Divacancy Ground State Hamiltonian
we start from the Hamiltonian of divacancy ground state
H / h = D ( S ^ z 2 − S ( S + 1 ) 3 ) + E ( S ^ + 2 + S ^ − 2 ) + g μ B B ⋅ S ^ + ∑ i S ^ ⋅ A i ⋅ I ^ i \begin{gathered}
H / h=D\left(\hat{S}_{z}^{2}-\frac{S(S+1)}{3}\right)+E\left(\hat{S}_{+}^{2}+\hat{S}_{-}^{2}\right)+ \\
g \mu_{\mathrm{B}} \mathbf{B} \cdot \hat{\mathbf{S}}+\sum_{i} \hat{\mathbf{S}} \cdot \mathbf{A}_{i} \cdot \hat{\mathbf{I}}_{i}
\end{gathered}
H / h = D ( S ^ z 2 − 3 S ( S + 1 ) ) + E ( S ^ + 2 + S ^ − 2 ) + g μ B B ⋅ S ^ + i ∑ S ^ ⋅ A i ⋅ I ^ i
ZEFOZ eigen basis
Operating at the ZEFOZ point B e f f = 0 \mathrm{B}_{\mathrm{eff}}=0 B e f f = 0 , and neglect the coupling with nuclear spins, the Hamiltonian can be expressed in the S z = { ∣ + 1 ⟩ , ∣ 0 ⟩ , ∣ − 1 ⟩ } S_{z}=\{|+1\rangle,|0\rangle,|-1\rangle\} S z = { ∣ + 1 ⟩ , ∣ 0 ⟩ , ∣ − 1 ⟩ } basis
H Z F F O Z / h = [ D 0 E 0 0 0 E 0 D ] H_{\mathrm{ZFFOZ}} / h=\left[\begin{array}{ccc}D & 0 & E \\ 0 & 0 & 0 \\ E & 0 & D\end{array}\right]
H Z F F O Z / h = ⎣ ⎡ D 0 E 0 0 0 E 0 D ⎦ ⎤
the eigenstate of the Hamiltonian is { ∣ + ⟩ , ∣ 0 ⟩ , ∣ − ⟩ } \{|+\rangle,|0\rangle,|-\rangle\} { ∣ + ⟩ , ∣ 0 ⟩ , ∣ − ⟩ } , and its relationship to the S z = { ∣ + 1 ⟩ z , ∣ 0 ⟩ z , ∣ − 1 ⟩ z } S_{z}=\{|+1\rangle_z,|0\rangle_z,|-1\rangle_z\} S z = { ∣ + 1 ⟩ z , ∣ 0 ⟩ z , ∣ − 1 ⟩ z } basis is
( ∣ + ⟩ ∣ 0 ⟩ ∣ − ⟩ ) = 1 2 [ 1 0 1 0 2 0 1 0 − 1 ] ( ∣ + 1 ⟩ z ∣ 0 ⟩ z ∣ − 1 ⟩ z ) U = 1 2 [ 1 0 1 0 2 0 − 1 0 1 ] \begin{pmatrix}
|+\rangle\\
|0\rangle\\
|-\rangle
\end{pmatrix}
=
\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & \sqrt{2} & 0 \\
1 & 0 & -1
\end{array}\right]
\begin{pmatrix}
|+1\rangle_z\\
|0\rangle_z\\
|-1\rangle_z
\end{pmatrix}\\
\ \\
U=\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & \sqrt{2} & 0 \\
-1 & 0 & 1
\end{array}\right]
⎝ ⎛ ∣ + ⟩ ∣ 0 ⟩ ∣ − ⟩ ⎠ ⎞ = 2 1 ⎣ ⎡ 1 0 1 0 2 0 1 0 − 1 ⎦ ⎤ ⎝ ⎛ ∣ + 1 ⟩ z ∣ 0 ⟩ z ∣ − 1 ⟩ z ⎠ ⎞ U = 2 1 ⎣ ⎡ 1 0 − 1 0 2 0 1 0 1 ⎦ ⎤
The hamiltonian is diagonalized in this basis
H ZEFOZ ′ / h = U ∗ H Z E F O Z U T / h = [ D + E 0 0 0 0 0 0 0 D − E ] \begin{gathered}
H_{\text {ZEFOZ }}^{\prime} / h=U^{*} H_{\mathrm{ZEFOZ}} U^{T} / h=\left[\begin{array}{ccc}
D+E & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & D-E
\end{array}\right]
\end{gathered}
H ZEFOZ ′ / h = U ∗ H Z E F O Z U T / h = ⎣ ⎡ D + E 0 0 0 0 0 0 0 D − E ⎦ ⎤
For basal divacancies in 4H-SiC, E is not neglectable, so there exhibits a transverse anisotropy spin splitting (E) in addition to D in zero field, which results in two zero-field resonance at frequencies defined by (D ± E D\pm E D ± E )
The image(Nature-2011-W. F. Koehl, et al. ) above is an ODMR result of 4H-SiC ensemble, from the linewidth of the dip we can infer that the splitting is quite uniform in 4H-SiC. The splitting is 18.6 and 82 MHz for PL4 and PL3 respectively.
Question: why there is a peak?
Couple to Magnetic Field
Spin-1matrices in { ∣ + ⟩ , ∣ 0 ⟩ , ∣ − ⟩ } \{|+\rangle,|0\rangle,|-\rangle\} { ∣ + ⟩ , ∣ 0 ⟩ , ∣ − ⟩ } basis can be expressed as
S x ′ = [ 0 1 0 1 0 0 0 0 0 ] S y ′ = [ 0 0 0 0 0 − i 0 i 0 ] S z ′ = [ 0 0 − 1 0 0 0 − 1 0 0 ] S_{x}^{\prime}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] S_{y}^{\prime}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right] S_{z}^{\prime}=\left[\begin{array}{lll}
0 & 0 & -1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right]
S x ′ = ⎣ ⎡ 0 1 0 1 0 0 0 0 0 ⎦ ⎤ S y ′ = ⎣ ⎡ 0 0 0 0 0 i 0 − i 0 ⎦ ⎤ S z ′ = ⎣ ⎡ 0 0 − 1 0 0 0 − 1 0 0 ⎦ ⎤
Switch from eigenstate to dress state
Dressing state basis { ∣ + 1 ⟩ , ∣ 0 ⟩ , ∣ − 1 ⟩ } \{|+1\rangle,|0\rangle,|-1\rangle\} { ∣ + 1 ⟩ , ∣ 0 ⟩ , ∣ − 1 ⟩ }
( ∣ + 1 ⟩ ∣ 0 ⟩ ∣ − 1 ⟩ ) = 1 2 [ 1 0 1 0 2 0 1 0 − 1 ] ( e x p ( i ( D + E ) t ) 0 0 0 e x p ( i D t ) 0 0 0 e x p ( i ( D − E ) t ) ) ( ∣ + ⟩ ∣ 0 ⟩ ∣ − ⟩ ) \begin{pmatrix}
|+1\rangle\\
|0\rangle\\
|-1\rangle
\end{pmatrix}
=
\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & \sqrt{2} & 0 \\
1 & 0 & -1
\end{array}\right]
\begin{pmatrix}
exp(i(D+E)t) & 0 & 0 \\
0 & exp(iDt) & 0 \\
0 & 0 & exp(i(D-E)t)
\end{pmatrix}
\begin{pmatrix}
|+\rangle\\
|0\rangle\\
|-\rangle
\end{pmatrix}
⎝ ⎛ ∣ + 1 ⟩ ∣ 0 ⟩ ∣ − 1 ⟩ ⎠ ⎞ = 2 1 ⎣ ⎡ 1 0 1 0 2 0 1 0 − 1 ⎦ ⎤ ⎝ ⎛ e x p ( i ( D + E ) t ) 0 0 0 e x p ( i D t ) 0 0 0 e x p ( i ( D − E ) t ) ⎠ ⎞ ⎝ ⎛ ∣ + ⟩ ∣ 0 ⟩ ∣ − ⟩ ⎠ ⎞
S x ′ ′ = ( 0 e − i E t 2 0 e i E t 2 0 e i E t 2 0 e − i E t 2 0 ) S y ′ ′ = ( 0 − i e i E t 2 0 i e − i E t 2 0 − i e − i E t 2 0 i e i E t 2 0 ) S z ′ ′ = ( 1 2 e − 2 i E t ( 1 + e 4 i E t ) 0 1 2 e − 2 i E t ( − 1 + e 4 i E t ) 0 0 0 − 1 2 e − 2 i E t ( − 1 + e 4 i E t ) 0 − 1 2 e − 2 i E t ( 1 + e 4 i E t ) ) S_x''=
\left(
\begin{array}{ccc}
0 & \frac{e^{-i \text{E} t}}{\sqrt{2}} & 0 \\
\frac{e^{i \text{E} t}}{\sqrt{2}} & 0 & \frac{e^{i \text{E} t}}{\sqrt{2}} \\
0 & \frac{e^{-i \text{E} t}}{\sqrt{2}} & 0 \\
\end{array}
\right)
S_y''=
\left(
\begin{array}{ccc}
0 & -\frac{i e^{i \text{E} t}}{\sqrt{2}} & 0 \\
\frac{i e^{-i \text{E} t}}{\sqrt{2}} & 0 & -\frac{i e^{-i \text{E} t}}{\sqrt{2}} \\
0 & \frac{i e^{i \text{E} t}}{\sqrt{2}} & 0 \\
\end{array}
\right)\\
\ \\
S_z''=
\left(
\begin{array}{ccc}
\frac{1}{2} e^{-2 i \text{E} t} \left(1+e^{4 i \text{E} t}\right) & 0 & \frac{1}{2} e^{-2
i \text{E} t} \left(-1+e^{4 i \text{E} t}\right) \\
0 & 0 & 0 \\
-\frac{1}{2} e^{-2 i \text{E} t} \left(-1+e^{4 i \text{E} t}\right) & 0 & -\frac{1}{2}
e^{-2 i \text{E} t} \left(1+e^{4 i \text{E} t}\right) \\
\end{array}
\right)
S x ′ ′ = ⎝ ⎜ ⎜ ⎛ 0 2 e i E t 0 2 e − i E t 0 2 e − i E t 0 2 e i E t 0 ⎠ ⎟ ⎟ ⎞ S y ′ ′ = ⎝ ⎜ ⎜ ⎛ 0 2 i e − i E t 0 − 2 i e i E t 0 2 i e i E t 0 − 2 i e − i E t 0 ⎠ ⎟ ⎟ ⎞ S z ′ ′ = ⎝ ⎛ 2 1 e − 2 i E t ( 1 + e 4 i E t ) 0 − 2 1 e − 2 i E t ( − 1 + e 4 i E t ) 0 0 0 2 1 e − 2 i E t ( − 1 + e 4 i E t ) 0 − 2 1 e − 2 i E t ( 1 + e 4 i E t ) ⎠ ⎞
Dress state decoherence
Question: Why ∣ ψ 0 ⟩ = 1 2 ( ∣ 0 ⟩ + ∣ + ⟩ ) \left|\psi_{0}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|+\rangle) ∣ ψ 0 ⟩ = 2 1 ( ∣ 0 ⟩ + ∣ + ⟩ ) ( red ) much shorter than ∣ ψ 0 ⟩ = 1 2 ( ∣ + 1 ⟩ + ∣ − 1 ⟩ ) \left|\psi_{0}\right\rangle=\frac{1}{\sqrt{2}}(|+1\rangle+|-1\rangle) ∣ ψ 0 ⟩ = 2 1 ( ∣ + 1 ⟩ + ∣ − 1 ⟩ ) ?
Energy dispersion of dress state
怎么把这个实验拉到室温?
系综有什么好处?
E测量会比我们平常的测量更准吗?
测应力的灵敏度怎么样?