β 吸收 2

廖荣

中国科学技术大学物理学院,合肥230026

摘 要: 本实验利用 NaI(TI) 闪烁探测器测量了 $^{90}Sr \rightarrow ^{90}Y$ 的 β^- 衰变过程中放出的电子能量(利用 ^{137}Cs 定标),验证了在较高能量情况下相对论较经典力学的优势,并测量了单能电子在铝中的质量吸收系数。 **关键词:** NaI(TI) 闪烁探测器; $^{90}Sr \rightarrow ^{90}Y$ β^- 衰变;质量吸收系数

The Absorption of β Ray 2

Rong Liao

School of Physical Sciences, University of Science and Technology of China, Hefei 230026

Abstract: This experiment uses NaI(Tl) scintillation detector to measure the electron energy released in the β^- decay process of $^{90}Sr \rightarrow ^{90} Y$ (using ^{137}Cs calibration), and verifies the advantage of relativity over classical mechanics in the case of higher energy. The mass absorption coefficient of single energy electron in aluminum was also measured.

Keywords: NaI(Tl) scintillation detector; β^- decay process of ${}^{90}Sr \rightarrow {}^{90}Y$; mass absorption coefficient

1 实验原理 [?]

1.1 测量电子动量

本实验利用磁谱仪测量电子的动量,其原理为 电子在磁场中运动时会受到洛伦兹力,其大小为

$$F = q\mathbf{v} \times \mathbf{B}$$

仅受洛伦兹力时,如忽略电子在空气中的能损,可 视为电子做匀速圆周运动,半径为

$$R = \frac{mv}{Bq}$$

因此,通过测量电子运动半径配合已知的磁感应强度即可求得电子动量 p = mv

$$p = qBR \tag{1}$$

1.2 电子动能测量与计算

1.2.1 电子动能测量

实验中利用多道分析仪结合 NaI(Tl) 闪烁探测器测量电子动能。电子动能大小与能谱峰位 N 呈线性关系

$$E_k = aN + b$$

由于 Nal 易潮解,需放置在铝盒中,需考虑电子穿过铝盒时的能损,则上式需修正为

$$E_k = aN + b + \Delta E \tag{2}$$

 ΔE 为已知量,其值为 0.210 MeV。

本实验利用 $^{137}Cs\gamma$ 放射源的全能峰与背散射峰进行定标, ^{137}Cs 源的全能峰能量为 0.622MeV,背散射峰能量可由下式计算

$$E_{\gamma}' = \frac{E_{\gamma}}{1 + \frac{E_{\gamma}}{m_0 c^2} (1 - \cos \theta)}$$

1.2.2 电子动能的经典与相对论表达

由于电子动量可较准确求得,因此可通过动量 在经典及相对论情况下计算出电子动能。经典情况 下电子动能可直接给出

$$E_k = \frac{p^2}{2m_0} \tag{3}$$

相对论情况下, 粒子质量会随速度变化

$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

可求得电子动能

$$E_k = E - E_0$$

$$= \frac{m_0 c^2}{\sqrt{1 - \frac{v^2}{c^2}}} - m_0 c^2$$

$$= \sqrt{p^2 c^2 + m_0^2 c^4} - m_0 c^2$$
(4)

在低速时,两种方法计算出的电子动能接近,但在高速时经典力学计算结果会显著高于相对论 计算结果。

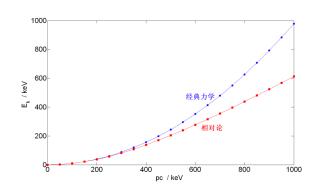


图 1: 相对论与经典力学动能曲线

1.3 物质对电子的吸收曲线

一束单能电子束在物质中的强度变化服从指数衰减规律,可表示为

$$I = I_0 e^{-\mu x}$$

 μ 为物质的线性吸收系数,随原子序数 Z 变化 很大;但如果定义 $\mu_m = \frac{\mu}{\rho}$ 为质量吸收系数,则 μ_m 随原子序数变化不大,因此可用质量厚度 $d = \rho \cdot x$ 代替原厚度,将强度衰减规律重写成

$$I = I_0 e^{-\mu_m d} \tag{5}$$

为方便计算,可将上式重写成

$$\mu_m d = \ln \frac{I_0}{I} \tag{6}$$

此时可用最小二乘法拟合得到质量吸收系数。

2 实验内容

2.1 实验仪器

- 1. 闪烁 γ 能谱仪
- 2. 半圆聚焦 β 磁谱仪
- 3. 吸收片(铝片)
- 4. ¹³⁷Cs 放射源
- 5. ⁹⁰Sr → ⁹⁰ Y 放射源
- 6. 电子秤、直尺
- 7. 狭缝

2.2 利用 ¹³⁷Cs 放射源定标

将 ^{137}Cs 放射源直接放置在探测器前端,调节 负高压使得 ^{137}Cs 放射源全能峰处于多道分析仪 280-300 道之间,寻到全能峰和背散射峰峰位,将 结果代入式2,解出 a,b

2.3 验证相对论动能表达

将 $^{90}Sr \rightarrow ^{90}Y$ 放射源放在磁谱仪前,在 x=23.0cm 至 x=34cm (放射源位于 x=10cm 处) 范围内移动闪烁探测器,记录不同位置多道分析仪记录的能谱峰位,根据能谱峰位可求出电子能量,根据闪烁探测器与放射源距离可求出电子动量,利用式2可求出对应动能,将测得动能与电子动能的经典和相对论表达做比较。

2.4 测量铝片对单能电子束质量吸收系数

将闪烁探测器移动至 x = 28cm 位置,在探头 (6) 前分别加 0.1.2.3.4 片铝片,用多道分析仪测量电子全能峰右侧半高宽处向左 200 道范围内总计数,计算铝片对电子的质量吸收系数。

3 实验结果与讨论

3.1 利用 ¹³⁷Cs 放射源定标

	全能峰	背散射峰
能量 (MeV)	0.662	0.184
峰位	317.82	94.11

表 1: 137Cs 放射源能量与峰位

其中背散射峰的能量通过以下公式得到

$$E_{\gamma}' = \frac{E_{\gamma}}{1 + \frac{E_{\gamma}}{m_0c^2}(1-\cos\theta)}$$

由图表数据和 $\Delta E = 0.210 MeV$, 代入下列公式

$$E = aN + b + \Delta E \tag{7}$$

计算可得待定系数 a = 0.00213, b = -0.22708。

位置 (cm)	半径 (cm)	峰位	pc(MeV)	动能 E 经典 (MeV)	动能 E 相对论 (MeV)	动能 E 测量值 (MeV)
23.0	6.50	246.15	1.21212	1.4357	0.8040	0.5072
24.5	7.25	289.86	1.35198	1.7861	0.9339	0.6003
26.0	8.00	340.18	1.49184	2.1747	1.0655	0.7075
27.5	8.75	402.28	1.6317	2.6016	1.1984	0.8398
29.0	9.50	454.23	1.77156	3.0667	1.3323	0.9504
30.5	10.25	524.83	1.91142	3.5700	1.4670	1.1008
32.0	11.00	572.63	2.05128	4.1116	1.6024	1.2026
33.5	11.75	634.05	2.19114	4.6914	1.7384	1.3334

表 2: 动量与动能关系测量原始数据及数据处理

表中 E_c, E_r 分别为用经典方法与相对论方法 计算出的电子动能, E_m 为利用式2求得的电子动 能,根据二表可画出图像

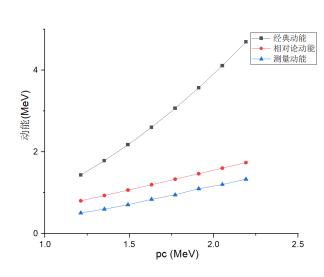


图 2: 动能与动量关系曲线

在此不难发现实际测量动能与考虑狭义相对论的理论动能有差距,但差距较为稳定,对着两组数据进行线性拟合可以得到 $R^2 = 0.998$,说明此误差应该为系统误差而非测量误差。

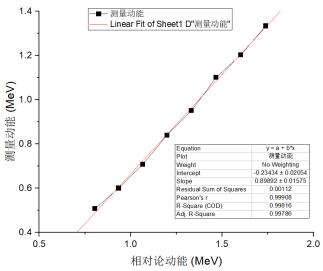


图 3: 相对论理论动能与实际测量动能线性拟合

实际拟合结果得到

$$E_{experiment} = 0.899E_{theory} - 0.234, R^2 = 0.998$$
(8)

3.2 测量铝片对单能电子束质量吸收系数

实验中选取的铝片规格一致,均为630mm× 495mm, 质量为 1.51g。计算得到平均质量厚度为 $\overline{d}=0.04842g/cm^2$

铝片数	峰位	FWHM	选区计数	$\ln I_0/I$
0	455.01	113.70	59279	0
1	409.50	122.33	47440	0.2228
2	358.33	119.75	36621	0.4816
3	306.85	119.11	30207	0.6742
4	279.23	119.84	26104	0.8201

表 3: 选区计数随铝片数量变化

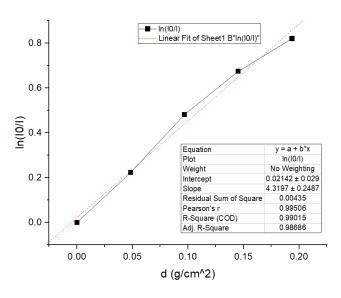


图 4: 吸收系数拟合结果

拟合结果为y = 4.3197x + 0.02142, $R^2 = 0.99$, 即铝对能量为 0.952MeV 的电子束的质量吸收系 数为 $\mu_m = 4.3197 cm^2/g$.

参考文献

无铝片时,峰位为455.01,带入前述标定直线 [1] 中国科学技术大学物理实验教学中心. β 吸收 2 方程式,得到能量为0.952MeV。

(实验讲义).