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A method is developed for calculating the index of first-order operators involving as background fields the scalar
and vector fields of the two-dimensional Abelian Higgs model. The method is applied to the Dirac operator and
shown to relate the number of fermion zero modes to the topology of the Higgs field.

I. INTRODUCTION

Recently Jackiw and Rossi' investigated the
Dirac equation describing charged fermions inter-
acting with the scalar and vector fields of the two-
dimensional Abelian Higgs model. They studied in
particular the case where the background was a
rotationally invariant multivortex configuration
and found that there were |n| zero-eigenvalue
modes, where

__l Ea ¢a(ai¢)
n—znj;dli——b—l"(-p—l—z—ﬁ. 1.1)

Here ¢, and ¢, are the real and imaginary parts
of the Higgs field and the integration is along a
circle at spatial infinity. They conjectured that
their results could be generalized beyond this
particular case, and that it might be possible to
obtain an index theorem for the Dirac operator
which they studied. In this paper I verify their
conjecture by deriving such a theorem.

The treatment in this paper differs somewhat
from that in an earlier paper,” where an index
theorem was derived for a rather similar opera-
tor which arose in the study of multivortex solu-
tions. In that paper the index was found to be given
in terms of the Pontrjagin number

nA=§‘1; fdszlz. 1.2)

(Here g is the charge of the scalar particle.) This
may appear to conflict with the results of Jackiw
and Rossi, who find the number of zero modes to
be determined solely by the scalar field configura-
tion. There is of course no real contradiction
since n and n4 are equal if the background Higgs
and gauge fields are solutions of the field equa-
tions, and the methods of Ref. 2 assume that this
is the case. However, motivated by the fact that
the existence of the zero modes found in Ref. 1
does not depend on this assumption, the conditions
imposed on the background fields in this paper will
be much weaker.

It may be useful to review some methods used in
calculating indices of operators, noting in particu-

24

lar how these depend on the behavior at spatial in-
finity. Recall that the index of an elliptic differ-
ential operator is defined by

¢=dim(kernel D)-dim(kernel D). 1.3)

Now consider the quantity
M M?
2) — P
$(M°) = Tr(—f—-ﬂ 2) Tr( £F:_2), | (1.4)

As M?® tends to zero, only the contribution of the

zero eigenvalues to 9(M®) survives. The normal-
izable zero modes of DD, which are the same as
those of D, each contribute 1; similarly, each of

‘the normalizable zero modes of DD’ contributes

-1. Therefore,

9= lim 9(M?). (1.5)
M2—>0

(If the continuum portions of the spectra extend to
zero, one must also consider the possibility of a
contribution from this source; for the operators
considered in this paper there will always be a gap
between the discrete zero modes and the contin-
uum.?)

For such operators on a compact space the spec-
trum is entirely discrete. Since, as it is easy to
show, the nonzero eigenvalues of o' and D' are
the same, their contributions to Eq. (1.4) cancel,
and 9(M?) is equal to the index for all values of
M?. ¢ may therefore be obtained by evaluating
9(M?) in the limit M*— <, which turns out to be
rather easy to do. As might be expected, a simi-
lar procedure may be used on an open Euclidean
space if the background fields are well enough be-
haved at spatial infinity to allow compactification
without the introduction of any but gauge singulari-
ties. Thus, for four-dimensional examples using
instantons 99(M?)/9M* can be shown to vanish.*
Similarly, for solutions of the Abelian Higgs model
the field strengths and the covariant derivatives of
the scalar field decrease exponentially at large
distance, and the indices of operators involving

- such fields can be obtained by this procedure.

By contrast, if there are long-range fields pres-
ent 99(M?)/3M? need not vanish and the above
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method fails® for the two-dimensional examples
considered in this paper this occurs if the covari-
ant derivatives of the Higgs field fall no faster
than 1/(%|. It then becomes necessary to evaluate
9(M?) explicitly and then obtain the index from Eq.
(1.5). Such a procedure was developed by Callias,®
who used it to study operators involving 't Hooft-
Polyakov monopoles, another case where long-
range fields lead to a nonvanishing 99(M?)/dM>.

The remainder of this‘paper is organized as fol-
lows. In Sec. II a general expression for the index
of a large class of first-order differential opera-
tors is derived. It is used in Sec. III to evaluate
the index of the Dirac operator of Ref. 1. Section
IV contains some concluding remarks.

II. CALCULATING INDICES

In this section an expression will be obtained for
the index of first-order operators D of the form

D=P;8;+Q(x) . 2.1)
The constant matrices P; will be assumed to obey

PP, +P}P;=25,1,

(2.2)
P,Pl+P,P}=26,1
so that
ofp=-1(3°+8°)-L,, 2.3)

DO =—1(82+9,%) - L,

with the L; at most first-order differential opera-
tors. )

It is convenient to combiné D and D into a single
operator

—_at
©= <0 D ) (2.4)
D 0
and to write
0=T,9;+K(x) (2.5)

with

3 9
(gx—i+3—yi)<fi(x,y,M, p)=- 2tr<x

M
F5m‘y>+2tr<x
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t
r,-=<° P') (2.6)

P; 0

and
_ot
K- <° Q ) . @.7)
Q@ 0
It follows from Eq. (2.2) that
{ri, ;}=25,,1. (2.8)
It is also useful to define a matrix
r,- (1 0 ) 2.9)
0 -7
obeying
{r,,ot=0. (2.10)
§(M?) may then be expressed in terms of © as
M
g(M?) = TrT ey
2 M’

:fd xtr<x Ty ey x>, (2.11)
where tr indicates a trace only over matrix in-
dices.

Now consider a nonlocal current
1
Ji(x’ y,-M5 IJ') =tr(<x rsrtml y>
< r,T 1 > (2.12)
—\X 5 i@ + 1 y . .

(The regulator mass p will eventually be taken to
infinity.) A straightforward calculation using the

ii l.l.
1 >
O+IM

b(x—1y) =[1",~5§;+K(x) +M]<x
y> [——3%1“,- +K(y) +M] 2.13)

=<x

O +M
yields

K
F50+M’y>

1 1
+tr<[K(x)—K(y)] 1"5<x 6_'*‘7—”_®+U~ y>> . (2.14)
L
Now let y approach x. Because of the regulator, . ‘ M?
this does not introduce any singularity in J;, while 8 Ji(x, %, M, 1) =~ 2tr<x Ty —OZ M2 y>
each of the matrix elements on the right-hand side 2
of Eq. (2.14) remains finite. In particular, the +2tr<x 1‘5—‘—9&(—“2 y>. (2.15)

last term on the right-hand side vanishes. With
the aid of Eq. (2.10) one obtains

From this it follows that
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S() = 8(u?) - § [ dx0,,(x, %, M, 1)

=s)+§ [ dlieyd e x ), (216)
c

where the integration in the last term is along a
circle at spatial infinity. [Note that 9(M°) is inde-
pendent of M? if the asymptotic behavior is such
that J; decreases faster than 1/ |x|.] Finally,
taking M to zero and u to infinity gives

g= s(w)+§f dlye,; d,(%,x,0,2). 2.17)
o}

To evaluate the first term on the right-hand
side, note that Eqs. (2.5) and (2.8) lead to

-0%=A-L (2.18)
with

A=—1(872+287) (2.19)
and

L=(T;K+KT;)8; +T;(3,K) +K>. (2.20)

We may then write

2

o

—=

otz Wlaru)™

Ha+p)T LA+ p) e 0 (2.21)

If this expression is substituted into Eq. (2.11), all
terms beyond that linear in L vanish in the limit
2

p®~.7 L then enters only through the quantity
tr(T',L); with the aid of Eq. (2.10) this is seen to be

1

Ji(x, x,M, 1) =tr<x I‘SI‘,-O[

1
+tr

1 1
A+a+ M2 A+a2+u2]|x>

trI;L=trT;T(9;K) . (2.22)
Using
f a’r
(A+u2) (211)2 (k2+u
4’1“ (2.23)
we obtain

9(0) = “12'1_127 fdzxtr(l"5L)u2<x

Y

-4 [@xtrryrieK). | (2.24)

.

(A+p?)?
To evaluate the second term in Eq. (2.17), note

first that Eq. (2.10) allows J; to be rewritten as

1 1 >
LI LIS | R
(2.25)

Jj(x,x,M,u)=tr<x

rsr,.0<

To proceed further, it is necessary to make some
assumptions concerning the behavior of ¢? at large
|x|. Let us suppose® that it is of the form

—-0%=A+d°I- B;(x)8; - C(x) (2.26)

with @® a positive constant and B;(x) and C(x) falling
at least as fast as 1/|x|. From Eq. (2.20) it fol-
lows that

B;=T,K+KT;. (2.27)

Expanding (-&%+ M%) ™! about (A +a®+M?)~ and
substituting into Eq. (2.25) gives

x |TT;0 (Bk3k+C)[

1
(A+a>+M?? ™ (A+ad®+ uz)"f]

1 2 ) 12+ g
4"1 (-I_W_—i-—- tr(T,T; K) - ln('j—w———z

ps ) tr(Fsrj I"kBk)

oot

1 1 1 1
+E(m—m>tr( P5F5KC)+O(?) . (2.28)

Using Egs. (2.8), (2.10), and (2.27) it is easy to
show that the first two terms on the right-hand
side cancel. Taking u to infinity and 4/ =0 then
gives

9,5, %,0,%) =g 2tr(1"r‘,KC)+O<1>. (2.29)

Substituting this, together with Eq. (2.24), into
Eq. (2.17) gives the desired index.

|
III. THE DIRAC OPERATOR

In this section the results of Sec. II will be used
to obtain the index of the Dirac operator studied by
Jackiw and Rossi.’ They considered a two-com-
ponent fermion field interacting with gauge and
Higgs background fields according to the Lagran-
gian

L=Py" (0, - eA -

¢<l)¢ +E ¢*¢ ¢ (3.1)
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Here
¥§=Ci;¥; (3.2)

with C the charge-conjugation matrix. Note that
charge conservation requires the electric charge
e of the fermion to be half that of the scalar. The
Dirac equation following from this Lagrangian
may be written as
59

z-ﬁ—a (=iV — eA) Y — gpo,p* (3.3)
with @ being the pair of Pauli matrices (o0,, 6,).
Because both ¥ and y* appear in Eq. (3.3), separa-
tion of the time variable requires writing ¢ as a
sum of two terms, one with a factor of e *%*, the
other with ¢***. For E=0 these two collapse to a
single term obeying

0=0 - (—iV — eA)Pp— gpo,u*. 3.4)

The solutions of this equation may be chosen to be
eigenmodes of 0;. Doing so and multiplying Eq.
(3.4) on the left by 0,, one obtains

0=[0,(-08, +ieA)) + (-id, - eA) v - gpy*
=[A(-8, +ieA,)) + (- i3, - eA,) | g —gpy*. (3.5)

In the second equality A=+1 and ¢ has been re-
duced to a single complex function of X. Equation
(3.5) is nonlinear in that it contains both ¢ and its
complex conjugate; it may be transformed to a
pair of linear equations by writing

V&) =u®) + 0@ (3.6)

with # and v being real functions. Taking A=1
leads to

02_.0<u> (3.7)
v

with D a 2 X2 matrix of the form
D= (=0, +i7,9,) +e(-A, —iT,A))
+g(_73¢1—71¢2) ’ (3-8)

while setting A=-1 leads to

O:Dr<u>‘ (3.9)
v

The index of D therefore satisfies
g=N,-N_, (3.10)

where N, is the number of fermion zero modes
with 0,¢=+9. Since D is of the form (2.1) with the
P; satisfying Eq. (2.2), its index may be evaluated
using the results of Sec. II.

A straightforward calculation gives

DD =7(-82-082+e*A+g|¢|? -eF,,)
—ieT,(2A;9;+9;A,)
+2{=7,[(0,0), + (D29),]
T[-0:0)+ 0:0),)}, (.11
where
(Did)o=9ipa+2€A €5, (8.12)

is the covariant derivative of the Higgs field.
(Recall that the charge of the scalar is twice that
of the fermion.) D" may be obtained from Eq.
(3.11) by making the substitutions F,,—~ — F,, and
(D,¢) g~ = (D,10),. ©% will be of the desired form
(2.26) (with a®=g"|¢ |?) provided that |¢| tends to
a constant at spatial infinity while A; and (D;¢),
fall at least as fast as 1/|x|. The traces occur-
ring in Eqs. (2.24) and (2.29) are

trFSF;(aiK)=4eF12 (3.13)

and
1
trT, T, KC :4g26jkeab¢a(Dk¢)b+O<F) . (3.14)

Substituting these into Egs. (2.24) and (2.29) and
using Eq. (2.17) gives

g=2 fdsz,2+ fdz “b‘ﬂ’;‘? b (315

These two terms may be combined by noting that

ffdszm:—:fcdliA,.. (3.16)

Finally, substituting this into Eq. (3.15) and using
Eq. (3.12), we obtain

1 (PRGN
9_211./;‘”‘ blq;f? ’

=n. , (3.17)

This agrees with the explicit calculations of Ref.
1.

IV. CONCLUDING REMARKS

The calculation of the index of the Dirac operator
D does not in itself determine the number of fer-
mion zero modes. Rather, since 4 is the differ-
ence between the positive quantities N, and N_, it
gives only a lower bound on the number of such
modes. In some cases it is possible to obtain
further information. An example of this is ob-
tained by taking the scalar field potential to be
that of the Ginzburg-Landau theory, with the
parameters chosen to correspond to the border-
line between a type-I and a type-II superconduc-
tor.° The theory then has a number of features
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which are similar to ones encountered in the study
of self-dual Yang-Mills fields in four-dimensional
Euclidean space. Thus, solutions of the second-
order Euler-Lagrange equations can be obtained
by solving the first-order equations’®

(D1¢)a=i€ab(D2¢)b7 (4.1)
eF =% (v - ¢2) .

Here the upper and lower signs correspond to
positive and negative n, respectively, and v is the
vacuum expectation value of ¢. Furthermore, the
energy of such solutions is proportional to |n].
For a solution with >0, Eq. (3.11) and the re-
marks following it, together with Eq. (4.1), give

DDt = (-8, +eT,A,)°
@ - o)+g o) “.2)

For such a solution one would expect (v*~ ¢ |?) to
be everywhere positive, so that DD" would be
manifestly positive. (In any case oo is positive
if one chooses g% =¢%.) If DD’ is positive then
neither it nor ®' has any zero eigenvalues and
N_=0. There are then precisely N, =n fermion
zero modes. Similarly, for solutions of Eq. (4.1)
with <0, D' is given by the right-hand side of

Eq. (4.2). The above arguments then lead to N, =0
and N_= |n|.

Finally, it should be noted that the methods of
this paper can be applied to the operator encount-
ered when seeking zero energy fluctuations about
a solution of Eq. (4.1).? While it is most natural
to consider this operator with ¢ and A; obeying
the field equations, one may of course study it for
more general values of the fields. Using the ex-
pressions obtained in Sec. II to evaluate the index’
leads to

_2e [ 1 €aPaDid)y
5= fdxF12+nfcdl,- eith, 4.3)

which is just twice the result found in Eq. (3.15)
for the Dirac operator. For solutions of the field
equations the second integral vanishes and one has
the expression previously obtained.
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