
Chapter 2
Berry Phase, Chern Number

To describe the theory of topological band insulators we will use the language of
adiabatic phases. In this chapter we review the basic concepts: the Berry phase, the
Berry curvature, and the Chern number. We further describe the relation between the
Berry phase and adiabatic dynamics in quantum mechanics. Finally, we illustrate
these concepts using a two-level system as a simple example.

For pedagogical introductions, we refer the reader to Berry’s original paper [6],
and papers from the American Journal of Physics [14, 18]. For the application to
solid state physics, we will mostly build on Resta’s lecture note [26], and the review
paper [36].

2.1 Discrete Case

The subject of adiabatic phases is strongly related to adiabatic quantum dynamics,
when a Hamiltonian is slowly changed in time, and the time evolution of the
quantum state follows the instantaneous eigenstate of the Hamiltonian. In that
context, as time is a continuous variable and the time-dependent Schrödinger
equation is a differential equation, the adiabatic phase and the related concepts are
expressed using differential operators and integrals. We will arrive to that point
later during this chapter; however, we start the discussion using the language of
discrete quantum states. Besides the conceptual simplicity, this language also offers
an efficient tool for the numerical evaluation of the Chern number, which is an
important topological invariant for two-dimensional electron systems.
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24 2 Berry Phase, Chern Number

2.1.1 Relative Phase of Two Nonorthogonal Quantum States

In quantum mechanics, the state of a physical system is represented by an
equivalence class of vectors in a Hilbert space: a multiplication by a complex phase
factor does not change the physical content. A gauge transformation is precisely
such a multiplication:

j� i ! ei˛ j� i ; with ˛ 2 Œ0; 2�/: (2.1)

In that sense, the phase of a vector j� i does not represent physical information. We
can try to define the relative phase �12 of two nonorthogonal states j�1i and j�2i as

�12 D � arg h�1 j �2i ; (2.2)

where arg.z/ denotes the phase of the complex number z, with the specification that
arg.z/ 2 .��; ��. Clearly, the relative phase �12 fulfils

e�i�12 D h�1 j �2i
jh�1 j �2ij : (2.3)

However, the relative phase is not invariant under a local gauge transformation,

ˇ
ˇ�j
˛ ! ei˛j

ˇ
ˇ�j
˛

e�i�12 ! e�i�12Ci.˛2�˛1/: (2.4)

2.1.2 Berry Phase

Take N � 3 states in a Hilbert space, order them in a loop, and ask about
the phase around the loop. As we show below, the answer—the Berry phase—
is gauge invariant. For states

ˇ
ˇ�j
˛

, with j D 1; 2; : : : ;N, and for the ordered list
L D .1; 2; : : : ;N/ which define the loop, shown in Fig. 2.1, the Berry phase is
defined as

�L D � arg e�i.�12C�23C:::C�N1/ D � arg .h�1 j �2i h�2 j �3i : : : h�N j �1i/ :
(2.5)

To show the gauge invariance of the Berry phase, it can be rewritten as

�L D � arg Tr .j�1i h�1j j�2i h�2j : : : j�Ni h�N j/ : (2.6)

Here, we expressed the Berry phase �L using projectors that are themselves gauge
invariant.
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Even though the Berry phase is not the expectation value of some operator, it is
a gauge invariant quantity, and as such, it can have a direct physical significance.
We will find such a significance, but first, we want to gain more intuition about its
behaviour.

2.1.3 Berry Flux

Consider a Hilbert space of quantum states, and a finite two-dimensional square
lattice with points labelled by n;m 2 Z, 1 � n � N, and 1 � m � M. Assign
a quantum state j�n;mi from the Hilbert space to each lattice site. Say you want to
know the Berry phase of the loop L around this set,

�L D � arg exp

"

� i

 
N�1X

nD1
�.n;1/;.nC1;1/ C

M�1X

mD1
�.N;m/;.N;mC1/

C
N�1X

nD1
�.nC1;M/;.n;M/ C

M�1X

mD1
�.1;mC1/;.1;m/

!#

(2.7)

as shown in Fig. 2.1. Although the Berry phase is a gauge invariant quantity,
calculating it according to the recipe above involves multiplying together many
gauge dependent complex numbers. The alternative route, via Eq. (2.6), involves
multiplying gauge independent matrices, and then taking the trace.

There is a way to break the calculation of the Berry phase of the loop down to
a product of gauge independent complex numbers. To each plaquette (elementary
square) on the grid, with n;m indexing the lower left corner, we define the

Fig. 2.1 Berry phase, Berry flux and Berry curvature for discrete quantum states. (a) The Berry
phase �L for the loop L consisting of N D 3 states is defined from the relative phases �12, �23, �31.
(b) The Berry phase of a loop defined on a lattice of states can be expressed as the sum of the Berry
phases F1;1 and F2;1 of the plaquettes enclosed by the loop. The plaquette Berry phase Fn;m is also
called Berry flux
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Berry flux Fn;m of the plaquette using the sum of the relative phases around its
boundary,

Fnm D � arg exp
��i

�

�.n;m/;.nC1;m/ C �.nC1;m/;.nC1;mC1/

C�.nC1;mC1/;.n;mC1/ C �.n;mC1/;.n;m/
��

; (2.8)

for n D 1; : : : ;N and m D 1; : : : ;M. Note that the Berry flux is itself a Berry phase
and is therefore gauge invariant. Alternatively, we can also write

Fnm D � arg
� h�n;m j �nC1;mi h�nC1;m j �nC1;mC1i

h�nC1;mC1 j �n;mC1i h�n;mC1 j �n;mi �; (2.9)

Now consider the product of all plaquette phase factors e�iFnm ,

N�1Y

nD1

M�1Y

mD1
e�iFnm D exp

h

� i
N�1X

nD1

M�1X

mD1
Fnm

i

D exp
h

� i
N�1X

nD1

M�1X

mD1

�

�.n;m/;.nC1;m/

C �.nC1;m/;.nC1;mC1/ C �.nC1;mC1/;.n;mC1/ C �.n;mC1/;.n;m/
�i

(2.10)

Each internal edge of the lattice is shared between two plaquettes, and therefore
occurs twice in the product. However, since we fixed the orientation of the plaquette
phases, these two contributions will always be complex conjugates of each other,
and cancel each other. Therefore the exponent in the right-hand-side of Eq. (2.10)
simplifies to the exponent appearing in Eq. (2.7), implying

exp
h

� i
N�1X

nD1

M�1X

mD1
Fnm

i

D e�i�L : (2.11)

This result is reminiscent of the Stokes theorem connecting the integral of the curl
of a vector field on an open surface and the line integral of the vector field along the
boundary of the surface. In Eq. (2.11), the sum of the relative phases, i.e., the Berry
phase �L, plays the role of the line integral, whereas the double sum of the Berry
fluxes plays the role of the surface integral. There is an important difference with
respect to the Stokes theorem, namely, the equality of the total Berry flux and the
Berry phase is not guaranteed: Eq. (2.11) only tells that they are either equal or have
a difference of 2� times an integer.
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2.1.4 Chern Number

Consider states in a Hilbert space arranged on a grid as above, j�n;mi, with n;m 2 Z,
1 � n � N, and 1 � m � M, but now imagine this grid to be on the surface of
a torus. We use the same definition for the Berry flux per plaquette as in (2.9),
but now with n mod N C 1 in place of n C 1 and m mod M C 1 in place of
m C 1.

The product of the Berry flux phase factors of all plaquettes is now 1,

MY

mD1

NY

nD1
e�iFnm D 1: (2.12)

The same derivation can be applied as for Eq. (2.11) above, but now every edge is
an internal edge, and so all contributions to the product cancel.

The Chern number Q associated to our structure is defined via the sum of the
Berry fluxes of all the plaquettes forming the closed torus surface:

Q D 1

2�

X

nm

Fnm: (2.13)

The fact that the Chern number Q is defined via the gauge invariant Berry fluxes
ensures that Q itself is gauge invariant. Furthermore, taking the arg of Eq. (2.12)
proves that the Chern number Q is an integer.

It is worthwhile to look a little deeper into the discrete formula for the Chern
number. We can define modified Berry fluxes QFnm as

QFnm D �.n;m/;.nC1;m/ C �.nC1;m/;.nC1;mC1/ C �.nC1;mC1/;.n;mC1/ C �.n;mC1/;.n;m/:
(2.14)

Since each edge is shared between two neighboring plaquettes, the sum of the
modified Berry fluxes over all plaquettes vanishes,

MX

mD1

NX

nD1
QFnm D 0: (2.15)

If �� � QFnm < � , then we have QFnm D Fnm. However, QFnm can be outside the range
Œ��; �/: then as the logarithm is taken in Eq. (2.8), Fnm is taken back into Œ��; �/
by adding a (positive or negative) integer multiple of 2� . In that case, we say the
plaquette nm contains a number Qnm 2 Z of vortices, with

Qnm D Fnm � QFnm

2�
2 Z: (2.16)
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We have found a simple picture for the Chern number: The Chern number Q, that
is, the sum of the Berry fluxes of all the plaquettes of a closed surface, is the number
of vortices on the surface,

Q D 1

2�

X

nm

Fnm D
X

nm

Qnm 2 Z: (2.17)

Although we proved it here for the special case of a torus, the derivation is easily
generalized to all orientable closed surfaces. We focused on the torus, because
this construction can be used as a very efficient numerical recipe to discretize and
calculate the (continuum) Chern number of a 2-dimensional insulator [12], to be
defined in Sect. 2.2.4.

2.2 Continuum Case

We now assume that instead of a discrete set of states, fˇˇ�j
˛g, we have a continuum,

j�.R/i, where the R’s are elements of some D-dimensional parameter space P .

2.2.1 Berry Connection

We take a smooth directed path C , i.e., a curve in the parameter space P ,

C W Œ0; 1/ ! P; t 7! R.t/: (2.18)

We assume that all components of j�.R/i are smooth, at least in an open
neighborhood of the curve C . The relative phase between two neighbouring states
on the curve C , corresponding to the parameters R and R C dR, is

e�i�� D h�.R/ j �.R C dR/i
jh�.R/ j �.R C dR/ij I �� D i h�.R/j rR j�.R/i � dR; (2.19)

obtained to first order in dR ! 0. The quantity multiplying dR on the right-hand
side defines the Berry connection,

A.R/ D i h�.R/ j rR�.R/i D �Im h�.R/ j rR�.R/i : (2.20)

Here jrR�.R/i is defined by requiring for every Hilbert space vector j˚i, that

h˚ j rR�.R/i D rR h˚ j �.R/i : (2.21)
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The second equality in Eq. (2.20) follows from the conservation of the norm,
rR h�.R/ j �.R/i D 0.

We have seen in the discrete case that the relative phase of two states is not gauge
invariant; neither is the Berry connection. Under a gauge transformation, it changes
as

j�.R/i ! ei˛.R/ j�.R/i W A.R/ ! A.R/� rR˛.R/: (2.22)

2.2.2 Berry Phase

Consider a closed directed curve C in parameter space. The Berry phase along the
curve is defined as

�.C / D � arg exp

2

4�i
I

C

A � dR

3

5 (2.23)

The Berry phase of a closed directed curve is gauge invariant, since it can be
interpreted as a limiting case of the discrete Berry phase, via Eqs. (2.20), (2.19),
and (2.5), and the latter has been shown to be gauge invariant.

2.2.3 Berry Curvature

As in the discrete case above, we would like to express the gauge invariant Berry
phase as a surface integral of a gauge invariant quantity. This quantity is the Berry
curvature. Similarly to the discrete case, we consider a two-dimensional parameter
space, and for simplicity denote the parameters as x and y. We take a simply
connected region F in this two-dimensional parameter space, with the oriented
boundary curve of this surface denoted by @F , and consider the continuum Berry
phase corresponding to the boundary.

2.2.3.1 Smoothness of the Manifold of States

Before relating the Berry phase to the Berry curvature, an important note on the
manifold j�.R/i of considered states is in order. From now on, we consider a
manifold of states, living in our two-dimensional parameter space, that is smooth, in
the sense that the map R 7! j�.R/i h�.R/j is smooth. Importantly, this condition
does not necessarily imply that that the function R 7! j�.R/i, also referred to as
a gauge describing our manifold, is smooth. (For further discussion and examples,
see Sect. 2.5.1.) Nevertheless, even if the gauge R 7! j�.R/i is not smooth in a
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point R0 of the parameter space, one can always find an alternative gauge j� 0.R/i
which is (i) locally smooth, that is, smooth in the point R0, and (ii) locally generates
the same map as j�.R/i, that is, for which j� 0.R/i h� 0.R/j D j�.R/i h�.R/j
in an infinitesimal neighborhood of R0. Let us formulate an intuitive argument
supporting the latter claim using quantum-mechanical perturbation theory. Take
the Hamiltonian OH.R/ D � j�.R/i h�.R/j, which can be substituted in the
infinitesimal neighborhood of R0 with OH.R0 C �R/ D OH.R0/C �R � .r OH/.R0/.
According to first-order perturbation theory, the ground state of the latter is given
by

ˇ
ˇ� 0.R0 C�R/

˛ D j�.R0/i �
DX

nD2
j�n.R0/i h�n.R0/j�R � .r OH/.R0/ j�.R0/i ;

(2.24)

where the states j�n.R0/i (n D 2; 3; : : : ;D), together with j�.R0/i, form a basis of
the Hilbert space. On the one hand, Eq. (2.24) defines a function that is smooth in
R0, hence the condition (i) above is satisfied. On the other hand, as j� 0.R0 C�R/i
is the ground state of OH.R0 C�R/, condition (ii) is also satisfied.

2.2.3.2 Berry Phase and Berry Curvature

Now return to our original goal and try to express the Berry phase as a surface
integral of a gauge invariant quantity. We start by relating the Berry phase to its
discrete counterpart:

I

@F
A � dR D lim

�x;�y!0
�@F ; (2.25)

where we discretize the parameter space using a square grid of steps �x, �y, and
express the integral as the discrete Berry phase �@F of a loop approximating @F , in
the limit of an infinitesimally fine grid. Then, from Eq. (2.25) and the Stokes-type
theorem in Eq. (2.11), we obtain

exp

�

�i
I

@F

A � dR
�

D lim
�x;�y!0

e�i
P

nm Fnm ; (2.26)

where the nm sum goes for the plaquettes forming the open surfaceF . Furthermore,
let us take a gauge j� 0.R/i and the corresponding Berry connection A0 that is
smooth in the plaquette nm; this could be j�.R/i and A if that was already smooth.
Then, due to the gauge invariance of the Berry flux we have

e�iFnm D e�iF0

nm ; (2.27)
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where F0
nm is the Berry flux corresponding to the locally smooth gauge. Furthermore,

in the limit of an infinitely fine grid it holds that

F0
nm D A0

x

�

xn C �x

2
; ym

	

�x C A0
y

�

xnC1; ym C �y

2

	

�y

� A0
x

�

xn C �x

2
; ymC1

	

�x � A0
y

�

xn; ym C �y

2

	

�y: (2.28)

Taylor expansion of the Berry connection around Rnm D



xn C �x
2
; yn C �y

2

�

to

first order yields

F0
nm D �

@xA0
y.Rnm/� @yA0

x.Rnm/
�

�x�y: (2.29)

Thereby, with the definition of the Berry curvature as

B D lim
�x;�y!0

F0
nm

�x�y
; (2.30)

we obtain a quantity that is gauge invariant, as it is defined via the gauge invariant
Berry flux, and is related to the Berry connection via

B D @xA0
y.Rnm/ � @yA0

x.Rnm/: (2.31)

We can rephrase Eq. (2.29) as follows: the Berry flux for the nm plaquette is
expressed as the product of the Berry curvature on the plaquette and the surface
area of the plaquette.

Substituting Eqs. (2.27) and (2.29) into Eq. (2.26) yields

exp

�

�i
I

@F
A � dR

�

D exp

�

�i
Z

F
B.x; y/dxdy

�

; (2.32)

which is the continuum version of the result (2.11). Equation (2.32) can also be
rephrased as

�.@F / D � arg e�i
R

F B.x;y/dxdy: (2.33)

2.2.3.3 A Special Case Where the Usual Stokes Theorem Works

A shortcut towards a stronger result than Eq. (2.32) is offered in the special case
when j�.R/i is smooth on the open surface F . Then, a direct application of the
two-dimensional Stokes theorem implies

I

@F
A � dR D

Z

F
.@xAy � @yAx/dxdy D

Z

F
Bdxdy (2.34)
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Summarizing Eqs. (2.32) and (2.34), we can say that line integral of the Berry
connection equals the surface integral of the Berry curvature if the set of states
j�.R/i is smooth on F , but they might differ with an integer multiple of 2�
otherwise.

2.2.3.4 The Case of the Three-Dimensional Parameter Space

Let us briefly discuss also the case of a three-dimensional parameter space. This
will be particularly useful in the context of two-level systems. Starting with the case
when the gauge j�.R/i on the two-dimensional open surface F embedded in the
three-dimensional parameter space is smooth in the neighborhood of F , we can
directly apply the three-dimensional Stokes theorem to convert the line integral of
A to the surface integral of the curl of A to obtain

I

@F
A � dR D

Z

F
B � dS; (2.35)

where the Berry curvature is defined as the vector field B.R/ via

B.R/ D rR � A.R/; (2.36)

which is gauge invariant as in the two-dimensional case. Even if j�.R/i is not
smooth on F , the relation

�.@F / D � arg e�i
H

@F A�dR D � arg e�i
R

F B�dS (2.37)

holds, similarly to the two-dimensional result Eq. (2.32).
Note furthermore that the Berry phase �.@F / for a fixed boundary curve @F

is not only gauge invariant, but also invariant against continuous deformations of
the two-dimensional surface F embedded in three dimensions, as long as the Berry
curvature is smooth everywhere along the way.

We also remark that although we used the three-dimensional notation here, but
the above results can be generalized for any dimensionality of the parameter space.

The notation A and B for the Berry connection and Berry curvature suggest
that they are much like the vector potential and the magnetic field. This is a useful
analogy, for instance, rRB D 0, from the definition (2.36). Nevertheless, it is not
true that in every problem where the Berry curvature is nonzero, there is a physical
magnetic field.
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2.2.4 Chern Number

In the discrete case, we defined the Chern number as a sum of Berry fluxes for a
square lattice living on a torus (or any other orientable closed surface). Here, we
take a continuum parameter space that has the topology of a torus. The motivation
is that certain physical parameter spaces in fact have this torus topology, and the
corresponding Chern number does have physical significance. One example will
be the Brillouin zone of a two-dimensional lattice representing a solid crystalline
material, where the momentum vectors .kx; ky/, .kx C 2�; ky/, and .kx; ky C 2�/ are
equivalent.

Quite naturally, in the continuum definition of the Chern number, the sum of
Berry fluxes is replaced by the surface integral of the Berry curvature over the whole
of the parameter space P ,

Q D � 1

2�

Z

P
Bdxdy: (2.38)

As this can be interpreted as a continuum limit of the discrete Chern number, it
inherits the properties of the latter: the continuum Chern number is a gauge invariant
integer.

For future reference, let us lay down the notation to be used for calculating the
Chern numbers of electronic energy bands in two-dimensional crystals. Consider
a square lattice for simplicity, which has a square-shaped Brillouin zone as well.
Our parameter space P is the two-dimensional Brillouin zone now, which has a
torus topology as discussed above. The parameters are the Cartesian components
kx; ky 2 Œ��; �/ of the momentum vector k. The electronic energy bands and the
corresponding electron wavefunctions can be obtained from the bulk momentum-
space Hamiltonian OH.kx; ky/. The latter defines the Schrödinger equation

OH.k/ jun.k/i D En.k/ jun.k/i ; (2.39)

where n D 1; 2; : : : is the band index, which has as many possible values as the
dimension of the Hilbert space of the internal degree of freedom of our lattice model.
Note that defining the Berry connection, the Berry curvature and the Chern number
for the nth band is possible only if that band is separated from other bands by energy
gaps. The Berry connection of the nth band, in line with the general definition (2.20),
reads

A.n/j .k/ D i hun.k/j @kj jun.k/i ; for j D x; y: (2.40)

The Chern number of the nth band, in correspondence with Eqs. (2.38) and (2.31),
reads

Q.n/ D � 1

2�

Z

BZ
dkxdky

 

@A.n/y

@kx
� @A.n/x

@ky

!

: (2.41)
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Certain approximations of the band structure theory of electrons provide low-
dimensional momentum-space Hamiltonians that can be diagonalized analytically,
allowing for an analytical derivation of the Chern numbers of the electronic bands.
More often, however, the electronic wave functions are obtained from numerical
techniques on a finite-resolution grid of .kx; ky/ points in the Brillouin zone. In that
case, the Chern number of a chosen band can still be effectively evaluated using the
discrete version of its definition (2.13).

The Chern number of a band of an insulator is a topological invariant in the
following sense. One can imagine that the Hamiltonian describing the electrons
on the lattice is deformed adiabatically, that is, continuously and with the energy
gaps separating the nth band from the other bands kept open. In this case, the
Berry curvature varies continuously, and therefore its integral for the Brillouin zone,
which is the Chern number, cannot change as the value of the latter is restricted to
integers. If the deformation of the crystal Hamiltonian is such that some energy
gaps separating the nth band from a neighboring band is closed and reopened, that
is, the deformation of the Hamiltonian is not adiabatic, then the Chern number might
change. In this sense, the Chern number is a similar topological invariant for two-
dimensional lattice models as the winding number is for the one-dimensional SSH
model.

2.3 Berry Phase and Adiabatic Dynamics

In most physical situations of interest, the set of states whose geometric features
(Berry phases) we are interested in are eigenstates of some Hamiltonian OH. Take a
physical system with D real parameters that are gathered into a formal vector R D
.R1;R2; : : : ;RD/. The Hamiltonian is a smooth function OH.R/ of the parameters, at
least in the region of interest. We order the eigenstates of the Hamiltonian according
to the energies En.R/,

OH.R/ jn.R/i D En.R/ jn.R/i : (2.42)

We call the set of eigenstates jn.R/i the snapshot basis.
The definition of the snapshot basis involves gauge fixing, i.e., specifying the

otherwise arbitrary phase prefactor for every jn.R/i. This can be a tricky issue: even
in cases where a gauge exists where all elements of the snapshot basis are smooth
functions of the parameters, this gauge might be very challenging to construct.

We consider the following problem. We assume that the system is initialized with
R D R0 and in an eigenstate jn.R0/i that is in the discrete part of the spectrum, i.e.,
En.R/� En�1.R/ and EnC1.R/� En.R/ are nonzero. At time t D 0 we thus have

R.t D 0/ D R0I j .t D 0/i D jn.R0/i : (2.43)
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Now assume that during the time t D 0 ! T the parameter vector R is slowly
changed: R becomes R.t/, and the values of R.t/ define a continuous directed curve
C . Also, assume that jn.R/i is smooth along the curve C . The state of the system
evolves according to the time-dependent Schrödinger equation:

i
d

dt
j .t/i D OH.R.t// j .t/i : (2.44)

Further, assume that R is varied in such a way that at all times the energy gaps
around the state jn.R.t//i remain finite. We can then choose the rate of variation of
R.t/ along the path C to be slow enough compared to the frequencies corresponding
to the energy gap, so the adiabatic approximation holds In that case, the system
remains in the energy eigenstate jn.R.t//i, only picking up a phase. We are now
going to find this phase.

By virtue of the adiabatic approximation, we take as Ansatz

j .t/i D ei�n.t/e�i
R t
0 En.R.t0//dt0 jn.R.t//i : (2.45)

For better readability, in the following we often drop the t argument where this leads
to no confusion. The time derivative of Eq. (2.45) reads

i
d

dt
j .t/i D ei�n e�i

R t
0 En.R.t0//dt0

�

�d�n

dt
jn.R/i C En.R/ jn.R/i C i

ˇ
ˇ d

dt n.R/
˛
	

:

(2.46)

To show what we mean by
ˇ
ˇ d

dt n.R.t//
˛

, we write it out explicitly in terms of a fixed
basis, that of the eigenstates at R D R0:

jn.R/i D
X

m

cm.R/ jm.R0/i I (2.47)

ˇ
ˇ d

dt n.R.t//
˛ D dR

dt
� jrRn.R/i D dR

dt

X

m

rRcm.R/ jm.R0/i : (2.48)

We insert the Ansatz (2.45) into the right hand side of the Schrödinger equation
(2.44), use the snapshot eigenvalue relation (2.42), simplify and reorder the
Schrödinger equation, and obtain

�d�n

dt
jn.R/i C i

ˇ
ˇ d

dt n.R/
˛ D 0: (2.49)

Multiplying from the left by hn.R/j, and using Eq. (2.48), we obtain

d

dt
�n.t/ D i

˝

n.R.t//
ˇ
ˇ d

dt n.R.t//
˛ D dR

dt
i hn.R/ j rRn.R/i : (2.50)
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We have found that for the directed curve C in parameter space, traced out by
R.t/, there is an adiabatic phase �n.C /, which reads

�n.C / D
Z

C

i hn.R/ j rRn.R/i dR: (2.51)

A related result is obtained after a similar derivation, if the parameter space of the R
points is omitted and the snapshot basis jn.t/i is parametrized directly by the time
variable. Then, the adiabatic phase is

�n.t/ D
Z t

0

i
˝

n.t0/
ˇ
ˇ @t0n.t

0/
˛

dt0: (2.52)

Equation (2.51) allows us to formulate the key message of this section as the
following. Consider the case of an adiabatic and cyclic change of the Hamiltonian,
that is, when the curve C is closed, implying R.T/ D R0. In this case, the adiabatic
phase reads

�n.C / D
I

C

i hn.R/ j rRn.R/i dR: (2.53)

Therefore, the adiabatic phase picked up by the state during a cyclic adiabatic
change of the Hamiltonian is equivalent to the Berry phase corresponding to the
closed oriented curve representing the Hamiltonian’s path in the parameter space.

Two further remarks are in order. First, on the face of it, our derivation seems to
do too much. It seems that we have produced an exact solution of the Schrödinger
equation. Where did we use the adiabatic approximation? In fact, Eq. (2.50) does not
imply Eq. (2.49). For the more complete derivation, showing how the nonadiabatic
terms appear, see [15].

The second remark concerns the measurability of the Berry phase. The usual
way to experimentally detect phases is by an interferometric setup. This means
coherently splitting the wavefunction of the system into two parts, taking them
through two adiabatic trips in parameter space, via R.t/ and R0.t/, and bringing
the parts back together. The interference only comes from the overlap between
the states: it is maximal if jn.R.T//i D jn.R0.T//i, which is typically ensured if
R.T/ D R0.T/. The difference in the adiabatic phases �n and � 0

n is the adiabatic
phase associated with the closed loop C , which is the path obtained by going
forward along t D 0 ! T W R.t/, then coming back along t D T ! 0 W
R0.t/.
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2.4 Berry’s Formulas for the Berry Curvature

Berry provided [6] two practical formulas for the Berry curvature. Here we present
them in a form corresponding to a three-dimensional parameter space. To obtain
the two-dimensional case, where the Berry curvature B is a scalar, one can identify
the latter with the component Bz of the three-dimensional case treated below; for
generalization to higher than 3 dimensions, see the discussion in Berry’s paper [6].
First,

Bj D �Im �jkl @k hn j @lni D �Im �jkl h@kn j @lni C 0; (2.54)

where the second term is 0 because @k@l D @l@k but �jkl D ��jlk.
To obtain Berry’s second formula, inserting a resolution of identity in the

snapshot basis in the above equation, we obtain

B.n/ D �Im
X

n0¤n

˝rn
ˇ
ˇ n0˛ � ˝n0 ˇˇ rn

˛

; (2.55)

where the parameter set R is suppressed for brevity. The term with n0 D n is omitted
from the sum, as it is zero, since because of the conservation of the norm, hrn j ni D
� hn j rni. To calculate hn0 j rni, start from the definition of the eigenstate jni, act
on both sides with r, and then project unto jn0i:

OH jni D En jni I (2.56)

.r OH/ jni C OH jrni D .rEn/ jni C En jrni I (2.57)
˝

n0ˇˇr OH jni C ˝

n0ˇˇ OH jrni D 0C En
˝

n0 ˇˇ rn
˛

: (2.58)

Act with OH towards the left in Eq. (2.58), rearrange, substitute into (2.55), and you
obtain the second form of the Berry curvature, which is manifestly gauge invariant:

B.n/ D �Im
X

n0¤n

hnj r OH jn0i � hn0j r OH jni
.En � En0/2

: (2.59)

This shows that the monopole sources of the Berry curvature, if they exist, are the
points of degeneracy.

A direct consequence of Eq. (2.59), is that the sum of the Berry curvatures of
all eigenstates of a Hamiltonian is zero. If all the spectrum of OH.R/ is discrete
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along a closed curve C , then one can add up the Berry phases of all the energy
eigenstates.

X

n

B.n/ D �Im
X

n

X

n0¤n

hnj rR OH jn0i � hn0j rR OH jni
.En � En0/2

D �Im
X

n

X

n0<n

1

.En � En0/2




hnj rR OH ˇ
ˇn0˛ � ˝n0ˇˇrR OH jni

C ˝

n0ˇˇrR OH jni � hnj rR OH ˇˇn0˛
�

D 0: (2.60)

The last equation holds because a � b D �b � a for any two vectors
a;b.

2.5 Example: The Two-Level System

So far, most of the discussion on the Berry phase and the related concepts have been
kept rather general. In this section, we illustrate these concepts via the simplest
nontrivial example, that is, the two-level system.

2.5.1 No Continuous Global Gauge

Consider a Hamiltonian describing a two-level system:

OH.d/ D dx O�x C dy O�y C dz O�z D d � O� ; (2.61)

with d D .dx; dy; dz/ 2 R
3nf0g. Here, the vector d plays the role of the parameter R

in of preceding sections, and the parameter space is the punctured three-dimensional
Euclidean space R3nf0g, to avoid the degenerate case of the energy spectrum. Note
the absence of a term proportional to �0: this would play no role in adiabatic phases.
Because of the anticommutation relations of the Pauli matrices, the Hamiltonian
above squares to a multiple of the identity operator, OH.d/2 D d2�0. Thus, the
eigenvalues of OH.d/ have to have absolute value jdj.

A practical graphical representation of OH.d/ is the Bloch sphere, shown in
Fig. 2.2. The spherical angles 	 2 Œ0; �/ and ' 2 Œ0; 2�/ are defined as

cos 	 D dz

jdj I ei' D dx C idy
q

d2x C d2y
: (2.62)
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Fig. 2.2 The Bloch sphere. A generic traceless gapped two-level Hamiltonian is a linear com-
bination of Pauli matrices, OH.d/ D d � O� . This can be identified with a point in R

3nf0g. The
eigenenergies are given by the distance of the point from the origin, the eigenstates depend only on
the direction of the vector d, i.e., on the angles 	 and ', as defined in subfigure (a) and in Eq. (2.62)
The Berry phase of a closed curve C is half the area enclosed by the curve when it is projected
onto the surface of the Bloch sphere

We denote the two eigenstates of the Hamiltonian OH.d/ by jCdi and j�di, with

OH.d/ j˙di D ˙jdj j˙di : (2.63)

These eigenstates depend on the direction of the 3-dimensional vector d, but not on
its length. The eigenstate with E D C jdj of the corresponding Hamiltonian is:

jCdi D ei˛.	;'/

�
e�i'=2 cos 	=2
ei'=2 sin 	=2

	

; (2.64)

while the eigenstate with E D � jdj is j�di D eiˇ.d/ jC�di. The choice of the phase
factors ˛ and ˇ above corresponds to fixing a gauge. We will now review a few
gauge choices.

Consider fixing ˛.	; '/ D 0 for all 	; '. This is a very symmetric choice, in this
way in formula (2.64), we find 	=2 and '=2. There is problem, however, as you
can see if you consider a full circle in parameter space: at any fixed value of 	 , let
' D 0 ! 2� . We should come back to the same Hilbert space vector, and we do,
but we also pick up a phase of � . We can either say that this choice of gauge led to a
discontinuity at ' D 0, or that our representation is not single-valued. We now look
at some attempts at fixing these problems, to find a gauge that is both continuous
and single valued.

As a first attempt, let us fix ˛ D '=2; denoting this gauge by subscript S, we
have

jCdiS D
�

cos 	=2
ei' sin 	=2

	

: (2.65)
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The phase prefactor now gives an additional factor of �1 as we make the circle in '
at fixed 	 , and so it seems we have a continuous, single valued representation. There
are two tricky points, however: the North Pole, 	 D 0, and the South Pole, 	 D � .
At the North Pole, j.0; 0; 1/iS D .1; 0/ no problems. This gauge is problematic at the
South Pole, however (which explains the choice of subscript): there, j.0; 0;�1/iS D
.0; ei'/, the value of the wavefunction depends on which direction we approach the
South Pole from.

We can try to solve the problem at the South Pole by choosing ˛ D �'=2, which
gives us

jCdiN D
�

e�i' cos 	=2
sin 	=2

	

: (2.66)

As you can probably already see, this representation runs into trouble at the North
Pole: j.0; 0; 1/iN D .e�i'; 0/.

We can try to overcome the problems at the poles by taking linear combinations
of jCdiS and jCdiN , with prefactors that vanish at the South and North Poles,
respectively. A family of options is:

jCdi
 D ei
 sin
	

2
jCdiS C cos

	

2
jCdiN (2.67)

D
�

cos 	
2
.cos 	

2
C sin 	

2
ei
e�i'/

sin 	
2

ei'.cos 	
2

C sin 	
2

ei
e�i'/

	

: (2.68)

This is single valued everywhere, solves the problems at the Poles. However, it has
its own problems: somewhere on the Equator, at 	 D �=2, ' D 
 ˙ � , its norm
disappears.

It is not all that surprising that we could not find a well-behaved gauge: there is
none. By the end of this chapter, it should be clear, why.

2.5.2 Calculating the Berry Curvature and the Berry Phase

Consider the two-level system as defined in the previous section. Take a closed curve
C in the parameter space R

3nf0g. We are going to calculate the Berry phase �� of
the j�di eigenstate on this curve:

��.C / D
I

C

A.d/dd; (2.69)

with the Berry vector potential defined as

A.d/ D i h�dj rd j�di : (2.70)
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The calculation becomes straightforward if we use the Berry curvature,

B.d/ D rd � A.d/I (2.71)

��.C / D
Z

S
B.d/dS ; (2.72)

where S is any surface whose boundary is the loop C . (Alternatively, it is a
worthwhile exercise to calculate the Berry phase directly in a fixed gauge, e.g., one
of the three gauges introduced above.)

Specifically, we make use of Berry’s gauge invariant formulation (2.59) of the
Berry curvature, derived in the last chapter. In the case of the generic two-level
Hamiltonian (2.61), Eq. (2.59) gives

B˙.d/ D �Im
h˙j rd OH j�i � h�j rd OH j˙i

4d2
; (2.73)

with

rd OH D O� : (2.74)

To evaluate (2.73), we choose the quantization axis parallel to d, thus the eigenstates
simply read

jCdi D
�
1

0

	

I j�di D
�
0

1

	

: (2.75)

The matrix elements can now be computed as

h�j O�x jCi D �

0 1
�
�
0 1

1 0

	�
1

0

	

D 1; (2.76)

and similarly,

h�j �y jCi D iI (2.77)

h�j�z jCi D 0: (2.78)

So the cross product of the vectors reads

h�j O� jCi � hCj O� j�i D
0

@

1

i
0

1

A �
0

@

1

�i
0

1

A D
0

@

0

0

2i

1

A : (2.79)
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This gives us for the Berry curvature,

B˙.d/ D ˙ d
jdj

1

2d2
: (2.80)

We can recognize in this the field of a pointlike monopole source in the origin.
Alluding to the analog between the Berry curvature and the magnetic field of
electrodynamics (both are derived from a “vector potential”) we can refer to this
field, as a “magnetic monopole”. Note however that this monopole exists in the
abstract space of the vectors d and not in real space.

The Berry phase of the closed loopC in parameter space, according to Eq. (2.72),
is the flux of the monopole field through a surface S whose boundary is C . It is
easy to convince yourself that this is half of the solid angle subtended by the curve,

��.C / D 1

2
˝C : (2.81)

In other words, the Berry phase is half of the area enclosed by the image of C ,
projected onto the surface of the unit sphere, as illustrated in Fig. 2.2.

What about the Berry phase of the other energy eigenstate? From Eq. (2.73), the
corresponding Berry curvature BC is obtained by inverting the order of the factors
in the cross product: this flips the sign of the cross product. Therefore the Berry
phases of the ground and excited state fulfil the relation

�C.C / D ���.C /: (2.82)

One can see the same result on the Bloch sphere. Since hC j �i D 0, the point
corresponding to j�i is antipodal to the point corresponding to jCi. Therefore, the
curve traced by the j�i on the Bloch sphere is the inverted image of the curve traced
by jCi. These two curves have the same orientation, therefore the same area, with
opposite signs.

2.5.3 Two-Band Lattice Models and Their Chern Numbers

The simplest case where a Chern number can arise is a two-band system. Consider
a particle with two internal states, hopping on a two-dimensional lattice. The two
internal states can be the spin of the conduction electron, but can also be some
sublattice index of a spin polarized electron. In the translation invariant bulk, the
wave vector k D .kx; ky/ is a good quantum number, and the Hamiltonian reads

OH.k/ D d.k/ O� ; (2.83)



2.5 Example: The Two-Level System 43

with the function d.k/ mapping each point of the Brillouin Zone to a three-
dimensional vector. Since the Brillouin zone is a torus, the endpoints of the vectors
d.k/ map out a deformed torus in R

3nf0g. This torus is a directed surface: its inside
can be painted red, its outside, blue.

The Chern number of j�i (using the notation of Sect. 1.2, of ju1.k/i) is the flux
of B�.d/ through this torus. We have seen above that B�.d/ is the magnetic field of
a monopole at the origin d D 0. If the origin is on the inside of the torus, this flux is
C1. If it is outside of the torus, it is 0. If the torus is turned inside out, and contains
the origin, the flux is �1. The torus can also intersect itself, and therefore contain
the origin any number of times.

One way to count the number of times the torus contains the origin is as follows.
Take any line from the origin to infinity, and count the number of times it intersects
the torus, with a C1 for intersecting from the inside, and a �1 for intersecting from
the outside. The sum is independent of the shape of the line, as long as it goes all
the way from the origin to infinity.

Problems

2.1 Discrete Berry phase and Bloch vectors
Take an ordered set of three arbitrary, normalized states of a two-level system.
Evaluate the corresponding discrete Berry phase. Each state is represented by a
vector on the Bloch sphere. Show analytically that if two of the vectors coincide,
then the discrete Berry phase vanishes.

2.2 Two-level system and the Berry connection
Consider the two-level system defined in Eq. (2.61), and describe the excited energy
eigenstates using the gauge jCdiS defined in Eq. (2.65). Using this gauge, evaluate
and visualize the corresponding Berry connection vector field A.d/. Is it well-
defined in every point of the parameter space? Complete the same tasks using the
gauge jCdiN defined in Eq. (2.66).

2.3 Massive Dirac Hamiltonian
Consider the two-dimensional massive Dirac Hamiltonian OH.kx; ky/ D m O�zCkx O�xC
ky O�y, where m 2 R is a constant and the parameter space is R2 3 .kx; ky/. (a) Take
a circular loop with radius � in the parameter space, centered around the origin.
Calculate the Berry phase associated to this loop and the ground-state manifold of
the Hamiltonian: ��.m; �/ D‹. (b) Calculate the Berry connection B�.kx; ky/ for the
ground-state manifold. (c) Integrate the Berry connection for the whole parameter
space. How does the result depend on m?

2.4 Absence of a continuous global gauge
In Sect. 2.5.1, we have shown example gauges for the two-level system that were
not globally smooth on the parameter space. Prove that such globally smooth gauge
does not exist.
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2.5 Chern number of two-band models
Consider a two-band lattice model with the Hamiltonian OH.k/ D d.k/ � O� . Express
the Chern number of the lower-energy band in terms of d.k/=jd.k/j.
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