher in
distant regions than locally. The homogeneity one ‘observes’ is really an extra-
polation to the present time of the condition of distant regions. Yet in relativity
even ‘the present time’ is not an absolute concept. We cannot give a full dis-
cussion of these problems here, but we can say how they are resolved. '

The basic idea is to split spacetime up into a family of three-dimensional
spacelike submanifolds filling it up (a foliation). These are called hypersurfaces
of constant time (see figure 5.5). This really amounts just to a choice of time-
coordinate. The metric tensor g| of spacetime has, like any (3,) tensor, a natural
restriction to each hypersurface, and the hypersurface is space-like if g is
positive-definite on all vectors tangent to it. The ‘uniformity’ of the cosmology
depends on the Killing vectors or isometries of these hypersurfaces.

Let G be the Lie group of isometries of some manifold .S with metric tensor
field g|. The Lie algebra of G is that of the Killing vector fields of g|. Elements
of G are mappings of S onto itself (diffeomorphisms). The action of G on S is
said to be transitive on S if, for any two points P and Q of S, there is some
element g of G for which g(P) = @, i.e. which maps P to Q. The manifold S is
said to be homogeneous if its isometry group acts transitively on it (see figure
5.6). What this means is just that the geometry is the same everywhere in S.

Suppose there are elements of G which leave some point P of S fixed. Then
the product of any two also leaves P fixed, and since the identity e is one of
them, they form a subgroup Hp of G called the isotropy group of P. These are,
of course, the familiar rotations about an axis through P. The isotropy group of

Fig. 5.5. Slicing spacetime into spaces of constant time ¢.
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P keeps P fixed and therefore maps any curve through P to another curve
through P (see figure 5.7). It consequently induces a map of tangent vectors at P
to others at P: a map Tp — Tp. This group of mappings is the linear isotropy
group of P. (Recall the similar discussion of the adjoint representation of a Lie
group, §3.17.) A manifold S of dimension m is said to be isotropic about P if

its isotropy group Hp is just SO(m), the group of rotations about arbitrary axes
through P. If S is isotropic about every point P it is said to be isotropic.

A cosmological model M is said to be a homogeneous cosmology if it has a
foliation of space-like hypersurfaces, each of which is homogeneous;and
similarly for an isotropic cosmology. As discussed above, the evidence is strong
that our universe is homogeneous, at least on large scales in our observable neigh-
borhood. We also see no systematic variations in its structure in different direc-
tions in the sky. This suggests the universe is isotropic about us. But modern
science does not like to assume that we live in a particularly favorable location in
the universe. This is often elevated to the status of a principle, variously known
as the cosmological principle, the Copernican principle, or the principle of
mediocrity: the properties of the universe we see near us would be seen, on aver-
age, by any observer anywhere else in the universe. This principle enables cos-
mologists, in the absence of information to the contrary, to extend our local

Fig. 5.6. Some neighborhood U of P is mapped by g onto a neighbor-
hood V of Q = g(P) isometrically: there is no difference in the geometry
near P from that near Q.

o

Fig. 5.7. The isotropy group of P maps Tp = Tp by mapping curves
through P to other curves.
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homogeneity and isotropy to the whole universe. Thisis not necessary, of course,
and much current research is devoted to exploring inhomogeneous and/or aniso-
tropic cosmologies. But the three basic models are the only three which have
homogeneous, isotropic three-spaces. This is what we shall now prove.

Exercise §.23

As we know from §3.9, the Killing vectors of the sphere S? are the
vectors I, I, I,. These form a basis for the Lie algebra of the group of
isometries of S2, SO(3). Prove that S? is a homogeneous and isotropic
manifold.

520  Lie algebra of maximal symmetry

We shall begin by studying the Killing vector fields of a three-
dimensional manifold S. If £ is a Killing vector, its components in any coordinate
system satisfy the equations

(£e9)y = E'gijr + £ igni + £ ;80 = O. (5.87)
It will be more convenient to use the components of the one-form g|(§, ),

b = gut (5.88)
These satisfy the equivalent equations

£t g 280 = 0, (5-89)
with the definition

Ty = "™ (8mi,i + &mii —&ij.m)- (5.90)

(The definition of I‘k,-,-, including its factor of %, is conventional and would make
more sense after a reading of chapter 6. For us equation (5.90) simply defines a
convenient shorthand notation.)

Equation (5.89) is symmetric under exchange of i and j, so it represents in n
dimensions n(n + 1) independent differential equations, six for n = 3. Since
there are only three components of £ to solve for, the system is overdetermined:
a general metric tensor g| has no Killing vectors. Our object is to find what form
gl must take in order that it allow the maximum number of Killing vectors. To
see what this maximum number is, we differentiate (5.89) to get

ikt & = 2660 (5:91)
By adding (5.91) to itself with the index permutation (i > k,j - i, k =) and
subtracting the permutation (i > j,j - k, k > i) we arrive at the equation

Eiie = Hipei+ K ™8 m s (5.92)
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where H;;' is a complicated function of g;; and its first and second derivatives,
and K ,-,-k"" similarly depends on g;; and its first derivatives. The key point about
(5.92) is that if we know §; and §; ; at any point P and if we know g;; every-
where, then we can determine §; j at P from (5.92), and similarly all its higher
derivatives at P by successively differentiating (5.92). On an analytic manifold
(which we shall assume) this suffices to determine the vector field £ everywhere.
Moreover, we know that §; at P determines the symmetric part of §; j at P by
equation (5.89). If follows that every Killing vector field on S is determined
completely by giving the values of

ni = §(P)and 4y = £y 7 (P) (5.93)
at gny point P of S. It is important that a choice of {n;, A;;} at P does not necess-
arily determine a Killing vector, because it may happen that (5.92) has no
solutions: its right-hand side may not be symmetric under exchange of j and k.
But the argument does show that there cannot be more Killing vectors than the
number of independent choices of {n;, A;;}, which in m dimensions is

m+imm—1) = tm@m + 1), (5.94)
by virtue of (5.93). A manifold is said to be maximally symmetric if it has the
maximum number of Killing vector fields.

It is easy to show that a maximally symmetric connected manifold S is hom-
ogeneous. At any point P we can choose a Killing vector field having any tangent
at P. The one-parameter subgroups associated with these Killing vectors can
therefore map P to any point Q in some neighborhood U of P (see figure 5.8).
By a succession of such maps we can clearly map P to any point in .S whatever. It
follows that the isometry group maps P to any point, and S is homogeneous.

Next we take a look at the isotropy group of P. Such transformations leave P
fixed, so the associated Killing vector fields vanish at P. The Lie bracket of any
two Killing fields ¥ and W is

(7, W) = v w —w v,

Fig. 5.8. By choosing the appropriate one-paramete’r subgroup of the
isometry group one can map P to any point Q or Q in a neighborhood
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WY = VW =W =g VW = W), (595)
If 7 and W both vanish at P, then so does [, W]. But [, W] is a linear combi-
nation of Killing vector fields, so for it to vanish at P it must be a linear combi-
nation only of those fields which also vanish at P. So these fields form a Lie sub-
algebra, clearly the algebra of the isotropy group at P. The next exercise shows
that the isotropy group is SO(m) if S is space-like, i.e. that a maximally sym-
metric space-like manifold is isotropic.

Exercise 5.24
Choose at P the sort of coordinate system permitted by exercise 2.14,
in which for a space-like manifold g;;(P) = §;; and g;; x(P) = 0.

(a) Show that near P an isotropy Killing vector field is given by

Vi = Aix! + 0(x?), (5.96)
where A'; is an arbitrary antisymmetric matrix
A = -4 (597

(b) Let W be another isotropy Killing vector field,
wi = Bix’ + 0(x?),
and show that
[V, W) = [4,Blx' + 0(x?), (5.98)
where [4, B]’; denotes the elements of the matrix commutator of A
and B';. This shows that the Lie algebra of the isotropy group is the
same as the Lie algebra of SO(m).

(c) Argue from this that the isotropy group of P is SO(m).

(d) Show that if g| is not positive-definite (or negative-definite) then the
isotropy group is not SO(m). In particular show that the isotropy group
of a point P in four-dimensional Minkowski space is the Lorentz group
L(4).

5.21 The metric of a spherically symmetric three-space

Now we restrict our attention to space-like three-manifolds. The iso-
tropy group is SO(3) and we say the manifold is spherically symmetric about
any point. In this section we construct a convenient coordinate system for the
rest of our calculation. We know that the Killing vectors of SO(3) define spheres
S? by their integral curves. Since every point is on one such sphere, they must
foliate the manifold S. We will adopt spherical coordinates, with the usual 6 and
¢ on each sphere and a third ‘radial’ coordinate labelling spheres. There is a
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particularly convenient choice for the radial coordinate. The metric of S induces
a metric tensor on each sphere, which in turn defines a volume two-form and a
total area (integral of the volume two-form). We define the radial coordinate r
of a sphere by the equation

area = 4mr?, r = (area/4m)V2, (5.99)

This intrinsically defined coordinate need not be monotonically increasing every-
where, as figure 5.9 shows. But at least in some neighborhood of P it is guaran-
teed to be good by the local flatness theorem, exercise 2.14. (It is singular at

r =0, of course, but we know how to handle that.)

In addition to the radial coordinate we have to define 6 and ¢ more precisely.
We have placed 6 and ¢ on each sphere but we have not said how the pole § =0
of one sphere is related to that of another. That is, we are free to slide the
coordinates of a sphere around as we move from one to another. We fix the pole
in the following manner. At every point @ there is a vector n orthogonal to the
sphere at that point (g|(71, ) = 0 for any ¥ in T¢(S?)), normalized to unity
(gi(n, n) = 1), and pointing away from P (which is well defined near P and
extends to all of S by continuity). This vector field is called the unit normal
vector field, and is C* except at P. Choose the pole of any particular S? arbi-
trarily and then fix the poles of all the others by demanding they lie on the
integral curve of 71 through the original pole. This is illustrated in figure 5.10.
This clearly will imply that any integral curve of 7 is a curve of constant § and ¢,
or in other words a coordinate line of the radial coordinate. Since 3/06 and 9/9¢
are tangent to the spheres this construction implies

& = 0/(3/0r,8/38) = 0, (5.100a)

Fig. 5.9. A radial coordinate labelling circles on a sphere, defined as the
circumference +~ 27. This is the two-dimensional analogue of the situ-
ation described in the text. The radial coordinate increases away from P
at first (say from A to B) but begins decreasing (from C to D) and
becomes zero at P'.
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& = 9I(3/0r,8/0¢) = 0. (5.100b)
Moreover, on each sphere the metric is that of the unit sphere times 2, the
appropriate factor to make the area be 47r?:

8o = r’, 8 = 0, &g = r?sin®f. (5.100¢)

We therefore have only one unknown metric component, g,,.

Exercise 5.25
(a) Define the radial distance from P to a sphere with coordinate r to be

the integral

,

f (2,2 dr (5.101)
0

along a line 8 = const, ¢ = const. Argue that g,, must be independent
of § and ¢.

(b) Show from exercise 2.14 that as one approaches P,
lim g,, = 1. (5.102)
r—=o0

By exercise 5.25(a) we write g,, = f(r) and have the metric
fy 0 0
@a=fo0o r? 0 . (5.103)
0 0 rZsin%
As we have used only the isotropy group of P to get this, we should not expect
to be able to determine f(r). For that we must use the rest of the isometries of S.

Fig. 5.10. Establishing the pole of each circle of constant r in figure 5.9
by requiring them all to lie ou a single integral curve of the unit normal
field 7.
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522 Construction of the six Killing vectors
There are a number of methods we could use to find the form of f(r)
that guarantees the homogeneity of S. The method we shail use is to construct
all the Killing vector fields of S by using the vector spherical harmonics of §4.29.
Any vector field ¥ on S can be written in the form

— 0 _ —
V = &m(Yim > + MY i + $1m(P) Y i, (5.104)

with an implied summation on / and m here and wherever they are repeated in
the same term. We shall need the components of this equation. It is easy to
deduce from equation (4.101) that

Tl = Yings (Fin) = 5= Yimgs (5.105a)

Yim) = ;nl—oY,m,d,; ¥i)? = —‘sinie Yim.6- (5.105b)
It follows that

V' = EmYim, (5.106a)

Ve = timYimo + $1mYim,g/sin 6, (5.106b)

V? = mimYim6/sin0 — $1nYim g /sin 0. (5.106¢)
These components have to satisfy Killing’s equation

Ky = Veegyu + VR iy + VE g = 0, (5.107)

with g;; from (5.103).

The three equations {Kgs = 0,Kp¢ = 0, K¢ = 0} do not involve derivatives
of &11ms Mims OF $1m, SO we shall tackle them first. First consider the combination
(indices raised with (5.103))

0 =K’ +K% = ~bunYim + 2umL*(Yim),

where L? is the operator defined by equation (3.33). Using (3.33) we get

[(2/r)$lm - l(l + l)nlm] Yim = 0.
By the linear independence of the spherical harmonics we have

2
~ & — I+ Dy = 0. (5.108)
Next consider the combinations
0 = 3(K% —K°3) = FimMim + GimSims (5.1092)
1
= _r2 sin 6 K9¢ = = GimMim + Fim$im, (5.109b)

where F,,, and G;,,, are abbreviations for the expressions
Flm = Ylm,03 —cot @ Ylm,@ - Y,m_w/sinze,
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Gim = 2Y | 00/sin@ —2 cot 0Y,, ¢/sin 6.
Equations (5.109) have the solution {;,,, = 1;,,, = O unless the determinant of
their coefficients vanishes. But this is (F},,,)* + (Gi)?, so it vanishes only if
both Fj,,, and G, vanish. It is easy to work out that this happens for / = 0 and
1= 1 (any m) but not for I > 2. Moreover, it is obvious from (5.106) that / =0
does not have a contribution from 7 or ¢ (the fixed-point theorem for S? again!)
so that we can conclude

I = 1: %y, 1m arbitrary;

(5.110)
122, = §im = 0.
Then (5.108) gives us
1 =0: £ =0,
1=1: &1 = M, (5.111)
1> 2: &, =0.

Now we turn to the other three equations in (5.107). The first is a scalar with
respect to rotations:

0=k, = (2fslm,r+f,rslm)ylm,
which implies
féim,r + i'f,rélm = 0. (5.112)

The remaining two equations, K,9 = K,4 = 0, transform as a vector under
rotations. The divergence of this vector (with respect to the volume of $2) is

. , 1 ,
0 = (sin 6K,")p + (sin0K,?) 4 = (mm,r + r—zfs,m) sin 0L2(¥ ym),
which again implies (for /> 0)
1
Mim,r ;;fsxm = 0. (5.113)

The remaining equation can be taken to be the divergence of the dual of the
vector in §?,

0= Kr0,¢ _Kr¢,0 = rzi'lm,r sin 8L2(Ylm)’
which of course implies

$Simyr = 0. (5.114)
We may conclude that {¢;,,,, m =— 1,0, 1} are three arbitrary constants, the
only contribution from ¥;,,. The three equations (5.111) for the unknowns £4,,,,
N1m, and f have the following solution in terms of the arbitrary constants K and

m-

f=Q0-Kr*), (5.115)
Eim = m(l _Krz)l/z’ (5.116)
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1
Mm = (1 —Kr3)12, (5.117)

Exercise 5.26
Verify equations (5.105), (5.108), (5.109), (5.112), (5.113), (5.114),
and (5.115-17).

Exercise 5.27
Show that the Killing vectors with ¥, = 0 are those corresponding to
the isotropy group of the origin » = 0.

Exercise 5.28
Show that the apparent singularity in 1y, as r > 0 isa coordinate effect:
the vector field is well-behaved at the origin.

Exercise 5.29

Set K = 0in (5.115-17) and show that S is just £, Euclidean space.
Find the constants V,, that define the Killing vectors {3/dx, 3/dy, 8/9z},
where the Cartesian coordinates are obtained from our polars in the
usual way.

Open, closed, and flat universes
We now have a complete description of the geometry of the hom-

ogeneous and isotropic spaces of the cosmological model: they have the metric

-kt o 0
(84) = 0 r o | (5.118)
0 0 r?sin?

It only remains to try to get a picture of this geometry. The following coordi-
nate transformations are a help.

Exercise 5.30
Find a coordinate transformation from » to x which produces the
following metric components

for K >0:
) 1 0 0
(8y) = |0 sin’y 0 (5.1192)

0 0 sin?y sin4
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for K <0:
Lfro 0
@) =71 sinh®x 0 . (5.119b)

0 0 sinh?y sin@

This shows that the geometry really depends only on the sign of K. Its magni-
tude serves only as an overall scale factor.

In the case K > 0, the sphere of radial coordinate x has area 4 sinx/K, which
increases away from x = 0 to a maximum at x = #/2 and then decreases to zero
at x = 7. This is reminiscent of §? (figure 5.9). In fact, this is the metric of the
sphere S* of radius K /2. Because the space is finite, the universe is said to be
closed.

Exercise 5.31

Find a coordinate transformation of E* from Cartesian coordinates {x'}
= {w, x, y, z} to spherical coordinates {x'”} ={r, x, 0, ¢} in which the
metric g;; = §;; has the components g;/; given by (5.119a) when
restricted to the sphere $3, w? + x2 + y% + 22 =K .,

The case K = 0 has been considered in exercise 5.29. It is the flat universe.

The case K <0 is the open universe, and it is the hardest to visualize. The sur-
face area of a sphere of radial coordinate y is 47 sinh?x/|K |, and increases ever
more rapidly with x. This universe is unbounded.

Exercise 5.32

(a) By considering the relation between the areas of spheres x = const and
the distance of the sphere from the origin x = 0, equation (5.101),
prove that the metric (5.119b) is not the restriction of the Euclidean
metric to gny submanifold of any E".

(b) Find a submanifold of Minkowski space whose metric is that of
(5.119b).

When Einstein’s equations are supplied with initial data which are homo-
geneous and isotropic (and this includes not only the geometry but the matter
variables as well), then the subsequent evolution of the universe maintains the
symmetry. It follows that the only aspect of the geometry which can change
with time is the scale factor K: the universe gets ‘larger’ or ‘smaller’ as time goes
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on. One must be careful, however, not to make coordinate-dependent state-
ments. For the closed universe, whose total volume is finite, the change in K
does cause a change in the total volume. But the flat and open universes are both
infinite, so it is not meaningful to talk about their total volume. What general
relativity tells us is that the coordinates of equation (5.119) are ‘comoving’: the
local mean rest frame of the galaxies in any small region of the universe stays at
constant {x, 0, ¢} as time evolves. It follows then that a change in K produces a
change in the distance between galaxies, and this is what is meant by an expand-
ing universe. In the ‘standard model’ of the universe, which assumes homogeneity
and isotropy and a few other things, all three kinds of universe begin with zero
‘volume’ (K = o) and expand away from this ‘big bang’. The closed universe
expands to a maximum and recollapses, the flat universe expands at a rate which
goes asymptotically to zero, and the open universe expands at a rate which goes
asymptotically to a nonzero limit. All of these things are consequences of
Einstein’s equations. To understand these equations it is necessary to add one
more level of structure to our manifolds: the affine connection. This is the
subject of chapter 6.
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