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A connection ω on a principal bundle P(M,G) separates Tu P into Hu P ⊕
Vu P . Accordingly, a vector X ∈ Tu P is decomposed as X = X H + X V where
X H ∈ Hu P and X V ∈ Vu P .

Definition 10.4. Let φ ∈ �r (P) ⊗ V and X1, . . . , Xr+1 ∈ Tu P . The covariant
derivative of φ is defined by

Dφ(X1, . . . , Xr+1) ≡ dP φ(X
H
1 , . . . , X H

r+1) (10.28)

where dP φ ≡ dP φ
α ⊗ eα .

10.3.2 Curvature

Definition 10.5. The curvature two-form � is the covariant derivative of the
connection one-form ω,

� ≡ Dω ∈ �2(P)⊗ �. (10.29)

Proposition 10.2. The curvature two-form satisfies (cf (10.3b))

R∗a� = a−1�a a ∈ G. (10.30)

Proof. We first note that (Ra∗X)H = Ra∗(X H ) (Ra∗ preserves the horizontal
subspaces) and dP R∗a = R∗a dP , see (5.75). By definition we find

R∗a�(X,Y ) = �(Ra∗X, Ra∗Y ) = dPω ((Ra∗X)H , (Ra∗Y )H )

= dPω (Ra∗X H , Ra∗Y H ) = R∗a dPω (X
H ,Y H )

= dP R∗aω (X H ,Y H )

= dP (a
−1ωa)(X H ,Y H ) = a−1dPω (X

H ,Y H )a

= a−1�(X,Y )a

where we noted that a is a constant element and hence dPa = 0. �

Take a �-valued p-form ζ = ζ α ⊗ Tα and a �-valued q-form η = ηα ⊗ Tα
where ζ α ∈ �p(P), ηα ∈ �q(P), and {Tα} is a basis of �. Define the commutator
of ζ and η by

[ζ, η] ≡ ζ ∧ η − (−1)pqη ∧ ζ
= TαTβζ

α ∧ ηβ − (−1)pq TβTαη
β ∧ ζ α

= [Tα, Tβ ] ⊗ ζ α ∧ ηβ = fαβ
γ Tγ ⊗ ζ α ∧ ηβ. (10.31)

If we put ζ = η in (10.31), when p and q are odd, we have

[ζ, ζ ] = 2ζ ∧ ζ = fαβ
γ Tγ ⊗ ζ α ∧ ζ β.

Lemma 10.2. Let X ∈ Hu P and Y ∈ Vu P . Then [X,Y ] ∈ Hu P .
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Proof. Let Y be a vector field generated by g(t), then

�Y X = [Y, X] = lim
t→0

t−1(Rg(t)∗X − X).

Since a connection satisfies Rg∗Hu P = Hug P , the vector Rg(t)∗X is horizontal
and so is [Y, X]. �

Theorem 10.3. Let X,Y ∈ Tu P . Then � and ω satisfy Cartan’s structure
equation

�(X,Y ) =dPω (X,Y )+ [ω(X), ω(Y )] (10.32a)

which is also written as
� = dPω + ω ∧ ω. (10.32b)

Proof. We consider the following three cases separately:
(i) Let X,Y ∈ Hu P . Then ω(X) = ω(Y ) = 0 by definition. From definition

10.5, we have �(X,Y ) = dPω (X H ,Y H ) = dPω (X,Y ), since X = X H and
= Y H .

(ii) Let X ∈ Hu P and Y ∈ Vu P . Since Y H = 0, we have �(X,Y ) = 0. We
also have ω(X) = 0. Thus, we need to prove dPω (X,Y ) = 0. From (5.70), we
obtain

dPω (X,Y ) = Xω(Y )− Yω(X) − ω([X,Y ]) = Xω(Y )− ω([X,Y ]).
Since Y ∈ Vu P , there is an element V ∈ � such that Y = V #. Then ω(Y ) = V is
constant, hence Xω(Y ) = X · V = 0. From lemma 10.2, we have [X,Y ] ∈ Hu P
so that ω([X,Y ]) = 0 and we find dPω (X,Y ) = 0.

(iii) For X,Y ∈ Vu P , we have �(X,Y ) = 0. We find that, in this case,

dPω (X,Y ) = Xω(Y ) − Yω(X)− ω([X,Y ]) = −ω([X,Y ]).
We note that X and Y are closed under the Lie bracket, [X,Y ] ∈ Vu P , see exercise
10.1(b). Then there exists A ∈ � such that

ω([X,Y ]) = A

where A# = [X,Y ]. Let B# = X and C# = Y . Then [ω(X), ω(Y )] = [B,C] =
A since [B,C]# = [B#,C#]. Thus, we have shown that

0 = dPω (X,Y )+ ω([X,Y ]) = dPω (X,Y )+ [ω(X), ω(Y )].
Since� is linear and skew symmetric, these three cases are sufficient to show

that (10.32) is true for any vectors.
To derive (10.32b) from (10.32a), we note that

[ω,ω](X,Y ) = [Tα, Tβ ]ωα ∧ ωβ(X,Y )
= [Tα, Tβ ][ωα(X)ωβ(Y )− ωβ(X)ωα(Y )]
= [ω(X), ω(Y )] − [ω(Y ), ω(X)] = 2[ω(X), ω(Y )].

Hence, �(X,Y ) = (dPω + 1
2 [ω,ω])(X,Y ) = (dPω + ω ∧ ω)(X,Y ). �
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10.3.3 Geometrical meaning of the curvature and the Ambrose–Singer
theorem

We have shown in chapter 7 that the Riemann curvature tensor expresses the non-
commutativity of the parallel transport of vectors. There is a similar interpretation
of curvature on principal bundles. We first show that �(X,Y ) yields the vertical
component of the Lie bracket [X,Y ] of horizontal vectors X,Y ∈ Hu P . It follows
from ω(X) = ω(Y ) = 0 that

dPω (X,Y ) = Xω(Y ) − Yω(X)− ω([X,Y ]) = −ω([X,Y ]).

Since X H = X , Y H = Y , we have

�(X,Y ) = dPω (X,Y ) = −ω([X,Y ]). (10.33)

Let us consider a coordinate system {xµ} on a chart U . Let V = ∂/∂x1 and
W = ∂/∂x2. Take an infinitesimal parallelogram γ whose corners are O =
{0, 0, . . . , 0}, P = {ε, 0, . . . , 0}, Q = {ε, δ, 0, . . . , 0} and R = {0, δ, 0, . . . , 0}.
Consider the horizontal lift γ̃ of γ . Let X,Y ∈ Hu P such that π∗X = εV and
π∗Y = δW . Then

π∗([X,Y ]H ) = εδ[V ,W ] = εδ
[
∂

∂x1 ,
∂

∂x2

]
= 0 (10.34)

that is [X,Y ] is vertical. This consideration shows that the horizontal lift γ̃ of
a loop γ fails to close. This failure is proportional to the vertical vector [X,Y ]
connecting the initial point and the final point on the same fibre. The curvature
measures this distance,

�(X,Y ) = −ω([X,Y ]) = A (10.35)

where A is an element of � such that [X,Y ] = A#.
Since the discrepancy between the initial and final points of the horizontal

lift of a closed curve is simply the holonomy, we expect that the holonomy group
is expressed in terms of the curvature.

Theorem 10.4. (Ambrose–Singer theorem) Let P(M,G) be a G bundle over a
connected manifold M . The Lie algebra � of the holonomy group �u0 of a point
u0 ∈ P agrees with the subalgebra of � spanned by the elements of the form

�u(X,Y ) X,Y ∈ Hu P (10.36)

where a ∈ P is a point on the same horizontal lift as u0. [See Choquet-Bruhat et
al (1982) for the proof.]
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10.3.4 Local form of the curvature

The local form � of the curvature� is defined by

� ≡ σ ∗� (10.37)

where σ is a local section defined on a chart U of M (cf� = σ ∗ω). � is expressed
in terms of the gauge potential � as

� = d�+ � ∧� (10.38a)

where d is the exterior derivative on M . The action of � on the vectors of T M is
given by

�(X,Y ) = d� (X,Y )+ [�(X),�(Y )]. (10.38b)

To prove (10.38a) we note that � = σ ∗ω, σ ∗ dPω = dσ ∗ω and σ ∗(ζ ∧ η) =
σ ∗ζ ∧ σ ∗η. From Cartan’s structure equation, we find

� = σ ∗(dPω + ω ∧ ω) = dσ ∗ω + σ ∗ω ∧ σ ∗ω = d�+� ∧�.

Next, we find the component expression of� on a chart U whose coordinates
are xµ = ϕ(p). Let � = �µ dxµ be the gauge potential. If we write
� = 1

2�µν dxµ ∧ dxν, a direct computation yields

�µν = ∂µ�ν − ∂ν�µ + [�µ,�ν]. (10.39)

� is also called the curvature two-form and is identified with the (Yang–Mills)
field strength. To avoid confusion, we call � the curvature and � the (Yang–
Mills) field strength. Since �µ and �µν are �-valued functions, they can be
expanded in terms of the basis {Tα} of � as

�µ = Aµ
αTα �µν = Fµν

αTα. (10.40)

The basis vectors satisfy the usual commutation relations [Tα, Tβ ] = fαβγ Tγ . We
then obtain the well-known expression

Fµν
α = ∂µAν

α − ∂ν Aµ
α + fβγ

αAµ
β Aν

γ . (10.41)

Theorem 10.5. Let Ui and U j be overlapping charts of M and let �i and � j be
field strengths on the respective charts. On Ui ∩U j , they satisfy the compatibility
condition,

� j = Adt−1
i j
�i = t−1

i j �i ti j (10.42)

where ti j is the transition function on Ui ∩U j .
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Proof. Introduce the corresponding gauge potentials �i and � j ,

�i = d�i +�i ∧�i � j = d� j +� j ∧� j .

Substituting � j = t−1
i j �i ti j + t−1

i j dti j into � j , we verify that

� j = d (t−1
i j �i ti j + t−1

i j dti j )

+ (t−1
i j �i ti j + t−1

i j dti j ) ∧ (t−1
i j �i ti j + t−1

i j dti j )

= [−t−1
i j dti j ∧ t−1

i j �i ti j + t−1
i j d�i ti j

− t−1
i j �i ∧ dti j − t−1

i j dti j t−1
i j ∧ dti j ]

+ [t−1
i j �i ∧�i ti j + t−1

i j �i ∧ dti j

+ t−1
i j dti j t−1

i j ∧�i ti j + t−1
i j dti j ∧ t−1

i j dti j ]
= t−1

i j (d�i +�i ∧�i )ti j = t−1
i j �i ti j

where use has been made of the identity dt−1 = −t−1 dt t−1. �

Exercise 10.7. The gauge potential� is called a pure gauge if� is written locally
as � = g−1 dg. Show that the field strength � vanishes for a pure gauge �. [It
can be shown that the converse is also true. If � = 0 on a chart U , the gauge
potential may be expressed locally as � = g−1 dg.]

10.3.5 The Bianchi identity

Since ω and � are �-valued, we expand them in terms of the basis {Tα} of � as
ω = ωαTα, � = �αTα. Then (10.32b) becomes

�α = dPω
α + fβγ

αωβ ∧ ωγ . (10.43)

Exterior differentiation of (10.43) yields

dP�
α = fβγ

α dPω
β ∧ ωγ + fβγ

αωβ ∧ dPω
γ . (10.44)

If we note that ω(X) = 0 for a horizontal vector X , we find

D�(X,Y, Z) = dP� (X
H ,Y H , Z H ) = 0

where X,Y, Z ∈ Tu P . Thus, we have proved the Bianchi identity

D� = 0. (10.45)

Let us find the local form of the Bianchi identity. Operating with σ ∗ on
(10.44), we find that σ ∗ dP� = d · σ ∗� = d� for the LHS and

σ ∗(dPω ∧ ω − ω ∧ dPω) = dσ ∗ω ∧ σ ∗ω − σ ∗ω ∧ dσ ∗ω
= d� ∧�−� ∧ d� = � ∧�−� ∧ �
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for the RHS. Thus, we have obtained that

�� = d�+� ∧ �− � ∧� = d�+ [�,�] = 0 (10.46)

where the action of� on a �-valued p-form η on M is defined by

�η ≡ dη + [�, η]. (10.47)

Note that �� = d� for G = U(1).

10.4 The covariant derivative on associated vector bundles

A connection one-form ω on a principal bundle P(M,G) enables us to define the
covariant derivative in associated bundles of P in a natural way.

10.4.1 The covariant derivative on associated bundles

In physics, we often need to differentiate sections of a vector bundle which is
associated with a certain principal bundle. For example, a charged scalar field in
QED is regarded as a section of a complex line bundle associated with a U(1)
bundle P(M,U(1)). Differentiating sections covariantly is very important in
constructing gauge-invariant actions.

Let P(M,G) be a G bundle with the projection πP . Let us take a chart Ui of
M and a section σi over Ui . We take the canonical trivialization φi (p, e) = σi (p).
Let γ̃ be a horizontal lift of a curve γ : [0, 1] → Ui . We denote γ (0) = p0
and γ̃ (0) = u0. Associated with P is a vector bundle E = P ×ρ V with the
projection πE , see section 9.4. Let X ∈ Tp M be a tangent vector to γ (t) at p0.
Let s ∈ �(M, E) be a section, or a vector field, on M . Write an element of E as
[(u, v)] = {(ug, ρ(g)−1v|u ∈ P, v ∈ V , g ∈ G}. Taking a representative of the
equivalence class amounts to fixing the gauge. We choose the following form,

s(p) = [(σi (p), ξ(p))] (10.48)

as a representative.
Now we define the parallel transport of a vector in E along a curve γ in M .

Of course, a naive guess ‘ξ is parallel transported if ξ(γ (t)) is constant along γ (t)’
does not make sense since this statement depends on the choice of the section
σi (p). We define a vector to be parallel transported if it is constant with respect to
a horizontal lift γ̃ of γ in P . In other words, a section s(γ (t)) = [(γ̃ (t), η(γ (t)))]
is parallel transported if η is constant along γ (t). This definition is intrinsic since
if γ̃ ′(t) is another horizontal lift of γ , then it can be written as γ̃ ′(t) = γ̃ (t)a,
a ∈ G and we have (we omit ρ to simplify the notation)

[(γ̃ (t), η(t))] = [(γ̃ ′(t)a−1, η(t))] = [(γ̃ ′(t), a−1η(t))]
where η(t) stands for η(γ (t)). Hence, if η(t) is constant along γ (t), so is its
constant multiple a−1η(t).
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Now the definition of covariant derivative is in order. Let s(p) be a section
of E . Along a curve γ : [0, 1] → M we have s(t) = [(γ̃ (t), η(t))], where γ̃ (t) is
an arbitrary horizontal lift of γ (t). The covariant derivative of s(t) along γ (t) at
p0 = γ (0) is defined by

∇X s ≡
[(
γ̃ (0),

d

dt
η(γ (t))

∣∣∣∣
t=0

)]
(10.49)

where X is the tangent vector to γ (t) at p0. For the covariant derivative to be
really intrinsic, it should not depend on the extra information, that is the special
horizontal lift. Let γ̃ ′(t) = γ̃ (t)a (a ∈ G) be another horizontal lift of γ . If γ̃ ′(t)
is chosen to be the horizontal lift, we have a representative [(γ̃ ′(t), a−1η(t))].
The covariant derivative is now given by[(

γ̃ ′(0),
d

dt
{a−1η(t)}

∣∣∣∣
t=0

)]
=

[(
γ̃ ′(0)a−1,

d

dt
η(t)

∣∣∣∣
t=0

)]
which agrees with (10.49). Hence, ∇X s depends only on the tangent vector X
and the sections s ∈ �(M, E) and not on the horizontal lift γ̃ (t). Our definition
depends only on a curve γ and a connection and not on local trivializations. The
local form of the covariant derivative is useful in practical computations and will
be given later.

So far we have defined the covariant derivative at a point p0 = γ (0). It
is clear that if X is a vector field, ∇X maps a section s to a new section ∇X s,
hence ∇X is regarded as a map �(M, E) → �(M, E). To be more precise, take
X ∈ �(M) whose value at p is X p ∈ Tp M . There is a curve γ (t) such that
γ (0) = p and its tangent at p is X p . Then any horizontal lift γ̃ (t) of γ enables
us to compute the covariant derivative ∇X s|p ≡ ∇X p s. We also define a map
∇ : �(M, E)→ �(M, E) ⊗�1(M) by

∇s(X) ≡ ∇X s X ∈ �(M) s ∈ �(M, E). (10.50)

Exercise 10.8. Show that

∇X (a1s1 + a2s2) = a1∇X s1 + a2∇X s2 (10.51a)

∇(a1s1 + a2s2) = a1∇s1 + a2∇s2 (10.51b)

∇(a1 X1+a2 X2)s = a1∇X1 s + a2∇X2s (10.51c)

∇X ( f s) = X[ f ]s + f∇X s (10.51d)

∇( f s) = (d f )s + f ∇s (10.51e)

∇ f X s = f ∇X s (10.51f)

where ai ∈ �, s, s′ ∈ �(M, E) and f ∈ �(M).
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10.4.2 A local expression for the covariant derivative

In practical computations it is convenient to have a local coordinate representation
of the covariant derivative. Let P(M,G) be a G bundle and E = P ×ρ G be an
associate vector bundle. Take a local section σi ∈ �(Ui , P) and employ the
canonical trivialization σi (p) = φi (p, e). Let γ : [0, 1] → M be a curve in Ui

and γ̃ its horizontal lift, which is written as

γ̃ (t) = σi (t)gi (t) (10.52)

where gi(t) ≡ gi (γ (t)) ∈ G. Take a section eα(p) ≡ [(σi (p), eα0)] of E , where
eα0 is the αth basis vector of V ; (eα0)β = (δα)β . We have

eα(t) = [(γ̃ (t)gi (t)
−1, eα

0)] = [(γ̃ (t), gi (t)
−1eα

0)]. (10.53)

Note that gi (t)−1 acts on eα0 to compensate for the change of basis along γ . The
covariant derivative of eα is then given by

∇X eα =
[(
γ̃ (0),

d

dt
{gi(t)

−1eα
0}

∣∣∣∣
t=0

)]
=

[(
γ̃ (0),−gi(t)

−1
{

d

dt
gi(t)

}
gi (t)

−1eα
0
∣∣∣∣
t=0

)]
= [(γ̃ (0)gi(0)−1,�i (X)eα

0)] (10.54)

where (10.13b) has been used. From (10.54) we find the local expression,

∇X eα = [(σi (0),�i (X)eα
0)]. (10.55)

Let �i = �iµ dxµ = �iµ
α
β dxµ where �iµ

α
β ≡ �iµ

γ (Tγ )αβ . The second
entry of (10.55) is

�i (X)eα
0 = dxµ

dt
eβ

0
�iµ

β
γ δα

γ = dxµ

dt
�iµ

β
αeβ

0.

Substituting this into (10.55), we finally have

∇X eα =
[(
σi (0),

dxµ

dt
�iµ

β
αeβ

0
)]
= dxµ

dt
�iµ

β
αeβ (10.56a)

or
∇eα = �i

β
αeβ. (10.56b)

In particular, for a coordinate curve xµ, we have

∇∂/∂xµeα = �iµ
β
αeβ. (10.57)

It is remarkable that a connection� on a principal bundle P completely specifies
the covariant derivative on an associated bundle E (modulo representations).
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Exercise 10.9. Let s(p) = [(σi (p), ξi (p))] = ξiα(p)eα be a general section of E ,
where ξi (p) = ξiα(p)eα0. Use the results of exercise 10.8 to verify that

∇X s =
[(
σi (0),

dξi
dt
+�i (X)ξi

∣∣∣∣
t=0

)]
= dxµ

dt

{
∂ξi

α

∂xµ
+ �iµ

α
βξi

β

}
eα.

(10.58)

By construction, the covariant derivative is independent of the local
trivialization. This is also observed from the local form of ∇X s. Let σi (p) and
σ j (p) be local sections on overlapping charts Ui and U j . On Ui ∩ U j , we have
σ j (p) = σi (p)ti j (p). In the i -trivialization, the covariant derivative is

∇X s =
[(
σi (0),

dξi
dt
+ �i (X)ξi

∣∣∣∣
t=0

)]
=

[(
σ j (0) · t−1

i j ,
d

dt
(ti j ξ j )+�i (X)ti j ξ j

∣∣∣∣
t=0

)]
=

[(
σ j (0),

dξ j

dt
+� j (X)ξ j

∣∣∣∣
t=0

)]
(10.59)

where use has been made of the condition (10.9). The last line of (10.59) is ∇X s
expressed in the j -trivialization.

We have found that the covariant derivative defined by (10.49) is independent
of the horizontal lift as well as the local section. The gauge potential �i

transforms under the change of local trivialization so that ∇X s is a well-defined
section of E . In this sense, ∇X is the most natural derivative on an associated
vector bundle, which is compatible with the connection on the principal bundle
P .

Example 10.4. Let us recover the results obtained in section 7.2. Let F M be a
frame bundle over M and let T M be its associated bundle. We note F M =
P(M,GL(m,�)) and T M = F M×ρ �m , where m = dim M and ρ is the m×m
matrix representation of GL(m,�). Elements of ��(m,�) are m × m matrices.
Let us rewrite the local connection form �i as �αµβ dxµ. We then find that

∇∂/∂xµeα = [(σi (0), �µeα
0)] = �βµαeβ (10.60)

which should be compared with (7.14). For a general section (vector field),
s(p) =[(σi (p), Xi (p))] = Xi

α(p)eα, we find

∇∂/∂xµs =
(
∂

∂xµ
Xi
α + �αµβXβ

)
eα (10.61)

which reproduces the result of section 7.2. It is evident that the roles played by the
indices α, β and µ in �αµβ are very different in their characters; µ is the �1(M)
index while α and β are the ��(m,�) indices.
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Example 10.5. Let us consider the U(1) gauge field coupled to a complex scalar
field φ. The relevant fibre bundles are the U(1) bundle P(M,U(1)) and the
associated bundle E = P×ρ � where ρ is the natural identification of an element
of U(1) with a complex number. The local expression for ω is �i = �iµ dxµ,
where �iµ = �i (∂/∂xµ) is the vector potential of Maxwell’s theory. Let γ be
a curve in M with tangent vector X at γ (0). Take a local section σi and express
a horizontal lift γ̃ of γ as γ̃ (t) = σi (t)eiϕ(t). If 1 ∈ � is taken to be the basis
vector, the basis section is

e = [(σi (p), 1)].
Let φ(p) = [(σi (p),�(p))] = �(p)e (� : M → � ) be a section of E , which
is identified with a complex scalar field. With respect to γ̃ (t), the section is given
by

φ(t) = �(t)[(γ̃ (t),U(t)−1)] (10.62)

where U(t) = eiϕ(t). The covariant derivative of φ along γ is

∇Xφ = d�

dt
[(γ̃ (0),U(0)−1)] +�(0)[(γ̃ (0),U(0)−1

�i (X) · 1)]

=
(

d�

dt
+ �iµ�

dxµ

dt

)
e = Xµ

(
∂�

∂xµ
+�iµ�

)
e. (10.63)

Example 10.6. Let us consider the SU(2) Yang–Mills theory on M . The relevant
bundles are the SU(2) bundle P(M,SU(2)) and its associated bundle E =
P ×ρ � 2 , where we have taken the two-dimensional representation. The gauge
potential on a chart Ui is

�i = �iµ dxµ = Aiµ
α
(σα

2i

)
dxµ (10.64)

where σα/2i are generators of SU(2), σα being the Pauli matrices. Let eα0

(α = 1, 2) be basis vectors of � 2 and consider sections

eα(p) ≡ [(σi (p), eα
0)] (10.65)

where σi (p) defines a canonical trivialization of P over Ui . Let φ(p) =
[(σi (p),�α(p)eα0)] be a section of E over M . Along a horizontal lift γ̃ (t) =
σi (p)U(t), U(t) ∈ SU(2), we have

φ(t) = [(γ̃ (t),U(t)−1�α(t)eα
0)]. (10.66)

The covariant derivative of φ along X = d/dt is

∇Xφ =
[(
γ̃ (0),U(0)−1 d�α(0)

dt
eα

0
)]

+ [(γ̃ (0),U(0)−1
�i (X)

α
β�

β(0)eα
0)]

= Xµ
(
∂�α

∂xµ
+ �iµ

α
β�

β

)
eα (10.67)
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where (10.13b) has been used to obtain the last equality.

Exercise 10.10. Let us consider an associated adjoint bundle E� = P×Ad� where
the action of G on � is the adjoint action V → AdgV = g−1V g, V ∈ � and
g ∈ G. Take a local section σi ∈ �(Ui , P) such that γ̃ (t) = σi (t)g(t). Take a
section s(p) = [(σi (p), V (p))] on E�, where V (p) = V α(p)Tα, {Tα} being the
basis of �. Define the covariant derivative�X s by

�X s ≡
[(
γ̃ (0),

d

dt
{Adg(t)−1 V (t)}

∣∣∣∣
t=0

)]
. (10.68a)

Show that

�X s =
[(
σi (0),

dV (t)

dt
+ [�i (X), V (t)]

∣∣∣∣
t=0

)]
= Xµ

(
∂V α

∂xµ
+ fβγ

α
�iµ

βV γ
)
[(σi (0), Tα)]. (10.68b)

10.4.3 Curvature rederived

The covariant derivative ∇X s defines an operator ∇ : �(M, E) → �(M, E ⊗
�1(M)) by (10.50). More generally, the action of ∇ on a vector-valued p-form
s ⊗ η, η ∈ �p(M), is defined by

∇(s ⊗ η) ≡ (∇s) ∧ η + s ⊗ dη. (10.69)

Let Ui be a chart of M and σi a section of P over Ui . We take the canonical local
trivialization over Ui . We now prove

∇∇eα = eβ ⊗ �i
β
α (10.70)

where eα = [(σi , eα0)] ∈ �(Ui , E). In fact, by straightforward computation, we
find

∇∇eα = ∇(eβ ⊗�i
β
α) = ∇eβ ∧�i

β
α + eβ ⊗ d�i

β
α

= eβ ⊗ (d�i
β
α +�i

β
γ ∧�i

γ
α) = eβ ⊗ �i

β
α.

Exercise 10.11. Let s(p) = ξα(p)eα(p) be a section of E . Show that

∇∇s = eα ⊗ �i
α
βξ
β . (10.71)

10.4.4 A connection which preserves the inner product

Let E
π−→ M be a vector bundle with a positive-definite symmetric inner product

whose action is defined at each point p ∈ M by

gp : π−1(p)⊗ π−1(p)→ �. (10.72)


