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We present a manifestly gauge-invariant description of Chern numbers associated with the Berry
connection defined on a discretized Brillouin zone. It provides an efficient method of computing (spin)
Hall conductances without specifying gauge-fixing conditions. We demonstrate that it correctly
reproduces quantized Hall conductances even on a coarsely discretized Brillouin zone. A gauge-
dependent integer-valued field, which plays a key role in the formulation, is evaluated in several gauges.
An extension to the non-Abelian Berry connection is also given.
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Topological phase transitions have been of considerable
interest in recent condensed matter physics.1–3) In lower
dimensions, topological quantum numbers are known to play
a crucial role in characterizing various phase transitions. A
typical example is the integer quantum Hall transition,
where quantized Hall conductances are given by Chern
numbers associated with the Berry connection.4–7) Its
extension to the case of spin currents is also attracting
much current interest.8–11) These topological quantum
numbers present a chance to characterize quantum liquids
without using conventional symmetry breaking.2,3)

Generically, the Chern numbers can be defined for
quantum states with two periodic parameters. As shown
below, they are given by an integral of fictitious magnetic
fields (field strengths of the Berry connection) over two-
dimensional compact surfaces such as the Brillouin zone. In
practical numerical calculations, however, we can diagonal-
ize Hamiltonians only on a set of discrete points chosen
appropriately within the surfaces. It is thus crucial to develop
an efficient method of calculating the Chern numbers using
restricted data of wave functions given only on such discrete
points. In these calculations, a phase ambiguity of the wave
function causes a gauge ambiguity for the Berry connection.
Therefore, one must be careful if gauge-dependent quantities
are used.

In this letter, we propose an efficient method of calculat-
ing the Chern numbers on a discretized Brillouin zone. This
is an application of a geometrical formulation of topological
charges in lattice gauge theory.12–16) We show that the Chern
numbers thus obtained are manifestly gauge-invariant and
integer-valued even for a discretized Brillouin zone. This
implies that one can compute the Chern numbers using wave
functions in any gauge or without specifying gauge fixing-
conditions. For the purpose of demonstration, we apply our
method to a simple model describing the integer Hall
system. We find that even for coarsely discretized Brillouin
zones, the method reproduces correct Chern numbers known
so far. Our method can be useful in a practical computation
for more complicated systems with a topological order for
which a number of data points of the wave functions cannot
easily be increased.

To be specific, we focus on the Chern numbers in the

quantum Hall effect. An extension to different topological
ordered states is straightforward. The spin Hall conduct-
ances, for example, can be treated in a similar way. We
consider a two-dimensional system in which the Brillouin
zone is defined by 0 � k� < 2�=q� (� ¼ 1, 2 with some
integers q�). Since the Hamiltonian HðkÞ is periodic in
both directions, Hðk1; k2Þ ¼ Hðk1 þ 2�=q1; k2Þ ¼ Hðk1; k2 þ
2�=q2Þ, the (magnetic) Brillouin zone can be regarded as a
two-dimensional torus T2. When the Fermi energy lies in a
gap, the Hall conductance is given by �xy ¼ �ðe2=hÞ

P
n cn,

where cn denotes the Chern number of the nth Bloch band,
and the sum over n is restricted to the bands below the Fermi
energy.4,5) The Chern number assigned to the nth band is
defined by

cn ¼
1

2�i

Z
T2

d2k F12ðkÞ; ð1Þ

where the Berry connection A�ðkÞ (� ¼ 1; 2) and the
associated field strength F12ðkÞ are given by4,6,7)

A�ðkÞ ¼ hnðkÞj@�jnðkÞi;
F12ðkÞ ¼ @1A2ðkÞ � @2A1ðkÞ; ð2Þ

with jnðkÞi being a normalized wave function of the nth
Bloch band such that HðkÞjnðkÞi ¼ EnðkÞjnðkÞi. In the above
expressions, the derivative @� stands for @=@k�. We assume
that there is no degeneracy for the nth state.2,3) The phase of
the wave function is not yet determined here; that is, jnðkÞi is
defined on T2 only up to its phase.

If the gauge potential A�ðkÞ is globally well defined over
the continuum Brillouin zone T2, the Chern number (1)
vanishes because the torus has no boundary: It can be
nonzero only when the gauge potential cannot be defined as
a global function over T2. In this case, one covers T2 by
several coordinate patches and then, within each patch, one
can take a gauge (that is, a phase convention for the wave
functions) such that the gauge potential is a smooth and well
defined function. In an overlap between two patches, gauge
potentials defined on each patch are related by a U(1) gauge
transformation:

jnðkÞi ! e�i�ðkÞjnðkÞi; A�ðkÞ ! A�ðkÞ � i@��ðkÞ: ð3Þ

The Chern number (1) is then given by a sum of the winding
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number of the U(1) gauge transformation along a boundary
of a patch. As a consequence, the Chern number is an
integer.

The above discussion is for the continuum Brillouin zone.
Now suppose that we have data of wave functions only on
discrete points within the Brillouin zone, as in actual
numerical computations. A straightforward approach for
computing the Chern number (1) would be to replace all the
derivatives by discrete differences and the integral by a
summation. Namely, one approximates the connection
A�ðkÞdk� by

A�ðkÞ�k� ¼ hnðkÞj��jnðkÞi; ð4Þ

where �� is an infinitesimal difference operator defined by
�� f ðkÞ ¼ f ðk þ �k̂k�Þ � f ðkÞ with �k̂k� being an infinitesimal
displacement vector in the direction � (its magnitude is
j�k�j). Note that, to evaluate the difference, one must fix a
local gauge with which the state jnðkÞi is smoothly differ-
entiable near k. Under this local gauge, the field strength in
the continuum is also approximated by

F12ðkÞ�k1�k2 ¼ ½�1A2ðkÞ � �2A1ðkÞ��k1�k2: ð5Þ

Summing this F12ðkÞ�k1�k2 then gives the Chern number cn
in the limit j�k�j ! 0. However, this direct procedure can be
costly in taking the limit if the Hamiltonian concerned is
complicated.

Here, we propose an alternative approach. Let us denote
lattice points k‘ (‘ ¼ 1; . . . ;N1N2) on the discrete Brillouin
zone as

k‘ ¼ ðkj1 ; kj2Þ; kj� ¼
2� j�

q�N�
; ð j� ¼ 0; . . . ;N� � 1Þ: ð6Þ

We assume that the state jnðk‘Þi is periodic on the lattice,
jnðk‘ þ N��̂�Þi ¼ jnðk‘Þi, where �̂� is a vector in the direction
� with the magnitude 2�=ðq�N�Þ. Below, we set N� ¼ q�NB

(� 6¼ �) so that the unit plaquette is a square of the size
2�=ðq1q2NBÞ.

We first define a U(1) link variable from the wave
functions of the nth band as

U�ðk‘Þ � hnðk‘Þjnðk‘ þ �̂�Þi=N�ðk‘Þ; ð7Þ

where N�ðk‘Þ � jhnðk‘Þjnðk‘ þ �̂�Þij. The link variables are
well defined as long as N�ðk‘Þ 6¼ 0, which can always be
assumed to be the case (one can avoid a singularity
N�ðk‘Þ ¼ 0 by an infinitesimal shift of the lattice). From
the link variable (7), we next define a lattice field strength by

~FF12ðk‘Þ � lnU1ðk‘ÞU2ðk‘ þ 1̂1ÞU1ðk‘ þ 2̂2Þ�1U2ðk‘Þ�1;

� � <
1

i
~FF12ðk‘Þ � �: ð8Þ

Note that the field strength is defined within the principal
branch of the logarithm specified in eq. (8). It is obvious
that this field strength is invariant under the gauge
transformation (3). Finally, we define the Chern number
on the lattice which is associated to the nth band as

~ccn �
1

2�i

X
‘

~FF12ðk‘Þ: ð9Þ

First of all, we note that ~ccn is manifestly gauge-invariant
under eq. (3). This implies that we do not need to determine
which gauge is adopted; any choice of gauge gives an

identical number ~ccn. Moreover, ~ccn is strictly an integer for
arbitrary lattice spacings. To show this, we introduce a
gauge potential

~AA�ðk‘Þ ¼ lnU�ðk‘Þ; �� <
1

i
~AA�ðk‘Þ � �; ð10Þ

which is periodic on the lattice: ~AA�ðk‘ þ N��̂�Þ ¼ ~AA�ðk‘Þ.
Recalling definition (8), one finds

~FF12ðk‘Þ ¼ �1
~AA2ðk‘Þ ��2

~AA1ðk‘Þ þ 2�in12ðk‘Þ; ð11Þ

where �� is the forward difference operator on the lattice,
�� f ðk‘Þ ¼ f ðk‘ þ �̂�Þ � f ðk‘Þ, and n12ðk‘Þ is an integer-
valued field, which is chosen such that ð1=iÞ ~FF12ðk‘Þ takes a
value within the principal branch. By definition, jn12ðk‘Þj �
2. From eqs. (9) and (11), we have

~ccn ¼
X
‘

n12ðk‘Þ; ð12Þ

which shows that the lattice Chern number ~ccn is an integer.
The field strength on the lattice ~FF12ðk‘Þ in eq. (8) reduces

to the one in the continuum F12ðkÞ�k1�k2 in the limit NB !
1, where �k� ¼ 2�=ðq1q2NBÞ. Generically, the continuum
field strength F12ðkÞ has no singularity when the nth band is
well separated from the neighboring ones; that is, the energy
gaps between them do not close,

jEnðkÞ � En�1ðkÞj 6¼ 0; ð13Þ

for any value of k 2 T2. This is the gap-opening condi-
tion.2,3) One can expect, in general, that the problem is
regular if the above gap-opening condition is satisfied. Then,
the lattice field strength ~FF12 will be small enough for a
sufficiently large NB and the lattice Chern number will
approach the one in the continuum ~ccn ! cn in the NB ! 1
limit. Since both ~ccn and cn are integers, we have ~ccn ¼ cn for
NB > Nc

B. The critical mesh size Nc
B may be estimated by a

breaking of the admissibility condition12–16)

jF12ðk‘Þj�k1�k2 � j ~FF12ðk‘Þj < � for all k‘: ð14Þ

It is expected that this Nc
B is not very large for a standard

generic problem with the Chern number cn � Oð1Þ. Since
the area of the Brillouin zone is 4�2=ðq1q2Þ, we can estimate
the field strength as F12ðk‘Þ � icnq1q2=ð2�Þ. In this way, the
critical mesh size is given by

Nc
B � Oð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jcnj=ðq1q2Þ

p
Þ: ð15Þ

That is, we can expect that our method reproduces correct
Chern numbers of the continuum even for a coarsely
discretized Brillouin zone. This is another advantage of the
present method.

As a function of U(1) link variables which satisfy the
admissibility (14), the Chern number on the lattice ~ccn is a
constant function. To verify this, we note that a possible
discontinuity of ~ccn as a function of link variables U�ðk‘Þ
occurs only when j ~FF12ð9k‘Þj ¼ �. Since ~ccn is an integer
which cannot continuously change, ~ccn remains the same as
long as a configuration is smoothly varied under the
admissibility (14). In other words, under the admissibility,
the space of U(1) link variables is divided into disconnected
sectors and the topological number ~ccn is uniquely assigned to
each sector. This is the basic idea behind the present
construction.12) The Chern number ~ccn is, moreover, a unique
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gauge-invariant topological integer which can be assigned to
admissible U(1) link variables.17,18)

In the present context of the Berry connection, a gauge-
invariant content of link variables is completely governed by
the k dependence of the Hamiltonian HðkÞ. Each of the
topological ordered states with a nontrivial Chern number
corresponds to the above nontrivial topological sector
specified by the admissibility. It is characterized by the
lattice Chern number ~ccn. In the continuum, on the other
hand, the topological stability of the Chern number is
assured by the gap-opening condition (13). The topological
quantum phase transitions are thus characterized by the gap
closing. Namely, nontrivial topological sectors of the
continuum, each of which is a topological ordered state,
are separated by the gaps. Correspondingly the Chern
number of the total bands, which is described by the non-
Abelian Chern number, vanishes.2,3) At the critical point at
which the gap-opening condition breaks down, the field
strength F12ðkÞ becomes singular at the gap-closing mo-
mentum. From a correspondence to the lattice case, we
conclude that the admissibility condition cannot be satisfied
by any finite NB at that critical point.

Our method can be extended to the case of the non-
Abelian Berry connection A ¼  yd , which is an M �M

matrix-valued one-form associated with a multiplet  ¼
ðjn1i; . . . ; jnMiÞ.2,3,19) The associated Chern number is de-
fined by c ¼

R
S
tr dA=ð2�iÞ, an integral over a two-dimen-

sional surface S with a generic (relaxed) gap-opening
condition; EnðkÞ 6¼ En0 ðkÞ for all k, where n 2 I and n0 =2 I

for I ¼ fn1; . . . ; nMg.2,3) It turns out that the present lattice
prescription is valid if one substitutes the U(1) link variable
by

U�ðk‘Þ ¼
1

N�ðk‘Þ
det yðk‘Þ ðk‘ þ �̂�Þ ð16Þ

with the normalization constantN�ðk‘Þ � j det yðk‘Þ ðk‘ þ
�̂�Þj. We define the associated field strength and the Chern
number on the lattice ~cc by the same expressions as those for
the Abelian case, eqs. (8) and (9). This ~cc shares the features
of the Chern number in the Abelian case ~ccn. For regular
problems, we have ~cc ¼ c for a sufficiently fine discretiza-
tion NB > Nc

B.
Having observed desired properties of our definition of the

lattice Chern number, we now demonstrate how it works in a
definite model. We consider the Hamiltonian for spinless
fermions in an external magnetic field: H ¼ �t

P
hi; ji c

y
i

ei�i; j c j, where the flux per plaquette on the coordinate lattice
� ¼

P
�
�i; j=ð2�Þ is p=q.4) For mutually prime integers p

and q, the spectrum splits into q subbands. In the Landau
gauge in the x-direction, the Hamiltonian in the k-space is
given by HijðkÞ ¼ �2t�i j cosðky � 2�� jÞ� tð�iþ1; jþ �i; jþ1Þ �
t�iþq�1; je

�iqkx � t�i; jþq�1e
iqkx , (i; j ¼ 1; . . . ; q) with q1 ¼ q

and q2 ¼ 1. Bellow, we will present some results of applying
our method to the middle subband of the � ¼ 1=3 (that is,
q ¼ 3) system.

In Fig. 1(a), we show the lattice field strength ~FF12ðkÞ in
eq. (8). The (magnetic) Brillouin zone in the Landau gauge
½0; 2�=3Þ � ½0; 2�Þ is discretized by 3� 9 meshes. Note that
the asymmetry of the Brillouin zone is simply due to the
gauge choice; there is no x–y anisotropy in the present
problem. The sum of ~FF12ðkÞ over the mesh points gives

~ccn ¼ �2, which coincides with the known result for the
present case. The same calculation but with 9� 27 meshes is
shown in Fig. 1(b). It indeed gives the identical Chern
number ~ccn ¼ �2. Figure 1(c) shows the field strength F12 of
the continuum. As expected, it is regular and of the order of
unity. Comparing these figures, one can see that the field
strength of the lattice system ~FF12 converges to the one in the
continuum F12 up to a proportionality constant. Since the
problem is regular, the field strength of the lattice system ~FF12

decreases as NB increases. The admissibility is safely
satisfied in Fig. 1(b) (NB ¼ 9), but NB ¼ 3 is close to the
critical Nc

B. (Note the scales in the figures.)
It should be stressed again that the above lattice

calculations can be performed in any gauge. We do not
need specific gauge-fixing to make the gauge connection
smooth. An arbitrary gauge (e.g., a phase choice of
eigenvectors given by a numerical library) can be adopted
to compute the Chern number.

As we have discussed, the lattice Chern number ~ccn is
closely related to the integer field n12ðk‘Þ in eq. (11). To
illustrate this point explicitly, we next plot the field n12ðk‘Þ.
Since we must specify the gauge to do so (n12ðk‘Þ itself is not
gauge-invariant), we briefly describe the method of gauge-
fixing adopted here.2,3) One first selects an arbitrary state j�i
which is globally well defined over the whole Brillouin zone.
Then the gauge can be specified by jn�i ¼ Pnj�i=N� ¼ jni�
hnj�i=N�, where Pn ¼ jnihnj is a gauge-invariant projection
and N� ¼ jh�jnij is a gauge-invariant normalization which
ensures hn�jn�i ¼ 1. A typical example of j�i is a constant
state, but it can be a varying state as well.

The integer fields n12ðk‘Þ in several different gauges are
depicted in Fig. 2, where the black and white circles denote
n12 ¼ �1 and 1, respectively, whereas a blank implies
n12 ¼ 0. It is clear that any of them gives the correct Chern
number ~ccn ¼ �2, that is, the number of black circles minus
that of white ones is always two. The field n12ðk‘Þ is gauge-
dependent, but their sum is gauge-invariant. The figures
clearly show the gauge-independence of the lattice Chern
number. In Figs. 2(a) and 2(b), we used the global gauges
specified by the states j�g1i ¼ eiqðkxþkyÞð1;�1; 0ÞT and
j�g2i ¼ eiqðkxþkyÞð1; 1; 0ÞT , respectively. The term ‘‘global’’
means that the gauge-fixing condition jh�giðk‘Þjnðk‘Þij 6¼ 0 is
satisfied at all lattice points k‘.

The meaning of the field n12ðk‘Þ and the relationship
between the present lattice formulation and the continuum
one become much clearer by adopting a ‘‘patchwork gauge’’.
To be specific, let us take a gauge convention specified by

(a)

(0,0)

( 2π/3, 0)xk

yk

( 2π/3, 2π )

12

~

(0,0)

( 2π/3, 0)xk

yk

( 2π/3, 2π )

12

(c)

(0,0)

( 2π/3, 0)xk

yk

( 2π/3, 2π )

12

~

(b)

- i F - i F - i F

-4

-2

0

-2

-1.5

-1

-0.5

0

-0.2

-0.1

0

Fig. 1. (a) Field strength �i ~FF12ðkÞ of middle band for � ¼ 1=3 system in

3� 9 lattice Brillouin zone (NB ¼ 3), (b) the same result in 9� 27 lattice

(NB ¼ 9), and (c) field strength �iF12ðkÞ of the same band in the

continuum which is approximated by Im ð�1A2 � �2A1) for j�k1j ¼
j�k2j ¼ 2�=90.
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j�2i ¼ ð0; 1; 0ÞT , but another gauge specified by j�3i ¼
ð0; 0; 1ÞT in some regions where the former is ill-defined. We
show in Fig. 3 the amplitude of the overlap between the
wave function and trial states j�2i and j�3i. Figure 3(a)
shows that the gauge specified by j�2i becomes ill-defined at
two points near k1 ¼ ð2�=3; �=3Þ and k2 ¼ ð�=3; 4�=3Þ.
Therefore, we first define, around these points, circular
regions Rr ¼ fkjjk � k1j < rg [ fkjjk � k2j < rg with an
appropriate radius r, and we next check in Fig. 3(b) that
we can indeed take the second gauge specified by j�3i safely
in Rr. This patchwork gauge choice is referred to as the
gauge specified by j�ðRrÞi. With this gauge, the wave
functions jn�ðk‘Þi and the corresponding gauge potential
~AA��ðk‘Þ are smooth if lattice points are sufficiently fine. This

implies that the integer field n12ðk‘Þ is vanishing within each
region. Nonzero values of n12ðk‘Þ are only allowed at
plaquettes existing at the boundary of the regions.

The field n12ðk‘Þ computed with the above local gauge is
shown in Figs. 2(c) and 2(d) for two different radiuses r. The
figures clearly show that the integer field n12ðk‘Þ indeed
acquires nonzero values only at boundaries of separated
regions. The lattice field n12ðk‘Þ carries information corre-
sponding to the winding number of the gauge transformation
along the boundary of a patch in the continuum.

In this letter, we presented our method as an efficient
technique for calculating the Chern numbers in an infinite
system on the basis of a discretized Brillouin zone. In finite
systems, however, the Brillouin zones are discrete from the
onset. Therefore, the present method will also be useful for
revealing topological orders of finite systems with possible
many-body interactions.2,3)
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Fig. 3. Amplitude of overlap jh�ijnij between wave function jni and trial

state j�ii: (a) for trial state �2 ¼ ð0; 1; 0ÞT , and (b) for trial state �3 ¼
ð0; 0; 1ÞT .
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Fig. 2. Configuration of integer field n12ðk‘Þ in gauge specified by state

j�i (see text) over discretized Brillouin zones. (a) NB ¼ 3, j�i ¼ j�g1 i
(b) NB ¼ 3, j�i ¼ j�g2 i (c) NB ¼ 8 and j�i ¼ j�ðR�=3:2Þi, and (d) NB ¼ 8

and j�i ¼ j�ðR�=4:2Þi. Black (white) circles denote n12 ¼ �1 (1).
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