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ABSTRACT 

In this paper, we investigate the use of human gait micro-Doppler 

features for personnel recognition with a deep learning approach. 

Compared with conventional methods for radar-based human 

recognition, most existing schemes remain in discussing the 

distinction of different human motions. The proposed method 

employs a deep convolutional neural network (DCNN), which 

combines the inception parallel structure, to learn the necessary 

features of the time-frequency complex tensor that can be used to 

address the problem of recognizing different human subjects. Real 

data is collected relating to eight human subjects using a 

continuous wave radar operating at K-band. The experimental 

results illustrate that by using the human gait micro-Doppler 

features, the DCNN can achieve an accuracy rate of 96.9% on 

personnel recognition. 
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1. INTRODUCTION 
Due to the increasing requirement of human identification and 

protection monitoring, the research on personnel recognition 

attracts much attention in recent years. Compared with other 

sensors, feature extraction and recognition based on radar, which 

can be operated in adverse weather and penetrate opaque 

obstacles have gradually become an indispensable technical 

method [1]-[3]. 

The human micro-Doppler features refer to the frequency 

modulations on top of the main Doppler shift caused by a moving 

person [4]. It provides a unique signature of the target and can be 

potentially used for target classification and identification. At 

present, most existing schemes using the unique micro-Doppler 

signatures remained in discussing the discrimination of different 

human motions, such as walking, running, crawling, and carrying 

objects [5]-[10]. The data processing usually consists of three 

steps. First of all, the micro-Doppler features are extracted by 

time- frequency transform methods including Short Time Fourier 

Transform (STFT), Wigner-Ville distribution and Cohen's class 

distribution [11]-[12]. After that, some traditional machine 

learning algorithms, such as SVM [5], naive Bayesian [9] and 

KNN [13], are used to learn the handcrafted features from the 

spectrogram. At last, a recognition model is trained time and again 

so that it has a better generalization ability for the test data. 

All above methods are concerned with the classification of 

different motions. We all have the experience that the people 

whom we are familiar with can be distinguished by their walking 

gait features. Similar to radar-based human motions classification, 

the micro-Doppler signatures which are related to the swinging 

micro-movements of legs, arms, torso and head of the person can 

be considered as a unique feature to identify a person. Therefore, 

the human walking gait micro-Doppler features can also provide a 

viable means for personnel recognition. In [14], Svante presented 

an experiment which concludes that the radar micro-Doppler 

signatures of walking humans likely contain the information to 

distinguish among different human individuals. Ricci in [15] 

analyzed a set of experimental data of four different human targets 

walking and running on a treadmill using a continuous wave radar 

operating at 10 GHz. Fioranelli [16] investigated the classification 

performance of the singular value decomposition feature and of 

novel features based on the centroid of the micro-Doppler 

signatures to address the identification problem of specific 

individuals. 

During the last decade, deep learning approaches [17] have 

obtained state-of-the-art results in the area of computer vision and 

speech recognition. In the field of radar signal processing, using 

the concept of deep learning, several research results have been 

proposed in recent years. Mason [18] proposed a recurrent neural 

network framework to address the autofocus problem in SAR 

imaging and present numerical simulations to demonstrate it. Liu 

introduced a novel neighborhood preserved deep neural network 

for polarimetric synthetic aperture radar feature extraction and 

classification in [19]. Feng [20] utilized a deep network called 

Stacked Corrective Autoencoder (S-CAE) for HRRP-based radar 

automatic target recognition. Kim investigated the classification 

of human hand gestures and motions with a DCNN network [21]-

[22]. The benefit of deep neural network is that it can learn the 

necessary features jointly and automatically through a series of 

non-linear mapping, which has a great advantage over other 

machine learning methods which rely on handcrafted features, so 

that it can get excellent results in many tasks. 

In this paper, we carry out a research on the use of human gait 

micro-Doppler features for personnel recognition with a deep 

convolutional neural network. The previous work in [21]-[22] 

utilized micro-Doppler spectrogram as the training and testing 

data of the DCNN, which may miss some information during the 

compression and transform of the spectrogram. Meanwhile, they 

only make use of the magnitude but lose the phase information of 
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the features. The human gait micro-Doppler features which we 

use in this paper are composed of a complex tensor in which the 

real and imaginary parts are viewed as a channel, respectively. 

The deep convolutional neural network which we exploit is 

inspired by the GoogLeNet Inception architecture [23]-[24]. The 

inception architecture employs the multiple size of the 

convolutional kernels parallel structure in the same layer to 

increase the representational power of neural network. Compared 

with the previous research, we apply the inception architecture to 

personnel recognition based on human gait micro-Doppler 

features for the first time. 

RadarPower

Sampling Trigger
Oscilloscope

 

Figure 1. Schematic of the experimental configuration. 

The rest of this paper is organized as follows. The walking gait 

measurement data collection and the experimental setup are drawn 

in Section II. In section III, the architecture and components of 

our deep convolutional neural network are proposed in detail. 

Section IV discusses and analyzes the training and testing results 

of the personnel recognition. And conclusions are presented in 

Section V. 

2. Measurement of Human Walking and 

micro-Doppler Features 
We employ the radar which is a K-Band VCO transceiver 

centered at 24 GHz. The radar includes two analogue channels, 

which provide the in-phase (I) and quadrature (Q) components of 

the received signals. The output power of the radar is 20 dBm. As 

shown in Fig.1, the radar is placed at an elevation of 80 cm above 

the ground. People walk in a normal situation towards the radar 

with an average distance of about 10 meters. The data of eight 

human subjects are collected by an Agilent Oscilloscope at a 

sampling rate of 4 kHz. Each target is recorded for a duration of 6 

seconds and the data collection is repeated for several times. The 

physical characteristics of the human subjects are given in Table 1. 

As the radar back-scattered signals from walking people are non-

stationary, the most common choice to analyze the signals is the 

Short Time Fourier Transform (STFT), which is one of the most 

powerful time-frequency analysis methods. The equation of STFT 

is defined as follows 

  (1) 

where ℎ(∙) is a window function of length M, 𝑥(∙) is the time-

domain radar echo of length N, n and k represent the discrete time 

and frequency. 

Because of the small value of the human Radar-Cross Section 

(RCS), the radar back-scattered signal is usually relatively weak. 

It is difficult to observe the micro-Doppler features directly in the  

Table 1. Physical characteristics of the analyzed human 

targets. 

Target Gender Height/(m) Weight/(kg) 
Leg 

Length/(m) 

Arm  

Length/(m) 

(a) Male 1.76 54 1.01 0.76 

(b) Male 1.73 62 0.94 0.78 

(c) Male 1.78 68 0.95 0.81 

(d) Male 1.83 70 1.07 0.75 

(e) Male 1.80 68 1.02 0.85 

(f) Female 1.68 55 0.90 0.70 

(g) Female 1.56 53 0.87 0.58 

(h) Female 1.59 40 0.93 0.62 

process of human walking after time-frequency analysis of the 

echo. So some contrast enhancement methods should be exploited 

after STFT in order to enhance the weak micro-Doppler features. 

Here, we use the Naka-Rushton equation [25] because it not only 

enhances the weak micro-Doppler amplitudes but also suppresses 

the small amplitudes, which usually represent the noise. The 

contrast enhanced equation is given as follows 

  (2) 

where W (i, j) represents the absolute value of the STFT (n,k) and 

𝜇 is the mean value of the patch. In this paper, the parameter r is 

set to 1. 

The micro-Doppler features of eight human walking gaits are 

presented in Fig. 2. A 32 ms Hamming window is used in the 

STFT and the time step of non-overlapping samples to 5 ms. It 

can be seen that the strongest echo of each person returns from the 

torso and the Doppler frequency is about 200 Hz, which can be 

calculated that the human walking speed is about 1.25 m per 

second. The periodic micro-Doppler modulations surrounding the 

torso come from the movements of arms and legs. In contrast to 

the male subjects, female subjects usually swing arms more 

slightly when they are walking, which can be observed in the 

spectragram. In addition, the target (h) is the lightest in the 8 

subjects, which is reflected in the spectragram that the micro-

Doppler modulations surrounding the torso is weak due to her 

small RCS. All these differentiated features provide some 

references for the personnel recogniton. However, it is noteworthy 

that compared with the distinction of different human motions, 

recognizing different people by the handcrafted walking gait 

micro-Doppler features is still a challenging problem due to the 

subtile disparity. 

Owing to the similarity of each person’s micro-Doppler features 

of walking gaits, traditional supervised learning paradigms which 

rely on the feature extraction of the raw micro-Doppler signatures 

for human intervention are hard to achieve good results in the 

personnel recognition problem. To differentiate and recognize 

these features, a forceful pattern recognition technique without 

handcrafted features is necessary. 

3. Architecture of Deep Convolutional Neural 

Network 
In this section, we first introduce the characteristic and general 

layout of our Deep Convolution Neural Networks (DCNNs), and 

then discuss the training process of parameters in details. Finally, 

we will show the specific configuration in our implementation. 
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Generally, starting with LeNet-5 [29], CNNs have typically had a 

standard structure: stacked convolutional layers, pooling layers 

and followed by one or more fully-connected layers. The series 

connection into a network such as AlexNet [26] have achieved 

excellent results in many tasks. Recently, in the field of radar 

target recognition and human motions classification, most the 

architecture of networks which exploit deep learning methods also 

use the kind of series structure. In order to obtain a better 

representation, the usual way is to deepen the network. However, 

with the deepening of the kind of stacked series network, the 

computational bottlenecks are apparent in the case of limited 

training data. 

    
(a)                                                             (b) 

     
(c)                                                             (d) 

     
(e)                                                             (f) 

     
(g)                                                             (h) 

Figure 2. Micro-Doppler features of eight human walking gait. 

Inspired by the GoogLeNet Inception module [23]-[24], we want 

to utilize the parallel connection to widen the network in order to 

extract more features. The inception architecture in Fig. 3 uses 

multi-scale convolutional kernels to convolve the same feature 

map which can extract multi-size features. The convolution kernel 

of 1 × 1 can significantly reduce the amount of computation by 

fusing the information of each channel and can increase the 

nonlinearity of the network. 

The architecture of our proposed deep neural networks are shown 

in Fig. 4. The Conv2d_BN layer in our network contains a 2-D 

convolution layer, which is followed by a restricted linear unit 

(ReLU) activation function to increase the nonlinearity in the 

network and then using the Batch Normalization method [27] to 

normalize the middle outputs. Each of the Conv2d_BN layer is 

followed by a pooling operation which is a down-sampling 

process so that the extracted features are more concentrated. After 

the initial feature extraction, we get a series of feature maps which 

have an appropriate size. These feature maps are passed through 

the Inception module parallel structure in Fig. 3 to achieve more 

abstract feature extraction. At the end of our network, we add a 

dropout [28] layer, which is an extremely effective technique to 

prevent overfitting. The softmax function is applied in the output 

layer to solve the case of multi-class recognition after a series of 

feature extraction. 

Previous layer

Filter 

Concatenation

1 x 1 

convolutions

1 x 1 

convolutions

3 x 3 

convolutions

5 x 5 

convolutions
1 x 1 

convolutions

1 x 1 

convolutions

3 x 3 
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Figure 3. The inception module of GoogLeNet. 

Input Output

 

Figure 4. Architecture of our proposed neural network. 

The input of our network is a 3-D tensor whose size is 225 ×
225 × 2 , in which the first dimension represents the micro-

Doppler signatures, the second dimension shows the time 

information, and the third dimension includes the real and 

imaginary parts after the time-frequency analysis. Most existing 

applications of neural network to solve human motions 

recognition problems use the real-valued spectrogram as the input 

of the network, whose resolution is determined by the image 

compression algorithm and some original information will be lost 
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during the image compression process. Compared with the real-

valued spectrogram, we employ the complex 3-D tensor which 

contains not only the magnitude information but also the phase 

information. 

 

  Figure 5. Recognition accuracy for test data. 

4. Experimental Results and Related Analysis 
In the experiment, we collected a total of eight human subjects’ 

experimental data, including five males and three females, each of 

which was measured about 250 times by walking towards the 

radar.  

We acquired a total of 2000 pieces of data approximately for a 

duration of 6 seconds. The data of the middle four seconds were 

cut into two segments and then the micro-Doppler features of the 

Time-Frequency (TF) distributions are obtained by STFT. We 

collected the data for 5 days continuously, of which the first four 

days were regarded as train sets and the last day were the test sets. 

For training, we used the open-source toolkit Keras with the 

Tensorflow backend. The whole network was trained using the 

stochastic gradient descent (SGD) method with a mini-batch size 

of 35 and a learning rate of 0.001. The momentum method was 

employed with a weight of 0.9 and a weight decay parameter of 

0.004. All the weights were initialized from Gaussian distributions 

with zero mean and a standard deviation of 0.01. The training 

time with 200 epochs was about 10 minutes on average. 

The recognition accuracy rate for test data is presented in Fig. 5, 

and the abscissa indicates the number of epochs. The solid line 

represents the results by using the inception parallel structure 

network where the red and blue curves express the results by 

using the complex tensor and the real-valued spectrogram as the 

inputs respectively. The green dotted curve denotes the result of 

using the traditional stacked series convolution neural network. It 

shows that compared with the series convolutional neural network, 

our approaches, i.e. the red curve, which combined the inception 

parallel structure have improved the recognition accuracy by 

nearly 7 percentage points and the convergence is faster. 

Furthermore, the complex tensor inputs have also improved the 

recognition results compared with the real-valued spectrogram. 

Because the former can obtain the magnitude and phase of the 

micro-Doppler features by combining the real and imaginary 

channels, which is more abundant than the real-valued 

spectrogram. 

For analysis of misclassification, the confusion matrix of test sets 

using our approach is presented in Table 2. Each row in the 

confusion matrix represents the actual human subjects, and each 

column denotes the subject predicted by our network. Label (a) - 

(h) stands for the people listed in Table 1, respectively. From the 

table, it can be seen that (a) and (h) have an excellent recognition 

results indicating that the gait features of these two people are 

quite significant and the daily walking posture is relatively similar. 

The male subject (b) has the lowest recognition accuracy in this 

experiment and we note that all the false identities are predicted to 

the subject (a). The reason may be due to the fact that his walking 

gait features are similar to the subject (a). The more likely reason 

we supposed is that there is a difference in the gait of daily 

walking for some people and it may lead to the accuracy lower 

than other subjects. 

Table 2. Confusion matrix for test set 

Subjects (a) (b) (c) (d) (e) (f) (g) (h) Acc 

(a) 80  0 0 0 0 0 0 0 1.000 

(b) 6 74 0 0 0 0 0 0 0.925 

(c) 0 0 79 0 0 1 0 0 0.986 

(d) 1 2 0 77 0 0 0 0 0.963 

(e) 2 0 1 0 77 0 0 0 0.963 

(f) 0 0 1 3 0 75 0 1 0.938 

(g) 0 0 0 0 0 1 78 1 0.975 

(h) 0 0 0 0 0 0 0 80 1.000 

Average         0.969 

The performance of our network which is compared with other 

convolution neural networks and traditional supervised learning 

paradigms is listed in Table 3. It can be seen that the deep learning 

methods, using the neural networks, have better effects in the 

recognition task of feature extraction than the traditional 

handcrafted feature classification method such as SVM. Further-

more, adding the inception parallel module to the network can 

further improve the accuracy of the recognition, and the use of 

complex tensor instead of real-valued spectrogram as the input of 

the network can also increase the micro-Doppler feature 

information to enhance the accuracy. 

Table 3. Our networks versus conventional methods 

Methods Average Recognition Accuracy 

SVM: spectrogram-based 0.798 

Series CNN[22]: spectrogram-based 0.864 

Series CNN[22]: complex tensor-based 0.906 

Our network: spectrogram-based 0.916 

Our network: complex tensor-based 0.969 

5. Conclusion 
In this paper, the micro-Doppler features have been applied to 

radar-based personnel recognition problems using deep convo-

lutional neural networks. Real data measurements were collected 

corresponding to eight human subjects walking towards the radar. 

Compared with most existing stacked series convolutional neural 

network applying in the field of radar signal processing, we add 

the inception parallel module to the network and choose the 

complex micro-Doppler tensors as the input for training instead of 

real-valued spectrogram, which can obtain more detailed features 

in order to achieve the purpose of personnel recognition. The 

network's architecture, training process and common rules for 

setting parameters are described in this paper. By employing the 

inception parallel module, human subjects can be successfully 

recognized with the accuracy of 96.9%.  

Inspired by this research, we plan to measure more human 

subjects including both male and female as well as at all ages. 

Meanwhile, we hope to optimize the network architecture so that 

we can use less training costs, i.e., computing resources and 
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training samples, to get more robust personnel recognition 

performance. 
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