1

康普顿散射

廖荣

中国科学技术大学 微尺度物质科学国家研究中心 物理学院, 合肥 230026 合肥国家实验室,合肥230088

1 实验目的

1. 学会康普顿散射实验方法.

2. 验证康普顿散射的能量和微分截面随散射 角变化的关系.

2 实验原理

2.1 散射的能量

图 1: 康普顿散射示意图

康普顿散射是 γ 射线和物质相互作用的三种 主要效应之一,是入射γ光子与自由电子或原子外 壳层电子弹性碰撞而发生的散射。散射时,电子被 反冲, 而光子的能量和运动方向发生变化, 如图1 所示。这是典型的二体弹性散射过程,根据能量守 恒和动量守恒可得:

$$\Delta \lambda = \lambda' - \lambda = \frac{h}{mc} (1 - \cos\theta) \tag{1}$$

其中 λ 和 λ' 分别表示入射光子和散射光子的 波长, θ 为光子散射角,h为普朗克常数,m为电 子静质量, c为光速。式(1)中h/mc = 0.02426, 称为康普顿波长,它决定了康普顿散射波长移动的 数量级。

(1) 式,可得散射光子和反冲电子的能量:

$$E'_{\gamma} = \frac{E_{\gamma}}{1 + \frac{E_{\gamma}}{mc^2}(1 - \cos\theta)}$$
(2)

$$E_e = E_\gamma - E_\gamma' = \frac{E_\gamma}{1 + \frac{mc^2}{E_\gamma(1 - \cos\theta)}}$$
(3)

2.2 散射截面

克莱因和仁科共同推导出基于量子电动力学 的光子电子散射的微分截面公式:

$$\frac{d\sigma(\theta)}{d\Omega} = \frac{r_0^2}{2} \cdot \frac{1 + \cos^2\theta}{[1 + \alpha(1 - \cos\theta)]^2} \cdot \left\{1 + \frac{\alpha^2(1 - \cos\theta)^2}{(1 + \cos^2\theta)[1 + \alpha(1 - \cos\theta)]}\right\}$$

根据微分散射截面的定义,当 No 个光子入射 并与 Ne 个电子发生相互作用, 在忽略多次散射及 吸收的情况下, 散射到 θ 方向 Ω 立体角内光子数 $N(\theta)$ 为:

$$N(\theta) = \frac{d\sigma(\theta)}{d\Omega} N_0 N_e \Omega \tag{5}$$

实验测量到的是 θ 方向的散射光子能谱,其光电峰 总计数为 $N_p(\theta)$ 。已知 Nal 晶体对点源的总探测效 率 $\eta(\theta)$ 和峰总比 $R(\theta)$ 。可以推导得到微分散射截 面为:

$$\frac{d\sigma(\theta)}{d\Omega} = \frac{N_p(\theta)}{R(\theta)\eta(\theta)4\pi N_0 N_e} \tag{6}$$

实验中, No, Ne 无法精确知道, 但它们在各个 散射角 θ 下都保持不变,所以可以用比较法求微分 散射截面的相对值。选择某散射角 θ_0 的微分散射 截面,其他散射角 θ 的微分散射截面与其之比为:

$$\frac{d\sigma(\theta)}{d\Omega} \left/ \frac{d\sigma(\theta_0)}{d\Omega} = \frac{N_p(\theta)}{R(\theta)\eta(\theta)} \right/ \frac{N_p(\theta_0)}{R(\theta_0)\eta(\theta_0)}$$
(7)

根据光子能量和波长的关系 $E = hc/\lambda$,代入 由附表给出的数据,用内插法求出 $R(\theta), \eta(\theta), R(\theta_0), \eta(\theta_0), \eta(\theta_$ 就可以求出微分散射截面的相对值。

3 实验装置

4.2 改变散射角,测量散射光子的能谱

图 4: 不同散射角光子能谱

4.1 对康普顿散射实验谱仪进行能量刻度

用 ^{152}Eu , ^{137}Cs 放射源进行能量标定, 作能量-道数线性刻度曲线。 相对误差分析如下:

|--|

角度 (°)	实测 $E'_{\gamma}(keV)$	理论 $E'_{\gamma}(keV)$	误差
30	551.28	563.85	2.23%
40	493.38	507.82	2.84%
50	432.56	452.41	4.39%
60	377.00	401.63	6.13%
70	333.34	357.27	6.70%
80	297.68	319.64	6.87%
90	268.21	288.33	6.98%
100	243.85	262.60	7.14%
110	224.71	241.69	7.03%
120	207.59	224.88	7.69%

4.3 计算散射截面

线性拟合得到 E(keV) = 0.944 * Channel - 12.518, 拟合优度为 $R^2 = 0.9999$ 。

对 η 和 R的参考值进行三次样条插值,得到的插值结果为

eta (1e-4)

需要选择"符合"工作模式?为什么? 能量刻度后哪些工作条件不能变动,为 什么?

不能选择"符合"模式,因为能量标定时只有 一个 NaI 探测器信号源。不能改变工作区域。

5.2 试分析本实验的主要误差来源,有限立体角的影响和减少实验误差的方法,讨论实验值和理论不完全符合的原因。

误差来源有角度设定不够精确, PMT 电压不 稳定等, 有限立体角的影响导致采集到的事例数偏 少。

可通过稳定 PMT 电压、采用更精确的探测器 滑轨,多次测量等方法减少误差。

实验测得能量全部偏小固定值,怀疑为系统误差,截面测量偏差可能由于峰净面积选取区间有偏差。

0.9 -	٩		—— Sp	line trace in	terp of "R"		
- 0.8							
-		<					
0.7 -							
~ ~ ~ ~							
<u>02</u> 0.6 -							
0.5 -			L				
-							
0.4 -			<u> </u>				
0.3 -							
-					· · · · · · · · · ·		
	200	400	600	800	1000		
Energy (keV)							
图 6: R 三次样条插值							

角度 (°)	$E'_{\gamma}(keV)$	插值 $\eta(1e-4)$	插值 R
30	551.28	7.09153	0.45587
40	493.38	7.41056	0.49636
50	432.56	7.83882	0.55164
60	377.00	8.31997	0.6156
70	333.34	8.77018	0.67452
80	297.68	9.19989	0.72712
90	268.21	9.59419	0.77293
100	243.85	9.91726	0.812
110	224.71	10.1501	0.84326
120	207.59	10.33081	0.87151

选取 30° 为 θ_0 , 代入公式计算

5.3 为什么用塑料闪烁体作为散射样品,而 5.4 不进行符合测量,实验会怎样? 用 NaI(TI) 闪烁体作为康普顿散射能量 探测器?

塑料闪烁体散射光子能力较强, Nal 探测器能量分辨好。