Balanced Learning for Domain Adaptive Semantic Seg mentation
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TLDR. Directly Assessing and alleviating class bias in UDA task without prior knowledge of distribution shift

Introduction

Goal. Domain adaptive semantic segmentation aims to
mitigate the performance degradation of segmentation
networks by transferring knowledge from labeled source
domains to unlabeled target domains.

Distribution Shift. Class bias is complicated in UDA.

« Inherent class imbalance leads biased predictions towards
head classes, studied as long-tail problem.

« Data and label distribution shifts lead to performance
degradation that varies significantly across classes,
resulting in different levels of adaptation difficulty.
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(b) Adaptation Discrepancy

Mainstream Paradigm. Existing strategies are still
heuristic and rely on the assumption that training and

test domains share identical data and label distributions.

« Loss re-weighting assigns different weights to classes,
making the model pay more attention to tail classes.

 Sample re-sampling directly adjust the class sample
distribution during training, proving more effective.

(a) Pixels Distribution Discrepancy
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(a) Class-wise Accuracy (b) Pseudo -label Frequency

Motivation

Logits distributions. we propose to assess the degree
of class bias by analyzing the distribution of logits

predicted by the network.
« Definition 1. Element in logits set matrix, M;:

Me = o (xij) U yij = ¢}

« Definition 2. Bias of network towards class [, Bias(l):

Bias(l) = - 2 P argmaxfg(x) = l|y — c) —%
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(c) Logits Distribution Discrepancy (d) Class Bias Discrepancy

Theoretical insight: Aligned logits — unbiased predictions
Empirical analysis: Logit differences correlate with class bias.

Method

BLDA. Our post-hoc logits adjustment method aligns the

logits distributions of all classes with anchor distributions
to achieve balanced prediction.
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Online logits adjustment tailored for seIf—training in UDA:

~ eXp(fH(xlj)[yU] _TA 5 S(fH(xl])[yU]))

¢S, = —log i ,

Corexp (fo ()] — Thys (o (x)le)
~ exp(fg (xij)[j;ij] — TAA[JA,JP (fo (xl])[yij]))
fce = —log )

Yié=1 €XP (fH(xij c] — TAle;C(fe(xérj [c])

Eerriments

Quantitative results on GTAv— Cityscapes.

Method Arch. | mlou (1) std () [ mAcc (1) std ()
DACS™ (Tranheden et al., 2021) C 2.1 27.1 65.8 26.5
+BLDA C 54.7 235.6 69.0 24.2
DAFormer(C)™ (Hoyer et al., 2022a) | C 56.2 24.0 69.3 23.8
+BLDA G 58.1 23.2 74.9 21.6
DAFormer (Hoyer et al., 2022a) T 68.3 16.8 77.8 14.2
+BLDA T 70.7 15.5 82.0 11.9
CDAC™ (Wang et al., 2023) T 69.2 16.7 78.7 13.8
+BLDA T 71.0 154 82.5 11.5
HRDA (Hoyer et al., 2022b) T 73.8 154 82.2 13.2
+BLDA T 75.6 13.8 85.1 10.7
MIC (Hoyer et al., 2023) T 139 14.8 83.2 11.6
+BLDA T 77.1 13.5 36.3 9.8

Qualitative results built with DAFormer.
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