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Figure 2.10. (a) A coffee cup is homeomorphic to a doughnut. (b) The linked rings are
homeomorphic to the separated rings.

also continuous. If there exists a homeomorphism between X1 and X2, X1 is said
to be homeomorphic to X2 and vice versa.

In other words, X1 is homeomorphic to X2 if there exist maps f : X1 → X2
and g : X2 → X1 such that f ◦g = idX2 , and g ◦ f = idX1 . It is easy to show that
a homeomorphism is an equivalence relation. Reflectivity follows from the choice
f = idX , while symmetry follows since if f : X1 → X2 is a homeomorphism
so is f −1 : X2 → X1 by definition. Transitivity follows since, if f : X1 → X2
and g : X2 → X3 are homeomorphisms so is g ◦ f : X1 → X3. Now we divide
all topological spaces into equivalence classes according to whether it is possible
to deform one space into the other by a homeomorphism. Intuitively speaking,
we suppose the topological spaces are made out of ideal rubber which we can
deform at our will. Two topological spaces are homeomorphic to each other if we
can deform one into the other continuously, that is, without tearing them apart or
pasting.

Figure 2.10 shows some examples of homeomorphisms. It seems impossible
to deform the left figure in figure 2.10(b) into the right one by continuous
deformation. However, this is an artefact of the embedding of these objects
in �

3 . In fact, they are continuously deformable in �
4 , see problem 2.3. To

distinguish one from the other, we have to embed them in S3, say, and compare
the complements of these objects in S3. This approach is, however, out of the
scope of the present book and we will content ourselves with homeomorphisms.

2.4.2 Topological invariants

Now our main question is: ‘How can we characterize the equivalence classes
of homeomorphism?’ In fact, we do not know the complete answer to this
question yet. Instead, we have a rather modest statement, that is, if two spaces
have different ‘topological invariants’, they are not homeomorphic to each
other. Here topological invariants are those quantities which are conserved under
homeomorphisms. A topological invariant may be a number such as the number
of connected components of the space, an algebraic structure such as a group or
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a ring which is constructed out of the space, or something like connectedness,
compactness or the Hausdorff property. (Although it seems to be intuitively
clear that these are topological invariants, we have to prove that they indeed
are. We omit the proofs. An interested reader may consult any text book on
topology.) If we knew the complete set of topological invariants we could specify
the equivalence class by giving these invariants. However, so far we know a partial
set of topological invariants, which means that even if all the known topological
invariants of two topological spaces coincide, they may not be homeomorphic to
each other. Instead, what we can say at most is: if two topological spaces have
different topological invariants they cannot be homeomorphic to each other.

Example 2.13. (a) A closed line [−1, 1] is not homeomorphic to an open line
(−1, 1), since [−1, 1] is compact while (−1, 1) is not.

(b) A circle S1 is not homeomorphic to �, since S1 is compact in �2 while
� is not.

(c) A parabola (y = x2) is not homeomorphic to a hyperbola (x2 − y2 = 1)
although they are both non-compact. A parabola is (arcwise) connected while a
hyperbola is not.

(d) A circle S1 is not homeomorphic to an interval [−1, 1], although they
are both compact and (arcwise) connected. [−1, 1] is simply connected while
S1 is not. Alternatively S1 − {p}, p being any point in S1 is connected while
[−1, 1] − {0} is not, which is more evidence against their equivalence.

(e) Surprisingly, an interval without the endpoints is homeomorphic to a line
�. To see this, let us take X = (−π/2, π/2) and Y = � and let f : X → Y be
f (x) = tan x . Since tan x is one to one on X and has an inverse, tan−1 x , which
is one to one on �, this is indeed a homeomorphism. Thus, boundedness is not a
topological invariant.

(f) An open disc D2 = {(x, y) ∈ �2 |x2 + y2 < 1} is homeomorphic to �2 .
A homeomorphism f : D2 → �

2 may be

f (x, y) =
(

x√
1− x2 − y2

,
y√

1− x2 − y2

)
(2.28)

while the inverse f −1 : �2 → D2 is

f −1(x, y) =
(

x√
1+ x2 + y2

,
y√

1+ x2 + y2

)
. (2.29)

The reader should verify that f ◦ f −1 = id�2 , and f −1 ◦ f = idD2 . As we
saw in example 2.5(e), a closed disc whose boundary S1 corresponds to a point
is homeomorphic to S2. If we take this point away, we have an open disc. The
present analysis shows that this open disc is homeomorphic to �2 . By reversing
the order of arguments, we find that if we add a point (infinity) to �2 , we obtain
a compact space S2. This procedure is the one-point compactification S2 =
�

2 ∪ {∞} introduced in the previous section. We similarly have Sn = �
n ∪ {∞}.
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(g) A circle S1 = {(x, y) ∈ �2 |x2 + y2 = 1} is homeomorphic to a square
I 2 = {(x, y) ∈ �2 |(|x | = 1, |y| ≤ 1), (|x | ≤ 1, |y| = 1)}. A homeomorphism
f : I 2 → S1 may be given by

f (x, y) =
( x

r
,

y

r

)
r =

√
x2 + y2. (2.30)

Since r cannot vanish, (2.27) is invertible.

Exercise 2.18. Find a homeomorphism between a circle S1 = {(x, y) ∈ �2 |x2 +
y2 = 1} and an ellipse E = {(x, y) ∈ �2 |(x/a)2 + (y/b)2 = 1}.

2.4.3 Homotopy type

An equivalence class which is somewhat coarser than homeomorphism but which
is still quite useful is ‘of the same homotopy type’. We relax the conditions in
definition 2.9 so that the continuous functions f or g need not have inverses. For
example, take X = (0, 1) and Y = {0} and let f : X → Y , f (x) = 0 and
g : Y → X , g(0) = 1

2 . Then f ◦ g = idY , while g ◦ f �= idX . This shows that an
open interval (0, 1) is of the same homotopy type as a point {0}, although it is not
homeomorphic to {0}. We have more on this topic in section 4.2.

Example 2.14. (a) S1 is of the same homotopy type as a cylinder, since a cylinder
is a direct product S1 × � and we can shrink � to a point at each point of S1. By
the same reason, the Möbius strip is of the same homotopy type as S1.

(b) A disc D2 = {(x, y) ∈ �2 |x2 + y2 < 1} is of the same homotopy type
as a point. D2 − {(0, 0)} is of the same homotopy type as S1. Similarly, �2 − {0}
is of the same homotopy type as S1 and �3 − {0} as S2.

2.4.4 Euler characteristic: an example

The Euler characteristic is one of the most useful topological invariants.
Moreover, we find the prototype of the algebraic approach to topology in it. To
avoid unnecessary complication, we restrict ourselves to points, lines and surfaces
in �3 . A polyhedron is a geometrical object surrounded by faces. The boundary
of two faces is an edge and two edges meet at a vertex. We extend the definition
of a polyhedron a bit to include polygons and the boundaries of polygons, lines or
points. We call the faces, edges and vertices of a polyhedron simplexes. Note that
the boundary of two simplexes is either empty or another simplex. (For example,
the boundary of two faces is an edge.) Formal definitions of a simplex and a
polyhedron in a general number of dimensions will be given in chapter 3. We are
now ready to define the Euler characteristic of a figure in �3 .

Definition 2.10. Let X be a subset of �3 , which is homeomorphic to a polyhedron
K . Then the Euler characteristic χ(X) of X is defined by

χ(X) = (number of verticies in K )− (number of edges in K )

+ (number of faces in K ). (2.31)
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Figure 2.11. Example of a polyhedron which is homeomorphic to a torus.

The reader might wonder if χ(X) depends on the polyhedron K or not. The
following theorem due to Poincaré and Alexander guarantees that it is, in fact,
independent of the polyhedron K .

Theorem 2.4. (Poincaré–Alexander) The Euler characteristic χ(X) is indepen-
dent of the polyhedron K as long as K is homeomorphic to X .

Examples are in order. The Euler characteristic of a point is χ(·) = 1 by
definition. The Euler characteristic of a line is χ(——) = 2 − 1 = 1, since a
line has two vertices and an edge. For a triangular disc, we find χ(triangle) =
3− 3+ 1 = 1. An example which is a bit non-trivial is the Euler characteristic of
S1. The simplest polyhedron which is homeomorphic to S1 is made of three edges
of a triangle. Then χ(S1) = 3−3 = 0. Similarly, the sphere S2 is homeomorphic
to the surface of a tetrahedron, hence χ(S2) = 4 − 6 + 4 = 2. It is easily seen
that S2 is also homeomorphic to the surface of a cube. Using a cube to calculate
the Euler characteristic of S2, we have χ(S2) = 8 − 12 + 6 = 2, in accord with
theorem 2.4. Historically this is the conclusion of Euler’s theorem: if K is any
polyhedron homeomorphic to S2, with v vertices, e edges and f two-dimensional
faces, then v − e + f = 2.

Example 2.15. Let us calculate the Euler characteristic of the torus T 2.
Figure 2.11(a) is an example of a polyhedron which is homeomorphic to T 2.
From this polyhedron, we find χ(T 2) = 16 − 32 + 16 = 0. As we saw
in example 2.5(b), T 2 is equivalent to a rectangle whose edges are identified;
see figure 2.4. Taking care of this identification, we find an example of a
polyhedron made of rectangular faces as in figure 2.11(b), from which we also
have χ(T 2) = 0. This approach is quite useful when the figure cannot be realized
(embedded) in �3 . For example, the Klein bottle (figure 2.5(a)) cannot be realized
in �

3 without intersecting itself. From the rectangle of figure 2.5(a), we find
χ(Klein bottle) = 0. Similarly, we have χ(projective plane) = 1.
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Figure 2.12. The connected sum. (a) S2�S2 = S2, (b) T 2�T 2 = �2.

Exercise 2.19. (a) Show that χ(Möbius strip) = 0.
(b) Show that χ(�2) = −2, where �2 is the torus with two handles (see

example 2.5). The reader may either construct a polyhedron homeomorphic to�2
or make use of the octagon in figure 2.6(a). We show later that χ(�g) = 2− 2g,
where �g is the torus with g handles.

The connected sum X�Y of two surfaces X and Y is a surface obtained by
removing a small disc from each of X and Y and connecting the resulting holes
with a cylinder; see figure 2.12. Let X be an arbitrary surface. Then it is easy to
see that

S2�X = X (2.32)

since S2 and the cylinder may be deformed so that they fill in the hole on X ; see
figure 2.12(a). If we take a connected sum of two tori we get (figure 2.12(b))

T 2�T 2 = �2. (2.33)

Similarly, �g may be given by the connected sum of g tori,

T 2�T 2� · · · �T 2︸ ︷︷ ︸
g factors

= �g . (2.34)

The connected sum may be used as a trick to calculate an Euler characteristic
of a complicated surface from those of known surfaces. Let us prove the following
theorem.

Theorem 2.5. Let X and Y be two surfaces. Then the Euler characteristic of the
connected sum X�Y is given by

χ(X�Y ) = χ(X)+ χ(Y )− 2.
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Proof. Take polyhedra K X and KY homeomorphic to X and Y , respectively. We
assume, without loss of generality, that each of KY and KY has a triangle in it.
Remove the triangles from them and connect the resulting holes with a trigonal
cylinder. Then the number of vertices does not change while the number of edges
increases by three. Since we have removed two faces and added three faces,
the number of faces increases by −2 + 3 = 1. Thus, the change of the Euler
characteristic is 0− 3+ 1 = −2. �

From the previous theorem and the equality χ(T 2) = 0, we obtain χ(�2) =
0+ 0− 2 = −2 and χ(�g) = g × 0− 2(g − 1) = 2− 2g, cf exercise 2.19(b).

The significance of the Euler characteristic is that it is a topological invariant,
which is calculated relatively easily. We accept, without proof, the following
theorem.

Theorem 2.6. Let X and Y be two figures in �3 . If X is homeomorphic to Y , then
χ(X) = χ(Y ). In other words, if χ(X) �= χ(Y ), X cannot be homeomorphic to
Y .

Example 2.16. (a) S1 is not homeomorphic to S2, since χ(S1) = 0 while
χ(S2) = 2.

(b) Two figures, which are not homeomorphic to each other, may have the
same Euler characteristic. A point (·) is not homeomorphic to a line (—–) but
χ(·) = χ(—–) = 1. This is a general consequence of the following fact: if a
figure X is of the same homotopy type as a figure Y , then χ(X) = χ(Y ).

The reader might have noticed that the Euler characteristic is different from
other topological invariants such as compactness or connectedness in character.
Compactness and connectedness are geometrical properties of a figure or a space
while the Euler characteristic is an integer χ(X) ∈ �. Note that � is an
algebraic object rather than a geometrical one. Since the work of Euler, many
mathematicians have worked out the relation between geometry and algebra
and elaborated this idea, in the last century, to establish combinatorial topology
and algebraic topology. We may compute the Euler characteristic of a smooth
surface by the celebrated Gauss–Bonnet theorem, which relates the integral of
the Gauss curvature of the surface with the Euler characteristic calculated from
the corresponding polyhedron. We will give the generalized form of the Gauss–
Bonnet theorem in chapter 12.

Problems

2.1 Show that the 4g-gon in figure 2.13(a), with the boundary identified,
represents the torus with genus g of figure 2.13(b). The reader may use
equation (2.34).

2.2 Let X = {1, 1/2, . . . , 1/n, . . .} be a subset of �. Show that X is not closed in
�. Show that Y = {1, 1/2, . . . , 1/n, . . . , 0} is closed in �, hence compact.


