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TLDR. Utilize ECOC encoding to denoise pseudo-labels for label-scarce semantic segmentation at the bit level

Introduction

Mainstream Paradigm. Self-training and consistency 
regularization generates pseudo labels for unlabeled data 
as supervision, summarized as pseudo-label learning. 

Motivation. 
• One-hot limitations: Enforces hard class assignments, 

ignores shared attributes among confusing classes.
• ECOC advantages: Enables bit error correction by large 

Hamming distances, stabilizes learning via shared bits.
• Theoretical guarantee:
➢ In fully supervised settings, ECOC can serve as an 

effective equivalent to one-hot encoding.
➢ In pseudo-label learning, ECOC exhibits greater 

robustness with a tighter classification error bound.

Experiments

Goal. Domain-adaptive / semi-supervised semantic 
segmentation aims to avoid laborious pixel-wise annotation 
using annotated and unlabeled data simultaneously.

Quantitative Results on GTAv→ Cityscapes.

Visualization Results of Reliable Bits. 

ECOC-based Dense Classification. Replace 𝑁 -way 
softmax with 𝐾 independent sigmoid heads (𝐾 bits).
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Reliable Bit Mining. Extract reliable bits from code-wise 
labels within candidates and fuse them with bit-wise labels, 
obtain more robust pseudo-labels in a hybrid way:
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Optimization Criterion. Typically binary cross-entropy: 
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• Pixel-code distance: ℒ𝑝𝑐𝑑
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• Pixel-code contrast: 
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Problem. Pseudo-label learning under UDA/SSL improves 
segmentation but suffers from noisy pseudo-labels; one-
hot encoding amplifies these errors during training.

Method


