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It is shown that the quantization of the Hall conductivity of two-dimensional metals which has
been observed recently by Klitzing, Dorda, and Pepper and by Tsui and Gossard is a conse-
quence of gauge invariance and the existence of a mobility gap. Edge effects are shown to have
no influence on the accuracy of quantization. An estimate of the error based on thermal activa-

tion of carriers to the mobility edge is suggested.

There has been considerable interest in the re-
markable observation made recently by von Klitzing,
Dorda, and Pepper2 and by Tsui and Gossard? that,
under suitable conditions, the Hall conductivity of an
inversion layer is quantized to better than one part in
105 to integral multiples of e2/h. The singularity of
the result lies in the apparent total absence of the
usual dependence of this quantity on the density of
mobile electrons, a sample-dependent parameter. As
it has been proposed' to use this effect to define a
new resistance standard or to refine the known value
of the fine-structure constant, an important issue at
present is to what accuracy the quantization is exact,
particularly in the regime of high impurity density.
Some light has been shed on this question by the re-
normalized weak-scattering calculations of Ando,’
who has shown that the presence of an isolated im-
purity does not affect the Hall current. A similar
result has been obtained recently by Prange,* who
has shown that an isolated §-function impurity does
not affect the Hall conductivity to lowest order in the
drift velocity v=cE/H, even though it binds a local-
ized state, because the remaining delocalized states
carry exactly enough extra current to compensate for
its loss. The exactness of these results and their ap-
parent insensitivity to the type or location of the im-
purity suggest that the effect is due, ultimately, to a
fundamental principle. In this communication, we
point out that it is, in fact, due to the long-range
phase rigidity characteristic of a supercurrent, and
that quantization can be derived from gauge invari-
ance and the existence of a mobility gap.

We consider the situation illustrated in Fig. 1, of a
ribbon of two-dimensional metal bent into a loop of
circumference L, and pierced everywhere by a mag-
netic field Ho normal to its surface. The density of
states of this system, also illustrated in Fig. 1, con-
sists, in the absence of disorder, of a sequence of 8
functions, one for each Landau level. These
broaden, in the presence of disorder, into bands of
extended states separated by tails of localized ones.
We consider the disordered case with the Fermi level
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in a mobility gap, as shown.

We wish to relate the total current / carried around
the loop to the potential drop V from one edge to
another. This current is equal to the adiabatic deriva-
tive of the total electronic energy U of the system
with respect to the magnetic flux ¢ through the loop.
This may be obtained by differentiating with respect
to a uniform vector potential 4 pointing around the
loop, in the manner

U _ U
La¢ L4 ¢))

This derivative is nonzero only by virtue of the phase
coherence of the wave functions around the loop. If,
for example, all the states are localized then the only
effect of 4 is to multiply each wave function by
exp(ieAx /kc), where x is the coordinate around the
loop, and the energy change and current are zero. If
a state is extended, on the other hand, such a gauge
transformation is illegal unless
he
A=n o )

In the case on noninteracting electrons, phase
coherence enables a vector potential increment to
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FIG. 1. Left: Diagram of metallic loop. Right: Density
of states without (top) and with (bottom) disorder. Regions
of delocalized states are shaded. The dashed line indicates
the Fermi level.
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change the total energy by forcing the filled states to-
ward one edge of the ribbon. Specifically, if one
adopts the usual isotropic effective-mass Hamiltonian,
2
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where Ej is the electric field across the ribbon, and
adopts Landau gauge

A=Hyk , 4)
then the wave functions, given by
Yin = eikx¢n(y “yo) ’ (5

where ¢, is the solution to the harmonic-oscillator
equation
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and y, is related to k by
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are affected by a vector potential increment AA4X only
through the location of their centers, in the manner

AA
Yo Yo H, 8)

The energy of the state, still given by
€nk = (1 + 3w, +eEqyy +5+m*(cEo/Ho)*  (9)

thus changes linearly with AA. This gives rise to the
derivative in Eq. (1), which may be conveniently
evaluated via the substitution

U _ AU

d¢ A

with A¢ = hc/e a flux quantum. Since, by gauge in-
variance (2), adding A¢ maps the system back into
itself, the energy increase due to it results from. the
net transfer of n eilectrons (no spin degeneracy) from
one edge to the other. The current is thus

(10)
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We now consider the dirty interacting system. As
in the ideal case, gauge invariance is an exact sym-
metry forcing the addition of a flux quantum to
result only in excitation or deexcitation of the original
system. Also as in the ideal case, there is a gap,
although the gap now exists between the electrons
and holes affected by the perturbation, those contigu-
ous about the loop, rather than in the density of
states. Since adiabatic change of the many-body

Hamiltonian cannot excite quasiparticles across this
gap, it can only produce an excitation of the charge-
transfer variety discussed in the ideal case, although
the number of electrons transferred need not be the
ideal number, and can be zero, as is the case for
most systems with gaps. Therefore, Eq. (11) is al-
ways true, as a bulk property, for some integer »
whenever the local Fermi level lies everywhere in a
gap in the extended-state spectrum.

At the edges of the ribbon, the effective gap col-
lapses and communication between the extended
states and the local Fermi level is reestablished. Par-
ticles injected into this region rapidly thermalize to
the Fermi level, in the process losing all memory of
having been mapped adiabatically. This would be a
significant source of error in Eq. (11) were it not for
the fact that isothermal differentiation with respect to
@, the thermodynamically correct procedure for ob-
taining /, is equivalent to adiabatic differentiation in
the sample interior and is reversible. Thus, slow ad-
dition of A¢ physically removes a particle from the
local Fermi level at one edge of the ribbon and in-
jects it at the local Fermi level of the other, acting as
a pump. Since the Fermi energy is defined as the
change in V resulting from the injection of a particle,
and since eV is defined to be the Fermi-level differ-
ence, edge effects are not a source of error in Eq. (11).

Several other sources remain to be investigated, in-
cluding possible ¢ dependence, the effect of substi-
tuting the ring geometry of Fig. 1 for the usual strip
geometry, and effects of tunneling. However, we
find it intuitively appealing that the quantum effect
should go hand in hand with the persistence of
currents, and thus that the physically significant
source of error should be thermal activation of car-
riers to the mobility edge. These carriers produce a
large, but finite, normal resistance per square R,
which in the steady-state strip geometry, results in a
Hall resistance too small in the amount
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In summary, we have shown that the quantum Hall
effect is intimately related to the extended nature of
the states near the center of the disorder-broadened
Landau level, and that edge effects do not influence
the accuracy of the quantization. We speculate that
the only significant source of error is thermal activa-
tion of carriers to the mobility edge.
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