

Balanced Learning for Domain Adaptive Semantic Segmentation

Wangkai Li¹, Rui Sun¹, Bohao Liao¹, Zhaoyang Li¹, Tianzhu Zhang^{1, 2}

¹University of Science and Technology of China, ²Deep Space Exploration Laboratory

中国科学技术大学
University of Science and Technology of China

DSEL DEEP SPACE EXPLORATION LAB
深空探测实验室

ICML
International Conference
On Machine Learning

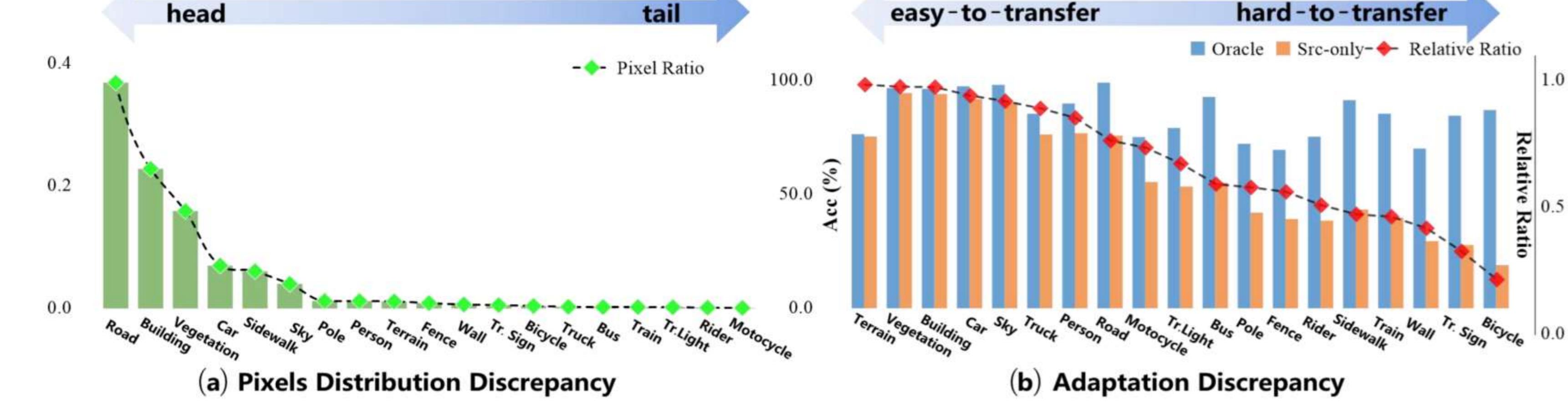
TLDR. Directly Assessing and alleviating class bias in UDA task without prior knowledge of distribution shift

Introduction

Goal. Domain adaptive semantic segmentation aims to mitigate the performance degradation of segmentation networks by transferring knowledge from **labeled source domains** to **unlabeled target domains**.

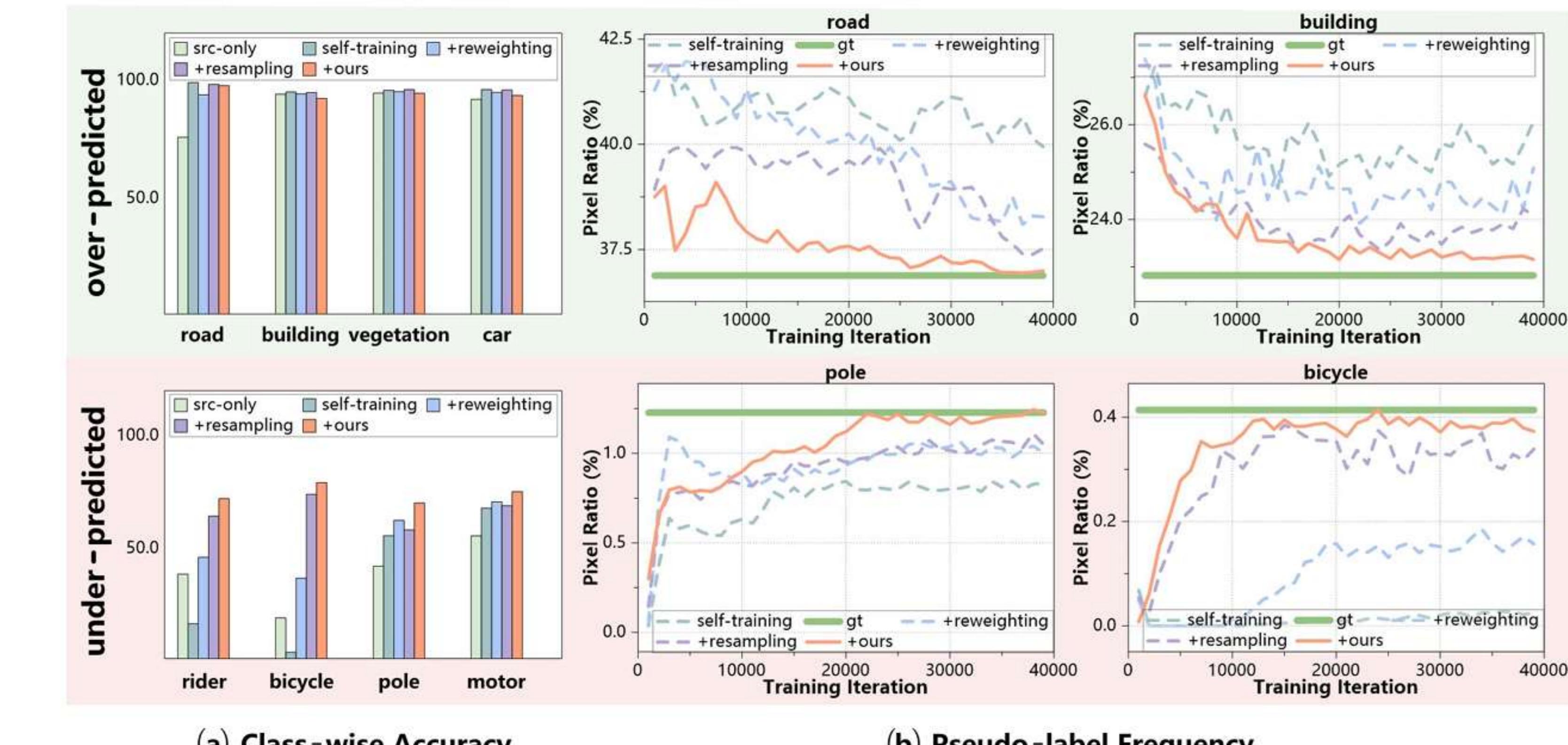
Distribution Shift. Class bias is complicated in UDA.

- Inherent class imbalance leads biased predictions towards head classes, studied as **long-tail problem**.
- Data and label distribution shifts lead to performance degradation that varies significantly across classes, resulting in **different levels of adaptation difficulty**.



Mainstream Paradigm. Existing strategies are still heuristic and **rely on the assumption** that training and test domains share identical data and label distributions.

- Loss **re-weighting** assigns different weights to classes, making the model pay more attention to tail classes.
- Sample **re-sampling** directly adjust the class sample distribution during training, proving more effective.



Motivation

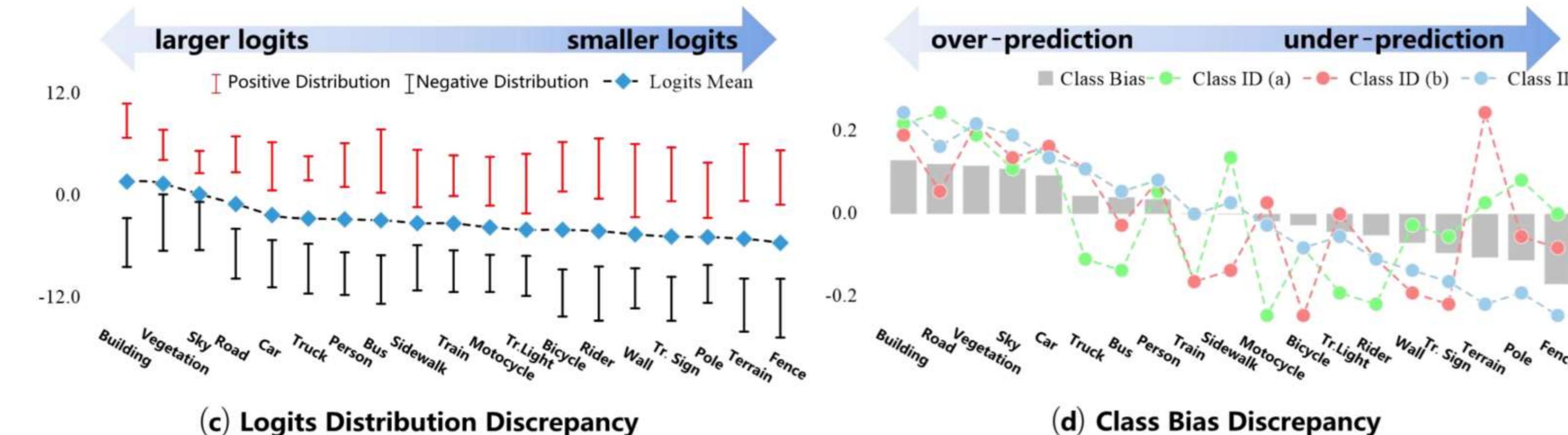
Logits distributions. we propose to assess the degree of **class bias** by analyzing the **distribution of logits** predicted by the network.

- Definition 1.** Element in logits set matrix, \mathcal{M}_{cl} :

$$\mathcal{M}_{cl} = \{f_{\theta}(x_{ij})[l] | y_{ij} = c\}.$$

- Definition 2.** Bias of network towards class l , $\text{Bias}(l)$:

$$\text{Bias}(l) = \frac{1}{C} \sum_{c \in [C]} \mathbb{P} \left(\arg \max_{c' \in [C]} f_{\theta}(x)[c'] = l \mid y = c \right) - \frac{1}{C}.$$

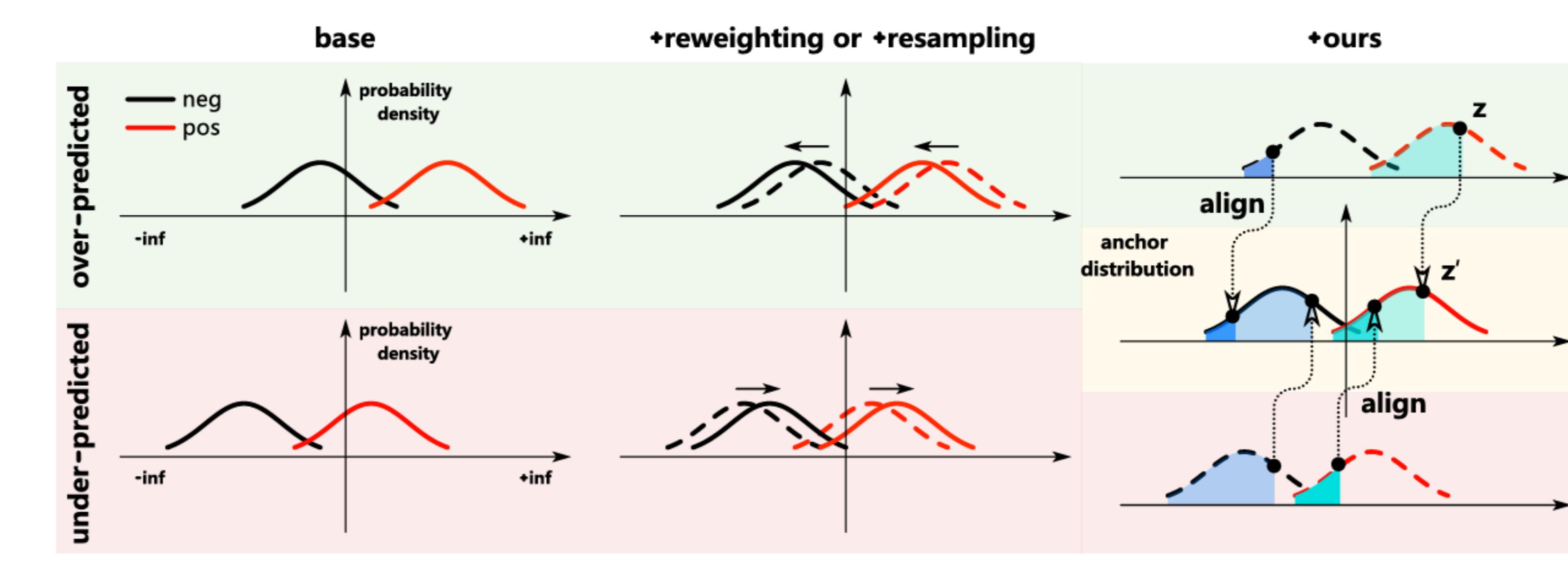


Theoretical insight: Aligned logits \rightarrow unbiased predictions
Empirical analysis: Logit differences correlate with **class bias**.

Method

BLDA. Our **post-hoc logits adjustment** method **aligns** the logits distributions of all classes with anchor distributions to **achieve balanced prediction**.

$$z' = \begin{cases} F_p^{-1}(F_{cl}(z)), & \text{if } c = l \\ F_n^{-1}(F_{cl}(z)), & \text{if } c \neq l \end{cases}, \quad \Delta_{cl}(z) = z' - z$$



Online logits adjustment tailored for self-training in UDA:

$$\tilde{\ell}_{ce}^s = -\log \frac{\exp(f_{\theta}(x_{ij}^s)[y_{ij}^s] - \tau \Delta_{y_{ij}^s, y_{ij}^s}^s(f_{\theta}(x_{ij}^s)[y_{ij}^s]))}{\sum_{c=1}^C \exp(f_{\theta}(x_{ij}^s)[c] - \tau \Delta_{y_{ij}^s, c}^s(f_{\theta}(x_{ij}^s)[c]))},$$

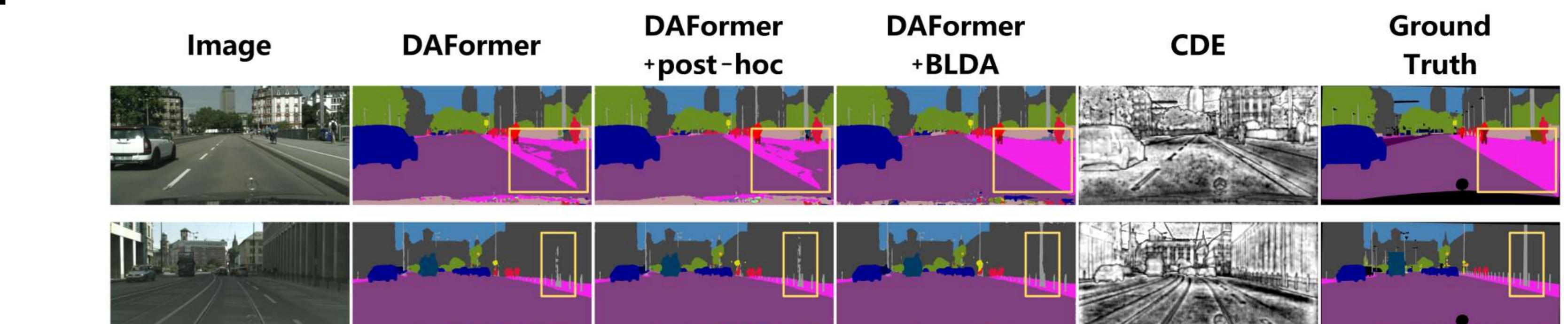
$$\tilde{\ell}_{ce}^u = -\log \frac{\exp(f_{\theta}(x_{ij}^T)[\hat{y}_{ij}^T] - \tau \Delta_{\hat{y}_{ij}^T, \hat{y}_{ij}^T}^T(f_{\theta}(x_{ij}^T)[\hat{y}_{ij}^T]))}{\sum_{c=1}^C \exp(f_{\theta}(x_{ij}^T)[c] - \tau \Delta_{\hat{y}_{ij}^T, c}^T(f_{\theta}(x_{ij}^T)[c]))}.$$

Experiments

Quantitative results on GTAv \rightarrow Cityscapes.

Method	Arch.	mIoU (\uparrow)	std (\downarrow)	mAcc (\uparrow)	std (\downarrow)
DACS * (Tranheden et al., 2021)	C	52.1	27.1	65.8	26.5
+BLDA	C	54.7	25.6	69.0	24.2
DAFormer(C) * (Hoyer et al., 2022a)	C	56.2	24.0	69.3	23.8
+BLDA	C	58.1	23.2	74.9	21.6
DAFormer (Hoyer et al., 2022a)	T	68.3	16.8	77.8	14.2
+BLDA	T	70.7	15.5	82.0	11.9
CDAC * (Wang et al., 2023)	T	69.2	16.7	78.7	13.8
+BLDA	T	71.0	15.4	82.5	11.5
HRDA (Hoyer et al., 2022b)	T	73.8	15.4	82.2	13.2
+BLDA	T	75.6	13.8	85.1	10.7
MIC (Hoyer et al., 2023)	T	75.9	14.8	83.2	11.6
+BLDA	T	77.1	13.5	86.3	9.8

Qualitative results built with DAFormer.



Visualization Results of Logits Distribution.

