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Quantum spin Hall (QSH) effect1–5) has been attracting
much current interest as a new device of spintronics.6–9)

It is a topological insulator10–12) analogous to the quantum
Hall (QH) effect, but it is realized in time-reversal (T )
invariant systems. While QH states are specified by Chern
numbers,13,14) QSH states are characterized by Z2 topolog-
ical numbers,2) which suggests that Z2 invariants would have
deep relationship with the Z2 anomaly of the Majorana
fermions.15,16)

Graphene has been expected to be in the QSH phase.1,2)

However, recent calculations have suggested that the spin-
orbit coupling in graphene is too small to reveal the QSH
effect experimentally.17,18) Recently, it has been pointed
out that Bi thin film is another plausible material for QSH
effect.19) Also by the idea of adiabatic deformation of the
diamond lattice, it has been conjectured that Bi in three
dimensions (3D) is in a topological phase.20)

While systems in two dimensions (2D) are characterized
by a single Z2 topological invariant, four independent
Z2 invariants are needed in 3D.20–23) This makes it difficult
to investigate realistic models, in which complicated
many-band structure is involved. Therefore, for the direct
study of Bi in 3D as well as for the search for other
materials, to establish a simple and efficient computational
method of Z2 invariants in 3D is an urgent issue to be
resolved.

In this paper, we present a method of computing Z2

invariants based on the formula derived by Fu and Kane24)

together with the recent development of computing Chern
numbers in a lattice Brillouin zone.25–27) This method is
based on recent developments in lattice gauge theories30–35)

but simple enough to compute Z2 invariants even for
realistic 3D systems. Based on this, we study a tight-binding
model for Bi and Sb.

First, we derive a lattice version of the Fu–Kane
formula.24) To this end, we restrict our discussions, for
simplicity, to systems in 2D, where a single Z2 invariant is
relevant. Let T be the time-reversal transformation T ¼
i�2K, and assume that the Hamiltonian in the momentum
space HðkÞ transforms under T as THðkÞT �1 ¼ Hð�kÞ. Let
 ðkÞ ¼ ðj1ðkÞi; . . . ; j2MðkÞiÞ denote the 2M dimensional
ground state multiplet of the Hamiltonian: HðkÞjnðkÞi ¼

EnðkÞjnðkÞi.11,12) Assuming that the many-body energy gap is
finite, we focus on topological invariants under the Uð2MÞ
transformation

 ðkÞ !  ðkÞUðkÞ; UðkÞ 2 Uð2MÞ: ð1Þ

As discussed,2,27) the pfaffian defined by pðkÞ ¼ pf �yðT�Þ
characterizes the topological phases of T invariant systems.
To be precise, the systems belong to topological insulator if
the number of zeros of the pfaffian in half the Brillouin zone
is 1 (mod 2), and belong to simple insulator otherwise. This
number has been referred to as Z2 invariant. It should be
noted that under eq. (1), the pfaffian pðkÞ transforms as
pðkÞ ! e�i�ðkÞpðkÞ, where �ðkÞ is the Uð1Þ part of Uð2MÞ
defined through the relation ei�ðkÞ � detUðkÞ.

Recently, Fu and Kane24) have shown that the Z2 invariant
is expressed alternatively by

D ¼
1

2�i

I
@B�

A�
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B�

F

� �
; ð2Þ

where B� ¼ ½��; �� � ½��; 0� (see Fig. 1), and where A

and F is, respectively, the Berry gauge potential and
associated field strength defined by A ¼ Tr y d and
F ¼ dA.11,12) Notice that the gauge transformation (1) yields
A! Aþ id�. This implies that the gauge of the Berry
gauge potential can be fixed by the condition that the pfaffian
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Fig. 1. (Color online) Left: The Brillouin zone, where shaded region

denotes B�. The thick lines indicate the boundary of B�. The integration

over Cj gives a winding number. Right: A lattice on the Brillouin zone.

The sites in B�s are enclosed by thin lines (The sites in B�s , Bþs , and B0
s

are denoted by blue, red, and black circles, respectively). The shaded

region denotes the plaquettes in B�.
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pðkÞ is real positive. Note also that Að�kÞ ¼ AðkÞ holds in
this gauge. This is a kind of T constraint, as stressed by Fu
and Kane.24) The zeros of pðkÞ thus serve as an obstruction
of the gauge fixing.28)

In systems with breaking T symmetry like QH effect,
such an obstruction gives in general a nontrivial Chern
number. Contrary to this, in systems under consideration, the
Chern number always vanishes due to T invariance. Even in
this case, an obstruction occurs in the Brillouin zone as long
as the zeros of the pfaffian exist. Since the zeros occur at the
time reversed pairs of points �k�j , the vortices around these
pairs are opposite and therefore cancel each other, giving
vanishing Chern number. Nevertheless the sum of vorticities
in half the Brillouin zone, e.g., in B�, just gives the number
of zeros of pðkÞ (mod 2). Imagine, for example, that two
zeros exist in B�. Since they are generically first order
zeros, the winding numbers are �1. Then their sum is
restricted to �2 and 0, which can be denoted as ‘‘0 mod 2’’.
It thus turns out that the Fu–Kane formula (2) counts the
vorticities in half the Brillouin zone. So far we have
discussed in a specific gauge, but in any other gauge, D

changes by 2, provided that the gauge keeps T constraint.
Therefore, D is indeed a Z2 topological invariant. It has also
a topological stability against small perturbation as long as
the many-body gap is finite. As we will show below, this
expression for Z2 invariant is convenient for numerical
computations.

Define a lattice on the Brillouin zone,

k‘ ¼ �ð j1=N1; j2=N2Þ; j� ¼ �N�; . . . ;N�: ð3Þ

The sites labeled by k‘ are divided into three sets, B�s and T

invariant sites B0
s denoted by red, blue and black circles in

Fig. 1, respectively. Here, T invariant sites are specified by
the property that THðk‘ÞT �1 ¼ Hðk‘Þ. As a T constraint, we
choose the states at �k‘ 2 Bþs as their Kramers doublets at
k‘ 2 B�s . Suppose that at k‘ the spectrum is arranged as
"nðk‘Þ � "nþ1ðk‘Þ. Then the states at �k‘ can be constrained
as

jnð�k‘Þi ¼ T jnðk‘Þi; for k‘ 2 B�s : ð4Þ

On the other hand, both of the Kramers doublets are included
in B0

s : The spectrum in this set can be arranged in general as
"2n�1ðkÞ ¼ "2nðkÞ � "2nþ1ðkÞ 	 	 	. Therefore, we enforce the
constraint

j2nðk‘Þi ¼ T j2n� 1ðk‘Þi; for k‘ 2 B0
s : ð5Þ

With these constrained states, we define a link variable

U�ðk‘Þ ¼ N�1
� ðk‘Þ det yðk‘Þ ðk‘ þ �̂�Þ; ð6Þ

where N�ðk‘Þ ¼ j det yðk‘Þ ðk‘ þ �̂�Þj, and associated field
strength through a plaquette variable

F12ðk‘Þ ¼ lnU1ðk‘ÞU2ðk‘ þ 1̂1ÞU�1
1 ðk‘ þ 2̂2ÞU�1

2 ðk‘Þ; ð7Þ

where F12 is defined within the branch F12=i 2 ð��; �Þ.
The sum of F12 over B� can be written as a similar

formula to eq. (2). To see this, it is convenient to define a
gauge potential via A�ðk‘Þ ¼ lnU�ðk‘Þ also in the branch
A�ðk‘Þ=i 2 ð��; �Þ. Then the field strength can be rewritten
as

F12ðk‘Þ ¼ �1A2ðk‘Þ ��2A1ðk‘Þ þ 2�in12ðk‘Þ; ð8Þ

where integral field n12ðk‘Þ has been introduced so as to
match the branches of both sides.25,34,35) Thus, we reachX

k‘2B�
F12ðk‘Þ ¼

X
k‘2@B�

A1ðk‘Þ þ 2�i
X
k‘2B�

n12ðk‘Þ; ð9Þ

where the sums of F12 and of n12 are over the plaquettes
in the shaded region denoted by B� in Fig. 1. The sum of A�
is over the links of the boundary of B� specified by thick
lines in Fig. 1. Therefore, a lattice version of D is

DL �
1

2�i

X
k‘2@B�

A1ðk‘Þ �
X
k‘2B�

F12ðk‘Þ

" #

¼ �
X
k‘2B�

n12ðk‘Þ: ð10Þ

This formula for the Z2 invariants is one of the main results
of this paper. Indeed this formula has the following desired
properties. Firstly, it is strictly integral. Secondly, though the
ground state multiplet can be mixed by eq. (1), it is SUð2MÞ
invariant. Finally, it changes by 2 under the remaining Uð1Þ
transformation, and hence, it is Z2 invariant. The last
property will be proved elsewhere, though it is not difficult.

In 3D, it has been shown that the phases of T invariant
systems are classified by four independent Z2 invari-
ants.20–22) To compute them, let us define six two-dimen-
sional tori, according to Moore and Balents.21) For example,
fix the third momentum to k3 ¼ 0 or �, then we have two tori
spanned by k1 and k2 which we denote Z0 and Z� torus,
respectively. Applying the previous techniques, we can
compute two Z2 invariants DL which are referred to as z0 and
z�. In the same way, we have six invariants x0, x�, y0, y�,
z0, and z� living on six tori X0, X�, Y0, Y�, Z0, and Z�,
respectively. There are two constraints, however: x0x� ¼
y0y� ¼ z0z� (mod 2), and therefore, four invariants among
six are independent.21) According to Fu et al.,20) we choose
them as �0 ¼ x0x�, �1 ¼ x�, �2 ¼ y�, and �3 ¼ z�, and
denote them as �0; ð�1�2�3Þ. As is known in the QH effects,
non-trivial structures of topological ordered states are hidden
in the bulk and play physical roles near the boundaries as
chracteristic edge states.29) Based on the principle, by
investigating the relationship between the Z2 invariants
and surface states, Fu et al. have clarified that there are
basically three phases; simple band insulator, weak topo-
logical insulator (WTI) which is topological but weak
against disorder, and more robust strong topological insu-
lator (STI).20)

Recently, Murakami19) has pointed out the possibility of
QSH effect in Bi. Though Bi is a semimetal, the valence
band and conduction band keep the direct gap throughout the
Brillouin zone. Fu et al. have studied solvable tight-binding
models with the diamond structure, and predicted that the
valence band of Bi is characterized by the WTI phase
specified 0;(111), based on the observation that the structure
of Bi can be viewed as an adiabatically distorted cubic
lattice toward the diamond lattice. However, since a realistic
tight-binding model including s and p orbitals with nearest
neighbor, second neighbor, and third neighbor hoppings
has indeed complicated band structure, we calculate the Z2

invariants directly for heavy group V elements.
In what follows, we investigate real materials by the tight-

binding models in ref. 36. We first discuss the phase of Bi
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which is attracting much interest. We show in Fig. 2
examples of the n-field configuration computed for Bi.
Though these calculations are for rather coarse 10
 10

lattice, we have checked that finer ones indeed reproduce the
same Z2 invariants and our formula is actually convergent
even in this mesh size. For Bi, these figures tell that z0 ¼
z� ¼ 0 mod 2. The other Z2 invariants are also 0 mod 2, and
it turns out that the valence bands of Bi in 3D is specified by
0;(000) phase. This result is contradictory to the conjecture
by Fu et al. mentioned-above. This suggests that along
adiabatic distortion of the lattice, some topological changes
should occur. Indeed, a slight change of the Slater–Koster
parameters can lead to different phases. Among adjustable
14 parameters,36) crucial ones may be Vpp� and Vpp�, nearest
neighbor hopping parameters between p orbitals. We show
in Fig. 3 the phase diagram of Bi to discuss the stability of
the phase. This diagram tells that Bi is located in a small
island of 0;(000) phase embedded in 1;(111) phase. We also
understand this feature from a small direct gap of Bi,
12 meV, at the L point.36) With varying the parameters, this
gap soon closes and the phase of Bi changes from trivial
phase into STI phase. We conclude that Bi in 3D dose not
show the QSH effect, though it locates quite near the phase
boundary with STI.

On the other hand, decreasing the thickness, a semimetal–
semiconductor transition occurs, and Murakami has sug-
gested that Bi thin film would be in QSH phase.19) To study
the quasi 2D systems, and also to clarify the discrepancy
between our result and the conjecture by Fu et al., we
next investigate the effects of dimensionality on the present
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Fig. 2. The n-field configurations for Bi (left two panels) and Sb (right two panels) computed by the gauge that the pfaffian is real positive. The first and

third (second and fourth) show the configurations on the Z0 (Z�) torus. The white and black circles denote n12 ¼ 1 and �1, respectively, while the blank

denotes 0. These read z0 ¼ 2 and z� ¼ 0 for Bi, and z0 ¼ 0 and z� ¼ 1 for Sb.
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model. We replace the Slater–Koster parameters V 0�
(� ¼ ss�; sp�; pp�; pp�) for second neighbor hopping in
ref. 36 by f V 0� with a uniform factor f . This factor f can
effectively control the dimensionality into [111] direction,
interpolating between Murakami’s model at f ¼ 0 and the
3D model at f ¼ 1.

We show in Fig. 4 the band structure of Bi with f ¼ 0:5
and 0.1. At f ¼ 1 (see ref. 36), the overlap energy (indirect
gap) is �E ¼ �12 meV. With decreasing f , a semimetal–
semiconductor transition occurs at f � 0:99. Figure 4
confirms that Bi is indeed a semiconductor at f ¼ 0:5
and 0.1 whose overlap energy is �E ¼ 56 and 90 meV,
respectively. Near f ¼ 0:993, the phase of Bi changes from
0;(000) into 1;(111). With further decreasing f and enhanc-
ing the two-dimensionality, topological change occurs again
near f � 0:223, and the system becomes 0;(111), as shown
in Fig. 5. This is just the phase predicted by Fu et al.20)

Therefore, we suggest that the adiabatic distortion of the
diamond lattice leads to Bi thin film, and along the change of
the dimensionality, the adiabatic distortion does not work,
giving rise to gap-closing and resultant topological changes.
We also conjecture that STI phase is very stable along the
change of f , and could be observed by experiments.

Sb is also a semimetal with a larger gap at the L point.36)

We show in Fig. 3 the phase diagram of Sb. It turns out that
Sb belongs to the 1;(111) phase even in 3D. Its location is far
from the phase boundary with 0;(000) and therefore, it is
rather stable. We show in Fig. 4 the band structure of Sb.
With decreasing f , a semimetal–semiconductor transition
also occurs at f � 0:89. Along the change of f , topological
change occurs once: Near f � 0:54, the phase changes from
1;(111) into 0;(000), and no 0;(111) phase is observed
throughout. Therefore, the phase of Sb thin film is 0;(000),
different from Bi. In Fig. 5, we show the phase diagram of
Sb for f ¼ 0:1. However, it should be stressed that with
appropriate thickness, 0:54 � f � 0:89, Sb is a semicon-
ductor in STI phase and hence should show QSH effect.

Finally, we comment on the relationship between the
method presented in this paper and the previous one in
ref. 27. While in the present calculation link variables
are defined with respect to the momentum, the previous
calculation has been implemented with respect to twist
angles by imposing a spin-dependent twisted boundary
condition. For systems with appropriate strength of spin–
orbit coupling, the present computation is more efficient,
but for systems with very small spin–orbit coupling as well
as with inversion symmetry, the previous computation by the

use of the twisted boundary condition gives more reliable
results. In this sense, both methods are complementary to
each other. Details will be published elsewhere.

We also mention that recently Fu and Kane37) have
reached the similar conclusion of the phases of Bi and Sb
by making the use of inversion symmetry of the system. We
stress here that our method can apply to any systems, even
without inversion symmetry.
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