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MATHEMATICAL PRELIMINARIES

In the present chapter we introduce elementary concepts in the theory of maps,
vector spaces and topology. A modest knowledge of undergraduate mathematics,
such as set theory, calculus, complex analysis and linear algebra is assumed.

The main purpose of this book is to study the application of the theory of
manifolds to the problems in physics. Vector spaces and topology are, in a sense,
two extreme viewpoints of manifolds. A manifold is a space which locally looks
like �n (or � n ) but not necessarily globally. As a first approximation, we may
model a small part of a manifold by a Euclidean space �n (or � n ) (a small
area around a point on a surface can be approximated by the tangent plane at
that point); this is the viewpoint of a vector space. In topology, however, we
study the manifold as a whole. We want to study the properties of manifolds and
classify manifolds using some sort of ‘measures’. Topology usually comes with
an adjective: algebraic topology, differential topology, combinatorial topology,
general topology and so on. These adjectives refer to the measure we use when
classifying manifolds.

2.1 Maps

2.1.1 Definitions

Let X and Y be sets. A map (or mapping) f is a rule by which we assign y ∈ Y
for each x ∈ X . We write

f : X → Y. (2.1)

If f is defined by some explicit formula, we may write

f : x 
→ f (x) (2.2)

There may be more than two elements in X that correspond to the same y ∈ Y . A
subset of X whose elements are mapped to y ∈ Y under f is called the inverse
image of y, denoted by f −1(y) = {x ∈ X | f (x) = y}. The set X is called
the domain of the map while Y is called the range of the map. The image of
the map is f (X) = {y ∈ Y |y = f (x) for some x ∈ X} ⊂ Y . The image
f (X) is also denoted by im f . The reader should note that a map cannot be
defined without specifying the domain and the range. Take f (x) = exp x , for
example. If both the domain and the range are �, f (x) = −1 has no inverse
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68 MATHEMATICAL PRELIMINARIES

image. If. however, the domain and the range are the complex plane � , we find
f −1(−1) = {(2n+1)π i|n ∈ Z}. The domain X and the range Y are as important
as f itself in specifying a map.

Example 2.1. Let f : � → � be given by f (x) = sin x . We also write
f : x 
→ sin x . The domain and the range are � and the image f (�) is [−1, 1].
The inverse image of 0 is f −1(0) = {nπ |n ∈ �}. Let us take the same function
f (x) = sin x = (eix − e−ix)/2i but f : � → � this time. The image f (C) is the
whole complex plane � .

Definition 2.1. If a map satisfies a certain condition it bears a special name.

(a) A map f : X → Y is called injective (or one to one) if x �= x ′ implies
f (x) �= f (x ′).

(b) A map f : X → Y is called surjective (or onto) if for each y ∈ Y there
exists at least one element x ∈ X such that f (x) = y.

(c) A map f : X → Y is called bijective if it is both injective and surjective.

Example 2.2. A map f : � → � defined by f : x 
→ ax (a ∈ � − {0}) is
bijective. f : � → � defined by f : x 
→ x2 is neither injective nor surjective.
f : � → � given by f : x 
→ exp x is injective but not surjective.

Exercise 2.1. A map f : � → � defined by f : x 
→ sin x is neither injective
nor surjective. Restrict the domain and the range to make f bijective.

Example 2.3. Let M be an element of the general linear group GL(n,�) whose
matrix representation is given by n× n matrices with non-vanishing determinant.
Then M : �n → �n , x 
→ Mx is bijective. If det M = 0, it is neither injective
nor surjective.

A constant map c : X → Y is defined by c(x) = y0 where y0 is a fixed
element in Y and x is an arbitrary element in X . Given a map f : X → Y , we
may think of its restriction to A ⊂ X , which is denoted as f |A : A → Y . Given
two maps f : X → Y and g : Y → Z , the composite map of f and g is a map
g ◦ f : X → Z defined by g ◦ f (x) = g( f (x)). A diagram of maps is called
commutative if any composite maps between a pair of sets do not depend on how
they are composed. For example, in figure 2.1, f ◦ g = h ◦ j and f ◦ g = k etc.

Exercise 2.2. Let f : � → � be defined by f : x → x2 and g : � → � by
g : x → exp x . What are g ◦ f : � → � and f ◦ g : � → �?

If A ⊂ X , an inclusion map i : A → X is defined by i(a) = a for any
a ∈ A. An inclusion map is often written as i : A ↪→ X . The identity map
idX : X → X is a special case of an inclusion map, for which A = X . If
f : X → Y defined by f : x 
→ f (x) is bijective, there exists an inverse map
f −1 : Y → X , such that f −1 : f (x)→ x , which is also bijective. The maps f
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Figure 2.1. A commutative diagram of maps.

and f −1 satisfy f ◦ f −1 = idY and f −1 ◦ f = idX . Conversely, if f : X → Y
and g : Y → X satisfy f ◦ g = idY and g ◦ f = idX , then f and g are bijections.
This can be proved from the following exercise.

Exercise 2.3. Show that if f : X → Y and g : Y → X satisfy g ◦ f = idX , f is
injective and g is surjective. If this is applied to f ◦ g = idY as well, we obtain
the previous result.

Example 2.4. Let f : � → (0,∞) be a bijection defined by f : x 
→ exp x .
Then the inverse map f −1 : (0,∞) → � is f −1 : x 
→ ln x . Let g :
(−π/2, π/2) → (−1, 1) be a bijection defined by g : x → sin x . The inverse
map is g−1 : x 
→ sin−1 x .

Exercise 2.4. The n-dimensional Euclidean group En is made of an n-
dimensional translation a : x → x+a (x, a ∈ �n ) and an O(n) rotation R : x →
Rx, R ∈ O(n). A general element (R, a) of En acts on x by (R, a) : x 
→ Rx+a.
The product is defined by (R2, a2) × (R1, a1) : x 
→ R2(R1x + a1) + a2, that
is, (R2, a2) ◦ (R1, a1) = (R2 R1, R2a1+ a2). Show that the maps a, R and (R, a)
are bijections. Find their inverse maps.

Suppose certain algebraic structures (product or addition, say) are endowed
with the sets X and Y . If f : X → Y preserves these algebraic structures, then f
is called a homomorphism. For example, let X be endowed with a product. If f
is a homomorphism, it preserves the product, f (ab) = f (a) f (b). Note that ab is
defined by the product rule in X , and f (a) f (b) by that in Y . If a homomorphism
f is bijective, f is called an isomorphism and X is said to be isomorphic to Y ,
denoted x ∼= y.
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2.1.2 Equivalence relation and equivalence class

Some of the most important concepts in mathematics are equivalence relations
and equivalence classes. Although these subjects are not directly related to maps,
it is appropriate to define them at this point before we proceed further. A relation
R defined in a set X is a subset of X2. If a point (a, b) ∈ X2 is in R, we may write
a Rb. For example, the relation> is a subset of �2 . If (a, b) ∈ >, then a > b.

Definition 2.2. An equivalence relation ∼ is a relation which satisfies the
following requirements:

(i) a ∼ a (reflective).
(ii) If a ∼ b, then b ∼ a (symmetric).
(iii) If a ∼ b and b ∼ c, then a ∼ c (transitive).

Exercise 2.5. If an integer is divided by 2, the remainder is either 0 or 1. If two
integers n and m yield the same remainder, we write m ∼ n. Show that ∼ is an
equivalence relation in �.

Given a set X and an equivalence relation ∼, we have a partition of X into
mutually disjoint subsets called equivalence classes. A class [a] is made of all
the elements x in X such that x ∼ a,

[a] = {x ∈ X |x ∼ a} (2.3)

[a] cannot be empty since a ∼ a. We now prove that if [a] ∩ [b] �= ∅ then
[a] = [b]. First note that a ∼ b. (Since [a] ∩ [b] �= ∅ there is at least one
element in [a] ∩ [b] that satisfies c ∼ a and c ∼ b. From the transitivity, we
have a ∼ b.) Next we show that [a] ⊂ [b]. Take an arbitrary element a′ in [a];
a′ ∼ a. Then a ∼ b implies b ∼ a′, that is a′ ∈ [b]. Thus, we have [a] ⊂ [b].
Similarly, [a] ⊃ [b] can be shown and it follows that [a] = [b]. Hence, two
classes [a] and [b] satisfy either [a] = [b] or [a] ∩ [b] = ∅. In this way a set X
is decomposed into mutually disjoint equivalence classes. The set of all classes
is called the quotient space, denoted by X/ ∼. The element a (or any element
in [a]) is called the representative of a class [a]. In exercise 2.5, the equivalence
relation ∼ divides integers into two classes, even integers and odd integers. We
may choose the representative of the even class to be 0, and that of the odd class
to be 1. We write this quotient space �/∼. �/∼ is isomorphic to �2, the cyclic
group of order 2, whose algebra is defined by 0 + 0 = 0, 0 + 1 = 1 + 0 = 1
and 1 + 1 = 0. If all integers are divided into equivalence classes according to
the remainder of division by n, the quotient space is isomorphic to �n, the cyclic
group of order n.

Let X be a space in our usual sense. (To be more precise, we need the
notion of topological space, which will be defined in section 2.3. For the time
being we depend on our intuitive notion of ‘space’.) Then quotient spaces may
be realized as geometrical figures. For example, let x and y be two points in �.
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Figure 2.2. In (a) all the points x + 2nπ , n ∈ �are in the same equivalence class [x]. We
may take x ∈ [0, 2π) as a representative of [x]. (b) The quotient space �/ ∼ is the circle
S1.

Introduce a relation ∼ by: x ∼ y if there exists n ∈ � such that y = x + 2πn.
It is easily shown that ∼ is an equivalence relation. The class [x] is the set
{. . . , x − 2π, x, x + 2π, . . .}. A number x ∈ [0, 2π) serves as a representative of
an equivalence class [x], see figure 2.2(a). Note that 0 and 2π are different points
in � but, according to the equivalence relation, these points are looked upon as
the same element in �/ ∼. We arrive at the conclusion that the quotient space
�/ ∼ is the circle S1 = {eiθ |0 ≤ θ < 2π}; see figure 2.2(b). Note that a point
ε is close to a point 2π − ε for infinitesimal ε. Certainly this is the case for S1,
where an angle ε is close to an angle 2π − ε, but not the case for �. The concept
of closeness of points is one of the main ingredients of topology.

Example 2.5. (a) Let X be a square disc {(x, y) ∈ �2 | |x | ≥ 1, |y| ≥ 1}. If we
identify the points on a pair of facing edges, (−1, y) ∼ (1, y), for example, we
obtain the cylinder, see figure 2.3(a). If we identify the points (−1,−y) ∼ (1, y),
we find the Möbius strip, see figure 2.3(b). [Remarks: If readers are not familiar
with the Möbius strip, they may take a strip of paper and glue up its ends after
a π-twist. Because of the twist, one side of the strip has been joined to the
other side, making the surface single sided. The Möbius strip is an example
of a non-orientable surface, while the cylinder has definite sides and is said to
be orientable. Orientability will be discussed in terms of differential forms in
section 5.5.]

(b) Let (x1, y1) and (x2, y2) be two points in �2 and introduce an equivalence
relation ∼ by: (x1, y1) ∼ (x2, y2) if x2 = x1 + 2πnx and y2 = y1 + 2πny ,
nx , ny ∈ �. Then ∼ is an equivalence relation. The quotient space �2/ ∼ is
the torus T 2 (the surface of a doughnut), see figure 2.4(a). Alternatively, T 2 is
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Figure 2.3. (a) The edges |x| = 1 are identified in the direction of the arrows to form a
cylinder. (b) If the edges are identified in the opposite direction, we have a Möbius strip.

Figure 2.4. If all the points (x + 2πnx , y + 2πny), nx , ny ∈ � are identified as in (a),
the quotient space is taken to be the shaded area whose edges are identified as in (b). This
resulting quotient space is the torus T 2.

represented by a rectangle whose edges are identified as in figure 2.4(b).
(c) What if we identify the edges of a rectangle in other ways? Figure 2.5

gives possible identifications. The spaces obtained by these identifications are
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Figure 2.5. The Klein bottle (a) and the projective plane (b).

called the Klein bottle, figure 2.5(a), and the projective plane, figure 2.5(b),
neither of which can be realized (or embedded) in the Euclidean space �3 without
intersecting with itself. They are known to be non-orientable.

The projective plane, which we denote RP2, is visualized as follows. Let us
consider a unit vector n and identify n with−n, see figure 2.6. This identification
takes place when we describe a rod with no head or tail, for example. We are
tempted to assign a point on S2 to specify the ‘vector’ n. This works except for
one point. Two antipodal points n = (θ, φ) and −n = (π − θ, π + φ) represent
the same state. Then we may take a northern hemisphere as the coset space S2/ ∼
since only a half of S2 is required. However, the coset space is not just an ordinary
hemisphere since the antipodal points on the equator are identified. By continuous
deformation of this hemisphere into a square, we obtain the square in figure 2.5(b).

(d) Let us identify pairs of edges of the octagon shown in figure 2.7(a). The
quotient space is the torus with two handles, denoted by �2, see figure 2.7(b).
�g , the torus with g handles, can be obtained by a similar identification, see
problem 2.1. The integer g is called the genus of the torus.

(e) Let D2 = {(x, y) ∈ �
2 |x2 + y2 ≤ 1} be a closed disc. Identify the

points on the boundary {(x, y) ∈ �
2 |x2 + y2 = 1}; (x1, y1) ∼ (x2, y2) if

x2
1 + y2

1 = x2
2 + y2

2 = 1. Then we obtain the sphere S2 as the quotient space
D2/ ∼, also written as D2/S1, see figure 2.8. If we take an n-dimensional disc
Dn = {(x0, . . . , xn) ∈ �n+1 |(x0)

2 + · · · + (xn)2 ≤ 1} and identify the points on
the surface Sn−1, we obtain the n-sphere Sn , namely Dn/Sn−1 = Sn .

Exercise 2.6. Let H be the upper-half complex plane {τ ∈ � | Im τ ≥ 0}. Define a
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Figure 2.6. If n has no head or tail, one cannot distinguish n from −n and they must
be identified. One obtains the projective plane R P2 by this identification n ∼ −n;
R P2 	 S2/ ∼. It suffices to take a hemisphere to describe the coset space. Note, however,
that the antipodal points on the equator are identified.

Figure 2.7. If the edges of (a) are identified a torus with two holes (genus two) is obtained.

Figure 2.8. A disc D2 whose boundary S1 is identified is the sphere S2.

group

SL(2,�)≡
{(

a b
c d

) ∣∣∣∣a, b, c, d ∈ �, ad− bc = 1

}
. (2.4)



2.2 VECTOR SPACES 75

Introduce a relation∼, for τ, τ ′ ∈ H, by τ ∼ τ ′ if there exists a matrix

A =
(

a b
c d

)
∈ SL(2,�)

such that
τ ′ = (aτ + b)/(cτ + d). (2.5)

Show that this is an equivalence relation. (The quotient space H/SL(2,�) is
shown in figure 8.3.)

Example 2.6. Let G be a group and H a subgroup of G. Let g, g′ ∈ G and
introduce an equivalence relation ∼ by g ∼ g′ if there exists h ∈ H such that
g′ = gh. We denote the equivalence class [g] = {gh|h ∈ H } by gH . The class
gH is called a (left) coset. gH satisfies either gH ∩ g′H = ∅ or gH = g′H .
The quotient space is denoted by G/H . In general G/H is not a group unless H
is a normal subgroup of G, that is, ghg−1 ∈ H for any g ∈ G and h ∈ H . If
H is a normal subgroup of G, G/H is called the quotient group, whose group
operation is given by [g] ∗ [g′] = [gg′], where ∗ is the product in G/H . Take
ghε[g] and g′h′ε[g′]. Then there exists h′′εH such that hg′ = g′h′′ and hence
ghg′h′ = gg′h′′h′ε[gg′]. The unit element of G/H is the equivalence class [e]
and the inverse element of [g] is [g−1].
Exercise 2.7. Let G be a group. Two elements a, b ∈ G are said to be conjugate
to each other, denoted by a 	 b, if there exists g ∈ G such that b = gag−1. Show
that 	 is an equivalence relation. The equivalence class [a] = {gag−1|g ∈ G} is
called the conjugacy class.

2.2 Vector spaces

2.2.1 Vectors and vector spaces

A vector space (or a linear space) V over a field K is a set in which two
operations, addition and multiplication by an element of K (called a scalar), are
defined. (In this book we are mainly interested in K = � and � .) The elements
(called vectors) of V satisfy the following axioms:

(i) u + v = v + u.
(ii) (u + v)+ w = u + (v + w).
(iii) There exists a zero vector 0 such that v + 0 = v.
(iv) For any u, there exists −u, such that u + (−u) = 0.
(v) c(u + v) = cu + cv.
(vi) (c + d)u = cu + du.
(vii) (cd)u = c(du).
(viii) 1u = u.

Here u, v,w ∈ V and c, d ∈ K and 1 is the unit element of K .
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Let {vi } be a set of k (>0) vectors. If the equation

x1v1 + x2v2 + · · · + xkvk = 0 (2.6)

has a non-trivial solution, xi �= 0 for some i , the set of vectors {v j } is called
linearly dependent, while if (2.6) has only a trivial solution, xi = 0 for any i ,
{vi } is said to be linearly independent. If at least one of the vectors is a zero
vector 0, the set is always linearly dependent.

A set of linearly independent vectors {ei } is called a basis of V , if any
element v ∈ V is written uniquely as a linear combination of {ei }:

v = v1e1 + v2e2 + · · · + vn en . (2.7)

The numbers vi ∈ K are called the components of v with respect to the basis
{e j }. If there are n elements in the basis, the dimension of V is n, denoted by
dim V = n. We usually write the n-dimensional vector space over K as V (n, K )
(or simply V if n and K are understood from the context). We assume n is finite.

2.2.2 Linear maps, images and kernels

Given two vector spaces V and W , a map f : V → W is called a linear map
if it satisfies f (a1v1 + a2v2) = a1 f (v1) + a2 f (v2) for any a1, a2 ∈ K and
v1, v2 ∈ V . A linear map is an example of a homomorphism that preserves the
vector addition and the scalar multiplication. The image of f is f (V ) ⊂ W and
the kernel of f is {v ∈ V | f (v) = 0} and denoted by im f and ker f respectively.
ker f cannot be empty since f (0) is always 0. If W is the field K itself, f is
called a linear function. If f is an isomorphism, V is said to be isomorphic to
W and vice versa, denoted by V ∼= W . It then follows that dim V = dim W .
In fact, all the n-dimensional vector spaces are isomorphic to K n , and they are
regarded as identical vector spaces. The isomorphism between the vector spaces
is an element of GL(n, K ).

Theorem 2.1. If f : V → W is a linear map, then

dim V = dim(ker f )+ dim(im f ). (2.8)

Proof. Since f is a linear map, it follows that ker f and im f are vector spaces,
see exercise 2.8. Let the basis of ker f be {g1, . . . , gr } and that of im f be
{h′1, . . . , h′s}. For each i (1 ≤ i ≤ s), take hi ∈ V such that f (hi ) = h′i and
consider the set of vectors {g1, . . . , gr , h1, . . . , hs}.

Now we show that these vectors form a linearly independent basis of V .
Take an arbitrary vector v ∈ V . Since f (v) ∈ im f , it can be expanded as f (v) =
ci h′i = ci f (hi ). From the linearity of f , it then follows that f (v−ci hi ) = 0, that
is v − ci hi ∈ ker f . This shows that an arbitrary vector v is a linear combination
of {g1, . . . , gr , h1, . . . , hs}. Thus, V is spanned by r + s vectors. Next let us
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assume ai gi + bi hi = 0. Then 0 = f (0) = f (ai gi + bi hi ) = bi f (hi ) = bi h′i ,
which implies that bi = 0. Then it follows from ai gi = 0 that ai = 0, and
the set {g1, . . . , gr , h1, . . . , hs} is linearly independent in V . Finally we find
dim V = r + s = dim(ker f )+ dim(im f ). �

[Remark: The vector space spanned by {h1, . . . , hs} is called the orthogonal
complement of ker f and is denoted by (ker f )⊥.]

Exercise 2.8. (1) Let f : V → W be a linear map. Show that both ker f and im f
are vector spaces.

(2) Show that a linear map f : V → V is an isomorphism if and only if
ker f = {0}.

2.2.3 Dual vector space

The dual vector space has already been introduced in section 1.2 in the context of
quantum mechanics. The exposition here is more mathematical and complements
the materials presented there.

Let f : V → K be a linear function on a vector space V (n, K ) over a
field K . Let {ei } be a basis and take an arbitrary vector v = v1e1 + · · · + vn en .
From the linearity of f , we have f (v) = v1 f (e1) + · · · + vn f (en). Thus, if we
know f (ei ) for all i , we know the result of the operation of f on any vector. It is
remarkable that the set of linear functions is made into a vector space, namely a
linear combination of two linear functions is also a linear function.

(a1 f1 + a2 f2)(v) = a1 f1(v)+ a2 f2(v) (2.9)

This linear space is called the dual vector space to V (n, K ) and is denoted by
V ∗(n, K ) or simply by V ∗. If dim V is finite, dim V ∗ is equal to dim V . Let
us introduce a basis {e∗i } of V ∗. Since e∗i is a linear function it is completely
specified by giving e∗i(e j ) for all j . Let us choose the dual basis,

e∗i (e j ) = δi
j . (2.10)

Any linear function f , called a dual vector in this context, is expanded in terms
of {e∗i},

f = fi e
∗i . (2.11)

The action of f on v is interpreted as an inner product between a column vector
and a row vector,

f (v) = fi e
∗i (v j e j ) = fiv

j e∗i(e j ) = fiv
i . (2.12)

We sometimes use the notation 〈 , 〉 : V ∗ × V → K to denote the inner product.
Let V and W be vector spaces with a linear map f : V → W and let

g : W → K be a linear function on W (g ∈ W∗). It is easy to see that the
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Figure 2.9. The pullback of a function g is a function f ∗(g) = g ◦ f .

composite map g ◦ f is a linear function on V . Thus, f and g give rise to an
element h ∈ V ∗ defined by

h(v) ≡ g( f (v)) v ∈ V . (2.13)

Given g ∈ W∗, a map f : V → W has induced a map h ∈ V ∗. Accordingly,
we have an induced map f ∗ : W∗ → V ∗ defined by f ∗ : g 
→ h = f ∗(g), see
figure 2.9. The map h is called the pullback of g by f ∗.

Since dim V ∗ = dim V , there exists an isomorphism between V and V ∗.
However, this isomorphism is not canonical; we have to specify an inner product
in V to define an isomorphism between V and V ∗ and vice versa, see the next
section. The equivalence of a vector space and its dual vector space will appear
recurrently in due course.

Exercise 2.9. Suppose { f j } is another basis of V and { f ∗i } the dual basis. In
terms of the old basis, f i is written as f i = Ai

j e j where A ∈ GL(n, K ). Show
that the dual bases are related by e∗i = f ∗ j A j

i .

2.2.4 Inner product and adjoint

Let V = V (m, K ) be a vector space with a basis {ei } and let g be a vector space
isomorphism g : V → V ∗, where g is an arbitrary element of GL(m, K ). The
component representation of g is

g : v j → gi jv
j . (2.14)

Once this isomorphism is given, we may define the inner product of two vectors
v1, v2 ∈ V by

g(v1, v2) ≡ 〈gv1, v2〉. (2.15)

Let us assume that the field K is a real number �. for definiteness. Then
equation (2.15) has a component expression,

g(v1, v2) = v1
i g j iv2

j . (2.16)
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We require that the matrix (gi j ) be positive definite so that the inner product
g(v, v) has the meaning of the squared norm of v. We also require that the metric
be symmetric: gi j = g j i so that g(v1, v2) = g(v2, v1).

Next, let W = W (n,�) be a vector space with a basis { f α} and a vector
space isomorphism G : W → W∗. Given a map f : V → W , we may define the
adjoint of f , denoted by f̃ , by

G(w, f v) = g(v, f̃ w) (2.17)

where v ∈ V and w ∈ W . It is easy to see that (̃ f̃ ) = f . The component
expression of equation (2.17) is

wαGαβ f β iv
i = vi gi j f̃ j

αw
α (2.18)

where f β i and f̃ j
α are the matrix representations of f and f̃ respectively. If

gi j = δi j and Gαβ = δαβ , the adjoint f̃ reduces to the transpose f t of the matrix
f .

Let us show that dim im f = dim im f̃ . Since (2.18) holds for any v ∈ V
and w ∈ W , we have Gαβ f β i = gi j f̃ j

α , that is

f̃ = g−1 f tGt. (2.19)

Making use of the result of the following exercise, we obtain rank f = rank f̃ ,
where the rank of a map is defined by that of the corresponding matrix (note that
g ∈ GL(m,�) and G ∈ GL(n,�)). It is obvious that dim im f is the rank of a
matrix representing the map f and we conclude dim im f = dim im f̃ .

Exercise 2.10. Let V = V (m,�) and W = W (n,�) and let f be a matrix
corresponding to a linear map from V to W . Verify that rank f = rank f t =
rank(M f t N), where M ∈ GL(m, �) and N ∈ GL(n,�).

Exercise 2.11. Let V be a vector space over � . The inner product of two vectors
v1 and v2 is defined by

g(v1, v2) = v1
i gi jv2

j (2.20)

where ¯ denotes the complex conjugate. From the positivity and symmetry of the
inner product, g(v1, v2) = g(v2, v1), the vector space isomorphism g : V → V ∗
is required to be a positive-definite Hermitian matrix. Let f : V → W be a
(complex) linear map and G : W → W∗ be a vector space isomorphism. The
adjoint of f is defined by g(v, f̃ w) = G(w, f v). Repeat the analysis to show
that

(a) f̃ = g−1 f †G†, where † denotes the Hermitian conjugate, and
(b) dim im f = dim im f̃ .

Theorem 2.2. (Toy index theorem) Let V and W be finite-dimensional vector
spaces over a field K and let f : V → W be a linear map. Then

dim ker f − dim ker f̃ = dim V − dim W. (2.21)
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Proof. Theorem 2.1 tells us that

dim V = dim ker f + dim im f

and, if applied to f̃ : W → V ,

dim W = dim ker f̃ + dim im f̃ .

We saw earlier that dim im f = dim im f̃ , from which we obtain

dim V − dim ker f = dim W − dim ker f̃ . �

Note that in (2.21), each term on the LHS depends on the details of the map
f . The RHS states, however, that the difference in the two terms is independent of
f ! This may be regarded as a finite-dimensional analogue of the index theorems,
see chapter 12.

2.2.5 Tensors

A dual vector is a linear object that maps a vector to a scalar. This may be
generalized to multilinear objects called tensors, which map several vectors and
dual vectors to a scalar. A tensor T of type (p, q) is a multilinear map that maps
p dual vectors and q vectors to �,

T :
p⊗

V ∗
q⊗

V → �. (2.22)

For example, a tensor of type (0, 1) maps a vector to a real number and is
identified with a dual vector. Similarly, a tensor of type (1, 0) is a vector. If
ω maps a dual vector and two vectors to a scalar, ω : V ∗ × V × V → �, ω is of
type (1, 2).

The set of all tensors of type (p, q) is called the tensor space of type (p, q)

and denoted by � p
q . The tensor product τ = µ⊗ ν ∈ � p

q ⊗ �
p′
q ′ is an element of

�
p+p′
q+q ′ defined by

τ (ω1, . . . , ωp, ξ1, . . . , ξp′ ; u1, . . . , uq , v1, . . . , vq ′)

= µ(ω1, . . . , ωp; u1, . . . , uq )ν(ξ1, . . . , ξp′ ; v1, . . . , vq ′ ). (2.23)

Another operation in a tensor space is the contraction, which is a map from
a tensor space of type (p, q) to type (p − 1, q − 1) defined by

τ (. . . , e∗i , . . . ; . . . , ei , . . .) (2.24)

where {ei } and {e∗i } are the dual bases.

Exercise 2.12. Let V and W be vector spaces and let f : V → W be a linear
map. Show that f is a tensor of type (1, 1).
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2.3 Topological spaces

The most general structure with which we work is a topological space. Physicists
often tend to think that all the spaces they deal with are equipped with metrics.
However, this is not always the case. In fact, metric spaces form a subset of
manifolds and manifolds form a subset of topological spaces.

2.3.1 Definitions

Definition 2.3. Let X be any set and � = {Ui |i ∈ I } denote a certain collection of
subsets of X . The pair (X, � ) is a topological space if � satisfies the following
requirements.

(i) ∅, X ∈ � .
(ii) If � is any (maybe infinite) subcollection of I , the family {U j | j ∈ J }
satisfies ∪ j∈J U j ∈ � .

(iii) If K is any finite subcollection of I , the family {Uk|k ∈ K } satisfies
∩k∈K Uk ∈ � .

X alone is sometimes called a topological space. The Ui are called the open
sets and � is said to give a topology to X .

Example 2.7. (a) If X is a set and � is the collection of all the subsets of X , then
(i)–(iii) are automatically satisfied. This topology is called the discrete topology.

(b) Let X be a set and � = {∅, X}. Clearly � satisfies (i)–(iii). This topology
is called the trivial topology. In general the discrete topology is too stringent
while the trivial topology is too trivial to give any interesting structures on X .

(c) Let X be the real line �. All open intervals (a, b) and their unions
define a topology called the usual topology; a and b may be −∞ and ∞
respectively. Similarly, the usual topology in �n can be defined. [Take a product
(a1, b1)× · · · × (an, bn) and their unions. . . .]

Exercise 2.13. In definition 2.3, axioms (ii) and (iii) look somewhat unbalanced.
Show that, if we allow infinite intersection in (iii), the usual topology in � reduces
to the discrete topology (and is thus not very interesting).

A metric d : X × X → � is a function that satisfies the conditions:

(i) d(x, y) = d(y, x)
(ii) d(x, y) ≥ 0 where the equality holds if and only if x = y
(iii) d(x, y)+ d(y, z) ≥ d(x, z)

for any x, y, z ∈ X . If X is endowed with a metric d , X is made into a topological
space whose open sets are given by ‘open discs’,

Uε(X) = {y ∈ X |d(x, y) < ε} (2.25)
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and all their possible unions. The topology � thus defined is called the metric
topology determined by d . The topological space (X,� ) is called a metric space.
[Exercise: Verify that a metric space (X, � ) is indeed a topological space.]

Let (X,� ) be a topological space and A be any subset of X . Then � = {Ui }
induces the relative topology in A by � ′ = {Ui ∩ A|Ui ∈ � }.
Example 2.8. Let X = �

n+1 and take the n-sphere Sn ,

(x0)2 + (x1)2 + · · · + (xn)2 = 1. (2.26)

A topology in Sn may be given by the relative topology induced by the usual
topology on �n+1 .

2.3.2 Continuous maps

Definition 2.4. Let X and Y be topological spaces. A map f : X → Y is
continuous if the inverse image of an open set in Y is an open set in X .

This definition is in agreement with our intuitive notion of continuity. For
instance, let f : � → � be defined by

f (x) =
{
−x + 1 x ≤ 0

−x + 1
2 x > 0.

(2.27)

We take the usual topology in �, hence any open interval (a, b) is an open
set. In the usual calculus, f is said to have a discontinuity at x = 0. For an
open set (3/2, 2) ⊂ Y , we find f −1((3/2, 2)) = (−1,−1/2) which is an open
set in X . If we take an open set (1 − 1/4, 1 + 1/4) ⊂ Y , however, we find
f −1((1 − 1/4, 1 + 1/4)) = (−1/4, 0] which is not an open set in the usual
topology.

Exercise 2.14. By taking a continuous function f : � → �, f (x) = x2 as an
example, show that the reverse definition, ‘a map f is continuous if it maps an
open set in X to an open set in Y ’, does not work. [Hint: Find where (−ε,+ε) is
mapped to under f .]

2.3.3 Neighbourhoods and Hausdorff spaces

Definition 2.5. Suppose � gives a topology to X . N is a neighbourhood of a
point x ∈ X if N is a subset of X and N contains some (at least one) open set Ui

to which x belongs. (The subset N need not be an open set. If N happens to be
an open set in � , it is called an open neighbourhood.)

Example 2.9. Take X = � with the usual topology. The interval [−1, 1] is a
neighbourhood of an arbitrary point x ∈ (−1, 1).
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Definition 2.6. A topological space (X, � ) is a Hausdorff space if, for an
arbitrary pair of distinct points x, x ′ ∈ X , there always exist neighbourhoods
Ux of x and Ux ′ of x ′ such that Ux ∩Ux ′ = ∅.

Exercise 2.15. Let X = {John, Paul, Ringo, George} and U0 = ∅,U1 =
{John},U2 = {John, Paul},U3 = {John, Paul, Ringo, George}. Show that � =
{U0,U1,U2,U3} gives a topology to X . Show also that (X, � ) is not a Hausdorff
space.

Unlike this exercise, most spaces that appear in physics satisfy the Hausdorff
property. In the rest of the present book we always assume this is the case.

Exercise 2.16. Show that � with the usual topology is a Hausdorff space. Show
also that any metric space is a Hausdorff space.

2.3.4 Closed set

Let (X,� ) be a topological space. A subset A of X is closed if its complement
in X is an open set, that is X − A ∈ � . According to the definition, X and ∅ are
both open and closed. Consider a set A (either open or closed). The closure of A
is the smallest closed set that contains A and is denoted by Ā. The interior of A
is the largest open subset of A and is denoted by A◦. The boundary b(A) of A is
the complement of A◦ in A; b(A) = A− A◦. An open set is always disjoint from
its boundary while a closed set always contains its boundary.

Example 2.10. Take X = � with the usual topology and take a pair of open
intervals (−∞, a) and (b,∞) where a < b. Since (−∞, a) ∪ (b,∞) is open
under the usual topology, the complement [a, b] is closed. Any closed interval
is a closed set under the usual topology. Let A = (a, b), then Ā = [a, b].
The boundary b(A) consists of two points {a, b}. The sets (a, b), [a, b], (a, b],
and [a, b) all have the same boundary, closure and interior. In �n , the product
[a1, b1] × · · · × [an, bn] is a closed set under the usual topology.

Exercise 2.17. Whether a set A ⊂ X is open or closed depends on X . Let us take
an interval I = (0, 1) in the x-axis. Show that I is open in the x-axis � while it
is neither closed nor open in the xy-plane �2 .

2.3.5 Compactness

Let (X, � ) be a topological space. A family {Ai } of subsets of X is called a
covering of X , if ⋃

i∈I

Ai = X.

If all the Ai happen to be the open sets of the topology � , the covering is called
an open covering.
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Definition 2.7. Consider a set X and all possible coverings of X . The set X is
compact if, for every open covering {Ui |i ∈ I }, there exists a finite subset J of I
such that {U j | j ∈ J } is also a covering of X .

In general, if a set is compact in �
n , it must be bounded. What else is

needed? We state the result without the proof.

Theorem 2.3. Let X be a subset of �n . X is compact if and only if it is closed and
bounded.

Example 2.11. (a) A point is compact.
(b) Take an open interval (a, b) in � and choose an open covering Un =

(a, b − 1/n), n ∈ �. Evidently ⋃
n∈�

Un = (a, b).

However, no finite subfamily of {Un} covers (a, b). Thus, an open interval (a, b)
is non-compact in conformity with theorem 2.3.

(c) Sn in example 2.8 with the relative topology is compact, since it is closed
and bounded in �n+1 .

The reader might not appreciate the significance of compactness from the
definition and the few examples given here. It should be noted, however, that some
mathematical analyses as well as physics become rather simple on a compact
space. For example, let us consider a system of electrons in a solid. If the solid
is non-compact with infinite volume, we have to deal with quantum statistical
mechanics in an infinite volume. It is known that this is mathematically quite
complicated and requires knowledge of the advanced theory of Hilbert spaces.
What we usually do is to confine the system in a finite volume V surrounded by
hard walls so that the electron wavefunction vanishes at the walls, or to impose
periodic boundary conditions on the walls, which amounts to putting the system in
a torus, see example 2.5(b). In any case, the system is now put in a compact space.
Then we may construct the Fock space whose excitations are labelled by discrete
indices. Another significance of compactness in physics will be found when we
study extended objects such as instantons and Belavin–Polyakov monopoles, see
section 4.8. In field theories, we usually assume that the field approaches some
asymptotic form corresponding to the vacuum (or one of the vacua) at spatial
infinities. Similarly, a class of order parameter distributions in which the spatial
infinities have a common order parameter is an interesting class to study from
various points of view as we shall see later. Since all points at infinity are
mapped to a point, we have effectively compactified the non-compact space �n

to a compact space Sn = �
n ∪ {∞}. This procedure is called the one-point

compactification.
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2.3.6 Connectedness

Definition 2.8. (a) A topological space X is connected if it cannot be written as
X = X1 ∪ X2, where X1 and X2 are both open and X1 ∩ X2 = ∅. Otherwise X
is called disconnected.

(b) A topological space X is called arcwise connected if, for any points
x, y ∈ X , there exists a continuous map f : [0, 1] → X such that f (0) = x
and f (1) = y. With a few pathological exceptions, arcwise connectedness is
practically equivalent to connectedness.

(c) A loop in a topological space X is a continuous map f : [0, 1] → X
such that f (0) = f (1). If any loop in X can be continuously shrunk to a point, X
is called simply connected.

Example 2.12. (a) The real line � is arcwise connected while � − {0} is not.
�

n (n ≥ 2) is arcwise connected and so is �n − {0}.
(b) Sn is arcwise connected. The circle S1 is not simply connected. If n ≥ 2,

Sn is simply connected. The n-dimensional torus

T n = S1 × S1 × · · · × S1︸ ︷︷ ︸
n

(n ≥ 2)

is arcwise connected but not simply connected.
(c) �2 − � is not arcwise connected. �2 − {0} is arcwise connected but not

simply connected. �3 − {0} is arcwise connected and simply connected.

2.4 Homeomorphisms and topological invariants

2.4.1 Homeomorphisms

As we mentioned at the beginning of this chapter, the main purpose of topology
is to classify spaces. Suppose we have several figures and ask ourselves which
are equal and which are different. Since we have not defined what is meant by
equal or different, we may say ‘they are all different from each other’ or ‘they
are all the same figures’. Some of the definitions of equivalence are too stringent
and some are too loose to produce any sensible classification of the figures or
spaces. For example, in elementary geometry, the equivalence of figures is given
by congruence, which turns out to be too stringent for our purpose. In topology,
we define two figures to be equivalent if it is possible to deform one figure into the
other by continuous deformation. Namely we introduce the equivalence relation
under which geometrical objects are classified according to whether it is possible
to deform one object into the other by continuous deformation. To be more
mathematical, we need to introduce the following notion of homeomorphism.

Definition 2.9. Let X1 and X2 be topological spaces. A map f : X1 → X2 is a
homeomorphism if it is continuous and has an inverse f −1 : X2 → X1 which is
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Figure 2.10. (a) A coffee cup is homeomorphic to a doughnut. (b) The linked rings are
homeomorphic to the separated rings.

also continuous. If there exists a homeomorphism between X1 and X2, X1 is said
to be homeomorphic to X2 and vice versa.

In other words, X1 is homeomorphic to X2 if there exist maps f : X1 → X2
and g : X2 → X1 such that f ◦g = idX2 , and g ◦ f = idX1 . It is easy to show that
a homeomorphism is an equivalence relation. Reflectivity follows from the choice
f = idX , while symmetry follows since if f : X1 → X2 is a homeomorphism
so is f −1 : X2 → X1 by definition. Transitivity follows since, if f : X1 → X2
and g : X2 → X3 are homeomorphisms so is g ◦ f : X1 → X3. Now we divide
all topological spaces into equivalence classes according to whether it is possible
to deform one space into the other by a homeomorphism. Intuitively speaking,
we suppose the topological spaces are made out of ideal rubber which we can
deform at our will. Two topological spaces are homeomorphic to each other if we
can deform one into the other continuously, that is, without tearing them apart or
pasting.

Figure 2.10 shows some examples of homeomorphisms. It seems impossible
to deform the left figure in figure 2.10(b) into the right one by continuous
deformation. However, this is an artefact of the embedding of these objects
in �

3 . In fact, they are continuously deformable in �
4 , see problem 2.3. To

distinguish one from the other, we have to embed them in S3, say, and compare
the complements of these objects in S3. This approach is, however, out of the
scope of the present book and we will content ourselves with homeomorphisms.

2.4.2 Topological invariants

Now our main question is: ‘How can we characterize the equivalence classes
of homeomorphism?’ In fact, we do not know the complete answer to this
question yet. Instead, we have a rather modest statement, that is, if two spaces
have different ‘topological invariants’, they are not homeomorphic to each
other. Here topological invariants are those quantities which are conserved under
homeomorphisms. A topological invariant may be a number such as the number
of connected components of the space, an algebraic structure such as a group or
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a ring which is constructed out of the space, or something like connectedness,
compactness or the Hausdorff property. (Although it seems to be intuitively
clear that these are topological invariants, we have to prove that they indeed
are. We omit the proofs. An interested reader may consult any text book on
topology.) If we knew the complete set of topological invariants we could specify
the equivalence class by giving these invariants. However, so far we know a partial
set of topological invariants, which means that even if all the known topological
invariants of two topological spaces coincide, they may not be homeomorphic to
each other. Instead, what we can say at most is: if two topological spaces have
different topological invariants they cannot be homeomorphic to each other.

Example 2.13. (a) A closed line [−1, 1] is not homeomorphic to an open line
(−1, 1), since [−1, 1] is compact while (−1, 1) is not.

(b) A circle S1 is not homeomorphic to �, since S1 is compact in �2 while
� is not.

(c) A parabola (y = x2) is not homeomorphic to a hyperbola (x2 − y2 = 1)
although they are both non-compact. A parabola is (arcwise) connected while a
hyperbola is not.

(d) A circle S1 is not homeomorphic to an interval [−1, 1], although they
are both compact and (arcwise) connected. [−1, 1] is simply connected while
S1 is not. Alternatively S1 − {p}, p being any point in S1 is connected while
[−1, 1] − {0} is not, which is more evidence against their equivalence.

(e) Surprisingly, an interval without the endpoints is homeomorphic to a line
�. To see this, let us take X = (−π/2, π/2) and Y = � and let f : X → Y be
f (x) = tan x . Since tan x is one to one on X and has an inverse, tan−1 x , which
is one to one on �, this is indeed a homeomorphism. Thus, boundedness is not a
topological invariant.

(f) An open disc D2 = {(x, y) ∈ �2 |x2 + y2 < 1} is homeomorphic to �2 .
A homeomorphism f : D2 → �

2 may be

f (x, y) =
(

x√
1− x2 − y2

,
y√

1− x2 − y2

)
(2.28)

while the inverse f −1 : �2 → D2 is

f −1(x, y) =
(

x√
1+ x2 + y2

,
y√

1+ x2 + y2

)
. (2.29)

The reader should verify that f ◦ f −1 = id�2 , and f −1 ◦ f = idD2 . As we
saw in example 2.5(e), a closed disc whose boundary S1 corresponds to a point
is homeomorphic to S2. If we take this point away, we have an open disc. The
present analysis shows that this open disc is homeomorphic to �2 . By reversing
the order of arguments, we find that if we add a point (infinity) to �2 , we obtain
a compact space S2. This procedure is the one-point compactification S2 =
�

2 ∪ {∞} introduced in the previous section. We similarly have Sn = �
n ∪ {∞}.
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(g) A circle S1 = {(x, y) ∈ �2 |x2 + y2 = 1} is homeomorphic to a square
I 2 = {(x, y) ∈ �2 |(|x | = 1, |y| ≤ 1), (|x | ≤ 1, |y| = 1)}. A homeomorphism
f : I 2 → S1 may be given by

f (x, y) =
( x

r
,

y

r

)
r =

√
x2 + y2. (2.30)

Since r cannot vanish, (2.27) is invertible.

Exercise 2.18. Find a homeomorphism between a circle S1 = {(x, y) ∈ �2 |x2 +
y2 = 1} and an ellipse E = {(x, y) ∈ �2 |(x/a)2 + (y/b)2 = 1}.

2.4.3 Homotopy type

An equivalence class which is somewhat coarser than homeomorphism but which
is still quite useful is ‘of the same homotopy type’. We relax the conditions in
definition 2.9 so that the continuous functions f or g need not have inverses. For
example, take X = (0, 1) and Y = {0} and let f : X → Y , f (x) = 0 and
g : Y → X , g(0) = 1

2 . Then f ◦ g = idY , while g ◦ f �= idX . This shows that an
open interval (0, 1) is of the same homotopy type as a point {0}, although it is not
homeomorphic to {0}. We have more on this topic in section 4.2.

Example 2.14. (a) S1 is of the same homotopy type as a cylinder, since a cylinder
is a direct product S1 × � and we can shrink � to a point at each point of S1. By
the same reason, the Möbius strip is of the same homotopy type as S1.

(b) A disc D2 = {(x, y) ∈ �2 |x2 + y2 < 1} is of the same homotopy type
as a point. D2 − {(0, 0)} is of the same homotopy type as S1. Similarly, �2 − {0}
is of the same homotopy type as S1 and �3 − {0} as S2.

2.4.4 Euler characteristic: an example

The Euler characteristic is one of the most useful topological invariants.
Moreover, we find the prototype of the algebraic approach to topology in it. To
avoid unnecessary complication, we restrict ourselves to points, lines and surfaces
in �3 . A polyhedron is a geometrical object surrounded by faces. The boundary
of two faces is an edge and two edges meet at a vertex. We extend the definition
of a polyhedron a bit to include polygons and the boundaries of polygons, lines or
points. We call the faces, edges and vertices of a polyhedron simplexes. Note that
the boundary of two simplexes is either empty or another simplex. (For example,
the boundary of two faces is an edge.) Formal definitions of a simplex and a
polyhedron in a general number of dimensions will be given in chapter 3. We are
now ready to define the Euler characteristic of a figure in �3 .

Definition 2.10. Let X be a subset of �3 , which is homeomorphic to a polyhedron
K . Then the Euler characteristic χ(X) of X is defined by

χ(X) = (number of verticies in K )− (number of edges in K )

+ (number of faces in K ). (2.31)
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Figure 2.11. Example of a polyhedron which is homeomorphic to a torus.

The reader might wonder if χ(X) depends on the polyhedron K or not. The
following theorem due to Poincaré and Alexander guarantees that it is, in fact,
independent of the polyhedron K .

Theorem 2.4. (Poincaré–Alexander) The Euler characteristic χ(X) is indepen-
dent of the polyhedron K as long as K is homeomorphic to X .

Examples are in order. The Euler characteristic of a point is χ(·) = 1 by
definition. The Euler characteristic of a line is χ(——) = 2 − 1 = 1, since a
line has two vertices and an edge. For a triangular disc, we find χ(triangle) =
3− 3+ 1 = 1. An example which is a bit non-trivial is the Euler characteristic of
S1. The simplest polyhedron which is homeomorphic to S1 is made of three edges
of a triangle. Then χ(S1) = 3−3 = 0. Similarly, the sphere S2 is homeomorphic
to the surface of a tetrahedron, hence χ(S2) = 4 − 6 + 4 = 2. It is easily seen
that S2 is also homeomorphic to the surface of a cube. Using a cube to calculate
the Euler characteristic of S2, we have χ(S2) = 8 − 12 + 6 = 2, in accord with
theorem 2.4. Historically this is the conclusion of Euler’s theorem: if K is any
polyhedron homeomorphic to S2, with v vertices, e edges and f two-dimensional
faces, then v − e + f = 2.

Example 2.15. Let us calculate the Euler characteristic of the torus T 2.
Figure 2.11(a) is an example of a polyhedron which is homeomorphic to T 2.
From this polyhedron, we find χ(T 2) = 16 − 32 + 16 = 0. As we saw
in example 2.5(b), T 2 is equivalent to a rectangle whose edges are identified;
see figure 2.4. Taking care of this identification, we find an example of a
polyhedron made of rectangular faces as in figure 2.11(b), from which we also
have χ(T 2) = 0. This approach is quite useful when the figure cannot be realized
(embedded) in �3 . For example, the Klein bottle (figure 2.5(a)) cannot be realized
in �

3 without intersecting itself. From the rectangle of figure 2.5(a), we find
χ(Klein bottle) = 0. Similarly, we have χ(projective plane) = 1.
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Figure 2.12. The connected sum. (a) S2�S2 = S2, (b) T 2�T 2 = �2.

Exercise 2.19. (a) Show that χ(Möbius strip) = 0.
(b) Show that χ(�2) = −2, where �2 is the torus with two handles (see

example 2.5). The reader may either construct a polyhedron homeomorphic to�2
or make use of the octagon in figure 2.6(a). We show later that χ(�g) = 2− 2g,
where �g is the torus with g handles.

The connected sum X�Y of two surfaces X and Y is a surface obtained by
removing a small disc from each of X and Y and connecting the resulting holes
with a cylinder; see figure 2.12. Let X be an arbitrary surface. Then it is easy to
see that

S2�X = X (2.32)

since S2 and the cylinder may be deformed so that they fill in the hole on X ; see
figure 2.12(a). If we take a connected sum of two tori we get (figure 2.12(b))

T 2�T 2 = �2. (2.33)

Similarly, �g may be given by the connected sum of g tori,

T 2�T 2� · · · �T 2︸ ︷︷ ︸
g factors

= �g . (2.34)

The connected sum may be used as a trick to calculate an Euler characteristic
of a complicated surface from those of known surfaces. Let us prove the following
theorem.

Theorem 2.5. Let X and Y be two surfaces. Then the Euler characteristic of the
connected sum X�Y is given by

χ(X�Y ) = χ(X)+ χ(Y )− 2.
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Proof. Take polyhedra K X and KY homeomorphic to X and Y , respectively. We
assume, without loss of generality, that each of KY and KY has a triangle in it.
Remove the triangles from them and connect the resulting holes with a trigonal
cylinder. Then the number of vertices does not change while the number of edges
increases by three. Since we have removed two faces and added three faces,
the number of faces increases by −2 + 3 = 1. Thus, the change of the Euler
characteristic is 0− 3+ 1 = −2. �

From the previous theorem and the equality χ(T 2) = 0, we obtain χ(�2) =
0+ 0− 2 = −2 and χ(�g) = g × 0− 2(g − 1) = 2− 2g, cf exercise 2.19(b).

The significance of the Euler characteristic is that it is a topological invariant,
which is calculated relatively easily. We accept, without proof, the following
theorem.

Theorem 2.6. Let X and Y be two figures in �3 . If X is homeomorphic to Y , then
χ(X) = χ(Y ). In other words, if χ(X) �= χ(Y ), X cannot be homeomorphic to
Y .

Example 2.16. (a) S1 is not homeomorphic to S2, since χ(S1) = 0 while
χ(S2) = 2.

(b) Two figures, which are not homeomorphic to each other, may have the
same Euler characteristic. A point (·) is not homeomorphic to a line (—–) but
χ(·) = χ(—–) = 1. This is a general consequence of the following fact: if a
figure X is of the same homotopy type as a figure Y , then χ(X) = χ(Y ).

The reader might have noticed that the Euler characteristic is different from
other topological invariants such as compactness or connectedness in character.
Compactness and connectedness are geometrical properties of a figure or a space
while the Euler characteristic is an integer χ(X) ∈ �. Note that � is an
algebraic object rather than a geometrical one. Since the work of Euler, many
mathematicians have worked out the relation between geometry and algebra
and elaborated this idea, in the last century, to establish combinatorial topology
and algebraic topology. We may compute the Euler characteristic of a smooth
surface by the celebrated Gauss–Bonnet theorem, which relates the integral of
the Gauss curvature of the surface with the Euler characteristic calculated from
the corresponding polyhedron. We will give the generalized form of the Gauss–
Bonnet theorem in chapter 12.

Problems

2.1 Show that the 4g-gon in figure 2.13(a), with the boundary identified,
represents the torus with genus g of figure 2.13(b). The reader may use
equation (2.34).

2.2 Let X = {1, 1/2, . . . , 1/n, . . .} be a subset of �. Show that X is not closed in
�. Show that Y = {1, 1/2, . . . , 1/n, . . . , 0} is closed in �, hence compact.
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Figure 2.13. The polygon (a) whose edges are identified is the torus �g with genus g.

2.3 Show that two figures in figure 2.109(b) are homeomorphic to each other. Find
how to unlink the right figure in �4 .

2.4 Show that there are only five regular polyhedra: a tetrahedron, a hexahedron,
an octahedron, a dodecahedron and an icosahedron. [Hint: Use Euler’s theorem.]


