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Topological Theory of Defects

In Chapter 3, we have considered the notion of order parameter, its amplitude and phase.
The order parameter is a continuous field (scalar, vector, tensor, etc.) describing the state
of the system at each point. Generally, it is a function of coordinates, ψ(r). Distortions of
ψ(r) can be of two types: those containing singularities and those without singularities.
At singularities, ψ is not defined. For a 3D medium, the singular regions might be either
zero-dimensional (points), one-dimensional (lines), or two-dimensional (walls). These are
the defects. Whenever a nonhomogeneous state cannot be eliminated by continuous varia-
tions of the order parameter (i.e., one cannot arrive at the homogeneous state), it is called
topologically stable, or simply, a topological defect. If the inhomogeneous state does not
contain singularities, but nevertheless is not deformable continuously into a homogeneous
state, one says that the system contains a topological configuration (or soliton).

Very often the problems involving defects are too complex for analytical treatment
within the framework of an elastic theory. The difficulties arise either from the complexity
of the free energy functional (biaxial nematic, smectic C, anisotropic phases of superfluid
3He, etc.) or from the complexity of the defect configuration (e.g., crossing of disclina-
tions). Even when the solutions are possible, they rely on certain assumptions and, thus,
might be strongly model dependent.

An adequate description of defects in ordered condensed media requires introducing
a new mathematical apparatus, viz. the theory of homotopy, which is part of algebraic
topology. It is precisely in the language of topology that it is possible to associate the
character of ordering of a medium and the types of defects arising in it, to find the laws of
decay, merger and crossing of defects, to trace out their behavior during phase transitions,
and so on. The key point is occupied by the concept of topological invariant, often also
called a topological charge, which is inherent in every defect. The stability of the defect is
guaranteed by the conservation of its topological invariant. The following simple example
of twisted ribbon strips gives a flavor of the concept of topological invariant.

434



12.1 Basic Concepts of Topological Classification 435

12.1. Basic Concepts of Topological Classification

12.1.1. Topological Charges Illustrated with Möbius Strips

Consider a set of elastic strips closed into rings. Each strip is characterized by a number k
that counts how many times the ends of the strip are twisted by 2π before they are glued
together to produce a ring (Fig. 12.1). The ring with k = 1/2 (Fig. 12.1.b) is the well-
known Möbius strip. The deformation energy stored in any twisted strip is larger than the
pure bend energy of the k = 0 ring. However, to transform a twisted strip into a state k = 0,
one needs to cut the strip. There is no continuous deformation that transforms one strip into
another if the two have different k. The energy needed to cut the ribbon, Fcut ∼ U S/a2,
is much higher than the stored twist energy Ftwist ∼ k2 K S/L; here, L is the length of the
strip, S is its cross-section area, and K ∼ U/a is some elastic constant of the order of
the intermolecular energy; a is the molecular scale. The transitions between the states with
different k’s are prohibited by high-energy barriers.

The quantity k does not change under any continuous transformation and is a useful
invariant to label topologically different states. Left and right twists can be distinguished
by the sign of k. Obviously, one can create a pair of left and right twists without cutting the
strip, what matters is the total sum of k’s that should be preserved. Therefore, topological
charges k’s obey a conservation law.

π
π

(a)
π

(b)

(c) (d)+ π − π

Figure 12.1. Topologically different rings of elastic strips: (a) nontwisted ring, k = 0; (b) Möbius
strip, k = 1/2; (c) twisted strip with two identical edges, k = 1; (d) twisted strip with two distinctive
edges, k = 1.
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The allowed values of k are defined by the inner symmetry of the strip. For example, if
the edges of the strip are different, e.g., marked by red and blue colors (Fig. 12.1.d), then
only integer k’s (2π-twists) are allowed.

Topological stability of twisted strips is similar to that of topological solitons; the issue
of a singular core is not involved. Furthermore, one can draw a parallel between the twisted
strips and singular defects. Imagine a circle around a π-disclination in a uniaxial nematic
liquid crystal (Fig. 11.10). The set of molecules centered at this circle form a Möbius strip
with k = 1/2. After going once around the circle, the director n flips into −n, which is
possible, because the nematic bulk is centrosymmetric, n ≡ −n. The number k would
remain equal 1/2 if the radius of the circle is taken larger or smaller (Fig. 11.10). Thus,
the overall director configuration can be characterized by k = 1/2. At the disclination
core, one faces the singularity: When the circle shrinks into a point, there is an infinity of
director orientations at this point. If a disclination were created in a ferromagnet, a Möbius
strip k = 1/2 around it would be impossible because the magnetization vector does not
have the head-to-tail symmetry of the director.

To summarize, the examples above show that the topologically stable defects and con-
figurations (“topological twists”) obey the following general rules:

1. Defects types are related to the type of ordering of the system.

2. Defects are characterized by quantized invariants (topological charges) k.

3. The operations of merger and decay of the defects are described as certain operations
(e.g., additions) applied to their charges k; conservation laws of topological charges
control the results of merger and decay.

The topological invariants k’s form groups. Because the concept of group is important
for the homotopy classification of defects, we briefly consider it in the next sections. Before
doing so, we briefly comment on, perhaps, the most intriguing twisted strips—the DNA
molecules.

12.1.2. DNA and Twisted Strips, a Digression

Twisted strips with different k’s are of relevance to the problem of configuration and repli-
cation of double-stranded DNA molecules. Two strands are arranged in a helicoid fashion
in which a 2π-twist occurs per every 10.5 base pairs (Fig. 1.21). In many organisms rang-
ing from viruses and prokaryotes to some eukaryotes, DNA molecules form closed loops.
Topologically, these loops remind of a twisted strip with two distinctive edges and an inte-
ger Lk that is referred to as the linking number of the two strands (Fig. 12.2). Lk is preserved
in any conformational change of DNA molecule that does not break the strands. If Lk is
close to Lk0 = l/p (l is the total DNA length, and p ≈ 3.4 is the helix pitch; Fig. 1.21),
the DNA ring is relaxed and can lie flat on a planar surface without contortions. Often
Lk �= Lk0: The ends of the relaxed linear DNA duplex may be additionally twisted (or
untwisted) by some number of rotations ±2π before forming the ring. There are two ways
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Lk (C,C')=1(a)

(b)

(c) Lk (C,C')=5

Lk (C,C')=0

Figure 12.2. Linking numbers for pairs of oriented curves.

to deal with the induced strain. First, the number of base pairs per pitch can be changed;
the ring remains planar, and the linking number is equal to the number of turns of one
strand around another. In that case, Lk = k, the topological twist defined above. Second,
the duplex axis can twist upon itself, leaving the number of pairs per pitch unaffected.
Such a supertwisted DNA is no longer planar and coils in three dimensions, like a buckled
twisted ribbon. Whatever the case, although k and Lk stay unaffected, and are still equal
integral numbers of a topological nature, the global geometry (and consequently, the en-
ergy of the “twisted” ribbon and the way it relaxes) depends on the elasticity properties of
the molecule and is better described by introducing two geometrical parameters: the twist
Tw and the writhe Wr. The twist can be written as

Tw = 1

2π

∮
�(s) ds, (12.1)

where�(s) is the rate of wrapping of either strand about the duplex axis. This quantity can
be defined equally for an open strip; Tw can take any value, and we can refer to it as the
geometrical twist. However, if the duplex axis is planar, one gets Lk = Tw = k. The writhe
Wr of a curve C is a much more subtle quantity. Introduced by Fuller, it is the number
of averaged self-crossings (with sign) of the planar orthogonal projections of C (closed or
not); in the DNA context, it describes the buckling of the duplex axis, so to speak. Like Tw,
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Wr can take any value. We have the important relation:

Lk = Tw + Wr, (12.2)

with Lk (for two oriented curves C and C′) and Wr (for an oriented curve C) given by
double integrals:

Lk = 1

4π

∫∫
©

C,C ′
r(s)− r(s′)

| r(s)− r(s′) |3 · [ds × ds′];

Wr = 1

4π

∫∫
©

C,C

r(s)− r(s∗)
| r(s)− r(s∗) |3 · [ds × ds∗]. (12.3)

Here, C is the duplex axis, say, and C′ is anyone of the strands. Wr vanishes when C is
planar. Note that for the example in Fig. 12.2 (b), Lk(C,C′) = 0, because the two curves
can be disentangled by crossing of a ∞-shaped line with itself; such crossings are not
reflected in the integral Lk above.

To separate the DNA strands during replication, one needs to change the number Lk
(see Problem 12.1). It can be done directly by topoisomerases that cut one or both strands.
In other cases, the replication occurs through local binding of the DNA molecule to proteins
that creates zones of negative and positive supertwisting.

12.1.3. Groups: Basic Definitions

Consider a set (finite or infinite, discrete or continuous) G of elements a, b, c, . . . , for
which there is an operation ⊗ that combines the elements in a prescribed way. The set G
is a group if and only if the following requirements are satisfied:

1. Any two elements a, b in the set G can be combined by the operation ⊗ to produce a
third element a ⊗ b in the set.

2. The operation is associative: (a ⊗ b)⊗ c = a ⊗ (b ⊗ c).

3. There is an identity element I of G, such that for any element a, a ⊗ I = I ⊗ a = a.

4. Every element a has an inverse element denoted a−1, such that a ⊗a−1 = a−1 ⊗a = I .

A simple example of a group is a set Z of all integers with the operation of addition
(⊗ → +). Indeed, the axiom (2) is fulfilled when one adds integers; the identity element
is 0; and the inverse to a is −a.

Groups are either commutative (also called Abelian) or noncommutative (or non-
Abelian). For the Abelian groups, a ⊗b = b ⊗a for any pair of elements. For non-Abelian
groups, a ⊗ b �= b ⊗ a. The group of integers is Abelian. Groups can contain a finite
number of elements or infinitely many elements. Finite or denumerably infinite groups are
called discrete groups. The additive group Z of integers is discrete.
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A subgroup H of a group G is a subset of elements of G that is also a group. If hi

are the elements of the subgroup H and g is any element of G, then the set of elements-
products g ⊗ hi is called a left coset of H and the set hi ⊗ g is called a right coset of
H . It is easily proven that the cosets g1 ⊗ hi and g2 ⊗ hi , formed by two elements g1
and g2 of G, are either identical or have no common elements whatever. In other words, a
given subgroup H divides the group G into disjoint cosets that form a coset space or orbit
denoted as G/H . The coset space is not necessarily a group. However, if the subgroup H
is normal (also called invariant), meaning that the left and right cosets contain the same
elements for each g of G, then the coset space G/H has a group structure and is called a
factor group.

Two types of groups are important in the topological classification of defects of a given
ordered medium, both related to the order parameter:

1. The (generally) continuous group G whose elements are in correspondence with all
the permissible transformations of the order parameter. The group of symmetry H is a
subgroup of this continuous group.

2. The discrete homotopy groups that are related to the topological structure of the order
parameter space.

This will be detailed below. We first schematize how these groups are involved in the
topological classification of defects.

12.1.4. General Scheme of the Topological Classification of Defects

Homotopy classification of defects in ordered media includes the following three steps:
First, one defines the order parameter (OP) ψ of the system. In a nonuniform state, the

OP is a function of coordinates, ψ(r).
Second, one determines the OP (or degeneracy) space R, i.e., the manifold of all pos-

sible values of the OP that do not alter the thermodynamical potentials of the system. The
function ψ(r) maps the points of real space occupied by the medium, into R.

The mappings of interest are those of i-dimensional spheres enclosing defects in real
space. A point defect in a 2D system or a line defect in 3D can be enclosed by a linear
contour, i = 1; a point defect in a 3D system can be enclosed by a sphere, i = 2; a wall
defect can be “enclosed” by two points, i = 0, located at opposite sides of the wall.

Third, one defines the homotopy groups πi (R). The elements of these groups are map-
pings of i-dimensional spheres enclosing the defect in real space into the OP space. To
classify the defects of dimensionality t ′ in a t-dimensional medium, one has to know the
homotopy group πi (R) with i = t − t ′ − 1.

On the one hand, each element of the homotopy group corresponds to a class of topo-
logically stable defects; all of these defects are equivalent to one another under continuous
deformations. On the other hand, the elements of homotopy groups are topological in-
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variants, or topological charges of the defects. The defect-free state (e.g., ψ(r) = const)
corresponds to a unit element of the homotopy group and to zero topological charge.

12.1.5. Order Parameter Space. Groups That Describe
Transformations of the Order Parameter

The Heisenberg isotropic ferromagnetic phase with a unit magnetization vector d as the
order parameter is an example of a medium for which the OP space is easily found by a
qualitative consideration. This phase is isotropic in the sense that the coupling between
d and the crystallographic axes is neglected. Any rotation about a fixed d transforms the
system into itself. The ends of vectors d with different orientations in space describe a
sphere S2. Thus it is obvious that the OP space is the sphere S2. For many other media,
the situation is not that clear. Below, we illustrate a general way to find the OP space that
sheds some light on the relationship between the symmetry of the ordered medium and the
OP space.

Consider a continuous group of 3D rotations. This group is the part of the full Euclidian
group of translations and rotations, which leaves the thermodynamic state of the system
invariant. A 3D rotation can be specified by a vector k that is parallel to the axis of rotation
and has an absolute value equal to the angle of rotation ϕ. Rotations around all possible
axes having one common point form a group called the group of proper rotations in 3D
Euclidian space. This group is represented by a solid 3D sphere of radius π denoted SO(3)
and composed of points ϕk/| k |, where −π ≤ ϕ ≤ π . Two diametrically opposite points
at the surface of such a sphere are identical: π-rotations around axes directed in opposite
directions give the same result.

In principle, SO(3) can serve as the OP space of the Heisenberg ferromagnet. How-
ever, there are sets of points in SO(3) that correspond to indistinguishable stable states
of the ferromagnet. Because any rotation around d transforms the system into itself, all
points ϕd along any fixed radius of the solid sphere SO(3) describe indistinguishable
states. Because of this symmetry, the solid sphere SO(3) is “reduced” to the sphere S2

by rotations that leave the order parameter d unchanged. The process is called a factor-
ization of the group SO(3) by the group SO(2) of 2D rotations around the fixed axis d
(Fig. 12.3). SO(2) is a subgroup of SO(3). The OP space of the ferromagnet is repre-
sented as S2 = SO(3)/SO(2), where SO(3)/SO(2) is the notation for the coset space of
SO(2) in SO(3). Note that S2 is an example of a manifold. General definitions are given
below.

If the medium is a uniaxial nematic, then the directions d and −d are identical and
there is an additional factorization of S2 by a set of two diametrically opposite points on
S2. The OP space of the uniaxial nematic is thus R = SO(3)/SO(2) × Z2 = S2/Z2,
also called the projective plane R P2 (see Chapter 3). Z2 is the group of two numbers 0
and 1: 0 + 0 = 1, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0. The symbol × denotes a direct
product of two groups SO(2) and Z2. The direct product of two groups, say, G and T , is
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SO
2( )SO 3( )

S 2

Figure 12.3. Factorization of the group SO(3) of proper rotations by the group of rotations SO(2)
results in the sphere S2.

the set G × T of pairs (g, t) that is a group under the combination law (g1, t1)⊗ (g2, t2) =
(g1 ⊗ g2, t1 ⊗ t2).

Examples above lead to the following generalization of the group-theoretical descrip-
tion of the OP space.

The order parameter of a continuous perfectly ordered medium can be associated with
a “thermodynamic” group G (which is usually the Euclidian group) with elements g that
transform a given value ψ0 of the order parameter into another value gψ0 for which the
thermodynamical potentials of the system remain the same. Rotations of a perfect ferro-
magnet as a whole are transformations of this kind. Among the elements g, there might be
transformations that preserve not only the energy, but also the value of the order parameter,
gHψ0 = ψ0. These elements form a subgroup H of G called the isotropy group of ψ0 or
the little group of ψ0. The OP space is then the coset space R, noted G/H :

R = G/H. (12.4)

Note that generally R is not a group. Furthermore, there is a certain arbitrariness in the
choice of the group G (but not in R!). The group G can be taken “larger” or “smaller,” but
the corresponding isotropy subgroup H must finally result in the same R = G/H . If G is
the full Euclidian group, then H is the group of symmetry of the ordered medium.

12.1.6. Homotopy Groups

Homotopy groups describe the topology of the OP space. Here, we briefly consider some
abstract OP space R and the group of oriented contours (loops) in it that form the so-called
fundamental, or first homotopy group.

Suppose that R is a connected surface: Any two points on R can be connected by a
curve. Take an arbitrary point M that belongs to the surface and draw oriented continuous
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R

Γ1

Γ
2

Γ
3

Γ5

Γ6

4Γ

M

Figure 12.4. Oriented contours based at point M in the order parameter space R. See text.

contours that start and end in M (Fig. 12.4). The contour is “oriented” when the direction
of traversing is specified. Among the contours, there are some that can be continuously
transformed into each other, such as contours �1 and �2 or �3 and �4 in Fig. 12.4. These
contours are said to be homotopic or representing the same homotopy class. If R is con-
nected (i.e., made of one piece only) and simply connected (no holes), then any contour
can be contracted to a point M; thus, all the contours belong to the same homotopy class. If
R is not simply connected (one example is a circle S1, another is given by Fig. 12.4), then
there are distinct classes of homotopic contours. For example, �3 and �5 in Fig. 12.4 that
encircle different “holes,” or �4 and �6 that encircle the same hole but a different num-
ber of times, belong to different homotopy classes. There is no continuous transformation
between the contours from different homotopy classes.

One can introduce a product of two contours �n and �k as a contour �nk obtained
by first traversing �n and then �k : �nk = �n ⊗ �k . Figure 12.5 shows two homotopic
representations of �nk . Similarly to the product of individual contours, one can consider a
product of homotopy classes as a set of products of representatives of these classes. This
concept allows one to impose a group structure on the set of contours with the product of
homotopy classes being the group operation. The elements of the group are the homotopic
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Γn

Γ
m R

Γnm = Γn ⊗Γm

M M

Figure 12.5. Two homotopic representations of �nk , the contour product of the two contours �n and
�k traversed in this order.

classes. The class of contours that are homotopic to zero (contractible to a single point) is
the identity of the group. Each class has its inverse element that is the same set of contours
but with opposite orientation. The product of classes satisfies the associative law. Thus, the
set of homotopy classes of contours form a group called the fundamental group of R at
the base point M and denoted π1(R,M) or simply the fundamental group of R, π1(R).
This simplification in omitting the base point is possible when R is connected. If instead
of M one chooses any other point M1 in the connected space R as the base point, the
resulting group π1(R,M1) is an isomorphic copy of π1(R,M). The group isomorphism is
a one-to-one mapping of one group onto another that preserves the group operation. Thus,
a connected OP space R can be characterized by a single abstract group π1(R). π1(R) is
also called the first homotopy group to distinguish it from the nth homotopy groups πn(R)
that are discussed later.

The fundamental group π1(R) can be Abelian or non-Abelian, depending on the OP
space R. If R is a 2D plane with one punched hole (homeomorphic to a circle S1), then
π1(R) is Abelian (Fig. 12.5). If R is a 2D plane with two punched holes (homeomorphic to
the figure “8”), then the fundamental group is non-Abelian, �k ⊗�n �= �n ⊗�k . As shown
in Fig. 12.6, there is no way to pass continuously from �3 = �1 ⊗ �2 to �∗

3 = �2 ⊗ �1
with A a fixed point on �3 and �∗

3 .
This concludes the discussion of the OP space and homotopy groups needed to under-

stand the general scheme of classification of topological defects. To illustrate the scheme,
we first consider point defects in 2D nematic, smectic, and crystalline phases classified by
the fundamental group. These examples require simple topological considerations. In the
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Γ3 = Γ1 Γ2

Γ1
Γ2

(a)

(b)

R

R

Γ3
* = Γ2 ⊗Γ1

(c)

R

M

M

M

⊗

Figure 12.6. Contours in the order parameter space R (a plane with two punched holes). Base point
M. �3(= �1 ⊗ �2) �= �∗

3 (= �2 ⊗ �1) yield a non-Abelian fundamental group π1(R).

general case, more sophisticated group-theoretical methods are required to calculate the
homotopy groups from the structure of G/H .

12.1.7. Point Defects in a Two-Dimensional Nematic Phase

In our model of a 2D nematic, the centers of gravity of molecules lie in one plane, while
the director n makes the angle 0 ≤ |ψ0 | ≤ π/2 with the normal � to the plane. The order
parameter can be chosen either as a unit vector � = n − �(n · �) (which is a projection of
n on the plane) or as the wave function ψ = |ψ0 | exp(iϕ), where |ψ0 | is the polar and ϕ
is the azimuthal angle of the tilt of the molecules, respectively. The free energy density of
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the uniform state does not depend on ϕ and can be represented as a certain function of the
modulus |ψ0 |; e.g.,

Fcond = A|ψ |2 + B|ψ |4 (12.5)

(cf. the description of superfluid helium; Section 3.1.1). The OP space R depends on the
modulus |ψ0 |.
1. If 0 < |ψ0 | < π/2, then R = S1. The phase ϕ can vary from 0 to 2π , and each point

of S1 corresponds to a certain value of ϕ. Fig. 12.7b shows the circle S1 as the bottom
of the free-energy density Fcond (see also Fig. 3.1).

2. If |ψ0 | = π/2, then R = S1/Z2. Any two diametrically opposite points of the circle
become identical, owing to the nonpolarity n ≡ −n of the nematic. Topologically, S1

and S1/Z2 are identical. However, there is an important physical difference between
the defects at 0 < |ψ0 | < π/2 and |ψ0 | = π/2, as we shall see below.

3. If |ψ0 | = 0, R is a single point.

Nonuniformity in the azimuthal orientation of molecules gives rise to an additional
gradient energy term:

Fcond = A|ψ |2 + B|ψ |4 + 1
2 K | ∇ψ |2, (12.6)

where K is the elastic constant of the in-plane splay and bend deformations. The energy
density (12.6) determines a length scale that is called the coherence length ξ = √

K/A.
If the characteristic scale of distortions is much larger than ξ , the tilt angle is close to its
equilibrium value |ψ0,eq | = √−A/2B and the inhomogeneity involves only the variations
of the azimuthal angle ϕ(x, y). This function ϕ(x, y), or, equivalently, the function τ(x, y),
maps the real 2D space (x, y) into R. The study of mappings of closed contours around
point defects in a 2D system enables one to determine whether the defects are stable.

As an example, let us elucidate the stability of three different points P0, P1, and P2 in
the � field for the case when 0 < |ψ0 | < π/2, and thus, R = S1 (Fig. 12.7).

Let us surround the “suspicious” point by an oriented loop, such as γ0 around point P0.
The mapping �(x, y) draws a corresponding oriented loop on S1, such as �0 in Fig. 12.7b.
�0 can be continuously contracted (without leaving the circle S1) into a single point
(Fig. 12.7d); accordingly, smooth rearrangement of the vector field �(x, y) in the real space
results in a uniform state �(x, y) = const (Fig. 12.7c). The defect P0 under test proved to
be removable, or topologically unstable.

The situation differs for the radial-like configuration of �(x, y) (Fig. 12.7e). The loop
�1 runs around the entire circle S1 and cannot be continuously contracted. To eliminate
the defect in Fig. 12.7e, one has to destroy the condensed state along the entire line start-
ing at P1 (to cut �1) or to allow appreciable deviation of the tilt angle from |ψ0,eq | (to
separate �1 from the circle S1). Both cases require overcoming a considerable energy bar-
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Figure 12.7. Point defects with different topological charges k in a polar 2D nematic with tilt angle
0 < |ψ0 | < π/2; the arrows depict the projections of director on the plane: (a), (c) k = 0, defect-
free state; (e) k = 1; g) k = 2; (b), (d), (f), (h) corresponding contours in the order parameter space
S1. (b’) and (f’) show S1 as the circle of degenerate minima of the free energy potential; see text.

rier that greatly exceeds the energy of the in-plane distortions. In other words, the defect
in Fig. 12.7e is topologically stable. The defect P2 (Fig. 12.7g), whose contour �2 runs
twice around S1, is also stable: It cannot be transformed into the uniform state nor into the
radial-like defect.

The scheme above sets a correspondence between topologically stable defects and
contours �k that encircle S1 k times in a given direction. All point singularities are divided
into classes, each of which corresponds to its own class of homotopic contours �k . The
set of classes �k forms the fundamental group π1(S1). The definition of group is satisfied:
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Γ

Figure 12.8. Defect k = −1/2 in a 2D, nonpolar nematic.

Any two contours �k and �n can be combined to give a third contour �kn = �k�n (we
simplify the notations for product by dropping the symbol ⊗ from this point onward). The
operation is associative; there is a special contour �0 equivalent to a point, which is the
identity element; contours �k and �−k that run around S1 in opposite directions are the
inverses of each other, �k�−k = �0. Finally, π1(S1) is Abelian.

Each element of π1(S1) can be labeled by an integer k; thus, π1(S1) is isomorphic to
the group Z of integers. The number k is the topological charge of the defect. It cannot be
changed by continuous deformations. Analytically, for point defects under consideration,

k = 1

2π

∮

γ

∇ϕ dl = 0,±1,±2, . . . . (12.7)

When |ψ0 | = π/2, the degeneracy space is R = S1/Z2, i.e., topologically identical
to R = S1/Z2. Thus, there are as many (infinitely many) defects in the case |ψ0 | = π/2
as in the case 0 < |ψ0 | < π/2. However, physically, the two sets of defects are different:
With |ψ0 | = π/2, defects with an odd number of π-rotations are allowed and thus k can be
integer or half -integer (Fig. 12.8a). In Fig. 12.8b, the contour �1/2 that connects antipodal
points of the circle is closed and cannot be contracted into a point; compare to Fig. 11.3d.

Finally, for |ψ0 | = 0, there are no defects at all, and the fundamental group is trivial,
π1(0) = 0.

12.1.8. Point Dislocations in a Two-Dimensional Crystal

As was established in Chapter 3, the OP space of a 2D crystal is the direct product of
two circles, i.e., the torus, R = S1 × S1 (we neglect the symmetries of rotation) (Fig. 3.7
and Fig. 12.9). Any in-plane displacement of a 2D crystal lattice as a whole leads just to
another presentation of the crystal but does not change its thermodynamic potentials. If the
displacement vector coincides with the primitive lattice vector, the transformation leads
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(a) (b)

(c) (d)

(e) (f)

(0,1)

(1,0)

S
1 × S

1

Figure 12.9. Point dislocations in a 2D crystal with the order parameter space R = S1 × S1.

to the identical state. The torus as the degeneracy space results from identification of the
boundaries of a 2D Bravais cell.

The following basic types of loops cannot be contracted into a point on the torus:
Those that run around the “small” circle (Fig. 12.9d), those that run around the “large”
circle, (Fig. 12.9f), and their combinations. These loops correspond to point dislocations.
Each dislocation is characterized by a pair of topological invariants (kx , ky) that shows
how many times the loop runs about the “small” and the “large” circle, respectively:

π1(S
1 × S1) = π1(S

1)× π1(S
1) = Z × Z = (kx , ky). (12.8)
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λ

λ/2

Figure 12.10. Molecular structure of the bilayers with λ- and λ/2-order in the Pβ′ phase, shown in
cross section by a plane normal to the bilayers. Arrows indicate the period of structures.

The numbers (kx , ky) in (12.8) are nothing else but the x and y-components of the
Burgers vector b expressed in the units of the lattice repeat vectors (ax , ay): b = kx ax +
kyay .

A 2D smectic can be represented by a 2D medium with a 1D density wave. A close
experimental model is the “rippled” lamellar lyotropic Pβ′ phase composed of stacked
lecithin bilayers with additional translational order along one of the two within-membrane
directions. In-plane ordering makes the rippled membranes rigid; in principle, one can
dilute the Pβ′ phase and observe a behavior of a single bilayer in isolation. The bilayers
of the Pβ′ phase manifest two types of in-plane corrugated supermolecular structures—
the λ-phase and the λ/2-phase (Fig. 12.10). The ridges and troughs of the membrane are
equidistant and can be considered as a 2D smectic phase. The difference between the two
is that the “layers” of the λ-phase are of equal width d, whereas in the λ/2-phase, the
alternating odd and even “layers” are of different width; this asymmetric profile is observed
for chiral surfactants.

To find the degeneracy space of the symmetric λ-phase, one has to consider both trans-
lation and rotation symmetries. A translation t by a multiple of d along the normal to the
layers and a rotation r by an angle multiple of π bring the system into itself. The OP
space is thus a rectangle {(t, r), 0 ≤ t ≤ d, 0 ≤ r ≤ π} (Fig. 12.11a). A point (t, r) within
the rectangle corresponds to a different representation of the 2D smectic; all of these rep-
resentations have the same energy. The sides of the rectangle are identified by the rules
(0, r) → (d, r) and (t, 0) → (d − t, π), as illustrated by the arrows in Fig. 12.11a. Note
that after a rotation by π , a translation t transforms into d − t . This subtle point makes the
resulting degeneracy space a Klein bottle (Fig. 12.11) rather than a torus. The fundamental
group of the Klein bottle is non-Abelian and is isomorphic to a semidirect product of the
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π

r

t0 d
(a)

(c) (d)

(b)

Figure 12.11. Equivalent presentations of the order parameter space of a 2D smectic: (a) a rectangle
{(t, r), 0 ≤ t ≤ d, 0 ≤ r ≤ π} with edges identified; (d) the same rectangle transformed into a Klein
bottle through steps (b) and (c).

group Ztr describing translations by the group Zrot describing rotations, which are both
isomorphic to Z :

π1(Rλ) = Ztr ∧ Zrot. (12.9)

Consequently, every point defect in the λ-phase corresponds to a pair of numbers (n,m).
Elements (n, 0) correspond to point dislocations with Burgers vector b = nd, and elements
(0,m) correspond to point disclinations of integer (even m’s) and half-integer strength (odd
m’s). Here, the values of m are taken twice as large as those of the usual k’s in order to better
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represent the combinations of defects. The combination law for the semidirect product is
different from that of a direct product. If n1 and n2 are two translations, and m1 and m2 are
two rotations, then the combination law is (n1,m1)(n2,m2) = (n1 + m1n2,m1 + m2).

Noncommutativity of the fundamental group π1(Rλ) results in subtle physical effects.
For example, the result of merger of two defects in the presence of a third defect is ambigu-
ous and depends on the path of merger. In a non-Abelian medium, a point defect no longer
corresponds to one element of the fundamental group, but to an entire class of conjugated
elements. By definition, two elements a and b of a group G are said to be conjugate to
one another if there is an element q of G such that b = q−1aq. Figure 12.12 shows that a
(1, 0) dislocation after passing around a (0, 1) disclination should be characterized by the
pair (−1, 0). In other words, the same defect is described by different elements (1, 0) and
(−1, 0) that belong to the same conjugacy class. In the OP space, the contour �(1,0) trans-
forms into the contour �(−1,0) = �−1

(0,1)�(1,0)�(0,1) after the corresponding defect (1, 0)
goes around the (0, 1) disclination. In an Abelian medium, �(1,0) and �(0,1) commute, and
thus �(1,0) and �(−1,0) would be homotopic; however, in the noncommutative case, �(1,0)
and �(−1,0) are not homotopic.

Because the same defect can correspond to different elements of the conjugacy class
in a non-Abelian π1, the coalescence of two defects is not uniquely defined. For ex-
ample, a (1, 0) dislocation and a (−1, 0) “antidislocation” upon merging either annihilate
(Fig. 12.13b) or form a double dislocation (2, 0), if the point (−1, 0) passed around the
(0, 1/2) disclination on the path to the merger site (Fig. 12.13c). The result is determined
not by multiplication of individual elements of the homotopy group, as for Abelian media,
but by all results of multiplication of classes of conjugated elements. Thus, to predict the
result of merging, one has to know the global configuration of the order parameter; local
topology around the defects is not enough.

(1,0 )

(-1,0)

Figure 12.12. Conversion of a dislocation (1, 0) into an antidislocation (−1, 0) after circumnavigat-
ing around a disclination in the 2D smectic λ-phase.
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(a)

(b)

(c)

(1,0) ( -1,0)

(2,0)

(0,0 )

Figure 12.13. The result of merging of (1, 0) and (−1, 0) dislocations in the 2D smectic λ-phase
depends on the path of merger around the disclination: (b) uniform state (0, 0); (c) double dislocation
(2, 0).

The other variety of the Pβ′ phase, the λ/2 structure, seemingly hardly differs from the
λ structure (Fig. 12.10): Only the twofold symmetry axis C2 has disappeared. However,
now the order parameter space is a 2D torus T 2, and thus,

π1(Rλ/2) = Ztr × Zrot (12.10)

is a direct product of groups, and is commutative: The result of the merger of two defects
is always unambiguous. Moreover, in contrast to the λ-phase, the λ/2-phase lacks isolated
disclinations with an odd m.

Simple examples of λ- and λ/2-phases also reveal some restrictions of the homotopy
theory for classifying defects in media with broken translational symmetry. According to
the homotopy theory, (12.9) and (12.10), there might be disclinations with any integer m
in a layered system. In reality, disclinations with m not equal to 1 or 2 (k �= 1/2, 1) break
the equidistance of layers and thus are energetically unfavorable.

12.2. The Fundamental Group of the Order Parameter
Space. Line Defects

The fundamental group classifies topologically stable point defects in 2D-ordered media
and topologically stable line defects in 3D.
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12.2.1. Unstable Disclinations in a Three-Dimensional
Isotropic Ferromagnetic

The OP space of the Heisenberg isotropic ferromagnet is a sphere S2. Consider a disclina-
tion in the magnetization vector field. An oriented loop surrounding the disclination core
in real space is mapped by the vector field into the OP space and, thus, produces a contour
on S2. Obviously, any contour drawn on a sphere can be contracted into a point. Thus,
π1(S2) = 0: Any disclination in the 3D isotropic ferromagnet can be continuously trans-
formed into a uniform state (Fig. 12.14).

The topological simplicity of the OP space should not let one believe that the ques-
tion of defects in ferromagnets is trivial. There are interesting similarities between defects
(points and lines) in nematics and ferromagnets, because the order parameters look very
much alike, a vector in the case of a ferromagnet, a director in a nematic. But again the
knowledge of nematic defects does not cover the knowledge of magnetic defects. The phys-
ical differences are indeed considerable. The subject of defects in ferromagnets will not be

(a)

(b)

(c)

S2

Figure 12.14. Continuous transformation of a disclination k = 1 (a) into a uniform state k = 0 (c) in
a 3D ferromagnetic phase (left); corresponding contraction of a loop in the order parameter space
(right).
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pursued further. The interested reader might appreciate the specificity and the richness of
this subject in the texts cited in “Further Reading.”

12.2.2. Stable Disclinations in a Three-Dimensional
Uniaxial Nematic Phase

In a 3D nonpolar uniaxial nematic phase, n ≡ −n, and the OP space is the sphere S2/Z2
or the projective plane R P2.

There are two types of contours in S2/Z2: This is visible at once in the 2D representa-
tion of the projective plane (Fig. 3.6), where one notices contours that are actually closed
(e.g., circles) and contours that are terminating at two diametrically opposite points. The
first ones can shrink into a point; they correspond to disclinations of integer strength k that
are topologically unstable. The second class of contours is not contractible to a point: un-
der any continuous deformations, the ends of the contours remain fixed at the diametrically
opposite points. These contours correspond to disclinations of half-integer k.

It is easy to see that all contours corresponding to half-integer k’s can be transformed
one into another (Fig. 12.15). Therefore, there is just one class of topologically stable

1 2    

Γ1/2 -1/2Γ

2

3

4

γ
1/2 γ

-1/2

 543

Figure 12.15. Continuous transformation of a disclination k = 1/2 into a disclination k = −1/2 in
real space (director configurations above) and the corresponding transformation of contours in the
OP space R P2.
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disclinations in the uniaxial nematic phase:

π1(S
2/Z2) = Z2. (12.11)

The laws of conservation are simply 1/2 + 0 = 1/2 and 1/2 + 1/2 = 0, if expressed in
terms of k’s.

12.2.3. Disclinations in Biaxial Nematic and Cholesteric Phases

Biaxial nematic order is specified by a tripod of mutually perpendicular directors l ≡ −l,
n ≡ −n, and [nl] ≡ −[nl]. The OP space is the group G = SO(3) of rotations of the triad
l,n, [nl], factorized by the four-element point group D2 of π-rotations about the directions
l, n, and [nl]:

Rbx = SO(3)/D2. (12.12)

Any two diametrically opposite points at the surface of SO(3) are identical: π-rotations
about axes oriented in opposite directions yield the same result, as discussed in Sec-
tion 12.1.5. Thus, SO(3) can be equivalently represented as the projective space R P3 =
S3/Z2 or as a 3D sphere in 4D space at which the antipodal points are identified, SO(3) =
S3/Z2 (compare with the uniaxial nematic with OP space R P2 = S2/Z2).

This is the place for some comments of general interest, which will be useful relat-
ing to media whose OP is a local triad (biaxial nematics, cholesterics). A standard method
to calculate homotopy groups in the context of ordered media is to lift the topological
space G to a simply connected space G (called the universal cover of space G), i.e., such
that π1(G) = 0. In this process, any point g ∈ G is lifted to a set of n (n independent
of g) points gi . Reciprocally, the projection on G of any gi ∈ G and of a neighbor-
hood Vi of gi maps gi and Vi on g and a neighborhood V of g. A path γi j on G from
gi to g j maps on a closed loop �i j in G, i.e., is in correspondence with one element of
π1(G, g); i.e., n is the index of the fundamental group, or one of its subgroups (Massey).
Note also that a subgroup H ⊂ G lifts to a subgroup H ⊂ G, with relations of the type
gi h j = f p; gi , h j , f p ∈ G if gh = f ; g, h, f ∈ G. A simple ilustration of the proper-
ties above is with G = S1, the 1D circle; its universal cover is a helix (n = ∞), which
for simplicity, the reader can figure out as having the same radius as the circle, and stay-
ing “above” to visualize the projection process, although one must keep in mind that this
“metrical” representation has no relation whatsoever with the topological properties that
are considered here. Eventually, let us consider a subgroup H ⊂ G that is the lift of a sub-
group H ⊂ G. The fundamental group π1(G/H) = π1(G/H), because the coset spaces
are the same, R = G/H = G/H . Now, consider the manifold obtained by identifying

any point g in G with all points h
−1

gh; h ∈ H belonging to the subgroup conjugated
to g ∈ G. Clearly, this manifold represents R. Furthermore, π1(G/H) = H , because G
is simply connected; a complete demonstration requires more sophisticated methods than
those possible in the frame of this textbook.
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The universal cover of the projective plane is the sphere S2; similarly, the universal
cover of SO(3) is S3. In both cases, n = 2. Consider G = S3; the symmetry group of the
triad of directors is D2, an Abelian subgroup of SO(3) with four elements, which we shall
denote I , i , j , and p, with the relations i2 = I, i j = j i = p, where I is the identity and
each other element is a π rotation about one of three different perpendicular axes. The lift
of D2 into S3 is a group with eight elements. We call these elements, as the above, I , i , j ,
and p, adding the supplementary elements J , −i , − j , and −p, whose notations mean that
they are, one by one, on the same “fibers” lifted over SO(3) (therefore, their geometrical in-
terpretation is the same). This is enough to obtain the new group relations, remembering the
remark of the latter paragraph (viz. gi h j = f p; gi , h j , f p ∈ G if gh = f ; g, h, f ∈ G).
This eight-element group, noted Q, is non-Abelian and obeys the multiplication rules:

i j = − j i = p, j p = −pj = i, pi = −i p = j,

J J = I, i i = j j = pp = J, i j p = J. (12.13)

It is the group of quaternion units. Eventually, one finds

π1(S
3/D2) = Q (12.14)

The elements of the quaternion group form five conjugacy classes C0 = {I }, C0 = {J },
Cx = {i,−i}, Cy = { j,− j}, and Cz = {p,−p}.

Disclinations in biaxial nematics differ sharply from disclinations in uniaxial nematics.
Among them, one should distinguish five, rather than one, classes of topologically stable
lines, which correlate with the five classes of conjugated elements of the group Q. Corre-
spondingly, the topological charge can acquire the values I , J , (i,−i), ( j,− j), (p,−p),
with the multiplication rules (12.13). Different disclinations are shown in Fig. 12.16. The
strength k can be half-integer (π rotation of a director around the core, classes Cx , Cy , and

(a) (b)

Figure 12.16. Director fields n (long rods) and l (short rods) for topologically stable disclinations in
a biaxial nematic: (a) k = 1/2, class Cz ; (b) k = 1, class C0. Cross sections in a plane perpendicular
to the axes of the disclinations are shown.
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(a) (b) (c)

Γ1 Γ2 Γ2

SO 3( )

Figure 12.17. Closed contours �1 (a) and �2 (b), (c) corresponding to | k | = 1 and | k | = 2 disclina-
tions in the OP space of the biaxial nematic. Both contours connect diametrically opposite and equiv-
alent points at the surface of SO(3). �1 cannot continuously shrink into a point. �2 runs between the
two antipodal points twice (b) and can smoothly leave these points and shrink into a point (c).

Cz) or integer (2π-rotation, class C0). The singular core of the 2π disclination cannot be
eliminated by the “escape in third dimension” as in the uniaxial nematic (Figs. 12.16 and
12.17). In contrast, 4π-disclinations, class C0, | k | = 2, are topologically unstable. The
striking difference between a 2π- and a 4π-lines is illustrated in Fig. 12.17.

The merger and decay of disclinations in the biaxial nematic obey the multiplication
rules that are specific to the classes of elements, rather than the elements themselves. The
results are given in Table 12.1.

If two disclinations belonging to two different classes merge, then a disclination is
formed that belongs to the class of the product of the first two. The result of merger of
disclinations of the same class from the set Cx ,Cy,Cz is ambiguous: Either a nonsingular
trivial configuration (class C0) or a disclination from class C0 can be formed, depending
on the path of merger with respect to other defect lines in the system.

The cited features of the disclinations merger stem from the noncommutativity of the
group Q. Another spectacular consequence shows up in the entanglement of disclinations
in biaxial nematics.

Table 12.1. Multiplication rules of five classes of elements of the quaternion group that control the
merger and decay of disclinations in a biaxial nematic.

C0 C0 Cx Cy Cz

C0 C0 C0 Cx Cy Cz

C0 C0 C0 Cx Cy Cz

Cx Cx Cx C0 or C0 Cz Cy

Cy Cy Cy Cz C0 or C0 Cx

Cz Cz Cz Cy Cx C0 or C0
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(a) (b) (c)
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Figure 12.18. (a) Entanglement of disclinations in a biaxial nematic; (b) topologically trivial; (c) non-
trivial.

Figure 12.18a shows two entangled disclinations. The question is whether they can
be transformed by continuous variations of the directors into an unlinked configuration
(Fig. 12.18b), if we require that the ends of the disclinations remain fixed.

To find the answer, let us draw three contours γ1, γ2, and γ3 from a point M of real
space: γ1 and γ2 encircle the defect lines, and γ3 encircles the entangled region (Fig. 12.18).
Their images in OP space will be some contours �1, �2, and �3. Evidently, the defects
can be unlinked only when �3 is homotopic to zero. If this is not so, then separation of
the disclinations will leave a topologically nontrivial trace in space, a third disclination
(Fig. 12.18c). The result depends on the nature of the linked disclinations. One can show
(Fig. 12.19) that the contour �3 is homotopic to the product �1�2�

−1
1 �−1

2 ; an element of
this form is called a commutator in the fundamental homotopy group. For Abelian groups,
the commutator is the identity element, because �1�2 = �2�1. This is not true for non-
Abelian groups; in particular, for the group Q, the contour �3 can belong either to the class
C0(�1�2�

−1
1 �−1

2 = 1) or to the class C0(�1�2�
−1
1 �−1

2 = −1). The latter situation occurs
when the two entangled disclinations belong to different classes from the set Cx ,Cy,Cz .
Therefore, after drawing two different disclinations | k | = 1/2 through one another, they
prove to be connected by a disclination | k | = 1 belonging to C0.

The topological classification of defects in biaxial nematics can be applied to cholester-
ics, when the cholesteric pitch is much smaller than is the characteristic scale of deforma-
tions, as discussed in Chapter 11, where for convenience, we used the same notations for
the classes of disclinations. However, the topological classification considered above does
not apply, in its full generality, to the coarse-grained picture of cholesterics that takes into
account the high energy cost of changing the cholesteric pitch.
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(a) (b) (c)

(d) (e)

1

3

–1
1

2

2
–1

γ

γ

γ γ
γ

Figure 12.19. Continuous deformations of the contour γ3 from Fig. 12.18 into the product con-
tour γ1γ2γ

−1
1 γ−1

2 , demonstrating that the image �3 of γ3 in OP space is homotopic to the product

�1�2�
−1
1 �−1

2 . At the step (d), one pinches together four points marked by circles.

12.3. The Second Homotopy Group of the Order Parameter
Space and Point Defects

Point defects in 3D ordered phases are classified by the elements of the second homotopy
group.
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12.3.1. Point Defects in a Three-Dimensional Ferromagnet

In a 3D isotropic ferromagnet, the magnetization field m(r) may contain singular points at
which the direction of m is not specified. To elucidate the topological stability of such a
point, one encloses it with a closed surface σ (Fig. 12.20).

The radius of the sphere should be much larger than the core size of the point de-
fect. The function m(r) produces a mapping of the surface σ into some surface in the
OP space R = S2 (Fig. 12.20). If the resulting surface � can be contracted to a single
point (Fig. 12.20a), the point defect is topologically unstable. If � is wrapped N �= 0
times around the sphere S2, the point singularity is a stable defect with topological charge

(a)

(b)

Σ
0

Σ
1

S
2

S
2

S
2

σ

Figure 12.20. Topological stability of a point defect in a ferromagnet, core region (black ball) sur-
rounded by a closed surface σ . (a) Unstable point defect; (b) topologically stable point defect.
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(a) (b) (c) (d)

Σ1

1
2

Σ 2
21

Σ

1
1 2

Σ
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21

Figure 12.21. Multiplication of classes of surfaces, e.g., �1 and �2, is a commutative operation:
�1�2 = �2�1. The arrow in (c) shows deformation of rotation. Redrawn from Mineev.

N �= 0. For example, Fig. 12.20b illustrates a “hedgehog” radial defect, m(r) = r/| r |, for
which� covers the entire sphere S2 once, N = 1. The classes of all images�’s (including
the surfaces homotopic to a single point) form the second homotopy group π2(S2), which
in the case of the ferromagnet is isomorphic to the group of integers Z . The topological
charge N of a point defect is also called the degree of mapping of σ on S2. N shows how
many times the vector m runs over the sphere S2 in moving over the closed surface σ . In
the example above, m(r) = r/| r |, and N = 1; if one reverses the orientation of m, i.e.,
m(r) = −r/| r |, then the degree of mapping also changes the sign: N = −1. When the
point defects coalesce, the charges N add up.

In contrast to π1(R), groups π2(R) are always Abelian; i.e., the multiplication of
classes of surfaces � is commutative. Figure 12.21 shows a continuous deformation that
establishes �1�2 = �2�1.

12.3.2. Topological Charges of Point Defects

Analytically, the topological charge of a point defect in a 3D unit vector field m is defined
as an integral1 over the sphere σ :

N (3) = 1

4π

∫

σ

m ·
[
∂m
∂u1

× ∂m
∂u2

]
du1 du2. (12.15a)

The integrand contains the Jacobian of the transformation from the coordinates u1 and
u2 on the sphere σ to the vector components m parameterizing the surface � that cov-
ers the OP S2-sphere N times. If the vector field is parameterized as {nx ; ny; nz} =
{sin θ cosϕ; sin θ sinϕ; cos θ}, with both angles θ and ϕ being the functions of the two

1M. Kleman, Phil. Mag. 27, 1057 (1973); N.D. Mermin and T.-L. Ho, Phys. Rev. Lett. 36, 594 (1976).
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N=1

N=-1

N=2

N=1

N=-1

Figure 12.22. Point defects in a 3D vector field.

angular spherical coordinates u1 and u2, then

N (3) = 1

4π

∫ 2π

0
du2

∫ π

0

(
∂θ

∂u1

∂ϕ

∂u2
− ∂θ

∂u2

∂ϕ

∂u1

)
sin θ du1. (12.15b)

For a radial hedgehog, N (3) = 1, as expected. Different 3D point defects are shown in
Fig. 12.22.

In a similar way, one can define the topological charge of a 2D unit vector field � with
components τ 1(l) and τ 2(l) as the integral over the coordinate l on a contour around the
defect [compare with (11.4)]:

N (2) = 1

2π

∮ (
τ 1 dτ 2

dl
− τ 2 dτ 1

dl

)
dl (= 0,±1,±2, . . . .) (12.16)
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Note that the two 2D radial configurations: “sink” (� directed toward the core) and “source”
(� directed outward from the core), have the same invariant N (2) = 1, in contrast to the 3D
radial configurations, in which a reversal in the direction of m changes the sign of N (3).

12.3.3. Point Defects in a Three-Dimensional Nematic Phase

Classification of point defects in a 3D uniaxial nematic, R = S2/Z2, is similar to that
in a ferromagnet: π2(S2/Z2) = Z . However, because n ≡ −n, each point can be equally
assigned a charge N and a charge −N (12.15). This ambiguity in the sign of the topological
charge is the consequence of nontriviality of the fundamental group π1(S2/Z2) and its
action on the group π2(S2/Z2).

Assume that the nematic volume contains a point defect and a π-disclination line. The
director field provides a mapping of degree N of the sphere σ enclosing the point defect
and part of the line defect, on S2/Z2. A point r0 of real space is mapped into an image
point n(r0) of OP space. If one moves the point r0 over a closed contour γ around the
disclination line, then the point n(r0) goes over a contour �1/2 into an antipodal point
−n(r0) and N reverses sign (Fig. 12.23). The contour �1/2 connecting n(r0) and −n(r0)

is a nontrivial element of the group π1(S2/Z2) = Z2. If the contour �1/2 were the identity
element, the degree of mapping would preserve the sign.

Thus, when π1(R) is nontrivial, each point singularity corresponds to a few elements
(such as N and −N above) of π2(R), rather than to a single element of π2(R) (such as
N or −N ). These elements are tranformed one into another by moving the image points
along contours that are nontrivial elements of π1(R). The coalescence of two point defects
N1 and N2 in the presence of disclination can result in a defect with a charge | N1 + N2 |

γ
Γ 1 / 2

− n r0( )
n r0( )

r0

σ

S
2

/ Z 2

Figure 12.23. Action of the fundamental group π1 on the second homotopy group π2 in a uniaxial
nematic: Moving point r0 of real space around a π-disclination transforms the image point n(r0)

into an antipodal point −n(r0).
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or | N1 − N2 |, depending on the path of coalescence. Owing to this feature, all hedgehogs
in a nematic system with a π-disclination can be annihilated, or at least all but one with
N = 1 (if the total charge is odd).

12.4. Solitons

12.4.1. Planar Solitons

Let us study a uniaxial nematic placed in a plane capillary, both surfaces of which impose
planar achoring in one direction h. The director in the bulk is set to be oriented along
h: n = ±h. In other words, the interaction with the walls contracts the OP space of the
nematic to a single point. Let a vertical disclination k = ±1/2 exist in the specimen. When
the disclination is present, it is impossible to conserve a uniform configuration n = ±h:
at a certain surface supported by the disclination, the director will undergo a π-rotation
(Fig. 12.24a). The width of the wall is fixed by the balance of elastic and surface anchoring

(a)

n = ± h

(c)

m = h m = − h

(b) (d)

n = ± h m = h

m = − h

Γ
m

Γ
n

S
2
/ Z

2 S
2

γ
m

γ
n

Figure 12.24. (a), (b) Topologically stable planar soliton in a uniaxial nematic; (c), (d) Bloch domain
wall in an anisotropic ferromagnetic with an “easy magnetization” axis.
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energies. If we write the energy of the wall as

F = K d

ρ
+wρ, (12.17)

then its equilibrium width ρ0 is

ρ0 =
(

K d

w

)1/2

. (12.18)

Here, d is the thickness of the capillary, K is a nematic elastic constant, and w (dimension
J/m2) is the anchoring coefficient, calculated as the energy per unit surface area needed
to deviate the director from the “easy axis” n = ±h by the angle π/2. Such walls with a
nonsingular director configuration are called planar solitons of topological type.

Not only does the soliton under consideration preserve a constant width, but it also
possesses a nontrivial topological charge. Indeed, let us study the mapping of the line γn

threaded through the soliton into the OP space (Fig. 12.24a). The ends of the line are
mapped into antipodal identical points n = ±h, whereas the line γn is mapped onto the
closed contour �n , linking these points on S2/Z2 (Fig. 12.24). This contour cannot be
contracted to a point by any continuous transformations, which determines the topological
stability of the planar soliton.

In the general case, the classes of homotopic mappings of the line γ threaded through
a planar soliton form the relative homotopy group π1(R,R), where R is the region of pos-
sible values of the order parameter far from the core of the soliton, narrowed in comparison
to R by additional interaction (external field, boundary conditions, etc.). If R consists of
a single point, as in the case being studied, the group π1(R,R) coincides with the funda-
mental group π1(R). Therefore, soliton walls in nematics exist in a mutually one-to-one
correspondence with the disclinations that have produced them and are described by the
same group π1(S2/Z2) = Z2. If R is not a point, then to find π1(R,R), one first finds
π1(R) and then excludes from π1(R) the elements that correspond to π1(R). In other
words, one must find the factor group of π1(R) by its subgroup, which is the image of the
homomorphism π(R)→ π(R):

π1(R,R) = π1(R)/Im
[
π1(R)→ π1(R)

]
. (12.19)

There are other examples of walls, different from the planar solitons above, that oc-
cur in media with disconnected R (Fig. 12.24c). For example, consider a ferromagnet in
which additional interaction between the magnetization vector and the crystal lattice is
anisotropic. In equilibrium, the vector m orients along a particular crystallographic axis,
say, m = ±h. The states m = h and m = −h are distinguishable, unlike in the nematic
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phase. Thus, R is reduced from the sphere S2 into a set of two disconnected points m = ±h
(Fig. 12.24d). The set of disconnected pieces of OP space R is denoted π0(R). In our case,
π0(m = ±h) = Z2 and any two domain walls can be merged to produce a uniform state.
Alternatively, one can use the relative fundamental group π1(R,R) = π1(S2,m = ±h);
however, with a disconnected R, π1(R,R) is no longer a group. Domain walls of the
type of the Bloch and Néel walls that provide a connection between different pieces of the
disconnected OP space can be called “classical domain walls” to distinguish them from
soliton walls ending at linear defects. This terminological distinction has a physical basis:
To remove a wall associated with a linear singularity, it suffices to create a ring of discli-
nations in the plane of the wall. The latter, in expanding, “eats up” the wall; at the same
time, to remove a classic wall requires overcoming a considerably larger energy barrier
and transformation of the order parameter over the entire half-space on one side of the
wall.

12.4.2. Linear Solitons

Just as a disclination in an external field can give rise to a planar soliton, a point defect
can give rise to a linear soliton (Fig. 12.25). Linear solitons are described by the classes
of mapping of the surface σ crossing the soliton into the OP spaces R and R, i.e., by the
elements of the relative group π2(R,R). If a uniaxial nematic is oriented by a magnetic
field B along the axis h||B, then RN reduces to one point, and π2(RN ,RN ) = π2(RN ) =
π2(S2/Z2) = Z ; i.e., the classification of linear solitons coincides with the classification
of hedgehogs.

n = – h

mapping into

S
2
/Z2

mapping into

n =– h

σ
B

γ

Figure 12.25. Linear soliton terminating at a point defect (a radial hedgehog in a nematic liquid
crystal). The magnetic field B is along the axis ±h. See text.
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12.4.3. Particle-Like Solitons

The distribution of the order parameter in particle-like solitons depends on all three coor-
dinates. They are described by the group π3(R,R) of homotopy classes of the mappings
of the 3D spherical volume D3 containing the soliton into the space R. Here, the boundary
of the spherical volume, the sphere σ , is mapped into the narrowed space R. If R consists
of one point, then the particle-like soliton is described by the group π3(R). The spherical
volume D3 with all point of its surface σ being equivalent, is homotopic to a 3D sphere S3

in a 4D space. Thus, the elements of π3(R) are mappings S3 → R. Special cases S3 → S2

and S3 → S2/Z2 are called Hopf mappings and correspond to π3(S2) = π3(S2/Z2) = Z
(Fig. 12.26).

In a uniaxial nematic, the particle-like soliton amounts to a director configuration dis-
torted in a region of finite size, outside of which the director field is uniform. As a rule,
such solitons are unstable with respect to decrease in size and subsequent disappearance on
scales smaller than the coherence length ξ . The decrease in size L → µL(µ < 1) entails
an increase in the elastic-energy density by a factor of 1/µ2 and a decrease in the soliton’s
volume by a factor of µ3, so that the total elastic energy decreases: F → Fµ. Stabiliza-
tion of particle-like solitons can be facilitated by an additional interaction, in particular,
by helical twisting of the structure. In a weakly twisted cholesteric mixture, Bouligand ob-
served two linked disclination rings k1 = k2 = 1, each of which by itself is topologically

Figure 12.26. A nontrivial Hopf texture in a 3D vector field, as seen in the vertical cross section.
The vector field is directed north everywhere outside of the sphere and at the origin. The vertical
axis is the rotational symmetry axis. When going along any radius from the center to the surface
of the sphere, the vector rotates by an angle 2πr/R around this radius. The length of the arrows is
proportional to the length of vector projection in the XY plane.
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unstable, whereby all points of the cores of the disclination are mapped into a single point
of the degeneracy space S2/Z2. In going from one ring to the other, the director undergoes
a 180◦ rotation, and one can represent the rings as inverse images of two diametrically
opposite points on the sphere S2. Evidently, one cannot convert the configuration into a
homogeneous state because the rings are linked: Upon trying to unlink the rings, they must
intersect one another and singularities would arise in the configuration. The degree of link-
ing of the rings, equal in this case to unity, coincides with the Hopf invariant, which is
an element of the group π3(S2/Z2) = Z . The stability of the configuration as a whole is
guaranteed by the conservation of the Hopf invariant.

Problem 12.1. Prepare a paper strip with a 2π-twist. Mark the edges of the strip in different colors.
Imagine that the strip models a simple loop of a duplex DNA molecule. The DNA must be duplicated
every time a cell divides. The two strands of the initial DNA must separate, and then each should
synthesize its new partner to form a double-stranded DNA. Try to prepare the paper strip for a “repli-
cation” by cutting it along the central line; in a real DNA, it would correspond to the cutting of the
hydrogen bonds between the base pairs. Repeat the cutting along the central line two times. Describe
the topology of the result at each step. Compare the behavior of 2π-, π-, and untwisted strips.

Hint. The exercise should demonstrate the need in topoisomerases invented by Nature to change
topology of the duplex DNA by cutting one or two of its strands.

Problem 12.2. The linking number Lk of two curves is an integer (12.3) that does not change when
the curves are deformed without crossing each other. Calculate the linking number for the pair of
circles x2 + y2 = 1 and (y − 1)2 + z2 = 1.

Answers: Lk = 1. Parameterize the circle x2 + y2 = 1 as

rc′(s′) = (cos s′, sin s′, 0), 0 ≤ s′ ≤ 2π;
enlarge the circle (y − 1)2 + z2 = 1 (without crossing the first circle) so that it can be parameterized
as rc(s) = (0, 0, s),−∞ < s <∞. According to (12.3),

Lk = 1

4π

∞∫

−∞

2π∫

0

dsds′
(1 + s2)3/2

= 1

2

∞∫

−∞

ds

(1 + s2)3/2
= 1.

Problem 12.3. Let G be a group of transformations g that transform a given value of the order
parameter ψ into another value gψ for which the thermodynamical potentials of the system remain
the same. Let H be a set of all transformations gH that leave the order parameter unchanged, gHψ =
ψ . Prove that H is a subgroup of G.

Answers: If gH1 and gH2 leave the OP unchanged, so does gH1 g−1
H2

.

Problem 12.4. Find the OP spaces and fundamental groups of the 3D smectic A and smectic C [M.
Kleman and L. Michel, J. Phys. Lett. 39, L-29 (1978)].



12.4 Solitons 469

Answers: In view of the complexity of the OP spaces of SmA and SmC phases, the direct algebraic
approach to calculations is difficult. One can use an intuitive graphic scheme.

The density function of SmA and SmC is modulated along the normal to the layers with a period
d0 of the order of the molecular length (or larger, as in some diluted lyotropic lamellar phases). Within
the layers, the density is constant, and the molecules are either normal to the layers (SmA) or tilted
(SmC). The orientational order of both SmA and SmC, just like a nematic phase, is described by the
director n. Taking into account also the translational order, the OP space for the SmA phase can be
written as a filled torus RA = (S2/Z2)×S1. The vertical cross sections of the torus in the form of two
circles amount to hemispheres S2/Z2 stretched into disks whose points characterize the orientation
of n. The points along the large circles of the torus correspond to points along the segment [0, d0]
closed into a circle S1. At (S2/Z2)× S1, there are two types of elementary contours not homotopic
to zero: the ones that join diametrically opposite points of the disks S2/Z2 (describing disclinations)
and the ones that run around the hole of the torus (describing dislocations). The fundamental group
π1(RA) = π1(S

1)×π1(S
2/Z2) = Z × Z2 is composed of elements (b, k), where b is an integer and

k is either 0 or 1/2. Combinations of dislocations and disclinations with both b and k being nontrivial
are called disgyrations.

For the SmC phase, the order parameter can be easily represented by using the relationship
RA = RC/S1, which implies that each point of RA corresponds in RC to an entire family S1

of points that specify the orientation of the tilted molecules in the plane of the SmC layers. Direct
calculations show that π1(RC ) = Z ∧ Z4, where Z4 = (I, a, a2, a3) is the group of subtractions
modulo 4 with the unit element I .

Problem 12.5. A nonbounded biaxial nematic contains a π-disclination Cx and a 2π-disclination
C0. Find the way to eliminate the disclination C0.

Hint. Split the C0-disclination into two (which ones?) and bring them together (along which
paths?).

Problem 12.6. Find the relative homotopy group π1(R,R)when R is a torus S1 × S1 and R = S1.

Answers: Im [π1(R)→ π1(R)] = π(R) = Z , π1(R,R) = Z × Z/Z = Z [V.P. Mineyev and
G.E. Volovik, Phys. Rev. B 18, 3197 (1978)].

Problem 12.7. Calculate the topological charge of the following vector fields in 2D:

(a) (x,−y)/
√

x2 + y2;

(b) (−x,−y)/
√

x2 + y2;

(c) (x2 − y2, 2xy)/(x2 + y2);

(d) (x2 − y2,−2xy)/(x2 + y2);

(e) (x3 − 3xy2,−y3 + 3x2 y)/(x2 + y2)3/2.

Hints. Parameterize the vector field using the coordinate 0 ≤ l ≤ 2π at the circle (cos l, sin l).
For example, the field (e) adopts the form (cos 3l, sin 3l).

Answers: (a) −1; (b) 1; (c) 2; (d) −2; (e) 3.
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Problem 12.8. Calculate the topological charges and the elastic energy of the following two hedge-
hogs in the nematic bulk of radius R:

n1 = (x, y, z)/
√

x2 + y2 + z2 and n2 = (−x,−y, z)/
√

x2 + y2 + z2.

Use the Frank–Oseen free energy density with elastic constants

K1 �= K2 �= K3 �= K24, K13 = 0.

Answer: See (11.14) in Chapter 11.
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