中国科学技术大学 大学物理-基础实验 A 实验报告

实验题目硅光电池特性研究 学生姓名廖荣 学生学号PB21071406 完成日期2022 年 6 月 5 日

> 物理实验教学中心制 2020 年 09 月

2022年6月5日

1 实验目的

了解硅光电池工作原理,掌握硅光电池的工作特性。

2 实验原理

硅光电池是根据光伏效应而制成的将光能转换成电能的一种器件。

2.1 P-N 结特性

空穴较多的 P 型半导体和电子较多的 N 型半导体结合时,空穴从 P 向 N 扩散,电子 从 N 向 P 扩散,中间形成的耗散区即离子层无自由载流子,有稳定的内电场,呈现高抗 阻,即 P-N 结。因此其具有单向导电性的特点,正偏时导通,反偏时耗尽区变宽。

2.2 光伏效应

P-N 结处于零偏或反偏时,耗尽区存在内电场,有光照时,电池对光子的本征吸收所激发的少数载流子引起光伏效应。激发出的电子空穴对在内电场作用下分别漂移到 N 型区和 P 型区,当在 PN 结两端加负载时就有一光生电流流过负载,此即光伏效应。

2.3 硅光电池的基本特性

2.3.1 伏安特性

一定光照下,光电池两端加负载就会有电流流过,负载很大时,电流较小而电压较大;负载很小时,电流较大而电压较小。硅光电池的伏安特性曲线由二个部分组成:无偏压工作状态,光电流随负载变化很大;反偏压工作状态,光电流与偏压、负载几乎无关(很大动态范围内)。

2.3.2 照度特性

当没有光照时, 硅光电池等效于普通的二极管, 其伏安特性为:

$$I_d = I_0 \left[\exp\left(\frac{qU}{k_B T}\right) - 1 \right] \tag{2.1}$$

 I_d 为流过 PN 结的电流, I_0 为反向饱和电流,q 为电子电荷, k_B 为玻尔兹曼常数,T 为绝对温度,U 是加在 P-N 结两端电压。对于外加正向电压, I_d 随 V 指数增长,称正向电流;当外加电压为反向时,在反向击穿电压之内,反向饱和电流基本是个常数。

当有光照时,激发出的电子空穴对在内电场作用下分别漂移到 N 型区和 P 型区,当在 PN 结两端加负载时就有光生电流流过负载,流过 PN 结两端的电流:

$$I = I_{ph} - I_0 \left[\exp\left(\frac{qU}{k_B T}\right) - 1 \right]$$
 (2.2)

 I_{ph} 是与入射光的强度成正比的光生电流,与负载电阻大小及硅光电池结构特性有关。

2022年6月5日

2.3.3 输出特性

硅光电池负载 R_L 上的电压降 U 和通过 R_L 的电流之积称为硅光电池的输出功率 P。 输出功率达到最大值 $P_m = U_m I_m$ 时的负载电阻 R_m 称为最佳负载电阻,此时能量转换效 率最高,且 R_m 随光强而变化。定义填充因子 FF:

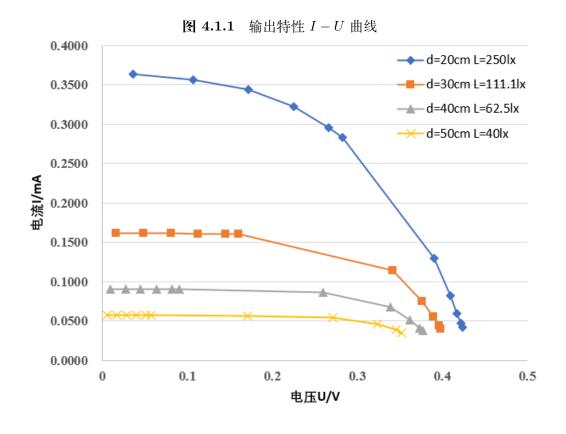
$$FF \equiv \frac{P_m}{U_{oc}I_{SC}} = \frac{U_mI_{\rm m}}{U_{oc}I_{SC}}$$
 (2.3)

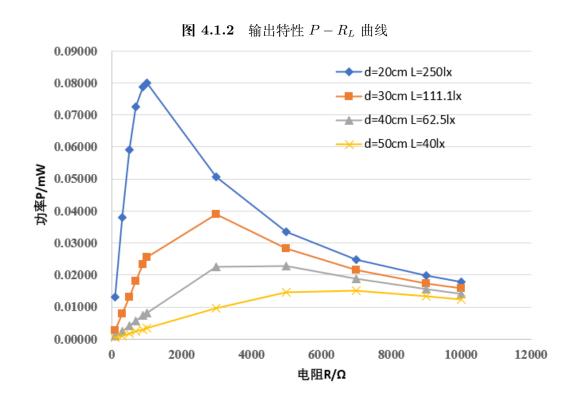
是表征硅光电池性能优劣的重要参数、取决于入射光强、材料禁带宽度、负载电阻等。

实验仪器 3

- 1. 硅光电池
- 2. 数字万用表
- 3. 毫安表
- 4. 电阻箱
- 5. 溴钨灯
- 6. 直流稳压电源
- 7. 光学导轨及支座
- 8. 开关
- 9. 导线

4 实验内容与步骤


4.1 硅光电池输出特性测量

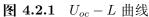

用溴钨灯照射硅光电池, 电阻箱为负载, 测量不同 $L \times R_L$ 下硅光电池的工作电压 U, 求出工作电流 I 和功率 ,绘制 I-U 、 $P-R_L$ 曲线。原始数据及所计算的 I 、 P 、 L 在表 4.1 中列出。得 I - U、 $P - R_L$ 曲线,于图 4.1.1、图 4.1.2 所示。

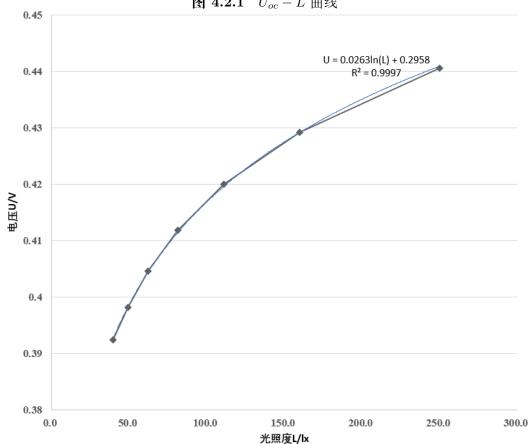
为了保障实验精度, 此次实验中在被测量不超出万用表直流电压 200mV 档量程的条件 下均使用 200mV 档, 其余均使用 2V 档。故实验数据中所有精确到十万位数据均用 200mV 量程测得, 所有精确到万位数据均由 2V 量程测得。

表 4.1 输出特性数据

	d=20cm $L=250$ lx			d=30cm L=111.1lx			$d=40 \text{cm} \ L=62.5 \text{lx}$			d=50cm L=40lx		
R_L/Ω	U/V	I/mA	P/mW	U/V	I/mA	P/mW	U/V	I/mA	P/mW	U/V	I/mA	P/mW
100	0.03633	0.3633	0.01320	0.01617	0.1617	0.00261	0.00903	0.0903	0.00082	0.00574	0.0574	0.00033
300	0.10691	0.3564	0.03810	0.04846	0.1615	0.00783	0.02707	0.0902	0.00244	0.01723	0.0574	0.00099
500	0.17192	0.3438	0.05911	0.08066	0.1613	0.01301	0.04508	0.0902	0.00406	0.02869	0.0574	0.00165
700	0.2255	0.3221	0.07264	0.11253	0.1608	0.01809	0.06342	0.0906	0.00575	0.04018	0.0574	0.00231
900	0.2664	0.2960	0.07885	0.14454	0.1606	0.02321	0.08151	0.0906	0.00738	0.05167	0.0574	0.00297
1000	0.2828	0.2828	0.07998	0.16015	0.1602	0.02565	0.09036	0.0904	0.00816	0.05740	0.0574	0.00329
3000	0.3902	0.1301	0.05075	0.3417	0.1139	0.03892	0.2601	0.0867	0.02255	0.17076	0.0569	0.00972
5000	0.4097	0.0819	0.03357	0.3766	0.0753	0.02837	0.3385	0.0677	0.02292	0.2709	0.0542	0.01468
7000	0.4177	0.0597	0.02492	0.3895	0.0556	0.02167	0.3622	0.0517	0.01874	0.3238	0.0463	0.01498
9000	0.4220	0.0469	0.01979	0.3963	0.0440	0.01745	0.3733	0.0415	0.01548	0.3455	0.0384	0.01326
10000	0.4235	0.0424	0.01794	0.3986	0.0399	0.01589	0.3768	0.0377	0.01420	0.3520	0.0352	0.01239
8	/	/	/	/	/	/	/	/	/	/	/	/

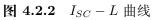
2022年6月5日

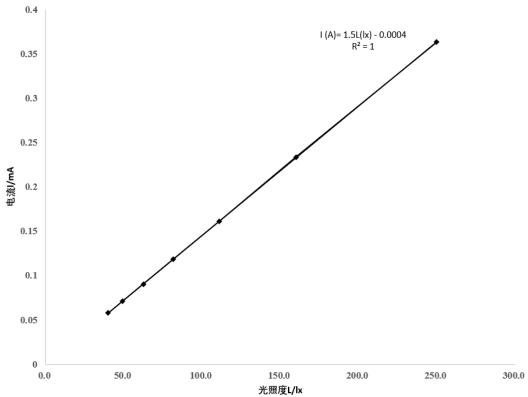

4.2 硅光电池开路电压与短路电流测量


测量不同光照下硅光电池的开路电压 U_{oc} 、短路电流 I_{SC} ,绘制 $U_{oc}-L$ 、 $I_{SC}-L$ 曲 线, 短路电流用负载 $R_L = 50\Omega$ 时得电流代替, 数据如表 2.3 所示, 得 $U_{oc} - L \setminus I_{SC} - L$ 曲线,分别于图 2.4、图 2.5 所示。

为了保障实验精度,此次实验中在被测量不超出万用表直流电压 200mV 档量程的条件 下均使用 200mV 档, 其余均使用 2V 档。故实验数据中所有精确到十万位数据均用 200mV 量程测得, 所有精确到万位数据均由 2V 量程测得。

d/cm 35 45 50 30 111.1 62.5 L/\ln 250.0 160.0 81.6 49.4 40.0 0.3924 U_{oc}/V 0.4406 0.4292 0.4200 0.4119 0.4046 0.3982 U 50Ω/V 0.01817 0.01168 0.00807 0.00593 0.00452 0.00357 0.00289 I_{SC}/mA 0.3634 0.2336 0.1614 0.1186 0.0904 0.0714 0.0578


表 4.2 开路电压与短路电流数据



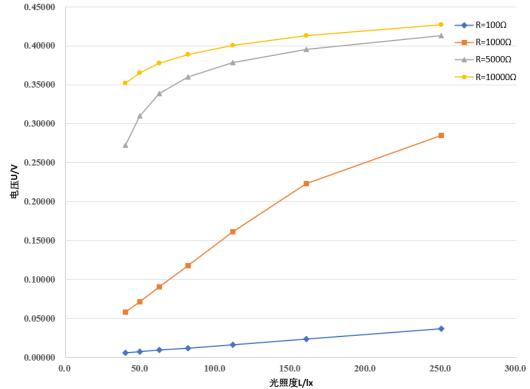
对 $U_{OC} - L$ 图像进行对数拟合得到函数关系式为 $U_{OC} = 0.0263 lnL + 0.2958, R^2 =$ 0.9997

2022年6月5日

对 $I_{SC}-L$ 图像进行线性拟合得到函数关系式为 $I_{SC}=1.5L-0.0004, R^2=1$

2022年6月5日

4.3 不同负载下硅光电池输出电压与光照测量


测量不同负载 R_L 的硅光电池输出电压 U 与光照度 L 的关系,绘制 U-L 曲线并分 析负载对 U-L 的影响。原始数据如表 4.3 所示,得 U-L 曲线如图 4.3 所示。

为了保障实验精度, 此次实验中在被测量不超出万用表直流电压 200mV 档量程的条件 下均使用 200mV 档, 其余均使用 2V 档。故实验数据中所有精确到十万位数据均用 200mV 量程测得, 所有精确到万位数据均由 2V 量程测得。

d/cm 25 30 45 L/lx250.0 160.0 111.1 81.6 62.5 49.4 40.0 U/V 0.03645 0.02344 0.01627 0.01183 0.00714 0.00577 0.00906 R=100Ω I/mA 0.36450 0.11830 0.09060 0.07140 0.05770 0.23440 0.16270 U/V 0.2850 0.07134 0.05769 0.2231 0.1612 0.1178 0.09041 $R=1000\Omega$ I/mA 0.2850 0.2231 0.1612 0.1178 0.0904 0.0713 0.0577 U/V0.4131 0.3956 0.3787 0.3602 0.3389 0.3101 0.2723 $R=5000\Omega$ I/mA 0.08262 0.07912 0.07574 0.07204 0.06778 0.06202 0.05446 U/V 0.4268 0.4129 0.4006 0.3886 0.3774 0.3651 0.3522 R=10000Ω 0.04268 0.04129 0.04006 0.03886 0.03774 0.03651 0.03522

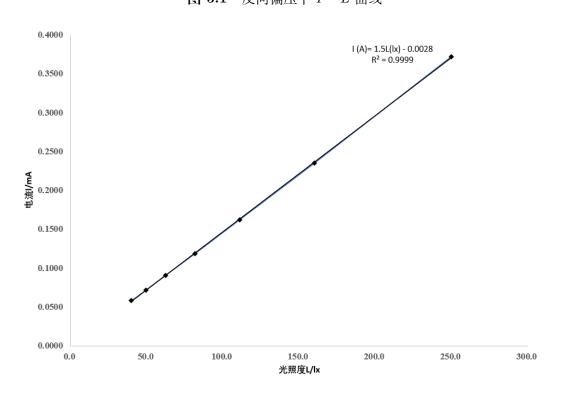
表 4.3 不同负载的输出电压数据

图 4.3 不同负载下的 U-L 曲线

可以看到,负载越大,在同一光照度下硅光电池的输出电压也越大。而且当负载越小时,负 载变化对输出电压的变化影响越大。

2022年6月5日

4.4 反向偏压下硅光电池的电流与光照测量


用溴钨灯照射硅光电池,电阻箱为负载,接入反向电压 2V,测量不同 L 下硅光电池的工作电流 I,绘制 I-L 曲线。原始数据及所计算的 I、 $U_{1500\Omega}$ 、L 在表 5.1 中列出。得 I-L 曲线,于图 5.1 所示。

为了保障实验精度,此次实验中在被测量不超出万用表直流电压 200mV 档量程的条件下均使用 200mV 档,其余均使用 2V 档。故实验数据中所有精确到十万位数据均用 200mV 量程测得,所有精确到万位数据均由 2V 量程测得。

d/cm	20	25	30	35	40	45	50
L/lx	250.0	160.0	111.1	81.6	62.5	49.4	40.0
$U_{1500\Omega}/V$	0.5578	0.3519	0.2433	0.1778	0.1360	0.1073	0.08692
I/mA	0.3719	0.2346	0.1622	0.1185	0.09067	0.07153	0.05795

表 5.1 反向偏压下输出特性数据

图 5.1 反向偏压下 I-L 曲线

对 I-L 图像进行线性拟合得到函数关系式为 $I=1.5L-0.0028, R^2=0.9999$

2022年6月5日

5 分析与讨论

5.1 定性误差分析

- 1. 光照度:
- (1) 光源的亮度可能因为电压电流等的变化而有所波动;
- (2) 实验仪器的上硅光电池所在的立柱并无中心刻度,可能导致距离 d 不准确;
- (3) 导轨与电源前端、硅光电池与光线均可能不垂直;
- (4) 环境中除了实验光源外的其他光源影响。
 - 2. 电流、电压:
- (1) 电压表使用的是万用表,精度不足;
- (2) 用 $R_L = 50\Omega$ 时的电流代替短路电流并不准确;
 - 3. 电阻:
- (1) 测量中发现存在电阻箱误差的情况;
- (2) 导线、接线柱等电阻的影响。

6 思考题

1. 光电池在工作时为什么要处于零偏或反偏?

答: 只有当 P-N 结处于零偏或反偏时,耗尽区才会存在内电场,此时对其光照,硅光电池对光子的本征吸收所激发的少数载流子才会引起光伏效应,即硅光电池正常工作;若正偏,则 P-N 结导通,此时耗尽区变窄,扩散运动大于漂移运动,硅光电池便无法正常工作输出电压。

2. 增加光照强度, 硅光电池哪些参数会发生变化?

答:增加光照强度会直接导致短路电流 I_{SC} 、断路电压 U_{oc} 、一定负载下的输出电压 U_L 、电流 I、光生电流 I_{ph} 均增大,同时输出功率 P 也会改变。