
��n�t�� = ei�n�t�exp�−
i

�
�

0

t

dt��n„R�t��…��n„R�t�…� ,

�1.3�

where the second exponential is known as the dynamical
phase factor. Inserting Eq. �1.3� into the time-dependent
Schrödinger equation

i�
�

�t
��n�t�� = H„R�t�…��n�t�� �1.4�

and multiplying it from the left by �n„R�t�…�, one finds
that �n can be expressed as a path integral in the param-
eter space

�n = �
C

dR · An�R� , �1.5�

where An�R� is a vector-valued function

An�R� = i�n�R��
�

�R
�n�R�� . �1.6�

This vector An�R� is called the Berry connection or the
Berry vector potential. Equation �1.5� shows that, in ad-
dition to the dynamical phase, the quantum state will
acquire an additional phase �n during the adiabatic evo-
lution.

Obviously, An�R� is gauge dependent. If we make a
gauge transformation

�n�R�� → ei��R��n�R�� , �1.7�

with ��R� an arbitrary smooth function and An�R� trans-
forms according to

An�R� → An�R� −
�

�R
��R� . �1.8�

Consequently, the phase �n given by Eq. �1.5� will be
changed by �„R�0�…−�„R�T�… after the transformation,
where R�0� and R�T� are the initial and final points of
the path C. This observation has led Fock �1928� to con-
clude that one can always choose a suitable ��R� such
that �n accumulated along the path C is canceled out,
leaving Eq. �1.3� with only the dynamical phase. Because
of this, the phase �n has long been deemed unimportant
and it was usually neglected in the theoretical treatment
of time-dependent problems.

This conclusion remained unchallenged until Berry
�1984� reconsidered the cyclic evolution of the system
along a closed path C with R�T�=R�0�. The phase choice
we made earlier on the basis function �n�R�� requires
ei��R� in the gauge transformation 	Eq. �1.7�
 to be single
valued, which implies

�„R�0�… − �„R�T�… = 2�� integer. �1.9�

This shows that �n can be only changed by an integer
multiple of 2� under the gauge transformation 	Eq.
�1.7�
 and it cannot be removed. Therefore for a closed
path, �n becomes a gauge-invariant physical quantity,

now known as the Berry phase or geometric phase in
general; it is given by

�n = �
C

dR · An�R� . �1.10�

From the above definition, we can see that the Berry
phase only depends on the geometric aspect of the
closed path and is independent of how R�t� varies in
time. The explicit time dependence is thus not essential
in the description of the Berry phase and will be
dropped in the following discussion.

2. Berry curvature

It is useful to define, in analogy to electrodynamics, a
gauge-field tensor derived from the Berry vector poten-
tial:

	
�
n �R� =

�

�R

A�

n�R� −
�

�R�
A


n�R�

= i�� �n�R�
�R


 �n�R�
�R�

� − ��↔ 
�� . �1.11�

This field is called the Berry curvature. Then according
to Stokes’s theorem the Berry phase can be written as a
surface integral

�n = �
S

dR
 ∧ dR� 1
2	
�

n �R� , �1.12�

where S is an arbitrary surface enclosed by the path C. It
can be verified from Eq. �1.11� that, unlike the Berry
vector potential, the Berry curvature is gauge invariant
and thus observable.

If the parameter space is three dimensional, Eqs.
�1.11� and �1.12� can be recast into a vector form

�n�R� = �R�An�R� , �1.11��

�n = �
S

dS · �n�R� . �1.12��

The Berry curvature tensor 	
�
n and vector �n are re-

lated by 	
�
n =�
���n� with �
� the Levi-Cività anti-

symmetry tensor. The vector form gives us an intuitive
picture of the Berry curvature: it can be viewed as the
magnetic field in the parameter space.

Besides the differential formula given in Eq. �1.11�,
the Berry curvature can be also written as a summation
over the eigenstates:

	
�
n �R� = i �

n��n

�n��H/�R
�n���n���H/�R��n� − ��↔ 
�
��n − �n��

2 .

�1.13�

The curvature can be obtained from Eq. �1.11� using
�n��H /�R�n��= ��n /�R �n����n−�n�� for n��n. The sum-
mation formula has the advantage that no differentia-
tion on the wave function is involved, therefore it can be
evaluated under any gauge choice. This property is par-
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